

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

適用於非對稱網路連線之動態用戶的

彈性應用層多點傳播

Resilient Application Layer Multicast Tailored for

Dynamic Peers with Asymmetric Connectivity

研 究 生：郭宇軒

指導教授：邵家健 副教授

中 華 民 國 九 十 五 年 七 月

適用於非對稱網路連線之動態用戶的彈性應用層多點傳播

Resilient Application Layer Multicast Tailored for
Dynamic Peers with Asymmetric Connectivity

研 究 生：郭宇軒 Student：Yu-Hsuang Guo

指導教授：邵家健 Advisor：John Kar-Kin Zao

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年七月

適用於非對稱網路連線之動態用戶的彈性應用層多點傳播

學生：郭宇軒 指導教授：邵家健

國立交通大學資訊科學與工程研究所 碩士班

摘 要

我們的目的是設計出一個有彈性的應用層多點傳播架構，來提供即時多媒體串流服

務。我們主要是針對應用層多點傳播的兩個問題。第一、組成應用層多點傳播的用戶隨

時都會動態的加入或離開，因此資料傳輸並不可靠。第二、使用非對稱網路連線的用戶，

它們上傳的頻寬遠遠少於下載頻寬，上傳的頻寬不足將會是應用層多點傳播的瓶頸。

我們提出三種方法的結合來產生出一個有彈性的應用層多點傳播機制，並且解決上

傳頻寬不足的問題。這三種方法是：一、information dispersal algorithm，二、multiple

stripes/trees，三、helper。我們增強彈性的方法是藉由保證訂閱戶就算遺失一些封

包仍然可以得到完整資料，以及任一條網路連線中斷將不會有訂閱戶收不到任何封包。

我們解決上傳頻寬不足的方法是充分利用所有用戶的上傳頻寬，以及藉由 helper 的加

入來增加上傳頻寬的總量。

我們從模擬實驗中觀察到幾項結果：一、每個訂閱戶的訊息延遲時間是穩定的，而

且訂閱戶之間的訊息延遲時間差距很少，二、就算對上傳頻寬不足的非對稱網路連線而

言，每條網路連線的平均頻寬消耗是少的，三、結果顯示就算用戶有機率會發生錯誤時，

訂閱戶仍然有良好的訊息成功還原率。

i

Resilient Application Layer Multicast Tailored for
Dynamic Peers with Asymmetric Connectivity

Student: Yu-Hsuang Guo Advisor: John Kar-kin Zao

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

Our purpose is to devise a new application layer multicast scheme to provide real time
multimedia streaming service. There are two challenges for application layer multicast that we
focus on. First challenge is peers that form the application layer multicast service may
dynamically join or leave at any time. Data transmission is not reliable. Second one is peers
with asymmetric connectivity that upstream bandwidth is much less than downstream
bandwidth. Insufficient upstream bandwidth will be the bottleneck of application layer
multicast.

We propose the combination of three approaches to provide a resilient application layer
multicast mechanism and solve the issue of peers with insufficient upstream bandwidth. The
three approaches are: (1) information dispersal algorithm, (2) multiple stripes/trees, (3) helper.
We improve resilience by promising subscribers can tolerate some packets loss without losing
data completeness and when any link break, none of subscribers can’t receive any packets. We
solve the insufficient upstream bandwidth issue by fully utilizing the upstream bandwidth of
all peers and increasing the total amount of upstream bandwidth by the participation of
helpers.

We observe several results from the simulation: (1) the delay of message restoration for
each subscriber is stable and the difference of delay between subscribers is small, (2) the
average bandwidth consumption of one link is low, even for insufficient upstream bandwidth
links, (3) it shows subscribers have good successful probability of message restoration even if
peers have failure probability.

ii

誌 謝

首先我要感謝邵家健老師，整個論文題目、方向、作法都是經由不斷和老師討論，

以及老師給予許多建議與指引才有辦法產生，如果沒有老師的協助，我將無法獨力完

成；再感謝老師在這兩年的教導，無論是研究方法或是待人處事，真的令我獲益良多。

另外感謝林哲民學弟協助撰寫工具程式，令 GT-ITM 產生的網路拓樸可以匯入到

OMNeT++；感謝黃淩軒學弟幫忙分析實驗數據來畫出其中一張數據圖；感謝尤清華協助

畫出兩張口試投影片所使用的樹狀結構圖；感謝張哲維學長與我討論技術問題並且提供

寶貴建議；最後感謝其它 620 實驗室的成員，包含龔哲正、吳事修、陳奕興、黃為霖、

朱書玄、黃國晉、李明龍、劉育志，你們是我最好的伙伴。

iii

Contents

摘 要 ..I

ABSTRACT .. II

誌 謝 .. III

CONTENTS...IV

LIST OF FIGURES... VII

LIST OF TABLES ..VIII

CHAPTER 1 RESEARCH OVERVIEW.. 1

1.1 PROBLEM STATEMENT ... 1
1.1.1 Dynamic Peers .. 1
1.1.2 Asymmetric Connectivity... 1

1.2 RESEARCH APPROACH ... 2
1.2.1 Definition of Resilience... 3
1.2.2 Three Approaches.. 3

1.3 OUTLINE OF THESIS ... 4

CHAPTER 2 BACKGROUND .. 5

2.1 ARCHITECTURE OF MULTICAST .. 5
2.2 RELATED WORK... 6

2.2.1 Multiple Description Coding (MDC) .. 6
2.2.2 Multiple Stripes ... 6
2.2.3 Waypoint.. 7
2.2.4 Tree Building Algorithm.. 7
2.2.5 Enhancement of Resilience ... 8

CHAPTER 3 PRINCIPLE.. 9

3.1 OVERALL SYSTEM.. 9
3.2 INFORMATION DISPERSAL ALGORITHM (IDA) ... 10

3.2.1 Split ... 10
3.2.2 Restoration.. 12
3.2.3 Efficiency... 12
3.2.4 Advantage ... 13
3.2.5 Influence of n and m.. 13

iv

3.3 MULTIPLE STRIPES/TREES .. 14
3.3.1 Combine with IDA... 14
3.3.2 Building Disjoint Paths... 15
3.3.3 Become Interior Node ... 16

3.4 HELPER... 17
3.4.1 Demand of Helper... 17
3.4.2 Find Helper... 17
3.4.3 Restriction of Helper... 18
3.4.4 Helper Join ... 19
3.4.5 Enhancement... 20
3.4.6 Difference between Helper and Waypoint ... 21

CHAPTER 4 MECHANISM.. 22

4.1 SERVICE STARTUP .. 22
4.1.1 Establish Neighbor Table .. 22
4.1.2 Source of Service... 23
4.1.3 IDA Configuration .. 24

4.1.3.1 (n, o, m) IDA...24
4.1.3.2 Apply to Streaming Data ...25
4.1.3.3 Discussion...25

4.2 BEHAVIOR OF PEERS .. 26
4.2.1 Architecture of Peer Behavior... 26
4.2.2 Join ... 26

4.2.2.1 Randomly Join o Trees ..26
4.2.2.2 Choose Parents ..27
4.2.2.3 Cases of Join Accept ..28

4.2.3 Receive and Retransmit... 30
4.2.3.1 General Retransmission ..30
4.2.3.2 Stripe Regeneration ...31

4.2.4 Adjust Number of Joining Trees .. 32
4.2.4.1 Foundation ...32
4.2.4.2 Increase and Decrease ...33
4.2.4.3 Priority of Joining Tree Selection ...34

4.2.5 Leave... 34

CHAPTER 5 PERFORMANCE ANALYSIS.. 36

5.1 PURPOSE ... 36
5.2 SYSTEM CONFIGURATION .. 36

5.2.1 Network Topology ... 36

v

5.2.2 Link and Traffic Condition .. 37
5.2.3 Trickle Setup.. 38
5.2.4 Streaming Data Setup.. 39

5.3 EXPERIMENT .. 39
5.3.1 Metrics .. 39
5.3.2 Procedure.. 40

5.4 RESULTS AND ANALYSIS ... 41
5.4.1 Restoration Delay and Stripe Delay.. 42

5.4.1.1 Delay for Individual Subscriber ...42
5.4.1.2 Delay for Trickle ..43
5.4.1.3 Relative Delay Penalty (RDP)...46

5.4.2 Link Stress ... 47
5.4.3 Probability of Success Restoration ... 48

CHAPTER 6 CONCLUSION... 50

6.1 ACCOMPLISHMENT .. 50
6.2 FUTURE WORK... 51

REFERENCE .. 53

APPENDIX .. 55

A. CODE OF IMPLEMENTATION.. 55
A.1 Join and Accept ... 55
A.2 Helper Approach ... 56
A.3 Receive and Retransmit ... 57

B. STATISTICS OF SIMULATION .. 58
B.1 Statistics for Relative Delay Penalty ... 58
B.2 Statistics for Probability of Success Restoration ... 58
B.3 Distance between Source and Subscribers .. 60
B.4 Distance between Each Subscribers.. 61

vi

List of Figures

FIGURE 1: LARGE END TO END DELAY WHEN NODE DEGREE IS FEW .. 2
FIGURE 2: THREE DIFFERENT ARCHITECTURE OF MULTICAST.. 5
FIGURE 3: APPLICATION LAYER MULTICAST SYSTEM... 9
FIGURE 4: AN EXAMPLE THAT A MESSAGE IS DIVIDED INTO 2 STRIPES .. 14
FIGURE 5: AN ILLUSTRATION OF HELPER SELECTION .. 18
FIGURE 6: AN EXAMPLE OF HELPER JOIN .. 19
FIGURE 7: AN EXAMPLE OF HELPER APPROACH ENHANCEMENT ... 20
FIGURE 8: NEGOTIATION BETWEEN PEERS AND NEIGHBORS.. 23
FIGURE 9: AN ILLUSTRATION THAT SOURCE PEER IS A SOURCE PROXY .. 24
FIGURE 10: ARCHITECTURE OF PEER BEHAVIOR ... 26
FIGURE 11: NEGOTIATION BETWEEN CHILD AND PARENT.. 28
FIGURE 12: NEGOTIATION BETWEEN CHILD, PARENT, AND HELPER ... 29
FIGURE 13: NEGOTIATION AFTER THE FAILURE OF REQUESTING HELPER .. 29
FIGURE 14: FLOWCHART OF SUBSCRIBER JOIN.. 29
FIGURE 15: AN ILLUSTRATION OF STRIPE TRANSMISSION FOR SOURCE PEER... 30
FIGURE 16: PEERS RETRANSMISSION.. 31
FIGURE 17: AN EXAMPLE OF STRIPE REGENERATION .. 31
FIGURE 18: FLOWCHART FOR ADJUSTING THE NUMBER OF JOINING TREE ... 33
FIGURE 19: AN ILLUSTRATION OF PRIORITY QUEUE FOR TREE ID .. 34
FIGURE 20: NETWORK TOPOLOGY .. 37
FIGURE 21: HISTOGRAM OF STRIPE AND RESTORATION DELAY FOR DIFFERENT SUBSCRIBER 42
FIGURE 22: HISTOGRAM OF MEAN DELAY FOR ALL SUBSCRIBERS ... 44
FIGURE 23: HISTOGRAM OF THE COEFFICIENT OF VARIATION FOR ALL SUBSCRIBERS .. 44
FIGURE 24: RESTORATION DELAY VERSUS PATH LENGTH FOR EACH SUBSCRIBER ... 45
FIGURE 25: HISTOGRAM OF RELATIVE DELAY PENALTY.. 46
FIGURE 26: PROBABILITY OF SUCCESS RESTORATION VERSUS DIFFERENT PEER FAILURE PROBABILITY 48
FIGURE 27: HISTOGRAM OF THE PROBABILITY OF SUCCESS RESTORATION.. 49

vii

List of Tables

TABLE 1: REACTION AFTER RECEIVING A NEIGHBOR ACK MESSAGE.. 23
TABLE 2: REACTION AFTER RECEIVING JOIN REQUEST.. 30
TABLE 3: REACTION AFTER RECEIVING ONE STRIPE.. 31
TABLE 4: AVERAGE DELAY, VARIANCE, AND STDDEV FOR ALL SUBSCRIBERS WITH TRICKLE 43
TABLE 5: AVERAGE DELAY, VARIANCE, AND STDDEV FOR ALL SUBSCRIBERS WITH IP MULTICAST........................... 46
TABLE 6: AVERAGE RELATIVE DELAY PENALTY FOR ALL SUBSCRIBERS ... 46
TABLE 7: LINK STRESS.. 47
TABLE 8: AVERAGE PROBABILITY OF SUCCESS RESTORATION ... 48

viii

Chapter 1
Research Overview

1.1 Problem Statement

Our purpose is to devise a new application layer multicast scheme to provide real time

multimedia streaming service. The scheme provides resilience and security of data

transmission. It also removes the bottleneck of data transmission in peer upstream bandwidth.

