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The Beacon Movement Detection Problem in
Wireless Sensor Networks for
Localization Applications

Student: Hsiao-Ju Kuo Advisor: Prof. Yu-Chee Tseng

Department of Computer Science
National Chiao-Tung University

ABSTRACT

Localization is a critical'issue in, wireless sensor networks. In most localization
schemes, there are beaconsbeing.placed as references to determine the positions of «
jects or events appearing in the sensing field. The underlying assumption is that beacon
are always static. In this work; we define a nBeacon Movement Detection (BMD)
problem. Assuming that there are‘unnoticed changes of locations of some beacons in th
system, this problem is coneerned.about how to automatically monitor such situations anc
identify these beacons. Removal of such beacons in the localization engine may improve
the localization accuracy. Four schemes are proposed to solve the BMD problem. Finally
we evaluate how these solutions can improve the accuracy of localization schemes in cas
that there are unnoticed movement of some beacons. Simulation results show that or
solutions alleviates3% the decrease of positioning accuracy caused by the exceptional
beacon movement.

Keywords: Context Awareness, Location-Based Service, Pervasive Computing, Position-
ing, Wireless Sensor Network.
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Chapter 1

Introduction

Recently, we have seen significant progress in the areas of wireless ad hoc and sens
networks. Ad hoc networking technologies enable quick and flexible deployment of a
communication platform. A wireless sensor network typically adopts the ad hoc net-
work architecture and is capable of exploiting context information collected from sensors.
Many applications of wireless sensor.networks have been proposed [3, 5, 6].

Sensor networks are promising:in supporting context-aware and location-aware ser
vices. The success of this area may greatly benefit human life. One essential researc
issue in sensor networkslscalization whose purpose is to determine the position of an
object or event. For example, the-sentient system Bat [2] is composed of a set of sensor
for 3D localization purpose. -Sensors are installed at known positions such as ceilings, tc
measure the signal traveling time from a user badge to them. Then, the location of the
badge is calculated by a triangulation algorithm. Localization by signal’s angle of arrival
is addressed in [9, 10]. In [10], ultrasonic sensors are used to estimate the location and ori
entation of a mobile device with the Cricket compasses. In [1], a distributed positioning
system called AHLoS (Ad Hoc Localization System) is proposed, where some beacons
are aware of their own locations while others are not. The former are used to determine
the positions of the latter. A similar work based on a probability model is proposed in
[11]. The RADAR system [4] uses machine learning and pattern-matching techniques to
estimate the locations of WiFi-enable mobile devices.

In all the above localization systems, there are a sbeaton sensor®r simplybea-
cong, which are at fixed locations and periodically send out or receive short broadcast
packets to estimate other objects’ locations by either triangulation or pattern-matching
schemes. Based on such an infrastructure, this paper points outBea@eon Movement
Detection(BMD) problem that may happen in most localization systems based on bea-
cons. This problem is concerned about how to automatically determine the unexpectec
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Figure 1.1: An example of the Beacon Movement Detection (BMD) Problem.

change of locations of some beacons in the system. Movement of some beacons ma
affect the accuracy of thedocalization results. For example, in Fig. 1.1(a), we show how
three beacons determine a target’s position in typical triangulation approaches. Howevet
if beaconb; is moved-to.the location marked in gray without being noticed, the system
may incorrectly estimate the target’s location as shown in Fig. 1.1(b). Note that the circle
centered ab; has a radiusregualto-the distance from the real locatidg tuf the target.

Also note that the results‘proposedin‘this paper is applicable to not only unnoticed move-
ment of beacons, but also unnoticed appearance of interference/obstacles in the sensil
field, which may affect the localization results.

