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籃球影片之場景偵測及其在戰術分析之應用 

 

研究生:田敏君                  指導教授:李素瑛 教授 

國立交通大學資訊科學與工程研究所 

 

摘要 

運動影片之分析是近年來多媒體影像處理領域中一項重大議題，其中籃球影

片由於場景與場地的複雜度較高，成為最富挑戰性的研究。目前已有相關論文利

用事件偵測技術進而找尋比賽精華片段，然而對於專業籃球教練與球員，觀看籃

球影片的目的則須提升至戰術分析。因此我們運用以GOP為基礎之場景變換偵測

方法找出關鍵畫面，將影片切割成多個片段，並以球場主要顏色分布及片段長度

作為場景分類的依據，分出近景、中景與遠景三纇片段。取出含有較多比賽資訊

的遠景片段作進一步分析，利用顏色、形狀等資訊找出可能是籃球的區塊並追蹤

球的軌跡，最後利用相機參數估算以及球軌跡之物理特性將二維軌跡對應到三維

真實球場，並推論可能的出手點位置。 

 

檢索詞 : 場景變換偵測、場景分類、軌跡追蹤、相機參數估
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Scene Change Detection of Basketball Video 

and Its Application in Tactics Analysis 

Students: Min-Chun Tien            Advisor: Prof.Suh-Yin Lee 

Institute of Computer Science and Information Engineering 

National Chiao Tung University 

 

Abstract 

Sports video analysis has been a major issue of multimedia in recent years. For 

basketball videos, most researches only put emphasis on searching highlights of the 

game since the content of basketball video is too complicated. In order to look for 

more information of tactics from basketball videos, we propose a system that can 

automatically segment a basketball video into several clips by GOP-based scene 

change detection method. The length of each clip and the number of dominant color 

pixels of each frame could be used to classify shots into close-up view, medium view, 

and full-court view. We choose full-court view shots to do advanced analysis such as 

tracking the ball, and finding the transformation parameters from 3D real-world court 

to 2D image by camera calibration techniques. After that, we match the 2D ball 

trajectory to the corresponding coordinate in a real-world court and compute the 

statistics of shooting positions. Eventually we obtain information of the most possible 

shooting positions. 

 

Index Terms: scene change detection, shot classification, tracking, camera 

calibration  
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Chapter 1  

Introduction 

1.1 Motivation and Overview 

Before basketball games, the coach and players have to watch the basketball 

videos of the opponent and looks for their defense rank, offense strategies, the offense 

habitual behavior of the top players and the most possible shot positions of that team. 

For human eyes, it is not difficult to observe above information. However, it is 

obviously time-consuming and exhausting to watch a 40 minutes long basketball 

video. Therefore, we propose an approach which could automatically segment the 

video into clips by detecting the scene change, and classify all clips into three kinds of 

view shots: close-up view, medium view, and full-court view. Since full-court view 

shot contains more information, we use such kind of clips to do advanced analysis. 

The system then tracks the ball in each clip and finds the transformation parameters 

from 3D real-world court to 2D image by camera calibration techniques. With the 

calibration parameters and the physical property of the ball in 3D real-world 

coordinate, we can extract the 3D trajectory of basketball and gather statistics to 

conclude the most possible shooting positions in the games, which provide useful 

information for the coach.  

 

1.2 Organization 

The rest of this thesis is organized as follows. In Chapter 2, we introduce some 
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background knowledge required for video technology. We also survey some previous 

related works in sports video analysis, event detection, shot classification, image 

enhancement, object extraction, object tracking and camera calibration. Chapter 3 

introduces an algorithm to detect scene changes of videos and constructs a shot 

classification model to identify clips into close-up view, medium view, and full-court 

view shots. Chapter 3 also shows the tracking process of the ball and players, 

describes how the points in the 2D video image correspond to the determined 3D 

court model, and infers the shot position. Chapter 4 presents the experimental result 

and discussion. Finally, we conclude the thesis and describe the future work in 

Chapter 5. 
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Chapter 2  

Background and Related Work 

In Chapter 2, we introduce the background knowledge for video technology and 

some previous related works in sports video analysis. In section 2.1, we present an 

overview of MPEG standard. In the following sections, some related works in shot 

classification, event detection, tracking and camera calibration for sports video are 

described.  

