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Mining of Closed Frequent Itemsets and Sequential Patterns in

Data Streams Using Bit-Vector Based Method

Student: Chin-Chuan Ho Advisor: Suh-Yin Lee
Institute of Computer Science and Engineering
College of Computer Science

National Chiao-Tung University

Abstract

Mining a data stream is an important datasmining problem with broad applications, such as
sensor network, stock analysis. It is‘a difficult problem because of some limitations in the data
stream environment. In the first part of this-paper, we propose New-Moment to mine closed
frequent itemsets. New-Moment uses-bit-vectors and a compact lexicographical tree to
improve the performance of Moment algorithm. In the second part, we propose IncSPAM to
mine sequential patterns with a new sliding window model. IncSPAM is based on SPAM and
utilizes memory indexing technique to incrementally maintain sequential patterns in current
sliding window. Experiments show that our approaches are efficient for mining patterns in a

data stream.

Index Terms: data stream, sliding window, closed frequent itemset, sequential pattern
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Chapter 1

Introduction

1.1 Overview and Motivation

Many problems in mining frequent itemsets and sequential patterns focus on static
databases. In recent years, dynamic environment is becoming more and more important in
many applications. This dynamic environment is called data streams. However, there are
some inherent limitations in streaming data environment. For examples, data mining in sensor
networks has some limitation different from traditional data mining, e.g. battery power and
capability of sensor CPU [13].

Data streams have characteristics as deseribed.below [14] [19]: (1) Unbounded size of input
data; (2) Usage of main memory is'limited; (3) Input data can only be handled once; (4) Fast
arrival rate; (5) System can not control the.order data arrives; (6) Analytical results generated
by algorithms should be instantly available when users request; (7) Errors of analytical results
should be bounded in a range that users can tolerate.

For conditions above, three models are adopted by many researchers in ways of time
spanning: landmark model, sliding window model, and damped window model [9].

Landmark model handles data in a time interval. Starting time point is set by users, called
landmark, and end time point is equal to current time point. So end time point is changed as
time goes by. If landmark is set to the time point that the first transaction comes, this model
will cover all the available data.

In sliding window model, a window with length w will be given. If current time point is ¢,
this model handles data in the range [ — w, f]. So when time goes to next time point, this

model has to eliminate the oldest data in the window and insert the new data. This step is



called window sliding. From above we can know that sliding window will cover some range
of newest data in a data stream.

Damped window model also considers recent data important, but is not like sliding window
model eliminating passed data. In this model all available data is kept but a user defines a
weighted function for data which decreases exponentially into the past.

Three models have their own advantages and disadvantages. The sliding window model
keeps the latest information in the data stream. This characteristic is useful if real-time
patterns are needed, like daily or weekly stock analysis.

In this paper, an algorithm New-Moment that mines closed frequent itemsets and an
algorithm /ncSPAM that mines sequential patterns in data streams are proposed. These two

algorithms can efficiently retrieve useful patterns in data streams.

1.2 Related Work

1.2.1 Mining of Frequent Itemsets

In sliding window model, an efficient algorithm Moment was proposed in [20, 21]. Moment
uses a compact data structure, the closed enumeration tree (CET), to maintain a dynamically
selected set of itemsets over a sliding window. These selected itemsets consist of closed
frequent itemsets and a boundary between the closed frequent itemsets and the rest of the
itemsets. CET can cover all necessary information because any status changes of itemsets (e.g.
from infrequent to frequent) must be through the boundary in CET. Whenever a sliding occurs,
it updates the counts of the related nodes in CET and modifies CET. Experiments of Moment
show that the boundary in CET is stable so the updating cost is little. It outperforms
algorithms Charm [8] and ZIGZAG [7] in running time.

However Moment must maintain a huge number of CET nodes for a closed frequent itemset.
The ratio of CET nodes and closed frequent itemsets is about 30 : 1. If there are a large

2



number of closed frequent itemsets, the memory usage of Moment will be inefficient.

Our proposed algorithm, New-Moment, only maintains closed frequent itemsets and uses
bit-vector to store the information in the window. Experiments show that memory usage of
New-Moment is much less than Moment and running time of both algorithms is almost the
same.

There are many researches about mining frequent itemsets over data streams. Manku et al
[10] propose lossy counting algorithm to mine frequent itemsets over an entire data stream.
Jin et al [15] propose hCount algorithm to maintain frequent items in the streaming
environment. Li et al [19] propose an algorithm, DSM-FI, to mine frequent itemsets in the
landmark model over a data stream. It is a projection-based, single-pass algorithm. Chang et
al [22] propose an algorithm for mining frequent itemsets in the sliding window model.
Chang et al [16] propose estDec algorithm. It uses.a decay function to reduce the weight of
the old transactions. Researches about mining maximal frequent itemsets and closed frequent
itemsets over data streams are few. Liret'al [27] propose DSM-MFI to mine maximal frequent

itemsets in the sliding window modél in.a data stream.

1.2.2 Mining of Sequential Patterns

There are many researches about mining sequential patterns in a static database. Agrawal et
al [2] introduce the concept of sequential patterns. They use apriori method that is not
efficient enough. Pei et al [6] provide a efficient algorithm, PrefixSpan, to mine sequential
patterns by prefix-projected pattern growth. Lin et al [12] use memory indexing to decrease
the time of mining sequential patterns. The assumption is that entire sequence database can be
loaded into main memory. An algorithm SPAM is provided in [11] which use a lexicographic
sequence tree to check all possible frequent sequences. Bitmap representation is used for

speeding up mining process.



Besides general sequential patterns, closed sequential patterns are also studied. Yan et al
[17] provide CloSpan to mine closed sequential patterns in large datasets. Chen et al [23]
mine multiple-level sequential patterns. A concept hierarchy is used to represent the
relationship between items. For the flexibility of sequence databases, incremental mining of
sequential patterns is also a research issue. Yen et al [3] and Cheng et al [24] provide
researches in this area.

Researches about mining of sequential patterns in data streams are not as many as in static
databases. Teng et al [18] provide FTP-DS to mine temporal patterns in a data stream.
Regression-based analysis on frequent patterns is the main feature to improve the
performance of FTP-DS. Chen et al [25] mine sequential patterns across many data streams.

Marascu [28] use SMDS algorithm to mine web usage sequences.

1.3 Organization of Thesis

The remainder of this paper is organized as follows. Some basic definitions and
terminology about itemset, sequence, and sliding window model are described in Chapter 2.
The New-Moment algorithm to mine closed frequent itemsets is presented in Chapter 3. The
IncSPAM algorithm to mine sequential patterns is introduced in Chapter 4. Finally the
experiments and performance measurements are described in Chapter 5. Conclusion and

future work is in Chapter 6.



Chapter 2

Problem Definition and Background

In this chapter we introduce the basic definition of problems. We introduce the definition of
the data stream environment and the sliding window model in section 2.1. Next we describe

the definition of closed frequent itemsets and sequential patterns in section 2.2.

2.1 The Sliding Window Model in Data Streams

2.1.1 Data Stream Environment

* Bounded
Main Memeory

" Maszive Requirement

Sequence Arrive
at Rapid rate

Mining Data * Single

2 Streaming
Streams Engine Data Scan

Approximate
Continuous Queries D—B—B Answers
(Deterministic Bound)

Data Streams

User/Application

Fig 2-1. Processing model of data stream environment

A data stream DS = [T, T,, ..., Ty) is an infinite transaction set. In a data stream

environment, the input is the continuous data stream and each transaction can only be
scanned once. Due to the limited memory and one-time scan of each transaction (one-pass), a
summary data structure is needed to store compact information about the data stream. In other
words, one-pass algorithms for mining data streams have to sacrifice the correctness of its

analytical results by allowing some counting error. Hence traditional multi-pass techniques



for mining static databases are not feasible to be used in the data stream environment. Figure

2-1 shows a processing model of data streams [19].

2.1.2 A Sliding Window Model

Some applications in data streams emphasize the importance of the latest transactions. A
sliding window model is suitable to solve this kind of problems. In the basic concept, a sliding
window keeps the latest N transactions in the data streams; N is called a window size. The
mining data streams engine in Figure 2-1 only mines patterns in the current sliding window.
Whenever a new transaction is coming, the sliding window eliminates the oldest transaction
and appends the incoming transaction. This process is called window sliding. The mining data
streams engine also modifies the summary data structure by the changes of sliding window.

Figure 2-2 shows the sliding window in an input data stream.

LI SR

Data Streams

il boboed

. 4

System starts N

Fig 2-2. A sliding window model in a data stream

2.2 Definition of Mining Closed Frequent Itemsets

I={i}, 1p, 13, ..., 1p} 1S a set of literals, called items. An itemset is a set of items. An itemset

X with k items is represented in form of X = (xi, X, ..., Xi), called k-itemset. Let D; be a



database which has a set of transactions. Each transaction T consists of a set of items from 7,
i.e., T & [and a transaction id (TID) represents the time order in the database. An itemset X
is said to be contained in a transaction 7if X & T. The support of an itemset X is the number
of transactions containing X. An itemset X is a firequent itemset if the support of X is more
than a user specified threshold minimum support S.

As an example, let / = {a, b, ¢, d}, D;= {(a, b, ¢), (b, ¢, d), (a, b, ¢), (b, ¢)}, S = 0.5. The set
of frequent itemsets ' = {(a): 2, (b): 4, (¢): 4, (a, b): 2, (a, ¢): 2, (b, ¢): 4, (a, b, ¢): 2}.The
Number following the colon represents the support of the itemset.

The total number of all the frequent itemsets sometimes is too large and it is difficult to
retrieve useful information. For reducing the number of output patterns, the concept of closed
frequent itemsets [4] is proposed.

