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使用位元向量在資料串流環境探勘封閉式頻繁項目集及循序樣式

之研究 

研究生：何錦泉                              指導教授：李素瑛 

國立交通大學資訊科學與工程研究所 

 

摘要 

在資料串流環境中探勘有意義的樣式是一個重要的課題，在感測網路及股市分析等許

多應用中都經常採用。由於資料串流環境的限制，探勘工作將會變得比較困難。我們在

此篇論文的第一部份提出 New-Moment 演算法在資料串流環境中探勘封閉式頻繁項目

集，New-Moment 使用位元向量以及精簡的 closed enumeration tree 大幅改進原來 

Moment 演算法的效能。在第二部分我們提出 IncSPAM 演算法在串流環境中探勘循序樣

式，它提供了一個全新的滑動視窗架構。IncSPAM 利用 SPAM 演算法以及記憶體索引的

方法，動態維護目前最新的樣式。實驗顯示我們的方法能夠很有效率地在資料串流環境

中探勘出有意義的樣式。 

 

檢索詞：資料串流、滑動視窗、封閉式頻繁項目集、循序樣式 
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Mining of Closed Frequent Itemsets and Sequential Patterns in 

Data Streams Using Bit-Vector Based Method 

 

Student: Chin-Chuan Ho                     Advisor: Suh-Yin Lee 

Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao-Tung University 

 

Abstract 

Mining a data stream is an important data mining problem with broad applications, such as 

sensor network, stock analysis. It is a difficult problem because of some limitations in the data 

stream environment. In the first part of this paper, we propose New-Moment to mine closed 

frequent itemsets. New-Moment uses bit-vectors and a compact lexicographical tree to 

improve the performance of Moment algorithm. In the second part, we propose IncSPAM to 

mine sequential patterns with a new sliding window model. IncSPAM is based on SPAM and 

utilizes memory indexing technique to incrementally maintain sequential patterns in current 

sliding window. Experiments show that our approaches are efficient for mining patterns in a 

data stream. 

 

Index Terms: data stream, sliding window, closed frequent itemset, sequential pattern 
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Chapter 1  

Introduction 

1.1 Overview and Motivation 

Many problems in mining frequent itemsets and sequential patterns focus on static 

databases. In recent years, dynamic environment is becoming more and more important in 

many applications. This dynamic environment is called data streams. However, there are 

some inherent limitations in streaming data environment. For examples, data mining in sensor 

networks has some limitation different from traditional data mining, e.g. battery power and 

capability of sensor CPU [13]. 

Data streams have characteristics as described below [14] [19]: (1) Unbounded size of input 

data; (2) Usage of main memory is limited; (3) Input data can only be handled once; (4) Fast 

arrival rate; (5) System can not control the order data arrives; (6) Analytical results generated 

by algorithms should be instantly available when users request; (7) Errors of analytical results 

should be bounded in a range that users can tolerate. 

For conditions above, three models are adopted by many researchers in ways of time 

spanning: landmark model, sliding window model, and damped window model [9]. 

Landmark model handles data in a time interval. Starting time point is set by users, called 

landmark, and end time point is equal to current time point. So end time point is changed as 

time goes by. If landmark is set to the time point that the first transaction comes, this model 

will cover all the available data. 

In sliding window model, a window with length w will be given. If current time point is t, 

this model handles data in the range [t – w, t]. So when time goes to next time point, this 

model has to eliminate the oldest data in the window and insert the new data. This step is 
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called window sliding. From above we can know that sliding window will cover some range 

of newest data in a data stream. 

Damped window model also considers recent data important, but is not like sliding window 

model eliminating passed data. In this model all available data is kept but a user defines a 

weighted function for data which decreases exponentially into the past. 

Three models have their own advantages and disadvantages. The sliding window model 

keeps the latest information in the data stream. This characteristic is useful if real-time 

patterns are needed, like daily or weekly stock analysis. 

In this paper, an algorithm New-Moment that mines closed frequent itemsets and an 

algorithm IncSPAM that mines sequential patterns in data streams are proposed. These two 

algorithms can efficiently retrieve useful patterns in data streams. 

 

1.2 Related Work 

1.2.1 Mining of Frequent Itemsets 

In sliding window model, an efficient algorithm Moment was proposed in [20, 21]. Moment 

uses a compact data structure, the closed enumeration tree (CET), to maintain a dynamically 

selected set of itemsets over a sliding window. These selected itemsets consist of closed 

frequent itemsets and a boundary between the closed frequent itemsets and the rest of the 

itemsets. CET can cover all necessary information because any status changes of itemsets (e.g. 

from infrequent to frequent) must be through the boundary in CET. Whenever a sliding occurs, 

it updates the counts of the related nodes in CET and modifies CET. Experiments of Moment 

show that the boundary in CET is stable so the updating cost is little. It outperforms 

algorithms Charm [8] and ZIGZAG [7] in running time. 

However Moment must maintain a huge number of CET nodes for a closed frequent itemset. 

The ratio of CET nodes and closed frequent itemsets is about 30 : 1. If there are a large 
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number of closed frequent itemsets, the memory usage of Moment will be inefficient. 

Our proposed algorithm, New-Moment, only maintains closed frequent itemsets and uses 

bit-vector to store the information in the window. Experiments show that memory usage of 

New-Moment is much less than Moment and running time of both algorithms is almost the 

same. 

There are many researches about mining frequent itemsets over data streams. Manku et al 

[10] propose lossy counting algorithm to mine frequent itemsets over an entire data stream.  

Jin et al [15] propose hCount algorithm to maintain frequent items in the streaming 

environment. Li et al [19] propose an algorithm, DSM-FI, to mine frequent itemsets in the 

landmark model over a data stream. It is a projection-based, single-pass algorithm. Chang et 

al [22] propose an algorithm for mining frequent itemsets in the sliding window model. 

Chang et al [16] propose estDec algorithm. It uses a decay function to reduce the weight of 

the old transactions. Researches about mining maximal frequent itemsets and closed frequent 

itemsets over data streams are few. Li et al [27] propose DSM-MFI to mine maximal frequent 

itemsets in the sliding window model in a data stream. 

 

1.2.2 Mining of Sequential Patterns 

There are many researches about mining sequential patterns in a static database. Agrawal et 

al [2] introduce the concept of sequential patterns. They use apriori method that is not 

efficient enough. Pei et al [6] provide a efficient algorithm, PrefixSpan, to mine sequential 

patterns by prefix-projected pattern growth. Lin et al [12] use memory indexing to decrease 

the time of mining sequential patterns. The assumption is that entire sequence database can be 

loaded into main memory. An algorithm SPAM is provided in [11] which use a lexicographic 

sequence tree to check all possible frequent sequences. Bitmap representation is used for 

speeding up mining process. 
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Besides general sequential patterns, closed sequential patterns are also studied. Yan et al 

[17] provide CloSpan to mine closed sequential patterns in large datasets. Chen et al [23] 

mine multiple-level sequential patterns. A concept hierarchy is used to represent the 

relationship between items. For the flexibility of sequence databases, incremental mining of 

sequential patterns is also a research issue. Yen et al [3] and Cheng et al [24] provide 

researches in this area. 

Researches about mining of sequential patterns in data streams are not as many as in static 

databases. Teng et al [18] provide FTP-DS to mine temporal patterns in a data stream. 

Regression-based analysis on frequent patterns is the main feature to improve the 

performance of FTP-DS. Chen et al [25] mine sequential patterns across many data streams. 

Marascu [28] use SMDS algorithm to mine web usage sequences. 

 

1.3 Organization of Thesis 

The remainder of this paper is organized as follows. Some basic definitions and 

terminology about itemset, sequence, and sliding window model are described in Chapter 2. 

The New-Moment algorithm to mine closed frequent itemsets is presented in Chapter 3. The 

IncSPAM algorithm to mine sequential patterns is introduced in Chapter 4. Finally the 

experiments and performance measurements are described in Chapter 5. Conclusion and 

future work is in Chapter 6. 
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Chapter 2  

Problem Definition and Background 

In this chapter we introduce the basic definition of problems. We introduce the definition of 

the data stream environment and the sliding window model in section 2.1. Next we describe 

the definition of closed frequent itemsets and sequential patterns in section 2.2. 

 

2.1 The Sliding Window Model in Data Streams 

2.1.1 Data Stream Environment 

 
Fig 2-1. Processing model of data stream environment 

 

A data stream DS = [T1, T2, …, TM) is an infinite transaction set. In a data stream 

environment, the input is the continuous data stream and each transaction can only be 

scanned once. Due to the limited memory and one-time scan of each transaction (one-pass), a 

summary data structure is needed to store compact information about the data stream. In other 

words, one-pass algorithms for mining data streams have to sacrifice the correctness of its 

analytical results by allowing some counting error. Hence traditional multi-pass techniques 
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for mining static databases are not feasible to be used in the data stream environment. Figure 

2-1 shows a processing model of data streams [19]. 

 

2.1.2 A Sliding Window Model 

Some applications in data streams emphasize the importance of the latest transactions. A 

sliding window model is suitable to solve this kind of problems. In the basic concept, a sliding 

window keeps the latest N transactions in the data streams; N is called a window size. The 

mining data streams engine in Figure 2-1 only mines patterns in the current sliding window. 

Whenever a new transaction is coming, the sliding window eliminates the oldest transaction 

and appends the incoming transaction. This process is called window sliding. The mining data 

streams engine also modifies the summary data structure by the changes of sliding window. 

Figure 2-2 shows the sliding window in an input data stream. 

 

‧‧‧

Data Streams

N

N

NSystem starts
 

Fig 2-2. A sliding window model in a data stream 

 

2.2 Definition of Mining Closed Frequent Itemsets 

I = {i1, i2, i3, …, in} is a set of literals, called items. An itemset is a set of items. An itemset 

X with k items is represented in form of X = (x1, x2, …, xk), called k-itemset. Let DI be a 
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database which has a set of transactions. Each transaction T consists of a set of items from I, 

i.e., T ⊆ I and a transaction id (TID) represents the time order in the database. An itemset X 

is said to be contained in a transaction T if X ⊆ T. The support of an itemset X is the number 

of transactions containing X. An itemset X is a frequent itemset if the support of X is more 

than a user specified threshold minimum support S. 

As an example, let I = {a, b, c, d}, DI = {(a, b, c), (b, c, d), (a, b, c), (b, c)}, S = 0.5. The set 

of frequent itemsets F = {(a): 2, (b): 4, (c): 4, (a, b): 2, (a, c): 2, (b, c): 4, (a, b, c): 2}.The 

Number following the colon represents the support of the itemset. 

