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摘      要 

 

我們的目的是設計出一個有彈性的應用層多點傳播架構，來提供即時多媒體串流服

務。我們主要是針對應用層多點傳播的兩個問題。第一、組成應用層多點傳播的用戶隨

時都會動態的加入或離開，因此資料傳輸並不可靠。第二、使用非對稱網路連線的用戶，

它們上傳的頻寬遠遠少於下載頻寬，上傳的頻寬不足將會是應用層多點傳播的瓶頸。 

我們提出三種方法的結合來產生出一個有彈性的應用層多點傳播機制，並且解決上

傳頻寬不足的問題。這三種方法是：一、information dispersal algorithm，二、multiple 

stripes/trees，三、helper。我們增強彈性的方法是藉由保證訂閱戶就算遺失一些封

包仍然可以得到完整資料，以及任一條網路連線中斷將不會有訂閱戶收不到任何封包。

我們解決上傳頻寬不足的方法是充分利用所有用戶的上傳頻寬，以及藉由 helper 的加

入來增加上傳頻寬的總量。 

我們從模擬實驗中觀察到幾項結果：一、每個訂閱戶的訊息延遲時間是穩定的，而

且訂閱戶之間的訊息延遲時間差距很少，二、就算對上傳頻寬不足的非對稱網路連線而

言，每條網路連線的平均頻寬消耗是少的，三、結果顯示就算用戶有機率會發生錯誤時，

訂閱戶仍然有良好的訊息成功還原率。 
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ABSTRACT 

 
 

Our purpose is to devise a new application layer multicast scheme to provide real time 
multimedia streaming service. There are two challenges for application layer multicast that we 
focus on. First challenge is peers that form the application layer multicast service may 
dynamically join or leave at any time. Data transmission is not reliable. Second one is peers 
with asymmetric connectivity that upstream bandwidth is much less than downstream 
bandwidth. Insufficient upstream bandwidth will be the bottleneck of application layer 
multicast. 

We propose the combination of three approaches to provide a resilient application layer 
multicast mechanism and solve the issue of peers with insufficient upstream bandwidth. The 
three approaches are: (1) information dispersal algorithm, (2) multiple stripes/trees, (3) helper. 
We improve resilience by promising subscribers can tolerate some packets loss without losing 
data completeness and when any link break, none of subscribers can’t receive any packets. We 
solve the insufficient upstream bandwidth issue by fully utilizing the upstream bandwidth of 
all peers and increasing the total amount of upstream bandwidth by the participation of 
helpers. 

We observe several results from the simulation: (1) the delay of message restoration for 
each subscriber is stable and the difference of delay between subscribers is small, (2) the 
average bandwidth consumption of one link is low, even for insufficient upstream bandwidth 
links, (3) it shows subscribers have good successful probability of message restoration even if 
peers have failure probability. 
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Chapter 1 
Research Overview 
 

1.1 Problem Statement 

Our purpose is to devise a new application layer multicast scheme to provide real time 

multimedia streaming service. The scheme provides resilience and security of data 

transmission. It also removes the bottleneck of data transmission in peer upstream bandwidth. 

There are two main challenges we focus on. First challenge is peers that form the 

application layer multicast service are dynamic. Second one is peers with asymmetric 

connectivity for up and down links, especially with narrow upstream bandwidth. These two 

issues only appear in application layer multicast but not in IP multicast. 

1.1.1 Dynamic Peers 

The concept of application layer multicast is when users’ desktops or mobile devices 

(called peer) receive streaming data, they need to replicate data and send to other peers. There 

is no steady server and the whole service is formed by peers. Therefore, the operation of 

application layer multicast fully depends on peers. But peers may dynamically join or leave 

the service at any time. Data transmission is not reliable that service can’t promise users will 

receive all the data. If the peers in the application layer multicast are dynamically changed 

frequently, the service won’t works without any remedy. 

1.1.2 Asymmetric Connectivity 

Currently, most users use asymmetric upstream and downstream connectivity, such as 

ADSL, VDSL or Cable modem [19], to connect to the Internet. The upstream bandwidth is 

much less than downstream bandwidth. In application layer multicast, the capability of peer’s 

upstream bandwidth will influence on how many peers it can retransmit data to them. For 
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example, if application layer multicast using tree structure, one peer needs to retransmit the 

streaming data to several peers in the same time. But upstream bandwidth might be very less 

than downstream bandwidth. The lack of upstream bandwidth will cause the performance of 

application layer multicast being poor. Otherwise, the application layer multicast can only 

provide low quality data streaming service. 

In the present day, the data rate of most data streaming service on the Internet is around 

300 to 500 Kbps [24], [25]. If we have no abundant bandwidth and want to provide streaming 

data to others, all we can do is use application layer multicast. When some receivers are the 

peers with asymmetric connectivity, it will bring an issue that they can only retransmit data to 

very few peers. (In Taiwan, the maximum upstream bandwidth of asymmetric connectivity is 

1 Mbps and the general is 512 Kbps [20].) 

This issue will limit the amount of peers that can join the service or the quality of 

streaming data the service can provide will be poor. Furthermore, because the degree of nodes 

in the tree is few, the height of the tee will be bigger and the end to end delay from source to 

peers will be larger. There is an example in Figure 1. Furthermore, in some special cases, if 

the number of users that want to join the service is few, we can’t even build a workable tree 

between them because the choice of parent is few. 

 
Figure 1: Large end to end delay when node degree is few 

 

1.2 Research Approach 

The name of the scheme we propose is called Trickle. The transmission paths among 

peers will be tree structure. In current stage, we don’t focus on how to build a tree among 

peers. Our purpose is to improve resilience of existent tree building algorithm by integrated 
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with Trickle. Moreover, Trickle won’t violate decentralized control if the tree building 

algorithm is decentralized. Following, we will define the meaning of resilience and then 

introduce our three approaches: information dispersal algorithm, multiple stripes, and helper. 

1.2.1 Definition of Resilience 

We will devise a resilient application layer multicast approach including fault tolerance, 

robustness, security, and solving asymmetric connectivity issue. For fault tolerance, peers can 

tolerate a small number of packet delay or loss and they still can receive complete message in 

time. For robustness, a sudden breakdown of some peers or links won’t disrupt reception of 

downstream peers. For security, we provide a partial security protection for streaming data. 

1.2.2 Three Approaches 

Information dispersal algorithm (IDA) [8] IDA will be used to process the message 

generated from source peer and divide the message into several pieces. Peers can restore 

message from a part of message pieces. We use IDA for two purposes: (1) peers don’t need to 

receive whole pieces of a message and they still can have the complete message. It will 

improve the resilience of data transmission, (2) peers can’t know any content of the message 

if they don’t have enough pieces. Therefore, if some peers have no authority to read the 

message, we only need to make sure not to let them receive too many pieces of the message. 

In short, the participation of helper is the main reason we want to enhance security.  

Multiple stripes The pieces of messages divided by IDA approach is called stripes. In 

tree building step, we not only construct one tree, we construct as many different trees as the 

number of stripes that one message is divided into. And each tree transmits different stripe of 

the message. This approach will lead to two advantages. First, it can make sure that peers can 

receive enough stripes. When one peer leaves or crashed, descendants of the peer will only 

lose one stripes and they still can receive other stripes from other trees. Furthermore, when a 

link of tree is congested, it only makes one stripe delay. Second, every peer can fully utilize 
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their upstream bandwidth. A stripe is much smaller than a message, so peers with low 

upstream bandwidth can also support several children. 

Helper Because the lack of upstream bandwidth, it is possible that new peers can not 

find a parent in the tree that can provide them smooth streaming data. It is because the peers in 

the trees can support no more children or because the peers can support more children is far 

from new peers. Therefore, the service will request some peers called helpers that still have 

unnecessary bandwidth to join and share their bandwidth to increase the total mount of 

upstream bandwidth of the service. By the help of helper, the service can accept more peers 

and each peer can receive the streaming data smoothly by having better parent choices. 

 

1.3 Outline of Thesis 

In chapter 2, we will briefly introduce three different architecture of multicast and the 

related work of application layer multicast. In chapter 3, we will describe the detail of the 

three approaches. In chapter 4, we will describe the use of three approaches in the mechanism 

of application layer multicast and how it works. In chapter 5, we will show the simulation 

results and evaluate our performance. In chapter 6, it is the conclusion and the future work. 
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Chapter 2 
Background 
 

2.1 Architecture of Multicast 

Since multi-receiver multimedia applications, like video-conferencing, video streaming, 

e-learning and online-gaming, are more and more popular on the Internet, multicast is an 

important mechanism need to be developed. Multicast is a one-to-many transmission 

mechanism and is very efficient to reduce duplicate packets and bandwidth consumption 

when it is used for multi-receiver applications. 

There are three different architecture of multicast: IP multicast, application layer 

multicast (ALM), and overlay multicast [21]. Figure 2 shows the difference between these 

three architecture clearly. IP multicast is developed on network layer and use routers as the 

relaying nodes. IP multicast is the most directly implementation of multicast and can reduce 

most duplicate packets in transmission process. However, because of several issues [1], IP 

multicast is not globally deployed yet. 

 

Figure 2: Three different architecture of multicast. 

(a) IP multicast, (b) application layer multicast, (c) overlay multicast 
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Overlay multicast is the architecture that constructs a backbone by overlay proxy first. 

And then it establishes multicast trees among overlay proxy and end hosts. It has good 

performance that is close to IP multicast. However, the main issue is the deployment of 

overlay proxy. 

Application layer multicast is a hot research topic in recent few years [2~5, 7, 11, 12, 14, 

16] and has become an attractive solution of multicast. It is also the easiest one for immediate 

deployment among these three architectures. ALM is developed on application layer and 

doesn’t need to modify any existent protocol in lower layer. User’s desktops or mobile devices 

(called peer) replace the function of routers in IP multicast. Data packets are replicated at 

peers and send to other peers in the same application layer multicast service. 

 

2.2 Related Work 

We briefly introduce some research about application layer multicast. 

2.2.1 Multiple Description Coding (MDC) 

The overview of multiple description coding is in [22]. It is a method to encode signal 

into multiple separate descriptions (streams) and any subset of descriptions can be restore to 

the original signal with different quality. If users receive more description, the distortion will 

be less and the quality of restored signal will be higher. One difference between MDC and 

IDA is MDC is a source coding method and IDA is a channel coding method. 

