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The Beacon Movement Detection Problem in
Wireless Sensor Networks for

Localization Applications

Student: Hsiao-Ju Kuo Advisor: Prof. Yu-Chee Tseng

Department of Computer Science

National Chiao-Tung University

ABSTRACT

Localization is a critical issue in wireless sensor networks. In most localization

schemes, there are beacons being placed as references to determine the positions of ob-

jects or events appearing in the sensing field. The underlying assumption is that beacons

are always static. In this work, we define a newBeacon Movement Detection (BMD)

problem. Assuming that there are unnoticed changes of locations of some beacons in the

system, this problem is concerned about how to automatically monitor such situations and

identify these beacons. Removal of such beacons in the localization engine may improve

the localization accuracy. Four schemes are proposed to solve the BMD problem. Finally,

we evaluate how these solutions can improve the accuracy of localization schemes in case

that there are unnoticed movement of some beacons. Simulation results show that our

solutions alleviate53% the decrease of positioning accuracy caused by the exceptional

beacon movement.

Keywords: Context Awareness, Location-Based Service, Pervasive Computing, Position-

ing, Wireless Sensor Network.
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Chapter 1

Introduction

Recently, we have seen significant progress in the areas of wireless ad hoc and sensor

networks. Ad hoc networking technologies enable quick and flexible deployment of a

communication platform. A wireless sensor network typically adopts the ad hoc net-

work architecture and is capable of exploiting context information collected from sensors.

Many applications of wireless sensor networks have been proposed [3, 5, 6].

Sensor networks are promising in supporting context-aware and location-aware ser-

vices. The success of this area may greatly benefit human life. One essential research

issue in sensor networks islocalization, whose purpose is to determine the position of an

object or event. For example, the sentient system Bat [2] is composed of a set of sensors

for 3D localization purpose. Sensors are installed at known positions such as ceilings, to

measure the signal traveling time from a user badge to them. Then, the location of the

badge is calculated by a triangulation algorithm. Localization by signal’s angle of arrival

is addressed in [9, 10]. In [10], ultrasonic sensors are used to estimate the location and ori-

entation of a mobile device with the Cricket compasses. In [1], a distributed positioning

system called AHLoS (Ad Hoc Localization System) is proposed, where some beacons

are aware of their own locations while others are not. The former are used to determine

the positions of the latter. A similar work based on a probability model is proposed in

[11]. The RADAR system [4] uses machine learning and pattern-matching techniques to

estimate the locations of WiFi-enable mobile devices.

In all the above localization systems, there are a set ofbeacon sensors(or simplybea-

cons), which are at fixed locations and periodically send out or receive short broadcast

packets to estimate other objects’ locations by either triangulation or pattern-matching

schemes. Based on such an infrastructure, this paper points out a newBeacon Movement

Detection(BMD) problem that may happen in most localization systems based on bea-

cons. This problem is concerned about how to automatically determine the unexpected
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Figure 1.1: An example of the Beacon Movement Detection (BMD) Problem.

change of locations of some beacons in the system. Movement of some beacons may

affect the accuracy of the localization results. For example, in Fig. 1.1(a), we show how

three beacons determine a target’s position in typical triangulation approaches. However,

if beaconb3 is moved to the location marked in gray without being noticed, the system

may incorrectly estimate the target’s location as shown in Fig. 1.1(b). Note that the circle

centered atb3 has a radius equal to the distance from the real location ofb3 to the target.

Also note that the results proposed in this paper is applicable to not only unnoticed move-

ment of beacons, but also unnoticed appearance of interference/obstacles in the sensing

field, which may affect the localization results.

The BMD problem involves two issues. First, we need to determine those beacons

that are unexpectedly relocated. Second, the result has to be forwarded to the positioning

engine to improve the localization accuracy. To solve the first issue, we will allow beacons

to monitor each other to determine those moved beacons. We will propose four schemes.