The total number of all the frequent itemsets sometimes is too large and it is difficult to 

retrieve useful information. For reducing the number of output patterns, the concept of closed 

frequent itemsets [4] is proposed. 

Definition of Closed Frequent Itemset. A frequent itemset X is closed if there is no 

frequent itemset X′ such that (1) X ⊂X′ and (2) ∀transaction T, X ∈T  X′ ∈T. 

In the above example, the set of closed frequent itemsets C = {(b, c): 4, (a, b, c): 2}, C ⊆F. 

We observe itemsets (b), (c), and (b, c). The supports of itemsets (b) and (c) are equals to the 

support of itemset (b, c); and further, itemsets (b) and (c) are subsets of (b, c). That means 

itemsets (b) and (c) exist in the same transactions of itemset (b, c). By the definition of closed 

frequent itemset, (b) and (c) are not closed frequent itemsets and (b, c) is a closed frequent 

itemset. 

All frequent itemsets can be obtained from closed frequent itemsets without losing support 

information. In the above example, we know that (b) and (c) are frequent itemsets by 

observing closed frequent itemset (b, c). Supports of (b) and (c) are the same as (b, c). 

Supports of frequent itemsets can be used to judge if a frequent itemset is closed.  
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2.3 Definition of Mining Sequential Patterns 

An input database DS contains customer-transactions. These customer-transactions are a 

little different from transactions in section 2.1.1. Each customer-transaction consists of the 

following field: customer-id(CID), transaction-id(TID), and the items purchased in the 

transaction (called an itemset). The concepts of TID, items and itemsets here are the same in 

section 2.2. The difference is that each transaction in DS belongs to some customer. Figure 2-3 

shows an example of the transaction database DS. 

 

Customer ID (CID) Transaction ID(TID) Itemset 
1 1 (a, b, d) 
2 2 (b) 
1 3 (b, c, d) 
2 4 (a, b, c) 
3 5 (a, b) 
1 6 (b, c, d) 
3 7 (b, c, d) 

Fig 2-3. An example of an input database DS 

 

A sequence is an ordered list of itemset and is denoted as S = 〈s1s2s3…sk〉, where sj is an 

itemset. A sequence α = 〈a1a2a3…ak〉 is contained in another sequence β = 〈b1b2b3…bk〉 if 

there exists integers i1 < i2 < i3 < … < in such that ninii bababa ⊆⊆⊆ ,...,,
21 21 . 

All the transactions of a customer can be viewed as a sequence, where each transaction 

corresponds to a set of items, and the list of transactions, ordered by increasing transaction-id, 

corresponds to a sequence. We call such a sequence a customer-sequence. Figure 2-4 shows 

the customer-sequences in Figure 2-3. 
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CID Sequence 

1 <(a, b, d)(b, c, d)(b, c, d)>

2 <(b)(a, b, c)> 

3 <(a, b)(b, c, d)> 

Fig 2-4. The customer-sequences in Fig 2-3 
 

The absolute support of a sequence S is defined as the number of customer-sequences 

containing S. Sequential patterns are the sequences whose supports are more than a 

user-defined minimum support, also called frequent sequences. 
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Chapter 3  

New-Moment: Mining Closed Frequent Itemsets 

The goal of New-Moment is to improve Moment algorithm. First we introduce Moment 

algorithm in section 3.1. Next we introduce our proposed algorithm, New-Moment, in section 

3.2. 

 

3.1 Related Work: Moment Algorithm 

Moment [20, 21] algorithm mines closed frequent itemsets with sliding window model in a 

data stream. It uses a closed enumeration tree (CET) to maintain the closed frequent itemsets 

in the current window. CET not only maintains closed frequent itemsets but also maintains 

some boundary tree nodes. Figure 3-1 shows the CET in the first window. Assume that the 

window size is 4 and the first four incoming transaction is listed in the left of the graph. 

 

∅

(a): 3

W
indow

 #1

(b): 3 (c): 3 (d): 1

(a, b): 3 (a, c): 2(a, b): 3 (a, c): 2

(a, b, c): 2(a, b, c): 2 Infrequent gateway nodeInfrequent gateway nodeInfrequent gateway node

Closed nodeClosed nodeClosed node

Unpromising gateway nodeUnpromising gateway nodeUnpromising gateway nodeMinsup = 2
Window Size = 4

Intermediate nodeIntermediate node

a, b, c4

a, b, c3

a, b2

c, d1

ItemsetsTID

a, b, c4

a, b, c3

a, b2

c, d1

ItemsetsTID

 
Fig 3-1. CET in the first sliding window 

 

There are four types of tree nodes for CET: 
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(1) infrequent gateway nodes 

A node nI that represents itemset I is an infrequent gateway node if i) I is an infrequent 

itemset, ii) nI’s parent, nJ, is frequent, and iii) I is the result of joining I’s parent, J, with one 

of J’s frequent siblings. In Figure 3-1, the tree node (d) is an infrequent gateway node. 

(2) unpromising gateway nodes 

A node nI is an unpromising gateway node if i) I is a frequent itemset and ii) there exists a 

closed frequent itemset J such that J ⊂ I, and J has the same support as I does. In Figure 

3-1, the tree nodes (a, c) and (b) are unpromising gateway nodes. 

(3) intermediate nodes 

A node nI is an intermediate node if i) I is a frequent itemset, ii) nI has a child node nJ 

such that J has the same support as I does, and iii) nI is not an unpromising gateway node. 

In Figure 3-1, the tree node (a) is an intermediate node because its child (a, b) has the same 

support as (a) does. 

(4) closed nodes 

These nodes represent closed frequent itemsets in the current window. A closed node can 

be an internal node or a leaf node. In Figure 3-1, (c), (a, b), and (a, b, c) are closed nodes. 

 

Except closed nodes, Moment keeps three types of boundary nodes. These nodes are the 

most possible candidates of new closed nodes in the next window. Moment keeps these nodes 

for speeding up modification of the closed enumeration tree. 

There are three steps in Moment algorithm: 

(1) Building the closed enumeration tree (CET) 

When the total number of transactions coming from the data stream does not excess 

window size N, Moment just saves these transactions in its sliding window. As long as the 
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window is full, Moment builds an initial closed enumeration tree (CET). Figure 3-1 shows 

the tree in the first window. 

Moment adopts a depth-first procedure to generate all possible candidate itemsets in the 

window and check their supports. In the procedure, if a node is found to be infrequent, it is 

marked as an infrequent gateway node and Moment does not explore its descendants 

further. 

If a node is frequent itemset but not closed frequent itemset, the node is marked as an 

unpromising gateway node. Moment also does not explore its descendants, which does not 

contain any closed frequent itemsets. Moment uses support of a node and the tid sum of the 

transactions that containing the node (tid_sum) to check if the node is a closed node. Take 

the nodes (a, c) and (a, b, c) in Figure 3-1 as an example. The support of (a, c) is the same 

as (a, b, c). The tid_sum of (a, c) is 7 (the third transaction and the fourth transaction in the 

window). That is equal to the tid_sum of (a, b, c). By the definition of closed frequent 

itemsets, we can know that (a, c) is not a closed node. 

If a node is found to be neither an infrequent node nor an unpromising gateway node, 

Moment explores its descendants. The nodes that are intermediate nodes or closed nodes are 

maintained in the CET. 

(2) Updating the CET 

Initial closed enumeration tree is built when the number of incoming transactions from 

the data stream is equal to the window size. After that, when a new transaction comes from 

the data stream, Moment updates the CET to maintain the closed frequent itemsets in the 

current window. There are two steps for updating the CET: 

Adding the new transaction coming from the data stream 
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∅

(a): 3 (b): 3 (c): 3 (d): 1

(a, b): 3 (a, c): 2

(a, b, c): 2

Minsup = 2
Window Size = 4

a, b, c4

a, c, d5

a, b, c3

a, b2

c, d1

ItemsetsTID

a, b, c4

a, c, d5

a, b, c3

a, b2

c, d1

ItemsetsTID

(a): 4 (c): 4 (d): 2

(a, c): 3 (a, d): 1(a, d): 1 (c, d): 2(c, d): 2

 
Fig 3-2. Adding the new transaction with tid = 5 

 

In Figure 3-2, a new transaction T (tid = 5) is added to the sliding window. Moment 

traverses the parts of the CET that are related to transaction T. For each related node nI in 

depth-first order, Moment updates its support and tid_sum. Whenever a node is updated, 

Moment checks if it needs to change its node type. 

In Figure 3-2, the node (d) becomes a new frequent node so Moment generates the new 

candidates node (a, d) and (c, d). By node properties Moment know that (a, d) is an 

infrequent gateway node and (c, d) is a new closed node. By checking the support of the 

nodes (a), (a, c), and (c), Moment modifies them to closed nodes. 

Deleting the oldest transaction in the window 

∅

(a): 3 (b): 3 (c): 3 (d): 1

(a, b): 3 (a, c): 2

(a, b, c): 2

Minsup = 2
Window Size = 4

(a): 4 (c): 4 (d): 2

(a, c): 3

W
indow

 #2

(d): 1(c): 3(c): 3(c): 3

a, b, c4

a, c, d5

a, b, c3

a, b2

c, d1

ItemsetsTID

a, b, c4

a, c, d5

a, b, c3

a, b2

c, d1

ItemsetsTID

(a, d): 1(a, d): 1(a, d): 1

 

Fig 3-3. Deleting the transaction with tid = 1 
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In Figure 3-3, the transaction with tid = 1 is deleted. Like adding the new transaction, 

Moment updates support and tid_sum of each node in the CET. By checking the support of 

each node, Moment modifies its node type. 

In Figure 3-3, node (c) becomes unpromising gateway node because it is contained by 

node (a, c) and supports of (c) and (a, c) are the same. Then the sub tree of node (c), (c, d), 

is deleted. The node (d) becomes new infrequent gateway node. 

 

Moment maintains a huge number of boundary nodes to speed up the procedure of 

updating CET. The cost for a node to change its type is less. But we find that those 

boundary nodes are unnecessary overhead. In our proposed algorithm New-Moment, we 

reduce the number of tree nodes and utilize an efficient structure to store the information of 

the sliding window. 