The BMD problem involves two issues. First, we need to determine those beacons
that are unexpectedly relocated. Second, the result has to be forwarded to the positionin
engine to improve the localization accuracy. To solve the first issue, we will allow beacons
to monitor each other to determine those moved beacons. We will propose four schemes
In the firstneighbor-basedcheme, beacons will keep track of their nearby beacons and
report their observations to tr®MD engineto determine if some beacons have been
moved. In the seconsignal-strength-variatiorscheme, the change of signal strengths
of beacons will be exploited. In the thigignal-strength-summatiocscheme, the BMD
engine will collect the sum of reported signal strength changes of each beacon to mak
decisions. The lagbcation-basedcheme tries to calculate each beacon’s current location
and compares the result with its predefined location to decide if it has been moved. The
first scheme is easy to implement but not very accurate. The second and third scheme
also have low complexity but perform much better. The last scheme has high complexity,



but is quite sensitive to noise. We also present some limitations and characteristics o
these schemes.

The remainder of this paper is organized as follows: Section 2 gives a formal definition
of the BMD problem. Section 3 presents our solutions to the BMD problem. We then
evaluate the proposed algorithms and examine their capability to improve the localization
accuracy in Section 4. Finally, Section 5 concludes on this work.



Chapter 2

Problem Definition

We are given a sensing field, in which a set of bead8ns {b,, -, ..., b, } are deployed
for localization purpose. Periodically, each beacon will broadc&$EbBL Opacket. To
determine its own location, an object will colleldELLO packets from its neighboring
beacons and send a signal strength vestet (si, so, ..., s,) t0 an external positioning
engine, where; is the signal strength of thdELLOpacket fromb; (s; = 0 if it cannot
heard;). The positioning enginé can then estimate the object’s location basgdfon
example, in the case-0f RADAR [4§ is-compared against a location database obtained
in the training phase based on'a finger-printing method).

Suppose that a set of unreliable beacBis C B are moved or blocked by obstacles
without being noticed. Th8eacon Movement Detection (BMPjoblem is to compute
a detected seBp that is as similar taB,, as possible. The resuB, may be used to
calibrate the positioning engine to reduce the localization error (for example, in the case
of RADAR, the entrys; in .S may be ignored ib; is detected to be unreliable).

To solve the BMD problem, we will enforce beacons to monitor each other from time
to time. Let’s denote the locabservation vectoof b; at timet by O! = (o}, 0., ..., 0%,),
whereoj; is b;'s observation om; at timet. The content of an observation will depend on
the corresponding BMD scheme (refer to Section 3). We use the observation vector at time
t = 0 to represent the original observation when no beacon is movedofi$ervation
matrixis denoted by)! = (0!, 0%, ..., Ot ). GivenO!, the BMD engine is responsible of
calculating a seBp. The result is then sent to the calibration algorithm in the positioning
engine. Fig. 2.1 illustrates our system model.

Considering the following reasons, we define tblerable regionR; of each beacon
b; as the geographic area within which movement is acceptable. First, radio signal tend:
to fluctuate from time to time. Second, ignoring the data of a beacon in the location data-
base will decrease the localization accuracy due to less beacons helping the localizatio
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Figure 2.1: The system model.

procedures. So the slight movement activities should be omitted. As a result, the unreli-
able setB,, only contains those beacons which are moved out of their tolerable regions.
The size of tolerable regions’is application-dependent, which is beyond the scope of this
work. For simplicity, tolerable regions are assumed to be circles centered at beacons o
the same radius.

Ideally, we would expecB,;, = Bp. However, for many reasons this cannot be
achieved. For ease of discussion, we define two eventfit Aventis obtained on a
beacory; if b; € By, and the BMD engine also determines that Bp. A false event is
obtained on; if b; ¢ B, butb; € Bp.



Chapter 3

Beacon Movement Detection
Algorithms

To solve the BMD problem, we propose four detection schemes, nareggjfibor-based
signal-strength-variatiopsignal-strength-summatioandlocation-basedchemes. These
schemes differ in the local,processing rule of beacons and the decision algorithm at the
BMD engine. In the neighbor-based scheme, each beacon locally decides if some neigt
boring beacons have moved inta:or out of their communication coverage range and report
its observation to the:BMD engine. The signal-strength-variation scheme is similar to the
neighbor-based scheme, butthedefinition of movement is according to a threshold of sig
nal strength change. In.the signal-strength-summation scheme, a beacon does not try
determine whether a neighboring beacon has been moved or not. Instead, each beac
reports the amount of signal strength change of each neighbor; the sums of all reporte:
values are used by the BMD engine to make a global decision. In the location-basec
scheme, each beacon reports its actually received signal strengths, which are used t
the BMD engine to compute each beacon’s current location and to compare against it
original location.