In the firstneighbor-basedscheme, beacons will keep track of their nearby beacons and

report their observations to theBMD engineto determine if some beacons have been

moved. In the secondsignal-strength-variationscheme, the change of signal strengths

of beacons will be exploited. In the thirdsignal-strength-summationscheme, the BMD

engine will collect the sum of reported signal strength changes of each beacon to make

decisions. The lastlocation-basedscheme tries to calculate each beacon’s current location

and compares the result with its predefined location to decide if it has been moved. The

first scheme is easy to implement but not very accurate. The second and third schemes

also have low complexity but perform much better. The last scheme has high complexity,

2



but is quite sensitive to noise. We also present some limitations and characteristics of

these schemes.

The remainder of this paper is organized as follows: Section 2 gives a formal definition

of the BMD problem. Section 3 presents our solutions to the BMD problem. We then

evaluate the proposed algorithms and examine their capability to improve the localization

accuracy in Section 4. Finally, Section 5 concludes on this work.

3



Chapter 2

Problem Definition

We are given a sensing field, in which a set of beaconsB = {b1, b2, ..., bn} are deployed

for localization purpose. Periodically, each beacon will broadcast aHELLOpacket. To

determine its own location, an object will collectHELLOpackets from its neighboring

beacons and send a signal strength vectorS = 〈s1, s2, ..., sn〉 to an external positioning

engine, wheresi is the signal strength of theHELLOpacket frombi (si = 0 if it cannot

hearbi). The positioning engine can then estimate the object’s location based onS (for

example, in the case of RADAR [4],S is compared against a location database obtained

in the training phase based on a finger-printing method).

Suppose that a set of unreliable beaconsBM ⊂ B are moved or blocked by obstacles

without being noticed. TheBeacon Movement Detection (BMD)problem is to compute

a detected setBD that is as similar toBM as possible. The resultBD may be used to

calibrate the positioning engine to reduce the localization error (for example, in the case

of RADAR, the entrysi in S may be ignored ifbi is detected to be unreliable).

To solve the BMD problem, we will enforce beacons to monitor each other from time

to time. Let’s denote the localobservation vectorof bi at timet by Ot
i = 〈ot

i1, o
t
i2, ..., o

t
in〉,

whereot
ij is bi’s observation onbj at timet. The content of an observation will depend on

the corresponding BMD scheme (refer to Section 3). We use the observation vector at time

t = 0 to represent the original observation when no beacon is moved. Theobservation

matrix is denoted byOt = 〈Ot
1, O

t
2, ..., O

t
n〉T . GivenOt, the BMD engine is responsible of

calculating a setBD. The result is then sent to the calibration algorithm in the positioning

engine. Fig. 2.1 illustrates our system model.

Considering the following reasons, we define thetolerable regionRi of each beacon

bi as the geographic area within which movement is acceptable. First, radio signal tends

to fluctuate from time to time. Second, ignoring the data of a beacon in the location data-

base will decrease the localization accuracy due to less beacons helping the localization

4
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procedures. So the slight movement activities should be omitted. As a result, the unreli-

able setBM only contains those beacons which are moved out of their tolerable regions.

The size of tolerable regions is application-dependent, which is beyond the scope of this

work. For simplicity, tolerable regions are assumed to be circles centered at beacons of

the same radius.

Ideally, we would expectBM = BD. However, for many reasons this cannot be

achieved. For ease of discussion, we define two events. Ahit eventis obtained on a

beaconbi if bi ∈ BM and the BMD engine also determines thatbi ∈ BD. A false event is

obtained onbi if bi /∈ BM but bi ∈ BD.
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Chapter 3

Beacon Movement Detection
Algorithms

To solve the BMD problem, we propose four detection schemes, namelyneighbor-based,

signal-strength-variation, signal-strength-summation, andlocation-basedschemes. These

schemes differ in the local processing rule of beacons and the decision algorithm at the

BMD engine. In the neighbor-based scheme, each beacon locally decides if some neigh-

boring beacons have moved into or out of their communication coverage range and reports

its observation to the BMD engine. The signal-strength-variation scheme is similar to the

neighbor-based scheme, but the definition of movement is according to a threshold of sig-

nal strength change. In the signal-strength-summation scheme, a beacon does not try to

determine whether a neighboring beacon has been moved or not. Instead, each beacon

reports the amount of signal strength change of each neighbor; the sums of all reported

values are used by the BMD engine to make a global decision. In the location-based

scheme, each beacon reports its actually received signal strengths, which are used by

the BMD engine to compute each beacon’s current location and to compare against its

original location.

