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Scene Change Detection of Basketball Video

and Its Application in Tactics Analysis

Students: Min-Chun Tien Advisor: Prof.Suh-Yin Lee
Institute of Computer Science and Information Engineering

National Chiao Tung University

Abstract

Sports video analysis has been a major issue of multimedia in recent years. For
basketball videos, most researches only, put.emphasis on searching highlights of the
game since the content of basketball video is:too'complicated. In order to look for
more information of tactics from"basketball videos, we propose a system that can
automatically segment a baskethall~video-into several clips by GOP-based scene
change detection method. The length ef each*clip and the number of dominant color
pixels of each frame could be used to classify shots into close-up view, medium view,
and full-court view. We choose full-court view shots to do advanced analysis such as
tracking the ball, and finding the transformation parameters from 3D real-world court
to 2D image by camera calibration techniques. After that, we match the 2D ball
trajectory to the corresponding coordinate in a real-world court and compute the
statistics of shooting positions. Eventually we obtain information of the most possible

shooting positions.

Index Terms: scene change detection, shot classification, tracking, camera

calibration
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Chapter 1

Introduction

1.1 Motivation and Overview

Before basketball games, the coach and players have to watch the basketball
videos of the opponent and looks for their defense rank, offense strategies, the offense
habitual behavior of the top players and the most possible shot positions of that team.
For human eyes, it is not difficult to observe above information. However, it is
obviously time-consuming and exhausting ‘to .watch a 40 minutes long basketball
video. Therefore, we propose an approach which could automatically segment the
video into clips by detecting the:scene change, and classify all clips into three kinds of
view shots: close-up view, meditm.view, and full-court view. Since full-court view
shot contains more information, we use such kind of clips to do advanced analysis.
The system then tracks the ball in each clip and finds the transformation parameters
from 3D real-world court to 2D image by camera calibration techniques. With the
calibration parameters and the physical property of the ball in 3D real-world
coordinate, we can extract the 3D trajectory of basketball and gather statistics to
conclude the most possible shooting positions in the games, which provide useful

information for the coach.

1.2 Organization

The rest of this thesis is organized as follows. In Chapter 2, we introduce some



background knowledge required for video technology. We also survey some previous
related works in sports video analysis, event detection, shot classification, image
enhancement, object extraction, object tracking and camera calibration. Chapter 3
introduces an algorithm to detect scene changes of videos and constructs a shot
classification model to identify clips into close-up view, medium view, and full-court
view shots. Chapter 3 also shows the tracking process of the ball and players,
describes how the points in the 2D video image correspond to the determined 3D
court model, and infers the shot position. Chapter 4 presents the experimental result
and discussion. Finally, we conclude the thesis and describe the future work in

Chapter 5.



Chapter 2

Background and Related Work

In Chapter 2, we introduce the background knowledge for video technology and
some previous related works in sports video analysis. In section 2.1, we present an
overview of MPEG standard. In the following sections, some related works in shot
classification, event detection, tracking and camera calibration for sports video are

described.

2.1 Overview of MPEG Standard

MPEG is the international standard[1, 2] for moving picture video compression. In
compressed domain, we can obtain-low-level features such as DC values and motion
vectors to infer more semantic information. The MPEG video syntax support three types
of coded frames or pictures, intra (I-) pictures, coded separately by themselves; predictive
(P-) pictures, coded with respect to the immediately previous I- or P-pictures; and
bi-directionally predictive (B-) pictures, coded with respect to the immediately previous I-
or P-pictures as well as the immediately next I- or P-pictures. Fig. 2-1 shows an example
picture structure in MPEG video coding that uses three B-pictures between two reference
(1- or P-) pictures. In MPEG video coding, an input video sequence is divided into units of
groups of pictures (GOPs). Each GOP typically starts with an I-picture and the rest of the
GOP is made up of P-pictures and B-pictures in a certain arrangement. A GOP serves as a
basic access unit, and the start picture, an I-picture, is the entry point to facilitate random

accCess.
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Fig. 2-1 An example-of GOP structurezin MPEG coding.

MPEG coding uses techniqués such-as-block-based transform coding, predictive
coding, entropy coding, motion-compensated interpolation, etc. Among the above
techniques, block-based transform coding and motion compensation are the most
important ones.

Block-based transform coding reduces the spatial redundancy in digital video.
By 8x8-block discrete cosine transform (DCT), pixels in spatial domain are
transformed to frequency coefficients, and the substantial correlation between
neighbor pixels is greatly reduced. Coefficients in frequency domain need not be
coded with full accuracy and can be entropy-coded for compression. The first
coefficient of each block is called DC value, which contains most information of that

block.



Motion compensation reduced the temporal redundancy in digital videos. In the
current frame, a best match for each block in previous frame will be found, and the
difference between the block and the match will be coded. MPEG-1 and MPEG-2
apply backward and bi-directional motion compensations which provide higher
coding efficiency.

In the proposed framework, we will use the DC values, Rb ratio (the ratio of
number of backward motion vectors over the number of forward motion vectors), and
Rf ratio (the ratio of number of forward motion vectors over the number of backward

motion vectors), to detect scene change of basketball video.

2.2 Related Work in Sports Videa/Analysis

Due to tremendous commercial potentials, sports video has been widely studied.
Y.H. Gong et al.[3] proposed -a system-that-can ‘automatically parse soccer video
programs using domain knowledge: The. parsing process was mainly built upon line
mark recognition and motion detection. They categorized the position of a play into
several predefined classes by recognizing the compound line pattern with signature
method. The motion vectors field is used to infer the play positions for those scenes
without line marks. Despite the strong semantic indexes from the categorization of
play positions, they have yet to address the following two problems: 1) how to
identify different camera angle and shooting scale, otherwise the line mark
recognition cannot be robust; 2) how to determine reasonable segments for processing.
Frame-by-frame processing is improper for large amounts of video data, and
moreover, the customized algorithms have to undergo much noise from unrelated
segments. As discussed above, video shots have furnished us with natural segments.