2.2.2 Multiple Stripes 

SplitStream [2] and CoopNet [3] are two mechanisms using multiple stripes. Both of 

them get a result that using multiple stripes will increase the robustness, resilience, and load 

balance. The detail of multiple stripes will be described in next chapter. There are two main 

differences between them. First, CoopNet uses a centralized tree building algorithm while 

SplitStream is decentralized because it bases on Scribe. Second, CoopNet does not handle the 
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bandwidth contribution of peers in the trees. 

2.2.3 Waypoint 

There is new overlay architecture in [9]. Besides normal participants, they employ some 

machines call waypoints. In the overlay tree, these two kinds of nodes are interwoven. It is 

different to the overlay proxy in overlay multicast. Waypoints are the same as normal 

participants and they run the same protocol. Therefore, its behavior is the same as other users, 

rather than statically provisioned infrastructure nodes, such as Overcast nodes in [6]. The 

purpose of waypoint’s participation is to increase the total amount of resource in the system. 

In their experiences, waypoint is needed in some cases and their investigation is still in 

progress. Besides, the difference between waypoint and helper will be described in next 

chapter. 

2.2.4 Tree Building Algorithm 

The two main categories of tree building are based on distributed hash table (DHT) and 

hierarchical clustering. Scribe [14] and Bayeux [16] are the ALM tree building methods that 

base on the Pastry [13] and Tapestry [15] DHT mechanism. In the beginning, the purpose of 

DHT is to search and route efficiently (with the bound of hops, usually log(N) hops). Every 

peer will be assigned an id that generated by hash mechanism and the routing path will base 

on the hash id. And then, the tree building methods that base on DHT build transmission paths 

along the routing path by reverse path forwarding (RPF) method. These transmission paths 

have same source peer, so these paths will form a tree structure. 

NICE [4] and ZIGZAG [5] are the ALM tree building methods that base on hierarchical 

clustering. Each peer who wants to join the tree will be put into a cluster base on specified 

metrics (such as distance). One or more peers in the cluster will be promoted to a higher level 

cluster and their responsibility is to transmit data to all peers in lower level cluster. And then, 

there is also a higher level cluster to send data to the high level clusters. Finally, the only one 

member in the highest level cluster will be the source peer. These clusters construct a tree 
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structure and a level of clusters represents a level of the tree. 

2.2.5 Enhancement of Resilience 

Probabilistic Resilient Multicast (PRM) [11] uses a proactive forwarding approach to 

increase the data delivery ratio. The method is to use randomized forwarding. Every node 

randomly chooses a constant number of other nodes and forwards data to them with low 

probability. The randomized forwarding is simultaneous with the usual data forwarding 

mechanism. Hence, some nodes may receive the same data. But this approach will make the 

nodes can receive the data even when their parents fail. And then, it proposes an extension 

called Ephemeral Guaranteed Forwarding (EGF). When some nodes are repairing their 

transmission paths (finding new parents), they can request other nodes to temporarily increase 

the probability of forwarding data to them. Therefore, they still can receive the data in the 

repairing process. 

A proactive approach to reconstruct multicast trees is proposed in [12]. When some 

interior nodes leave trees or fail, it will minimize the disruption of service for those affected 

nodes. The approach is every interior node should compute a parent-to-be for each of its 

children. In the computation process, it will consider the degree constraints of each node. And 

it also deals with the situation of multiple leaves. After that, if an interior node leaves the tree 

or fails, all its children will find their new parent (parent-to-be) immediately. By this approach, 

when some edges of the tree broken, every node can find a new parent quickly and also 

recover the transmission path. 
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Chapter 3 
Principle 
 

3.1 Overall System 

The three approaches we use are information dispersal algorithm, multiple stripes, and 

helper. Base on these three approaches, we can establish the scheme of application layer 

multicast system presented in Figure 3. 

 

Figure 3: Application Layer Multicast System 

The whole graph is an ALM system with many independent ALM services inside. Each 

service provides different streaming data. The circle nodes are the users who join the system 

and generally called peer. Each peer has different name based on what they do in the system. 

Peers who provide streaming data are called source peers. Peers who subscribe the service are 

called subscribers. Peers who don’t subscribe the service are called helpers of the service. 

Peers who don’t subscribe any service are called idle peers and they can be helpers for all 

services. Now, we point out the place our three approaches performed. 

Information dispersal algorithm The dark circle node is the source peer. Before it 

sends out the streaming data, the data will be processed by IDA. 

Multiple stripes In Figure 3, there are two different lines inside the ALM service in left 

side. The two kinds of line represent two different trees and source peer transmit different 
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stripes which are generated from IDA through different trees. 

Helper The ALM service in left side shows there are two helpers contribute their 

bandwidth to the service. They help to retransmit stripes to the subscribers of the service. 

We have several hypotheses for the ALM system. One, most peers of the ALM system 

are using asymmetric connectivity. It means they have poor upstream bandwidth. Two, all 

peers have degree constraint which is determined by the upstream bandwidth offered by 

individual peers. Three, the data rate of the streaming data provided in ALM system is too 

high for general ALM mechanism. Four, the number of peers in the ALM system is very large. 

In other words, the lack of helper is not a problem. Five, the streaming data transmitted in 

ALM service might have security requirement. 

In the following sections, we will introduce the principle detail of the three approaches. 

 

3.2 Information Dispersal Algorithm (IDA) 

(n, m) information dispersal algorithm (IDA) [8] is a method that disperses data for 

security, fault tolerance and etc. It can disperse the original data into n pieces and we must 

have m pieces or more, , to be able to restore to the original data. For security, peers 

can’t know any content of data if they have less than m pieces. For fault tolerance, it means 

that it could tolerate some of pieces missing and still can restore to the original data. Moreover, 

it has a special characteristic that the m pieces we mention before is any m pieces without any 

order, needn’t to be continues, and no any piece is must have. On the contrary, using IDA will 

cause the data size much bigger. If the size of data F is 

m n≤

F , we disperse it into n pieces, the 

size of each piece will be /F m . Therefore, the total size of n pieces will be ( / )F n m⋅ . 

Following we will brief describe how to use IDA in transmission process. 

3.2.1 Split 

First, we must decide (n, m) and then we use IDA on the transmitted data F. Let the 
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content of F be , F is divided into N units. We use the content of F to generate a 

matrix B and the blank places are filled in 0. The size of matrix B is . 

1 2, , , Nb b b…

 /m N m× ⎡ ⎤⎢ ⎥

1 2 1 2 1 2 2, , , ( , , , ), ( , , , ),N m m mF b b b b b b b b b+ + m= =… … … …             (1) 

1 1 /

2 2

2 0

m N m

m

N

m m

b b b

b bB
b

b b

+ ⎡ ⎤⎢ ⎥

+

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜
⎜ ⎟⎜ ⎟
⎝ ⎠

"

#
# # ⎟                        (2) 

Then we choose n vectors , ia 1 i n≤ ≤ , and the length of each vector is m. Every subset 

of m different vectors must be linearly independent. And then we use  to compose matrix 

A that the size of matrix A is . 

ia

n m×

1( , , ),   1i i ima a a i n= ≤ ≤…                        (3) 

1

2

n

a
a

A

a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

#                                (4) 

It is the initialization step from (1) to (4). Then we will use IDA in the transmission 

process. First, we will divide F into n pieces. Base on the matrix A and B we calculate before, 

A B C⋅ = , C is a  matrix. We can divide C into n vectors called , /n N m× ⎡⎢ ⎤⎥ ic 1 i n≤ ≤ , 

the length of a vector is . These n vectors are the pieces we want. And then these n 

pieces will be transmitted through different transmission paths to all peers (based on multiple 

stripes approach). 

/N m⎡⎢ ⎤⎥

1

2

n

c
c

A B C

c

⎛ ⎞
⎜ ⎟
⎜ ⎟⋅ = =
⎜ ⎟
⎜ ⎟
⎝ ⎠

#                             (5) 

1 2 /( , , , )i i i N mc c c c
⎡ ⎤⎢ ⎥

= …                          (6) 
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1 ( 1) 1ik i k m im kmc a b a b− += ⋅ + + ⋅"                       (7) 

3.2.2 Restoration 

After splitting F into n pieces in previous section, we will show we can restore F from 

any m pieces. When peer receives m pieces or more, the peer can restore the original F. We 

choose any m pieces  and choose the corresponding m vectors 

 in A. Through the expression below, we can restore the matrix B and also 

we obtain the original data F. 

, 1( , ,i i i mc c c+ +… )

1i

⎞
⎟
⎟
⎟
⎟
⎠

#

⎤⎥

1( , , , )i i i ma a a+ +…

1

1

i i

i

i m i m

a c
a c

B

a c

−

+ +

+ +

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜= ⋅
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝

#                           (8) 

Therefore, as long as all peers generate the same matrix A as source peer, they could 

restore the original data from any m pieces of the data. 

3.2.3 Efficiency 

Only produce matrix C and restore matrix B in IDA will influence on the efficiency of 

Trickle. It is because the production of matrix A and A-1 is only once, we don’t need to 

reproduce. Now, we consider the number of operations split and restoration need. 

For split, it needs  multiplication operations and /n m N m× × ⎡⎢ ( 1) /n m N m× − × ⎡ ⎤⎢ ⎥  

addition operations. The complexity of operation is also associated with the size of b which is 

/F N . Therefore, split is affected by the parameter n and the size of data. The complexity of 

split is (O n F× ) . For restoration, it needs /m m N m× × ⎡ ⎤⎢ ⎥  multiplication operations and 

 addition operations. Therefore, restoration is affected by the parameter 

m and the size of data. The complexity of restoration is 

( 1) /m m N m× − × ⎡⎢ ⎤⎥

( )O m F× . 
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3.2.4 Advantage 

Using the combination of IDA and multiple stripes in transmission process has several 

advantages. First, security and fault tolerance, these are the design purposes of IDA. These 

two characteristics quite match our requirement. Because we join the concept of helper into 

Trickle, security of data transmission is necessary when the data is sensitive. And further, 

because the whole ALM service is composed by peers (end hosts), the service can’t promise 

peers can receive all data. By the fault tolerance of IDA, the transmission process is more 

resilient. Second, we only need to receive m of n pieces to restore original data, so we do not 

need to wait the remand n-m pieces. Because every piece is transmitted through different path, 

some paths are congested and some are not. Therefore, the thing that influences on our delay 

of receiving data is the most quick m paths, not all n paths. Even if the congestion of 

transmission paths will change, we still can prevent to be influenced by most congested n-m 

paths without changing our transmission paths. Hence, the receiving process is more efficient. 