3.1 Neighbor-Based (NB) Scheme

In this scheme, each beaconbi monitors the change of neighborhood relations with other

beacons in its coverage area. The neighborhood relation ofbi at timet is defined as

nt
ij =

{
1, if bi can hearbj

0, otherwise.

6
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Figure 3.1: An example of BMD problem in the neighbor-based scheme. (a) the origi-
nal relation, (b) a movement scenario, (c) observation matrixOt, (d) another movement
scenario, and (e) the observation graphGO.

Let n0
ij be the original neighborhood relation when the system was first configured. Then

the observationot
ij of bi on bj at timet is

ot
ij = nt

ij ⊗ n0
ij =





1, bj moves into or
out of bi’s coverage

0, otherwise,

where⊗ is the “exclusive or” operator. An example with four beacons is shown in

Fig. 3.1(a), where the coverage of each beacon is a circle of radius 1. Initially, each

beacon is in the coverage of two neighboring beacons. Suppose that at timet beaconsb3

andb4 are moved as shown in Fig. 3.1(b). Suppose that the tolerable region defines that

each beacon can not move more than 1 grid length. Then, the observation matrixOt is as

shown in Fig. 3.1(c).

Unfortunately, given an observation matrixOt, it is possible to come up with multiple

beacon movement scenarios that result in the sameOt. For example, the movement sce-

nario in Fig. 3.1(d) also has the same observation matrix in Fig. 3.1(c). In fact, we can

prove a stronger result that such ambiguity always exists.

Definition 1 An observation matrixOt obtained in the NB scheme isambiguousif there

exist two different movement scenariosBM andB′
M such that (i) bothBM andB′

M result
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in the sameOt and (ii)BM∩C(Ot) 6= B′
M∩C(Ot), whereC(Ot) is thecandidate setsuch

thatC(Ot) = {bj|Ot[i, j] = 1 or Ot[j, i] = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n} andC(Ot) 6= ∅.
The above condition (ii) is to ensure that there is non-trivial difference betweenBM

andB′
M . Each beacon inC(Ot) is detected by at least one other beacon.

Theorem 1 Given any movement scenarioBM and its corresponding observation matrix

Ot obtained in the NB scheme, we can always find another movement scenarioB′
M such

thatOt is ambiguous.

Proof: Given anyBM and its correspondingOt, we can easily computeBM∩C(Ot).

To construct anotherB′
M , we first pick any beaconbk ∈ BM∩C(Ot) and move all beacons

in BM − {bk} to their new locations as specified in the movement scenarioBM . Let the

corresponding observation matrix of yet-to-be-constructed movement scenarioB′
M beÔt.

We shall show thatOt = Ôt. For the time being, for any beaconsbi andbj ∈ B such that

bi 6= bk andbj 6= bk, we can derive that̂Ot[i, j] = Ot[i, j].

Next, suppose that in the movement scenarioBM , beaconbk is moved from location

l1 to l2. Let the moving vector−⇀v = l2 − l1. Then, we move all beacons exceptbk (i.e.,

B − {bk}) by the vector−−⇀v. Such movements will not change the entriesOt[i, j] and

Ôt[i, j] for all i 6= k and j 6= k. Also, these movements will not change the relative

locations ofbi andbk for all bi ∈ B − {bk}, i.e.,Ôt[k, i] = Ot[k, i] andÔt[i, k] = Ot[i, k]

for all i. Clearly, the new movement scenario will lead toÔt = Ot. Furthermore,bk ∈
BM ∩ C(Ot) andbk /∈ B′

M , which implies thatbk /∈ B′
M ∩ C(Ôt), so this theorem is

proved.

An example of the proof of Theorem 1 is in Fig. 3.1(d). LetBM be 3the movement

scenario in Fig. 3.1(b). To constructB′
M , b3 is kept unchanged andb4 is moved as sched-

uled. Thenb1, b2, andb4 are moved in the direction(0, 1) (the reverse ofb3’s moving

vector,(0,−1)). This shows that the matrixOt in Fig. 3.1(c) is ambiguous.