Y.P. Tan et al.[4] introduced camera motion estimation into the analysis and

5



annotation of MPEG basketball video. They estimated camera motion directly from
MPEG motion vectors fields. By measuring the variation of the estimated pan rate and
the persistence of accumulated directional pan, a semantic annotation was generated,
such as Fast breaks (FB), Full court advances (FCA), Close-up shots, etc. No doubt
camera motion is an important clue to annotate video and select interesting video
segments. However, if the projective transformation parameter is utilized to recover
camera motion, the camera motion does necessarily dominate the change in image
intensity between frames. Although we can exploit robust statistics technique to deal
with noisy motion vectors, the global motion estimation may be poor if the underlying
motion vectors field is totally unreliable, for instance with unstructured scenes or the
loss of focus caused by fast camera movement. Hence we must evaluate the quality of
motion vectors fields before applying regression procedure.

D. Zhong et al.[5] propesed.a general framework to analyze the temporal
structure of live broadcasted sports videos.-Fhey formulated structure analysis as the
problem of detecting the fundamental views by using supervised learning and
domain-specific rules. For instance, in tennis, we can determine the serve scene by
detecting the court view. They utilized the techniques of color-filtering, object
segmentation and edge verification. This kind of view-based approach depends on
two assumptions: 1) the fundamental views consist of unique visual cues, such as
color, motion, and object layout; 2) the basic units start with a special scene. Since
sports videos usually feature a fixed number of camera views, it is useful to perform
frame-level view analysis. However, the complete view analysis does not make full
use of motion vectors information. Despite the combination of view analysis and
individual motion field analysis [6], it is difficult to capture the distinguished dynamic
characteristics from an individual motion vector field, which could be contaminated.

An alternative is to perform motion analysis at the shot level and capture the dominant

6



motion pattern within one shot.

We have discussed several representative works in sports video analysis with an
emphasis on motion information usage. Now let us briefly review some other related
works. G. Sudhir et al. [7] developed an approach for automatic classification of
tennis video. They used the automatically extracted tennis court lines and the players’
position for highlevel reasoning where the relative positions of the two players are
mapped to high-level events such as baseline-rallies, passing-shot, etc. W. Hua et al.
[8] introduced the maximum entropy scheme to integrate multimedia clues for
baseball scene classification. J. Assfalg et al. [9] tried to use HMM for modeling the
transitions between the states of camera motion patterns or players locations for each
soccer highlights. Once all the HMMs are trained, the maximum likelihood function is
computed to recognize an unknown video shot.

Below, we will review related.works about shot classification. C.W. Ngo et al.
[10] proposed a hierarchical clustering-approach by aggregating shots with similar
motion and color features. By coupling.clustering issues with retrieval problems, the
clustering structure inherently provides an indexing scheme for retrieval. Through
manual investigation of the clustering results, they have tried to explain the semantic
meanings for each cluster. However, this kind of clustering procedure did not
establish direct relationships between resulting shot clusters and clear semantic
meaning. Moreover, the clustering-based approach did not provide a feasible solution
for classifying unknown video shots into known shot classes with strong semantic
meanings.

J. Assfalg et al. [11] proposed an approach for semantic annotation of sports
video according to elements of visual content at different layers of semantic
significance. They used neural network classifiers to perform the classification of

visual shot features (e.g. edge, segment, and color features, etc.) in terms of playing

7



field, player, and audience classes. Such classification scheme is based on the key

frames. Motion information has never been used.

2.3 Related Work in Tracking

Most researches track players by using template matching[12-14], however,
users often have to specify the position of players manually during occlusion.
Moreover, most methods do not track a ball or only track a ball in easy cases [15, 16].
[17] proposed a system which could automatically track players and a ball in soccer
games in the images taken by fixed camera. The method proposed in [17] can also
cope with occlusion and the posture change and can calculate the position of the

players on the field and the position-0f the ball in.the 3D space.

2.4 Related Work in Cameéra Calibration

The mapping between the observed image and the real-world coordinates can be
taken to be a projective transform. With a set of positions well-defined in an image,
we can obtain the transformation parameters. Lines provide a good feature for
calibration when the sport has specific line structure on the playfield. In early work[7],
a method to detect four predefined points on a tennis court for calibration is proposed.
However, the algorithm has to be initialized manually and it is not robust against
occlusions of the court lines connecting these four points. In[18, 19], more detection
of court (for soccer videos) is described, but it requires computationally complex
initialization because of using an exhaustive search through the parameter space. [20]
applys a Hough transformation to detect court lines for calibration, but the use of

heuristics to assign the detected lines in the court model is not suitable for general

8



case. [21] uses a combinatorial search to establish correspondences between the lines
that were detected with a Hough transform and the court model. This provides a high

robustness even for bad lightening conditions or large occlusions.

2.4.1 Transformation from 3D to 2D

We typically use a pinhole camera model that maps points in a 3D camera frame
to a 2D projected image frame. Using similar triangles, we can relate 2D image plane

and 3D real world space coordinates by a transformation matrix. As Fig. 2-2 shows,

X., Y. and Z. are three axes in 3D camera coordinates; x and y are the
axes in 2D image plane. We have 3D points P=(0,Y.,Z.) and O=(X.,0,Z.)
which project onto the image plane at p =(0,v) and ¢ =(x,0). O, is the origin of

camera coordinate system, known as theicenter of.projection (COP) of the camera.

The origin of the image plane is: O.. The camera focal length is denoted by f...

=€

Image Flane

Fig. 2-2 Image geometry showing relationship between

3D points and 2D image plane pixels.



From similar triangles PRO. and poO, and also similar triangles QQ,0.
and goO,, we can write down the relationships:

ﬁ Zc Yo Z

X P A
X Y,
> x=f=5 3 y=f-5
fe z, 7 fe Z
If £.=1, note that perspective projection is just scaling a world coordinate by its
Z value. All 3D points along a line from the COP through a position (x,y) will
have the same image plane coordinates. We can also describe perspective projection

by the matrix equation:

XC

x| |sx poage. 0 v

y|= s P00 © (1)
ZC

1 S 0Fwbis e O 1

where s is a scaling factor and [x, y,l]T are the projected coordinates in the image

plane.