3.2.5 Influence of n and m 

Because our IDA and multiple stripes approach will influence each other, the decision of 

n and m will cause some effect. First, n will influence on how many trees we will build in an 

ALM service. Too many trees will lead to increase amount of control signal and the control 

overhead will consume our rare upstream bandwidth. Second, the ratio of n and m will 

influence on the transmission overhead. As we mention before, the size of data that using IDA 

will  times bigger than the original one. It means that the data transmitted through 

network will increase  times. However, we don’t really need to receive all n stripes. 

We will explain the improvement in next chapter. In addition, the ratio of n and m will 

influence on the resilience of ALM service. The larger ratio of n and m is, the more resilient 

ALM service will be. In other words, we can tolerate more stripes lose. Hence, the decision of 

n and m is very important and must base on what application the service wants to provide. 

( / )n m

( / )n m
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3.3 Multiple Stripes/Trees 

The concept of multiple stripes has been brought up in previous research [2], [3]. Each 

message transported from source peer will be divided into several stripes. In tree building step, 

we not only construct one tree, we construct as many different trees as the number of stripes 

that one message is divided into. And each tree transmits different stripe of the message to 

subscribers. Hence, the peer receives different stripes of the message through different 

transmission paths. Figure 4 present an example of multiple stripes. By this approach, we get 

a lot of advantages mentioned before. Moreover, we enhance multiple stripes by combining 

with IDA approach. The description is in following content. 

 
Figure 4: An example that a message is divided into 2 stripes 

3.3.1 Combine with IDA 

The combination of multiple stripes and IDA mean that one message will be divided into 

several stripes by IDA approach. And each stripe will be transmitted through different trees. 

The purpose of multiple stripes/trees is to prevent losing a whole message when one link 

broken. The purpose of IDA is to promise peers will restore the original message even some 

stripes lose. 

When we use (n, m) IDA technology, every peer joining in the ALM service will have n 

different transmission paths (actually, it is mostly less than n, we will explain about it in next 

chapter) that the origination is source peer and destination is itself. Each transmission path of 

the peer transmits different stripe and peers only need to receive any m stripes of the total n 
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stripes, then those stripes can be restored to the original message. In other words, the 

transmission process can tolerate to loss at most n-m stripes. 

Therefore, we must make sure that any peer leave the ALM service will not cause the 

remand peers who are still in the ALM service can not restore the original message. This 

situation happens only when the leaving peer is in more than n-m of n transmission paths of 

any peer. When such peer leaves the ALM service, it will cause more than n-m transmission 

paths of the peer break down and the peer can only receive less than m stripes. Hence, the peer 

can not restore the original message. This situation can be prevented by building disjoint 

transmission paths. 

3.3.2 Building Disjoint Paths 

Base on the description before, we know that we must prevent any peer is in more than 

n-m transmission path of other peers. The solution for building this kind of transmission paths 

is to restrict that every peer become interior node in constant number of trees. And the number 

must not bigger than n-m. Therefore, there are two different choices to decide the number of 

being interior node for each peer. The first choice is every peer becomes interior node in more 

than one tree and the second choice is to restrict every peer can become interior node in only 

one tree. The advantage of first choice is that some peers with high upstream bandwidth will 

contribute their bandwidth averagely in multiple trees without contributing whole upstream 

bandwidth in only one tree. It is good for Trickle because in transmission process with IDA, 

the importance of all stripes is the same. However, there is a critical disadvantage to 

contribute bandwidth in multiple trees. It will cause the height of trees in ALM service much 

bigger and the end to end delay will be higher because the degree of nodes in each tree are 

smaller. 

Therefore we decide to pick the second choice that every peer becomes interior node in 

only one tree. This method restrict that any peer at most in one of n transmission paths of 

other subscribers. And then, we have to use a method to decide peers become interior node in 
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which tree. In SplitStream [2], it provides a method that can establish interior-node-disjoint 

trees. Each tree root has different prefix of groupId. Due to the tree building method, groupId 

and nodeId of peers will cause which peers become interior node. Therefore, it will restrict 

that every peer will play the role of interior node in no more than one tree and being leaf node 

in the remand trees. This method is only fit for the tree building algorithms that base on DHT. 

In out hypothesis, we hope Trickle can be applied to any tree building algorithm. Therefore, 

we use different method to decide peers become interior node in which tree. 

3.3.3 Become Interior Node 

Each peer decides it will become interior node in which tree by itself. When a new peer 

is in the process of joining service, there are two decision methods to decide which tree it 

should be interior node. One, in order to prevent violating the DHT concept, if the tree 

building algorithm is based on DHT, it decides to be interior node in the tree whose root has 

the same prefix hash id. It is approximately the same as SplitStream, but the only difference is 

the peer already decides the tree it wants to be interior node by itself in the beginning of 

joining service. The second method is the peer randomly decides which tree it should be 

interior node and be leaf node in other trees. 

The advantage of random solution is that we don’t need a server to do resource 

(upstream bandwidth) management. However, it may probably cause large number of peer 

being interior node in the same tree and the resource distributed unfairness. It will cause that 

the upstream bandwidth of some trees is not enough. We solve this problem by using the 

concept of helper. Those trees with poor resource will ask helper for help. The helper will 

share their upstream bandwidth to those trees that need it. Therefore, when the number of 

helper is nearly infinite, the upstream bandwidth won’t be exhausted. And the concept of 

helper will be described in next section. 
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3.4 Helper 

The peers are idle or the subscribers of other services can be the helper of the service. 

For example, in one service, the peers are regarded as subscribers, but for other services in 

ALM system, they are not subscribers. Therefore, we call them helper when they are not 

regarded as subscribers of the service. We hope those peers that are idle or have ample 

upstream bandwidth can share their bandwidth with other ALM services. Hence, for those 

ALM services that can not provide smooth streaming data to the subscribers will request 

helper for help. 

3.4.1 Demand of Helper 

In order to make every peer receive streaming data smoothly, every peer will restrict the 

number of children it can support based on its upstream bandwidth. A peer will request to be 

some peer’s child in three cases: (1) the peer is a new subscriber and it chooses a peer in the 

service to be its parent by tree building algorithm, (2) the transmission path between the peer 

and source is broken, it wants to change transmission path, (3) the tree structure adaptation 

algorithm will cause peers to change their parents. When the peer already reaches its upper 

bound of child number, it receives the request from the other peer that wants to be its child. It 

is the time to request helper’s help in order to accept the request. 

3.4.2 Find Helper 

There are two issues need to be consider when peers need helper’s help. 

How to find the helper Because we expect our infrastructure of ALM system is based 

on decentralized control, not centralized control by some peers, like source peer. Hence, every 

peer needs to have the capability of finding helper. When every peer joins the ALM system, 

they will establish a neighbor table to record peers that are close to them. The definition of 

neighbor is that the number of IP routing hops between its neighbor and itself is below a 

predefined number. When the peer joins one ALM service and the neighbors of the peer who 

17 



are not in this service can be helper candidates (because of the restriction in next section). 

Hence, peers can request assistance of helper candidates in neighbor table when they need 

helper’s help. 

Helper selection The second issue is that if there is more than one helper candidate, 

which one of candidates we should choose. Because the participation of helper will make the 

transmission path longer and it will increase the end to end delay of affected peers, we must 

choose the candidate that increases the transmission path length least. We explain it by an 

example presented in Figure 5. dAH means the number of IP routing hops from A to helper 

candidate (who are in the neighbor table of A), dHB means the number of IP routing hops from 

helper candidate to B. If we need the assistance of helper between A and B, we will choose the 

candidate that it makes the dAH+dHB to be smallest and then we request the helper candidate to 

join the ALM service and place it between A and B. 

 
Figure 5: An illustration of helper selection 

3.4.3 Restriction of Helper 

The selection of helper has two restrictions. First, helper might be the subscriber of other 

ALM service. We can not request them to share too much bandwidth that will cause them can 

not smoothly receive the streaming data they want. Therefore, every peer will share the fix 

ratio of bandwidth for being helper. The ratio of bandwidth it will share is defined by ALM 

system. Second, for security consideration, we can’t allow helper to know the content they 

transmit. Base on the characteristic of (n, m) IDA, we restrict a helper can help only one tree 

in one ALM service. It means a helper can only join one tree of the service and become 

interior node in the tree. Hence, helper can’t know the content it transmits because it doesn’t 

have enough stripes. And also, every peer still can receive the whole message when it leaves. 
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3.4.4 Helper Join 

After finding one helper, we need to explain how the helper joins the tree. We explain the 

process by an example presented in Figure 6. In Figure 6(a), peer A’s upper bound of child 

number is 3. It shows A is already reach its upper bound and new peer E send request to A that 

it wants to be A’s child. It is the situation that needs helper’s help. There are three steps to 

make a help joining the tree. First step, peer A chooses helper H from helper candidates by the 

method described in previous section. Second step, peer H becomes A’s child and accepts E’s 

request, so E becomes H’s child. Third step, peer A transfers its child D to H and D becomes 

H’s child. 

 

Figure 6: An example of helper join 

The decision of transferring which one of A’s children to be H’s child is based on two 

rules. Rule one is leaf node has higher priority and rule two is choose the one closest to helper. 

If some of A’s children are leaf nodes, we choose the leaf node that is closest to H. Otherwise, 

we choose the one of A’s children that is closet to H. We choose leaf node first because it 

won’t affect too much peers who will increase end to end delay. 

In this approach, the ALM service can successfully accept peer E. It will bring two 

advantages. First, E request to be A’s child who is already reach its supporting upper bound 

must because it is E’s best choice or the only choice. Because we expect our infrastructure is 

decentralized control; usually, E can only obtain a small part of peers’ information in the ALM 

service. Therefore, the parent choice of E is limited. Hence, base on this approach we could 

successfully accept E and also try our best to prevent to influence on peers that are already in 

the service. Second, because H is A’s neighbor, when H joins the service, the peers who might 
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choose A before could have another choice H. Therefore, peers can have more choices. 

Moreover, H still not reaches its upper bound of child number. It increases the number of 

peers the tree can support. 

3.4.5 Enhancement 

Enhancement 1 In finding helper step, we don’t really need to choose the neighbors that 

are not in the service to be helper candidates in an exception. When the neighbor is already in 

the service, if the tree needs help is the same tree it already in, we still can request its help. In 

Figure 6(b), a new request from F, if the best choice of helper is still H, then A still can 

request H’s help if H doesn’t reach its upper bound of child number. In addition, in this case, 

child transfer step can be omitted. 