Clearly, the above ambiguity property prohibits us from finding the exactBM given

any Ot. The following derivation will rely on the assumption that the unreliable bea-

cons are only a small proportion of all beacons. This is reasonable in practice. Hence,

we try to select a setBD that contains as few beacons as possible. First, we transform

matrix Ot to an undirectedobservation graphGO = (V, E), whereV = C(Ot) and

E = {(bi, bj)|Ot[i, j] = 1 andOt[j, i] = 1}. Second, observe that ifOt[i, j] = 1 and

Ot[j, i] = 1, then at least one ofbi andbj has been moved. Therefore, the problem can

be regarded as avertex coverproblem [7], whose goal is to find the smallest setV ′ ⊆ V

such that for each(bi, bj) ∈ E, bi ∈ V ′ or bj ∈ V ′. For example, Fig. 3.1(e) represents

the observation graph of theOt in Fig. 3.1(c).

8



The first algorithm, calledEnumerate-NB, is only presented here for reference pur-

pose. From graphGO, we first construct all minimum vertex covers (since this problem

is NP-complete, this step could be very costly). Among all solutions, the one with the

loweststability is selected, where the stability of a beaconbi is

stability(bi) =
NPos(i)

Pos(i)
,

whereNPos(i) is the set of neighboring beacons ofbi that positively report thatbi has not

been moved, i.e.,NPos(i) = {bj|n0
ji = 1, ot

ji = 0}, andPos(i) is the set of all beacons

that positively report thatbi has been moved, i.e.,Pos(i) = {bj|ot
ji = 1}. The stability

level of a vertex cover is the sum of stability values of all beacons in the cover set. Then

the vertex cover with the lowest stability level is selected as ourBD.

Considering the above algorithm is quite costly when the problem scales up, the sec-

ond algorithmGreedy-NBadopts a heuristic approach as follows. If a beaconbi’s degree

in GO is higher, it is more suspicious to be moved. So the algorithm sorts the vertices in

GO according to their degrees of uncovered edges in a descending order, and then exam-

ines them one by one. A node is included inBD if any edge incident to it has not been

covered.

3.2 Signal-Strength-Variation (SSV) Scheme

In the neighbor-based scheme, we only consider the neighborhood relations between bea-

cons. Assuming that beacons can measure the signal strengths ofHELLOpackets from

their neighbors, the signal-strength-variation scheme asks each beaconbi to evaluate the

amount of signal strength change of each neighboring beaconbj. Let the observed signal

strength bybi onbj at timet best
ij (t = 0 means the initial observed signal strength). The

observationot
ij of bi on bj is

ot
ij =





1, if (st
ij − s0

ij ≥ δ+
ij or s0

ij − st
ij ≥ δ−ij) or

(bj moves into or out ofbi’s coverage)
0, otherwise,

whereδ+
ij andδ−ij are the pre-defined thresholds of signal strength variations.

The thresholdsδ+
ij andδ−ij of each beaconbi can be determined by the tolerable region

Rj of bj. Let locationsp andq be the farthest and nearest locations inRj with respect to

bi (refer to Fig. 3.2). If the expected signal strengths ofHELLOpackets from a beacon at

p andq aresp andsq, respectively, thenδ−ij = s0
ij − sp andδ+

ij = sq − s0
ij. As can be seen,

as long asbj moves within the belt-like gray region,bi will not report a movement event.

9
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Figure 3.2: Determining thresholdsδ+
ij and δ−ij by the tolerable regionRj of bj in the

signal-strength-variation scheme.

The major difference between the neighbor-based scheme and the signal-strength-

variation scheme is the calculation of local observation. However, the ambiguity property

still holds.

Definition 2 An observation matrixOt obtained in the SSV scheme isambiguousif there

exist two different movement scenariosBM andB′
M such that (i) bothBM andB′

M result

in the sameOt and (ii)BM∩C(Ot) 6= B′
M∩C(Ot), whereC(Ot) is thecandidate setsuch

thatC(Ot) = {bj|Ot[i, j] = 1 or Ot[j, i] = 1, 1 ≤ i ≤ n, 1 ≤ j ≤ n} andC(Ot) 6= ∅.

Theorem 2 Given any movement scenarioBM and its corresponding observation matrix

Ot obtained in the SSV scheme, we can always find another movement scenarioB′
M such

thatOt is ambiguous.