There are two main challenges we focus on. First challenge is peers that form the

application layer multicast service are dynamic. Second one is peers with asymmetric

connectivity for up and down links, especially with narrow upstream bandwidth. These two

issues only appear in application layer multicast but not in IP multicast.

1.1.1 Dynamic Peers

The concept of application layer multicast is when users’ desktops or mobile devices

(called peer) receive streaming data, they need to replicate data and send to other peers. There

is no steady server and the whole service is formed by peers. Therefore, the operation of

application layer multicast fully depends on peers. But peers may dynamically join or leave

the service at any time. Data transmission is not reliable that service can’t promise users will

receive all the data. If the peers in the application layer multicast are dynamically changed

frequently, the service won’t works without any remedy.

1.1.2 Asymmetric Connectivity

Currently, most users use asymmetric upstream and downstream connectivity, such as

ADSL, VDSL or Cable modem [19], to connect to the Internet. The upstream bandwidth is

much less than downstream bandwidth. In application layer multicast, the capability of peer’s

upstream bandwidth will influence on how many peers it can retransmit data to them. For

1

example, if application layer multicast using tree structure, one peer needs to retransmit the

streaming data to several peers in the same time. But upstream bandwidth might be very less

than downstream bandwidth. The lack of upstream bandwidth will cause the performance of

application layer multicast being poor. Otherwise, the application layer multicast can only

provide low quality data streaming service.

In the present day, the data rate of most data streaming service on the Internet is around

300 to 500 Kbps [24], [25]. If we have no abundant bandwidth and want to provide streaming

data to others, all we can do is use application layer multicast. When some receivers are the

peers with asymmetric connectivity, it will bring an issue that they can only retransmit data to

very few peers. (In Taiwan, the maximum upstream bandwidth of asymmetric connectivity is

1 Mbps and the general is 512 Kbps [20].)

This issue will limit the amount of peers that can join the service or the quality of

streaming data the service can provide will be poor. Furthermore, because the degree of nodes

in the tree is few, the height of the tee will be bigger and the end to end delay from source to

peers will be larger. There is an example in Figure 1. Furthermore, in some special cases, if

the number of users that want to join the service is few, we can’t even build a workable tree

between them because the choice of parent is few.

Figure 1: Large end to end delay when node degree is few

1.2 Research Approach

The name of the scheme we propose is called Trickle. The transmission paths among

peers will be tree structure. In current stage, we don’t focus on how to build a tree among

peers. Our purpose is to improve resilience of existent tree building algorithm by integrated

2

with Trickle. Moreover, Trickle won’t violate decentralized control if the tree building

algorithm is decentralized. Following, we will define the meaning of resilience and then

introduce our three approaches: information dispersal algorithm, multiple stripes, and helper.

1.2.1 Definition of Resilience

We will devise a resilient application layer multicast approach including fault tolerance,

robustness, security, and solving asymmetric connectivity issue. For fault tolerance, peers can

tolerate a small number of packet delay or loss and they still can receive complete message in

time. For robustness, a sudden breakdown of some peers or links won’t disrupt reception of

downstream peers. For security, we provide a partial security protection for streaming data.

1.2.2 Three Approaches

Information dispersal algorithm (IDA) [8] IDA will be used to process the message

generated from source peer and divide the message into several pieces. Peers can restore

message from a part of message pieces. We use IDA for two purposes: (1) peers don’t need to

receive whole pieces of a message and they still can have the complete message. It will

improve the resilience of data transmission, (2) peers can’t know any content of the message

if they don’t have enough pieces. Therefore, if some peers have no authority to read the

message, we only need to make sure not to let them receive too many pieces of the message.

In short, the participation of helper is the main reason we want to enhance security.

Multiple stripes The pieces of messages divided by IDA approach is called stripes. In

tree building step, we not only construct one tree, we construct as many different trees as the

number of stripes that one message is divided into. And each tree transmits different stripe of

the message. This approach will lead to two advantages. First, it can make sure that peers can

receive enough stripes. When one peer leaves or crashed, descendants of the peer will only

lose one stripes and they still can receive other stripes from other trees. Furthermore, when a

link of tree is congested, it only makes one stripe delay. Second, every peer can fully utilize

3

their upstream bandwidth. A stripe is much smaller than a message, so peers with low

upstream bandwidth can also support several children.

Helper Because the lack of upstream bandwidth, it is possible that new peers can not

find a parent in the tree that can provide them smooth streaming data. It is because the peers in

the trees can support no more children or because the peers can support more children is far

from new peers. Therefore, the service will request some peers called helpers that still have

unnecessary bandwidth to join and share their bandwidth to increase the total mount of

upstream bandwidth of the service. By the help of helper, the service can accept more peers

and each peer can receive the streaming data smoothly by having better parent choices.

1.3 Outline of Thesis

In chapter 2, we will briefly introduce three different architecture of multicast and the

related work of application layer multicast. In chapter 3, we will describe the detail of the

three approaches. In chapter 4, we will describe the use of three approaches in the mechanism

of application layer multicast and how it works. In chapter 5, we will show the simulation

results and evaluate our performance. In chapter 6, it is the conclusion and the future work.

4

Chapter 2
Background

2.1 Architecture of Multicast

Since multi-receiver multimedia applications, like video-conferencing, video streaming,

e-learning and online-gaming, are more and more popular on the Internet, multicast is an

important mechanism need to be developed. Multicast is a one-to-many transmission

mechanism and is very efficient to reduce duplicate packets and bandwidth consumption

when it is used for multi-receiver applications.

There are three different architecture of multicast: IP multicast, application layer

multicast (ALM), and overlay multicast [21]. Figure 2 shows the difference between these

three architecture clearly. IP multicast is developed on network layer and use routers as the

relaying nodes. IP multicast is the most directly implementation of multicast and can reduce

most duplicate packets in transmission process. However, because of several issues [1], IP

multicast is not globally deployed yet.

Figure 2: Three different architecture of multicast.

(a) IP multicast, (b) application layer multicast, (c) overlay multicast

5

Overlay multicast is the architecture that constructs a backbone by overlay proxy first.

And then it establishes multicast trees among overlay proxy and end hosts. It has good

performance that is close to IP multicast. However, the main issue is the deployment of

overlay proxy.

Application layer multicast is a hot research topic in recent few years [2~5, 7, 11, 12, 14,

16] and has become an attractive solution of multicast. It is also the easiest one for immediate

deployment among these three architectures. ALM is developed on application layer and

doesn’t need to modify any existent protocol in lower layer. User’s desktops or mobile devices

(called peer) replace the function of routers in IP multicast. Data packets are replicated at

peers and send to other peers in the same application layer multicast service.

2.2 Related Work

We briefly introduce some research about application layer multicast.

2.2.1 Multiple Description Coding (MDC)

The overview of multiple description coding is in [22]. It is a method to encode signal

into multiple separate descriptions (streams) and any subset of descriptions can be restore to

the original signal with different quality. If users receive more description, the distortion will

be less and the quality of restored signal will be higher. One difference between MDC and

IDA is MDC is a source coding method and IDA is a channel coding method.

2.2.2 Multiple Stripes

SplitStream [2] and CoopNet [3] are two mechanisms using multiple stripes. Both of

them get a result that using multiple stripes will increase the robustness, resilience, and load

balance. The detail of multiple stripes will be described in next chapter. There are two main

differences between them. First, CoopNet uses a centralized tree building algorithm while

SplitStream is decentralized because it bases on Scribe. Second, CoopNet does not handle the

6

bandwidth contribution of peers in the trees.

2.2.3 Waypoint

There is new overlay architecture in [9]. Besides normal participants, they employ some

machines call waypoints. In the overlay tree, these two kinds of nodes are interwoven. It is

different to the overlay proxy in overlay multicast. Waypoints are the same as normal

participants and they run the same protocol. Therefore, its behavior is the same as other users,

rather than statically provisioned infrastructure nodes, such as Overcast nodes in [6]. The

purpose of waypoint’s participation is to increase the total amount of resource in the system.

In their experiences, waypoint is needed in some cases and their investigation is still in

progress. Besides, the difference between waypoint and helper will be described in next

chapter.

2.2.4 Tree Building Algorithm

The two main categories of tree building are based on distributed hash table (DHT) and

hierarchical clustering. Scribe [14] and Bayeux [16] are the ALM tree building methods that

base on the Pastry [13] and Tapestry [15] DHT mechanism. In the beginning, the purpose of

DHT is to search and route efficiently (with the bound of hops, usually log(N) hops). Every

peer will be assigned an id that generated by hash mechanism and the routing path will base

on the hash id. And then, the tree building methods that base on DHT build transmission paths

along the routing path by reverse path forwarding (RPF) method. These transmission paths

have same source peer, so these paths will form a tree structure.

NICE [4] and ZIGZAG [5] are the ALM tree building methods that base on hierarchical

clustering. Each peer who wants to join the tree will be put into a cluster base on specified

metrics (such as distance). One or more peers in the cluster will be promoted to a higher level

cluster and their responsibility is to transmit data to all peers in lower level cluster. And then,

there is also a higher level cluster to send data to the high level clusters. Finally, the only one

member in the highest level cluster will be the source peer. These clusters construct a tree

7

structure and a level of clusters represents a level of the tree.

2.2.5 Enhancement of Resilience

Probabilistic Resilient Multicast (PRM) [11] uses a proactive forwarding approach to

increase the data delivery ratio. The method is to use randomized forwarding. Every node

randomly chooses a constant number of other nodes and forwards data to them with low

probability. The randomized forwarding is simultaneous with the usual data forwarding

mechanism. Hence, some nodes may receive the same data. But this approach will make the

nodes can receive the data even when their parents fail. And then, it proposes an extension

called Ephemeral Guaranteed Forwarding (EGF). When some nodes are repairing their

transmission paths (finding new parents), they can request other nodes to temporarily increase

the probability of forwarding data to them. Therefore, they still can receive the data in the

repairing process.

A proactive approach to reconstruct multicast trees is proposed in [12]. When some

interior nodes leave trees or fail, it will minimize the disruption of service for those affected

nodes. The approach is every interior node should compute a parent-to-be for each of its

children. In the computation process, it will consider the degree constraints of each node. And

it also deals with the situation of multiple leaves. After that, if an interior node leaves the tree

or fails, all its children will find their new parent (parent-to-be) immediately. By this approach,

when some edges of the tree broken, every node can find a new parent quickly and also

recover the transmission path.

8

Chapter 3
Principle

3.1 Overall System

The three approaches we use are information dispersal algorithm, multiple stripes, and

helper. Base on these three approaches, we can establish the scheme of application layer

multicast system presented in Figure 3.

Figure 3: Application Layer Multicast System

The whole graph is an ALM system with many independent ALM services inside. Each

service provides different streaming data. The circle nodes are the users who join the system

and generally called peer. Each peer has different name based on what they do in the system.

Peers who provide streaming data are called source peers. Peers who subscribe the service are

called subscribers. Peers who don’t subscribe the service are called helpers of the service.

Peers who don’t subscribe any service are called idle peers and they can be helpers for all

services. Now, we point out the place our three approaches performed.

Information dispersal algorithm The dark circle node is the source peer. Before it

sends out the streaming data, the data will be processed by IDA.

Multiple stripes In Figure 3, there are two different lines inside the ALM service in left

side. The two kinds of line represent two different trees and source peer transmit different

9

stripes which are generated from IDA through different trees.

Helper The ALM service in left side shows there are two helpers contribute their

bandwidth to the service. They help to retransmit stripes to the subscribers of the service.

We have several hypotheses for the ALM system. One, most peers of the ALM system

are using asymmetric connectivity. It means they have poor upstream bandwidth. Two, all

peers have degree constraint which is determined by the upstream bandwidth offered by

individual peers. Three, the data rate of the streaming data provided in ALM system is too

high for general ALM mechanism. Four, the number of peers in the ALM system is very large.

In other words, the lack of helper is not a problem. Five, the streaming data transmitted in

ALM service might have security requirement.

In the following sections, we will introduce the principle detail of the three approaches.