Enhancement 2 By enhancement 1, the peer may find a helper that is other peer’s child. 

In this case, the helper can change parent if the distance from source peer to it will be shorter. 

We explain it by an example presented in Figure 7. dSA is the distance between source peer 

and peer A, dSB is the distance between source peer and peer B, dAH is the distance between 

peer A and peer H, and dBH is the distance between peer B and peer H. When peer B receives a 

request from Z, B detects the best helper is H and requests H’s help. There are two possible 

results. If (dSA+dAH)≤ (dSB+dBH), the result is presented in Figure 7(b). If (dSA+dAH)>(dSB+dBH), 

the result is presented in Figure 7(c). By this enhancement, not only helper will have lower 

end to end delay, but also all its children and descendants. 

 

Figure 7: An example of helper approach enhancement 
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3.4.6 Difference between Helper and Waypoint 

There is already a similar concept to helper called waypoint [9]. Both helper and 

waypoint are the peers with unnecessary resource, such as upstream bandwidth, and they 

provide it to help others. The most different point between waypoint and helper is that 

waypoint joins the service base on its own decision and helper joins the service when 

members in the service call for help. 

The concept of waypoint is to treat waypoint as common peers. It means that the method 

of joining service and the data it receive is the same as common peers. Even though waypoint 

will join the service that need help base on its determination, its join method is the same as 

other peers. It may not be put in the urgent place that needs help. For example, there is one 

sub-tree in the service needs help. Waypoint may join this service, but may not be put in that 

sub-tree by the join mechanism. 

Contrary, helper is requested by the members in the service who need help. And the 

helper joins the service using different joining mechanism. Helper will be put in the place that 

really needs help. Therefore, participation of helper will solve the issue immediately. 
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Chapter 4 
Mechanism 
 

In this chapter, we will introduce the mechanism of ALM service and the integration of 

our three approaches in the mechanism. We separate the mechanism into two parts. The first 

part is the start of an ALM service and the second part is the behavior of peers. 

4.1 Service Startup 

There are three things need to be done to start an ALM service in the ALM system. First, 

every peer should establish a neighbor table before join or start a service. Second, if a peer 

wants to establish an ALM service to share its streaming data, it must decide who the source 

peer of the service is. Third, the source peer must configure IDA before accepting subscribers. 

We describe the details in the following content. 

4.1.1 Establish Neighbor Table 

Before ALM service start, every peer who wants to join the ALM system, including 

source peers, subscribers, and even helpers, should establish their own neighbor table. The 

establishment of neighbor table is prerequisite for our helper approach. 

The negotiation between peers and their neighbors is presented in Figure 8. We define a 

neighbor finding signal. In that signal, we set within how many hop count the peer can be 

called neighbor and the signal is sent by broadcast method. The signal should be drop when it 

travels farther than neighbor distance. When peers receive a neighbor finding signal, they 

should reply an ack signal to original sender. 
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Figure 8: Negotiation between peers and neighbors 

If a peer receives an ack signal from other peer, it means it find a neighbor. The peer 

should do the reaction presented in Table 1. If the neighbor table is not full, it just adds the 

sender of the ack signal into the table. If the neighbor table is full, when the sender is closer to 

it, it just adds it into table and removes the neighbor that is farthest to it. After repeatedly 

receive the ack signals and do the reaction described above, peer will obtain a neighbor table 

with closest neighbors inside. Be notice that the neighbor table should resize if there is no any 

available neighbor when peers need neighbor in Trickle. 

 
Table 1: Reaction after receiving a neighbor ack message 

4.1.2 Source of Service 

Source peer is the tree roots of the service. It splits streaming data into IDA stripes and 

sends stripes to its children of each tree. But which peer is the source peer? Is the streaming 

data owner should be the source peer of the service? It is possible, but not necessary. There 

are two possible cases. 

Source peer is the data owner When the data owner is a peer with sufficient upstream 

bandwidth and processing capability, such as multimedia service provider, it could be the 

source peer of the service. 

Source peer is not the data owner When the data owner is an individual user, it 
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probably only can unicast the data to one child. All it can do is to send the streaming data to a 

proxy server (we call source proxy) with capability of being source peer and the IDA is done 

by source proxy. It is presented in Figure 9. The source proxy can be the e-home server. Users 

send data from their mobile devices to their e-home server and then the server multicasts data 

to numerous peers. Or the source proxy can be provided by ISP with commercial cost. There 

still has a lot of possibility about the source proxy. It can solve the issue that data owner is not 

powerful. 

 
Figure 9: An illustration that source peer is a source proxy 

4.1.3 IDA Configuration 

4.1.3.1 (n, o, m) IDA 

After deciding which peer is the source peer, source peer must decide the parameters of 

IDA. In the previous chapter, we mention we will combine multiple stripes and IDA. 

However, we don’t adopt (n, m) IDA but (n, o, m) IDA. All we want to do is to decrease 

bandwidth consumption from the overhead of IDA. 

First, n means in the ALM service, there will be n different trees. The message generated 

from source peer will be divided into n different stripes and each stripe will be transmitted in 

different tree. Second, m means every peer that join the service must receive at least m stripes 

of a message to restore to the original message. Third, o means that when every subscriber 

wants to join the ALM service, they should join o trees initially, . We have to 

explain about the range of o, . The IDA operation is decided when the ALM service 

starting, so n and m can’t be changed. Hence, there will be totally n trees, so o must less or 

equal n. And o must bigger than m is because we don’t want when any peer leave the service 

will cause any other peers that is still in the service can not receive m stripes of the message. 

n o m≥ >

n o m≥ >
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Due to we restrict every peer can be interior node in only one tree, so the lower bound of o is 

m+1. And if we want to decrease the consumption of the bandwidth, we must set o closer to m. 

Because , it still can provide a little fault tolerance in normal situation. o m>

4.1.3.2 Apply to Streaming Data 

Now, the source peer can apply IDA to streaming data when subscribers join the service. 

The (n, o, m) parameters will influence on two things: the size overhead and the fault 

tolerance of the service. If the size of unit message needs to be encoded by IDA is B and we 

apply (n, o, m) IDA to it, the size of one stripe will be B/m and the total size of stripes is 

. Each subscriber need receive o stripes with size /n B m× /o B m×  in the beginning. The 

ratio of lost stripes subscribers can tolerate is between ( ) /o m o−  to . ( ) /n m n−

4.1.3.3 Discussion 

The reason we add the parameter o is because when a message is processed by IDA, the 

size of the message will be (n/m) times bigger. If every subscriber joins n trees in the 

beginning, it will consume too much downstream bandwidth of itself. ((n-m)/m of data is 

redundant.) In other words, it will consume too much upstream bandwidth of other peers. In 

order to prevent it happens, we must make every peer to receive redundant stripes as less as 

possible. 

First, we must consider why peers need to receive redundant stripes. The peer receive 

more than m stripes of a message is because we promise when some stripes delay or lost, they 

still can restore to the original message without any delay (there are the upper bound of 

tolerance). Therefore, we need to receive more stripes (join more trees) of one message only 

when some stripes’ transmission process occur problems. But we still need to receive a little 

part of redundant stripes (o-m stripes) in normal situation. Otherwise, we will lose one or 

more message when we are doing remedial action. Oppositely, if the transmission process of 

stripes has no problem, we should receive stripes as less as possible (join less trees) to prevent 

the consumption of bandwidth. Hence, after the peer joins o trees in the beginning, every peer 
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should adjust the number of trees they join dynamically. The method about how to decide the 

adjustment will be described in later section. 

 

4.2 Behavior of Peers 

First, we describe the architecture of peer behaviors. And then we describe the detail of 

each behavior. The order of behaviors is organized along peer life cycle. 

4.2.1 Architecture of Peer Behavior 

The architecture of behaviors for peers that will be subscribers or helpers is presented in 

Figure 10. Arrow symbols mean the direction of data flow or control signals. It shows the 

interaction of each function and the detail of important behaviors will be described in 

following sections. 

 
Figure 10: Architecture of peer behavior 

4.2.2 Join 

4.2.2.1 Randomly Join o Trees 

When the peer decides to join an ALM service, it will know the n, o, and m parameters of 

the service. Hence, the peer knows it must join o trees of the service initially. In Trickle, the 
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method that peers decide they should join which trees is random selection by themselves. The 

reason is the same as randomly select a tree to be interior node. We don’t want to add a load 

balance manager or request any peer, such as source peer, to be responsible for it. 

Management of network load will increase the load of peer and also waste bandwidth. 

Let us consider the tradeoff of load balance. First, it will make every peer fairly 

consumes upstream bandwidth. It is not an advantage for our hypothesis. For our helper 

approach, because the lack of upstream bandwidth, if some peers don’t spend all their 

upstream bandwidth in the service, they will possibly spend remained upstream bandwidth in 

other services. Therefore, there is no benefit in this point. Second, load balance will lead the 

peers distributed averagely. In other words, the height of each tree in the service will be 

average. It is really an advantage because the end to end delay of all peers will be average. 

However, in Trickle, we have done several steps to reach similar effect. One, we make every 

peer join o trees. In worst case that all subscribers join the same o trees, the load is still 

averagely distributed into o trees. Two, because of IDA, peers can ignore some worse stripes 

with high end to end delay in certain trees. Three, the trees and the number of trees each peer 

joins will change to have better performance. It will be mentioned in following section. Of 

course, load balance is the best choice, but by these three steps, the end to end delay of the 

peers will be lease and more average. Furthermore, we don’t need to waste bandwidth to 

maintain load balance. Therefore, we decide that every peer randomly chooses o trees to join. 

And then they randomly choose one of o trees to be interior node. 

4.2.2.2 Choose Parents 

After each peer chooses which o trees they want to join, they must decide which peer 

should be their parent in each tree. The selection method of parent is based on tree building 

algorithm. Our purpose is to devise an approach that is able to suit any tree building algorithm 

for performance improvement. So any kind of tree building method, like distributed hash 

tables (DHT) [14], [16] or hierarchical clustering [4], [5], will be fine. The method only needs 
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to build one tree and other tree can also be built by the same method. Therefore, each new 

peer will find o parents in different o trees through tree building algorithm. 

No matter what tree building algorithm the ALM system choose, we have to add two 

restrictions for the algorithm. The first restriction is it can’t choose peer that plays the role of 

leaf node to be any peer’s parent. The second restriction is every peer should have an upper 

bound of supporting children base on their upstream bandwidth for performance 

consideration. 