Proof: The proof is similar to that of Theorem 1. GivenBM , we can construct

another movement scenarioB′
M in a similar way. Still, we can prove that (i) for any

beaconsbi andbj ∈ B such thati 6= k andj 6= k, Ôt[i, j] = Ot[i, j], and (ii) for alli 6= k,

we can derive that̂Ot[k, i] = Ot[k, i] and Ôt[i, k] = Ot[i, k]. To prove (i), we move

all beacons inBM − {bk} to their new locations as specified in the original movement

scenario. To prove (ii), we move all beacons exceptbk by an opposite moving vector of

the original moving vector ofbk. After these movements, the relative positions of beacons

are the same as that in the movement scenarioBM . Hence,st
ij equals to the new observed

signal strengthst
ij
′ in B′

M . Besides, the thresholdδ+
ij andδ−ij for each pairsbi andbj only

depend on their tolerable regions and the initial deployment, so their observation matrices

will be identical.

Based on changes of signal strengths, we can also develop two BMD algorithms called

Enumerate-SSVandGreedy-SSV, which perform exactly the same asEnumerate-NBand

Greedy-NB, respectively, except that the observations are computed by each beacon by a

10



different criteria. So we omit the details. However, with more accurate information, these

algorithms are expected to be more accurate than the earlier ones in the neighbor-based

scheme.

3.3 Signal-Strength-Summation (SSS) Scheme

Similar to the signal-strength-variation scheme, the signal-strength-summation scheme

also assumes that beacons can measure the signal strengths from their neighboring bea-

cons. However, in this scheme, the values of signal strength variations observed by a bea-

con will be reported to the BMD engine directly without any further processing. Specifi-

cally, the observationot
ij of bi on bj at timet is

ot
ij =

∣∣st
ij − s0

ij

∣∣ .

To avoid the effect of slight signal fluctuation problem, we will first filter out those

small values in the observation, i.e., ifOt[i, j] < ξ andOt[j, i] < ξ, we will let Ot[i, j] =

Ot[j, i] = 0, whereξ is a threshold value. Further, we will filter out observations on a

beaconbi if the summation of signal strength changes observed by other beacons is below

a threshold. That is, if
∑n

j=1 Ot[j, i] < ηi, we will setOt[j, i] = 0 for all j, whereηi is a

threshold related to the tolerable regionRi of bi.

Next, we will convert the problem to theminimum weight vertex cover problem[8].

We define an undirected weighted observation graphGO = (V, E), whereV = {bi|
∑n

j=1

Ot[j, i] 6= 0} and E = {(bi, bj)|Ot[i, j] 6= 0 or Ot[j, i] 6= 0}. The suspicion degree

of beaconbi is defined asws(bi) =
∑n

j=1 Ot[j, i]. The maximum suspicious degree is

w∗
s = maxi=1..n{ws(bi)}. A weight functionw : V → R+ is then defined for eachbi ∈ V

such thatw(bi) = w∗
s − ws(bi). The minimum weight vertex cover problem is to find a

vertex coverV ′ ⊆ V such that if(bi, bj) ∈ E, thenbi ∈ V ′ or bj ∈ V ′ or both, and the

sum
∑

bi∈V ′ w(bi) is minimized.

To summarize, we have converted our BMD problem to the minimum weight vertex

cover problem. We then define two algorithms:Enumerate-SSSandGreedy-SSS. The

first Enumerate-SSSalgorithm adopts a brute-force search strategy to enumerate all ver-

tex covers inGO and picks the solution with the minimum weight. TheGreedy-SSSis

a heuristic algorithm. For each beaconbi, we define a cost metricci = w(bi)/UE(bi),

whereUE(bi) is the number of uncovered edges ofbi. Then, the beacon with the min-

imum cost metric is included in our solution. Then we recompute the cost metrics of

these beacons that are affected due to the selection of the above beacon and pick the next

beacon with the minimum cost metric. This is repeated until all edges are covered.

11
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Figure 3.3: An example of movement detection in the location-based scheme whereb4 is
the only beacon being moved. A trilateration technique is used in this example.