3.1 Neighbor-Based (NB) Scheme

In this scheme, each beackhmmonitors the change of neighborhood relations with other
beacons in its coverage area. The neighborhood relatibnadtimet is defined as

n

¢ | 1, if b can heab;
4] 0, otherwise.
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Figure 3.1: An example oftBMD problem in the neighbor-based scheme. (a) the origi-
nal relation, (b) a movement scenario;(c) observation maifixd) another movement
scenario, and (e) the .observation graph

Let n?j be the original'neighborhoodrelation when the system was first configured. Then
the observation;; of b; onb; at timet.is

1, b; moves into or

of; =nl; @ny; = out of b;’s coverage
0, otherwise,

where ® is the “exclusive or” operator. An example with four beacons is shown in
Fig. 3.1(a), where the coverage of each beacon is a circle of radius 1. Initially, each
beacon is in the coverage of two neighboring beacons. Suppose that atigaeond;
andb, are moved as shown in Fig. 3.1(b). Suppose that the tolerable region defines tha
each beacon can not move more than 1 grid length. Then, the observation@asrixs
shown in Fig. 3.1(c).

Unfortunately, given an observation mattiX, it is possible to come up with multiple
beacon movement scenarios that result in the saméor example, the movement sce-
nario in Fig. 3.1(d) also has the same observation matrix in Fig. 3.1(c). In fact, we can
prove a stronger result that such ambiguity always exists.

Definition 1 An observation matrix)* obtained in the NB schemeasnbiguousf there
exist two different movement scenari®g and B}, such that (i) bothB,, and B, result



in the same&)’ and (i) By, NC(O") # B),NC(O"), whereC(0O") is thecandidate setuch
thatC'(O") = {b;|0"i,j] =10or O'j,i] = 1,1 <i<n,1 <j<n}andC(O") # 0.

The above condition (ii) is to ensure that there is non-trivial difference betdsgen
andBj,. Each beacon in’(O") is detected by at least one other beacon.

Theorem 1 Given any movement scenatit,; and its corresponding observation matrix
O" obtained in the NB scheme, we can always find another movement sc8hasoch
that O' is ambiguous.

Proof: Given anyB,, and its correspondin@’, we can easily computg,;NC(O").

To construct anotheB),, we first pick any beacoh). € B,,NC(O') and move all beacons
in By, — {bx} to their new locations as specified in the movement scerzyjo Let the
corresponding observation matrix of yet-to-be-constructed movement schﬁbeOt.
We shall show thab® = O*. For the time being, for any beacohsandb; € B such that
b; # by, andb; # by, we can derive thad'[i, j] = O'[i, j].

Next, suppose that in the'movement scenatig, beacor, is moved from location
[, to l,. Let the movingvectob,=.ls. — 1. Then, we move all beacons excépt(i.e.,
B — {b}) by the vector—v. Such .movements will not change the entri¢’$i, j] and
Ot[i,j] for all i # kandj # k. Also, these movements will not change the relative
locations ofb; andby, forall b; € B=H{b, },i.e.,O'[k, i| = O'[k,i] andO'[i, k] = O'[i, k]
for all i. Clearly, the new movement scenario will lead® = O'. Furthermorep, €
By, N C(0Y) andb, ¢ B),, which implies that, ¢ B}, N C(O"), so this theorem is
proved. [ |

An example of the proof of Theorem 1 is in Fig. 3.1(d). L&, be 3the movement
scenario in Fig. 3.1(b). To construbt,,, b; is kept unchanged arid is moved as sched-
uled. Thenby, by, andb, are moved in the directio(D, 1) (the reverse obs’s moving
vector,(0, —1)). This shows that the matri®’ in Fig. 3.1(c) is ambiguous.