We can generate image space coordinates from projected camera space
coordinates. However, in image processing, we use the actual pixel values. Hence we
have to transform the 2D image coordinates (x, y) to pixel values (u,v) by scaling
the camera image plane coordinate in the x and y directions, and adding a

translation to the origin of the image space plane. We can call these scale factors D,
and D, and the translation to the origin of the image plane as (u,,v,). If the pixel

coordinates of the projected point (x,y) are (u,v), then we can write:

X
—=u—u, ; L=v—vo
D
x y
X
2> u=uy+— v:v0+L
D)C DV
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where D, and D, are the physical dimensions of a pixel and (u,,v,) is the origin

of the pixel coordinate system. Di and DL are simply the number of pixels, and

X

y

we center them at the pixel coordinate origin. We can also put this into matrix form

as:

= < T

Combine (1) and (2), we obtain:

M =

Sio NE‘H

o o ««b"—‘

OED‘H o

o\p‘l—\ o

<
o

=

(ST < N

1y (2
1
X
0 00 ¢
YC
chO-Z )
0 10 ¢
1

Camera calibration is used‘to . find the mapping from 3D to 2D image space

coordinates. There are 2 approaches:

Method I: Find both extrinsic and intrinsic parameters of the camera system.

Method 2: An easier method is the “Lumped” transform. Rather than finding

individual parameters, we find a composite matrix that relates 3D to 2D. Given

>
However, this can be difficult to do.

>

Eq.(3), we can derive a 3x4 calibration matrix C':

1
D
€y Cp Gz Cpy x
C=lcy €y €y Cyy|=| 0
Cy Cyp Cy3 1 0

11

Owb‘l—‘ o

LIOT
£ 0 00
“llo 510 ©
1
1




We apply method 2 which finds the 11 parameters to transform an arbitrary 3D

world point to a pixel in a computer image:

X C
u S-Uu C C C C
A 11 12 13 14 Yc
VIS SV Cu Cp Gz Cy |
Zc 5)
S Cyy Coy C 1
31 32 33
1
C is asingle 3x4 transform that we can calculate empirically.
x 1
u u where
Y Al u
[C]3><4 Z =V =V uw'=—
w 6
W 1 " (6)
3x1 3x1 .
L~ d4x1 v X V=
2D image 2D pixel w
3D coordinates ~ coordinates  coordinates
Multiplying out the equations, we. get:
Cy X + Cn)Y e Co3Z =5 Coy =V 0
Substituting v =u'w and v=v'w, we get:
CyX+CppY+ 0zt ey =u'(CyX +Cgpy +CgZ +Cyy) (8)
CnX +Cpp Y+ CpaZ 4 Cpy =V'(CyX +Cgpy + €337 + ) 9)

> If we know all the ¢, and X, y, z, we can find «',v'. This means that if we

know calibration matrix C and a 3D point, we can predict its image space

coordinates.

» Ifweknow x,y, z,u',v', we can find ¢, .Each 5-tuple gives 2 equationsin ¢, .

This is the basis for empirically finding the calibration matrix C (more on this

later).

12



> If we know ¢, ,u',v',we have 2 equations in x, y and z. The two equations

represent two planes in 3-D and form an intersection which is a line. These are
the equations of the line emanating from the center of projection of the camera,

through the image pixel location (u',v") and containing point (X, y, 2).

Set up a linear system to solve for ¢, : AC=B

x »w z 1 0 0 0 O —-u,x -—-u)y -u,z cyy u')
0 0 0 0 x, » z 1 —vix —Vy —Vz 1y vy
x, ¥y, z 1 0 0 0 0 -u,x —-u,y -u,z €13 u',
0 0 0 0 x, y, z, 1 —v,x —Vv,y —=V,z Cia v,

€

€2 =

Ca3

Cos

C31
Xy ¥y 2y 1 0 0 020 -uyxs—th,y -u')z Csy u'y

10 0 0 0 xy yy zy=l =vyx vy vzl o |l RE

%,_/
We can assume cz,=1

N is the number of points whose 2D and 3D coordinates are known and used to solve

for ¢, . Each set of points x, y, z,u",andv" yields 2 equations in 11 unknowns (the

c;’s). To solve for C, A needs to be invertible (square). We can over determine A and

find a Least-Squares fit for C by using a pseudo-inverse solution.

If Ais 2N x11, where 2N > 11:

AC =R
ATAC = ATB
C= (ATAt ATp

¥
pse udo inverse
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For basketball video, most of the previous work emphasizes on shot
classification and event detection[22-25]. In this paper, we want to stress the analysis

of tactics.
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Chapter 3

Scene Change Detection of Basketball Video and

Its Application in Tactic Analysis

In this chapter, we will present the framework of our system as depicted in Fig.
3-1. The system architecture has three main parts: Full Court Shot Retrieval, 2D Ball
Trajectory Extraction, and 3D Shooting Location Positioning. Full Court Shot
Retrieval utilizes scene change detection to cut a video into clips and classifies each
clip as close-up view, medium view,_ or full court view shot. 2D Ball Trajectory
Extraction uses all the full court.view shots te'search the ball candidates and to track
the 2D ball trajectory. 3D Shooting Location Positioning applies camera calibration to
find the relationship between 2D and.3D-points. Therefore, we can extract the 3D

trajectory of the basketball. Finally the shooting position could be found.

Close-up Shot | Eh?ji

Full Court Shot Scene Change N Shot " *ﬁ i
Retrieval Detection "| Classification Medium Shot | a2
Full Court Shot | [ ==
| L]
) Ball Trajectory
21 Ii.all llyut::lj\ Ball Tracking Le Ball Candidate .
Extraction Search
¥
3D Shooting 3D Trajectory | Camera p
Location Positioning Mapping [ Calibration -

¥
Shooting Position

Fig. 3-1 The framework of the system.
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Section3.1 introduces a GOP-based approach to detect scene changes in videos.
Section 3.2 constructs a shot classification model to find “full-court view shots”.
Section 3.3 shows how to find ball candidates. Section 3.4 represents the tracking
process of the ball. In section 3.5, we describe a camera calibration model to establish

correspondence between points in the video image and the determined court model.

3.1 Scene Change Detection Using GOP-Based Method

In order to analyze tactics in the basketball video, we have to detect scene
change and cut the video into clips. After that, we classify clips into three kinds of
shot and choose the full-court view shotsto do further processing.