Note thatGO may have some isolated beacons with no edges incident to them. This

may happen because their neighboring beacons are not considered being moved. In this

case, we will consider that these isolated beacons are likely to be moved and include them

in our solutionBD.

3.4 Location-Based (LB) Scheme

The location-based scheme utilizes localization techniques to monitor the locations of

beacons. Techniques such as trilateration or fingerprinting can be used in the BMD en-

gine. Each beacon is in charge of reporting their observed signal strength values to the

BMD engine. A location error threshold will be used to decide whether beacons are

moved. The observationot
ij of a beaconbi on bj at time t is defined asot

ij = st
ij. We

assume the BMD engine knows the initial location of each beacon. The engine then esti-

mates the position of each beacon through any localization technique. Let the estimated

location ofbj at current timet beLt
j. If Lt

j is out of the tolerable regionRj, thenbj is

determined to be unreliable.

An example using the trilateration technique is shown in Fig. 3.3. Beaconb4 is moved

out of its tolerable regionR4. Since beaconsb1, b2, andb3 are unmoved, they can help

to determineb4’s new location. One thing worthy of mentioning is that because ofb4’s

movement, the estimated location ofb1, b2, and b3 may also be changed by a certain

degree. So the tolerable regions need to be defined carefully. As shown by our simulation

results, the location-based scheme is too sensitive to any movement, and thus does not

perform well.
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Chapter 4

Simulation Results

In this section, we present our simulation results to evaluate the proposed schemes. The

performance metrics include the probabilities of hit and false events. We also use the

results to calibrate the positioning engine and measure the localization error when a lo-

calization scheme is applied (refer to our system model in Fig. 2.1). Experiments are

conducted under different conditions, such as the ratio of moved beacons, the maximum

movement distance, and the noise degree of the environment.

4.1 Simulation Model

The sensing field is a 500m×500m square area. Beacons are randomly deployed on the

field. Two kinds of deployment scenarios are simulated. In thedense scenario, 100 bea-

cons are randomly placed with the restriction that the distance between any two beacons is

at least5 meters1. In thesparse scenario, 25 beacons are randomly placed with a distance

restriction of at least20 meters. Moved beacons are chosen randomly and a parameter

moved ratio (MR)is used to control the number of moved beacons. The moving distance

is uniformly distributed between 0 and a parametermoved degree (MD). The tolerable

region of each beacon is a circle centered at the beacon with a radius of20 and50 meters

in dense and sparse scenarios, respectively. Note that due to the definitions of tolerable

regions, only part of the moved beacons will be considered moved.

The signal propagation ofHELLOpackets are modeled by alog-distance path loss

model[12], where the path loss of a distanced is

PL(d) = PL(d0) + 10αlog10(
d

d0

) + Xσ,

1The restriction is to avoid some beacons being placed too crowded, thus reducing the detection capa-
bility of the network. When a scenario is generated not satisfying the restriction, it will be discarded and
we will regenerate another scenario.
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Figure 4.1: Calculation of the thresholdηi in the signal-strength-summation scheme in
our simulation.

whered0 is a reference distance,α is the path loss exponent typically ranging from2 to

6, andXσ is a zero-mean Gaussian random variable with a standard deviationσ. Also,

the receiver sensitivity is−100dBm (signal lower than this value is not detectable by a

receiver). The default parameter settings are: transmit powerPt = 17 dBm, reference

path lossPL(d0) = 41.5 dBm, path loss exponentα = 3.5, andσ = 2.13.

All results are from the average of 50 experiments. To reduce the influence of noise,

signal strength is calculated from the average of 10HELLO packets. Therefore, the

Gaussian random variableXσ′ in the sampling distribution of signal strength is still zero-

mean but with a standard deviationσ′ = σ/
√

10. The noise thresholdξ in the SSS scheme

is set toξ = 2σ′ = 2σ/
√

10.

The thresholdηi of beaconbi is calculated by an approximation as follows. On the

tolerable regionRi, we pick four sampling points on the east, west, south, and north sides

of the boundary ofRi. For each sampling pointp, we measure the sum of signal strength

changes observed by other beacons assuming thatbi is moved to locationp. The sum

of the sampling point with the smallest value is selected as the value ofηi. The idea is

illustrated in Fig. 4.1

4.2 Probabilities of Hit and False Events

We first make a general comparison on theEnumerateandGreedyalgorithms of the first

three schemes. The sparse scenario is used. The result is in Fig. 4.2. Generally, theEnu-

meratealgorithms perform better than theGreedyalgorithms, except forEnumerate-SSS.

