
Chapter 1

Introduction

Recent advances in wireless and embedded technologies usher in a new era for our lives. It

is expected that an increasing number of small and inexpensive wireless devices (referred to

as sensor nodes [12]) are deployed for monitoring various measurements. Many applications

of wireless sensor networks have been proposed such as �eld data collection, remote monitor-

ing and control, smart home, factory automation and security [10][2][5][3]. In wireless sensor

networks, a large number of static sensor nodes are deployed over a monitored region. Sen-

sor nodes are capable of collecting, processing and storing environmental information, and

communicating with neighboring nodes. There are access points (or called sinks) serving as

an interface for issuing queries and collecting sensing readings from sensor nodes (e.g., tem-

perature, pressure and humidity). Sensing readings are reported to the sink via multi-hop

communications according to a required reporting frequency. Due to the nature of sensor

nodes, sensor nodes use their batteries as power sources. Since sensor nodes are deployed in

a hard-reach areas, battery replacements for sensor nodes are sometimes impossible. As a

result, power saving is a vital design issue in wireless sensor networks [14][13][1]. Compared

to the energy consumption of computing and sensing of sensor nodes, communication is a

dominant factor in energy consumption. Thus, reducing as many message transmissions as

possible is able to signi�cantly prolong the life time of sensors.

1



Q1

S1

S2 S3

S4 S5

S6 S7

sink Q2

(a) Queries without sharing (b) Queries with sharing

Q1

S1

S2 S3

S4 S5

S6 S7

sink Q2

Figure 1.1: The bene�t of sharing query results

In general, users submit declarative queries that specify data processing needed[4]. For

example, queries specify the type of readings (e.g. temperature and light) as well as the set

of sensor nodes interested by users. Through existing routing protocols in sensor networks,

queries are propagated into sensor networks and query results are collected via a routing tree

with the sink as the root node [6][8][16]. As described before, reducing number of messages

is able to save power consumption. Prior works [6][8][16] explore the feature of in-network

aggregation in which sensor nodes in routing tree are able to perform aggregated operators.

By exploiting in-network aggregation, sensor nodes are able to reduce the energy consumption

in that instead of sending all sensing readings to the sink, sensor nodes performing aggregate

operators are able to further reduce the amount of data transmission. As such, sensor nodes

could save a considerable amount of energy [6]. Same as in [6][16][9], a query is viewed as

a query tree, where the nodes are those sensor nodes participated in the query processing

and the edges among sensor nodes represent the routing paths determined by existing routing

protocols for sensor networks. Moreover, in a query tree, leaf nodes are the data sources and

the intermediate nodes represents the relay nodes.

In monitoring applications of wireless sensor networks, queries are typically long-running

and executed over a speci�ed period[7]. Since each query is independently performed, wire-

2



less sensor networks consume a considerable amount of energy when the number of queries

increases. Queries issued could be categorized according to their aggregate operator and

monitored time period. Queries in the same group have the same aggregate operator and

monitored time period. As such, queries in the same group are able to share their query

results to reduce the number of messages. Figure 1.1 illustrates the sharing of two queries.

The query trees of these two queries are shown in Figure 1.1(a), where the data sources of Q1

(respectively, Q2) are S1, S2 and S3 (respectively, S2, S3), and sensors nodes S4, S5, S6 and

S7 are reply nodes for these two queries. Assume that we exploit in-network processing in

our illustrative examples and thus, reply nodes will perform the aggregate operators. Clearly,

the query results (referred to as partial results) in S4 and S7 are the same since data sources

of S4 and S7 are the same, and both S4 and S7 perform the same query operator. Thus, Q1

could share the partial result of S4 with Q2. Figure 1.1(b) shows the sharing between Q1 and

Q2. The query tree of Q1 is referred to as a backbone which shares query results to other

queries. Note that the query tree of Q2 needs to be adjusted to get the partial result of S4.

Those queries needed to be adjusted to get some query results from a backbone is referred to

as non-backbone. Intuitively, the query result of Q2 in Figure 1.1(b) is the same to that in

Figure 1.1(a). In Figure 1.1(a), the number of messages involved is 9. On the other hand, the

number of messages in 1.1(b) is 7, showing that sharing query results is able to further reduce

the number of messages.

Given a set of queries with the same aggregate operator and time duration, we aim at

reducing the total number of messages involved in query processing. Since these queries have

the same aggregate operator, sharing query results is able to reduce message transmissions

without in�uencing the �nal query result of each query. As described in our illustrative

example, queries are divided into two sets: backbone and non-backbone sets. Query trees in

the backbone set are issued as usual and should share their partial query results with those

queries tree in the non-backbone set. The problem addressed in this paper is that given a set

3



Backbone set Non-backbine set Number of messages
Case 1 Q1; Q2; Q3; Q4 � 21
Case 2 Q1 Q2; Q3; Q4 18
Case 3 Q4 Q1; Q2; Q3 19
Case 4 Q1; Q4 Q2; Q3 18
Case 5 Q3; Q4 Q1; Q2 17

Table 1.1: Five cases of backbone sets and the corresponging numbers of messages incurred.

of query trees, we should determine which query trees should be put in the backbone set and

non-backbone set so as to minimize the total number of messages involved in multiple queries.