4.2.2.3 Cases of Join Accept 

There are two cases when peers receive a join request. The first case is presented in 

Figure 11. If the peer plays the role of interior node in the tree and still has quota to accept 

new child, then it accept the request and put the id of request sender into its children table. 

 

Figure 11: Negotiation between child and parent 

The second case is presented in Figure 12. If the peer that receives a join request already 

reaches its upper bound of child number, it will request a helper for help. And it also needs to 

transfer one of its children to be the helper’s child. The detail of using helper is already 

described in previous chapter. Sometimes, request helper’s help will fail when helper receives 

the request and it already reaches its upper bound of child number or it already joins other tree. 

Figure 13 presents the failure of requesting helper. 
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Figure 12: Negotiation between child, parent, and helper 

 
Figure 13: Negotiation after the failure of requesting helper 

We combine the two cases into one flowchart and it is presented in Figure 14. And the 

detail reaction when parent receive the join request from a peer is presented in Table 2. 

 
Figure 14: Flowchart of subscriber join 
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Table 2: Reaction after receiving join request 

4.2.3 Receive and Retransmit 

For source peer, transmission process is simple. Its responsibility is to generate n stripes 

using IDA from original data and transmit each different stripe to its corresponding children 

set in different trees. It is presented in Figure 15. And for peers that are leaf nodes in the tree, 

all they have to do is wait and receive stripes transmitted from parents. But for other peers 

that are interior nodes in the tree, there are two different ways to do the retransmission. 

 
Figure 15: An illustration of stripe transmission for source peer 

4.2.3.1 General Retransmission 

When the peers play the role of interior node in the tree, they have responsibility to 

retransmit the corresponding stripe to their children. For example, if the peer is interior node 

in tree k, it must transmit stripe k of the message to its children in tree k. In general case of 

retransmission, when peers receive a stripe from parent in the tree that they serve as interior 

node, they just retransmit the stripe to their children. It is presented in Figure 16. So they have 
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done their responsibility. This is the basic concept of any ALM mechanism. 

 

Figure 16: Peers retransmission 

4.2.3.2 Stripe Regeneration 

Because we use multiple stripes and IDA approaches, peers can regenerate any stripe 

they need to retransmit (even if they never receive it) and transmit to their child. The 

algorithm of stripe regeneration is presented in Table 3. When the peer already receives m 

stripes of the message from other trees but not including the stripe it need to retransmit, it can 

use these m stripes and matrix A of IDA to restore them to the original message. And then 

base on the original message and matrix A, it can generate any one of n stripes it needs. 

 
Table 3: Reaction after receiving one stripe 

For example, in Figure 17, peer A join 5 trees to receive stripe S1, S2, S3, S4, S5 from 

different transmission paths and the IDA parameter m is 4. Peer A serve as interior node in 

tree 3. Therefore, peer A need to transmit S3 to its children. When A only receive S1, S2, S4, 

and S5 but S3, it still can generate S3 from other stripes and transmit S3 to its children. 

 
Figure 17: An example of stripe regeneration 
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Stripe regeneration has several advantages. First, if the stripe needed to retransmit is late 

or lost, parent still can generate it and transmit to its children. Therefore, parent will prevent 

the increase of children’s end to end delay or prevent they can’t receive the stripe. Second, 

when the peer want to change parent (because transmission path broken or performance 

consideration) in the tree that it serves as interior node, it still can serve its children during 

changing parent. It also prevents when a peer leave, all its descendants need to find a new 

parent to repair the transmission path. Only the children of leaving peer need to do the 

remedial action. 

4.2.4 Adjust Number of Joining Trees 

We have mentioned before that sometimes peers must decrease the number of joining 

trees (it means peers decrease the number of receiving stripes) to reduce the consumption of 

bandwidth. And sometimes peers must increase the number of joining trees when 

transmission quality is not stable to prevent end to end delay rising or even message loss. 

Therefore, we take the dynamic adjustment method to change the number of joining trees to 

adapt to various situations. 

4.2.4.1 Foundation 

We must define the rules about when peers need adjustment and how to adjust. Every 

peer will check every period of time that the success number of message restoration (as long 

as receive any m stripes of one message, it means a success) in the interval and the interval is 

predefined by the ALM system. And then we set the upper bound and the lower bound of 

success number. When the success number of restoring message is not between upper bound 

and lower bound, the peer will adjust the number of joining trees. Every adjustment will 

increase or decrease only one tree because transmission issues might be impermanent. We can 

not predict the transmission issues will continue or not, so we adjust the number of joining 

trees gradually. 

Besides, the decision of upper bound and lower bound of success number will influence 
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on the message lost rate we can accept. If we don’t want any message loss, we should set the 

upper bound and lower bound higher. It means peers will join trees easier and leave trees 

harder. 

4.2.4.2 Increase and Decrease 

Increase When success number is lower than lower bound, the peer will randomly (we 

will explain about “random” later) join one more tree. If in next check, the situation is still the 

same, then the peer will join one more tree until the situation is better or the number of 

joining trees reaches the upper bound n. 

Decrease When success number is equal or higher that upper bound, the peer will leave 

one tree that behaves worst. If in next check, the situation is still the same then the peer will 

leave one more tree until the situation is worse or the number of joining trees reaches the 

lower bound o. The tree that behaves worst means in the interval the peer received stripes that 

transmitted in the tree is fewest. 

Figure 18 present the increase and decrease number of joining trees. We can know the quality 

of receiving streaming data of each peer by observing their number of joining trees. If the 

peer’s number of joining trees keeps in the lower bound, it means the peer can receive the 

streaming data smoothly. On the contrary, if the peer’s number of joining trees keeps in the 

upper bound, it means the peer receive the streaming data intermittently. 

 
Figure 18: Flowchart for adjusting the number of joining tree 

Base on the adjustment method we describe above, every peer will gradually join or 

leave trees and the trees every peer join will change slowly. Finally, the trees of peer joining 
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will be stable. It means that every peer will join the suitable trees. The suitable trees mean that 

in the positions of the peer in these trees will receive the stripes with close end to end delay 

and the delay will be lower than before adjustment. As long as the end to end delay of each 

stripe for a message is close, the peer can restore the original message from the buffer that 

stores the stripes. Otherwise, because of the limitation of buffer size, some stripes that are still 

not restored to message will be discarded. 

4.2.4.3 Priority of Joining Tree Selection 

When peers leave the tree that behaves worst, they will put it in the last choice when 

choosing the tree to join. Therefore, randomly join one tree with low success number is not 

really to randomize the choices every time. Every peer will firstly randomly sort the tree id 

that is not joining and put them into a join queue. Every time peers need to join one more tree, 

they will base on queue and join the first tree in the queue. And the tree they leave will be put 

in the last of the join queue. Therefore, the selection of joining tree has priority. It is presented 

in Figure 19. 

 
Figure 19: An illustration of priority queue for tree id 

4.2.5 Leave 

When some peers leave one tree or even the ALM service, the reaction of their children 

is to repair the transmission paths. And only the children of leaving peers will repair the 

transmission paths because these children can temporarily use the method of stripe 

regeneration to serve their descendants and their descendants won’t detect any wrong. 

The repair method is the same as tree building algorithm that is not included in Trickle. 

If the tree building algorithm includes the path repair mechanism, we adopt the mechanism. 

34 



Otherwise, we can treat these children peers as new peers and use the tree building algorithm 

to find a new parent. No matter what mechanism we choose, the mechanism will help these 

children peers find new parents. After finding new parents, the step will be the same as tree 

joining step we mention before. Hence, these children peers can repair their transmission 

paths. 

You may be doubt that since the service has n trees, why these children peers choose to 

repair the transmission paths in original tree but not joining other trees. Because these 

children peers might have their descendants, if they join other trees that they still not joining, 

their descendants might be already in the new tree. This method will cause some peers join 

the same tree twice. It doesn’t make sense for a peer to receive the same stripe twice. 

Therefore, we choose the repair action for the children of leaving peers. 
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Chapter 5 
Performance Analysis 
 

5.1 Purpose 

The purpose of the simulation in this chapter is to observe the properties of Trickle. The 

three properties include: 

 Message delay We will measure the delay of each stripe and delay of message 

restoration for each subscriber. It will show the perturbation of message restoration delay. 

Moreover, we will compare with IP multicast to show the difference. 

 Network resource usage We will analysis the bandwidth consumption and the amount 

of links it demands. 

 Successful restoration rate It will show the robust performance with links/nodes failure 

condition. 

 

5.2 System Configuration 

We use two existent tools to do our simulation. First one is Georgia Tech Internetwork 

Topology Models (GT-ITM) [10]. It is a random graph generator. It can be used to generate 

transit-stub style network topology. Second one is a discrete event simulation system called 

OMNeT++ [17]. We use it to simulate the behavior of peers based on the mechanisms we 

proposed in the previous chapter. We use GT-ITM to generate the network topology and 

import it into OMNeT++. In the following content, we describe the configuration of 

simulation system. 

5.2.1 Network Topology 

First, we generate a network that contains 380 routers. There are 4 transit domains and 
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with an average of 5 transit nodes in each transit domain. For each transit node, it is attached 

an average of 3 stub domains. In each stub domain, it contains an average of 6 stub nodes. 

Therefore, there are 20 transit nodes and 360 stub nodes. Second, we randomly attach hosts to 

stub nodes and the total number of host is 1024. The result of network topology is presented 

in Figure 20. In these 1024 hosts, we randomly choose 50 hosts to be the subscribers of the 

ALM service. Because we will simulate a lot of characteristics of network links, it will cost a 

lot of time to run the simulation. For feasibility, we don’t simulate on a large-scale network. 

 
Figure 20: Network topology 

5.2.2 Link and Traffic Condition 

After importing the network topology into the simulator, we still need to set several link 

properties to make the simulation more realistic. They are: 

 Propagation delay Propagation delay = length / (2*105 km/s). We set the propagation 

delay base on the length parameter of links which is generated from GT-ITM. 

 Bit error rate We set the bit error rate to be 10-10. 

 Bandwidth In order to simplify the simulation, we assume there are only two different 

kinds of connectivity between routers and hosts. Because of our hypothesis, we set 60% 
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of links between router and host to be asymmetric connectivity. It means the downstream 

bandwidth and upstream bandwidth of these links are asymmetric. We set the 

downstream bandwidth to be 2 Mbps and the upstream bandwidth to be 512 Kbps. For 

the other links between routers and hosts, we assume they are LAN connectivity. 