This is because we assume that only a small number of beacons are moved, and thus the

Enumeratealgorithms will try to find the smallestBD. However, this assumption is not

true any more when a lot of beacons are moved. Hence, we see that theEnumerate-SSS

algorithm performs slightly worse than theGreedy-SSSalgorithm. Furthermore, consid-
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ering that theEnumeratealgorithms are computationally infeasible, we will only adopt

theGreedyalgorithms in the rest of the discussion.

In Fig. 4.3, we vary themoved ratio (MR)between 0.02 and 0.4 to make the com-

parison. In terms of the hit probability, theLB algorithm performs the best, followed

by theGreedy-SSValgorithm, theGreedy-SSSalgorithm, and then theGreedy-NBalgo-

rithm. However, theLB algorithm also induces the highest false probability. As a result,

the Greedy-SSValgorithm and theGreedy-SSSare considered the best, which provide

a hit probability over 0.82 and a false probability under 0.15 even when theMR is 0.4.

TheGreedy-NBalgorithm always has the worst hit probability due to its over-simplified

detection model. The high false probability of theLB algorithm can be explained by its

high sensitivity. Since beacons will all report their observations, a movement can eas-

ily propagate errors to its neighboring beacons, especially when the scenario is sparse.

Thus a lot of reliable beacons will be reported as unreliable. The same phenomenon can

also be seen for theGreedy-SSSalgorithm when theMR gets higher. However, its false

probability is much less than that of theLB algorithm. When the scenario is dense, the

false probability of theLB algorithm can be significantly decreased due to more beacons

helping the mutual detection task. Dense scenario also makes the thresholdηi in the SSS

scheme become higher and thus reduce the hit probability of theGreedy-SSSalgorithm.

In Fig. 4.4, we vary themoved degree (MD). Generally, because a largerMD means

that each movement is more dramatic, this is beneficial for our detecting work. Therefore,

we see increases of hit probabilities and decreases of false probabilities asMD increases

in all schemes except theLB scheme. Again, this demonstrates that theLB algorithm is

too sensitive. When the scenario is dense, we have similar results.

In Fig. 4.5, we vary the noise level by adjusting the standard deviationσ from 0 and6.

As expected, all schemes are affected as noise level increases. Overall, theGreedy-SSV

and theGreedy-SSSalgorithms perform the best considering all the above factors, which

is followed by theGreedy-NBalgorithm. TheLB algorithm is only practical when the

network is dense.

4.3 Evaluation of Localization Accuracy

After determining the moved setBD, the set will be sent to the positioning engine to

calibrate the location database. In the following, we will assume the fingerprinting-

based localization algorithm [4], where the location database contains the signal vector

〈v1, v2, . . . , vn〉 of each training locationl in the sensing field, wherevi is the averaged

signal strength of beaconbi observed at locationl, i = 1, 2, . . . , n. For calibration pur-
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pose, we will ignore the elementvi for eachbi that is determined to be inBD during the

localization procedure. Clearly, this will reduce the accuracy of localization. However,

if the moved beacons are not ignored, the error will be even higher. In the following, we

will evaluate how our schemes can reduce localization errors due to moved beacons. In

our experiment, there are 25×25 training points and 25×25 test points. Then, the average

positioning error of the 625 test points is recorded.

We compare our results against theno movementcase, where no beacon is moved,

and theno BMD case, where there are unnoticed movements of some beacons but no

special action is taken. The former is only used as a reference.

Fig. 4.6(a), (b), and (c) show the average localization errors under differentMR, MD,

andσ, respectively. The results demonstrate that theGreedy-SSSalgorithm incurs errors

closest to those of theno movementcase. TheGreedy-SSVandGreedy-NBalgorithms

are slightly worse than theGreedy-SSSalgorithm. Surprisingly, due to its high false

probability, theLB algorithm’s errors are quite unacceptable, sometimes even worse than

the no BMD case. Fig. 4.6(d), (e), and (f) show the similar simulations in the dense

scenario. As the beacon density is increased a lot, we see that theLB andGreedy-SSS

algorithms perform quite closely in most cases.