Definition of Closed Frequent Itemset. A frequent itemset X is closed if there is no
frequent itemset X" such that (1) X CX"and (2) Vtransaction 7, X €T> X' €T.

In the above example, the set of closed frequent itemsets C = {(b, c¢): 4, (a, b, ¢): 2}, C &F.
We observe itemsets (b), (c), and (b,:¢)=The supports of itemsets (b) and (c) are equals to the
support of itemset (b, ¢); and further, itemsets (b) and (c) are subsets of (b, ¢). That means
itemsets (b) and (c) exist in the same transactions of itemset (b, ¢). By the definition of closed
frequent itemset, (b) and (c) are not closed frequent itemsets and (b, c) is a closed frequent
itemset.

All frequent itemsets can be obtained from closed frequent itemsets without losing support
information. In the above example, we know that (b) and (c) are frequent itemsets by
observing closed frequent itemset (b, c¢). Supports of (b) and (c) are the same as (b, c).

Supports of frequent itemsets can be used to judge if a frequent itemset is closed.



2.3 Definition of Mining Sequential Patterns

An input database Ds contains customer-transactions. These customer-transactions are a
little different from transactions in section 2.1.1. Each customer-transaction consists of the
following field: customer-id(CID), transaction-id(TID), and the items purchased in the
transaction (called an itemser). The concepts of TID, items and itemsets here are the same in
section 2.2. The difference is that each transaction in Dg belongs to some customer. Figure 2-3

shows an example of the transaction database Ds.

Customer ID (CID) | Transaction ID(TID) | Itemset
1 1 (a,b,d)
2 2 (b)
1 3 (b, c,d)
2 4 (a, b, )
3 5 (a,b)
1 6 (b, c,d)
3 7 (b, c,d)

Fig 2-3. An example of an input database Ds

A sequence is an ordered list of itemset and is denoted as S = (s5283...5k), where s; is an

itemset. A sequence o = (a;aas...ay) is contained in another sequence B = (b;bsbs...by) if
a, cb, ,a,cb, ,...a, b,

n = ln‘

there exists integers 1; <i, <i3 <... <1, such that
All the transactions of a customer can be viewed as a sequence, where each transaction
corresponds to a set of items, and the list of transactions, ordered by increasing transaction-id,

corresponds to a sequence. We call such a sequence a customer-sequence. Figure 2-4 shows

the customer-sequences in Figure 2-3.



CID Sequence

I |<(a, b, d)(b, c, d)(b, ¢, d)>

2 <(b)(a, b, ¢)>

3 <(a, b)(b, c, d)>

Fig 2-4. The customer-sequences in Fig 2-3

The absolute support of a sequence S is defined as the number of customer-sequences
containing S. Sequential patterns are the sequences whose supports are more than a

user-defined minimum support, also called frequent sequences.



Chapter 3

New-Moment: Mining Closed Frequent Itemsets

The goal of New-Moment is to improve Moment algorithm. First we introduce Moment

algorithm in section 3.1. Next we introduce our proposed algorithm, New-Moment, in section

3.2.

3.1 Related Work: Moment Algorithm

Moment [20, 21] algorithm mines closed frequent itemsets with sliding window model in a

data stream. It uses a closed enumeration tree (CET) to maintain the closed frequent itemsets

in the current window. CET not only maintains closed frequent itemsets but also maintains

some boundary tree nodes. Figure 3-1 shows the CET in the first window. Assume that the

window size is 4 and the first fout-incoming transaction is listed in the left of the graph.

TID | Itemsets
1 c,d
2 a, b
3 a,b,c
4 a,b,c
Minsup =2

Window Size = 4

Intermediate node

z

5 @:3 (b): 3, Ja): 1
2 o,

= 1 (& c): 21

Infrequent gateway node

Unpromising gateway node

Closed node

Fig 3-1. CET in the first sliding window

There are four types of tree nodes for CET:
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(1) infrequent gateway nodes

A node n; that represents itemset / is an infrequent gateway node if i) / is an infrequent
itemset, 11) n;’s parent, ny, is frequent, and iii) / is the result of joining I’s parent, J, with one
of J’s frequent siblings. In Figure 3-1, the tree node (d) is an infrequent gateway node.
(2) unpromising gateway nodes

A node nj is an unpromising gateway node if 1) / is a frequent itemset and ii) there exists a
closed frequent itemset J such that J € [, and J has the same support as / does. In Figure

3-1, the tree nodes (a, c) and (b) are unpromising gateway nodes.
(3) intermediate nodes

A node ny is an intermediate node if 1) / is a frequent itemset, ii) n; has a child node n;
such that J has the same support as / does,,and iii) n; is not an unpromising gateway node.
In Figure 3-1, the tree node (a) is an intermediate node because its child (a, b) has the same
support as (a) does.
(4) closed nodes

These nodes represent closed frequent itemsets in the current window. A closed node can

be an internal node or a leaf node. In Figure 3-1, (c), (a, b), and (a, b, ¢) are closed nodes.

Except closed nodes, Moment keeps three types of boundary nodes. These nodes are the
most possible candidates of new closed nodes in the next window. Moment keeps these nodes
for speeding up modification of the closed enumeration tree.

There are three steps in Moment algorithm:

(1) Building the closed enumeration tree (CET)

When the total number of transactions coming from the data stream does not excess

window size N, Moment just saves these transactions in its sliding window. As long as the

11



window is full, Moment builds an initial closed enumeration tree (CET). Figure 3-1 shows
the tree in the first window.

Moment adopts a depth-first procedure to generate all possible candidate itemsets in the
window and check their supports. In the procedure, if a node is found to be infrequent, it is
marked as an infrequent gateway node and Moment does not explore its descendants
further.

If a node is frequent itemset but not closed frequent itemset, the node is marked as an
unpromising gateway node. Moment also does not explore its descendants, which does not
contain any closed frequent itemsets. Moment uses support of a node and the tid sum of the
transactions that containing the node (tid_sum) to check if the node is a closed node. Take
the nodes (a, ¢) and (a, b, c¢) in Figure 3-1 as an example. The support of (a, c¢) is the same
as (a, b, ¢). The tid_sum of (a, ¢).i8 7 (the third transaction and the fourth transaction in the
window). That is equal to the tid. sum of (a, b, '¢). By the definition of closed frequent
itemsets, we can know that (a, ¢) is not-a.closed node.

If a node is found to be neither an infrequent node nor an unpromising gateway node,
Moment explores its descendants. The nodes that are intermediate nodes or closed nodes are
maintained in the CET.

(2) Updating the CET

Initial closed enumeration tree is built when the number of incoming transactions from
the data stream is equal to the window size. After that, when a new transaction comes from
the data stream, Moment updates the CET to maintain the closed frequent itemsets in the
current window. There are two steps for updating the CET:

Adding the new transaction coming from the data stream

12



TID | Itemsets \
’ @:4f 1(0):31](c)4 1 (d): 2
2 a, b N
3 | abc (& b):3| [ o):3|da d)y:13[(c, d): 2
4 a,b,c
(@ b,c): 2
5 a c,d
Minsup =2

Window Size =4

Fig 3-2. Adding the new transaction with tid = 5

In Figure 3-2, a new transaction T (tid = 5) is added to the sliding window. Moment
traverses the parts of the CET that are related to transaction T. For each related node ny in
depth-first order, Moment updates its support and tid sum. Whenever a node is updated,
Moment checks if it needs to change itsmode type:

In Figure 3-2, the node (d) becomes a new frequént node so Moment generates the new
candidates node (a, d) and (¢; d)~ By node properties Moment know that (a, d) is an
infrequent gateway node and (c, d) is'a new closed node. By checking the support of the
nodes (a), (a, ¢), and (c), Moment modifies them to closed nodes.

Deleting the oldest transaction in the window

TID | Itemsets \
e T ST
’ @:4] 1 by3 30 (@13
2 b = \——-\
3 | ab,c g (a, b): 3| | (a c): 3 ((ft d): 13
=] L
4 a,b,c =
S |(ab,c):2
5 ac,d
Minsup =2

Window Size =4

Fig 3-3. Deleting the transaction with tid = 1
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In Figure 3-3, the transaction with tid = 1 is deleted. Like adding the new transaction,
Moment updates support and tid_sum of each node in the CET. By checking the support of
each node, Moment modifies its node type.

In Figure 3-3, node (c) becomes unpromising gateway node because it is contained by
node (a, ¢) and supports of (c) and (a, c) are the same. Then the sub tree of node (c), (c, d),

is deleted. The node (d) becomes new infrequent gateway node.

Moment maintains a huge number of boundary nodes to speed up the procedure of
updating CET. The cost for a node to change its type is less. But we find that those
boundary nodes are unnecessary overhead. In our proposed algorithm New-Moment, we
reduce the number of tree nodes and utilize an efficient structure to store the information of

the sliding window.

3.2 Our Proposed Algorithm: New-Moment Algorithm

We use bit-vector to store the information of a sliding window. Because of the efficiency of
bit-vector in counting support and modifying transactions in window, New-Moment only
maintains closed frequent itemsets in each sliding window. The new closed enumeration tree
(New-CET) is composed of the bit-vectors of 1-itemsets, the closed frequent itemsets in

current sliding window, and a hash table.

3.2.1 Bit-Vector

Definition of Bit-Vector: For a specified item i and a given window w of sliding window
model in a data stream, a bit-vector is used to store the occurrences of item
i in the transactions of w. Each bit of a bit-vector represents a transaction in w. If the item i

occurs in some transaction of w, the corresponding bit is set to one, else set to zero.
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Figure 3-4 shows an example of input database and the first three sliding windows are
displayed next to it. These windows are marked from window #1 to window #3. It is assumed

that the size of sliding window is 4. The example of figure 3-4 will be used in the following

context.