The problem we study can be best understood by an illustrative example in Figure 1.2, where

four query trees are presented. Table 1 shows the �ve cases. In case 1, four query trees are

injured to wireless sensor networks, which incurs the maximal number of messages since no

query result is shared among query trees. Consider the case 2, where Q1 is selected in the

backbone set. Through the query result sharing of Q1, the total number of messages involved

in four queries is reduced to 18. If one selects Q4 as a tree in the backbone set (i.e., Case 3),

the total number of messages is 19. Clearly, selecting which query trees into the backbone set

has a great impact on the number of messages reduced. In case 4, the backbone set contains

Q1 and Q2 and the number of message in this case is 18, which is equal to that of case 2.

Thus, increasing number of trees in the backbone set is not always bene�cial in minimizing

the number of messages. In case 5, the number of messages is reduced to 17 when Q3 and

Q4 are in the backbone set, which incurs the minimal number of messages among these �ve

cases. From the above example, given a set of query trees, one should judiciously decide which

query trees should be included in the backbone set and how many trees should be put in the

backbone set with the purpose of minimizing the total number of messages. This is the very

problem we shall address in this paper.

In order to determine a backbone set that minimizes the total transmission, we �rst formu-

late the problem of selecting backbones and transform this problem into Max-Cut problem.

4



Q1

S1

S2 S6

S7

S11

Q2

Q3 Q4

S12

S3

sink

S4

S5

S7

S8

S11

S12

S3

sink

S1

S2

S9 S4

S5

S7 S10

sink

S7

S11

S12

S3

sink

Figure 1.2: The query trees of four example queries

5



Speci�cally, given a set of queries, we derive a graph, where each vertex represents one query

and the corresponding weight edge denotes the number of messages reduced by sharing the

partial results. According to the graph derived, we develop a heuristic algorithm SB (stand-

ing for Selecting Backbones) to derive a cut in which both backbones and non-backbones are

determined. In order to evaluate the solution quality obtained by algorithm SB and compare

its resulting backbone set with the optimal one, we devise an algorithm OOB (standing for

Obtaining Optimal Backbones) to obtain the optimal solution. Algorithm OOB is mainly a

guided search and is similar to the well-known A� search by using a cost function to guide

the search and to ensure the optimality of the goal node reached [11]. With the proper de-

sign of the guide function, algorithm OOB can obtain the optimal solution very e¢ ciently.

Performance of these algorithms is comparatively analyzed and sensitivity analysis on several

parameters, including the number of queries and the distribution of data sources for queries, is

conducted. It is shown by our simulation results that by sharing the partial results, algorithm

SB is able to signi�cantly reduce the total number of messages. Moreover, the backbones de-

termined by algorithm SB is in fact very close to the optimal backbones resulted by algorithm

OOB. With its polynomial time complexity, algorithm SB incurs a much shorter execution

time than algorithm OOB. Since power saving is very important issue, especially for long

term monitoring query processing, through sharing the partial results, algorithm SB is able

to select those backbones so as to drastically reduce the number of messages, thereby saving

a considerable amount of energy.

A signi�cant amount of research e¤orts have been elaborated upon issues of in-network

query processing for power saving in wireless sensor networks [16][9]. Prior works [6][8][16]

explore the feature of in-network aggregation in which sensor nodes in routing tree are able

to perform aggregated operators. By exploiting in-network aggregation, sensor nodes are able

to reduce the energy consumption in that instead of sending all sensing readings to the sink,

sensor nodes performing aggregate operators are able to further reduce the amount of data

6



transmission. In [15], with a given routing tree merged by the ones of queries, queries are

executing on the merged tree and each intermediate node keeps tracking only the necessary

intermediate results for all queries. To the best of our knowledge, no prior works exploit

the query optimization for in-network queries, let alone devising algorithms to determine

backbones for sharing partial results. Our contributions are summarized as follows.

� Sharing partial results: We exploit the sharing of partial results among queries so as to

reduce the total number of messages incurred.

� Formulating the problem of sharing partial results: We formulate the problem of sharing

partial results and transform this problem into a Max-Cut like problem. Based on

the transformation, we devise a graph in which all possible partial result sharings are

presented.

� Developing two algorithms to determine the backbones: In light of the graph devised,

we propose a heuristic algorithm SB to obtain the backbones with the purpose of max-

imizing the number of messages reduced through partial result shares. Algorithm OOB

is developed to evaluate the solution quality of algorithm SB.

The rest of this paper is organized as follows. Preliminaries are presented in Section 2.

In Section 3, we develop algorithm SB for backbone selection. We devise algorithm OOB in

Section 4 to obtain the optimal solution. Performance studies are conducted in Section 5.

This paper concludes with Section 6.

7


	ACKKNOWLEDGEMENT.pdf
	MasterThesis.pdf
	MasterThesis.pdf
	cover.pdf
	coverInner.pdf
	ACKKNOWLEDGEMENT.pdf
	MasterThesis.pdf
	ABSRTACT.pdf
	thesis.pdf


	ACKKNOWLEDGEMENT.pdf




