
Chapter 3

Algorithm SB: Selecting Backbones

3.1 Determining Edges andWeights among Query Trees

As mentioned in Section 2, given a set of query trees, we should �rst derive the graph G=(V,

E). Intuitively, the set of vertices in the graph is referred to the set of query trees. Then, we

should determine edges and the corresponding weights among these query trees. For example,

given a set of query trees in Figure 3.1, the corresponding graph is shown in Figure 3.2, where

each vertex denotes as a query tree and each edge represents the partial result sharing between

query trees. When two query trees have some overlaps in their data sources, an edge will be

added in the graph to represent the partial result sharing relationship. Speci�cally, suppose

that the partial result on Sm of Ti is the same as the one on Sn of Tj. In other words, Di(m) is

the same as Dj(n) due to the same data sources. For query trees Ti; Tj, wi;j(m;n) denotes the

number of messages reduced when Tj obtains the partial result of sensor Sn in Ti for sensor Sm

in Tj: To formulate the value of wi;j(m;n); Figure 3.3 shows the number of messages involved,

where the triangle under Sn is the subtree of Sn in Tj and Nj(n) is the number of messages

spent for Dj(n) at Sn. Furthermore, since Sn should access the partial result Di(m) from Sm,

an extra transmission cost is required. Explicitly, the transmission cost is estimated as the

minimal hop count between Sm and Sn, denoted as dS(m;n). As shown in Figure 3.3, the

12

T1 T2

T3 T4

S1

sink

S2

S3 S4 S5

S9

S11 S13

S16

S1

sink

S2

S3S10

S12

S21

S7

S6

S17 S18 S19 S20 S8

sink

S4 S5

S14

S18 S19

sink

S4 S5

S14 S15 S21 S7

S6

S18 S8

Figure 3.1: Four query trees for an illustrative example.

T1 T2

T3 T4

W1,2

W2,1

W1,3W3,1

W1,4

W4,1

W3,4

W4,3

W2,4W4,2

Figure 3.2: An example graph transformed from Figure 3.1.

dotted line between Sn and Sm is the communication path and thus dS(m;n) is expressed as

the hop count of the communication path. Consequently, the value of wi;j(m;n) is formulated

as Nj(n)� dS(m;n).

When two query trees have overlaps in their data sources, these two query trees are able

to share partial results. Note that there are many possible sensors in query trees that could

share the partial results. Consider query trees T1 and T2 in Figure 3.1 as an example, where

both T1 and T2 have some overlap sensors in their data sources (i.e., S1, S2 and S3). If we

select T1 as a backbone tree, there are two possible ways for T1 to share the partial results.

13

Sn Sm

Nj(n)

dS(m,n)

Tj Ti

Figure 3.3: The number of messages involved for the partial result sharing between Ti and Tj.

Explicitly, as can be seen in Figure 3.1, T1 is able to share the partial result in S9 (respectively,

S11) to S10 (respectively, S12) of T2 due to the same data sources S1 and S2 (respectively, S1,

S2 and S3). To facilitate the presentation of all possible ways for sharing partial results from

Ti and Tj, Wi;j is used to represent the set of weights of for the edges. As mentioned above,

the weight of each possible sharing scenario is in fact in the form of wi;j(Sm; Sn), meaning that

Ti shares the partial result in Sm to sensor Sn in Tj. Therefore, given a set of query trees in

Figure 3.2, we will derive the graph shown in Figure 3.1, where an auxiliary table (i.e., Table

3.1) is built up to show the detailed information of the weights.

As described before, the auxiliary table is used to store all possible scenarios of partial

result sharing among query trees. However, some scenarios are able to be eliminated since

these scenarios will not have any impacts on the solution derived. Therefore, these unnecessary

weights are removed so as to improve the performance. Consequently, in this paper, some

weights should be removed in accordance with the following rule:

Rule of removing unnecessary weight values: For the same data source, only the

maximal weight is kept and the others are removed.