TID | Itemsets Window size N=4

1 c,d
2

2 a,b 2

s
3 a,b,c ig'

S |2
4 a,b,c s |3
5 a,c,d Ufg
6 b, C

Fig 3-4. An exampleidatabase anid the first three sliding windows

Each window in figure 3-4 can be transformed to a bit-vector by the definition of bit-vector.
The bit-vectors of all items in each window are listed in Table 3-1. The most left bit

represents the oldest transaction and the most right bit is the most recent transaction.

Window #1 | Window #2 | Window #3
a 0111 1111 1110

b 0111 1110 1101
c 1011 0111 1111
d 1000 0001 0010

Table 3-1. The bit-vectors of all items in each window in Figure 3-4

3.2.2 Window Sliding with Bit-Vector

When the number of transactions in a data stream exceeds the size of a window, window

sliding is performed to eliminate the oldest transaction and append the incoming transaction.
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Bit-vector is efficient in window sliding process. We can separate the sliding process into two
steps:

(1) Delete the oldest transaction

The only thing a bit-vector needs to do is to left-shift one bit. Take item a as an example.
a’s bit-vector is 1010 in the first window. If transaction with TID = 1 is deleted, a’s bit-vector
becomes 0100. Now the most left bit represents the transaction with TID = 2 and the most
right bit is meaningless and reserved for next step.

(2) Append the incoming transaction

After deleting the oldest transaction, the most right bit of the bit-vector is set corresponding
to the incoming transaction. The bit-vectors of the items contained in the incoming transaction
set its most right bit to one; the others set its most right bit to zero. Take item a as an example.
a’s bit-vector is 0100 after deletingithe oldest transaction. The incoming transaction is (b, d)
(TID = 5) not containing a so a’s bit-vector 1s.still. 0100. b’s bit-vector is 1110 after deleting
the oldest transaction. The incoming:transaction contains » so b’s bit-vector is 1111 after

appending the incoming transaction.

3.2.3 Counting Support with Bit-Vector

Concept of bit-vector can be extended to itemset. For example, the bit-vector of itemset (a,
b) in the first window is 1010. That means (a, b) occurs in the transactions with TID = 1 and
TID = 3.

Assume there are two itemsets X and Y and their corresponding bit-vector BITy and BITy.
The bit-vector of the itemset Z=X [ Y can be obtained by bitwise AND BITy and BITy.

For example, the bit-vector of itemset (a, b) in the first window (Window #1) is 1010 which
can be obtained by bitwise AND the bit-vectors of items a and b. That means (a, b) occurs in
the first and the third transactions in the first sliding window. By bitwise AND between
bit-vectors, candidates can be efficiently generated when building the lexicographical tree.
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The support of each itemset can be obtained by counting how many bits in the bit-vector are

set to one. For example, the support of itemset (a, b) is 2.

3.2.4 Building the New Closed Enumeration Tree (New-CET)

For improving the efficiency of CET in Moment, we propose a new closed enumeration
tree (New-CET). New-CET is basically a lexicographical tree. There are three important parts
in New-CET:

(1) Bit-vectors of all items (1-itemsets)

Moment maintains an independent sliding window for counting support of each node in
CET. Instead of independent sliding window to store current N transactions, information of
these transactions is maintained by the bit-vectors of all items.

(2) Closed frequent itemsets in current window.

Each closed frequent itemset only maintains its support.

(3) Hash table

For checking whether a frequent itemset is elosed or not, we need a hash table to store all
closed frequent itemsets with their supports as keys. Whenever a new frequent itemset is
generated, we can judge if this frequent itemset is closed by hashing its support to the hash
table. How to utilize the information of support to judge if a frequent itemset is closed is
introduced in section 2.2.

Building New-CET is almost the same as building CET. The major difference is that
New-CET only retains bit-vectors of items and closed frequent itemsets and bit-vectors are
used to count supports of generated candidates.

When the total number of incoming transactions is less than the size of sliding window,
New-Moment only records all item information as introduced in section 3.2.1. When the
window 1is full, New-Moment call function Build to build the initial New-CET. From the
bit-vectors we can know the supports of all items. New-Moment utilize depth-first procedure
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to generate all possible candidates and check their supports. Because the candidates are
generated by its parent and its parent’s frequent siblings, we can obtain the supports by the
method introduced in section 3.2.3. Then for each frequent candidate, we use hash table to
check if the frequent candidate is closed. If the candidate is closed, it is inserted in the hash
table. If the candidate is not closed, the node is not maintained in New-CET. Figure 3-5

shows the pseudo code of building New-CET

Build (n;, N, S)
if support(n;) > .S - N then
if leftcheck(n,) = false then

1
2
3 foreach frequent sibling ng of n; do
4: generate a new child n;ux for ny;
5: bitwise AND BIT; and BITx to obtain BIT}.;
6 foreach child »n;-of n; do
7 Build(n,'#N, S);
8 if 7a child n;“of'n; such that
support(n,) = support(n,) then
9: retain n; as'a closed frequentitemset;
10: insert #; into the‘hashtable;

Fig 3-5. Pseudo code of building New-CET

ny is a tree node, N is the window size and S is minimum support. Each n; has a
corresponding bit-vector BIT; to store the information of sliding window. Except the
bit-vectors of items, the BI7; for a node n; only exists in counting support of a new candidate.

Figure 3-6 shows the New-CET in the first window by previous example when generating
new candidates from item a. For simplicity, hash table is not displayed in it. By the
bit-vectors of items, we know that items a, b, and ¢ are frequent items. Take item a as an
example, new candidates (a, b) and (a, ¢) are generated. By bitwise AND bit-vectors of items

a and b, we can obtain that the support of (a, b) is 3. In the same way, the support of (a, c) is 2
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and the support of (a, b, c¢) is 2. For generating candidates below item a, the bit-vectors of (a,

b), (a, ¢), and (a, b, ¢) are temporarily maintained in the memory.

TID | Itemsets %)
1 c,d // \\
2 | ab 2 (a:<om1> (b <0111> (o) <1011> (d): <1000>
(=7
3 a, b, c 2 / \
3 (a, b): <0111> (a, c): <0011>
4 a,b,c /
(a, b, ¢): <0011>
Minsup =2

Window Size = 4

Fig 3-6. New-CET in the first window after generating new candidates from item a

Figure 3-7 shows the New-CET after:¢heckinig,if each frequent candidate is closed. The tree
nodes with squares are closed frequent itemsets. By checking support with hash table, we can
know that frequent itemset (a, ¢) is not.closed. So New-Moment eliminates this node and
other frequent candidates are marked as closed fréquent itemsets. Although item a is not
closed, New-Moment still maintains the bit-vector of item a. After the sub-tree of item a is
checked, the bit-vectors in this sub-tree are eliminated. New-Moment only keeps the supports

of closed frequent itemsets.

TID | Itemsets %)
1| cd T T
2 ab § (a): <0111>  (b): <0111> (c): <1011> (d): <1000>
' =
3 a,b,c 2
* (a, b): 3
4 a,b,c
(a, b,c): 2
Minsup =2

Window Size = 4

Fig 3-7. New-CET in the first window after checking closed frequent itemsets
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Figure 3-8 shows the New-CET when Build is done. The sub-tree generations of item b and

c are the same as item a. Item c is a new closed frequent itemset.

TID | Itemsets %)
1| cd / / \
2 a b § (@): <0111>  (b): <0111> (c): <1011>| (d): <1000>
' 2
3 a,b,c 2
iy (a, b): 3
4 a,b,c
(a, b,c): 2
Minsup =2

Window Size = 4
Fig 3-8. New-CET in the first window (Window #1)

3.2.5 Deleting the Oldest Transaction'in, Window Sliding

Deleting the oldest transaction=is our first-step.of window sliding. All bit-vectors of items
are left-shifted one bit first and all items in' the deleted transaction are kept. This can be done
by observing the most left bit before left-shifting. After modification of bit-vectors of items,
New-Moment begins to modify New-CET.

There is only one case for deleting the oldest transaction: original closed frequent itemsets
in the New-CET becomes non-closed frequent itemsets or infrequent itemsets. For checking
this situation, New-Moment traverses the New-CET again to check the supports of the
existing node in the New-CET. Because just the subsets of the deleted transaction are the
possible infrequent itemsets, only the sub-trees of the items in the deleted transaction need to
be checked. The traversing method is almost the same as building the initial New-CET, called
function Delete. The difference is that Delete generates the entire lexicographical tree
including the itemsets whose supports are (S - N — 1). This is because supports of some
closed frequent itemsets in previous window would be (S - N) and then becomes (S - N — 1)

after deletion.
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Figure 3-9 shows the New-CET after deleting the oldest transaction. In the above example,
the deleted transaction is (c, d). Only the sub-trees of items ¢ and d need to be checked. We
find that item c is no longer a closed frequent itemset. Item d is infrequent and we do not need
to check its sub-tree. Figure 3-10 shows the pseudo code of deleting the oldest transaction

after left-shifting all bit-vectors of 1-itemsets.