 

3.2 Our Proposed Algorithm: New-Moment Algorithm 

We use bit-vector to store the information of a sliding window. Because of the efficiency of 

bit-vector in counting support and modifying transactions in window, New-Moment only 

maintains closed frequent itemsets in each sliding window. The new closed enumeration tree 

(New-CET) is composed of the bit-vectors of 1-itemsets, the closed frequent itemsets in 

current sliding window, and a hash table. 

 

3.2.1 Bit-Vector 

Definition of Bit-Vector: For a specified item i and a given window w of sliding window 

model in a data stream, a bit-vector is used to store the occurrences of item         

i in the transactions of w. Each bit of a bit-vector represents a transaction in w. If the item i 

occurs in some transaction of w, the corresponding bit is set to one, else set to zero. 
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Figure 3-4 shows an example of input database and the first three sliding windows are 

displayed next to it. These windows are marked from window #1 to window #3. It is assumed 

that the size of sliding window is 4. The example of figure 3-4 will be used in the following 

context. 

 

b, c6
a, c, d5
a, b, c4
a, b, c3
a, b2
c, d1

ItemsetsTID

b, c6
a, c, d5
a, b, c4
a, b, c3
a, b2
c, d1

ItemsetsTID Window size N = 4

W
indow

 #1

W
indow

 #2

W
indow

 #3

 
Fig 3-4. An example database and the first three sliding windows 

 

Each window in figure 3-4 can be transformed to a bit-vector by the definition of bit-vector. 

The bit-vectors of all items in each window are listed in Table 3-1. The most left bit 

represents the oldest transaction and the most right bit is the most recent transaction. 

 

 Window #1 Window #2 Window #3 
a 0111 1111 1110 
b 0111 1110 1101 
c 1011 0111 1111 
d 1000 0001 0010 

Table 3-1. The bit-vectors of all items in each window in Figure 3-4 

 

3.2.2 Window Sliding with Bit-Vector 

When the number of transactions in a data stream exceeds the size of a window, window 

sliding is performed to eliminate the oldest transaction and append the incoming transaction. 
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Bit-vector is efficient in window sliding process. We can separate the sliding process into two 

steps: 

(1) Delete the oldest transaction 

The only thing a bit-vector needs to do is to left-shift one bit. Take item a as an example. 

a’s bit-vector is 1010 in the first window. If transaction with TID = 1 is deleted, a’s bit-vector 

becomes 0100. Now the most left bit represents the transaction with TID = 2 and the most 

right bit is meaningless and reserved for next step. 

(2) Append the incoming transaction 

After deleting the oldest transaction, the most right bit of the bit-vector is set corresponding 

to the incoming transaction. The bit-vectors of the items contained in the incoming transaction 

set its most right bit to one; the others set its most right bit to zero. Take item a as an example. 

a’s bit-vector is 0100 after deleting the oldest transaction. The incoming transaction is (b, d) 

(TID = 5) not containing a so a’s bit-vector is still 0100. b’s bit-vector is 1110 after deleting 

the oldest transaction. The incoming transaction contains b so b’s bit-vector is 1111 after 

appending the incoming transaction. 

 

3.2.3 Counting Support with Bit-Vector 

Concept of bit-vector can be extended to itemset. For example, the bit-vector of itemset (a, 

b) in the first window is 1010. That means (a, b) occurs in the transactions with TID = 1 and 

TID = 3. 

Assume there are two itemsets X and Y and their corresponding bit-vector BITX and BITY. 

The bit-vector of the itemset Z = X ∪ Y can be obtained by bitwise AND BITX and BITY. 

For example, the bit-vector of itemset (a, b) in the first window (Window #1) is 1010 which 

can be obtained by bitwise AND the bit-vectors of items a and b. That means (a, b) occurs in 

the first and the third transactions in the first sliding window. By bitwise AND between 

bit-vectors, candidates can be efficiently generated when building the lexicographical tree. 
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The support of each itemset can be obtained by counting how many bits in the bit-vector are 

set to one. For example, the support of itemset (a, b) is 2. 

 

3.2.4 Building the New Closed Enumeration Tree (New-CET) 

For improving the efficiency of CET in Moment, we propose a new closed enumeration 

tree (New-CET). New-CET is basically a lexicographical tree. There are three important parts 

in New-CET: 

(1) Bit-vectors of all items (1-itemsets) 

Moment maintains an independent sliding window for counting support of each node in 

CET. Instead of independent sliding window to store current N transactions, information of 

these transactions is maintained by the bit-vectors of all items. 

(2) Closed frequent itemsets in current window 

Each closed frequent itemset only maintains its support. 

(3) Hash table 

For checking whether a frequent itemset is closed or not, we need a hash table to store all 

closed frequent itemsets with their supports as keys. Whenever a new frequent itemset is 

generated, we can judge if this frequent itemset is closed by hashing its support to the hash 

table. How to utilize the information of support to judge if a frequent itemset is closed is 

introduced in section 2.2. 

Building New-CET is almost the same as building CET. The major difference is that 

New-CET only retains bit-vectors of items and closed frequent itemsets and bit-vectors are 

used to count supports of generated candidates. 

When the total number of incoming transactions is less than the size of sliding window, 

New-Moment only records all item information as introduced in section 3.2.1. When the 

window is full, New-Moment call function Build to build the initial New-CET. From the 

bit-vectors we can know the supports of all items. New-Moment utilize depth-first procedure 
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to generate all possible candidates and check their supports. Because the candidates are 

generated by its parent and its parent’s frequent siblings, we can obtain the supports by the 

method introduced in section 3.2.3. Then for each frequent candidate, we use hash table to 

check if the frequent candidate is closed. If the candidate is closed, it is inserted in the hash 

table. If the candidate is not closed, the node is not maintained in New-CET. Figure 3-5 

shows the pseudo code of building New-CET 

 

Build (nI, N, S) 
1:    if support(nI) ≥ S · N then 
2:        if leftcheck(nI) = false then 
3:            foreach frequent sibling nK of nI do 
4:                generate a new child nI∪K for nI; 
5:                bitwise AND BITI and BITK to obtain BITI∪K; 
6:            foreach child nI′ of nI do 
7:                Build(nI′, N, S); 
8:            if ∄a child nI′ of nI such that 
                   support(nI′) = support(nI) then 
9:                retain nI as a closed frequent itemset; 
10:              insert nI into the hash table; 

Fig 3-5. Pseudo code of building New-CET 

 

nI is a tree node, N is the window size and S is minimum support. Each nI has a 

corresponding bit-vector BITI to store the information of sliding window. Except the 

bit-vectors of items, the BITI for a node nI only exists in counting support of a new candidate. 

Figure 3-6 shows the New-CET in the first window by previous example when generating 

new candidates from item a. For simplicity, hash table is not displayed in it. By the 

bit-vectors of items, we know that items a, b, and c are frequent items. Take item a as an 

example, new candidates (a, b) and (a, c) are generated. By bitwise AND bit-vectors of items 

a and b, we can obtain that the support of (a, b) is 3. In the same way, the support of (a, c) is 2 



 

 19

and the support of (a, b, c) is 2. For generating candidates below item a, the bit-vectors of (a, 

b), (a, c), and (a, b, c) are temporarily maintained in the memory. 

 

W
indow

 #1

a, b, c4

a, b, c3

a, b2

c, d1

ItemsetsTID

a, b, c4

a, b, c3

a, b2

c, d1

ItemsetsTID ∅

(a): <0111> (b): <0111> (c): <1011> (d): <1000>

(a, b): <0111>

(a, b, c): <0011>

(a, c): <0011>

Minsup = 2
Window Size = 4  
Fig 3-6. New-CET in the first window after generating new candidates from item a 

 

Figure 3-7 shows the New-CET after checking if each frequent candidate is closed. The tree 

nodes with squares are closed frequent itemsets. By checking support with hash table, we can 

know that frequent itemset (a, c) is not closed. So New-Moment eliminates this node and 

other frequent candidates are marked as closed frequent itemsets. Although item a is not 

closed, New-Moment still maintains the bit-vector of item a. After the sub-tree of item a is 

checked, the bit-vectors in this sub-tree are eliminated. New-Moment only keeps the supports 

of closed frequent itemsets. 

 

W
indow
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a, b, c4

a, b, c3

a, b2

c, d1

ItemsetsTID

a, b, c4

a, b, c3
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Fig 3-7. New-CET in the first window after checking closed frequent itemsets 
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Figure 3-8 shows the New-CET when Build is done. The sub-tree generations of item b and 

c are the same as item a. Item c is a new closed frequent itemset. 

 

W
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a, b, c4

a, b, c3
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c, d1

ItemsetsTID

a, b, c4
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Minsup = 2
Window Size = 4  

Fig 3-8. New-CET in the first window (Window #1) 

 

3.2.5 Deleting the Oldest Transaction in Window Sliding 

Deleting the oldest transaction is our first step of window sliding. All bit-vectors of items 

are left-shifted one bit first and all items in the deleted transaction are kept. This can be done 

by observing the most left bit before left-shifting. After modification of bit-vectors of items, 

New-Moment begins to modify New-CET. 