3.2 Information Dispersal Algorithm (IDA)

(n, m) information dispersal algorithm (IDA) [8] is a method that disperses data for

security, fault tolerance and etc. It can disperse the original data into n pieces and we must

have m pieces or more, , to be able to restore to the original data. For security, peers

can’t know any content of data if they have less than m pieces. For fault tolerance, it means

that it could tolerate some of pieces missing and still can restore to the original data. Moreover,

it has a special characteristic that the m pieces we mention before is any m pieces without any

order, needn’t to be continues, and no any piece is must have. On the contrary, using IDA will

cause the data size much bigger. If the size of data F is

m n≤

F , we disperse it into n pieces, the

size of each piece will be /F m . Therefore, the total size of n pieces will be (/)F n m⋅ .

Following we will brief describe how to use IDA in transmission process.

3.2.1 Split

First, we must decide (n, m) and then we use IDA on the transmitted data F. Let the

10

content of F be , F is divided into N units. We use the content of F to generate a

matrix B and the blank places are filled in 0. The size of matrix B is .

1 2, , , Nb b b…

 /m N m× ⎡ ⎤⎢ ⎥

1 2 1 2 1 2 2, , , (, , ,), (, , ,),N m m mF b b b b b b b b b+ + m= =… … … … (1)

1 1 /

2 2

2 0

m N m

m

N

m m

b b b

b bB
b

b b

+ ⎡ ⎤⎢ ⎥

+

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜
⎜ ⎟⎜ ⎟
⎝ ⎠

"

#
⎟ (2)

Then we choose n vectors , ia 1 i n≤ ≤ , and the length of each vector is m. Every subset

of m different vectors must be linearly independent. And then we use to compose matrix

A that the size of matrix A is .

ia

n m×

1(, ,), 1i i ima a a i n= ≤ ≤… (3)

1

2

n

a
a

A

a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

(4)

It is the initialization step from (1) to (4). Then we will use IDA in the transmission

process. First, we will divide F into n pieces. Base on the matrix A and B we calculate before,

A B C⋅ = , C is a matrix. We can divide C into n vectors called , /n N m× ⎡⎢ ⎤⎥ ic 1 i n≤ ≤ ,

the length of a vector is . These n vectors are the pieces we want. And then these n

pieces will be transmitted through different transmission paths to all peers (based on multiple

stripes approach).

/N m⎡⎢ ⎤⎥

1

2

n

c
c

A B C

c

⎛ ⎞
⎜ ⎟
⎜ ⎟⋅ = =
⎜ ⎟
⎜ ⎟
⎝ ⎠

(5)

1 2 /(, , ,)i i i N mc c c c
⎡ ⎤⎢ ⎥

= … (6)

11

1 (1) 1ik i k m im kmc a b a b− += ⋅ + + ⋅" (7)

3.2.2 Restoration

After splitting F into n pieces in previous section, we will show we can restore F from

any m pieces. When peer receives m pieces or more, the peer can restore the original F. We

choose any m pieces and choose the corresponding m vectors

 in A. Through the expression below, we can restore the matrix B and also

we obtain the original data F.

, 1(, ,i i i mc c c+ +…)

1i

⎞
⎟
⎟
⎟
⎟
⎠

#

⎤⎥

1(, , ,)i i i ma a a+ +…

1

1

i i

i

i m i m

a c
a c

B

a c

−

+ +

+ +

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎜ ⎟ ⎜= ⋅
⎜ ⎟ ⎜
⎜ ⎟ ⎜
⎝ ⎠ ⎝

(8)

Therefore, as long as all peers generate the same matrix A as source peer, they could

restore the original data from any m pieces of the data.

3.2.3 Efficiency

Only produce matrix C and restore matrix B in IDA will influence on the efficiency of

Trickle. It is because the production of matrix A and A-1 is only once, we don’t need to

reproduce. Now, we consider the number of operations split and restoration need.

For split, it needs multiplication operations and /n m N m× × ⎡⎢ (1) /n m N m× − × ⎡ ⎤⎢ ⎥

addition operations. The complexity of operation is also associated with the size of b which is

/F N . Therefore, split is affected by the parameter n and the size of data. The complexity of

split is (O n F×) . For restoration, it needs /m m N m× × ⎡ ⎤⎢ ⎥ multiplication operations and

 addition operations. Therefore, restoration is affected by the parameter

m and the size of data. The complexity of restoration is

(1) /m m N m× − × ⎡⎢ ⎤⎥

()O m F× .

12

3.2.4 Advantage

Using the combination of IDA and multiple stripes in transmission process has several

advantages. First, security and fault tolerance, these are the design purposes of IDA. These

two characteristics quite match our requirement. Because we join the concept of helper into

Trickle, security of data transmission is necessary when the data is sensitive. And further,

because the whole ALM service is composed by peers (end hosts), the service can’t promise

peers can receive all data. By the fault tolerance of IDA, the transmission process is more

resilient. Second, we only need to receive m of n pieces to restore original data, so we do not

need to wait the remand n-m pieces. Because every piece is transmitted through different path,

some paths are congested and some are not. Therefore, the thing that influences on our delay

of receiving data is the most quick m paths, not all n paths. Even if the congestion of

transmission paths will change, we still can prevent to be influenced by most congested n-m

paths without changing our transmission paths. Hence, the receiving process is more efficient.

3.2.5 Influence of n and m

Because our IDA and multiple stripes approach will influence each other, the decision of

n and m will cause some effect. First, n will influence on how many trees we will build in an

ALM service. Too many trees will lead to increase amount of control signal and the control

overhead will consume our rare upstream bandwidth. Second, the ratio of n and m will

influence on the transmission overhead. As we mention before, the size of data that using IDA

will times bigger than the original one. It means that the data transmitted through

network will increase times. However, we don’t really need to receive all n stripes.

We will explain the improvement in next chapter. In addition, the ratio of n and m will

influence on the resilience of ALM service. The larger ratio of n and m is, the more resilient

ALM service will be. In other words, we can tolerate more stripes lose. Hence, the decision of

n and m is very important and must base on what application the service wants to provide.

(/)n m

(/)n m

13

3.3 Multiple Stripes/Trees

The concept of multiple stripes has been brought up in previous research [2], [3]. Each

message transported from source peer will be divided into several stripes. In tree building step,

we not only construct one tree, we construct as many different trees as the number of stripes

that one message is divided into. And each tree transmits different stripe of the message to

subscribers. Hence, the peer receives different stripes of the message through different

transmission paths. Figure 4 present an example of multiple stripes. By this approach, we get

a lot of advantages mentioned before. Moreover, we enhance multiple stripes by combining

with IDA approach. The description is in following content.

Figure 4: An example that a message is divided into 2 stripes

3.3.1 Combine with IDA

The combination of multiple stripes and IDA mean that one message will be divided into

several stripes by IDA approach. And each stripe will be transmitted through different trees.

The purpose of multiple stripes/trees is to prevent losing a whole message when one link

broken. The purpose of IDA is to promise peers will restore the original message even some

stripes lose.

When we use (n, m) IDA technology, every peer joining in the ALM service will have n

different transmission paths (actually, it is mostly less than n, we will explain about it in next

chapter) that the origination is source peer and destination is itself. Each transmission path of

the peer transmits different stripe and peers only need to receive any m stripes of the total n

14

stripes, then those stripes can be restored to the original message. In other words, the

transmission process can tolerate to loss at most n-m stripes.

Therefore, we must make sure that any peer leave the ALM service will not cause the

remand peers who are still in the ALM service can not restore the original message. This

situation happens only when the leaving peer is in more than n-m of n transmission paths of

any peer. When such peer leaves the ALM service, it will cause more than n-m transmission

paths of the peer break down and the peer can only receive less than m stripes. Hence, the peer

can not restore the original message. This situation can be prevented by building disjoint

transmission paths.

3.3.2 Building Disjoint Paths

Base on the description before, we know that we must prevent any peer is in more than

n-m transmission path of other peers. The solution for building this kind of transmission paths

is to restrict that every peer become interior node in constant number of trees. And the number

must not bigger than n-m. Therefore, there are two different choices to decide the number of

being interior node for each peer. The first choice is every peer becomes interior node in more

than one tree and the second choice is to restrict every peer can become interior node in only

one tree. The advantage of first choice is that some peers with high upstream bandwidth will

contribute their bandwidth averagely in multiple trees without contributing whole upstream

bandwidth in only one tree. It is good for Trickle because in transmission process with IDA,

the importance of all stripes is the same. However, there is a critical disadvantage to

contribute bandwidth in multiple trees. It will cause the height of trees in ALM service much

bigger and the end to end delay will be higher because the degree of nodes in each tree are

smaller.

Therefore we decide to pick the second choice that every peer becomes interior node in

only one tree. This method restrict that any peer at most in one of n transmission paths of

other subscribers. And then, we have to use a method to decide peers become interior node in

15

which tree. In SplitStream [2], it provides a method that can establish interior-node-disjoint

trees. Each tree root has different prefix of groupId. Due to the tree building method, groupId

and nodeId of peers will cause which peers become interior node. Therefore, it will restrict

that every peer will play the role of interior node in no more than one tree and being leaf node

in the remand trees. This method is only fit for the tree building algorithms that base on DHT.

In out hypothesis, we hope Trickle can be applied to any tree building algorithm. Therefore,

we use different method to decide peers become interior node in which tree.

3.3.3 Become Interior Node

Each peer decides it will become interior node in which tree by itself. When a new peer

is in the process of joining service, there are two decision methods to decide which tree it

should be interior node. One, in order to prevent violating the DHT concept, if the tree

building algorithm is based on DHT, it decides to be interior node in the tree whose root has

the same prefix hash id. It is approximately the same as SplitStream, but the only difference is

the peer already decides the tree it wants to be interior node by itself in the beginning of

joining service. The second method is the peer randomly decides which tree it should be

interior node and be leaf node in other trees.

The advantage of random solution is that we don’t need a server to do resource

(upstream bandwidth) management. However, it may probably cause large number of peer

being interior node in the same tree and the resource distributed unfairness. It will cause that

the upstream bandwidth of some trees is not enough. We solve this problem by using the

concept of helper. Those trees with poor resource will ask helper for help. The helper will

share their upstream bandwidth to those trees that need it. Therefore, when the number of

helper is nearly infinite, the upstream bandwidth won’t be exhausted. And the concept of

helper will be described in next section.

16

3.4 Helper

The peers are idle or the subscribers of other services can be the helper of the service.

For example, in one service, the peers are regarded as subscribers, but for other services in

ALM system, they are not subscribers. Therefore, we call them helper when they are not

regarded as subscribers of the service. We hope those peers that are idle or have ample

upstream bandwidth can share their bandwidth with other ALM services. Hence, for those

ALM services that can not provide smooth streaming data to the subscribers will request

helper for help.

3.4.1 Demand of Helper

In order to make every peer receive streaming data smoothly, every peer will restrict the

number of children it can support based on its upstream bandwidth. A peer will request to be

some peer’s child in three cases: (1) the peer is a new subscriber and it chooses a peer in the

service to be its parent by tree building algorithm, (2) the transmission path between the peer

and source is broken, it wants to change transmission path, (3) the tree structure adaptation

algorithm will cause peers to change their parents. When the peer already reaches its upper

bound of child number, it receives the request from the other peer that wants to be its child. It

is the time to request helper’s help in order to accept the request.

3.4.2 Find Helper

There are two issues need to be consider when peers need helper’s help.

How to find the helper Because we expect our infrastructure of ALM system is based

on decentralized control, not centralized control by some peers, like source peer. Hence, every

peer needs to have the capability of finding helper. When every peer joins the ALM system,

they will establish a neighbor table to record peers that are close to them. The definition of

neighbor is that the number of IP routing hops between its neighbor and itself is below a

predefined number. When the peer joins one ALM service and the neighbors of the peer who

17

are not in this service can be helper candidates (because of the restriction in next section).

Hence, peers can request assistance of helper candidates in neighbor table when they need

helper’s help.

Helper selection The second issue is that if there is more than one helper candidate,

which one of candidates we should choose. Because the participation of helper will make the

transmission path longer and it will increase the end to end delay of affected peers, we must

choose the candidate that increases the transmission path length least. We explain it by an

example presented in Figure 5. dAH means the number of IP routing hops from A to helper

candidate (who are in the neighbor table of A), dHB means the number of IP routing hops from

helper candidate to B. If we need the assistance of helper between A and B, we will choose the

candidate that it makes the dAH+dHB to be smallest and then we request the helper candidate to

join the ALM service and place it between A and B.