TID | Itemsets / /@\\

. S I
(@): <1110>  (b): <1110>  (c): <1011> (d): <0000>

2 a,b
3 | ab,c (a, b): 3
4 a, b, c /
(a, b,c): 2
Minsup =2

Window Size = 4
Fig 3-9. New-CET after deleting the oldest transaction
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Delete (n;, N, S)

1: if n;1s not relevant to the deleted transaction then
2: return;

3: else if support(n;) > (S - N— 1) then

4: foreach sliding nx of n;

whose support > (S-N—1) do
5 generate a new child n;.x for ny;
6 bitwise AND BIT; and BITx to obtain BIT;.k;
7: foreach child n; of ny do
8 Delete(n;, N, S);
9: if support(n;) > S - N then
10: if leftcheck(n;) = false then
11: if n; 1s closed frequent itemset

in previous sliding window then

12: update the support of ny;

13: update #n; in the hash table;

14: else

15: retain nyas a closedfrequent itemset;
16: insert'n; into the hash table;

17: else //leftcheck(n;) = true

18: if n; is closed frequent itemset

in previous sliding window then

19: mark 7; as non-closed frequent itemset;
20: eliminate »; from the hash table;

21: else //support(n;) <S-N

22: if n; 1s closed frequent itemset

in previous sliding window then
23: mark #; as non-closed itemset;

24: eliminate »; from the hash table;

Fig 3-10. Pseudo code of deleting the oldest transaction in window sliding
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3.2.6 Appending the Incoming Transaction in window sliding

Appending the incoming transaction is our second step of window sliding. The most right
bits of all the bit-vectors of items are set corresponding to the items contained in the incoming
transaction. After modification of bit-vectors of items, New-Moment begins to modify
New-CET. Only the sub-trees of the items in the inserted transaction need to be checked.

The method of traverse the New-CET for adding a new transaction, called function Append,
is the same as function Build. A little difference is that the supports of existing closed
frequent itemsets in the hash table need to be modified. Figure 3-11 shows the pseudo code of
appending the incoming transaction after setting the most right bit in each bit-vector of

1-itemset.

Append (n;, N, S)
if support(n;) > S - N then
if leftcheck(n;) = false then

1
2
3 foreach frequent sibling ng of n; de
4: generate anew child n;ox forny;
5: bitwise AND BIT;and BITx to obtain BIT}.;
6 foreach child »n;' of n; do
7 Append(n/’, N, S);
8 if 7a child n;’ of n; such that

support(n;") = support(n;) then
9: if n; is closed frequent itemset

in previous sliding window then

10: update the support of ny.

11: update n; in the hash table;

12: else

13: retain n; as a closed frequent itemset;
14: insert #; into the hash table;

Fig 3-11. Pseudo code of appending the incoming transaction in window sliding

In the above example, the inserted transaction is (a, ¢, d). New-Moment checks the

sub-trees of items a, ¢, and d and find that itemsets (a) and (a, c¢) are new closed frequent
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itemsets. Figure 3-12 shows the New-CET after appending the incoming transaction. This is

also the New-CET in the second sliding window.

TID | Itemsets o
””1 77777777 G’,’d 777777777 // \\
2 a, b < (@): <1111>| (b): <1110> (c): <0111> (d): <0001>
3 | abc || E ~
4 ab,c 2 (a,b): 3| | (a c): 3
S
5 ac,d
(a, b,c): 2
Minsup =2

Window Size =4

Fig 3-12. New-CET after appending the incoming transaction (Window #2)
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Chapter 4

Incremental SPAM (IncSPAM): Mining Sequential Patterns

Sequential pattern mining is more complicated than mining frequent itemsets, especially in
the stream environment. In previous researches, there is no general processing model for
handling a data stream with a transaction unit. Incremental SPAM (IncSPAM) provides a
suitable sliding window model in a data stream. It receives transactions from the data stream
and uses a brand-new concept of bit-vector, Customer Bit-Vector Array with Sliding Window
(CBASW), to store the information of items for each customer. Then IncSPAM uses a
lexicographic sequence tree to maintain the sequential patterns in the current window. For
speeding up the maintaining process, IncSPAM uses index sets to store the first occurring
positions in all customer-sequenges for rayjtree. node. Whenever a new transaction comes,
CBASWs and the lexicographic tree are modified incrementally. Each transaction can be
analyzed in few seconds. Finally“a weight function'is adopted in this sliding window model.
The weight function can judge the importance of a sequence and ensure the correctness of the

sliding window model.

4.1 A New Concept of Sliding Window for Sequences

Original sliding window model keeps the latest transactions in a data stream. In the mining
of sequential patterns, transactions in a data stream belong to many customers. IncSPAM
keeps the latest N transactions for each customer in a data stream and N is called window size.
Each customer maintains its own sliding window. Figure 4-1 shows an example of this sliding

window model.
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Sequence Database
Transaction Database 1

Customer ID (CID) | TID | Itemset CID Customer-Sequence
1 1| (ab,d) 1| <(,b, d)b,c, d)(b,c,d)>
2 2 | M 2 |<  ® @bo>
! 3 | d 3 | < (@ b) (b, ¢, d)>
2 4 |(a,b,c)
3 5 | (ab) i N=2
1 6 | (bycd Maintain the latest N transactions
3 p (O, c, d) in the data stream

Fig 4-1. An example for the new concept of sliding window

In Figure 4-1, the mining system has received 7 transactions. Assume that the window size
of each customer is 2 (each customer keeps the latest 2 transactions in a data stream). There
are three transactions belonging to customer, #1: transactions with TID = 1, 3, and 6. Only
transactions with TID = 3 and 6 ate storedyinithe sliding window of customer #1 (marked by
the two-way arrow). In the same concept, the sliding windows of customer #2 and customer
#3 are also displayed in Figure 3-9. This example will be used through the introduction of

IncSPAM.

4.2 Customer Bit-Vector Array with Sliding Window (CBASW)

IncSPAM also uses bit-vectors to store the information of the sliding window. The concept
of bit-vector is almost the same as in section 3.2.1. The difference is that each customer has
his own bit-vectors for all items to store the information of his sliding window. Table 4-1
shows the bit-vectors of each customer in Figure 4-1. All these bit-vectors can be collected as

a unique data structure for each customer.
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Customer #1 | Customer #2 | Customer #3
a 00 01 10
b 11 11 11
c 11 01 01
d 11 00 01

Table 4-1. Bit-vectors of all items for all customers

Definition of Customer Bit-Vector Array with Sliding Window (CBASW): For each
customer-sequence ¢, we keep the latest N transactions. N is called window size. Each

bit-vector of item i contains N bits to represent the occurrences of i in the latest N

transactions.

Figure 4-2 shows an example of CBASW. Each bar with a customer id is a CBASW which

contains all bit-vectors of all items for a.customer.

Sliding Window for Each Customer

CID | Customer-Sequence

<(b, ¢, d)(b, ¢, d)>

< () (b,0)>

—

< (a,b) (b, ¢, d)>

Customer Bit-Vector Array

with Sliding Window
a b ¢ d
cip=1||00f| 1 3| 1 14| 1
a b c d
cip=2(|0 11 4{ O 1) O
a b d
cip=3([101 10 10

Fig 4-2. An example of CBASW

A lexicographical tree is needed in the mining process of Incremental SPAM. Although
CBASWs keep all information of items (1-itemsets) for all customers, they are not efficient

enough to be used to build and modify a lexicographical tree. In the next section the concept

of Index Set will be introduced to speed up the process.
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4.3 Index Set p-idx

Building and modifying lexicographical tree for mining sequential patterns is complicated
than for mining frequent itemsets. The number of candidate sequence is huge. Index Set for a
sequence only stores the first positions in all customer-sequences. The memory usage of these
positions is less than the memory usage of bit-vectors.

Definition of Index Set: For a sequence p, the first occurring position in a
customer-sequence ¢ of p is recorded as p-pos.. If p is not in ¢, p-pos. = 0. The collection of
these p-pos values in the order of customer id is called an index set p-idx. For convenience,
p-pos. can be represented as p-idx[c].

Take the CBASWs in Figure 4-2 as an example, the index sets of 1-sequences (items) are
listed in Figure 4-3. Each number in the array represents the first position of a sequence p in
each customer. By counting the number of positions which is not zero in an index set, we can
obtain the support of a sequence. Take the l-sequenee <(a)> as an example. The number of
non-zero positions in <(a)>-idx is 2. Thatsmeans the sequence <(a)> exists in two
customer-sequence (CID = 2 and CID = 3). So the support of <(a)> is 2. The support of each

sequence is records after the index set.

a b d
cip=1||0/ 0| 1 4] 1| 4] 1/ 1
<(a)>-idx <(b)>-idx <(c)>-idx <(d)>-idx
b d [0,2,1]:2 [1,1,1]:3 [1,2,2]:3 [1,0,2]:2
cip=2]0/ 1{ 2 21| 0| 4{ 0] O foon
a b d p:idx §upport of p
cip=3||1/ 0| 1 14| O 14 O 1

Fig 4-3. An example of index sets
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4.4 Maintaining Information of Items in Window Sliding with

CBASW and p-idx

Whenever a new transaction comes from the data stream, its CID is checked to find out
which CBASW needs to be modified. Each bit-vector in this CBASW is modified by the
incoming transaction. As in section 3.2.2, if the number of transactions of the customer
exceeds the size of window, window sliding is performed.

Window sliding process is the same in section 3.2.2. Each bit-vector left-shifts one bit to
eliminate the oldest transaction and sets the most right bit by the incoming transaction. The
bit-vectors of the items in the incoming transaction set their most right bits to one; the others
set their most right bits to zero. Figure 3-11 shows an example of this sliding process.

In Figure 4-4, we assume that the system hasreceived 5 transactions and only the CBASW
of customer #1 is observed. The first CBASW shows:the situation before the new transaction
with TID = 6 coming. The second CBASW -shows the'result after left-shifting each bit-vector
one bit. The third CBASW shows the final result after setting the most right bit by the

incoming transaction.
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CID

Before the transaction with TID = 6 comes

TID

ltemset

(a, b, d)

(b)

(b,c,d)

(a,b,c)

WIN [P NP

CID

aldh|w|IN |

(@ b)

® cm=1

a b c d
Laloffas]fo] «f[2]4]

<(a)>-idx

1,213

After the transaction with TID = 6 comes

TID

Itemset

(a, b, d)

(b)

(b,c,d)

(a,b, c)

(a,b)

lw N[N

p-idx of each item (1-sequence) is maintained according to the CBASWs. Whenever a
window sliding for a CBASW of a customer c is performed, each p-idx[c] is decreased once.
If a p-idx[c] becomes zero after decreasing, the bit-vector of p is checked to find out the new
first occurring position. If p does not exist in this customer-sequence anymore, the p-idx[c] is
set to zero.