Moreover, in order to make the simulation more realistic, there will be other network traffic to 

consume network bandwidth during our simulation process. The simulation of bandwidth 

consumption is called self-similar. We use the existent Fractional Gaussian Noise (FGN) [18] 

implementation to simulate self-similar. The parameters of FGN is H=0.7. The range of 

queuing delay is between 0 to 20 ms. 

5.2.3 Trickle Setup 

Because we lack tree building algorithm in Trickle, we implement our approaches based 

on DHT tree building method of SplitStream. Because of the number of hosts, the parameters 

of routing table are set as b=4 and row number=3. Most steps of tree building are the same as 

SplitStream. The only difference is that when a peer reaches its degree constraint and receives 

a new join request, it will use helper approach instead of SplitStream’s. 

There are several parameters need to be configured. For (n, o, m) parameters, we set 

n=20, o=17, and m=16. Therefore, there will be 20 different trees in the service and each new 

subscriber will randomly join 17 trees. When subscribers receive any 16 stripes of the 

message, they can restore to the original message. By this setting, the size overhead of one 

message subscribers received is between 6.25% and 25%. If most transmission processes of 

stripes are successful, the overhead should be close to lower bound. For the parameters of 

adjusting the number of joining trees, we set the time period be 20 second. It means a 

subscriber will check if it needs to adjust the number of joining tree every 20 second. And 

then we set upper bound of successful rate to be 100% and the lower bound to be 90%. It 

means if the number of messages that subscribers successfully restored are equal or more than 

100% of message number that source peer sends within 20 second, they will leave one tree if 
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needed by the rule described in previous chapter. If the subscribers restore less than 90% of 

messages within 20 second, they will join one more tree. 

5.2.4 Streaming Data Setup 

For the setting of streaming data, we assume the average bit rate of streaming data sent 

from source peer is 300 Kbps and it includes 30 frames per second (the size of streaming data 

packet sent from source peer is variable [23]). For simplicity and without considering video 

codec, each frame will be fragmented by IDA before sending out from source peer. The 

average size of one frame is 10Kb. One frame will be divided into 20 stripes and the size of 

each stripe is (10 Kb/16) = 640 bits. Because the stripe size is too small, we must consider the 

overhead of packet header. We set the size of packet header to be 320 bits. Therefore, the size 

of one stripe will be 960 bits. 

Hence, each interior node of trees should transmit (960 bits*30) = 28.125 Kb per second 

to one child. By the setting of stripe size, we set the maximum number of children one 

subscriber or helper can support is 8. The peers only need to contribute upstream bandwidth at 

most (28.125 Kb*8) = 225 Kb per second. Even a peer with asymmetric connectivity, it only 

needs to contribute less than half of their upstream bandwidth. Moreover, in order to do 

comparison, we also run IP multicast in the same condition described above. We assume the 

average size of one packet in IP multicast is 8 Kbit. 

 

5.3 Experiment 

5.3.1 Metrics 

In the simulation process, we will measure several metrics to stand for our performance. 

The four metrics are restoration delay, relative delay penalty (RDP), link stress, and 

probability of success restoration. RDP and link stress need the statistics of IP multicast. 

Restoration delay It represents the end to end delay from source to subscribers. It is 
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important for real-time streaming service. Delay will influence on the time subscribers need to 

wait to receive the first message of the streaming data and as well as the following messages. 

We define two symbols: T1 means the time source peer send out the first stripe of the message. 

T2 means the time subscriber receives the m-th different stripe of the message. Subscribers 

only need to receive m different stripes to restore to the original message. Hence, the 

definition of restoration delay is T2-T1. It shows that the time of receiving stripes after m-th 

stripe will not influence on the restoration delay. 

Relative delay penalty The definition of RDP is the ratio of delay between Trickle and 

IP multicast. We will show two kinds of RDP. Relative maximum delay (RMD) is the ratio of 

maximum delay between Trickle and IP multicast and relative average delay (RAD) is the 

ratio of average delay between the two approaches. 

Link stress We will count the number of network links used in Trickle and the number 

of links used in IP multicast. And then we calculate the amount of packets going through each 

link. Thus, we can obtain total bandwidth consumption of these two approaches and also the 

ratio of average amount of traffic in one link between Trickle and IP multicast. Therefore, we 

can have a comparison of bandwidth consumption between Trickle and IP multicast. It will 

also show the overhead of using IDA approach. 

Probability of success restoration It is the ratio that during the evaluation period, the 

number of message the subscriber successfully restored divided by the number of message the 

subscriber should restore. The reasons that cause subscribers can’t restore all messages are 

bad stripes and lost stripes. Bad stripes are because of bit error rate of links and lost stripes are 

because of peer failure. It will show how resilience of Trickle. 

5.3.2 Procedure 

We will run the simulation several times with different procedures. The procedures of the 

first round are: 
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1. All subscribers will randomly join the service within 3 minutes (simulation time). The 

helper and multiple stripes approaches are used here. 

2. After first subscriber joining the service, source peer starts to transmit the streaming data. 

IDA and multiple stripes approaches are used here. 

3. Retransmission and adjustment of joining tree are according to the mechanism we 

described in previous chapter. 

4. After 5 minutes, we starts to record the statistics of the simulation. 

The procedures of the second round are: 

1. All subscribers will randomly join the service within 3 minutes (simulation time). 

2. After first subscriber joining the service, source peer starts to transmit the streaming data 

using IP multicast. 

3. After 5 minutes, we starts to record the statistics of the simulation. 

The procedures of the remaining rounds are the same as the procedure 1 to 4 in the first round. 

The difference is peers have failure probability. These rounds are with different peer failure 

probability. The probability of peer failure will influence on probability of success receiving 

one stripe and message restoration. Suppose the probability of peer failure is P and the path 

from source peer to the subscriber in tree k will pass through D peers. Then the subscriber’s 

probability of success receiving stripe k is (1 ) kDP− . 

 

5.4 Results and Analysis 

In this chapter, we will analysis our results in the order of simulation purpose. In 5.4.1, 

we observe the message delay from three different viewpoints. They are delay of stripe and 

message restoration for each subscriber, delay of message restoration for all subscribers, and 
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relative delay penalty which is compared to IP multicast. In 5.4.2, we observe the link stress 

to find out the usage of network resource. In 5.4.3, we observe the probability of success 

restoration to stand for resilience. 

5.4.1 Restoration Delay and Stripe Delay 

5.4.1.1 Delay for Individual Subscriber 

We plot 4 histograms to show the delay of stripes and the delay of message restoration 

for each subscriber. Because the parameter n=20, if we plot all stripe delay, the histogram will 

be confused. Therefore, in the histogram for one subscriber, we only plot 6 curves of stripe 

delay that is closest to the curve of message restoration delay. It is because the curve of 

message restoration delay is only influenced by the curves of stripe delay that is close to it. 
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Figure 21: Histogram of stripe and restoration delay for different subscriber 

The histograms are presented in Figure 21. (a) is the subscriber with the minimum max 

and stddev (standard deviation) of delay. (b) is the subscriber with minimum mean and min of 
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delay. (c) is the subscriber with maximum max and stddev of delay. (d) is the subscriber with 

maximum mean and min of delay. 

Observation 

 In Figure 21(a), it shows that when the curves of stripe delay overlap more intricately, 

the curve of message restoration delay will be much narrower. 

 In Figure 21(b), it shows that stripe#6 almost didn’t influence on the delay of message 

restoration. It is the advantage of receive more than m stripes. 

 In Figure 21(c), the curve of message restoration delay almost overlaps the curve of 

stripe#1. It is because stripe#1 is nearly always the 16th stripe that arrives to the 

subscriber. We can see the overlap of the curve of stripe#1 and other curves is very few. 

Therefore, the delay of message restoration is almost fully influenced by the delay of 

stripe#1. That’s why the subscriber’s variance and stddev of delay is the maximum. 

 We obtain a conclusion that the curve of message restoration is narrower than other 

curves of stripe delay. It is because we use IDA and multiple stripes/trees approaches, the 

delay of message restoration is based on delay of several stripes. Therefore, the delay of 

message restoration will be more stable. 

5.4.1.2 Delay for Trickle 

We have measured the end to end delay of message restoration for each subscriber. We 

use the statistics to calculate the average delay of all subscribers. It is presented in Table 4. 

Max Mean Min Variance Stddev 
314.91 244.90 207.64 123.36 10.81 

Table 4: Average delay, variance, and stddev for all subscribers with Trickle 

There are 5 arguments in the table. Max means during evaluation period, the average of 

maximum delay for all subscribers. Mean means the average of mean delay for all subscribers. 

Min means the average of minimum delay for all subscribers. Variance and standard deviation 

(stddev) mean how spread out the distribution of each message delay is. 

The bar chart histogram of mean delay is presented in Figure 22. And the bar chart 
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histogram for coefficient of variation (standard deviation divided by mean delay) is presented 

in Figure 23. 
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Figure 22: Histogram of mean delay for all subscribers 
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Figure 23: Histogram of the coefficient of variation for all subscribers 

Moreover, we show the relationship between restoration delay and path length from 

source peer to subscribers in Figure 24. Length of each link is generated from GT-ITM. Each 

transmission path from source to subscriber will pass through many links. We sum up the 

length of these links to be path length. We choose the path length that is 16th shortest for each 

subscriber because it will possibly affect restoration delay most. In Figure 24, each straight 

line means the restoration delay of one subscriber. The top of straight line means the max 
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delay, the middle circle of straight line means the mean delay, and the bottom of straight line 

means the min delay for the subscriber. 

Path Length

600 800 1000 1200 1400 1600 1800 2000 2200

R
es

to
ra

tio
n 

D
el

ay
 (m

s)

100

150

200

250

300

350

400

450

500

 
Figure 24: Restoration delay versus path length for each subscriber 

Observation 

 In Table 4, we can observe the difference between max delay, mean delay, and min delay 

is small. It is because we use IDA and multiple stripes approaches. 

 In Figure 22, we can observe most mean delay of subscribers is within 150 to 350 ms. 

The standard deviation for mean delay of each subscriber is only 61 ms. 

 In Figure 23, we can observe that the coefficient of variation for all subscribers is within 

3% to 6%. It means the dispersion of mean delay is less and the delay of message 

restoration is stable. 

 In Figure 24, it shows restoration delay and 16th shortest path length are in direct 

proportion. It also shows mean delay for each subscriber are close to regression line. 

Slope = 0.16, intercept = 57.80, and correlation coefficient = 0.78. 

 We obtain a conclusion that the delay of message restoration for each subscriber is stable. 