There is only one case for deleting the oldest transaction: original closed frequent itemsets 

in the New-CET becomes non-closed frequent itemsets or infrequent itemsets. For checking 

this situation, New-Moment traverses the New-CET again to check the supports of the 

existing node in the New-CET. Because just the subsets of the deleted transaction are the 

possible infrequent itemsets, only the sub-trees of the items in the deleted transaction need to 

be checked. The traversing method is almost the same as building the initial New-CET, called 

function Delete. The difference is that Delete generates the entire lexicographical tree 

including the itemsets whose supports are  (S · N – 1). This is because supports of some 

closed frequent itemsets in previous window would be (S · N) and then becomes (S · N – 1) 

after deletion.  
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Figure 3-9 shows the New-CET after deleting the oldest transaction. In the above example, 

the deleted transaction is (c, d). Only the sub-trees of items c and d need to be checked. We 

find that item c is no longer a closed frequent itemset. Item d is infrequent and we do not need 

to check its sub-tree. Figure 3-10 shows the pseudo code of deleting the oldest transaction 

after left-shifting all bit-vectors of 1-itemsets. 
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(a): <0111> (b): <0111> (c): <1011> (d): <1000>

(a, b): 3

(a, b, c): 2(a, b, c): 2
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a, b, c4

a, b, c3

a, b2

c, d1

ItemsetsTID

a, b, c4

a, b, c3

a, b2

c, d1

ItemsetsTID

Minsup = 2
Window Size = 4  

Fig 3-9. New-CET after deleting the oldest transaction 
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Delete (nI, N, S) 
1:    if nI is not relevant to the deleted transaction then 
2:        return; 
3:    else if support(nI) ≥ (S · N – 1) then 
4:        foreach sliding nK of nI  
               whose support ≥ (S · N – 1) do 
5:            generate a new child nI∪K for nI; 
6:            bitwise AND BITI and BITK to obtain BITI∪K; 
7:        foreach child nI′ of nI do 
8:            Delete(nI′, N, S); 
9:        if support(nI) ≥ S · N then 
10:          if leftcheck(nI) = false then 
11:              if nI is closed frequent itemset  
                       in previous sliding window then 
12:                  update the support of nI; 
13:                  update nI in the hash table; 
14:              else 
15:                  retain nI as a closed frequent itemset; 
16:                  insert nI into the hash table; 
17:          else  //leftcheck(nI) = true 
18:              if nI is closed frequent itemset 
                       in previous sliding window then 
19:                  mark nI as non-closed frequent itemset; 
20:                  eliminate nI from the hash table; 
21:      else  //support(nI) < S · N 
22:          if nI is closed frequent itemset 
                   in previous sliding window then 
23:              mark nI as non-closed itemset; 
24:              eliminate nI from the hash table; 

Fig 3-10. Pseudo code of deleting the oldest transaction in window sliding 
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3.2.6 Appending the Incoming Transaction in window sliding 

Appending the incoming transaction is our second step of window sliding. The most right 

bits of all the bit-vectors of items are set corresponding to the items contained in the incoming 

transaction. After modification of bit-vectors of items, New-Moment begins to modify 

New-CET. Only the sub-trees of the items in the inserted transaction need to be checked. 

The method of traverse the New-CET for adding a new transaction, called function Append, 

is the same as function Build. A little difference is that the supports of existing closed 

frequent itemsets in the hash table need to be modified. Figure 3-11 shows the pseudo code of 

appending the incoming transaction after setting the most right bit in each bit-vector of 

1-itemset. 

 

Append (nI, N, S) 
1:    if support(nI) ≥ S · N then 
2:        if leftcheck(nI) = false then 
3:            foreach frequent sibling nK of nI do 
4:                generate a new child nI∪K for nI; 
5:                bitwise AND BITI and BITK to obtain BITI∪K; 
6:            foreach child nI′ of nI do 
7:                Append(nI′, N, S); 
8:            if ∄a child nI′ of nI such that 
                   support(nI′) = support(nI) then 
9:                if nI is closed frequent itemset 
                       in previous sliding window then 
10:                  update the support of nI; 
11:                  update nI in the hash table; 
12:              else 
13:                   retain nI as a closed frequent itemset; 
14:                   insert nI into the hash table; 

Fig 3-11. Pseudo code of appending the incoming transaction in window sliding 

 

In the above example, the inserted transaction is (a, c, d). New-Moment checks the 

sub-trees of items a, c, and d and find that itemsets (a) and (a, c) are new closed frequent 
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itemsets. Figure 3-12 shows the New-CET after appending the incoming transaction. This is 

also the New-CET in the second sliding window. 
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Fig 3-12. New-CET after appending the incoming transaction (Window #2) 
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Chapter 4  

Incremental SPAM (IncSPAM): Mining Sequential Patterns 

Sequential pattern mining is more complicated than mining frequent itemsets, especially in 

the stream environment. In previous researches, there is no general processing model for 

handling a data stream with a transaction unit. Incremental SPAM (IncSPAM) provides a 

suitable sliding window model in a data stream. It receives transactions from the data stream 

and uses a brand-new concept of bit-vector, Customer Bit-Vector Array with Sliding Window 

(CBASW), to store the information of items for each customer. Then IncSPAM uses a 

lexicographic sequence tree to maintain the sequential patterns in the current window. For 

speeding up the maintaining process, IncSPAM uses index sets to store the first occurring 

positions in all customer-sequences for a tree node. Whenever a new transaction comes, 

CBASWs and the lexicographic tree are modified incrementally. Each transaction can be 

analyzed in few seconds. Finally a weight function is adopted in this sliding window model. 

The weight function can judge the importance of a sequence and ensure the correctness of the 

sliding window model. 

 

4.1 A New Concept of Sliding Window for Sequences 

Original sliding window model keeps the latest transactions in a data stream. In the mining 

of sequential patterns, transactions in a data stream belong to many customers. IncSPAM 

keeps the latest N transactions for each customer in a data stream and N is called window size. 

Each customer maintains its own sliding window. Figure 4-1 shows an example of this sliding 

window model. 
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Sequence Database

 
Fig 4-1. An example for the new concept of sliding window 

 

In Figure 4-1, the mining system has received 7 transactions. Assume that the window size 

of each customer is 2 (each customer keeps the latest 2 transactions in a data stream). There 

are three transactions belonging to customer #1: transactions with TID = 1, 3, and 6. Only 

transactions with TID = 3 and 6 are stored in the sliding window of customer #1 (marked by 

the two-way arrow). In the same concept, the sliding windows of customer #2 and customer 

#3 are also displayed in Figure 3-9. This example will be used through the introduction of 

IncSPAM. 

 

4.2 Customer Bit-Vector Array with Sliding Window (CBASW) 

IncSPAM also uses bit-vectors to store the information of the sliding window. The concept 

of bit-vector is almost the same as in section 3.2.1. The difference is that each customer has 

his own bit-vectors for all items to store the information of his sliding window. Table 4-1 

shows the bit-vectors of each customer in Figure 4-1. All these bit-vectors can be collected as 

a unique data structure for each customer. 
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 Customer #1 Customer #2 Customer #3 
a 00 01 10 
b 11 11 11 
c 11 01 01 
d 11 00 01 

Table 4-1. Bit-vectors of all items for all customers 

 

Definition of Customer Bit-Vector Array with Sliding Window (CBASW): For each 

customer-sequence c, we keep the latest N transactions. N is called window size. Each 

bit-vector of item i contains N bits to represent the occurrences of i in the latest N 

transactions. 

Figure 4-2 shows an example of CBASW. Each bar with a customer id is a CBASW which 

contains all bit-vectors of all items for a customer. 
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Fig 4-2. An example of CBASW 

 

A lexicographical tree is needed in the mining process of Incremental SPAM. Although 

CBASWs keep all information of items (1-itemsets) for all customers, they are not efficient 

enough to be used to build and modify a lexicographical tree. In the next section the concept 

of Index Set will be introduced to speed up the process. 
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4.3 Index Set ρ-idx 

Building and modifying lexicographical tree for mining sequential patterns is complicated 

than for mining frequent itemsets. The number of candidate sequence is huge. Index Set for a 

sequence only stores the first positions in all customer-sequences. The memory usage of these 

positions is less than the memory usage of bit-vectors. 

Definition of Index Set: For a sequence ρ, the first occurring position in a 

customer-sequence c of ρ is recorded as ρ-posc. If ρ is not in c, ρ-posc = 0. The collection of 

these ρ-pos values in the order of customer id is called an index set ρ-idx. For convenience, 

ρ-posc can be represented as ρ-idx[c]. 

Take the CBASWs in Figure 4-2 as an example, the index sets of 1-sequences (items) are 

listed in Figure 4-3. Each number in the array represents the first position of a sequence ρ in 

each customer. By counting the number of positions which is not zero in an index set, we can 

obtain the support of a sequence. Take the 1-sequence <(a)> as an example. The number of 

non-zero positions in <(a)>-idx is 2. That means the sequence <(a)> exists in two 

customer-sequence (CID = 2 and CID = 3). So the support of <(a)> is 2. The support of each 

sequence is records after the index set. 

 

CID = 1 00

a

11 11 11

b c d

CID = 2 10

a

11 10 00

b c d

CID = 3 01

a

11 10 10

b c d

[0, 2, 1]: 2
<(a)>-idx

[1, 1, 1]: 3
<(b)>-idx

[1, 2, 2]: 3
<(c)>-idx

[1, 0, 2]: 2
<(d)>-idx

ρ-idx Support of ρ

 
Fig 4-3. An example of index sets 
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4.4 Maintaining Information of Items in Window Sliding with 

CBASW and ρ-idx 

Whenever a new transaction comes from the data stream, its CID is checked to find out 

which CBASW needs to be modified. Each bit-vector in this CBASW is modified by the 

incoming transaction. As in section 3.2.2, if the number of transactions of the customer 

exceeds the size of window, window sliding is performed. 

Window sliding process is the same in section 3.2.2. Each bit-vector left-shifts one bit to 

eliminate the oldest transaction and sets the most right bit by the incoming transaction. The 

bit-vectors of the items in the incoming transaction set their most right bits to one; the others 

set their most right bits to zero. Figure 3-11 shows an example of this sliding process. 

In Figure 4-4, we assume that the system has received 5 transactions and only the CBASW 

of customer #1 is observed. The first CBASW shows the situation before the new transaction 

with TID = 6 coming. The second CBASW shows the result after left-shifting each bit-vector 

one bit. The third CBASW shows the final result after setting the most right bit by the 

incoming transaction. 
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(a, b)53

(a, b, c)42

(b, c, d)31

(b)22

(a, b, d)11

ItemsetTIDCID

(a, b)53

(a, b, c)42

(b, c, d)31

(b)22

(a, b, d)11

ItemsetTIDCID
CID = 1 01 01

a b c d

11 11 10 10 11 11

(b, c, d)(b, c, d)6611

(a, b)53

(a, b, c)42

(b, c, d)31

(b)22

(a, b, d)11

ItemsetTIDCID

(b, c, d)(b, c, d)6611

(a, b)53

(a, b, c)42

(b, c, d)31

(b)22

(a, b, d)11

ItemsetTIDCID
CID = 1 00 00

a b c d

01 01 01 01 01 01

Before the transaction with TID = 6 comes

After the transaction with TID = 6 comes

Left-shift each 
bit-vector one 
bit

CID = 1 00 00

a b c d

11 11 11 11 11 11

Set the most 
right bit by the 
incoming 
transaction

①

②

③

[1, 2, 1]: 3
<(a)>-idx

[0, 2, 1]: 2
<(a)>-idx

[0, 2, 1]: 2
<(a)>-idx

 
Fig 4-4. An example of window sliding in a CBASW 

 

ρ-idx of each item (1-sequence) is maintained according to the CBASWs. Whenever a 

window sliding for a CBASW of a customer c is performed, each ρ-idx[c] is decreased once. 