Clearly, the above ambiguity property prohibits us from finding the exagtgiven
any O'. The following derivation will rely on the assumption that the unreliable bea-
cons are only a small proportion of all beacons. This is reasonable in practice. Hence
we try to select a seB, that contains as few beacons as possible. First, we transform
matrix O’ to an undirectedbservation graptiGo = (V, E), whereV = C(O") and
E = {(b;,b;)|0i,j] = 1andO'[j,i] = 1}. Second, observe that @'[i, j] = 1 and
O'[j,1] = 1, then at least one df, andb,; has been moved. Therefore, the problem can
be regarded as\&ertex coveproblem [7], whose goal is to find the smallest BétC 1/
such that for eackw;,b;) € E, b, € V' orb; € V'. For example, Fig. 3.1(e) represents
the observation graph of th#’ in Fig. 3.1(c).



The first algorithm, calleEnumerate-NBis only presented here for reference pur-
pose. From graplro, we first construct all minimum vertex covers (since this problem
is NP-complete, this step could be very costly). Among all solutions, the one with the
loweststability is selected, where the stability of a beadprs

NPos(i)

stability(b;) = Pos(i) |

whereN Pos(i) is the set of neighboring beaconspthat positively report that; has not
been moved, i.e N Pos(i) = {b;|nj; = 1,0}, = 0}, andPos(i) is the set of all beacons
that positively report thali; has been moved, i.eRos(i) = {b;]0}; = 1}. The stability
level of a vertex cover is the sum of stability values of all beacons in the cover set. Then
the vertex cover with the lowest stability level is selected asigir

Considering the above algorithm is quite costly when the problem scales up, the sec:
ond algorithmGreedy-NBadopts a heuristic approach as follows. If a bedgsndegree
in Go is higher, it is more suspicious to be moved. So the algorithm sorts the vertices in
G according to their degrees of uncovered edges in a descending order, and then exan
ines them one by one: Arnode Is includedBn if any edge incident to it has not been

covered.

3.2 Signal-Strength-Variation (SSV) Scheme

In the neighbor-based scheme, we only consider the neighborhood relations between be
cons. Assuming that beacons can measure the signal streng#td afOpackets from

their neighbors, the signal-strength-variation scheme asks each bgdomvaluate the
amount of signal strength change of each neighboring begcam®t the observed signal
strength byb; onb; at timet bes}; (t = 0 means the initial observed signal strength). The
observatiorv;; of b; onb; is

i t 0 + 0 t -
0 = (b; moves into or out ob,’s coverage
0, otherwise,

wheredg andd,; are the pre-defined thresholds of signal strength variations.

The thresholdégg andd,; of each beacoh; can be determined by the tolerable region
R; of b;. Let locationsp andq be the farthest and nearest locationginwith respect to
b; (refer to Fig. 3.2). If the expected signal strength$i&fl.LOpackets from a beacon at
p andq ares, ands,, respectively, then;; = s); — s, andd;; = s, — s{;. As can be seen,
as long a$,; moves within the belt-like gray regioh, will not report a movement event.



Figure 3.2: Determining thresholaﬁ% and¢;; by the tolerable regior?; of b; in the
signal-strength-variation scheme.

The major difference between the neighbor-based scheme and the signal-strengtt
variation scheme is the calculation of local observation. However, the ambiguity property
still holds.

Definition 2 An observation matrix)* obtained in the SSV schemaisbiguousf there
exist two different movemeéent scenari®g and B, such that (i) bothB,, and B}, result
in the same&" and (ii) ByyNC(O") # B),AC(0O"), whereC(0O") is thecandidate setuch
thatC'(O") = {b;|O0'isgl=10r O] = 51 <i<n,1 <j<n}andC(O") # 0.

Theorem 2 Given any.movement scenatit, and its corresponding observation matrix
O' obtained in the SSV scheme, we €an always find another movement sépaieh
that O! is ambiguous.