For example, in Table 3.1, we have the same data source for W2;4: According to the rule,

we only keep the maximal weight (i.e., w2;4(S18; S15)). After pruning some weights, we have

14

weight source to data source value
W1;2 w1;2(S9; S10) S9 S10 fS1; S2g 1

w1;2(S11; S12) S11 S12 fS1; S2; S3g 3

W2;1 w2;1(S10; S9) S10 S9 fS1; S2g 1
w2;1(S12; S11) S12 S11 fS1; S2; S3g 3

W1;3 w1;3(S13; S14) S13 S14 fS4; S5g 1

W3;1 w3;1(S14; S13) S14 S13 fS4; S5g 1

W1;4 w1;4(S13; S14) S13 S14 fS4; S5g 1

W4;1 w4;1(S14; S13) S14 S13 fS4; S5g 1

W2;4 w2;4(S18; S15) S18 S15 fS7; S8; S9g 3
w2;4(S18; S21) S18 S21 fS7; S8; S9g 1
w2;4(S19; S15) S19 S15 fS7; S8; S9g 3
w2;4(S19; S21) S19 S21 fS7; S8; S9g 2

W4;2 w4;2(S15; S18) S15 S18 fS7; S8; S9g 5
w2;4(S15; S19) S15 S19 fS7; S8; S9g 4
w2;4(S21; S18) S21 S18 fS7; S8; S9g 4
w2;4(S21; S19) S21 S19 fS7; S8; S9g 4

W3;4 w3;4(S14; S14) S14 S14 fS4; S5g 2

W4;3 w4;3(S14; S14) S14 S14 fS4; S5g 2

Table 3.1: The auxiliary table of weights

Weights From To Data Source Value
W1;2 w1;2(S9; S10) S9 S10 fS1; S2g 1

w1;2(S11; S12) S11 S12 fS1; S2; S3g 3

W2;1 w2;1(S12; S11) S12 S11 fS1; S2; S3g 3

W1;3 w1;3(S13; S14) S13 S14 fS4; S5g 1

W3;1 w3;1(S14; S13) S14 S13 fS4; S5g 1

W1;4 w1;4(S13; S14) S13 S14 fS4; S5g 1

W4;1 w4;1(S14; S13) S14 S13 fS4; S5g 1

W2;4 w2;4(S18; S15) S18 S15 fS7; S8; S9g 3

W4;2 w4;2(S15; S18) S15 S18 fS7; S8; S9g 5

W3;4 w3;4(S14; S14) S14 S14 fS4; S5g 2

W4;3 w4;3(S14; S14) S14 S14 fS4; S5g 2

Table 3.2: The auxiliary table after removing unnecessary weight values

15

the �nal auxiliary table shown in Table 3.2.

3.2 Design of Algorithm SB

With the graph and the corresponding weights devised above, we develop algorithm SB (stand-

ing for Selecting Backbones) to determine which query tree should be included in the backbone

set to minimize the total number of messages involved. As mentioned before, minimizing the

total number of messages spent for all queries is equal to maximizing the number of messages

reduced through sharing the partial results of backbones. More speci�cally, the objective

of algorithm SB is to maximize
X
Tj2NB

R(Tj; B). Consequently, algorithm SB is greedy in

nature and selects the backbone with the maximal number of messages reduced for those

non-backbones each time until no any message could be reduced when additional backbone is

selected.

In essence, the value of R(Tj; B) is related to how the sensor nodes of Tj access partial

results from backbones. Since there are many possible scenarios for Tj to get partial results

from backbones, we should avoid redundant message transmission when formulating the value

of R(Tj; B). Thus, we have the following property.

Property 1: If non-backbone Tj gets a partial result for a node Sx on Tj, it is unnecessary

to further access partial results for the ancestors or descendants of Sx on Tj.

Figure 3.4 clearly illustrates Property 1, where nodes Sy and Sz are the child nodes of node

Sx. Assume that nodes Sy and Sz access partial results from backbones. Obviously, since the

partial results of Sy and Sz is used to aggregate the result on Sx, node Sx should not access

the partial result from backbones to reduce the redundant message transmission. Similarly,

It is also unnecessary to take partial results for the descendants of Sy or Sz: Consequently,

if the reduced number of messages by taking partial result for Sn on Tj is already counted

in R(Tj; B), we should avoid overcounting the number of messages reduced by taking partial

16

sink

Sx

Sy Sz

Tj

Yj

Xj

Figure 3.4: Formulation of R(Tj; B)

result for the ancestors or descendants of Sn:

In light of Property 1, we have develop a procedure to determine how many messages

could be reduced through the partial result sharing. The algorithmic form of the proposed

procedure is given below:

Procedure R(Tj, B):
1. set Y = [i2BWi;j, to determine the union set of sensors from the auxiliary table ;
2. Generate the power set of Y, denoted as P (Y), is the set of all subsets of Y ;
3. 8 X 2 P (Y), if there exists any ancestor or descendant relationship in X, prune X

from P (Y);
4. return max8X2P (Y)(

X
n2X and i2B

wi;j(m;n))

In the beginning, we will determine the set of Y from the auxiliary table. As described

above, the auxiliary table will contain all the detailed information related to the partial result

sharing. Thus, given the backbone set, we could easily decide the set of Y . In fact, Y contains

all the sensors in Tj that could access the partial results from backbones. In order to enumerate

all the possible scenarios, we should generate the power set of Y, denoted as P (Y): As pointed

out earlier, we should avoid the redundant over-estimation. Thus, for each set in P (Y), we

should check whether there is any ancestor and descendant relationship or not. Note that

one could refer to query tree Tj to verify any ancestor and descendant relationship. As such,

the set of P (Y) has all the possible scenarios of partial result sharing for Tj. Consequently,

the number of messages reduced for Tj is able to be the maximal value among these possible

17

Sets in P (Y) R(T2; B)

fS10; S12; S18g N=A

fS10; S12g N=A

fS12; S18g w1;2(S11; S12) + w4;2(S15; S18) = 8
�

fS10; S18g w1;2(S9; S10) + w4;2(S15; S18) = 6

fS10g w1;2(S9; S10) = 1

fS12g w1;2(S11; S12) = 3

fS18g w4;2(S15; S18) = 5

Table 3.3: The �nal result of R(T2;B); where B = fT1; T4g:

scenarios.

Consider an example in Figure 3.1, where the auxiliary table is shown in Table 3.2. Assume

that the backbone set contains T1 and T4. We will illustrate how to derive the number of

messages reduced for T2 (i.e., R(T2; B)). From Table 3.2, both W1;2 and W4;2 should be

considered and we could verify that the set of Y should be {S10, S12, S18). Then, we will

generate the power set of Y (i.e., P(Y)) and prune some sets in P(Y) if there exists any

ancestor and descendant relationship. Note that since S12 is the ancestor of S10 in query tree

T2, both {S10, S12, S18} and {S10, S12} will be eliminated from P(Y). For each set of P(Y),

we will derive the number of reduced messages through partial result sharing of backbones.

For example, for set {S12, S18}, we could derive that the value of R(T2; B) will be 8 (i.e.,

w1;2(S11; S12) + w4;2(S15; S18) = 8): Following the same operation, Table 3.3 shows the set of

P(Y) and the corresponding values. Among these scenarios, {S12, S18) should be selected since

this scenario is able to reduce as many number of messages as possible through partial result

sharing of backbones.

By exploring the formulation of R(Tj; B), we could estimate how many bene�ts (i.e.,

number of messages reduced) when one query tree is selected as a backbone. In order to

evaluate the bene�ts of selecting query tree Ti as a backbone, we have the following de�nition.

De�nition 1: The backbone gain achieved by selecting Ti as a backbone, denoted by

�(Ti); can be formulated as �(Ti) =
P

Tj2(NB�Ti)R(Tj; B [Ti)�
P

Tj2NB R(Tj; B):

18

In light of De�nition 1, we propose a heuristic algorithm SB that iteratively select back-

bones according to backbone gains of query trees. Initially, the backbone set is empty and the

non-backbone set is the set of query trees given. For each query tree in the non-backbone set,

we will calculate the corresponding backbone gain. Then, the query tree with the maximal

backbone gain is selected in the backbone set. Once one query tree is selected as a backbone,

we should update the backbone gains for query trees in the non-backbone set. Similarly, ac-

cording to the backbone gains of query trees in the non-backbone set, we will select the one

with the maximal backbone gain as a backbone. Algorithm SB selects the query trees in the

non-backbone set iteratively until no additional query tree is selected in the backbone set.

When query trees in the non-backbone set have their corresponding backbone gains smaller

than zero, no query tree will be selected in the backbone set since no more bene�t will be

earned. As such, a set of query trees is divided into two sets: the backbone set and the

non-backbone set, which is akin to the Max-Cut problem with the objective of maximizing

the cut, meaning that the number of messages reduced is maximized.