If a ρ-idx[c] becomes zero after decreasing, the bit-vector of ρ is checked to find out the new 

first occurring position. If ρ does not exist in this customer-sequence anymore, the ρ-idx[c] is 

set to zero. 

In the first CBASW of Figure 4-4, <(a)>-idx[1] is 1. After window sliding, <(a)>-idx[1] is 

decreased to 0. In the third CBASW of Figure 3-11, <(a)>-idx[1] is 0 because sequence <(a)> 

does not exist in customer-sequence of customer #1. The support of sequence <(a)> also 

decreases to 2. 
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4.5 Building of Lexicographical Sequence Tree 

Section 4.4 introduces the algorithm for maintaining information of items in a data stream. 

After the items of the incoming transaction are processed, these items are used to generate all 

possible sequences and check their supports. SPAM algorithm [11] presents a concept of 

lexicographical sequence tree to archive this goal. 

Assume that there is a lexicographical ordering ≤ of the items I in the data stream. If item i 

occurs before item j in the ordering, then we denote this by i ≤I j. This ordering can be 

extended to sequences by defining sa ≤ sb if sa is a subsequence of sb. If sa is not a 

subsequence of sb, then there is no relationship in this ordering. 

The root of the tree is labeled with ∅. Recursively if n is a node in the tree, then n’s 

children are all nodes n′ such that n ≤ n′ and ∀m ∈ T: n′ ≤ m ⇒ n ≤ m. Figure 4-5 shows an 

example of a lexicographic sequence tree. This graph is modified from [11]. Here shows a 

sub-tree of sequence tree for two items a and b to the fourth level. 

 

∅

<(a)> <(b)>

Level

1

<(a)(a)> <(a)(b)> <(a, b)> 2

3<(a, b)(b)><(a, b)(a)><(a)(b)(b)><(a)(b)(a)><(a)(a, b)><(a)(a)(b)><(a)(a)(a)>

4<(a)(a)(a, b)> <(a)(a, b)(a)> <(a)(a, b)(b)> <(a)(b)(a, b)> <(a, b)(a)(a)> <(a, b)(a)(b)> <(a, b)(a, b)>  
Fig 4-5. A lexicographic sequence tree example 
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Each sequence in the sequence tree can be considered as either a sequence-extended 

sequence or an itemset-extended sequence. A sequence-extended sequence is a sequence by 

adding a 1-itemset to the end of its parent’s sequence in the lexicographical tree, like 

<(a)(a)(a)> and <(a)(a)(b)> generated from <(a)(a)> in Figure 4-5. An itemset-extended 

sequence is a sequence by adding an item to the last itemset in the parent’s sequence in the 

lexicographical tree. The order of the item is greater than any item in the last itemset, like 

<(a)(a, b)> generated from <(a)(a)> in Figure 4-5. 

If we generate sequences by traversing the tree, then each node in the tree can generate 

sequence-extended children sequences and itemset-extended children sequences. We refer to 

the process of generating sequence-extended sequences as the sequence-extension step 

(S-step) and the process of generating itemset-extended sequences as the itemset-extension 

step (I-step). Thus each node n in the tree has two sets: Sn, the set of candidate items that are 

considered for possible S-step extensions of node n and In, the set of candidate items that are 

considered for possible I-step extensions. 

 

4.6 Counting Support with ρ-idx 

For a sequence ρ, ρ-idx stores the first positions of ρ in all customer-sequences. In the 

lexicographical tree of Incremental SPAM, each node, representing ρ, uses ρ-idx to count the 

support of sequence ρ. We introduce the method in two different steps. 

 

4.6.1 Counting Support in S-step 

Assume there are a sequence α and an appended 1-itemset β. An S-extended sequence γ is 

generated by α and β. Our goal is to use α-idx and β-idx to generate γ-idx and count the 

support of γ. 
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The first step α-idx[c] and β-idx[c] for each customer c are checked. If either α-idx[c] or 

β-idx[c] is zero, γ-idx[c] is set to zero. That means γ can not exist in the customer-sequence of 

c. If there is a c that α-idx[c] and β-idx[c] are both not zero, γ may exist in this 

customer-sequence. The corresponding position values have to be checked. There are two 

cases for α-idx[c] and β-idx[c]: 

(Case 1) α-idx[c] < β-idx[c]: That means α appears before β and γ does exist in the 

customer-sequence of c. γ-idx[c] is set to β-idx[c]. 

(Case 2) α-idx[c] ≥ β-idx[c]: In this case we do not have enough information for judging if 

γ exists. The CBASW of customer c needs to be further checked. We denote the bit-vector 

of item i in the CBASW of customer c as CBASWc(i). 

A left-shit operation is performed on CBASWc(β) by α-idx[c] bits. If the result of shifting 

is a non-zero bit-vector, γ exists in the customer-sequence of c. Assume the position of the 

first non-zero bit in the result is h. The first position of γ, γ-idx[c], is set to α-idx[c] + h. 

Otherwise γ does not exist in the customer-sequence of c and γ-idx[c] is set to zero. 

Finally the support of γ can be counted by the number of non-zero positions. 

 

4.6.2 Counting Support in I-step 

Assume a sequence α, an appended item T, and an I-extended sequence γ generated by α 

and T. Our goal is to use α-idx and T-idx to generate γ-idx and count the support of γ. 

As in S-step, α-idx[c] and T-idx[c] for each customer c are also checked. If either α-idx[c] 

or T-idx[c] is zero, γ-idx[c] is set to zero. If there is a c that α-idx[c] and T-idx[c] are both not 

zero, the corresponding position values have to be checked. There are also two cases for 

α-idx[c] and T-idx[c] in I-step: 

(Case 1) α-idx[c] = β-idx[c]: That means the last itemset of α and item T are in the same 

position of customer-sequence of c. By the definition of itemset-extended sequence, γ exists. 

γ-idx[c] is set to β-idx[c]. 
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(Case 2) α-idx[c] ≠ β-idx[c]: The further check in CBASW of c is performed. Assume X is 

the last itemset of α. A bit-vector BITX is obtained by bitwise AND CBASWc(x1), 

CBASWc(x2), …, CBASWc(xk), where xi is an item contained in X. Then BITX is 

left-shifted (α-idx[c] – 1) bits. If the resultant sequence is non-zero, γ exists in this 

customer-sequence. Assume the position of the first non-zero bit in the result is h. The first 

position of γ, γ-idx[c], is set to [(α-idx[c] – 1) + h]. Otherwise γ does not exist in the 

customer-sequence of c and γ-idx[c] is set to zero. 

As in section 4.6.1, the support of γ can be counted by the number of non-zero positions. 

 

4.7 The Entire Process of Incremental SPAM (IncSPAM) 

Finally we introduce entire IncSPAM algorithm for the mining of sequential patterns. 

Figure 4-6 shows the main function of IncSPAM. 

 

IncSPAM (S, d, N) 
1:    foreach incoming transaction from the data stream do 
2:        find out which customer c the incoming transaction belongs to; 
3:        update the CBASW of this customer by the incoming transaction; 
4:        store all the frequent 1-sequences to F; 
5:        MaintainTree(c, F); 

Fig 4-6. Main function of Incremental SPAM 

 

The CBASW of each customer is modified from line 1 to line 4. After the modification of 

CBASWs is finished, function MaintainTree is called. Function MaintainTree maintains 

sequential patterns dynamically in a lexicographic sequence tree. There are some cases about 

incremental mining of sequential patterns. Assume that a new transaction ω comes in. ω 

belongs to customer c. The lexicographical tree T is updated to T′: 
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‧ A pattern which is frequent in T is still frequent in T′: We only needs to update its ρ-idx 

and support 

‧ A pattern which is not in T appears in T′: A new pattern is generated because of the 

incoming transaction. By the Apriori [1] property, since prefix of the new pattern must 

also be frequent, we only need to generate candidates from the leaf nodes of T. There 

are two ways to reduce the number of candidates to be generated: (1) We only consider 

the items in the incoming transaction to append on the leaf nodes because the new 

patterns must contain these items in the end. (2) The incoming transaction only belongs 

to a specific customer c so the generated candidates must begin with the items in the 

customer-sequence of c. Figure 4-7 shows an example after sliding the CBASW of 

customer #3. The incoming transaction is TID = 7. 

 

(b, c, d)73
(b, c, d)61
(a, b)53

(a, b, c)42
(b, c, d)31

(b)22
(a, b, d)11
ItemsetTIDCustomer ID (CID)

(b, c, d)73
(b, c, d)61
(a, b)53

(a, b, c)42
(b, c, d)31

(b)22
(a, b, d)11
ItemsetTIDCustomer ID (CID)

Transaction Database

<  (a, b)  (b, c, d)>3
<    (b)    (a, b, c)>2
<(b, c, d)(b, c, d)>1

Customer-SequenceCID

<  (a, b)  (b, c, d)>3
<    (b)    (a, b, c)>2
<(b, c, d)(b, c, d)>1

Customer-SequenceCID

Sliding Window of Each Customer

The appended items are items b, c, and d.

The sub-trees of items a, b, c, and d need to 
generate candidates; others don’t.  

Fig 4-7. Reducing the generated candidates 

 

‧ A pattern which is in T does not exist in T′: The pattern becomes infrequent because of 

window sliding. We directly delete the node and its sub-tree. 
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MaintainTree (c, F) 
1:    foreach tree node n who’s representing item i is in F do 
2:        if i exists in the customer-sequence of c then 
3:            Generate(c, n); 
4:        else  //i does not exist in c 
5:            Update(c, n); 

Fig 4-8. The pseudo code of function MaintainTree 

 

Figure 4-8 shows the pseudo code of MaintainTree. Function Generate, as shown in Figure 

4-9, uses S-step and I-step to generate all possible children with the principles mentioned 

above for each tree node. If the child does not exist in the lexicographical tree, Generate 

creates a new tree node for this child. If the child is in the lexicographical tree, Generate only 

updates the index set and support of this child. Function Update, as shown in Figure 4-10, is 

simpler than Generate. Update does not need to generate children. Update only checks each 

tree node to update its index set and support. The process of updating the index set and the 

support is in Function UpdateSupport. 