Most of existed approaches detect scene change frame by frame. However, the
scene change does not occur on:each frame, hence it Is not necessary to do frame-wise
scene change detection. We use “a GOP-based method to improve the efficiency of
scene change detection. The format of MPEG-1I includes a GOP layer. As Fig. 3-2
shows, a GOP structure contains the header and an intra-frame coding frame (I-frame)
accompanies series of frames in two types including predictive coding frame

(P-frame), and bi-directionally predictive coding frame (B-frame).

GOPHeader | I |B|B|P|B|B|P|B|B|P|B|B|GOPHeader| I

Fig. 3-2 Structure of GOP.

The GOP-based scene change detection approach has two steps[26]. The

workflow of this approach is shown in Fig. 3-3. In the first step (Inter-GOP scene
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change detection), the possible occurrence of scene change is checked GOP by GOP
instead of frame by frame. If a GOP is detected having possible scene change, go to
the second step. In the second step (Intra-GOP scene change detection), we check
whether the scene change exits and find the actual frame where the scene change
occurs within the GOP. The detailed process of the two steps is described in Section

3.1.1and 3.1.2, respectively.

Inter-GOP scene change detection
Step 1. Calculate the difference
in each GOP-pair

| o

Does the difference
exceed the threshold?

A

Intra-GOP scene change detection
Step 2. Find out the actual scene change
frame within the GOP

Fig. 3-3 The workflow of the scene change detection method.

3.1.1 Inter-GOP scene change detection

For each | frame, divide it into k sub-regions. Sum the DC values in each
NI

sub-region. The image feature of a GOP g ={SumDC, :ZDCM |i=1,..k}, where
=1

i is the index of sub-region in I-frame, N, is the total number of DC values in the

ith sub-region, and DC, is the jth DC value of sub-region i. The Distance
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between two GOPs g and g+1 is represented as D(g, g + 1), and the value of D(g,g+1)

is computed as follows:

mark, =1 if | SumDC, ; — SumDC , ; |> threshold _ subregion

mark, =0 otherwise

k
D(g,g+1)= Zmarkl.

i=1

When D(g, g +1) <threshold _GOP, which means the successive GOPs are similar,
we say no scene change occurs. When D(g, g +1) > threshold _ GOP which means
GOP g and GOP g+1 are dissimilar, we assume that a possible scene change occurs in
GOP g+1. However, large difference may be caused by the camera motion and object
moving rather than the real scene change. To solve this problem, Intra-GOP scene

change detection is proposed.

3.1.2 Intra-GOP scene change detection
The Fast Pure Motion Vector Approach[27] is used for efficient scene change
detection within a GOP. This approach only uses motion vectors of B-frames to detect
scene change since B-frames are motion-compensated with respect to referential
frames. If a B-frame is most similar to previous referential frame, most of the motion
vector will refer to forward direction. If a B-frame is most similar to back referential
frame, most of the motion vector will refer to backward direction. Two notations are
defined below.
Rb : The ratio of number of backward motion vectors over the number of
forward motion vectors.
Rf : The ratio of number of forward motion vectors over the number of
backward motion vectors.

In a GOP, there are three cases where scene change may occur:
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Casel: Scene change occurs on I-frame or P-frame.

Case2: Scene change occurs on the first B-frame between two successive reference
frames.

Case3: Scene change occurs on the second or later B-frame between two successive
reference frames.

We discuss the three cases and infer the rule to find the actual scene change frame.

Scene change

More Forward Less Backward
v

...... B|I |B|B|B|P|B|B]|....
Peak Rf

Fig. 3-4 Scene change occurs on I-frame or P-frame.

Case 1 is shown in Fig. 3-4. 1f scene_change occurs on I-frame or P-frame, the
first previous B-frame will be similar to its previous referential frame. Therefore,
most of the motion vectors of the first previous B-frame refer to the forward
referential frame, and Rf of the first previous B-frame will be very large and exceed

the threshold_ Rf .

Scene change

Less Forward *L More Backward
I |
...... B|I1|B|B|B|P|B|B]| ...

T

Peak Rb

Fig. 3-5 Scene change occurs on the first B-frame.
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Case 2 is shown in Fig. 3-5. If Scene change occurs on the first B-frame between
two successive reference frames, the B-frame itself will be similar to its back
referential frame. Therefore, most of the motion vectors of this B-frame refer to the
backward referential frame, and Rb of the first B-frame will be very large and exceed

the threshold_Rb .

Scene change

More Forward Less Backward
| 33 v |
...... B|I |B|B|(B|P|B|B]|....
]
Less Forward More Backward

Peak Rf Peak Rb

Fig. 3-6 Scene change occurs on the second or later B-frame.

Case 3 is shown in Fig. 3-6. ilf scene-change occurs on the second or later
B-frame between two successive reference frames, the B-frame itself will be similar
to its back referential frame and the first preceding B-frame will be similar to previous
referential frame. Therefore, most of the motion vectors of the first preceding B-frame
refer to its forward referential frame, and the second B-frame mostly refer to the
backward referential frame; i.e. Rf of the first B-frame and Rb of the second B-frame
will be very large.

After examining values of Rb and Rf on B-frames, scene changes could be
detected in GOP while Rb or Rf on B-frame exceeds the predefined threshold.
Some noise such as camera or object moving which leads to possible scene change in
the first step can be removed because such kinds of frame are usually not similar to
both its previous and back referential frame, and its values of Rb and Rf on

B-frames will not exceed the threshold.
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3.2 Shot Classification

To analyze tactics in basketball video, we must have enough information to

support the inference of possible shot positions. Three kinds of basketball shots such

as close-up view, medium view and full court view are predefined. We will use the

full court view shots which contain more information of the game to do better analysis.

Some related works in shot classification are described in Chapter 2, and we apply the

main idea of dominant color ratio [28].

New Frame Initial Statistics
v
Detect Dominant Reset Frame Buffer Update Local Compute
< -- t-1 |e-—----
Color Region and Set Weights Statistics | statistics| Color Statistics
A
Cantrol  Rrimary Construct
Cplor Color A
Yes
Space  Bpace Enough ——
_______ Dominant Lidi) Add to . N frames
|
;geﬁg Frame Buffer In Buffer
Fusion of Inconsistent Yes S .
L e Segmented et W9|g t:1.
Detection Result Mask

v

Segmented Image

Fig. 3-7 Flowchart of dominant color region detection algorithm.