Figure 5: An illustration of helper selection

3.4.3 Restriction of Helper

The selection of helper has two restrictions. First, helper might be the subscriber of other

ALM service. We can not request them to share too much bandwidth that will cause them can

not smoothly receive the streaming data they want. Therefore, every peer will share the fix

ratio of bandwidth for being helper. The ratio of bandwidth it will share is defined by ALM

system. Second, for security consideration, we can’t allow helper to know the content they

transmit. Base on the characteristic of (n, m) IDA, we restrict a helper can help only one tree

in one ALM service. It means a helper can only join one tree of the service and become

interior node in the tree. Hence, helper can’t know the content it transmits because it doesn’t

have enough stripes. And also, every peer still can receive the whole message when it leaves.

18

3.4.4 Helper Join

After finding one helper, we need to explain how the helper joins the tree. We explain the

process by an example presented in Figure 6. In Figure 6(a), peer A’s upper bound of child

number is 3. It shows A is already reach its upper bound and new peer E send request to A that

it wants to be A’s child. It is the situation that needs helper’s help. There are three steps to

make a help joining the tree. First step, peer A chooses helper H from helper candidates by the

method described in previous section. Second step, peer H becomes A’s child and accepts E’s

request, so E becomes H’s child. Third step, peer A transfers its child D to H and D becomes

H’s child.

Figure 6: An example of helper join

The decision of transferring which one of A’s children to be H’s child is based on two

rules. Rule one is leaf node has higher priority and rule two is choose the one closest to helper.

If some of A’s children are leaf nodes, we choose the leaf node that is closest to H. Otherwise,

we choose the one of A’s children that is closet to H. We choose leaf node first because it

won’t affect too much peers who will increase end to end delay.

In this approach, the ALM service can successfully accept peer E. It will bring two

advantages. First, E request to be A’s child who is already reach its supporting upper bound

must because it is E’s best choice or the only choice. Because we expect our infrastructure is

decentralized control; usually, E can only obtain a small part of peers’ information in the ALM

service. Therefore, the parent choice of E is limited. Hence, base on this approach we could

successfully accept E and also try our best to prevent to influence on peers that are already in

the service. Second, because H is A’s neighbor, when H joins the service, the peers who might

19

choose A before could have another choice H. Therefore, peers can have more choices.

Moreover, H still not reaches its upper bound of child number. It increases the number of

peers the tree can support.

3.4.5 Enhancement

Enhancement 1 In finding helper step, we don’t really need to choose the neighbors that

are not in the service to be helper candidates in an exception. When the neighbor is already in

the service, if the tree needs help is the same tree it already in, we still can request its help. In

Figure 6(b), a new request from F, if the best choice of helper is still H, then A still can

request H’s help if H doesn’t reach its upper bound of child number. In addition, in this case,

child transfer step can be omitted.

Enhancement 2 By enhancement 1, the peer may find a helper that is other peer’s child.

In this case, the helper can change parent if the distance from source peer to it will be shorter.

We explain it by an example presented in Figure 7. dSA is the distance between source peer

and peer A, dSB is the distance between source peer and peer B, dAH is the distance between

peer A and peer H, and dBH is the distance between peer B and peer H. When peer B receives a

request from Z, B detects the best helper is H and requests H’s help. There are two possible

results. If (dSA+dAH)≤ (dSB+dBH), the result is presented in Figure 7(b). If (dSA+dAH)>(dSB+dBH),

the result is presented in Figure 7(c). By this enhancement, not only helper will have lower

end to end delay, but also all its children and descendants.

Figure 7: An example of helper approach enhancement

20

3.4.6 Difference between Helper and Waypoint

There is already a similar concept to helper called waypoint [9]. Both helper and

waypoint are the peers with unnecessary resource, such as upstream bandwidth, and they

provide it to help others. The most different point between waypoint and helper is that

waypoint joins the service base on its own decision and helper joins the service when

members in the service call for help.

The concept of waypoint is to treat waypoint as common peers. It means that the method

of joining service and the data it receive is the same as common peers. Even though waypoint

will join the service that need help base on its determination, its join method is the same as

other peers. It may not be put in the urgent place that needs help. For example, there is one

sub-tree in the service needs help. Waypoint may join this service, but may not be put in that

sub-tree by the join mechanism.

Contrary, helper is requested by the members in the service who need help. And the

helper joins the service using different joining mechanism. Helper will be put in the place that

really needs help. Therefore, participation of helper will solve the issue immediately.

21

Chapter 4
Mechanism

In this chapter, we will introduce the mechanism of ALM service and the integration of

our three approaches in the mechanism. We separate the mechanism into two parts. The first

part is the start of an ALM service and the second part is the behavior of peers.

4.1 Service Startup

There are three things need to be done to start an ALM service in the ALM system. First,

every peer should establish a neighbor table before join or start a service. Second, if a peer

wants to establish an ALM service to share its streaming data, it must decide who the source

peer of the service is. Third, the source peer must configure IDA before accepting subscribers.

We describe the details in the following content.

4.1.1 Establish Neighbor Table

Before ALM service start, every peer who wants to join the ALM system, including

source peers, subscribers, and even helpers, should establish their own neighbor table. The

establishment of neighbor table is prerequisite for our helper approach.

The negotiation between peers and their neighbors is presented in Figure 8. We define a

neighbor finding signal. In that signal, we set within how many hop count the peer can be

called neighbor and the signal is sent by broadcast method. The signal should be drop when it

travels farther than neighbor distance. When peers receive a neighbor finding signal, they

should reply an ack signal to original sender.

22

Figure 8: Negotiation between peers and neighbors

If a peer receives an ack signal from other peer, it means it find a neighbor. The peer

should do the reaction presented in Table 1. If the neighbor table is not full, it just adds the

sender of the ack signal into the table. If the neighbor table is full, when the sender is closer to

it, it just adds it into table and removes the neighbor that is farthest to it. After repeatedly

receive the ack signals and do the reaction described above, peer will obtain a neighbor table

with closest neighbors inside. Be notice that the neighbor table should resize if there is no any

available neighbor when peers need neighbor in Trickle.

Table 1: Reaction after receiving a neighbor ack message

4.1.2 Source of Service

Source peer is the tree roots of the service. It splits streaming data into IDA stripes and

sends stripes to its children of each tree. But which peer is the source peer? Is the streaming

data owner should be the source peer of the service? It is possible, but not necessary. There

are two possible cases.

Source peer is the data owner When the data owner is a peer with sufficient upstream

bandwidth and processing capability, such as multimedia service provider, it could be the

source peer of the service.

Source peer is not the data owner When the data owner is an individual user, it

23

probably only can unicast the data to one child. All it can do is to send the streaming data to a

proxy server (we call source proxy) with capability of being source peer and the IDA is done

by source proxy. It is presented in Figure 9. The source proxy can be the e-home server. Users

send data from their mobile devices to their e-home server and then the server multicasts data

to numerous peers. Or the source proxy can be provided by ISP with commercial cost. There

still has a lot of possibility about the source proxy. It can solve the issue that data owner is not

powerful.

Figure 9: An illustration that source peer is a source proxy

4.1.3 IDA Configuration

4.1.3.1 (n, o, m) IDA

After deciding which peer is the source peer, source peer must decide the parameters of

IDA. In the previous chapter, we mention we will combine multiple stripes and IDA.

However, we don’t adopt (n, m) IDA but (n, o, m) IDA. All we want to do is to decrease

bandwidth consumption from the overhead of IDA.

First, n means in the ALM service, there will be n different trees. The message generated

from source peer will be divided into n different stripes and each stripe will be transmitted in

different tree. Second, m means every peer that join the service must receive at least m stripes

of a message to restore to the original message. Third, o means that when every subscriber

wants to join the ALM service, they should join o trees initially, . We have to

explain about the range of o, . The IDA operation is decided when the ALM service

starting, so n and m can’t be changed. Hence, there will be totally n trees, so o must less or

equal n. And o must bigger than m is because we don’t want when any peer leave the service

will cause any other peers that is still in the service can not receive m stripes of the message.

n o m≥ >

n o m≥ >

24

Due to we restrict every peer can be interior node in only one tree, so the lower bound of o is

m+1. And if we want to decrease the consumption of the bandwidth, we must set o closer to m.

Because , it still can provide a little fault tolerance in normal situation. o m>

4.1.3.2 Apply to Streaming Data

Now, the source peer can apply IDA to streaming data when subscribers join the service.

The (n, o, m) parameters will influence on two things: the size overhead and the fault

tolerance of the service. If the size of unit message needs to be encoded by IDA is B and we

apply (n, o, m) IDA to it, the size of one stripe will be B/m and the total size of stripes is

. Each subscriber need receive o stripes with size /n B m× /o B m× in the beginning. The

ratio of lost stripes subscribers can tolerate is between () /o m o− to . () /n m n−

4.1.3.3 Discussion

The reason we add the parameter o is because when a message is processed by IDA, the

size of the message will be (n/m) times bigger. If every subscriber joins n trees in the

beginning, it will consume too much downstream bandwidth of itself. ((n-m)/m of data is

redundant.) In other words, it will consume too much upstream bandwidth of other peers. In

order to prevent it happens, we must make every peer to receive redundant stripes as less as

possible.

First, we must consider why peers need to receive redundant stripes. The peer receive

more than m stripes of a message is because we promise when some stripes delay or lost, they

still can restore to the original message without any delay (there are the upper bound of

tolerance). Therefore, we need to receive more stripes (join more trees) of one message only

when some stripes’ transmission process occur problems. But we still need to receive a little

part of redundant stripes (o-m stripes) in normal situation. Otherwise, we will lose one or

more message when we are doing remedial action. Oppositely, if the transmission process of

stripes has no problem, we should receive stripes as less as possible (join less trees) to prevent

the consumption of bandwidth. Hence, after the peer joins o trees in the beginning, every peer

25

should adjust the number of trees they join dynamically. The method about how to decide the

adjustment will be described in later section.

4.2 Behavior of Peers

First, we describe the architecture of peer behaviors. And then we describe the detail of

each behavior. The order of behaviors is organized along peer life cycle.

4.2.1 Architecture of Peer Behavior

The architecture of behaviors for peers that will be subscribers or helpers is presented in

Figure 10. Arrow symbols mean the direction of data flow or control signals. It shows the

interaction of each function and the detail of important behaviors will be described in

following sections.

Figure 10: Architecture of peer behavior

4.2.2 Join

4.2.2.1 Randomly Join o Trees

When the peer decides to join an ALM service, it will know the n, o, and m parameters of

the service. Hence, the peer knows it must join o trees of the service initially. In Trickle, the

26

method that peers decide they should join which trees is random selection by themselves. The

reason is the same as randomly select a tree to be interior node. We don’t want to add a load

balance manager or request any peer, such as source peer, to be responsible for it.

Management of network load will increase the load of peer and also waste bandwidth.

Let us consider the tradeoff of load balance. First, it will make every peer fairly

consumes upstream bandwidth. It is not an advantage for our hypothesis. For our helper

approach, because the lack of upstream bandwidth, if some peers don’t spend all their

upstream bandwidth in the service, they will possibly spend remained upstream bandwidth in

other services. Therefore, there is no benefit in this point. Second, load balance will lead the

peers distributed averagely. In other words, the height of each tree in the service will be

average. It is really an advantage because the end to end delay of all peers will be average.

However, in Trickle, we have done several steps to reach similar effect. One, we make every

peer join o trees. In worst case that all subscribers join the same o trees, the load is still

averagely distributed into o trees. Two, because of IDA, peers can ignore some worse stripes

with high end to end delay in certain trees. Three, the trees and the number of trees each peer

joins will change to have better performance. It will be mentioned in following section. Of

course, load balance is the best choice, but by these three steps, the end to end delay of the

peers will be lease and more average. Furthermore, we don’t need to waste bandwidth to

maintain load balance. Therefore, we decide that every peer randomly chooses o trees to join.

And then they randomly choose one of o trees to be interior node.

4.2.2.2 Choose Parents

After each peer chooses which o trees they want to join, they must decide which peer

should be their parent in each tree. The selection method of parent is based on tree building

algorithm. Our purpose is to devise an approach that is able to suit any tree building algorithm

for performance improvement. So any kind of tree building method, like distributed hash

tables (DHT) [14], [16] or hierarchical clustering [4], [5], will be fine. The method only needs

27

to build one tree and other tree can also be built by the same method. Therefore, each new

peer will find o parents in different o trees through tree building algorithm.

No matter what tree building algorithm the ALM system choose, we have to add two

restrictions for the algorithm. The first restriction is it can’t choose peer that plays the role of

leaf node to be any peer’s parent. The second restriction is every peer should have an upper

bound of supporting children base on their upstream bandwidth for performance

consideration.

