
Chapter 4

Algorithm OOB: Obtaining Optimal

Backbones

In order to compare to the backbone set obtained by algorithm SB with the optimal one,

by utilizing the concept of A* search[11], we design algorithm OOB (standing for Obtaining

Optimal Backbones) which is able to determine the optimal backbones. Determining optimal

backbones can be represented by a search problem based on state transition. In fact, algorithm

OOB is a best-�rst state transition search. The search made by algorithm OOB can be

represented by a solution tree where each node is associated with a state of backbones. Figure

4.1 shows part of an example state transition search which corresponds to the case of selecting

backbones among four example query trees shown in Figure 3.1. Starting from the root in

the level one, algorithm OOB generates nodes in level i to explore the possible backbone

selections with the number of backbones being i � 1. As shown in Figure 4.1, a node in the

solution tree contains one possible backbone and non-backbone sets (i.e., B and NB). The

goal node contains the solution of optimal backbone and non-backbone set with the purpose

of minimizing the number of messages involved in all query trees. The search for goal node

starts from the root node of solution tree. The root node represents that we do not select

any backbones yet. The child nodes of a node is generated as we select one of the query tree

22

B={}
NB={T1, T2, T3, T4}

B={T1}
NB={T2, T3, T4}

B={T2}
 NB={T1, T3, T4}

B={T3}
 NB={T1, T2, T4}

B={T4}
NB={T1, T2, T3}

g=0
h=22
f=22

g=5
h=5
f=10

g=6
h=3
f=9

g=3
h=11
f=14

g=8
h=2
f=10

B={T3, T4}
 NB={T1, T2}

g=6
h=2
f=8

B={T1, T4}
NB={T2, T3}

g=10
h=0
f=10

*

1

2 34

5

6

7

Figure 4.1: The solution tree for seleting backbones from four example queries

Tj 2 NB to join B; where j > i for each Ti in B and BR(Tj) > 0. For example, assume that

the current node has B = fT3g and NB = fT1; T2; T4g. One child node is formed as we select

T4 into B instead of selecting T1 or T2. This design is to avoid generating the same child nodes

from di¤erent tree nodes. Furthermore, when selecting backbone tree from non-backbone set,

only those trees that have BR(Tj) > 0 should be considered. With a given a solution tree, the

problem of selecting backbones becomes a search problem based on state transition in which

a node has the optimal backbone set and non-backbone set with the minimal cost is to be

found (i.e., the goal node).

Similarly to an A* search, the search in algorithm OOB is controlled by an evaluation

function f(�). Denote P as the current reached node, P:B as its backbone set and P:NB as

its non-backbone set. Node P chosen for further searching its child nodes is the one which

has the largest value of f(�) among all generated nodes which have not been visited so far.

Algorithm OOB stops the search until the goal node is found. Therefore the function f(P)

that guides the search in algorithm OOB consists of two components: the cost of reaching

node P from the root, i.e., g(P), and the expected cost of arriving at the goal node from node

P , i.e., h(P). Accordingly, f(P) = g(P) + h(P). The function g(P) is de�ned as the number

23

of messages reduced by existing backbones P:B, and formulated as follows:

g(P) =
X

Tj2P:NB
R(Tj; P:B)

For example, consider a node with its B=fT4g and NB = fT1; T2; T3g;which represents the

node marked by 3, in Figure 4.1. By exploring the procedure developed in Section 3.2, we

could derive g(P) = R(T1; P:B) +R(T2; P:B) +R(T3; P:B) = 1 + 5 + 2 = 8.

As pointed out earlier, the function h(P) is the estimated cost from node P to the goal

node. In order to obtain the maximal number of messages reduced from selecting some query

trees in P:NB, h(P) is formulated as follows:

h(P) =
X

Tj2P:NB
max(�(Tj); 0).

Intuitively, we intend to select those query trees with their corresponding �(Tj) larger than

zero. Thus, h(P) is used to estimate as the sum of all those query trees with their values of

backbone gains larger than zero to make sure the success of reaching the goal node. Consider

the node (i.e., node marked by 3 in Figure 4.1) in the above example, h(�) of this node

can be calculated by max(BR(T1); 0) + max(BR(T2); 0) + max(BR(T3); 0) = max(2; 0) +

max(�2; 0) +max(�2; 0) = 2 + 0 + 0 = 2.

In light of the evaluation function, algorithm OOB can be outlined in Algorithm 2.

In the beginning of algorithm OOB (from line 1 to line 2), the root node is initially set up

with the backbone set being empty and the non-backbone set as the set of a given query trees.