And the difference of delay between subscribers is small. 
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5.4.1.3 Relative Delay Penalty (RDP) 

In order to calculate RDP, we must measure the delay of message restoration by using IP 

multicast first. We run IP multicast in the same condition as Trickle. The result of IP multicast 

delay is presented in Table 5. The table also contains the same arguments as Table 4 for 

Trickle. Now, we can calculate RDP with these statistics. 

Max Mean Min Variance Stddev 
96.31 70.79 45.82 42.69 6.46 

Table 5: Average delay, variance, and stddev for all subscribers with IP multicast 

We calculate RMD, RAD, and also the relative minimum delay (RMND) of each 

subscriber. The statistics of RDP for each subscriber is attached in appendix. The average is 

presented in Table 6. And the histogram of subscriber’s RDP is presented in Figure 25. 

RMD RAD RMND 
3.537 3.831 5.191 

Table 6: Average relative delay penalty for all subscribers 
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Figure 25: Histogram of relative delay penalty 

Observation 

 It shows that most RDP of subscribers is within 3 to 5. It is good that every subscriber 

has approximately the same delay penalty relative to IP multicast. (By using IP multicast, 

subscribers will have least delay of message restoration) 

 There is a subscriber that its RDP is much bigger than other subscribers. It is because the 
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distance between the subscriber and source peer is only 2 hops. Hence, the delay of 

message restoration for the subscriber by using IP multicast is very small and the delay 

by using Trickle is similar to other subscribers. It causes the RDP much bigger than other 

subscribers. 

5.4.2 Link Stress 

The network resource usage of Trickle and IP multicast is presented in Table 7. There are 

three different values in the table. First, link count means the number of link being used in the 

approach. Second, bandwidth consumption means the average bandwidth of one link used the 

approach. Third, packet overhead means the ratio of the sum of packet header size and the 

total amount of network traffic. 

 Link Count Bandwidth Consumption (per link) Packet Overhead 

Trickle 1319 175.5 Kbps 33% 

IP Multicast 176 312.5 Kbps 4% 

Table 7: Link stress 

Observation 

 It shows the link count of Trickle is much bigger than the link count of IP multicast. It is 

because we use multiple stripes/trees approach. 

 There are 20 trees (n=20) in Trickle. The average number of links used in each tree is 

about 66 (1319/20). 

 Because we use multiple stripes/trees approach, bandwidth consumption of one link in 

Trickle is smaller than in IP multicast. 

 In Trickle, it only consumes with an average of 175.5 Kbps per link and the maximum 

upstream bandwidth one peer can provide is 225 Kbps. For asymmetric connectivity 

whose upstream bandwidth is 512 Kbps, it only costs 34.2% (175.5/512) of total 

upstream bandwidth. 

 The total bandwidth consumption can be calculated by the link count multiplies by 

bandwidth consumption. Trickle is (1319 x 175.5) / (176 x 312.5) = 4.2 times larger than 
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IP multicast 

 Link stress is the average number of stripes of one frame pass through a link. The link 

stress in Trickle is 8232 / 1319 = 6.2. 

 Trickle has large packet overhead because of our poor IDA utilization. 

5.4.3 Probability of Success Restoration 

We run the simulation several rounds with different peer failure probability to make 

comparison. We got the statistics of the probability of success restoration for each subscriber 

in different cases of peer failure probability and it is attached in appendix. The average value 

is presented in Table 8. For easy observation, we plot the average values by a curve presented 

in Figure 26. 

Peer Failure 
 

1% 2% 3% 4% 5% 6% 7% 

(20, 17, 16) 97.67 95.82 93.28 88.43 81.09 79.95 72.50
(16, 16, 16) 67.76 49.07 35.22 24.16  

Table 8: Average probability of success restoration 
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Figure 26: Probability of success restoration versus different peer failure probability 

We also plot a histogram presented in Figure 27 to show the probability of success 

restoration versus different peer failure probability. 
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Figure 27: Histogram of the probability of success restoration 

Observation 

 In Table 8 and Figure 26, it shows the probability of success restoration is good (the 

average is more than 93%) when the peer failure probability is less or equal 3%. The 

probability of success restoration drops when the peer failure probability is more than 

3%. 

 In Figure 26, the probability of success restoration is much better when it uses IDA. 

 In Figure 27, when the peer failure probability is less or equal 2%, all subscribers’ 

probability of success receives are greater than 80%. 

 In Figure 27, we can observe most subscribers’ probability of success receive is greater 

than 60% even if peer failure probability is 7%. 

 The result can give us a basis of setting the ratio of n and m. If we could predict the peer 

failure probability of the service, we can decide (n, o, m) more suitably to tolerate the 

peer failure and reduce the overhead of IDA. 
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Chapter 6 
Conclusion 
 

6.1 Accomplishment 

There are two issues in ALM we focus on. First issue is peers that form the ALM service 

change dynamically. It means peers may join or leave the service at anytime. It will also cause 

links between peers to change dynamically. Therefore, transmission of streaming data is not 

reliable. The service can not promise all subscribers receive all packets sent from source peer. 

Second issue is narrow upstream bandwidth of peers will be the bottleneck of ALM service. 

When the bit rate of streaming data is higher, for peers with asymmetric connectivity, the 

number of children they can retransmit data to is fewer. It will cause the end to end delay to 

be higher because of larger tree depth and also limit the number of subscribers can subscribe 

the service. 

The accomplishments we have done are: 

 We propose the combination of three approaches to provide a resilient application layer 

multicast mechanism and solve the issue of peers with insufficient upstream bandwidth.  

 Information dispersal algorithm Subscribers can tolerate some packets lose 

without losing data completeness. And also IDA provides partial security protection 

to the streaming data. 

 Multiple stripes/trees With multiple small stripes, each peer can fully utilize their 

upstream bandwidth and also support more children. With multiple trees, when any 

links of one tree broken, subscribers can still receive other stripes in other trees. 

 Helper With helpers contributing their upstream bandwidth, the total amount of 

upstream bandwidth in the service will increase and make the service to accept 
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more subscribers. Furthermore, with the join of helper, subscribers will have more 

choices of tree parent to have lower end to end delay. 

 We have implement Trickle mechanism with SplitStream tree building algorithm on the 

discrete event simulator by C++. Parts of implementation code are attached in appendix. 

 We have run the simulation several rounds for three purposes. And we have three 

conclusions described below. 

 Message delay We obtain a conclusion that the delay of message restoration for 

each subscriber is stable (coefficient of variation is within 3% to 6%). And the 

difference of delay between subscribers is small (standard deviation is 61 ms). 

 Network resource usage The average bandwidth consumption of one link in 

Trickle is low. The average bandwidth consumption per link is less than half of 

upstream bandwidth for asymmetric connectivity (only cost 34.2% of total upstream 

bandwidth). 

 Successful restoration rate We have good tolerance for packet loss. From the 

experiment round with peer failure probability, it shows subscribers still have good 

successful probability of message restoration (the average is more than 93%) when 

peer failure probability is less or equal 3%. 

 

6.2 Future Work 

There are several works will be done or need to be resolved. 

 Devise a tree building algorithm. Although SplitStream is a decentralized tree building 

method, it doesn’t provide tree adaptive method to locally change links between peers 

based on some criteria after forming a tree. We want to provide an ALM tree building 

algorithm that can build tree by decentralized method and optimize tree structure by local 

information after tree built. 
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 Combine IDA with existent video coding technology. From the assumption of our 

simulation, it shows that after one frame divided into stripes, the overhead of packet 

header is very large. We need to solve it by developing a better fragmentation principle 

based on the combination of IDA and the video codec. It will help to save more network 

bandwidth. 

 Usage of source proxy. There are still a lot of issues of using source proxy. Who is the 

source proxy, how to find a source proxy, and how many source proxies should one 

streaming data service use are all still need to be investigated. 

 Simulation on real network. After we have done the works described before, they will be 

combined with Trickle. We will implement it and run the simulation on real network to 

measure its performance. 
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Appendix 
 

A. Code of Implementation 

We show some codes of functions used in the simulation. All these codes have be 

modified and simplified for easy understanding. 

A.1 Join and Accept 
void Host::send_join_req(int treenum) { 
 do_parent_find(treenum); 
  
 packetp=do_packet_create(index(),dest,NET_JOIN_REQ); 
 send(packetp,"out"); 
} 
 
void Host::receive_join_req(Net_packet *packetp) { 
 treenum=packetp->getIntpar(0); 
 
 if(inService==false) { 
  send_join_accept(packetp); 
  send_join_req(treenum); 
 } 
 else { 
  if(isSource==true) { 
   if(c_child_num<max_child_num) { 
    if(hasChildInTree[treenum]==0) 
     send_join_accept(packetp); 
    else if((n_IDA-hasChildInTreeNum) < (max_child_num-child_num)) 
     send_join_accept(packetp); 
    else 
     send_join_help(packetp); 
   } 
   else 
    send_join_help(packetp); 
  } 
  else if(interiorNum==treenum) { 
   if(child_num<max_child_num) 
    send_join_accept(packetp); 
   else 
    send_join_help(packetp); 
  } 
  else 
   do_join_req_forword(packetp); 
 } 
} 
 
void Host::send_join_accept(Net_packet *packetp) { 
 do_child_add(childid,treenum); 
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 newpacketp=do_packet_create(index(),childid,NET_JOIN_ACCEPT); 
 send(newpacketp,"out"); 
} 
 
void Host::receive_join_accept(Net_packet *packetp) { 
 tree_num=packetp->getIntpar(0); 
 
 parent[tree_num]=packetp->getSrc(); 
  
 if(tree_num==default_interiorNum && c_child_num==0) 
  interiorNum=tree_num; 
 else if(interiorNum==-1) 
  interiorNum=tree_num; 
} 