Algorithm 1 SB: Selecting Backbone
Input: A set of query trees AT = fT1; :::; Tng
Output: A set of backbones B
1: NB (AT
2: B (�
3: while it exists some query tree whose BRb > 0 do
4: Select Tb as backbone whose BR(Tb) is maximal among all query trees in NB
5: B (B [Tb
6: NB (NB � Tb
7: end while
8: Arrange for each non-backbones in NB to take the partial results of backbones in B

Algorithm 1 shows the algorithm SB for selecting backbones by using backbone gain. the

initial setting is performed from line 1 to line 2. The selection of backbones is shown from

line 3 to line 7. Speci�cally, if query tree Ti in the non-backbone set has �(Ti) larger than

zero, algorithm SB will iteratively select query trees as backbones until no query tree has

its backbone gain larger than zero. In line 4, algorithm SB selects query tree Ti with the

19

Selection Backbone and Backbone Rank
Iteration Non-backbone set T1 T2 T3 T4

1 B = fg; NB = fT1; T2; T3; T4g 5 6 3 8
2 B = fT4g; NB = fT1; T2; T3g 2 -2 -1 -
3 B = fT1; T4g; NB = fT2; T3g - -7 -2 -

Table 3.4: An execution scenario of algorithm SB.

maximal backbone gain so as to guarantee that the bene�t of selecting this query tree as a

backbone will be most worthy. Once one query tree is selected as a backbone, we shall update

backbone gains of query trees in the non-backbone set. Finally, we will have the backbone set

and the non-backbone set. In light of the graph derived in Section 3.1 and the auxiliary table,

query trees in the non-backbone set will adjust their tree structures to access partial results

of backbones.

Consider four query trees in Figure 3.1, where the corresponding graph in Figure 3.2 with the

auxiliary table in Table . 3.4 shows the execution scenario of algorithm SB. In the begin-

ning, backbone gains of these four query trees will be calculated. For example, �(T4) =P
Tj2(NB�T4)R(Tj; B[T4)�

P
Tj2NB R(Tj; B) = R(T1; T4)+R(T2; T4)+R(T3;T4)�R(T1; �)�

R(T2; �) � R(T3; �) -R(T4; �) = 1 + 5 + 2 � 0 � 0 � 0 = 8. Note that the maximal value

of backbone gain is marked with an �*�. It can be seen in the �rst iteration, query tree T4

is selected as a backbone since query tree T4 will bring the maximal bene�t to other query

trees in the non-backbone set. After selecting query tree T4 as a backbone, we should update

backbone gains of non-backbone query trees. Following the same procedure, we could obtain

the up-to-dated backbone gains and then select the maximal value of backbone gain among

query trees in the non-backbone set. In the second iteration, T1 will be included in the back-

bone set. Similarly, all query trees in the non-backbone set should update their corresponding

backbone gains. In the third iteration, since all query trees in the non-backbone set have their

backbone gains smaller than zero, algorithm SB will stop selecting backbones. As a result,

20

we have the backbone set B={ T1; T4) and the non-backbone set NB={T2, T3}. Therefore, it

can be seen that the number of messages reduced is formulated as
P

Tj2NB R(Tj; B): In this

case, the number of messages reduced is R(T2; B) +R(T3; B) = 8 + 2 = 10:

The time complexity of algorithm SB is analyzed as follows. For each iteration of backbone

selection, the backbone gains of all non-backbones should be updated. Suppose there are i

non-backbones currently exist, then that update costs O(i � O(R)). After this update, a

non-backbone with maximal backbone gain is selected as a backbone. This selection costs

O(i � log(i)). For the worst case that the iterations of backbone selection execute jQj times.

From above, the time complexity of SB is
jQjX
i=1

(O(i �O(R)) +O(i � log(i))).

21

	ACKKNOWLEDGEMENT.pdf
	MasterThesis.pdf
	MasterThesis.pdf
	cover.pdf
	coverInner.pdf
	ACKKNOWLEDGEMENT.pdf
	MasterThesis.pdf
	ABSRTACT.pdf
	thesis.pdf

	ACKKNOWLEDGEMENT.pdf