In the first CBASW of Figure 4-4, <(a)>-idx[1] is 1. After window sliding, <(a)>-idx[1] is
decreased to 0. In the third CBASW of Figure 3-11, <(a)>-idx[1] is 0 because sequence <(a)>

does not exist in customer-sequence of customer #1. The support of sequence <(a)> also

o|la|r|w N ]|

decreases to 2.

(b, c,d)

@ ci=1

® ci=1

a b c d

Lofolfa]off 1] o]l 1] o]

<(a)>-idx
[0,2,1]:2

a b c d
Lolof[ 2] «f[ 2] 2f{2]1]

<(a)>=idx
[0,2, 1]:2

Left-shift each
bit-vector one
bit

Set the most
right bit by the
incoming
transaction

Fig 4-4. An example of window sliding in a CBASW
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4.5 Building of Lexicographical Sequence Tree

Section 4.4 introduces the algorithm for maintaining information of items in a data stream.
After the items of the incoming transaction are processed, these items are used to generate all
possible sequences and check their supports. SPAM algorithm [11] presents a concept of
lexicographical sequence tree to archive this goal.

Assume that there is a lexicographical ordering < of the items / in the data stream. If item i
occurs before item j in the ordering, then we denote this by i <; j. This ordering can be
extended to sequences by defining s, < s, if s, is a subsequence of s,. If s, is not a

subsequence of s, then there is no relationship in this ordering.

The root of the tree is labeled with . Recursively if n is a node in the tree, then #’s

children are all nodes n' such thatw <n'and Vm. < 1: n'<m = n <m. Figure 4-5 shows an

example of a lexicographic sequence tree: This graph is modified from [11]. Here shows a

sub-tree of sequence tree for two items a and b to.the fourth level.

/ @ e Level
<@ - 1
<)) <@)(b)> <@ by 2

SN N LN

<@@@>  <@@®> <@(@b>  <@)b)(a)> <()(b)(b)> <(a,b)@>  <(a,b)b> 3

A N

<(a)@)(a,b)> <(a)(a,b)(a)> <(a)(a, b)(b)> <(a)(b)(a,b)>  <(a b)a)@)> <(a b)a)b)> <(a b)(a,b)> 4

Fig 4-5. A lexicographic sequence tree example
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Each sequence in the sequence tree can be considered as either a sequence-extended
sequence or an itemset-extended sequence. A sequence-extended sequence is a sequence by
adding a l-itemset to the end of its parent’s sequence in the lexicographical tree, like
<(a)(a)(a)> and <(a)(a)(b)> generated from <(a)(a)> in Figure 4-5. An itemset-extended
sequence is a sequence by adding an item to the last itemset in the parent’s sequence in the
lexicographical tree. The order of the item is greater than any item in the last itemset, like
<(a)(a, b)> generated from <(a)(a)> in Figure 4-5.

If we generate sequences by traversing the tree, then each node in the tree can generate
sequence-extended children sequences and itemset-extended children sequences. We refer to
the process of generating sequence-extended sequences as the sequence-extension step
(S-step) and the process of generating itemset-extended sequences as the itemset-extension
step (I-step). Thus each node »n in the tree has tworsets: S, the set of candidate items that are
considered for possible S-step extensions of node n and I, the set of candidate items that are

considered for possible I-step extensions:

4.6 Counting Support with p-idx

For a sequence p, p-idx stores the first positions of p in all customer-sequences. In the
lexicographical tree of Incremental SPAM, each node, representing p, uses p-idx to count the

support of sequence p. We introduce the method in two different steps.

4.6.1 Counting Support in S-step
Assume there are a sequence o and an appended 1-itemset f. An S-extended sequence y is
generated by o and f. Our goal is to use a-idx and B-idx to generate y-idx and count the

support of y.
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The first step a-idx[c] and B-idx[c] for each customer ¢ are checked. If either a-idx[c] or
B-idx[c] is zero, y-idx[c] is set to zero. That means y can not exist in the customer-sequence of
c. If there is a ¢ that a-idx[c] and PB-idx[c] are both not zero, y may exist in this
customer-sequence. The corresponding position values have to be checked. There are two
cases for a-idx[c] and B-idx[c]:

(Case 1) a-idx[c] < B-idx|[c]: That means o appears before f and y does exist in the

customer-sequence of c. y-idx[c] is set to B-idx[c].

(Case 2) a-idx[c] = p-idx]|c]: In this case we do not have enough information for judging if

y exists. The CBASW of customer ¢ needs to be further checked. We denote the bit-vector

of item 7 in the CBASW of customer ¢ as CBASW,(i).

A left-shit operation is performed on CBASW(f) by a-idx[c] bits. If the result of shifting
is a non-zero bit-vector, y exists in the customer=sequence of ¢. Assume the position of the
first non-zero bit in the result-is 4. The first position of y, y-idx[c], is set to a-idx[c] + A.
Otherwise y does not exist in the customer-sequence of ¢ and y-idx[c] is set to zero.

Finally the support of v can be counted by thenumber of non-zero positions.

4.6.2 Counting Support in I-step

Assume a sequence a, an appended item 7, and an I-extended sequence y generated by «
and 7. Our goal is to use a-i1dx and T-idx to generate y-idx and count the support of y.

As in S-step, a-idx[c] and T-idx[c] for each customer ¢ are also checked. If either a-idx[c]
or T-idx[c] is zero, y-idx[c] is set to zero. If there is a ¢ that a-idx[c] and T-idx[c] are both not
zero, the corresponding position values have to be checked. There are also two cases for
a-idx[c] and T-idx[c] in I-step:

(Case 1) a-idx|[c] = p-idx[c]: That means the last itemset of a and item 7 are in the same

position of customer-sequence of c. By the definition of itemset-extended sequence, y exists.

v-idx[c] is set to B-idx[c].
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(Case 2) a-idx[c] # B-idx[c]: The further check in CBASW of ¢ is performed. Assume X is
the last itemset of a. A bit-vector BITy is obtained by bitwise AND CBASW(x;),
CBASW(xz), ..., CBASW(xk), where x; is an item contained in X. Then BITy is
left-shifted (a-idx[c] — 1) bits. If the resultant sequence is non-zero, y exists in this
customer-sequence. Assume the position of the first non-zero bit in the result is /4. The first
position of y, y-idx[c], is set to [(a-idx[c] — 1) + A]. Otherwise y does not exist in the
customer-sequence of ¢ and y-idx[c] is set to zero.

As in section 4.6.1, the support of y can be counted by the number of non-zero positions.

4.7 The Entire Process of Incremental SPAM (IncSPAM)

Finally we introduce entire IncSPAM algorithm for the mining of sequential patterns.

Figure 4-6 shows the main function of IncSPAM.

IncSPAM (S, d, N)

l: foreach incoming transaction from the data stream do

2 find out which customer ¢ the incoming transaction belongs to;

3: update the CBASW of this customer by the incoming transaction;
4 store all the frequent 1-sequences to F;

5 MaintainTree(c, F);

Fig 4-6. Main function of Incremental SPAM

The CBASW of each customer is modified from line 1 to line 4. After the modification of
CBASWs is finished, function MaintainTree is called. Function MaintainTree maintains
sequential patterns dynamically in a lexicographic sequence tree. There are some cases about
incremental mining of sequential patterns. Assume that a new transaction @ comes in. @

belongs to customer c. The lexicographical tree T is updated to 7™
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* A pattern which is frequent in T is still frequent in T": We only needs to update its p-idx
and support

* A pattern which is not in T appears in T". A new pattern is generated because of the
incoming transaction. By the Apriori [1] property, since prefix of the new pattern must
also be frequent, we only need to generate candidates from the leaf nodes of 7. There
are two ways to reduce the number of candidates to be generated: (1) We only consider
the items in the incoming transaction to append on the leaf nodes because the new
patterns must contain these items in the end. (2) The incoming transaction only belongs
to a specific customer ¢ so the generated candidates must begin with the items in the
customer-sequence of c. Figure 4-7 shows an example after sliding the CBASW of

customer #3. The incoming transaction is TID = 7.

Transaction Dafabise Sliding Window of Each Customer

Customer ID (CID) | TID | Itemset CID | Customer-Sequence

1 1 |(a,b,d) 1 <(b, ¢, d)(b, ¢, d)>
2 2 (b) 2 < () (@ab,c)>
1 3 |(bc,d) 3 < (a, b) (b, c, d)>
2 4 | (a,b,c¢)

3 5 (a, b)

1 6 |[(b,c,d

-> 3 7 (b, ¢, d) The appended items are items b, ¢, and d.

The sub-trees of items a, b, ¢, and d need to
generate candidates; others don't.