A.2 Helper Approach 
void Host::send_join_help(Net_packet *packetp) { 
 helper=do_helper_find(childid,treenum); 
  
 newpacketp=do_packet_create(index(),helper,NET_JOIN_HELP); 
 send(newpacketp,"out"); 
} 
 
void Host::receive_join_help(Net_packet *packetp) { 
 treenum=packetp->getIntpar(0); 
 
 if(child_num>=max_child_num) 
  send_join_help_fail(packetp); 
 else 
 { 
  if(inService==false) 
   send_join_help_accept(packetp); 
  else {  
   if(close_to_new_parent()==true) { 
    send_leave_notify(parent[treenum],treenum); 
    change_parent(packetp); 
   } 
   send_join_help_accept(packetp); 
  } 
   
  packetp->setSrc(childid); 
  send_join_accept(packetp); 
 } 
} 
 
void Host::send_join_help_accept(Net_packet *packetp) { 
 dest=packetp->getSrc(); 
  
 if(isChangeParent==true) { 
  interiorNum=treenum; 
  parent[treenum]=dest; 
 } 
 
 newpacketp=do_packet_create(index(),dest,NET_JOIN_HELP_ACCEPT); 
 send(newpacketp,"out"); 
} 
 
void Host::receive_join_help_accept(Net_packet *packetp) { 
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 if(isChangeParent==true) { 
  do_child_add(childid,treenum); 
  send_child_transfer(packetp); 
 } 
} 
 
void Host::receive_join_help_fail(Net_packet *packetp) { 
 send_join_help(packetp); 
} 
 
void Host::send_child_transfer(Net_packet *packetp) { 
 childid=do_transfer_child_find(treenum,helper); 
 do_child_remove(childid,treenum); 
  
 newpacketp=do_packet_create(index(),helper,NET_CHILD_TRANSFER); 
 send((cMessage *)newpacketp->dup(),"out"); 
 newpacketp->setDest(childid); 
 send(newpacketp,"out"); 
} 
 
void Host::receive_child_transfer(Net_packet *packetp) { 
 if(isHelper==true) 
  do_child_add(childid,treenum); 
 else { 
  if(inService==false || inTree[treenum]==false) 
   send_leave_notify_p(parent[treenum],treenum); 
  else 
   parent[treenum]=helper; 
 } 
} 

A.3 Receive and Retransmit 
void Host::receive_stripe_trans(Net_packet *packetp) { 
 if(isSubscriber==false || (packetp=do_stripe_insert(packetp))!=NULL)  { 
  if(bit_error()==false && peer_failure()==false) 
   send_stripe_forward(packetp); 
 } 
} 
 
void Host::send_stripe_forward(Net_packet *packetp) { 
 childp=child_table.begin(); 
 for(i=0;i<child_table.size();i++) { 
  packetp->setDest(childp->id); 
  send((cMessage *)packetp->dup(),"out"); 
  childp++; 
 } 
} 
 
Net_packet *Host::do_stripe_insert(Net_packet *packetp) { 
 seq_diff=stripe_seq-current_seq; 
 if(seq_diff<0) //the stripe is out of date 
  return NULL; 
 
 newptr=(stripeptr+seq_diff)%stripe_buffer_size; 
 if(seq_diff<stripe_buffer_size) { 
  if(stripe_table[newptr][stripenum]==true) //already have the stripe 
   return NULL; 
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  do_stripe_buffer_insert(newptr,stripenum,stripe); 
   
  //stripe regeneration 
  if(stripe_sum[newptr]>=m_IDA && stripe_table[newptr][interiorNum]==false) { 
   do_ida_regen(newptr,interiorNum); 
   packetp->setStrpar(stripe_buffer[newptr][interiorNum]); 
   packetp->setIntpar(0,interiorNum); 
  } 
   
  while(stripe_sum[stripeptr]>=m_IDA) 
            do_stripe_pop(stripeptr++); 
 } 
 else { //some stripes in buffer is out of date 
  pop_num=min(seq_diff-stripe_buffer_size+1,stripe_buffer_size); 
  for(i=0;i<pop_num;i++) 
   do_stripe_pop(stripeptr++); 
 
  do_stripe_buffer_insert(newptr,stripenum,stripe); 
 } 
 if(packetp->getIntpar(0)==interiorNum) 
  return packetp; 
 else 
  return NULL; 
} 
 
void Host::do_stripe_pop(int p) { 
 if(stripe_sum[p]>=m_IDA) 
  do_ida_restore(); 
 do_stripe_table_column_clean(p); 
} 

 

B. Statistics of Simulation 

B.1 Statistics for Relative Delay Penalty 
No. ID RMD RAD RMND 

1 28 2.807 2.975 3.640 

2 52 1.961 2.176 2.787 

3 78 3.979 4.557 5.941 

4 102 2.236 2.517 3.157 

5 120 4.983 6.067 9.053 

6 125 3.130 3.953 5.902 

7 131 2.822 3.137 4.292 

8 161 2.168 2.549 3.479 

9 164 5.631 3.741 5.266 

10 193 3.224 2.388 2.972 

11 194 4.063 3.839 5.166 

12 213 2.544 2.988 4.346 

13 217 2.650 3.378 4.875 

14 224 2.162 2.561 3.288 

15 287 2.999 2.852 3.463 

16 294 5.457 5.916 8.042 
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17 308 3.167 3.367 4.273 

18 311 4.031 4.949 6.920 

19 369 2.164 2.367 2.902 

20 376 4.588 3.562 4.694 

21 413 1.958 2.280 3.400 

22 432 4.101 4.644 5.794 

23 460 2.426 2.771 3.738 

24 469 4.584 5.395 7.613 

25 487 3.281 3.275 4.063 

26 491 4.464 4.920 6.125 

27 519 3.360 4.201 5.920 

28 535 4.427 3.185 4.134 

29 551 2.738 3.268 4.321 

30 578 1.856 2.023 2.480 

31 631 2.183 2.602 3.315 

32 652 2.704 3.067 3.987 

33 659 2.089 2.380 2.861 

34 671 2.743 3.482 4.843 

35 707 2.633 2.926 4.131 

36 722 1.835 2.059 2.471 

37 743 4.076 4.947 6.766 

38 748 1.866 2.094 2.539 

39 794 3.761 4.332 5.427 

40 807 3.984 4.670 6.202 

41 809 4.061 3.152 4.012 

42 810 4.147 4.946 7.602 

43 828 4.882 3.327 4.491 

44 852 15.039 19.389 28.714 

45 871 3.771 3.875 5.179 

46 874 3.770 3.624 5.477 

47 916 3.841 3.828 4.921 

48 944 2.686 3.110 4.089 

49 1001 4.576 5.418 7.393 

50 1008 2.237 2.545 3.082 

B.2 Statistics for Probability of Success Restoration 
Peer Failure Probability 

No. ID 
1% 2% 3% 4% 5% 6% 7%

1 28 96.618 92.887 94.943 83.861 60.356 55.619 69.265 

2 52 95.465 97.447 94.406 94.358 94.500 91.776 88.229 

3 78 94.988 94.971 98.642 96.575 75.763 81.348 78.740 

4 102 98.368 90.115 93.970 84.519 88.905 79.568 45.256 

5 120 95.213 96.440 78.882 76.446 70.933 70.663 84.220 

6 125 98.147 95.099 97.907 74.155 87.071 83.444 78.751 

7 131 98.442 98.660 98.758 95.734 86.071 74.750 70.247 

8 161 98.943 84.558 96.687 80.945 92.790 86.258 58.265 

9 164 99.717 97.090 95.689 78.072 92.729 72.577 62.053 

10 193 97.993 99.257 99.032 93.190 63.414 73.008 58.105 

11 194 97.637 98.083 89.556 92.892 48.174 76.773 72.989 
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12 213 97.994 97.296 96.300 90.709 85.964 75.734 49.638 

13 217 95.495 96.289 93.805 70.813 89.140 77.693 58.503 

14 224 95.443 95.908 94.437 93.136 91.046 82.809 78.475 

15 287 98.767 94.578 93.813 96.068 74.648 82.694 73.038 

16 294 96.368 98.341 91.868 90.906 73.399 55.084 37.632 

17 308 99.703 96.704 91.174 61.509 61.604 67.247 56.555 

18 311 99.344 98.521 97.171 83.910 39.922 69.822 72.017 

19 369 94.029 85.424 95.056 94.132 94.838 87.537 83.035 

20 376 98.263 99.157 89.193 94.712 81.806 91.804 62.319 

21 413 99.718 83.089 92.012 89.595 93.535 85.627 71.840 

22 432 94.208 97.885 77.883 86.239 74.907 66.291 78.194 

23 460 99.623 99.073 91.886 94.408 94.441 86.712 78.204 

24 469 96.971 99.478 88.862 90.843 46.445 55.041 60.267 

25 487 99.871 97.328 73.285 86.619 79.918 84.014 78.679 

26 491 99.580 99.169 97.377 85.291 73.798 79.406 62.835 

27 519 99.852 97.660 84.803 87.690 89.998 85.249 90.904 

28 535 93.743 83.210 89.347 79.793 87.104 73.476 50.009 

29 551 97.978 98.546 96.613 96.968 91.512 89.056 77.197 

30 578 94.647 92.262 96.271 95.758 94.459 92.276 86.253 

31 631 99.425 95.506 97.705 92.620 92.964 85.587 77.077 

32 652 95.843 92.876 97.814 94.832 96.060 92.451 87.917 

33 659 97.889 99.275 97.247 95.681 95.633 92.047 89.146 

34 671 98.125 95.865 93.017 90.961 92.406 91.804 84.645 

35 707 98.670 98.428 97.833 92.055 93.249 90.475 82.480 

36 722 93.359 95.381 98.312 94.230 86.111 83.271 77.083 

37 743 97.497 99.268 96.814 97.347 92.433 85.847 77.545 

38 748 96.859 92.598 96.922 96.602 91.874 90.078 86.140 

39 794 95.670 97.522 87.929 85.879 77.146 93.515 84.385 

40 807 99.849 95.886 91.247 96.699 76.055 72.071 73.088 

41 809 98.597 80.544 95.231 67.934 74.148 67.334 71.577 

42 810 99.705 98.729 90.746 82.310 92.045 75.144 65.784 

43 828 98.338 96.281 95.329 78.390 41.714 60.233 54.781 

44 852 99.926 93.130 97.635 94.530 90.390 91.728 97.138 

45 871 99.870 92.817 73.386 93.903 92.261 74.283 77.249 

46 874 100.000 99.832 97.723 96.525 49.556 85.246 62.817 

47 916 99.017 88.531 96.647 81.325 79.926 71.113 57.444 

48 944 97.710 96.550 97.516 88.585 80.426 92.640 85.505 

49 1001 98.846 99.741 99.005 85.207 86.755 77.889 82.694 

50 1008 95.082 94.668 96.181 96.238 94.262 91.562 78.927 

B.3 Distance between Source and Subscribers 
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Distance 13 12 12 15 8 8 10 10 8 15 9 10 9 11 13 8 12 12 13 10 12 11 10 9 14

                           

No. 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Distance 10 8 11 10 15 11 9 13 8 9 15 9 15 12 11 12 7 10 2 14 9 13 8 9 13
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B.4 Distance between Each Subscribers 
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