The flowchart of dominant color region detection algorithm is shown in Fig. 3-7.

At start-up, the system computes initial statistics and the values of several parameters

for each color space from the frames in the training set. After the initialization of
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parameters, dominant color region for each new frame is detected in both control and
primary color spaces. Segmentation results in these spaces are used by the fusion
algorithm to obtain more accurate final segmentation mask. The rest of the blocks in
the flowchart are utilized for adaptation of primary color space statistics by two
feedback loops. The inner feedback loop, connected with the dashed lines, computes
local statistics in primary color space and captures local variations, whereas the other
feedback loop, connected with the dotted lines, becomes active when segmentation
results conflict with each other, which indicates drifting of local statistics from true
statistics in primary color space. The activation of this outer feedback loop resets
primary color statistics to their initial values.

The RGB and HSI histograms of dominant color (the color of the court) are
illustrated in Fig. 3-8, where the x-axis represents the quantized bins for each color
component, and the y-axis is the number of pixels in corresponding bin. The ratio of
dominant color pixels can be exploited-to-identify-which kind of shot the current

frame belongs to.
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Fig. 3-8 The histograms of dominant color (court color).
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Fig. 3-9 (a) shows an instance of close-up view and its histograms in RGB and
HSI color space. Since a close-up view shot contains less part of court, the color
distribution of a close-up view image is much different from the color distribution of
the dominant color. (b) shows an instance of medium view and its histograms in RGB
and HIS color space. A medium view shot have a moderate amount of court pixels,
hence the distribution of a medium view image is a little similar to the color
distribution of the dominant color. (c) shows an instance of full court view and its
histograms in RGB and HIS color space. A full court view shot usually implies a large
number of court pixels, and consequently the distribution of a full court view image is

much similar to the color distribution of the dominant color.
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After obtaining the scene change frams of basketball video, we identify the full
court view shot since most information about tactics is involved in this kind of shots.

For full-court view shots, the ratio of dominant color pixels should be large. Therefore,

with a threshold T

ratio !

we can filter out Close-up view or Medium view.
Since clips with longer length comprise more information of tactics, we select

long clips having length bigger than L and use these clips to achieve better

min ?

analysis.

3.3 Ball Candidate Search

Identifying a ball in the image is difficult because the ball is usually small and
sometimes moves very fast. The process of ball candidate identification is described
in Fig. 3-10. For each frame-in.a full court view clip, we use color filtering,
background subtraction, morphological-operation, shape and size filtering to find
possible ball candidates. The ball candidate reduction step is applied to simplify the

tracking process by avoid too much ball candidates.

. Color Background Morphological
Video —» _.. . > ) .
Filtering Subtraction Operation
v
Ball Ball Candidate Shape and Size
Candidates Reduction Filtering

Fig. 3-10 The process of ball candidate identification.

In the color filtering step, color feature is utilized for ball pixel identification. For

each frame, the image is divided into overlapping blocks of size MxN. The
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overlapping is achieved by moving the center of the first block by m x4 and nx%
to span the whole image, where m and n are arbitrary integers. Calculate the averages
of R and G values in each block, and identify whether this block contains ball color.
However, the color of a basketball is not steady owing to the light condition and
the angle of view. After choosing ball blocks from different video source manually
and calculating their mean values of R, G, B, H, S, and | components, we observe that
the R and G values of the basketball are in the range 110<r <175 and70< g <135.
Therefore, we identify blocks having average R and G values in the basketball color
range to be possible ball blocks. Fig. 3-11 demonstrates some cases of ball block color.
In case (a), the ball is stationary and its color is similar to the real ball color. Case (b),
(c), and (d) show the moving ball color. Since the ball moves fast, its color is

influence by the background.

Fig. 3-11 Observation of the color of basketball.

Only using the values of R and G is not enough to find out correct ball

candidates because of complex background and noise. Background subtraction is also
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used to select the correct ball candidates. Each possible ball block is compared to the
corresponding position in the previous frame. Since the basketball is moving in high
speed, the ball blocks must have large luminance difference between the two frames.
As shown in Fig. 3-12, (a) is a source image containing a moving ball, and (b) shows
the pixels having large luminance difference between (a) and its previous frame. If the
luminance difference is large enough, the pixel is dotted as white; otherwise, the pixel
is dotted as black. The red circles indicate the ball positions. Most of the possible ball

blocks that are not the ball will be filtered by background subtraction.

(a) Source image. (b) Frame difference.

Fig. 3-12 Background subtraction of the image.

The region with largest number of connected ball blocks is found after applying
a region generation algorithm [31]. The minimum bounding rectangle (MBR) around
the region is defined for two purposes: 1) Filter out noise having the same color
feature such as the audience. 2) Obtain the center of the ball region.

Many noisy regions rather than the ball region might be detected. Therefore, the
area and aspect ratio of the minimum bounding rectangle (MBK) are used as

characteristics to identify the possible ball region. Moreover, we define the ball center
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coordinate (centerX,centerY) = (%Zn:Pxi ,%Zn:Py,.), where n is the total number of
i=1 i=1
pixel in the minimum bounding rectangle and (Px,, Py,) is the coordinate of pixel
i.
Fig. 3-13 shows the result of ball candidate search after color and shape filtering.
(@) is the case without camera motion and (b) is the case with camera motion. When
the camera is fixed, there are fewer ball candidates. However, when there is camera

motion, there will be too many ball candidates in a frame. To reduce the number of

ball candidates, we perform the Ball-Candidate-Reduction step.

3 ovIMELm
o 3 Wy

= 10.![.“ .-
. A s y

(a) Without camera motion. (b) With camera motion.

Fig. 3-13 Result of ball candidate search after color and shape filtering.

Ball-Candidate-Reduction is implemented by examining each ball candidate to
see whether the search range around it has any other candidate. Take the average
coordinate of all candidates in the search range as the new candidate position. Thus
we can delete many noisy candidates. As shown in Fig. 3-14, (a) represents ball
candidates before reduction, and (b) depicts ball candidates after reduction. Fig. 3-15
is the result of applying Ball-Candidate-Reduction step to the real image, where (a)
shows the candidate positions before reduction with blue circles and (b) displays the

new ball candidates after reduction with red circles.
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(a) Before Reduction of ball candidates. (b) After Reduction of ball candidates.