Fig 4-7. Reducing the generated candidates

« A pattern which is in T does not exist in T". The pattern becomes infrequent because of

window sliding. We directly delete the node and its sub-tree.
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MaintainTree (c, F)

l: foreach tree node n who’s representing item i is in F do
2 if i exists in the customer-sequence of ¢ then

3: Generate(c, n);

4 else //i does not exist in ¢

5 Update(c, n);

Fig 4-8. The pseudo code of function MaintainTree

Figure 4-8 shows the pseudo code of MaintainTree. Function Generate, as shown in Figure
4-9, uses S-step and I-step to generate all possible children with the principles mentioned
above for each tree node. If the child does not exist in the lexicographical tree, Generate
creates a new tree node for this child. If the child is in the lexicographical tree, Generate only
updates the index set and support of this child. Function Update, as shown in Figure 4-10, is
simpler than Generate. Update doessiot need to' generate children. Update only checks each
tree node to update its index set-and support. The process of updating the index set and the

support is in Function UpdateSupport,

Generate (¢, n)

foreach existing child n’ of #n do

UpdateSupport(c, n');

if the support of n’ <SS then

eliminate n’ and its sub-tree;

generate candidates of n by S-step and I-step;
foreach generated candidate x of n do

count the support of x;

if the support of x > S then

x is a child of n;

weI3DDLEPDND

_‘
@

foreach child n’ of n do

—
—

Generate(c, n');

Fig 4-9. The pseudo code of function Generate
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Update (c, n)

foreach existing child n' of n do
UpdateSupport(c, n');
if the support of n’ <S then

foreach child n’ of n do
Update(c, n');
Fig 4-10. The pseudo code of function Update

1
2
3
4. eliminate n’ and its sub-tree;
5
6

We use the previous example to show the process of IncSPAM. Assume three transactions
have been received by IncSPAM. Figure 4-11 shows the CBASWs and the lexicographic
sequence tree. We mark the sequential patterns with squares. Each tree node maintains an
index set to record its support. In Figure 4-11, only 1-sequence <(b)> is frequent so the tree

does not have longer sequential patterns:

~ &3 ¥ CID | TID | Itemset
co-=tlafolfi o2/ a 2 |1 [@bd

a b ¢ d (b)
cm =2 o[ 0|2 d[ o[ o|[ o 3 [(b.c.d)

%)

-
<(a)>/ﬁ/ T3 <>
[1,0]: 1 [1,1]:2 [2,0]: 1 [1,0]: 1

Fig 4-11. The lexicographic sequence tree when the third transaction comes in

When the fourth transaction (a, b, ¢) comes in, CBASW of customer 2 has been modified
and 1-sequences <(a)> and <(c)> become new sequential patterns. By the extension methods,
S-step and I-step, longer candidates have been generated. IncSPAM checks the support of
each candidate using index set and keeps sequential patterns in the lexicographic sequence

tree. Figure 4-12 shows the result after the four transaction comes.
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a b c d CID | TID | Itemset
cio=1{ 1/ of| 1| 4| of 1| 2| 2 111 |(@bd)
a b c d 2 2 (b)
cm =2 o |[ 1] [ o[ ][ o[ o] L I 3 [(b.c.d)
2 4 |(a, b,c)

=
o] =
I:2 [2,2]:2

[1,2]:2 [, 1]: [1,0]: 1

AN

<@,b> | |[<m®)> || <o) || <k, o> |
[1,2]:2 [2,2]:2  [2,2]:2 [2,2]:2
[2,2]: 2

Fig 4-12. The lexicographic sequenceitree after the fourth transaction comes in

When the fifth transaction (a,:b) ‘comes in; IncSPAM updates the CBASWs and the index
sets in the lexicographic sequence tree. . Then-IncSPAM needs to generate new candidates to
find if there are new sequential patterns. Figure 4-13 shows the lexicographic sequence tree
and CBASWs after the fifth transaction comes. In the figure the tree nodes linked by the
dotted arrows means the candidates IncSPAM needs to check. The fifth transaction belongs to
customer 3 so only the sub-trees of items that exist in the customer-sequence 3 need to
generate candidates. In Figure 4-13 we can know that the sub-trees of items a and b need to
generate new candidates. Then we find that the new candidates <(a)(a)>, <(a)(b)>, and <(b,

c¢)(b)> are not frequent. IncSPAM does not keep these tree nodes.
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a_b c d CID | TID | Itemset
CID=11/0/11//O[ 1}j 1| 1 1 1 |(a b,d)
a b ¢ d 2 2 (b)
CIb=2|0[ 1/ 1|/ 1|/ 0 1J] O] O 1 3 |(b,c,d)
a b ¢ d 2 4 |(a b,c)
cip=3| 1|0 1/ oll o/ of[ ol O 3 5 | (ab)
-
>
[1,2,1]:3 [1,1,1]:3 : [1,0,0]: 1
\ <))

<@bvr | [<oor | [<oer | [<to> |
[1,2,11:3 | [2,2,0:2  [2,2,0:2  [2,2,0]:2

i <(b, c)(b)>
<(a)(a)> [2,2,0]:2 is not frequent
<(a)(b)>
is not frequent

is not frequent

Fig 4-13. The lexicographic sequence tree after the fifth transaction comes in

Figure 4-14 shows the result after the sixth transaction comes in. IncSPAM finds that the
existing tree node <(b)(b)> becomes infrequent. In this case IncSPAM directly deletes the tree

node <(b)(b)> and its sub-tree <(b)(b, ¢)>.
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a_ b ¢ d ciD | TID | temset
co=1[od[dlo {11 T 17 (@b
cm=2f0 {1/ 1f ol d[ojd| "1 | 3 [w, ¢, q)
a b ¢ d 2 | 4 |(ab,c)
cip=3|1/0]| 1/ of| o ol 0| O 3 5| (ab)
1 | 6| (cd
o=
<ot [0 <>
[0,2,1]:2 [1,1,1]:3 [1,2,0]:2 [1,0,0]: 1
<O~ | [<b.o> |
[0,2,1]:2 2,2,01:2  [1,2,0]:2

Fig 4-14. The lexicographic sequence tree after the sixth transaction comes in

4.8 Weight of Customer=Sequence

__a A lEm

Data Streams >

/
/ \ \

System starts Current transaction

These transactions are the latest transactions
of a customer but the customer has no recent
transactions in the data stream

Fig 4-15. The transactions of a customer with no recent records in a data stream

In IncSPAM algorithm, each customer maintains a sliding window to keep the latest N

transactions and the system mines sequential patterns from all customer-sequences. But some

customers may have no transactions in recent time in the data stream. These

customer-sequences with out-of-date transactions would result in a false positive problem in
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our algorithm. The supports of some patterns generated by the system are overly counted.
Figure 4-15 shows an example of these out-of-date transactions in a data stream. The
customer-sequence with these out-of-date transactions is less important than other
customer-sequences.

A concept of weight can be used to judge the importance of customers. Each
customer-sequence ¢ has its own weight w,, 0 < w. < 1. Each weight w, is decayed if the
incoming transaction does not belong to c. When a transaction of ¢ comes, the weight w, is set
to one. A decay function is used to compute the weights of customer-sequences when a new

transaction is coming in:
w, =1xd”

d, a decay-rate defined by users, can decide how fast a customer-sequence is decayed. p is a
decay-period of a customer-sequence which<is the number of transactions between the
incoming transaction and the latest transaction of €. p €an be written as below:

p = (incoming transaction TID-—the latest transaction TID of c)

In our proposed algorithm, the concept of the decay-rate d is adopted from [26]. d is defined

as:

d=p' (b>Lh>1b" <d <1)
Decay-base b: the amount of weight reduction per decay-unit
Decay-base-life h: the number of decay-units that makes the current weight be 1/b
Figure 4-16 shows an example of calculating the weights of customers. Assume the
incoming transaction is the transaction with TID = 7 and the decay rate d = 0.9. The latest
transaction of each customer is pointed by an arrow. Let us take customer #1 as an example.
The latest transaction of customer #1 is the transaction with TID = 6. So the weight of

customer-sequence of customer #1, wy, is equal to 0.97°.
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CID | TID ltemset Decay rate d = 0.9
1 1 (a, b, d)
2 2 (b) customer #1: Wy = 0.979
1 3 (b, c, d)
-»>| 2 4 (a b, c) customer #2: W, = 0.97-9
- i Z (b(acb:j) customer #3: W3 = 0.977
- 3 7 (b, c,d)

Fig 4-16. An example of calculating the weights of customers

In IncSPAM, we do not need to calculate decay-period when a new transaction comes in.
The weight of the customer that the incoming transaction belongs to is set to one. The others
decay only by a decay-rate d. Figure 4-17 shows an example when a new transactions with

TID = 8 comes. The weight of customer #2 is setto.l and the others decay by 0.9.

ciD | TID ltemset Decay rate d = 0.9

1 1 (@ b, d)

2 2 (b) customer #1: W;=0.9x0.9

1 3 ®, ¢, d)

2 4 @ b, c) customer #2: W, =1
> i Z (éacb:) customer #3: W3 =1x0.9
= 3 | 7 (b, c, d)
= 2 8 @ b,c, d)

Fig 4-17. When a new transaction with TID = 8 comes in

Now the support of a sequence p is not just the number of non-zero positions in the p-idx.
The support of p is counted by the summation of the weights of the customer-sequences
which p is in. We take the same example in section 4.7. The CBASWs and the lexicographic
sequence tree in Figure 4-11 becomes Figure 4-18. We assume the decay-rate is 0.9. In Figure

4-18, we can find that the support of the tree node <(b)> is 1.9 not 2.
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weight a b ¢ d CID | TID | Itemset
: 1 cw=1f1o||1 1o/ f|afaff 2 | 1 (@b d)
minsup = 2 .
d te =09 a b c d (b)
ecay-rate = 0.
0.9 cm=2{ 0| off 1] of| o o[ o] 0 (b, c.d)
<(a)> <(0)> <(d)>

[1,0]: 1 [1,1]: 1.9 [2,0]: 1 [1,0]: 1

Fig 4-18. The lexicographic sequence tree when the third transaction comes in

(with the concept of customer weight)

Updating support for an existing node can be easier than counting support of a new
candidate. Whenever a new transaction comes in, only one customer-sequence is affected.
Except the affected customer-sequence, the other customer-sequences’ weights just decay by
a decay-rate. We do not have to sum uprallithe weights one by one. The cases of updating
support can be listed below:

*  (Case 1) The incoming transaction .belongs to a new customer: For a sequence p, the
original support decays by a ‘decay-rate. Then we check if p exists in the new
customer-sequence. If p does exist, the decayed support increments one. If not, the

decayed supports adds zero. Figure 4-19 shows an example.
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Decay rated = 0.9