4.2.2.3 Cases of Join Accept

There are two cases when peers receive a join request. The first case is presented in

Figure 11. If the peer plays the role of interior node in the tree and still has quota to accept

new child, then it accept the request and put the id of request sender into its children table.

Figure 11: Negotiation between child and parent

The second case is presented in Figure 12. If the peer that receives a join request already

reaches its upper bound of child number, it will request a helper for help. And it also needs to

transfer one of its children to be the helper’s child. The detail of using helper is already

described in previous chapter. Sometimes, request helper’s help will fail when helper receives

the request and it already reaches its upper bound of child number or it already joins other tree.

Figure 13 presents the failure of requesting helper.

28

Figure 12: Negotiation between child, parent, and helper

Figure 13: Negotiation after the failure of requesting helper

We combine the two cases into one flowchart and it is presented in Figure 14. And the

detail reaction when parent receive the join request from a peer is presented in Table 2.

Figure 14: Flowchart of subscriber join

29

Table 2: Reaction after receiving join request

4.2.3 Receive and Retransmit

For source peer, transmission process is simple. Its responsibility is to generate n stripes

using IDA from original data and transmit each different stripe to its corresponding children

set in different trees. It is presented in Figure 15. And for peers that are leaf nodes in the tree,

all they have to do is wait and receive stripes transmitted from parents. But for other peers

that are interior nodes in the tree, there are two different ways to do the retransmission.

Figure 15: An illustration of stripe transmission for source peer

4.2.3.1 General Retransmission

When the peers play the role of interior node in the tree, they have responsibility to

retransmit the corresponding stripe to their children. For example, if the peer is interior node

in tree k, it must transmit stripe k of the message to its children in tree k. In general case of

retransmission, when peers receive a stripe from parent in the tree that they serve as interior

node, they just retransmit the stripe to their children. It is presented in Figure 16. So they have

30

done their responsibility. This is the basic concept of any ALM mechanism.

Figure 16: Peers retransmission

4.2.3.2 Stripe Regeneration

Because we use multiple stripes and IDA approaches, peers can regenerate any stripe

they need to retransmit (even if they never receive it) and transmit to their child. The

algorithm of stripe regeneration is presented in Table 3. When the peer already receives m

stripes of the message from other trees but not including the stripe it need to retransmit, it can

use these m stripes and matrix A of IDA to restore them to the original message. And then

base on the original message and matrix A, it can generate any one of n stripes it needs.

Table 3: Reaction after receiving one stripe

For example, in Figure 17, peer A join 5 trees to receive stripe S1, S2, S3, S4, S5 from

different transmission paths and the IDA parameter m is 4. Peer A serve as interior node in

tree 3. Therefore, peer A need to transmit S3 to its children. When A only receive S1, S2, S4,

and S5 but S3, it still can generate S3 from other stripes and transmit S3 to its children.

Figure 17: An example of stripe regeneration

31

Stripe regeneration has several advantages. First, if the stripe needed to retransmit is late

or lost, parent still can generate it and transmit to its children. Therefore, parent will prevent

the increase of children’s end to end delay or prevent they can’t receive the stripe. Second,

when the peer want to change parent (because transmission path broken or performance

consideration) in the tree that it serves as interior node, it still can serve its children during

changing parent. It also prevents when a peer leave, all its descendants need to find a new

parent to repair the transmission path. Only the children of leaving peer need to do the

remedial action.

4.2.4 Adjust Number of Joining Trees

We have mentioned before that sometimes peers must decrease the number of joining

trees (it means peers decrease the number of receiving stripes) to reduce the consumption of

bandwidth. And sometimes peers must increase the number of joining trees when

transmission quality is not stable to prevent end to end delay rising or even message loss.

Therefore, we take the dynamic adjustment method to change the number of joining trees to

adapt to various situations.

4.2.4.1 Foundation

We must define the rules about when peers need adjustment and how to adjust. Every

peer will check every period of time that the success number of message restoration (as long

as receive any m stripes of one message, it means a success) in the interval and the interval is

predefined by the ALM system. And then we set the upper bound and the lower bound of

success number. When the success number of restoring message is not between upper bound

and lower bound, the peer will adjust the number of joining trees. Every adjustment will

increase or decrease only one tree because transmission issues might be impermanent. We can

not predict the transmission issues will continue or not, so we adjust the number of joining

trees gradually.

Besides, the decision of upper bound and lower bound of success number will influence

32

on the message lost rate we can accept. If we don’t want any message loss, we should set the

upper bound and lower bound higher. It means peers will join trees easier and leave trees

harder.

4.2.4.2 Increase and Decrease

Increase When success number is lower than lower bound, the peer will randomly (we

will explain about “random” later) join one more tree. If in next check, the situation is still the

same, then the peer will join one more tree until the situation is better or the number of

joining trees reaches the upper bound n.

Decrease When success number is equal or higher that upper bound, the peer will leave

one tree that behaves worst. If in next check, the situation is still the same then the peer will

leave one more tree until the situation is worse or the number of joining trees reaches the

lower bound o. The tree that behaves worst means in the interval the peer received stripes that

transmitted in the tree is fewest.

Figure 18 present the increase and decrease number of joining trees. We can know the quality

of receiving streaming data of each peer by observing their number of joining trees. If the

peer’s number of joining trees keeps in the lower bound, it means the peer can receive the

streaming data smoothly. On the contrary, if the peer’s number of joining trees keeps in the

upper bound, it means the peer receive the streaming data intermittently.

Figure 18: Flowchart for adjusting the number of joining tree

Base on the adjustment method we describe above, every peer will gradually join or

leave trees and the trees every peer join will change slowly. Finally, the trees of peer joining

33

will be stable. It means that every peer will join the suitable trees. The suitable trees mean that

in the positions of the peer in these trees will receive the stripes with close end to end delay

and the delay will be lower than before adjustment. As long as the end to end delay of each

stripe for a message is close, the peer can restore the original message from the buffer that

stores the stripes. Otherwise, because of the limitation of buffer size, some stripes that are still

not restored to message will be discarded.

4.2.4.3 Priority of Joining Tree Selection

When peers leave the tree that behaves worst, they will put it in the last choice when

choosing the tree to join. Therefore, randomly join one tree with low success number is not

really to randomize the choices every time. Every peer will firstly randomly sort the tree id

that is not joining and put them into a join queue. Every time peers need to join one more tree,

they will base on queue and join the first tree in the queue. And the tree they leave will be put

in the last of the join queue. Therefore, the selection of joining tree has priority. It is presented

in Figure 19.

Figure 19: An illustration of priority queue for tree id

4.2.5 Leave

When some peers leave one tree or even the ALM service, the reaction of their children

is to repair the transmission paths. And only the children of leaving peers will repair the

transmission paths because these children can temporarily use the method of stripe

regeneration to serve their descendants and their descendants won’t detect any wrong.

The repair method is the same as tree building algorithm that is not included in Trickle.

If the tree building algorithm includes the path repair mechanism, we adopt the mechanism.

34

Otherwise, we can treat these children peers as new peers and use the tree building algorithm

to find a new parent. No matter what mechanism we choose, the mechanism will help these

children peers find new parents. After finding new parents, the step will be the same as tree

joining step we mention before. Hence, these children peers can repair their transmission

paths.

You may be doubt that since the service has n trees, why these children peers choose to

repair the transmission paths in original tree but not joining other trees. Because these

children peers might have their descendants, if they join other trees that they still not joining,

their descendants might be already in the new tree. This method will cause some peers join

the same tree twice. It doesn’t make sense for a peer to receive the same stripe twice.

Therefore, we choose the repair action for the children of leaving peers.

35

Chapter 5
Performance Analysis

5.1 Purpose

The purpose of the simulation in this chapter is to observe the properties of Trickle. The

three properties include:

 Message delay We will measure the delay of each stripe and delay of message

restoration for each subscriber. It will show the perturbation of message restoration delay.

Moreover, we will compare with IP multicast to show the difference.

 Network resource usage We will analysis the bandwidth consumption and the amount

of links it demands.

 Successful restoration rate It will show the robust performance with links/nodes failure

condition.

5.2 System Configuration

We use two existent tools to do our simulation. First one is Georgia Tech Internetwork

Topology Models (GT-ITM) [10]. It is a random graph generator. It can be used to generate

transit-stub style network topology. Second one is a discrete event simulation system called

OMNeT++ [17]. We use it to simulate the behavior of peers based on the mechanisms we

proposed in the previous chapter. We use GT-ITM to generate the network topology and

import it into OMNeT++. In the following content, we describe the configuration of

simulation system.

5.2.1 Network Topology

First, we generate a network that contains 380 routers. There are 4 transit domains and

36

with an average of 5 transit nodes in each transit domain. For each transit node, it is attached

an average of 3 stub domains. In each stub domain, it contains an average of 6 stub nodes.

Therefore, there are 20 transit nodes and 360 stub nodes. Second, we randomly attach hosts to

stub nodes and the total number of host is 1024. The result of network topology is presented

in Figure 20. In these 1024 hosts, we randomly choose 50 hosts to be the subscribers of the

ALM service. Because we will simulate a lot of characteristics of network links, it will cost a

lot of time to run the simulation. For feasibility, we don’t simulate on a large-scale network.

Figure 20: Network topology

5.2.2 Link and Traffic Condition

After importing the network topology into the simulator, we still need to set several link

properties to make the simulation more realistic. They are:

 Propagation delay Propagation delay = length / (2*105 km/s). We set the propagation

delay base on the length parameter of links which is generated from GT-ITM.

 Bit error rate We set the bit error rate to be 10-10.

 Bandwidth In order to simplify the simulation, we assume there are only two different

kinds of connectivity between routers and hosts. Because of our hypothesis, we set 60%

37

of links between router and host to be asymmetric connectivity. It means the downstream

bandwidth and upstream bandwidth of these links are asymmetric. We set the

downstream bandwidth to be 2 Mbps and the upstream bandwidth to be 512 Kbps. For

the other links between routers and hosts, we assume they are LAN connectivity.

Moreover, in order to make the simulation more realistic, there will be other network traffic to

consume network bandwidth during our simulation process. The simulation of bandwidth

consumption is called self-similar. We use the existent Fractional Gaussian Noise (FGN) [18]

implementation to simulate self-similar. The parameters of FGN is H=0.7. The range of

queuing delay is between 0 to 20 ms.

5.2.3 Trickle Setup

Because we lack tree building algorithm in Trickle, we implement our approaches based

on DHT tree building method of SplitStream. Because of the number of hosts, the parameters

of routing table are set as b=4 and row number=3. Most steps of tree building are the same as

SplitStream. The only difference is that when a peer reaches its degree constraint and receives

a new join request, it will use helper approach instead of SplitStream’s.

There are several parameters need to be configured. For (n, o, m) parameters, we set

n=20, o=17, and m=16. Therefore, there will be 20 different trees in the service and each new

subscriber will randomly join 17 trees. When subscribers receive any 16 stripes of the

message, they can restore to the original message. By this setting, the size overhead of one

message subscribers received is between 6.25% and 25%. If most transmission processes of

stripes are successful, the overhead should be close to lower bound. For the parameters of

adjusting the number of joining trees, we set the time period be 20 second. It means a

subscriber will check if it needs to adjust the number of joining tree every 20 second. And

then we set upper bound of successful rate to be 100% and the lower bound to be 90%. It

means if the number of messages that subscribers successfully restored are equal or more than

100% of message number that source peer sends within 20 second, they will leave one tree if

38

needed by the rule described in previous chapter. If the subscribers restore less than 90% of

messages within 20 second, they will join one more tree.

5.2.4 Streaming Data Setup

For the setting of streaming data, we assume the average bit rate of streaming data sent

from source peer is 300 Kbps and it includes 30 frames per second (the size of streaming data

packet sent from source peer is variable [23]). For simplicity and without considering video

codec, each frame will be fragmented by IDA before sending out from source peer. The

average size of one frame is 10Kb. One frame will be divided into 20 stripes and the size of

each stripe is (10 Kb/16) = 640 bits. Because the stripe size is too small, we must consider the

overhead of packet header. We set the size of packet header to be 320 bits. Therefore, the size

of one stripe will be 960 bits.

Hence, each interior node of trees should transmit (960 bits*30) = 28.125 Kb per second

to one child. By the setting of stripe size, we set the maximum number of children one

subscriber or helper can support is 8. The peers only need to contribute upstream bandwidth at

most (28.125 Kb*8) = 225 Kb per second. Even a peer with asymmetric connectivity, it only

needs to contribute less than half of their upstream bandwidth. Moreover, in order to do

comparison, we also run IP multicast in the same condition described above. We assume the

average size of one packet in IP multicast is 8 Kbit.