Fig. 3-14 Ball Candidate Reduction.
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(a) Before Reduction of ball candldates ' (b) After Reduction of ball candidates.

Fig. 3-15 Result of ball candldate reduction.

3.4 Ball Tracking

An array of basketball positions in different frames is found in the foregoing
processing. However, there are still chances that some of the data are not the ball. To
track the ball, route detection based on dynamic programming is used to find out the
correct trajectory among such data.

Suppose there are two frames, frame i and frame j(i < j). The 2D velocity of

the ball can be calculated by

X X))+, -Y)°
Veloczlyﬁj_\/( - 11)1 ;- 1)

i—>j
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where (X;,Y;) and (X,,Y;) are the positions of the ball candidates in frame i

and j,and T7,_, isthe time duration between frame i and ;. For two near frames

in a shot, the velocity of the ball will be in a certain range. The tracking conception is
described in Fig. 3-16. The X and Y axes represent 2D coordinates of the ball
candidates, and the horizontal axis shows frame number of the current candidate.
Assume the candidates are nodes of Fig. 3-16. When the velocity of the ball
calculated by candidates in frame i and ; satisfy the velocity constraint, the nodes

corresponding to these candidates will be connected by an edge.

»

t t+1 t+2 t+3 Frame Number

Fig. 3-16 Tracking process.

After connecting the candidates by edges, a complete route that represents the

trajectory of the ball is searched. If a candidate is not connected within 7.~ frames,

rame

we check its current connected route to see whether it is a ball trajectory by calculating
the variance and distortion of all candidates in the route. Since the ball is usually
passed or shot by players, its position will not stay in a small range and its route will

be a parabola. We estimate the parabola and determine the distortion as the sum of
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difference between the parabola and each candidate position. For each route, if the
length is long enough, the variance is large, and the distortion is small, we determine it
as a possible ball trajectory. As we can see in Fig. 3-17, the tracking process may
result in several 2D trajectories. We will introduce a method to find out the real

shooting ball trajectory in section 3.5.

B
e g
&
%
14
T -@;‘-4;41

E?{% 4 g\%ﬂ

Fig. 3-17 Result.of tracking ball.

More tracking algorithm are described-in*[29, 30]. Robust tracking requires
multiple levels of representation. A robust, integrated system needs less specific
models for tracking. Tracking players is much more difficult than tracking the ball
since the number of people determines the complexity of tracking process and

accuracy. Moreover, object occlusion is also a problem in tracking process.

3.5 Camera Calibration

For semantic analysis of sport videos, camera calibration parameters are required
to convert the positions of a ball and players in the video frame to 3D space in the
real-world coordinates or vice versa. Fig. 3-18 shows the correspondence between a

2D court image and a 3D court model.
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2D Court Image

3D Court model

E

Fig. 3-18 Correspondence between 2D court image and 3D court model.

As mentioned in section 2.4.1:
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To calculate the eleven camera parameters(c; ), we need at least six non co-plane

points whose 2D and 3D coordinates are both known. In court sport like basketball,

the marker lines on the court and the backboard boundary can be used to determine

the calibration parameters since both the color and length of the marker lines and
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backboard boundary are determined by the official rules. Fig. 3-19 shows the line
correspondences between image and basketball court model. If we can find white
lines in the image, the crossing or boundary points of lines can be used to calculate
the transformation between the image and the real court. After that, the positions of
the ball and players on the court can be estimated by detecting the center point and

footing points respectively.

Fig. 3-19 Line correspondences between image and basketball court model.

Fig. 3-20 is the flow chart of camera calibration. For each frame, image pixels
are classified as court line and backboard boundary pixels by some color and local

texture constraints. Hough Transform and Court Model Fitting are applied at first

33



frame to extract line candidates and initialize the court and backboard location. In
subsequent frames, we make a fast local search for the new camera parameters with
the previous approximate court and backboard locations rather than performing
Hough Transform and Court Model Fitting again. We will explain each step in

following sections.

White Line White Line White Line
Pixel Detection Pixel Detection Pixel Detection
A\ 4
Hough
Transform
\4
Court Model
Fitting
Y A 4 v
Court Parameter ] Camera Parameter Camera Parameter
Refinement Refinement Refinement
Frame 1 Frame 2 Frame 3

Fig. 3-20 The flow chart of camera calibration.

3.4.1 White Pixel Detection

The color of court lines is white by the official rule. However, there are other
white objects in an image such as advertisement logos, part of the stadium, the
spectators or the players dressed in white clothes. These not correctly detected white
pixels result in too many line candidates after using the subsequent Hough
line-detection method, and make the fitting of the court model time consuming and
unreliable. We use additional criteria to constrain the set of court line pixels. As

illustrated in Fig. 3-21, assume that the court line has a width=7 pixels and the
candidate pixel is drawn as gray. O and X represent pixels that are 7, pixels
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away from the current pixel in the vertical and horizontal directions respectively. We

check if the brightness of O or X is darker than the candidate pixel.

T

Fig. 3-21 Part of the image containing a white line pixel.

We identify a pixel as a court line pixel or not aceording to Eq.(10):

1 Y(x,») 2T, AY(x,»)=Y(x—7,y)>T, AY(x,y)-Y(x+7,y)>T,
LinePixel (x,y) =11 Y(x,y) 2T, A¥esy)—X (0,3 —7) > T, AY(x,»)-Y(x,y+7)>T, (10)
0 else
where Y(x, y) is the luminance value in YCbCr space. Fig. 3-22 is an example after
applying Eq.(10) to detect possible white line pixels.(a) is the original image, (b)
shows detected white line pixels by red points, and (c) extracts white line pixels by
black points.
Since pixels in finely textured areas of small white letters in logos, white areas in
the stadium, or spectators wearing white clothes will still pass the above white line
test, the result will contain many noise pixels. Therefore, we exclude those white
pixels that are in textured regions to prevent too much false detection in the
line-extraction step.
Textured regions are recognized by observing the two eigenvalues of the

structure matrix S, computed over a small window of size 2b + 1 around each
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candidate pixel (p,, p,). The structure matrix is defined in [21]:

px+b py+b

T
s= ) 2 VY(x,)(VY(x,y))
x=p,=by=p,-b
If both eigenvalues of matrix S, called A, and A, (4, > 4,) are large, it
indicates a two-dimensional texture area. If one eigenvalue is large and the other is
small, image gradients are oriented along a common axis. On the straight court lines,

the latter case will be applied to define an additional rule which retains white pixels if

A zc-A,.

i
o Fe N

£ — A

(a) The original image.