<(a)>-idx = [1]; <(a)>'s support = 1

CID | TID Itemset <(b)>-idx = [1]; <(b)>'s support = 1
! = @b d <(c)>-idx = [0]; <(c)>'s support =0
w. =1 <(d)>-idx = [1]; <(d)>'s support =1
1
After transaction #2 comes
<(a)>-idx = ; <(a)>’ = 9+0=0.
T g ot (a) 1.dx [1, 0]; <(a)>’s support=1x0.9+0=0.9
1 1 @b d) <(b)>-idx = [1, 1]; <(b)>’s support=1x0.9+1=1.9
5 5 ) <(c)>-idx = [0, 0]; <(c)>'s support=0x0.9+0=0
<(d)>-idx = [1, 0]; <(d)>'s support=1x0.9+0=10.9
w,;=0.9
w,=1

Fig 4-19. An example of support updating in IncSPAM (Case 1)

(Case 2) The incoming transaction belongs to an existing customer: For a sequence p,
the previous position value.of this customer in.the p-idx has to be checked. Assume the
modified customer-sequence is’¢. Ifi previous p-idx[c] is zero, the original support
decays by a decay-rate and increments one or zero by the existence of p in c. If
previous p-idx[c] is not zero, the original support subtracts the previous weight of
customer c and then decays by a decay-rate. Finally the support increments one or zero

by the same consideration. Figure 4-20 shows an example.
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Decay rated = 0.9

<(a)>-idx = [1, 0]; <(a)>’s support=1x0.9+0=0.9
CID | TID ltemset . ,
N 1 @b d) <(b)>-idx = [1, 1]; <(b)>’s support=1x09+1=1.9
2 > ) <(e)>-idx = [0, 0]; <(c)>'s support=0%0.9+0=0
<(d)>-idx = [1, 0]; <(d)>'s support=1x 0.9+ 0=10.9
w, =0.9
w,=1
After transaction #3 comes
-idx = ; ’ =(0.9-0. I9+1=
o5 1 1o P <(a)> 1.dx [1, 0]; <(a)>’s support=(0.9-0.9)x09+1=1
N 1 @b d) <(b)>-idx = [1, 1]; <(b)>’s support=(1.9-0.9) x0.9+1=1.9
2 > ) <(c)>-idx = [2, 0]; <(c)>'s support=0%x09+1=1
1 3 ®.c. d) <(d)>-idx = [1, 0]; <(d)>'s support=(0.9—-0.9)x09+1=1
w, =1
w,=0.9

Fig 4-20. An example;of support updating in Incremental SPAM (Case 2)

The weights of the customer-sequences doinot change the entire process of maintaining a
lexicographic sequence tree. Only when counting support in each tree node IncSPAM needs
to consider the concept of weight. The Function UpdateSupport in Figure 4-8 and Figure 4-9

is changed to Figure 4-21.
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UpdateSupport (c, n)

Yoo R:DL RPN

e e e e e e e e e
N A A

if customer-sequence c is new then
decay the support of #;
if the sequence of n is in ¢ then
the support of n + 1;
else
the support of n + 0;
else
if p-idx[c] is O then // assume the sequence in n is p
decay the support of #;
if the sequence of n is in ¢ then
the support of n + 1;
else
the support of n + 0;
else
the support of n — previous weight of ¢;
if the sequence of nisin'¢ then
the support-of n +:ly
else

the support of n + 0;

Fig 4-21. The.pseudo code'of function UpdateSupport
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Chapter 5

Performance Measurement

5.1 Performance Measurement of New-Moment

We performed many performance measurements to compare New-Moment with Moment.
Moment program (MomentFP) was provided by author. All experiments were done on a
1.3GHz Intel Celeron PC with 512MB memory and running with Windows XP system.
New-Moment was implemented in C++ STL and compiled with Visual C++ .NET compiler.

All testing data was generated by the synthetic data generator provided by Agrawal et al in
[1]. For testing the scalability of New-Moment and Moment, we use two set of different
parameters, valuel and value2, to: generaterdataset:, Parameters of testing data are listed in
table 5-1. The dataset generated:by valuel (T10I8D200K) contains general length of patterns

and the dataset generated by value2 (T15112D200K) ¢ontains longer patterns.

Parameter Valuel | Value2
Average items per transaction (T) 10 15
Number of transactions (D) 200k 200k
Number of items (N) 1000 1000
Average length of maximal pattern(I) 8 12

Table 5-1. Parameters of testing data for New-Moment

Our testing method is to execute New-Moment and Moment on the same dataset and to test
their performance. The performance measurements include memory usage, loading time of
the first window, and average time of window sliding. When the first window is filled by
incoming transactions, both New-Moment and Moment build its initial lexicographic tree.
The time of building the tree is called loading time of the first window. In the next step, both
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New-Moment and Moment receive 100 continuous transactions and generate 100 consecutive

sliding windows. Both New-Moment and Moment record executing time of each window.

Average time of window sliding was reported over these 100 consecutive sliding windows.
We use different minimum support, different window size, and different number of item

types to test these two algorithms.

5.1.1 Different Minimum Support

In the first experiment, we discuss the memory usage and executing time of New-Moment
and Moment in different minimum support. Minimum support is changed from 1% to 0.1%.
Sliding window size is fixed to 100,000 transactions. The number of item types is fixed to

1000. With different datasets (T10I8D200K and T15112D200K), the results are listed below.

(1) T10I8D200K

Memory usage

‘ —&— NewMoment —#— MomentFP ‘

250000

200000
150000
100000

50000
0 | | |

1 09 08 07 06 05 04 03 0.2 0.1 0.05
Minsup (%)

Memory (KB)

Fig 5-1. Memory usage with different minimum support (T10I8D200K) (New-Moment and
Moment)

The first measurement is about memory usage of New-Moment and Moment. Figure 5-1
shows the memory usage in Kbytes. We can observe that memory used is more than 120MB

in Moment but memory used in New-Moment is just about 15MB. When the minimum
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support is down to 0.05%, the memory used by New-Moment is just SOMB but memory of
Moment is out of bound (more than 512MB).

There are much less tree nodes in New-CET than in CET. New-Moment only maintains
bit-vectors of l-itemsets and closed frequent itemsets in the current window. Experiment

shows that New-CET is more compact than CET.

Time of Loading the First Window

—&— NewMoment —®— MomentFP

o 80
g

SR ’a
25 40

T E 20 r

,4 O v\¢\¢

1 09 08 07 06 05 04 03 02 0.1
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Fig 5-2. Loading time of the fitst windowrwithrdifferent minimum support (T10I8D200K)
(New-Moment and Moment)

The second measurement is about the loading time of the first window. Figure 5-2 shows
the result. In the first window, both New-Moment and Moment need to build a lexicographic
tree. We can observe that New-Moment is a little faster than Moment. The reason is that
generating candidates and counting their supports with bit-vector is more efficient than with

an independent sliding window (in MomentFP, a FP-tree [5] is used).
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Average Time of Window Sliding
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Fig 5-3. Average time of window sliding with different minimum support (T10I8D200K)
(New-Moment and Moment)

The third measurement is about average.time of window sliding. Figure 5-3 shows the
result. In the experiment New-Moment israjlittle slower than Moment because New-Moment
do not use tid sum as another key ‘to speed-up left-check step. But we can observe that the
difference is little. The sliding steps can be-finished-in a second for both algorithms and the

difference is meaningless.

(2) T15112D200K

The patterns in this dataset are longer than the patterns in previous dataset. We also test the
memory usage, loading time of the first window, and average time of window sliding. From
the measurements listed below, we can observe that the scalability of New-Moment is better
than Moment.

The first measurement is about memory usage in Kbytes. Figure 5-4 shows the result. We
can observe that the memory used in New-Moment is still less than the memory used in
Moment. By comparing the Figure 5-1 and Figure 5-4, we can also observe that the scalability

of New-Moment in memory usage is better than Moment. In the dataset T10I8D200K,
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memory used in Moment is about 120MB but in the dataset T15112D200K, memory used in

Moment is about 200MB. Memory used in New-Moment is under 100MB in both datasets.

Memory usage
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Fig 5-4. Memory usage with different minimum support (T15112D200K) (New-Moment and
Moment)

The second measurement is about the loading timerof the first window. Figure 5-5 shows

the result. We can observe that New-Moment is still-faster than Moment.

Loading Time of the First Window
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Fig 5-5. Loading time of the first window with different minimum support (T15112D200K)
(New-Moment and Moment)
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The third measurement is about the average time of window sliding. Figure 5-6 shows the
result. When minimum support is less than 0.3%, the average time of window sliding in

New-Moment is less than Moment.

Average Time of Window Sliding
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Fig 5-6. Average time of window sliding-with different minimum support (T15112D200K)
(New-Moment and Moment)

By testing two different dataset with different minimum support, we can observe that
New-Moment has better scalability than Moment. Although New-Moment is a little slower
than Moment in window sliding, both algorithms handle a transaction in one second. In
complicated dataset and low minimum support, New-Moment can even outperform Moment.
New-Moment not only use less memory than Moment but also is as fast as Moment in loading

the first window and window sliding.

5.1.2 Different Sliding Window Size
Sliding window size decides the length of each bit-vector. In this experiment, we want to
compare New-Moment and Moment in different sliding window size. This experiment can

show that using bit-vectors of items instead of independent sliding window is an efficient
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strategy. In this measurement, sliding window size is changed from 10,000 transactions to
100,000 transactions. Minimum support is fixed to 0.1%. The dataset is T10I8D200K. The
number of item types is fixed to 1000. We also test memory usage, loading time of the first
window, and average time of window sliding.