5.3 Experiment

5.3.1 Metrics

In the simulation process, we will measure several metrics to stand for our performance.

The four metrics are restoration delay, relative delay penalty (RDP), link stress, and

probability of success restoration. RDP and link stress need the statistics of IP multicast.

Restoration delay It represents the end to end delay from source to subscribers. It is

39

important for real-time streaming service. Delay will influence on the time subscribers need to

wait to receive the first message of the streaming data and as well as the following messages.

We define two symbols: T1 means the time source peer send out the first stripe of the message.

T2 means the time subscriber receives the m-th different stripe of the message. Subscribers

only need to receive m different stripes to restore to the original message. Hence, the

definition of restoration delay is T2-T1. It shows that the time of receiving stripes after m-th

stripe will not influence on the restoration delay.

Relative delay penalty The definition of RDP is the ratio of delay between Trickle and

IP multicast. We will show two kinds of RDP. Relative maximum delay (RMD) is the ratio of

maximum delay between Trickle and IP multicast and relative average delay (RAD) is the

ratio of average delay between the two approaches.

Link stress We will count the number of network links used in Trickle and the number

of links used in IP multicast. And then we calculate the amount of packets going through each

link. Thus, we can obtain total bandwidth consumption of these two approaches and also the

ratio of average amount of traffic in one link between Trickle and IP multicast. Therefore, we

can have a comparison of bandwidth consumption between Trickle and IP multicast. It will

also show the overhead of using IDA approach.

Probability of success restoration It is the ratio that during the evaluation period, the

number of message the subscriber successfully restored divided by the number of message the

subscriber should restore. The reasons that cause subscribers can’t restore all messages are

bad stripes and lost stripes. Bad stripes are because of bit error rate of links and lost stripes are

because of peer failure. It will show how resilience of Trickle.

5.3.2 Procedure

We will run the simulation several times with different procedures. The procedures of the

first round are:

40

1. All subscribers will randomly join the service within 3 minutes (simulation time). The

helper and multiple stripes approaches are used here.

2. After first subscriber joining the service, source peer starts to transmit the streaming data.

IDA and multiple stripes approaches are used here.

3. Retransmission and adjustment of joining tree are according to the mechanism we

described in previous chapter.

4. After 5 minutes, we starts to record the statistics of the simulation.

The procedures of the second round are:

1. All subscribers will randomly join the service within 3 minutes (simulation time).

2. After first subscriber joining the service, source peer starts to transmit the streaming data

using IP multicast.

3. After 5 minutes, we starts to record the statistics of the simulation.

The procedures of the remaining rounds are the same as the procedure 1 to 4 in the first round.

The difference is peers have failure probability. These rounds are with different peer failure

probability. The probability of peer failure will influence on probability of success receiving

one stripe and message restoration. Suppose the probability of peer failure is P and the path

from source peer to the subscriber in tree k will pass through D peers. Then the subscriber’s

probability of success receiving stripe k is (1) kDP− .

5.4 Results and Analysis

In this chapter, we will analysis our results in the order of simulation purpose. In 5.4.1,

we observe the message delay from three different viewpoints. They are delay of stripe and

message restoration for each subscriber, delay of message restoration for all subscribers, and

41

relative delay penalty which is compared to IP multicast. In 5.4.2, we observe the link stress

to find out the usage of network resource. In 5.4.3, we observe the probability of success

restoration to stand for resilience.

5.4.1 Restoration Delay and Stripe Delay

5.4.1.1 Delay for Individual Subscriber

We plot 4 histograms to show the delay of stripes and the delay of message restoration

for each subscriber. Because the parameter n=20, if we plot all stripe delay, the histogram will

be confused. Therefore, in the histogram for one subscriber, we only plot 6 curves of stripe

delay that is closest to the curve of message restoration delay. It is because the curve of

message restoration delay is only influenced by the curves of stripe delay that is close to it.

0

5

10

15

20

25

120 140 160 180 200 220

Delay (ms)

P
ro

po
rt

io
n

of
 S

ub
sc

ri
be

rs
 (

%
)

Stripe#1
Stripe#2
Stripe#3
Stripe#4
Stripe#5
Stripe#6
Restoration

(a)

0

5

10

15

20

25

80 100 120 140 160 180 200 220 240

Delay (ms)

P
ro

po
rt

io
n

of
 S

ub
sc

ri
be

rs
 (

%
)

Stripe#1
Stripe#2
Stripe#3
Stripe#4
Stripe#5
Stripe#6
Restoration

(b)

0

2

4

6

8

10

12

14

16

18

150 200 250 300 350 400 450 500

Delay (ms)

P
ro

po
rt

io
n

of
 S

ub
sc

ri
be

rs
 (

%
)

Stripe#1
Stripe#2
Stripe#3
Stripe#4
Stripe#5
Stripe#6
Restoration

(c)

0

2

4

6

8

10

12

14

16

18

120 170 220 270 320 370 420 470

Delay (ms)

Pr
op

or
tio

n
of

 S
ub

sc
ri

be
rs

 (
%

)

Stripe#1
Stripe#2
Stripe#3
Stripe#4
Stripe#5
Stripe#6
Restoration

(d)
Figure 21: Histogram of stripe and restoration delay for different subscriber

The histograms are presented in Figure 21. (a) is the subscriber with the minimum max

and stddev (standard deviation) of delay. (b) is the subscriber with minimum mean and min of

42

delay. (c) is the subscriber with maximum max and stddev of delay. (d) is the subscriber with

maximum mean and min of delay.

Observation

 In Figure 21(a), it shows that when the curves of stripe delay overlap more intricately,

the curve of message restoration delay will be much narrower.

 In Figure 21(b), it shows that stripe#6 almost didn’t influence on the delay of message

restoration. It is the advantage of receive more than m stripes.

 In Figure 21(c), the curve of message restoration delay almost overlaps the curve of

stripe#1. It is because stripe#1 is nearly always the 16th stripe that arrives to the

subscriber. We can see the overlap of the curve of stripe#1 and other curves is very few.

Therefore, the delay of message restoration is almost fully influenced by the delay of

stripe#1. That’s why the subscriber’s variance and stddev of delay is the maximum.

 We obtain a conclusion that the curve of message restoration is narrower than other

curves of stripe delay. It is because we use IDA and multiple stripes/trees approaches, the

delay of message restoration is based on delay of several stripes. Therefore, the delay of

message restoration will be more stable.

5.4.1.2 Delay for Trickle

We have measured the end to end delay of message restoration for each subscriber. We

use the statistics to calculate the average delay of all subscribers. It is presented in Table 4.

Max Mean Min Variance Stddev
314.91 244.90 207.64 123.36 10.81

Table 4: Average delay, variance, and stddev for all subscribers with Trickle

There are 5 arguments in the table. Max means during evaluation period, the average of

maximum delay for all subscribers. Mean means the average of mean delay for all subscribers.

Min means the average of minimum delay for all subscribers. Variance and standard deviation

(stddev) mean how spread out the distribution of each message delay is.

The bar chart histogram of mean delay is presented in Figure 22. And the bar chart

43

histogram for coefficient of variation (standard deviation divided by mean delay) is presented

in Figure 23.

0

5

10

15

20

25

30

35

40

100~150 150~200 200~250 250~300 300~350 350~400 400~450

Mean Delay (ms)

P
ro

po
rt

io
n

of
 s

ub
sc

ri
be

rs
 (

%
)

Figure 22: Histogram of mean delay for all subscribers

0

5

10

15

20

25

30

35

40

3.0%~3.5% 3.5%~4.0% 4.0%~4.5% 4.5%~5.0% 5.0%~5.5% 5.5%~6.0%

Standard deviation / Mean

P
ro

po
rt

io
n

of
 s

ub
sc

ri
be

rs
 (

%
)

Figure 23: Histogram of the coefficient of variation for all subscribers

Moreover, we show the relationship between restoration delay and path length from

source peer to subscribers in Figure 24. Length of each link is generated from GT-ITM. Each

transmission path from source to subscriber will pass through many links. We sum up the

length of these links to be path length. We choose the path length that is 16th shortest for each

subscriber because it will possibly affect restoration delay most. In Figure 24, each straight

line means the restoration delay of one subscriber. The top of straight line means the max

44

delay, the middle circle of straight line means the mean delay, and the bottom of straight line

means the min delay for the subscriber.

Path Length

600 800 1000 1200 1400 1600 1800 2000 2200

R
es

to
ra

tio
n

D
el

ay
 (m

s)

100

150

200

250

300

350

400

450

500

Figure 24: Restoration delay versus path length for each subscriber

Observation

 In Table 4, we can observe the difference between max delay, mean delay, and min delay

is small. It is because we use IDA and multiple stripes approaches.

 In Figure 22, we can observe most mean delay of subscribers is within 150 to 350 ms.

The standard deviation for mean delay of each subscriber is only 61 ms.

 In Figure 23, we can observe that the coefficient of variation for all subscribers is within

3% to 6%. It means the dispersion of mean delay is less and the delay of message

restoration is stable.

 In Figure 24, it shows restoration delay and 16th shortest path length are in direct

proportion. It also shows mean delay for each subscriber are close to regression line.

Slope = 0.16, intercept = 57.80, and correlation coefficient = 0.78.

 We obtain a conclusion that the delay of message restoration for each subscriber is stable.

And the difference of delay between subscribers is small.

45

5.4.1.3 Relative Delay Penalty (RDP)

In order to calculate RDP, we must measure the delay of message restoration by using IP

multicast first. We run IP multicast in the same condition as Trickle. The result of IP multicast

delay is presented in Table 5. The table also contains the same arguments as Table 4 for

Trickle. Now, we can calculate RDP with these statistics.

Max Mean Min Variance Stddev
96.31 70.79 45.82 42.69 6.46

Table 5: Average delay, variance, and stddev for all subscribers with IP multicast

We calculate RMD, RAD, and also the relative minimum delay (RMND) of each

subscriber. The statistics of RDP for each subscriber is attached in appendix. The average is

presented in Table 6. And the histogram of subscriber’s RDP is presented in Figure 25.

RMD RAD RMND
3.537 3.831 5.191

Table 6: Average relative delay penalty for all subscribers

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18 20

Relative Delay Penalty

P
ro

po
rt

io
n

of
 s

ub
sc

ri
be

rs
 (

%
)

RMD

RAD

RMND

Figure 25: Histogram of relative delay penalty

Observation

 It shows that most RDP of subscribers is within 3 to 5. It is good that every subscriber

has approximately the same delay penalty relative to IP multicast. (By using IP multicast,

subscribers will have least delay of message restoration)

 There is a subscriber that its RDP is much bigger than other subscribers. It is because the

46

distance between the subscriber and source peer is only 2 hops. Hence, the delay of

message restoration for the subscriber by using IP multicast is very small and the delay

by using Trickle is similar to other subscribers. It causes the RDP much bigger than other

subscribers.

5.4.2 Link Stress

The network resource usage of Trickle and IP multicast is presented in Table 7. There are

three different values in the table. First, link count means the number of link being used in the

approach. Second, bandwidth consumption means the average bandwidth of one link used the

approach. Third, packet overhead means the ratio of the sum of packet header size and the

total amount of network traffic.

 Link Count Bandwidth Consumption (per link) Packet Overhead

Trickle 1319 175.5 Kbps 33%

IP Multicast 176 312.5 Kbps 4%

Table 7: Link stress

Observation

 It shows the link count of Trickle is much bigger than the link count of IP multicast. It is

because we use multiple stripes/trees approach.

 There are 20 trees (n=20) in Trickle. The average number of links used in each tree is

about 66 (1319/20).

 Because we use multiple stripes/trees approach, bandwidth consumption of one link in

Trickle is smaller than in IP multicast.

 In Trickle, it only consumes with an average of 175.5 Kbps per link and the maximum

upstream bandwidth one peer can provide is 225 Kbps. For asymmetric connectivity

whose upstream bandwidth is 512 Kbps, it only costs 34.2% (175.5/512) of total

upstream bandwidth.

 The total bandwidth consumption can be calculated by the link count multiplies by

bandwidth consumption. Trickle is (1319 x 175.5) / (176 x 312.5) = 4.2 times larger than

47

IP multicast

 Link stress is the average number of stripes of one frame pass through a link. The link

stress in Trickle is 8232 / 1319 = 6.2.

 Trickle has large packet overhead because of our poor IDA utilization.