Then, algorithm OOB constructs the heap data structure and inserts the root node into the

heap (from line 3 to line 5). The heap data structure is a maximal heap that removes a node

with the maximal value of the evaluation function f(�): Best_P is used to represent the node

with the optimal solution so far. Algorithm OOB removes the node i from the heap (line 6

24

Algorithm 2 OOB: Obtaining Optimal Backbones
Input: A set of query trees AT = fT1; :::; Tng
Output: A set of backbones B
1: P:NB (AT
2: P:B (�
3: Construct a heap by the value of the evaluation function f(�)
4: Best_P (P
5: Insert P to the heap
6: while heap is not empty do
7: Remove node P from the heap
8: if g(P) > g(Best_P) then
9: Best_P (P
10: end if
11: if f(P) > g(Best_P) then
12: Expand the child nodes of P and insert them into the heap
13: end if
14: end while
15: B (Best_P:B
16: Arrange for each non-backbones in NB to take the partial results of backbones in B

to line 7) and check whether Best_P should be adjusted by node i or not by comparing the

value of function g(�) of node i and that of Best_P (line 8 to line 10). If the value of f(�)

of node i is larger that of g(Best_P), node i will expands the descendants of node i. At the

same time, these descendants of node i are inserted into the heap (line 12). Algorithm OOB

expands the nodes iteratively until the heap is empty and Best_P will contain the optimal

solution for the backbone set and the non-backbone set.

Consider the four query trees in Figure as an example, where the solution tree in Figure

4.1 and the number next to each node represents the sequence of node expansion. Algorithm

OOB starts with the root node and then expands the descendants. The values of functions

g(�); h(�), and f(�) are calculated accordingly, as shown in Table 4.1. Consider the root

node, where no backbones have been selected (i.e., B = � and NB = fT1; T2; T3; T4g). Since

B = �, there is no messages reduced and thus g(root) = 0: The corresponding backbone gain

values are calculated, which is shown in Table 4.1. Consequently, we could have h(root) =

5 + 6 + 3 + 8 = 22. Hence, f(root) = g(root) + h(root) = 0 + 22 = 22. Then, the root

node is inserted into the heap. Since the heap is not empty, the root node will be removed

25

Search Backbone and Backbone Gain g h f
Order Non-backbone set T1 T2 T3 T4
1 B = fg; NB = fT1; T2; T3; T4g 5 6 3 8 0 22 22
2 B = fT3g; NB = fT1; T2; T4g 2 6 - 3 3 11 14
3 B = fT4g; NB = fT1; T2; T3g 2 -2 -1 - 8 2 10
4 B = fT1g; NB = fT2; T3; T4g - 0 0 5 5 5 10
5 B = fT1; T4g; NB = fT2; T3g - -7 -2 - 10 0 10
6 B = fT2g; NB = fT1; T3; T4g -1 - 3 0 6 3 9
7 B = fT3; T4g; NB = fT1; T2g 2 -2 - - 6 2 8

Table 4.1: The execution scenarios of algorithm OPT.

from the heap and expand the child nodes of the root node. The child nodes are the nodes

on the level 2 of the solution trees. The corresponding values of the evaluation functions of

these child nodes will be calculated and these child nodes are then inserted into the heap.

Then, the node with the maximal value of f(�) will be removed (i.e., node 2 with B = fT3g

and NB = fT1; T2; T4g: Since g(node 2) is larger than the g(Best_P), node 2 will be marked

as Best_P . Since f(node 2) is larger than the g(Best_P), node 2 expands the child node

and inserts its child nodes into the heap. Algorithm OOB stops when the heap is empty. It

can be seen that the goal node of this solution tree in node 5 which has the B={T1; T4g and

NB={T2, T3g; which is indeed the same as the one obtained by algorithm SB. As the number

of query trees increases, the number of nodes in the solution trees increases drastically. It is

worth mentioning that with the proper design of the guide function, algorithm OOB is able

to determine the optimal solution e¢ ciently.

Theorem 1: f(P) provides an upper bound of the number of messages reduced if we

select backbones by a solution of one child node of P .

Proof: Denote h�(P) as the maximal extra number of messages reduced if some query

trees in P:NB are selected as backbones. In light of h�(P), the maximal number of messages

reduced after we select backbones by a solution of one child node of P is g(P)+h�(P). On the

other hand, h(P) is the sum of all backbone gains for query trees in P:NB. In other words,

h(P) estimates h�(P) by assuming that all query trees in P:NB can be backbones and can

26

further reduce the total number of messages spent for all queries. In fact, only some query

trees in P:NB have been selected as backbones. Thus, we will update the backbone gains for

other query trees in P:NB and the backbone gains of other query trees will decrease after

some backbones are selected. Consequently, we have h(P) > h�(P) and this theorem follows.

Q.E.D.

27

	ACKKNOWLEDGEMENT.pdf
	MasterThesis.pdf
	MasterThesis.pdf
	cover.pdf
	coverInner.pdf
	ACKKNOWLEDGEMENT.pdf
	MasterThesis.pdf
	ABSRTACT.pdf
	thesis.pdf

	ACKKNOWLEDGEMENT.pdf