Proof: The proof is similar to that of Theorem 1. Give®,;, we can construct
another movement scenarig),, in a similar way. Still, we can prove that (i) for any
beacons; andb, € B such that # k andj # k, O'[i, j] = O'[i, 5], and (ii) for alli # k&,
we can derive thaO'[k,i] = O'[k,i] andO'[i,k] = O'[i,k]. To prove (i), we move
all beacons inB,; — {b;} to their new locations as specified in the original movement
scenario. To prove (ii), we move all beacons exdggty an opposite moving vector of
the original moving vector df,. After these movements, the relative positions of beacons
are the same as that in the movement scenayjo Hence,s;?j equals to the new observed
signal strength;;?j’ in B),. Besides, the thresholif; ando;; for each pairs; andb; only
depend on their tolerable regions and the initial deployment, so their observation matrices
will be identical. [ |

Based on changes of signal strengths, we can also develop two BMD algorithms callec
Enumerate-SS¥ndGreedy-SSMvhich perform exactly the same Baumerate-NEnd
Greedy-NBrespectively, except that the observations are computed by each beacon by

10



different criteria. So we omit the details. However, with more accurate information, these
algorithms are expected to be more accurate than the earlier ones in the neighbor-base
scheme.

3.3 Signal-Strength-Summation (SSS) Scheme

Similar to the signal-strength-variation scheme, the signal-strength-summation scheme
also assumes that beacons can measure the signal strengths from their neighboring be
cons. However, in this scheme, the values of signal strength variations observed by a bec
con will be reported to the BMD engine directly without any further processing. Specifi-
cally, the observatioﬁj of b; onb; at timet is

t t 0
Oi = |5ij - 5z’j| -

To avoid the effect of slight signal fluctuation problem, we will first filter out those
small values in the observation;ile£(f[i, j] < £ andO'[j,1] < &, we will let O'[¢, j] =
O'y,4] = 0, where¢ is-a thresheld-valte. Further, we will filter out observations on a
beacon; if the summation of signal strength changes observed by other beacons is below
a threshold. Thatis, 7_, O'[j;4] < n:, we will setO'[j,4] = 0 for all j, wheren, is a
threshold related to the tolerable regigpof b;.

Next, we will convert the problem to th@inimum weight vertex cover probldg®i.

We define an undirected weighted observation gegh= (V, E), whereV' = {b;| 37,
O'j,i1] # 0} andE = {(b;,b;)|O"[i,j] # 00rO'[j,i] # 0}. The suspicion degree
of beacony; is defined asv(b;) = >_7_, O'[j,i]. The maximum suspicious degree is
w* = max;—1_,{ws(b;)}. Aweight functionw : V' — R* is then defined for eadh € V/
such thatw(b;) = w! — ws(b;). The minimum weight vertex cover problem is to find a
vertex covert’’ C V such that if(b;,b;) € E, thenb; € V' orb; € V' or both, and the
sumy_, . w(b;) is minimized.

To summarize, we have converted our BMD problem to the minimum weight vertex
cover problem. We then define two algorithmSnumerate-SS8nd Greedy-SSSThe
first Enumerate-SS&lgorithm adopts a brute-force search strategy to enumerate all ver-
tex covers inGo and picks the solution with the minimum weight. TGeeedy-SS$&

a heuristic algorithm. For each beaclhnwe define a cost metric = w(b;)/UE(b;),
whereU E(b;) is the number of uncovered edgesbaf Then, the beacon with the min-
imum cost metric is included in our solution. Then we recompute the cost metrics of
these beacons that are affected due to the selection of the above beacon and pick the ne
beacon with the minimum cost metric. This is repeated until all edges are covered.

11
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Figure 3.3: An example of movement detection in the location-based schemebyisere
the only beacon being moved. A trilateration technique is used in this example.

Note thatG'r, may have some isolated beacons with no edges incident to them. This
may happen because their. neighboring beacons are not considered being moved. In th
case, we will consider that these isolated beacons are likely to be moved and include ther
in our solutionBp,.

3.4 Location-Based(LB) Scheme

The location-based scheme‘utilizes localization techniques to monitor the locations of
beacons. Techniques such as trilateration or fingerprinting can be used in the BMD en:
gine. Each beacon is in charge of reporting their observed signal strength values to th
BMD engine. A location error threshold will be used to decide whether beacons are
moved. The observatios}; of a beacorb; on b; at timet is defined as);, = sj;. We
assume the BMD engine knows the initial location of each beacon. The engine then esti
mates the position of each beacon through any localization technique. Let the estimate
location ofb; at current timef be L. If L is out of the tolerable regiof;, thenb; is
determined to be unreliable.