(c) Extracted white line pixels.

Fig. 3-22 White line pixel detection.
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Results of the proposed structure constraint can be seen in Fig. 3-23. (a) shows
the white line pixels without line-structure constraint by red points. (b) shows the
white line pixels with line-structure constraint by red points. (c) extracts white line
pixels without line-structure constraint by black points. (d) extracts white line pixels
with line-structure constraint by black points. We can observe that many noise pixels

in the area of small white letters in logos, white areas in the stadium, or spectators

wearing white clothes are removed after applying line-structure constraint.

(a)White line pixels without Iinéis'truétu:re"" (b) Wh:;ii'e line pixels with line-structure
constraint shown by red points. “. constraint shown by red points.

(c)Extracted white line pixels without (d) Extracted white line pixels with
line-structure constraint. line-structure constraint.

Fig. 3-23 Applying line-structure constraint.
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3.4.2 Court Line and Backboard Line Candidates Detection

After obtaining the white pixels, the system has to identify the court lines and the
top boundary of the backboard. A standard Hough transform on the set of the
previously detected white pixels is used to detect these line candidates. As depicted in
Fig. 3-24, the parameter space used to represent the lines is (0, d), where 6 is the
angle between the line normal and the horizontal axis, and d is the distance of the line
to the origin. We construct an accumulator matrix for all (¢, d) and sample the
accumulator matrix at a resolution of one degree for 8 and one pixel for 4. As Fig.
3-25 shows, since a line in (X, y) space corresponds to a point in (6, d) space, line

candidates are determined by extracting the local maxima in the accumulator array.

/V v

Fig. 3-24 Hough transform for straight lines.

for each pixel Plxy),

rotate the line

& 1I. .'I " -. Lq i
X

[N

Yote in parameter space

d=rcosd+psind 0

Fig. 3-25 Line detection by Hough Transform.
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The Hough transform has the disadvantage that thick lines in the input image
usually result in a bundle of detected lines, which all lie close together. Another
disadvantage of the Hough transform is that the accuracy of the determined line
parameters is depending on the resolution of the accumulator matrix. This problem
cannot be easily reduced by increasing resolution of the accumulator matrix, since this
also causes that the inexact parameter samples for an input line spread over a larger
area in the accumulator matrix. Solve both of the above-mentioned problems by
introducing a further step after the Hough transform to improve the accuracy of the
detected line parameters by computing the best fit line to the input data. Furthermore,
lines whose parameters are nearly equal are considered being duplicates and one of
them is removed.

With all line candidates, we.¢an Qb:[ain,éi'X'.,,intersections of the court lines as
o HALTCS 6
indicated in Fig. 3-26. However, we ﬁéegi Awo, more points of the backboard to

calculate the camera parameters; \ b~

ST
L 5 1

£ p=— W .

Fig. 3-26 Six intersections of the court line candidates.

As we can see in Fig. 3-26, the lighting condition and the material of the

backboard usually make the white pixels only distinguishable on the top of the
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backboard. If we can obtain the start point and end point of the backboard top-line, we
can calculate the camera parameters. Unfortunately, the white top-line of the
backboard is too short in comparison with the court lines, which results in the
elimination from the line candidates during the Hough Transform step. To solve this
problem, we use only the one fourth pixels in the top of the frame to detect the
backboard line, and compute the line segment boundaries to know where the line

starts and ends. The algorithm of line segment boundaries is described as follows.

detected white pixels [ with classification errors)

I || || I T e
B b i | B
E— —

obtained line segment boundaries

Fig. 3-27 Detection of line-segment boundaries.

s
A bt
Ly sy |

' p=— W . N

Fig. 3-28 Boundaries of the backboard top-line.

Scanning along the detected line, a sequence of white (top-line) pixels and black
(non top-line) pixels is obtained. Because of classification errors and occlusions, the

data contain noisy data. In Fig.3-27, we assume that the line segment starts at position
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start and ends at position end, and define the number of errors as the number of black
pixels in the range start — end plus the number of white pixels outside the range
start — end ( 5 stands for errors). Using this error definition, we place the line
segment boundaries such that the error is minimized. This optimization has a linear

time complexity, and the result is shown in Fig. 3-28.

3.4.3 Model Fitting
With the intersections of court lines and the boundaries of backboard top-line
found in the first frame, we can match the eight points to the court model and

calculate the camera parameters as Fig. 3-29 shows.
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Fig. 3-29 Match the eight points to the court model

g

and calculate the camera parameters.
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3.4.4 Court Parameter Refinement

The previous calibration algorithm only need to be applied in the bootstrapping
process when the first frame of a new shot is processed. For subsequent frames, we
can assume that the acceleration of camera motion is small. This enables the
prediction of the camera parameters for the next frame. Since the prediction provides
a good first estimate of the camera parameters, a simplified version of the above

algorithm can be applied.

Vi

frame t-1 frame t frame t+1

Fig. 3-30"Camera parameter prediction.

As Fig. 3-30 shows, H, is the camera parameters for frame z. If we know the

N

camera parameters for frames ¢ and ¢ — 1, we can predict the camera parameters H,,;

for + + 1 by 1’:1,+l = H,H3H,. The non-linear Levenberg-Marquardt minimization

algorithm can be used to find the new camera parameters [21].

However, the court lines are too complex and varied when the basketball video
has camera motion, which cause difficulty in camera parameter refinement. Since
tracking the camera parameter is a bottleneck, we only analyze clips without camera
motion to estimate the 3D trajectory. From 2D trajectories obtained in the ball

tracking step, we can find a real shooting trajectory by examining whether it passes
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through the backboard. As represented in Fig. 3-31, the four 2D image points of the
backboard are marked as A, B, C and D, which can be derived from the 3D real world
locations. If the parabola of the 2D trajectory passes through the minimum bounding

rectangle of the backboard, it will be a possible shooting trajectory.