5.4.3 Probability of Success Restoration

We run the simulation several rounds with different peer failure probability to make

comparison. We got the statistics of the probability of success restoration for each subscriber

in different cases of peer failure probability and it is attached in appendix. The average value

is presented in Table 8. For easy observation, we plot the average values by a curve presented

in Figure 26.

Peer Failure

1% 2% 3% 4% 5% 6% 7%

(20, 17, 16) 97.67 95.82 93.28 88.43 81.09 79.95 72.50
(16, 16, 16) 67.76 49.07 35.22 24.16

Table 8: Average probability of success restoration

20

30

40

50

60

70

80

90

100

0% 1% 2% 3% 4% 5% 6% 7% 8%

Peer failure probability

P
ro

ba
bi

lit
y

of
 s

uc
ce

ss
 r

es
to

ra
tio

n
(%

)

(20, 17, 16)

(16, 16, 16)

Figure 26: Probability of success restoration versus different peer failure probability

We also plot a histogram presented in Figure 27 to show the probability of success

restoration versus different peer failure probability.

48

0

10

20

30

40

50

60

70

80

90

100

40 50 60 70 80 90 100

Probability of success receive (%)

P
ro

po
rt

io
n

of
 s

ub
sc

ri
be

rs
 (

%
)

1%
2%
3%
4%
5%
6%
7%

Figure 27: Histogram of the probability of success restoration

Observation

 In Table 8 and Figure 26, it shows the probability of success restoration is good (the

average is more than 93%) when the peer failure probability is less or equal 3%. The

probability of success restoration drops when the peer failure probability is more than

3%.

 In Figure 26, the probability of success restoration is much better when it uses IDA.

 In Figure 27, when the peer failure probability is less or equal 2%, all subscribers’

probability of success receives are greater than 80%.

 In Figure 27, we can observe most subscribers’ probability of success receive is greater

than 60% even if peer failure probability is 7%.

 The result can give us a basis of setting the ratio of n and m. If we could predict the peer

failure probability of the service, we can decide (n, o, m) more suitably to tolerate the

peer failure and reduce the overhead of IDA.

49

Chapter 6
Conclusion

6.1 Accomplishment

There are two issues in ALM we focus on. First issue is peers that form the ALM service

change dynamically. It means peers may join or leave the service at anytime. It will also cause

links between peers to change dynamically. Therefore, transmission of streaming data is not

reliable. The service can not promise all subscribers receive all packets sent from source peer.

Second issue is narrow upstream bandwidth of peers will be the bottleneck of ALM service.

When the bit rate of streaming data is higher, for peers with asymmetric connectivity, the

number of children they can retransmit data to is fewer. It will cause the end to end delay to

be higher because of larger tree depth and also limit the number of subscribers can subscribe

the service.

The accomplishments we have done are:

 We propose the combination of three approaches to provide a resilient application layer

multicast mechanism and solve the issue of peers with insufficient upstream bandwidth.

 Information dispersal algorithm Subscribers can tolerate some packets lose

without losing data completeness. And also IDA provides partial security protection

to the streaming data.

 Multiple stripes/trees With multiple small stripes, each peer can fully utilize their

upstream bandwidth and also support more children. With multiple trees, when any

links of one tree broken, subscribers can still receive other stripes in other trees.

 Helper With helpers contributing their upstream bandwidth, the total amount of

upstream bandwidth in the service will increase and make the service to accept

50

more subscribers. Furthermore, with the join of helper, subscribers will have more

choices of tree parent to have lower end to end delay.

 We have implement Trickle mechanism with SplitStream tree building algorithm on the

discrete event simulator by C++. Parts of implementation code are attached in appendix.

 We have run the simulation several rounds for three purposes. And we have three

conclusions described below.

 Message delay We obtain a conclusion that the delay of message restoration for

each subscriber is stable (coefficient of variation is within 3% to 6%). And the

difference of delay between subscribers is small (standard deviation is 61 ms).

 Network resource usage The average bandwidth consumption of one link in

Trickle is low. The average bandwidth consumption per link is less than half of

upstream bandwidth for asymmetric connectivity (only cost 34.2% of total upstream

bandwidth).

 Successful restoration rate We have good tolerance for packet loss. From the

experiment round with peer failure probability, it shows subscribers still have good

successful probability of message restoration (the average is more than 93%) when

peer failure probability is less or equal 3%.

6.2 Future Work

There are several works will be done or need to be resolved.

 Devise a tree building algorithm. Although SplitStream is a decentralized tree building

method, it doesn’t provide tree adaptive method to locally change links between peers

based on some criteria after forming a tree. We want to provide an ALM tree building

algorithm that can build tree by decentralized method and optimize tree structure by local

information after tree built.

51

 Combine IDA with existent video coding technology. From the assumption of our

simulation, it shows that after one frame divided into stripes, the overhead of packet

header is very large. We need to solve it by developing a better fragmentation principle

based on the combination of IDA and the video codec. It will help to save more network

bandwidth.

 Usage of source proxy. There are still a lot of issues of using source proxy. Who is the

source proxy, how to find a source proxy, and how many source proxies should one

streaming data service use are all still need to be investigated.

 Simulation on real network. After we have done the works described before, they will be

combined with Trickle. We will implement it and run the simulation on real network to

measure its performance.

52

Reference

[1] C. Diot, B. Levine, J. Lyles, H. Kassem, and D. Balensiefen, “Deployment issues for the IP multicast

service and architecture,” in IEEE Network, Jan. 2000.

[2] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh, “Splitstream:

High-bandwidth multicast in cooperative environments,” in SOSP, Oct. 2003.

[3] V. N. Padmanabhan, H. J.Wang, and P. A. Chou, “Resilient peer-to-peer streaming,” in Proc. of IEEE

ICNP, 2003.

[4] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application layer multicast,” in Proc. of

ACM SIGCOMM, Aug. 2002.

[5] D. Tran, K. Hua, and T. Do, “ZIGZAG: An efficient peer-to-peer scheme for media streaming,” in Proc.

of IEEE INFOCOM, Mar. 2003.

[6] J. Jannotti, D. Gifford, K. L. Johnson, and M. F. Kaashoek, “Overcast: Reliable multicasting with an

overlay network,” in Proc. 4th Symp. Operating System Design Implementation (OSDI), Oct. 2000.

[7] A Ganjam and H Zhang, “Internet multicast video delivery,” in Proc.of IEEE, Jan. 2005.

[8] M. O. Rabin, “Efficient dispersal of information for security, load balancing, and fault tolerance,” in

JACM, Apr. 1989.

[9] Y. Chu, A. Ganjam, T. S. E. Ng, S. Rao, K. Sripanidkulchai, J. Zhan, and H. Zhang, “Early experience

with an internet broadcast system based on overlay multiast,” in Proc.USENIX Ann. Tech. Conf., June

2004.

[10] K. Calvert, E. Zegura, and S. Bhattacharjee, “How to model an Internetwork,” in Proc. of IEEE

INFOCOM, March 1996.

[11] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivasan, “Resilient multicast using overlays,” in Proc. of

ACM SIGMETRICS, June 2003.

[12] M.Yang and Z. Fei, “A proactive approach to reconstructing overlay multicast trees,” in Proc. of IEEE

INFOCOM, March 2004.

[13] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and routing for large-scale

peer-to-peer systems,” in IFIP/ACM Int. Conf. Distributed Systems Platforms (Middleware), Nov. 2001.

[14] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scribe: A large-scale and decentralized

application-level multicast infrastructure,” IEEE JSAC, vol. 20, no. 8, October 2002.

[15] B. Zhao, J. Kubiatowicz, and A. Joseph, “Tapestry: An infrastructure for fault-resilient wide-area location

and routing,” U. C. Berkeley, Tech. Rep. UCB//CSD-01-1141, Apr. 2001.

[16] S. Zhuang, B. Zhao, J. Kubiatowicz, and A. Joseph, “Bayeux: An architecture for scalable and

fault-tolerant wide-area data dissemination,” in Proc. of NOSSDAV, June 2001.

[17] A. Varga et al. The OMNeT++ discrete event simulation system. http://www.omnetpp.org

53

http://www.omnetpp.org/

[18] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the selfsimilar nature of Ethernet traffic

(extended version),” IEEE/ACM Transactions on Networking, vol. 2, pp. 1–15, Feb. 1994.

[19] Taiwan Network Information Center. http://www.twnic.net.tw/

[20] Chunghwa Telecom. http://www.cht.com.tw/

[21] L. Lao, J.-H. Cui, M. Gerla, and D. Maggiorini, “A comparative study of multicast protocols: Top, bottom,

or in the middle?” in Proc. of IEEE INFOCOM, Mar. 2005.

[22] V.K. Goyal, “Multiple description coding: Compression meets the network,” IEEE Signal Processing

Magazine, vol. 18, pp. 74-93, Sept. 2001.

[23] A. Drigas, S. Kouremenos, Y. Bakopoulos, V. Loumos, “A study of H. 263 traffic modeling in multipoint

videoconference sessions over IP networks,” Computer Communications, vol. 29, issue 3, Feb, 2006.

[24] VC-1, SMPTE. http://www.microsoft.com/windows/windowsmedia/forpros/events/NAB2005/VC-1.aspx

[25] RealProducer, RealNetworks. http://docs.real.com/docs/RealProducer10/Producer.pdf

54

http://www.twnic.net.tw/
http://www.cht.com.tw/
http://www.microsoft.com/windows/windowsmedia/forpros/events/NAB2005/VC-1.aspx
http://docs.real.com/docs/RealProducer10/Producer.pdf

Appendix

A. Code of Implementation

We show some codes of functions used in the simulation. All these codes have be

modified and simplified for easy understanding.

A.1 Join and Accept
void Host::send_join_req(int treenum) {
 do_parent_find(treenum);

 packetp=do_packet_create(index(),dest,NET_JOIN_REQ);
 send(packetp,"out");
}

void Host::receive_join_req(Net_packet *packetp) {
 treenum=packetp->getIntpar(0);

 if(inService==false) {
 send_join_accept(packetp);
 send_join_req(treenum);
 }
 else {
 if(isSource==true) {
 if(c_child_num<max_child_num) {
 if(hasChildInTree[treenum]==0)
 send_join_accept(packetp);
 else if((n_IDA-hasChildInTreeNum) < (max_child_num-child_num))
 send_join_accept(packetp);
 else
 send_join_help(packetp);
 }
 else
 send_join_help(packetp);
 }
 else if(interiorNum==treenum) {
 if(child_num<max_child_num)
 send_join_accept(packetp);
 else
 send_join_help(packetp);
 }
 else
 do_join_req_forword(packetp);
 }
}

void Host::send_join_accept(Net_packet *packetp) {
 do_child_add(childid,treenum);

55

 newpacketp=do_packet_create(index(),childid,NET_JOIN_ACCEPT);
 send(newpacketp,"out");
}

void Host::receive_join_accept(Net_packet *packetp) {
 tree_num=packetp->getIntpar(0);

 parent[tree_num]=packetp->getSrc();

 if(tree_num==default_interiorNum && c_child_num==0)
 interiorNum=tree_num;
 else if(interiorNum==-1)
 interiorNum=tree_num;
}

A.2 Helper Approach
void Host::send_join_help(Net_packet *packetp) {
 helper=do_helper_find(childid,treenum);

 newpacketp=do_packet_create(index(),helper,NET_JOIN_HELP);
 send(newpacketp,"out");
}

void Host::receive_join_help(Net_packet *packetp) {
 treenum=packetp->getIntpar(0);

 if(child_num>=max_child_num)
 send_join_help_fail(packetp);
 else
 {
 if(inService==false)
 send_join_help_accept(packetp);
 else {
 if(close_to_new_parent()==true) {
 send_leave_notify(parent[treenum],treenum);
 change_parent(packetp);
 }
 send_join_help_accept(packetp);
 }

 packetp->setSrc(childid);
 send_join_accept(packetp);
 }
}

void Host::send_join_help_accept(Net_packet *packetp) {
 dest=packetp->getSrc();

 if(isChangeParent==true) {
 interiorNum=treenum;
 parent[treenum]=dest;
 }

 newpacketp=do_packet_create(index(),dest,NET_JOIN_HELP_ACCEPT);
 send(newpacketp,"out");
}

void Host::receive_join_help_accept(Net_packet *packetp) {

56

 if(isChangeParent==true) {
 do_child_add(childid,treenum);
 send_child_transfer(packetp);
 }
}

void Host::receive_join_help_fail(Net_packet *packetp) {
 send_join_help(packetp);
}

void Host::send_child_transfer(Net_packet *packetp) {
 childid=do_transfer_child_find(treenum,helper);
 do_child_remove(childid,treenum);

 newpacketp=do_packet_create(index(),helper,NET_CHILD_TRANSFER);
 send((cMessage *)newpacketp->dup(),"out");
 newpacketp->setDest(childid);
 send(newpacketp,"out");
}

void Host::receive_child_transfer(Net_packet *packetp) {
 if(isHelper==true)
 do_child_add(childid,treenum);
 else {
 if(inService==false || inTree[treenum]==false)
 send_leave_notify_p(parent[treenum],treenum);
 else
 parent[treenum]=helper;
 }
}