 

Generate (c, n) 
1:    foreach existing child n′ of n do 
2:        UpdateSupport(c, n′); 
3:        if the support of n′ < S then 
4:            eliminate n′ and its sub-tree; 
5:    generate candidates of n by S-step and I-step; 
6:    foreach generated candidate x of n do 
7:        count the support of x; 
8:        if the support of x ≥ S then 
9:            x is a child of n; 
10:   foreach child n′ of n do 
11:       Generate(c, n′); 

Fig 4-9. The pseudo code of function Generate 
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Update (c, n) 
1:    foreach existing child n′ of n do 
2:        UpdateSupport(c, n′); 
3:        if the support of n′ < S then 
4:            eliminate n′ and its sub-tree; 
5:   foreach child n′ of n do 
6:       Update(c, n′); 

Fig 4-10. The pseudo code of function Update 

 

We use the previous example to show the process of IncSPAM. Assume three transactions 

have been received by IncSPAM. Figure 4-11 shows the CBASWs and the lexicographic 

sequence tree. We mark the sequential patterns with squares. Each tree node maintains an 

index set to record its support. In Figure 4-11, only 1-sequence <(b)> is frequent so the tree 

does not have longer sequential patterns. 

 

∅

<(a)> <(b)> <(c)> <(d)>

[1, 0]: 1 [1, 1]: 2 [2, 0]: 1 [1, 0]: 1

01 01

a

11 11 10 10 11 11

b c d

00 00

a

01 01 00 00 00 00

b c d
CID = 1

CID = 2

minsup = 2

(b, c, d)31
(b)22

(a, b, d)11
ItemsetTIDCID

(b, c, d)31
(b)22

(a, b, d)11
ItemsetTIDCID

 

Fig 4-11. The lexicographic sequence tree when the third transaction comes in 

 

When the fourth transaction (a, b, c) comes in, CBASW of customer 2 has been modified 

and 1-sequences <(a)> and <(c)> become new sequential patterns. By the extension methods, 

S-step and I-step, longer candidates have been generated. IncSPAM checks the support of 

each candidate using index set and keeps sequential patterns in the lexicographic sequence 

tree. Figure 4-12 shows the result after the four transaction comes. 
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∅

<(a)> <(b)> <(c)> <(d)>

[1, 2]: 2 [1, 1]: 2 [2, 2]: 2 [1, 0]: 1

01 01

a

11 11 10 10 11 11

b c d

10 10

a

11 11 10 10 00 00

b c d

<(b)(b)>

[2, 2]: 2
<(b)(c)>

[2, 2]: 2
<(b, c)>

[2, 2]: 2
<(b)(b)>

[2, 2]: 2
<(b)(c)>

[2, 2]: 2
<(b, c)>

[2, 2]: 2

<(b)(b, c)>

[2, 2]: 2
<(b)(b, c)>

[2, 2]: 2

<(a, b)>

[1, 2]: 2
<(a, b)>

[1, 2]: 2

CID = 1

CID = 2

minsup = 2

(b, c, d)31
(a, b, c)42

(b)22
(a, b, d)11
ItemsetTIDCID

(b, c, d)31
(a, b, c)42

(b)22
(a, b, d)11
ItemsetTIDCID

 

Fig 4-12. The lexicographic sequence tree after the fourth transaction comes in 

 

When the fifth transaction (a, b) comes in, IncSPAM updates the CBASWs and the index 

sets in the lexicographic sequence tree. Then IncSPAM needs to generate new candidates to 

find if there are new sequential patterns. Figure 4-13 shows the lexicographic sequence tree 

and CBASWs after the fifth transaction comes. In the figure the tree nodes linked by the 

dotted arrows means the candidates IncSPAM needs to check. The fifth transaction belongs to 

customer 3 so only the sub-trees of items that exist in the customer-sequence 3 need to 

generate candidates. In Figure 4-13 we can know that the sub-trees of items a and b need to 

generate new candidates. Then we find that the new candidates <(a)(a)>, <(a)(b)>, and <(b, 

c)(b)> are not frequent. IncSPAM does not keep these tree nodes. 
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∅

<(a)> <(b)> <(c)> <(d)>

[1, 2, 1]: 3 [1, 1, 1]: 3 [2, 2, 0]: 2 [1, 0, 0]: 1

<(a, b)>

[1, 2, 1]: 3
<(b)(b)>

[2, 2, 0]: 2
<(b)(c)>

[2, 2, 0]: 2
<(b, c)>

[2, 2, 0]: 2

<(b)(b, c)>

[2, 2, 0]: 2

CID = 3 01 01

a

01 01 00 00 00 00

b c d

01 01

a

11 11 10 10 11 11

b c d

10 10

a

11 11 10 10 00 00

b c d
CID = 1

CID = 2

minsup = 2

(b, c, d)31
(a, b, c)42
(a, b)53

(b)22
(a, b, d)11
ItemsetTIDCID

(b, c, d)31
(a, b, c)42
(a, b)53

(b)22
(a, b, d)11
ItemsetTIDCID

<(a)(a)>
<(a)(b)>
is not frequent

<(a)(a)>
<(a)(b)>
is not frequent

<(b, c)(b)>
is not frequent
<(b, c)(b)>
is not frequent

<(b)(a)>
is not frequent
<(b)(a)>
is not frequent

 
Fig 4-13. The lexicographic sequence tree after the fifth transaction comes in 

 

Figure 4-14 shows the result after the sixth transaction comes in. IncSPAM finds that the 

existing tree node <(b)(b)> becomes infrequent. In this case IncSPAM directly deletes the tree 

node <(b)(b)> and its sub-tree <(b)(b, c)>. 
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∅

<(a)> <(b)> <(c)> <(d)>
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a
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b c d
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a
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b c d
CID = 1

CID = 2

minsup = 2

(a, b)53

(b, c, d)31
(a, b, c)42

(c, d)61

(b)22
(a, b, d)11
ItemsetTIDCID

(a, b)53

(b, c, d)31
(a, b, c)42

(c, d)61

(b)22
(a, b, d)11
ItemsetTIDCID

 

Fig 4-14. The lexicographic sequence tree after the sixth transaction comes in 
 

4.8 Weight of Customer-Sequence 

‧‧‧

Data Streams

System starts Current transaction

These transactions are the latest transactions 
of a customer but the customer has no recent 
transactions in the data stream  

Fig 4-15. The transactions of a customer with no recent records in a data stream 

 

In IncSPAM algorithm, each customer maintains a sliding window to keep the latest N 

transactions and the system mines sequential patterns from all customer-sequences. But some 

customers may have no transactions in recent time in the data stream. These 

customer-sequences with out-of-date transactions would result in a false positive problem in 
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our algorithm. The supports of some patterns generated by the system are overly counted. 

Figure 4-15 shows an example of these out-of-date transactions in a data stream. The 

customer-sequence with these out-of-date transactions is less important than other 

customer-sequences. 

A concept of weight can be used to judge the importance of customers. Each 

customer-sequence c has its own weight wc, 0 ≤ wc ≤ 1. Each weight wc is decayed if the 

incoming transaction does not belong to c. When a transaction of c comes, the weight wc is set 

to one. A decay function is used to compute the weights of customer-sequences when a new 

transaction is coming in: 

p
c dw ×=1  

d, a decay-rate defined by users, can decide how fast a customer-sequence is decayed. p is a 

decay-period of a customer-sequence which is the number of transactions between the 

incoming transaction and the latest transaction of c. p can be written as below: 

p = (incoming transaction TID – the latest transaction TID of c) 

 

In our proposed algorithm, the concept of the decay-rate d is adopted from [26]. d is defined 

as: 

)1,1,1( 1)1(
<≤≥>= −−

dbhbbd h  

Decay-base b: the amount of weight reduction per decay-unit 

Decay-base-life h: the number of decay-units that makes the current weight be 1/b 

Figure 4-16 shows an example of calculating the weights of customers. Assume the 

incoming transaction is the transaction with TID = 7 and the decay rate d = 0.9. The latest 

transaction of each customer is pointed by an arrow. Let us take customer #1 as an example. 

The latest transaction of customer #1 is the transaction with TID = 6. So the weight of 

customer-sequence of customer #1, w1, is equal to 0.9(7-6). 
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(b, c, d)73

(b, c, d)61

(a, b)53

(a, b, c)42

(b, c, d)31

(b)22

(a, b, d)11

ItemsetTIDCID

(b, c, d)73

(b, c, d)61

(a, b)53

(a, b, c)42

(b, c, d)31

(b)22

(a, b, d)11

ItemsetTIDCID

customer #3:

customer #2:

customer #1: w1 = 0.9(7-6)

Decay rate d = 0.9

w2 = 0.9(7-4)

w3 = 0.9(7-7)

 
Fig 4-16. An example of calculating the weights of customers 

 

In IncSPAM, we do not need to calculate decay-period when a new transaction comes in. 

The weight of the customer that the incoming transaction belongs to is set to one. The others 

decay only by a decay-rate d. Figure 4-17 shows an example when a new transactions with 

TID = 8 comes. The weight of customer #2 is set to 1 and the others decay by 0.9. 

 

(b, c, d)73

(a, b, c, d)(a, b, c, d)8822

(b, c, d)61
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(b, c, d)61

(a, b)53

(a, b, c)42

(b, c, d)31

(b)22

(a, b, d)11

ItemsetTIDCID

customer #3:

customer #2:

customer #1: w1 = 0.9 × 0.9

Decay rate d = 0.9

w2 = 1

w3 = 1 × 0.9

 
Fig 4-17. When a new transaction with TID = 8 comes in 

Now the support of a sequence ρ is not just the number of non-zero positions in the ρ-idx. 

The support of ρ is counted by the summation of the weights of the customer-sequences 

which ρ is in. We take the same example in section 4.7. The CBASWs and the lexicographic 

sequence tree in Figure 4-11 becomes Figure 4-18. We assume the decay-rate is 0.9. In Figure 

4-18, we can find that the support of the tree node <(b)> is 1.9 not 2. 
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∅

<(a)> <(b)> <(c)> <(d)>

[1, 0]: 1 [1, 1]: 1.9 [2, 0]: 1 [1, 0]: 1

01 01
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b c d

00 00
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b c d
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CID = 2
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ItemsetTIDCIDweight

1

0.9

1

0.9

 

Fig 4-18. The lexicographic sequence tree when the third transaction comes in  
(with the concept of customer weight) 

 

Updating support for an existing node can be easier than counting support of a new 

candidate. Whenever a new transaction comes in, only one customer-sequence is affected. 