I

e Y

Fig. 3-31 Extract possible 2D.shooting trajectory.

D

The relationship between each pair of.corresponding points in the 2D and 3D space is:

Xe

Cu Cpp Gz il Y u
c

Cop Cpp Cpz Cyy |” =V (1D
Z:

Cyy Cyp €33 1 1 1

where (u,v) is in the 2D image coordinates and (X.,Y.,Z.) is in the 3D real

world coordinates. Moreover, the 3D ball trajectory should fit the physical property:

Xo=x,+Vt
YC :yo +17yt (12)

1
Z. =z, +Vzt+§gt2
where (x,,,,2,) is the initial position of the ball in 3D coordinate, (V.,V,,V.) is

the velocity of the ball in 3D coordinate, g is acceleration of gravity, and t is the

current time.
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Use Eq.(12) to substitute for (X.,Y.,Z.) inEq.(11):

i X, tV.t ]

Vo t+ Vyl‘
Ca Cpp Coz Cy |” 1 2| T
Zy +V t+5 gt

1

I
< =

Cy Cyp Cg 1

Since the eleven camera calibration parameters and the time of each point on the

trajectory are known, we can calculate the six unknowns (x, ,,z,,7,,7,,7.) of the

parabola with three or more arbitrary points on the 2D trajectory. Fig. 3-32 indicates

the three points that we choose to calculate (x,y,,z,,7,,7, . ). With camera

parameters matrix C and six physical parameters (x, y,,z,,7,,7,,7.), We can extract

the 3D trajectory and take the starting point of the 3D trajectory as the shot position.

(uy,v,)

(145, ) (t3,v5)

Fig. 3-32 Choose three points on the 2D trajectory.
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Chapter 4

Experiment

In this chapter, we present the experimental results of the proposed system. We
detect scene changes of MPEG testing sequences in compressed domain. For shot
classification and tactic analysis steps, we use AVI sequences and implement the
analysis process in pixel domain. The resolution of all sequences is 360x 240. Section
4.1 shows the result of scene change detection and shot classification. In section 4.2
and section 4.3, the outcomes of 2D ball trajectory extraction and camera calibration

are illustrated, respectively. Finally;the 3D shooting position is indicated.

4.1 Experimental Result of Scene Change Detection and Shot Classification

We use two basketball videos of HBL (High-school Basketball League) to test
the scene change detection and shot classification algorithm. The first video is a 15
minutes long basketball video which contains 96 shots ( 37 Close-up view shots, 27
Medium view shots, and 32 Full-court view shots), and the other is 10 minutes long
and contains 71 shots ( 26 Close-up view shots, 24 Medium view shots, and 21
Full-court view shots). Table. 1 shows the classification results.

From Table. 1, the accuracy of our shot classification algorithm is about 95.2%
(the number of correctly classified shots divided by the number of total shots). The
miss and false situation may be caused by the angle of view. For instance, if a real full
court view shot contains large portion of spectators, the ratio of the court dominant

color will be lower, which results in wrong classification.
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Close up Medium Full court

Sequence 1 | Sequence 2 | Sequence 1 | Sequence 2 | Sequence 1 | Sequence 2

Ground Truth 37 26 27 24 32 21
No. of Miss 1 2 2 2 0 1
No. of False 0 1 1 3 2 1

Table. 1 Shot classification results of two testing sequences. Sequence 1 is a 15
minutes basketball video containing 96 shots, and sequence 2 is a 10 minutes

basketball video containing 71 shots.

4.2 Experimental Result of Trackingthe Ball

Using the proposed ball candidate search and tracking methods, we can obtain
the 2D trajectories from the full court view shots, Fig. 4-1 is the tracking result of a
shot without camera motion, and Fig. 4-2 is the tracking result of a shot with camera
motion. No matter the sport video is shot by stationary camera or not, we can obtain

its possible 2D trajectories.

&% - “33\%4“
q_?@ﬁ%ﬁh PR

Fig. 4-1 The tracking result of a shot without camera motion.
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Fig. 4-2 The tracking result of a shot with camera motion.

4.3 Experimental Result of Camera Calibration and Shooting Position

In this section, we only use the":'.c.l'ipsl' vv.i:ltj:'.n:o'Uticamera motion to test the camera
calibration algorithm. As Fig-‘.'.4.-3 'she'\—i\}s:.' t'fﬁe"l‘e-c'etion of the points for camera
calibration and the backboard posmod can—be—derlved from the image. Therefore, the
real shooting trajectory presented by SO|Id C|rcles can be identified as shown in Fig.

4-4. Use the transformation relationship from 2D coordinate to 3D coordinate, we can

obtain the shot position. Fig. 4-5 indicates the 3D shooting position by a red point.

A

Lo we EH

Fig. 4-3 The 2D location of the points for camera calibration

and the backboard position.
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Fig. 4-4 The real 2D ball trajectory.
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Fig. 4-5 The obtained shooting position in 3D court model.
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Chapter 5

Conclusion and Future Work

Sport event detection has been proposed in previous research. However, these
events only provide the audience a more efficient way to browse through sport videos.
We propose a system that can automatically detect the scene change of the basketball
video and classify clips into three kinds of shots. With the full-court-view shots, we
can track the ball in the videos, detect the court-line and the backboard positions, and
define the transformation relationship from 2D image to 3D real-world court model.
After mapping the position of the ball. from images to court model, the system
concludes the possible shooting positions:

Analyzing tactics in basketball video is difficult due to the variation of view
angle, the complexity of background:and the-intricacy of court lines. Our ball tracking
method can be used for any full court view: shot no matter whether there is camera
motion or not. However, the camera calibration algorithm can only be applied for
clips without camera motion.

Since the camera is not fixed, the result of shooting positions might not be
accurate enough. The future work can be concentrated on videos shot by stationary
camera so that the system will be more reliable. Tracking players in the video is
difficult because occlusion occurs when players get close. If we can propose a more
effective and efficient tracking algorithm, we could gather more statistics to analyze
the behavior of the players in the games. Furthermore, we can conclude useful
knowledge such as the defense rank and the offense tactics for professional basketball

players and coaches who need more detailed information of the game.
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