An example using the trilateration technique is shown in Fig. 3.3. Belacdsrmoved
out of its tolerable regioi?,. Since beacong,, b, andb; are unmoved, they can help
to determineb,’s new location. One thing worthy of mentioning is that becausg, sf
movement, the estimated location i@f b,, andb; may also be changed by a certain
degree. So the tolerable regions need to be defined carefully. As shown by our simulatior
results, the location-based scheme is too sensitive to any movement, and thus does n
perform well.

12



Chapter 4

Simulation Results

In this section, we present our simulation results to evaluate the proposed schemes. Tt
performance metrics include the probabilities of hit and false events. We also use the
results to calibrate the positioning engine and measure the localization error when a lo:
calization scheme is applied (refer to our system model in Fig. 2.1). Experiments are
conducted under differenticonditions, such as the ratio of moved beacons, the maximun
movement distance, and the,noise degree of the environment.

4.1 Simulation Model

The sensing field is a 5000500m square area. Beacons are randomly deployed on the
field. Two kinds of deployment scenarios are simulated. Indérese scenarid 00 bea-
cons are randomly placed with the restriction that the distance between any two beacons |
at least meters. In thesparse scenarid®5 beacons are randomly placed with a distance
restriction of at leas20 meters. Moved beacons are chosen randomly and a parameter
moved ratio (MR)s used to control the number of moved beacons. The moving distance
is uniformly distributed between 0 and a parameteved degree (MD)The tolerable
region of each beacon is a circle centered at the beacon with a radioswéi50 meters
in dense and sparse scenarios, respectively. Note that due to the definitions of tolerabl
regions, only part of the moved beacons will be considered moved.

The signal propagation dIELLOpackets are modeled bylag-distance path loss
model[12], where the path loss of a distantés

d
PL(d) = PL(do) + 100450910(67) + Xo,
0

1The restriction is to avoid some beacons being placed too crowded, thus reducing the detection capa
bility of the network. When a scenario is generated not satisfying the restriction, it will be discarded and
we will regenerate another scenario.

13



N
’ % R{i, Y
\ii\ / TN \
Ny SN *
sum?(%!?{'%*ys\umz
s N \\><:/ ANRY
/ N ~/
s - sum; .b
///;,;’:/ 3
@
by

Figure 4.1: Calculation of the thresholg in the signal-strength-summation scheme in
our simulation.

whered, is a reference distance,is the path loss exponent typically ranging franto

6, and X, is a zero-mean Gaussian random variable with a standard deviatiéiso,

the receiver sensitivity is-100dBm (signal lower than this value is not detectable by a
receiver). The default parameter settings are: transmit péer 17 dBm, reference
path lossPL(dy) = 41.5 dBmj‘pathiless exponent= 3.5, ando = 2.13.

All results are from:the average of 50 experiments. To reduce the influence of noise,
signal strength is calculated from the ‘average ofHELLO packets. Therefore, the
Gaussian random variable,. inthe sampling distribution of signal strength is still zero-
mean but with a standard deviatieh= o /y/10. The noise thresholglin the SSS scheme
is set tof = 20" = 20/1/10.

The threshold); of beacory; is calculated by an approximation as follows. On the
tolerable region?;, we pick four sampling points on the east, west, south, and north sides
of the boundary of?;. For each sampling poinpt we measure the sum of signal strength
changes observed by other beacons assumingthetmoved to locatiorp. The sum
of the sampling point with the smallest value is selected as the valye dhe idea is
illustrated in Fig. 4.1

4.2 Probabilities of Hit and False Events

We first make a general comparison on BreumerateandGreedyalgorithms of the first
three schemes. The sparse scenario is used. The result is in Fig. 4.2. Generklhy-the
meratealgorithms perform better than tii&reedyalgorithms, except foEnumerate-SSS

This is because we assume that only a small number of beacons are moved, and thus tl
Enumeratealgorithms will try to find the smallesB,. However, this assumption is not
true any more when a lot of beacons are moved. Hence, we see tlatdheerate-SSS
algorithm performs slightly worse than tki&eedy-SS&lgorithm. Furthermore, consid-
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Figure 4.2: Comparison of th&numerateand Greedy algorithms of each scheme

(MR=0.1,MD=150m, sparse).
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ering that theEnumeratealgorithms are computationally infeasible, we will only adopt
the Greedyalgorithms in the rest of the discussion.