Except the affected customer-sequence, the other customer-sequences’ weights just decay by 

a decay-rate. We do not have to sum up all the weights one by one. The cases of updating 

support can be listed below: 

‧ (Case 1) The incoming transaction belongs to a new customer: For a sequence ρ, the 

original support decays by a decay-rate. Then we check if ρ exists in the new 

customer-sequence. If ρ does exist, the decayed support increments one. If not, the 

decayed supports adds zero. Figure 4-19 shows an example. 
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(a, b, d)11

ItemsetTIDCID

(a, b, d)11

ItemsetTIDCID

<(c)>-idx = [0]; <(c)>’s support = 0
<(b)>-idx = [1]; <(b)>’s support = 1
<(a)>-idx = [1]; <(a)>’s support = 1

Decay rate d = 0.9

(b)22

(a, b, d)11

ItemsetTIDCID

(b)22

(a, b, d)11

ItemsetTIDCID

<(d)>-idx = [1]; <(d)>’s support = 1

After transaction #2 comes

<(c)>-idx = [0, 0]; <(c)>’s support = 0 × 0.9 + 0 = 0
<(b)>-idx = [1, 1]; <(b)>’s support = 1 × 0.9 + 1 = 1.9
<(a)>-idx = [1, 0]; <(a)>’s support = 1 × 0.9 + 0 = 0.9

<(d)>-idx = [1, 0]; <(d)>’s support = 1 × 0.9 + 0 = 0.9

w1 = 1

w1 = 0.9

w2 = 1  
Fig 4-19. An example of support updating in IncSPAM (Case 1) 

 

‧ (Case 2) The incoming transaction belongs to an existing customer: For a sequence ρ, 

the previous position value of this customer in the ρ-idx has to be checked. Assume the 

modified customer-sequence is c. If previous ρ-idx[c] is zero, the original support 

decays by a decay-rate and increments one or zero by the existence of ρ in c. If 

previous ρ-idx[c] is not zero, the original support subtracts the previous weight of 

customer c and then decays by a decay-rate. Finally the support increments one or zero 

by the same consideration. Figure 4-20 shows an example. 
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Decay rate d = 0.9

(b)22

(b, c, d)31

(a, b, d)11

ItemsetTIDCID

(b)22

(b, c, d)31

(a, b, d)11

ItemsetTIDCID

After transaction #3 comes

<(c)>-idx = [2, 0]; <(c)>’s support = 0 × 0.9 + 1 = 1
<(b)>-idx = [1, 1]; <(b)>’s support = (1.9 – 0.9) × 0.9 + 1 = 1.9
<(a)>-idx = [1, 0]; <(a)>’s support = (0.9 – 0.9) × 0.9 + 1 = 1

<(d)>-idx = [1, 0]; <(d)>’s support = (0.9 – 0.9) × 0.9 + 1 = 1

w1 = 1

w2 = 0.9

(b)22

(a, b, d)11

ItemsetTIDCID

(b)22

(a, b, d)11

ItemsetTIDCID

<(c)>-idx = [0, 0]; <(c)>’s support = 0 × 0.9 + 0 = 0
<(b)>-idx = [1, 1]; <(b)>’s support = 1 × 0.9 + 1 = 1.9
<(a)>-idx = [1, 0]; <(a)>’s support = 1 × 0.9 + 0 = 0.9

<(d)>-idx = [1, 0]; <(d)>’s support = 1 × 0.9 + 0 = 0.9

w1 = 0.9

w2 = 1

 

Fig 4-20. An example of support updating in Incremental SPAM (Case 2) 

 

The weights of the customer-sequences do not change the entire process of maintaining a 

lexicographic sequence tree. Only when counting support in each tree node IncSPAM needs 

to consider the concept of weight. The Function UpdateSupport in Figure 4-8 and Figure 4-9 

is changed to Figure 4-21. 
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UpdateSupport (c, n) 
1:    if customer-sequence c is new then 
2:        decay the support of n; 
3:        if the sequence of n is in c then 
4:            the support of n + 1; 
5:        else 
6:            the support of n + 0; 
7:    else 
8:        if ρ-idx[c] is 0 then    // assume the sequence in n is ρ 
9:            decay the support of n; 
10:           if the sequence of n is in c then 
11:               the support of n + 1; 
12:           else 
13:               the support of n + 0; 
14:       else 
15:           the support of n – previous weight of c; 
16:           if the sequence of n is in c then 
17:               the support of n + 1; 
18:           else 
19:               the support of n + 0; 

Fig 4-21. The pseudo code of function UpdateSupport 
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Chapter 5  

Performance Measurement 

5.1 Performance Measurement of New-Moment 

We performed many performance measurements to compare New-Moment with Moment. 

Moment program (MomentFP) was provided by author. All experiments were done on a 

1.3GHz Intel Celeron PC with 512MB memory and running with Windows XP system. 

New-Moment was implemented in C++ STL and compiled with Visual C++ .NET compiler. 

All testing data was generated by the synthetic data generator provided by Agrawal et al in 

[1]. For testing the scalability of New-Moment and Moment, we use two set of different 

parameters, value1 and value2, to generate dataset. Parameters of testing data are listed in 

table 5-1. The dataset generated by value1 (T10I8D200K) contains general length of patterns 

and the dataset generated by value2 (T15I12D200K) contains longer patterns. 

 

Parameter Value1 Value2 
Average items per transaction (T) 10 15 

Number of transactions (D) 200k 200k 
Number of items (N) 1000 1000 

Average length of maximal pattern(I) 8 12 

Table 5-1. Parameters of testing data for New-Moment 

 

Our testing method is to execute New-Moment and Moment on the same dataset and to test 

their performance. The performance measurements include memory usage, loading time of 

the first window, and average time of window sliding. When the first window is filled by 

incoming transactions, both New-Moment and Moment build its initial lexicographic tree. 

The time of building the tree is called loading time of the first window. In the next step, both 
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New-Moment and Moment receive 100 continuous transactions and generate 100 consecutive 

sliding windows. Both New-Moment and Moment record executing time of each window. 

Average time of window sliding was reported over these 100 consecutive sliding windows. 

We use different minimum support, different window size, and different number of item 

types to test these two algorithms. 

 

5.1.1 Different Minimum Support 

In the first experiment, we discuss the memory usage and executing time of New-Moment 

and Moment in different minimum support. Minimum support is changed from 1% to 0.1%. 

Sliding window size is fixed to 100,000 transactions. The number of item types is fixed to 

1000. With different datasets (T10I8D200K and T15I12D200K), the results are listed below. 

 

(1) T10I8D200K 
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Fig 5-1. Memory usage with different minimum support (T10I8D200K) (New-Moment and 

Moment) 

 

The first measurement is about memory usage of New-Moment and Moment. Figure 5-1 

shows the memory usage in Kbytes. We can observe that memory used is more than 120MB 

in Moment but memory used in New-Moment is just about 15MB. When the minimum 
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support is down to 0.05%, the memory used by New-Moment is just 50MB but memory of 

Moment is out of bound (more than 512MB). 

There are much less tree nodes in New-CET than in CET. New-Moment only maintains 

bit-vectors of 1-itemsets and closed frequent itemsets in the current window. Experiment 

shows that New-CET is more compact than CET. 
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Fig 5-2. Loading time of the first window with different minimum support (T10I8D200K) 

(New-Moment and Moment) 
 

The second measurement is about the loading time of the first window. Figure 5-2 shows 

the result. In the first window, both New-Moment and Moment need to build a lexicographic 

tree. We can observe that New-Moment is a little faster than Moment. The reason is that 

generating candidates and counting their supports with bit-vector is more efficient than with 

an independent sliding window (in MomentFP, a FP-tree [5] is used). 
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Average Time of Window Sliding
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Fig 5-3. Average time of window sliding with different minimum support (T10I8D200K) 
(New-Moment and Moment) 

 

The third measurement is about average time of window sliding. Figure 5-3 shows the 

result. In the experiment New-Moment is a little slower than Moment because New-Moment 

do not use tid sum as another key to speed up left-check step. But we can observe that the 

difference is little. The sliding steps can be finished in a second for both algorithms and the 

difference is meaningless. 

 

(2) T15I12D200K 

The patterns in this dataset are longer than the patterns in previous dataset. We also test the 

memory usage, loading time of the first window, and average time of window sliding. From 

the measurements listed below, we can observe that the scalability of New-Moment is better 

than Moment. 

The first measurement is about memory usage in Kbytes. Figure 5-4 shows the result. We 

can observe that the memory used in New-Moment is still less than the memory used in 

Moment. By comparing the Figure 5-1 and Figure 5-4, we can also observe that the scalability 

of New-Moment in memory usage is better than Moment. In the dataset T10I8D200K, 
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memory used in Moment is about 120MB but in the dataset T15I12D200K, memory used in 

Moment is about 200MB. Memory used in New-Moment is under 100MB in both datasets. 
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Fig 5-4. Memory usage with different minimum support (T15I12D200K) (New-Moment and 

Moment) 

 

The second measurement is about the loading time of the first window. Figure 5-5 shows 

the result. We can observe that New-Moment is still faster than Moment. 
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Fig 5-5. Loading time of the first window with different minimum support (T15I12D200K) 
(New-Moment and Moment) 
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The third measurement is about the average time of window sliding. Figure 5-6 shows the 

result. When minimum support is less than 0.3%, the average time of window sliding in 

New-Moment is less than Moment.  
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Fig 5-6. Average time of window sliding with different minimum support (T15I12D200K) 

(New-Moment and Moment) 

 

By testing two different dataset with different minimum support, we can observe that 

New-Moment has better scalability than Moment. Although New-Moment is a little slower 

than Moment in window sliding, both algorithms handle a transaction in one second. In 

complicated dataset and low minimum support, New-Moment can even outperform Moment. 

New-Moment not only use less memory than Moment but also is as fast as Moment in loading 

the first window and window sliding. 

 

5.1.2 Different Sliding Window Size 

Sliding window size decides the length of each bit-vector. In this experiment, we want to 

compare New-Moment and Moment in different sliding window size. This experiment can 

show that using bit-vectors of items instead of independent sliding window is an efficient 
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strategy. In this measurement, sliding window size is changed from 10,000 transactions to 

100,000 transactions. Minimum support is fixed to 0.1%. The dataset is T10I8D200K. The 

number of item types is fixed to 1000. We also test memory usage, loading time of the first 

window, and average time of window sliding. 