To model the error recovery capability of a BMD algorithm, we propose the following

metric:

ERC(algorithm) =
errorno BMD − erroralgorithm

errorno BMD − errorno movement
× 100%.

Ideally, anERCof 100% is expected. However, this is unlikely to be achieved because

some data are ignored in the location database. For example, whenMR = 0.1, MD =

150, andσ = 2.13, theERCvalues are 53.28%, 52.10%, and 46.47% forGreedy-SSS,

Greedy-SSV, andGreedy-NB, respectively.

From above simulations, we can see that theGreedy-SSSalgorithm performs well

under most situations. However, its parametersξ andηi need to be set carefully. In some

cases,Greedy-SSVhas slightly betterERC thanGreedy-SSS, but it is more sensitive to

environment noise. To summarize, both theGreedy-SSVandGreedy-SSSalgorithms are

good choices to solve the BMD problem.
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Chapter 5

Conclusions

The reason In this paper, we define a new beacon movement detection (BMD) problem

in wireless sensor networks for localization applications. This problem describes a situa-

tion that some beacon sensors which participate in the localization procedure are moved

unexpectedly. The result is a reduced localization accuracy if we disregard this situa-

tion. We propose to allow beacons to monitor each other to identify the moved beacons.

Four schemes are presented to solve the BMD problem. Moreover, we have proven some

impossibility theorems which will make the BMD problem unsolvable under some situ-

ations. Some heuristics are proposed by mapping the BMD problem to the vertex-cover

problem. Hit and false probabilities of these heuristics are obtained through simulations.

It is shown that the best heuristic,Enumerate-SSS, has an error recovery capability of53%

in general case. As to future work, it deserves to further investigate the BMD problem if

there is some trust model among beacons.

21



Bibliography

[1] A. Savvides, C.C. Han, and M.B. Srivastava. Dynamic fine-grained localization in

ad-hoc networks of sensors. InACM/IEEE MOBICOM, 2001.

[2] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward, and A. Hop-

per. Implementing a sentient computing system.Computer, 34(8):50 – 56, 2001.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor

networks.IEEE Communications Magazine, 40(8):102–114, 2002.

[4] P. Bahl and V. N. Padmanabhan. Radar: An in-building rf-based user location and

tracking system. InIEEE INFOCOM, pages 775–784, 2000.

[5] J. Burrell, T. Brooke, and R. Beckwith. Vineyard computing: Sensor networks in

agricultural production.IEEE Pervasive Computing, 3(1):38�45, 2004.

[6] A. Cerpa, J. Elson, D. Estrin, L. Girod, and M. Hamilton. Habitat monitoring:

Application driver for wireless communications technology. InACM SIGCOMM

Workshop on Data Communications, Apr. 2001.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.Introduction to Algo-

rithms. MIT Press/McGraw-Hill, 1990.

[8] M. R. Garey and D. S. Johnson.Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co. New York, NY, USA, 1979.

[9] D. Niculescu and B. Nath. Ad Hoc Positioning System (APS) using AoA. InIEEE

INFOCOM, San Francisco, CA., 2003.

[10] N. B. Priyantha, A. K. L. Miu, H. Balakrishnan, and S. J. Teller. The cricket com-

pass for context-aware mobile applications. InACM/IEEE MOBICOM, pages 1–14,

2001.

22



[11] V. Ramadurai and M. L. Sichitiu. Localization in wireless sensor networks: A prob-

abilistic approach. InInt’t Conf. on Wireless Networks (ICWN), pages 275–281,

June 2003.

[12] T. S. Rappaport.Wireless Communications: Principles and Practice. Prentice Hall

PTR, 1996.

23



Curriculum Vita

Hsiao-Ju Kuo (srkuo@csie.nctu.edu.tw) received her B.S. degree in Computer Science

from National Chiao-Tung University, Taiwan, in 2004. Her research interests include

wireless networks and wireless sensor networks.

24


	6-論文封面.pdf
	mov_detect.pdf