In Fig. 4.3, we vary thenoved ratio (MR)etween 0.02 and 0.4 to make the com-
parison. In terms of the hit probability, tHeB algorithm performs the best, followed
by the Greedy-SS\algorithm, theGreedy-SS&lgorithm, and then th&reedy-NBalgo-
rithm. However, thed.B algorithm also induces the highest false probability. As a result,
the Greedy-SS\algorithm and theGreedy-SS@re considered the best, which provide
a hit probability over 0.82 and a false probability under 0.15 even wheMiRés 0.4.
The Greedy-NBalgorithm always has the worst hit probability due to its over-simplified
detection model. The high false probability of thB algorithm can be explained by its
high sensitivity. Since beacons will all report their observations, a movement can eas-
ily propagate errors to its neighboring beacons, especially when the scenario is sparse
Thus a lot of reliable beacons will be reported as unreliable. The same phenomenon ca
also be seen for th&reedy-SS&algorithm when theMR gets higher. However, its false
probability is much less than,that of tih® algorithm. When the scenario is dense, the
false probability of the.B algorithm can-be significantly decreased due to more beacons
helping the mutual detection task. Dense scenario also makes the thrgsimalde SSS
scheme become higher'and thus reduce the hit probability dstbedy-SS&lgorithm.

In Fig. 4.4, we vary thenoved-degree. (MD)Generally, because a largéiD means
that each movement is more dramatic,.this is beneficial for our detecting work. Therefore,
we see increases of hit probabilities and decreases of false probabilivi3 excreases
in all schemes except theB scheme. Again, this demonstrates thatltBealgorithm is
too sensitive. When the scenario is dense, we have similar results.

In Fig. 4.5, we vary the noise level by adjusting the standard deviatfomm 0 and6.
As expected, all schemes are affected as noise level increases. Over@lieduy-SSV
and theGreedy-SS8lgorithms perform the best considering all the above factors, which
is followed by theGreedy-NBalgorithm. TheLB algorithm is only practical when the
network is dense.

4.3 Evaluation of Localization Accuracy

After determining the moved se®p, the set will be sent to the positioning engine to
calibrate the location database. In the following, we will assume the fingerprinting-
based localization algorithm [4], where the location database contains the signal vectol
(v1,v9,...,v,) Of each training location in the sensing field, where is the averaged
signal strength of beacdn observed at locatioh 7 = 1,2,...,n. For calibration pur-
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pose, we will ignore the element for eachb; that is determined to be if8, during the
localization procedure. Clearly, this will reduce the accuracy of localization. However,
if the moved beacons are not ignored, the error will be even higher. In the following, we
will evaluate how our schemes can reduce localization errors due to moved beacons. |
our experiment, there are 25 training points and 2625 test points. Then, the average
positioning error of the 625 test points is recorded.

We compare our results against the movementase, where no beacon is moved,
and theno.BMD case, where there are unnoticed movements of some beacons but nc
special action is taken. The former is only used as a reference.

Fig. 4.6(a), (b), and (c) show the average localization errors under diffieienD,
ando, respectively. The results demonstrate that@needy-SS&lgorithm incurs errors
closest to those of theo_.movementase. TheGreedy-SS\and Greedy-NBalgorithms
are slightly worse than th&reedy-SS&lgorithm. Surprisingly, due to its high false
probability, theL B algorithm’s errors are quite unacceptable, sometimes even worse than
the no.BMD case. Fig. 4.6(d);(e), and (f) show the similar simulations in the dense
scenario. As the beacen density is increased a lot, we see thaBthed Greedy-SSS
algorithms perform quite closely-in most cases.