A.3 Receive and Retransmit
void Host::receive_stripe_trans(Net_packet *packetp) {
 if(isSubscriber==false || (packetp=do_stripe_insert(packetp))!=NULL) {
 if(bit_error()==false && peer_failure()==false)
 send_stripe_forward(packetp);
 }
}

void Host::send_stripe_forward(Net_packet *packetp) {
 childp=child_table.begin();
 for(i=0;i<child_table.size();i++) {
 packetp->setDest(childp->id);
 send((cMessage *)packetp->dup(),"out");
 childp++;
 }
}

Net_packet *Host::do_stripe_insert(Net_packet *packetp) {
 seq_diff=stripe_seq-current_seq;
 if(seq_diff<0) //the stripe is out of date
 return NULL;

 newptr=(stripeptr+seq_diff)%stripe_buffer_size;
 if(seq_diff<stripe_buffer_size) {
 if(stripe_table[newptr][stripenum]==true) //already have the stripe
 return NULL;

57

 do_stripe_buffer_insert(newptr,stripenum,stripe);

 //stripe regeneration
 if(stripe_sum[newptr]>=m_IDA && stripe_table[newptr][interiorNum]==false) {
 do_ida_regen(newptr,interiorNum);
 packetp->setStrpar(stripe_buffer[newptr][interiorNum]);
 packetp->setIntpar(0,interiorNum);
 }

 while(stripe_sum[stripeptr]>=m_IDA)
 do_stripe_pop(stripeptr++);
 }
 else { //some stripes in buffer is out of date
 pop_num=min(seq_diff-stripe_buffer_size+1,stripe_buffer_size);
 for(i=0;i<pop_num;i++)
 do_stripe_pop(stripeptr++);

 do_stripe_buffer_insert(newptr,stripenum,stripe);
 }
 if(packetp->getIntpar(0)==interiorNum)
 return packetp;
 else
 return NULL;
}

void Host::do_stripe_pop(int p) {
 if(stripe_sum[p]>=m_IDA)
 do_ida_restore();
 do_stripe_table_column_clean(p);
}

B. Statistics of Simulation

B.1 Statistics for Relative Delay Penalty
No. ID RMD RAD RMND

1 28 2.807 2.975 3.640

2 52 1.961 2.176 2.787

3 78 3.979 4.557 5.941

4 102 2.236 2.517 3.157

5 120 4.983 6.067 9.053

6 125 3.130 3.953 5.902

7 131 2.822 3.137 4.292

8 161 2.168 2.549 3.479

9 164 5.631 3.741 5.266

10 193 3.224 2.388 2.972

11 194 4.063 3.839 5.166

12 213 2.544 2.988 4.346

13 217 2.650 3.378 4.875

14 224 2.162 2.561 3.288

15 287 2.999 2.852 3.463

16 294 5.457 5.916 8.042

58

17 308 3.167 3.367 4.273

18 311 4.031 4.949 6.920

19 369 2.164 2.367 2.902

20 376 4.588 3.562 4.694

21 413 1.958 2.280 3.400

22 432 4.101 4.644 5.794

23 460 2.426 2.771 3.738

24 469 4.584 5.395 7.613

25 487 3.281 3.275 4.063

26 491 4.464 4.920 6.125

27 519 3.360 4.201 5.920

28 535 4.427 3.185 4.134

29 551 2.738 3.268 4.321

30 578 1.856 2.023 2.480

31 631 2.183 2.602 3.315

32 652 2.704 3.067 3.987

33 659 2.089 2.380 2.861

34 671 2.743 3.482 4.843

35 707 2.633 2.926 4.131

36 722 1.835 2.059 2.471

37 743 4.076 4.947 6.766

38 748 1.866 2.094 2.539

39 794 3.761 4.332 5.427

40 807 3.984 4.670 6.202

41 809 4.061 3.152 4.012

42 810 4.147 4.946 7.602

43 828 4.882 3.327 4.491

44 852 15.039 19.389 28.714

45 871 3.771 3.875 5.179

46 874 3.770 3.624 5.477

47 916 3.841 3.828 4.921

48 944 2.686 3.110 4.089

49 1001 4.576 5.418 7.393

50 1008 2.237 2.545 3.082

B.2 Statistics for Probability of Success Restoration
Peer Failure Probability

No. ID
1% 2% 3% 4% 5% 6% 7%

1 28 96.618 92.887 94.943 83.861 60.356 55.619 69.265

2 52 95.465 97.447 94.406 94.358 94.500 91.776 88.229

3 78 94.988 94.971 98.642 96.575 75.763 81.348 78.740

4 102 98.368 90.115 93.970 84.519 88.905 79.568 45.256

5 120 95.213 96.440 78.882 76.446 70.933 70.663 84.220

6 125 98.147 95.099 97.907 74.155 87.071 83.444 78.751

7 131 98.442 98.660 98.758 95.734 86.071 74.750 70.247

8 161 98.943 84.558 96.687 80.945 92.790 86.258 58.265

9 164 99.717 97.090 95.689 78.072 92.729 72.577 62.053

10 193 97.993 99.257 99.032 93.190 63.414 73.008 58.105

11 194 97.637 98.083 89.556 92.892 48.174 76.773 72.989

59

12 213 97.994 97.296 96.300 90.709 85.964 75.734 49.638

13 217 95.495 96.289 93.805 70.813 89.140 77.693 58.503

14 224 95.443 95.908 94.437 93.136 91.046 82.809 78.475

15 287 98.767 94.578 93.813 96.068 74.648 82.694 73.038

16 294 96.368 98.341 91.868 90.906 73.399 55.084 37.632

17 308 99.703 96.704 91.174 61.509 61.604 67.247 56.555

18 311 99.344 98.521 97.171 83.910 39.922 69.822 72.017

19 369 94.029 85.424 95.056 94.132 94.838 87.537 83.035

20 376 98.263 99.157 89.193 94.712 81.806 91.804 62.319

21 413 99.718 83.089 92.012 89.595 93.535 85.627 71.840

22 432 94.208 97.885 77.883 86.239 74.907 66.291 78.194

23 460 99.623 99.073 91.886 94.408 94.441 86.712 78.204

24 469 96.971 99.478 88.862 90.843 46.445 55.041 60.267

25 487 99.871 97.328 73.285 86.619 79.918 84.014 78.679

26 491 99.580 99.169 97.377 85.291 73.798 79.406 62.835

27 519 99.852 97.660 84.803 87.690 89.998 85.249 90.904

28 535 93.743 83.210 89.347 79.793 87.104 73.476 50.009

29 551 97.978 98.546 96.613 96.968 91.512 89.056 77.197

30 578 94.647 92.262 96.271 95.758 94.459 92.276 86.253

31 631 99.425 95.506 97.705 92.620 92.964 85.587 77.077

32 652 95.843 92.876 97.814 94.832 96.060 92.451 87.917

33 659 97.889 99.275 97.247 95.681 95.633 92.047 89.146

34 671 98.125 95.865 93.017 90.961 92.406 91.804 84.645

35 707 98.670 98.428 97.833 92.055 93.249 90.475 82.480

36 722 93.359 95.381 98.312 94.230 86.111 83.271 77.083

37 743 97.497 99.268 96.814 97.347 92.433 85.847 77.545

38 748 96.859 92.598 96.922 96.602 91.874 90.078 86.140

39 794 95.670 97.522 87.929 85.879 77.146 93.515 84.385

40 807 99.849 95.886 91.247 96.699 76.055 72.071 73.088

41 809 98.597 80.544 95.231 67.934 74.148 67.334 71.577

42 810 99.705 98.729 90.746 82.310 92.045 75.144 65.784

43 828 98.338 96.281 95.329 78.390 41.714 60.233 54.781

44 852 99.926 93.130 97.635 94.530 90.390 91.728 97.138

45 871 99.870 92.817 73.386 93.903 92.261 74.283 77.249

46 874 100.000 99.832 97.723 96.525 49.556 85.246 62.817

47 916 99.017 88.531 96.647 81.325 79.926 71.113 57.444

48 944 97.710 96.550 97.516 88.585 80.426 92.640 85.505

49 1001 98.846 99.741 99.005 85.207 86.755 77.889 82.694

50 1008 95.082 94.668 96.181 96.238 94.262 91.562 78.927

B.3 Distance between Source and Subscribers
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Distance 13 12 12 15 8 8 10 10 8 15 9 10 9 11 13 8 12 12 13 10 12 11 10 9 14

No. 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

Distance 10 8 11 10 15 11 9 13 8 9 15 9 15 12 11 12 7 10 2 14 9 13 8 9 13

60

B.4 Distance between Each Subscribers

61

	摘 要
	ABSTRACT
	 誌 謝
	 Contents
	 List of Figures
	 List of Tables
	
	Chapter 1 Research Overview
	1.1 Problem Statement
	1.1.1 Dynamic Peers
	1.1.2 Asymmetric Connectivity

	1.2 Research Approach
	1.2.1 Definition of Resilience
	1.2.2 Three Approaches

	1.3 Outline of Thesis

	 Chapter 2 Background
	2.1 Architecture of Multicast
	2.2 Related Work
	2.2.1 Multiple Description Coding (MDC)
	2.2.2 Multiple Stripes
	2.2.3 Waypoint
	2.2.4 Tree Building Algorithm
	2.2.5 Enhancement of Resilience

	 Chapter 3 Principle
	3.1 Overall System
	3.2 Information Dispersal Algorithm (IDA)
	3.2.1 Split
	3.2.2 Restoration
	3.2.3 Efficiency
	3.2.4 Advantage
	3.2.5 Influence of n and m

	3.3 Multiple Stripes/Trees
	3.3.1 Combine with IDA
	3.3.2 Building Disjoint Paths
	3.3.3 Become Interior Node

	3.4 Helper
	3.4.1 Demand of Helper
	3.4.2 Find Helper
	3.4.3 Restriction of Helper
	3.4.4 Helper Join
	3.4.5 Enhancement
	3.4.6 Difference between Helper and Waypoint

	 Chapter 4 Mechanism
	4.1 Service Startup
	4.1.1 Establish Neighbor Table
	4.1.2 Source of Service
	4.1.3 IDA Configuration
	4.1.3.1 (n, o, m) IDA
	4.1.3.2 Apply to Streaming Data
	4.1.3.3 Discussion

	4.2 Behavior of Peers
	4.2.1 Architecture of Peer Behavior
	4.2.2 Join
	4.2.2.1 Randomly Join o Trees
	4.2.2.2 Choose Parents
	4.2.2.3 Cases of Join Accept

	4.2.3 Receive and Retransmit
	4.2.3.1 General Retransmission
	4.2.3.2 Stripe Regeneration

	4.2.4 Adjust Number of Joining Trees
	4.2.4.1 Foundation
	4.2.4.2 Increase and Decrease
	4.2.4.3 Priority of Joining Tree Selection

	4.2.5 Leave

	 Chapter 5 Performance Analysis
	5.1 Purpose
	5.2 System Configuration
	5.2.1 Network Topology
	5.2.2 Link and Traffic Condition
	5.2.3 Trickle Setup
	5.2.4 Streaming Data Setup

	5.3 Experiment
	5.3.1 Metrics
	5.3.2 Procedure

	5.4 Results and Analysis
	5.4.1 Restoration Delay and Stripe Delay
	5.4.1.1 Delay for Individual Subscriber
	5.4.1.2 Delay for Trickle
	5.4.1.3 Relative Delay Penalty (RDP)

	5.4.2 Link Stress
	5.4.3 Probability of Success Restoration

	 Chapter 6 Conclusion
	6.1 Accomplishment
	6.2 Future Work

	 Reference
	 Appendix
	A. Code of Implementation
	A.1 Join and Accept
	A.2 Helper Approach
	A.3 Receive and Retransmit

	B. Statistics of Simulation
	B.1 Statistics for Relative Delay Penalty
	B.2 Statistics for Probability of Success Restoration
	B.3 Distance between Source and Subscribers
	B.4 Distance between Each Subscribers