Figure 5-7 shows the first measurement, memory usage, in Kbytes. We can observe that
both New-Moment and Moment are linearly affected by sliding window size. New-Moment
still outperforms Moment in memory usage. Furthermore, the memory used in Moment

increases faster than New-Moment when window size becoming larger.

Memory Usage
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Fig 5-7. Memory usage with different sliding window size (New-Moment and Moment)

Figure 5-8 shows the result of the second measurement, time of loading the first window.
Although with the increasing sliding window size each bit-vector becomes larger,
New-Moment is still a little faster than Moment in loading time of the first window. The
reason is that processing time of bitwise AND between bit-vectors is almost not affected by

the length of bit-vector.
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Fig 5-8. Loading time of the first window with different sliding window size (New-Moment

and Moment)

Figure 5-9 shows the result of the third measurement, average time of window sliding.
Window sliding time of New-Moment:and'Mdment is almost the same. In the experiment of
different window size, we can also| conelude that New-Moment outperforms Moment in

memory usage and retain the same executing time.

Average Time of Window Sliding
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Fig 5-9. Average time of window sliding with different sliding window size (New-Moment and

Moment)
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5.1.3 Different Number of Items

New-Moment maintains bit-vectors of all items instead of independent sliding window
structure. The more types of items, the more bit-vectors need to be maintained. The goal of
this experiment is to show that even with a large number of items New-Moment also
outperforms Moment in memory usage. The number of item types is ranged from 1000 to
10000. Minimum support is 0.1%. Sliding window size is 100000. Testing dataset is
T10I8D200K. We also test memory usage, loading time of the first window, and average
window sliding time.

Figure 5-10 shows the memory usage in Kbytes. Moment is out of memory (more than
512MB) when the number of items exceeds 3000. Memory usage of New-Moment and the
number of items is linearly related. This result shows that New-Moment does not increase its

memory usage suddenly when the number of itemsis large.
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Fig 5-10. Memory usage with different number of items (New-Moment and Moment)

Next we test the executing time of both algorithms. Figure 5-11 shows the result of loading
time of the first window. Figure 5-12 shows average time of window sliding. The results
show that loading time and window sliding time also has linear relation with the number of
items. Although loading time is more than 300 seconds when the number of items exceeds
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9000, loading the first window is only executed once. Average time of window sliding is still

less than 1 second. It means that New-Moment is still efficient with a large number of items.
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Fig 5-11. Loading time of the first window with different number of items (New-Moment and
Moment)
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5.2 Performance Measurement of IncSPAM

The sequence data set in transaction form is generated by IBM data generator [2]. Our
program is written with C++ standard library (STL) and compiled with gcc 4.0.3 on Linux 9.0.
The testing computer has 2.16GHz CPU power and 2GB main memory. Table 5-2 shows the

parameters used to generate testing data.

Parameter Value

Average Number of transactions per customer (C) 30

Average Number of items per transaction (T) 2~3
Number of Different Items (N) 1000

Table 5-2. Parameters of testing data for IncSPAM

The performance measurements include ' memory usage and average time of window sliding.
Memory usage was tested by system’ tool to observe real memory variation. We run all
transactions generated with parameters. above and record time of handling one transaction.
Average time of window sliding is over the entire dataset. All experiments are performed with
decay-rate d = 0.999. For testing the scalability of IncSPAM, we test it with different
minimum support, different window size of a customer-sequence, and different number of

customers.

5.2.1 Different Minimum Support

The number of sequential patterns increases with lower minimum support. We want to test
the memory usage and executing time of IncSPAM with different minimum support to see its
scalability. In this experiment we use an absolute minimum support S. If the number of

customers that support a sequence p is more than S, p is a sequential pattern. We changed S
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from 3 to 10. The total number of customer is 1000. Window size of each customer is 10

transactions. Figure 5-13 shows the memory usage in Mbytes.

Memory Usage
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Fig 5-13. Memory usage with different minimum support (IncSPAM)

The memory usage is about 200 MB. That is reasonable in mining of sequential patterns.
We can find that with lower minimunt-support the-memory usage of IncSPAM increases
rapidly. For proving the lexicographic sequence trec of IncSPAM does not generate redundant
tree nodes, we test the number of tree nodes in the lexicographic sequence tree and the
memory used by IncSPAM.The experiment can prove that IncSPAM is efficient in memory.
Figure 5-14 shows the experiment for testing the relationship of maximum number of tree
nodes and memory usage. From this graph we can observe that the relationship is linear. That
means the memory usage grows up only because of increase of sequential patterns. IncSPAM
does not produce additional structure when minimum support becomes small and is efficient

in memory usage.
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Maximum Number of Tree nodes v.s. Memory Usage
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Fig 5-14. Relationship between maximum number of tree nodes and memory usage
(IncSPAM)

Figure 5-15 shows the average window sliding time. The result shows that average sliding
time is below 1 second. IncSPAMuses CBASW. and the characteristics of incremental mining

to speed up processing an incoming transaction. The experiment can prove the efficiency of

IncSPAM.
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Fig 5-15. Average time of window sliding with different minimum support (IncSPAM)
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5.2.2 Different Sliding Window Size

Size of sliding window is to control the number of transactions maintained by each
customer. In this experiment, we test the memory usage and average sliding time by different
size of sliding window. The size ranges from 10 transactions to 25 transactions. Minimum
support is fixed to 10 customer-sequences. Figure 5-16 shows memory usage and Figure 5-17

shows average sliding time with different window size.
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Fig 5-16. Memory usage-with different window size (IncSPAM)
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Fig 5-17. Average sliding time with different window size (IncSPAM)
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When the number of transactions maintained by each customer increases, the corresponding
memory usage and average sliding time also grows up. In current applications and IBM
synthetic dataset, maintaining about 15 transactions for each customer is reasonable.
IncSPAM can be applied in general applications and is efficient in memory usage and

handing real-time transactions.

5.2.3 Different Number of Customers

IncSPAM can dynamically add a new customer to the summary data structure. In previous
experiments we fix the number of customers for observing performance conveniently. The
memory usage and average sliding time for different number of customers is tested in this
experiment. Minimum support is also 10 customer-sequences. Figure 5-18 shows memory

usage of IncSPAM in different number of customers.
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Fig 5-18. Memory usage with different number of customers (IncSPAM)

The relationship between memory usage and the number of customers is linear. IncSPAM
can efficiently handle a great amount of customers with reasonable memory. In Figure 5-19

we can observe that the average sliding time is also in linear relationship.
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Fig 5-19. Average sliding time with different number of customers (IncSPAM)
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Chapter 6

Conclusion and Future Work

Mining of frequent patterns in a data stream is more complicated than in a static database.
In this paper we propose two algorithms: New-Moment to mine closed frequent itemsets and
IncSPAM to mine sequential patterns with the sliding window model in the data stream
environment.

The first algorithm, New-Moment, is to improve the efficiency of Moment algorithm.
New-Moment utilizes bit-vectors and a smaller lexicographic tree New-CET to reduce the
memory usage. Employing the characteristics of bit-vectors New-Moment is also as efficient
as Moment in executing time. The second, algorithm, IncSPAM, utilizes the concept of the
sliding window in each customer=sequencemlncSPAM uses CBASWs and a lexicographic
sequence tree to maintain the sequential pattérns in the current window. In the lexicographic
sequence tree IncSPAM uses an“index set in‘each tree node to speed up counting support.

IncSPAM can handle a transaction from‘the data stream in one second.

6.1 Conclusion of New-Moment

New-Moment reduces the memory usage by only maintaining bit-vectors of 1-itemsets and
closed frequent itemsets in New-CET. In the test of different minimum support, New-Moment
outperforms Moment in memory usage about 100MB. When the minimum support becomes
lower, the difference of memory usage in New-Moment and Moment becomes more
significant. Due to the efficiency of bit-vector in window sliding and in the generation of
itemset candidates, New-Moment is faster than Moment in the loading time of the first

window. Although New-Moment does not maintain the boundary tree node in the
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lexicographic tree, New-Moment still has almost the same performance as Moment in
execution time of window sliding. In the test of different window size, New-Moment still
outperforms Moment in memory usage and running time. In the test of different number of
items, Moment is even running out of memory bound. New-Moment is still efficient in

memory usage and executing time.

6.2 Conclusion of IncSPAM

We test memory usage and execution time of handing a transaction in IncSPAM in different
minimum support, different window size, and different number of customers. In the test of
different minimum support, memory used in IncSPAM is about 300MB. The memory usage
of IncSPAM increases when the minimum support becomes lower. We prove that the
lexicographic sequence tree ofiIncSPAM dees not produce redundant tree nodes. The
handling time of a transaction is-below.1.second. IncSPAM can be applied in the data stream
environment. In the test of different window size; the memory usage and execution time of
handling a transaction of IncSPAM increases when window size becomes large. We can
observe that IncSPAM is still efficient when the window size is from 10 to 25. In the test of
different number of customers, memory usage and time of handling a transaction of IncSPAM
is linear related to the number of customers. That means IncSPAM can perform well even the

number of customers becomes large.

6.3 Future Work

The concept of sliding window in this paper is based on transactions as units. In some
applications the unit of a window may be a time point. The number of transactions in each
time point is variable. Figure 6-1 shows the sliding window model in time units.
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Fig 6-1. The sliding window model in time units

In this sliding window model, the system keeps the transactions in the latest N time
intervals. The time interval may be one day, one week, or one month. There is different
number of transactions in each time interval. In Figure 6-1, there are two transactions in the
first time interval but there are three transactions in the second window. Since the number of
transactions in each time interval becomes variable, using bit-vectors that store fixed number
of transactions to store the transactionsminsthe window is difficult. Mining of these

complicated and flexible patterns in'a data stréam is a great challenge.
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