Figure 5-7 shows the first measurement, memory usage, in Kbytes. We can observe that 

both New-Moment and Moment are linearly affected by sliding window size. New-Moment 

still outperforms Moment in memory usage. Furthermore, the memory used in Moment 

increases faster than New-Moment when window size becoming larger. 
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Fig 5-7. Memory usage with different sliding window size (New-Moment and Moment) 

 

Figure 5-8 shows the result of the second measurement, time of loading the first window. 

Although with the increasing sliding window size each bit-vector becomes larger, 

New-Moment is still a little faster than Moment in loading time of the first window. The 

reason is that processing time of bitwise AND between bit-vectors is almost not affected by 

the length of bit-vector. 
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Fig 5-8. Loading time of the first window with different sliding window size (New-Moment 

and Moment) 

 

Figure 5-9 shows the result of the third measurement, average time of window sliding. 

Window sliding time of New-Moment and Moment is almost the same. In the experiment of 

different window size, we can also conclude that New-Moment outperforms Moment in 

memory usage and retain the same executing time. 

 

Average Time of Window Sliding

0

0.02

0.04

0.06

0.08

10 20 30 40 50 60 70 80 90 100

Window Size (K transactions)

W
in

do
w

 S
li

di
ng

 T
im

e

(s
ec

on
ds

)

NewMoment MomentFP

 
Fig 5-9. Average time of window sliding with different sliding window size (New-Moment and 

Moment) 
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5.1.3 Different Number of Items 

New-Moment maintains bit-vectors of all items instead of independent sliding window 

structure. The more types of items, the more bit-vectors need to be maintained. The goal of 

this experiment is to show that even with a large number of items New-Moment also 

outperforms Moment in memory usage. The number of item types is ranged from 1000 to 

10000. Minimum support is 0.1%. Sliding window size is 100000. Testing dataset is 

T10I8D200K. We also test memory usage, loading time of the first window, and average 

window sliding time. 

Figure 5-10 shows the memory usage in Kbytes. Moment is out of memory (more than 

512MB) when the number of items exceeds 3000. Memory usage of New-Moment and the 

number of items is linearly related. This result shows that New-Moment does not increase its 

memory usage suddenly when the number of items is large. 
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Fig 5-10. Memory usage with different number of items (New-Moment and Moment) 

 

Next we test the executing time of both algorithms. Figure 5-11 shows the result of loading 

time of the first window. Figure 5-12 shows average time of window sliding. The results 

show that loading time and window sliding time also has linear relation with the number of 

items. Although loading time is more than 300 seconds when the number of items exceeds 
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9000, loading the first window is only executed once. Average time of window sliding is still 

less than 1 second. It means that New-Moment is still efficient with a large number of items. 
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Fig 5-11. Loading time of the first window with different number of items (New-Moment and 

Moment) 
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Fig 5-12. Average time of window sliding with different number of items (New-Moment and 

Moment) 
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5.2 Performance Measurement of IncSPAM 

The sequence data set in transaction form is generated by IBM data generator [2]. Our 

program is written with C++ standard library (STL) and compiled with gcc 4.0.3 on Linux 9.0. 

The testing computer has 2.16GHz CPU power and 2GB main memory. Table 5-2 shows the 

parameters used to generate testing data. 

 

Parameter Value 
Average Number of transactions per customer (C) 30 

Average Number of items per transaction (T) 2~3 
Number of Different Items (N) 1000 

Table 5-2. Parameters of testing data for IncSPAM 

 

The performance measurements include memory usage and average time of window sliding. 

Memory usage was tested by system tool to observe real memory variation. We run all 

transactions generated with parameters above and record time of handling one transaction. 

Average time of window sliding is over the entire dataset. All experiments are performed with 

decay-rate d = 0.999. For testing the scalability of IncSPAM, we test it with different 

minimum support, different window size of a customer-sequence, and different number of 

customers. 

 

5.2.1 Different Minimum Support 

The number of sequential patterns increases with lower minimum support. We want to test 

the memory usage and executing time of IncSPAM with different minimum support to see its 

scalability. In this experiment we use an absolute minimum support S. If the number of 

customers that support a sequence ρ is more than S, ρ is a sequential pattern. We changed S 
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from 3 to 10. The total number of customer is 1000. Window size of each customer is 10 

transactions. Figure 5-13 shows the memory usage in Mbytes. 
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Fig 5-13. Memory usage with different minimum support (IncSPAM) 

 

The memory usage is about 200 MB. That is reasonable in mining of sequential patterns. 

We can find that with lower minimum support the memory usage of IncSPAM increases 

rapidly. For proving the lexicographic sequence tree of IncSPAM does not generate redundant 

tree nodes, we test the number of tree nodes in the lexicographic sequence tree and the 

memory used by IncSPAM.The experiment can prove that IncSPAM is efficient in memory. 

Figure 5-14 shows the experiment for testing the relationship of maximum number of tree 

nodes and memory usage. From this graph we can observe that the relationship is linear. That 

means the memory usage grows up only because of increase of sequential patterns. IncSPAM 

does not produce additional structure when minimum support becomes small and is efficient 

in memory usage. 
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Maximum Number of Tree nodes v.s. Memory Usage
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Fig 5-14. Relationship between maximum number of tree nodes and memory usage 

(IncSPAM) 

 

Figure 5-15 shows the average window sliding time. The result shows that average sliding 

time is below 1 second. IncSPAM uses CBASW and the characteristics of incremental mining 

to speed up processing an incoming transaction. The experiment can prove the efficiency of 

IncSPAM. 
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Fig 5-15. Average time of window sliding with different minimum support (IncSPAM) 
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5.2.2 Different Sliding Window Size 

Size of sliding window is to control the number of transactions maintained by each 

customer. In this experiment, we test the memory usage and average sliding time by different 

size of sliding window. The size ranges from 10 transactions to 25 transactions. Minimum 

support is fixed to 10 customer-sequences. Figure 5-16 shows memory usage and Figure 5-17 

shows average sliding time with different window size. 
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Fig 5-16. Memory usage with different window size (IncSPAM) 
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Fig 5-17. Average sliding time with different window size (IncSPAM) 
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When the number of transactions maintained by each customer increases, the corresponding 

memory usage and average sliding time also grows up. In current applications and IBM 

synthetic dataset, maintaining about 15 transactions for each customer is reasonable. 

IncSPAM can be applied in general applications and is efficient in memory usage and 

handing real-time transactions. 

 

5.2.3 Different Number of Customers 

IncSPAM can dynamically add a new customer to the summary data structure. In previous 

experiments we fix the number of customers for observing performance conveniently. The 

memory usage and average sliding time for different number of customers is tested in this 

experiment. Minimum support is also 10 customer-sequences. Figure 5-18 shows memory 

usage of IncSPAM in different number of customers. 
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Fig 5-18. Memory usage with different number of customers (IncSPAM) 

 

The relationship between memory usage and the number of customers is linear. IncSPAM 

can efficiently handle a great amount of customers with reasonable memory. In Figure 5-19 

we can observe that the average sliding time is also in linear relationship. 
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Fig 5-19. Average sliding time with different number of customers (IncSPAM) 
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Chapter 6  

Conclusion and Future Work 

Mining of frequent patterns in a data stream is more complicated than in a static database. 

In this paper we propose two algorithms: New-Moment to mine closed frequent itemsets and 

IncSPAM to mine sequential patterns with the sliding window model in the data stream 

environment. 

The first algorithm, New-Moment, is to improve the efficiency of Moment algorithm. 

New-Moment utilizes bit-vectors and a smaller lexicographic tree New-CET to reduce the 

memory usage. Employing the characteristics of bit-vectors New-Moment is also as efficient 

as Moment in executing time. The second algorithm, IncSPAM, utilizes the concept of the 

sliding window in each customer-sequence. IncSPAM uses CBASWs and a lexicographic 

sequence tree to maintain the sequential patterns in the current window. In the lexicographic 

sequence tree IncSPAM uses an index set in each tree node to speed up counting support. 

IncSPAM can handle a transaction from the data stream in one second. 

 

6.1 Conclusion of New-Moment 

New-Moment reduces the memory usage by only maintaining bit-vectors of 1-itemsets and 

closed frequent itemsets in New-CET. In the test of different minimum support, New-Moment 

outperforms Moment in memory usage about 100MB. When the minimum support becomes 

lower, the difference of memory usage in New-Moment and Moment becomes more 

significant. Due to the efficiency of bit-vector in window sliding and in the generation of 

itemset candidates, New-Moment is faster than Moment in the loading time of the first 

window. Although New-Moment does not maintain the boundary tree node in the 
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lexicographic tree, New-Moment still has almost the same performance as Moment in 

execution time of window sliding. In the test of different window size, New-Moment still 

outperforms Moment in memory usage and running time. In the test of different number of 

items, Moment is even running out of memory bound. New-Moment is still efficient in 

memory usage and executing time. 

 

6.2 Conclusion of IncSPAM 

We test memory usage and execution time of handing a transaction in IncSPAM in different 

minimum support, different window size, and different number of customers. In the test of 

different minimum support, memory used in IncSPAM is about 300MB. The memory usage 

of IncSPAM increases when the minimum support becomes lower. We prove that the 

lexicographic sequence tree of IncSPAM does not produce redundant tree nodes. The 

handling time of a transaction is below 1 second. IncSPAM can be applied in the data stream 

environment. In the test of different window size, the memory usage and execution time of 

handling a transaction of IncSPAM increases when window size becomes large. We can 

observe that IncSPAM is still efficient when the window size is from 10 to 25. In the test of 

different number of customers, memory usage and time of handling a transaction of IncSPAM 

is linear related to the number of customers. That means IncSPAM can perform well even the 

number of customers becomes large. 

 

6.3 Future Work 

The concept of sliding window in this paper is based on transactions as units. In some 

applications the unit of a window may be a time point. The number of transactions in each 

time point is variable. Figure 6-1 shows the sliding window model in time units. 



 

 65

Data StreamsData Streams

System starts

‧‧‧

Window
N (time intervals)

：A transaction：A transaction
1 2 NN – 1‧‧‧

 
Fig 6-1. The sliding window model in time units 

 

In this sliding window model, the system keeps the transactions in the latest N time 

intervals. The time interval may be one day, one week, or one month. There is different 

number of transactions in each time interval. In Figure 6-1, there are two transactions in the 

first time interval but there are three transactions in the second window. Since the number of 

transactions in each time interval becomes variable, using bit-vectors that store fixed number 

of transactions to store the transactions in the window is difficult. Mining of these 

complicated and flexible patterns in a data stream is a great challenge. 
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