To model the gorrecovery @pability of- a BMD algorithm, we propose the following

metric:
€rMOkosvp — €110 rétlgorithm

ERC (algerithm) = x 100%.

€ITO0ho sMD — €ITOMhg movement
Ideally, anERC of 100% is expected. However, this is unlikely to be achieved because

some data are ignored in the location database. For example, Wiier- 0.1, M D =
150, ando = 2.13, the ERCvalues are 53.28%, 52.10%, and 46.47% Goeedy-SSS
Greedy-SSyvandGreedy-NBrespectively.

From above simulations, we can see that Greedy-SS@lgorithm performs well
under most situations. However, its parameteandr); need to be set carefully. In some
casesGreedy-SS\has slightly betteERC than Greedy-SSSout it is more sensitive to
environment noise. To summarize, both theeedy-SS\andGreedy-SSS&lgorithms are
good choices to solve the BMD problem.

20



Chapter 5

Conclusions

The reason In this paper, we define a new beacon movement detection (BMD) problen
in wireless sensor networks for localization applications. This problem describes a situa-
tion that some beacon sensors which participate in the localization procedure are move
unexpectedly. The result is a reduced localization accuracy if we disregard this situa-
tion. We propose to allow:beacons'to monitor each other to identify the moved beacons
Four schemes are presented 1o selve the BMD problem. Moreover, we have proven som
impossibility theorems which will. make the BMD problem unsolvable under some situ-
ations. Some heuristics are proposed by mapping the BMD problem to the vertex-covel
problem. Hit and false probabilities of these heuristics are obtained through simulations.
Itis shown that the best heuristiEnumerate-SS8as an error recovery capability &%

in general case. As to future work, it deserves to further investigate the BMD problem if
there is some trust model among beacons.

21



Bibliography

[1] A. Savvides, C.C. Han, and M.B. Srivastava. Dynamic fine-grained localization in

ad-hoc networks of sensors. ACM/IEEE MOBICOM 2001.

[2] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward, and A. Hop-

per. Implementing a sentient computing systé&omputer 34(8):50 — 56, 2001.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor

networks.IEEE Communications Magaziné0(8):102—-114, 2002.

[4] P. Bahl and V. N.,Padmanabhan. Radar: An in-building rf-based user location and

[5]

[6]

[7]

[8]

[9]

[10]

tracking system.. IhEEE INFOCOM pages 775—-784, 2000.

J. Burrell, T. Brooke sand-R-Beckwith. Vineyard computing: Sensor networks in
agricultural productionlEEE Pervasive Computin@(1):38- 45, 2004.

A. Cerpa, J. Elson, D. Estrin, L. Girod, and M. Hamilton. Habitat monitoring:
Application driver for wireless communications technology. AGM SIGCOMM
Workshop on Data Communicatigrispr. 2001.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stdimroduction to Algo-
rithms. MIT Press/McGraw-Hill, 1990.

M. R. Garey and D. S. JohnsonComputers and Intractability: A Guide to the
Theory of NP-Completenes#/. H. Freeman & Co. New York, NY, USA, 1979.

D. Niculescu and B. Nath. Ad Hoc Positioning System (APS) using ACAEEE
INFOCOM, San Francisco, CA2003.

N. B. Priyantha, A. K. L. Miu, H. Balakrishnan, and S. J. Teller. The cricket com-
pass for context-aware mobile applicationsARM/IEEE MOBICOM pages 1-14,
2001.

22



[11] V. Ramadurai and M. L. Sichitiu. Localization in wireless sensor networks: A prob-
abilistic approach. Irnt't Conf. on Wireless Networks (ICWN)ages 275-281,

June 2003.

[12] T. S. RappaportWireless Communications: Principles and Practié&entice Hall
PTR, 1996.

23



Curriculum Vita

Hsiao-Ju Kuo (srkuo@csie.nctu.edu.tw) received her B.S. degree in Computer Scienc
from National Chiao-Tung University, Taiwan, in 2004. Her research interests include
wireless networks and wireless sensor networks.

24



	6-論文封面.pdf
	mov_detect.pdf