 

2.1 Overview of MPEG Standard 

 MPEG is the international standard[1, 2] for moving picture video compression. In 

compressed domain, we can obtain low-level features such as DC values and motion 

vectors to infer more semantic information. The MPEG video syntax support three types 

of coded frames or pictures, intra (I-) pictures, coded separately by themselves; predictive 

(P-) pictures, coded with respect to the immediately previous I- or P-pictures; and 

bi-directionally predictive (B-) pictures, coded with respect to the immediately previous I- 

or P-pictures as well as the immediately next I- or P-pictures. Fig. 2-1 shows an example 

picture structure in MPEG video coding that uses three B-pictures between two reference 

(I- or P-) pictures. In MPEG video coding, an input video sequence is divided into units of 

groups of pictures (GOPs). Each GOP typically starts with an I-picture and the rest of the 

GOP is made up of P-pictures and B-pictures in a certain arrangement. A GOP serves as a 

basic access unit, and the start picture, an I-picture, is the entry point to facilitate random 

access. 
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Fig. 2-1 An example of GOP structure in MPEG coding. 

 

MPEG coding uses techniques such as block-based transform coding, predictive 

coding, entropy coding, motion-compensated interpolation, etc. Among the above 

techniques, block-based transform coding and motion compensation are the most 

important ones. 

Block-based transform coding reduces the spatial redundancy in digital video. 

By 8x8-block discrete cosine transform (DCT), pixels in spatial domain are 

transformed to frequency coefficients, and the substantial correlation between 

neighbor pixels is greatly reduced. Coefficients in frequency domain need not be 

coded with full accuracy and can be entropy-coded for compression. The first 

coefficient of each block is called DC value, which contains most information of that 

block. 
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Motion compensation reduced the temporal redundancy in digital videos. In the 

current frame, a best match for each block in previous frame will be found, and the 

difference between the block and the match will be coded. MPEG-1 and MPEG-2 

apply backward and bi-directional motion compensations which provide higher 

coding efficiency. 

In the proposed framework, we will use the DC values, Rb ratio (the ratio of 

number of backward motion vectors over the number of forward motion vectors), and 

Rf ratio (the ratio of number of forward motion vectors over the number of backward 

motion vectors), to detect scene change of basketball video. 

 

2.2 Related Work in Sports Video Analysis 

 Due to tremendous commercial potentials, sports video has been widely studied. 

Y.H. Gong et al.[3] proposed a system that can automatically parse soccer video 

programs using domain knowledge. The parsing process was mainly built upon line 

mark recognition and motion detection. They categorized the position of a play into 

several predefined classes by recognizing the compound line pattern with signature 

method. The motion vectors field is used to infer the play positions for those scenes 

without line marks. Despite the strong semantic indexes from the categorization of 

play positions, they have yet to address the following two problems: 1) how to 

identify different camera angle and shooting scale, otherwise the line mark 

recognition cannot be robust; 2) how to determine reasonable segments for processing. 

Frame-by-frame processing is improper for large amounts of video data, and 

moreover, the customized algorithms have to undergo much noise from unrelated 

segments. As discussed above, video shots have furnished us with natural segments. 

Y.P. Tan et al.[4] introduced camera motion estimation into the analysis and 
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annotation of MPEG basketball video. They estimated camera motion directly from 

MPEG motion vectors fields. By measuring the variation of the estimated pan rate and 

the persistence of accumulated directional pan, a semantic annotation was generated, 

such as Fast breaks (FB), Full court advances (FCA), Close-up shots, etc. No doubt 

camera motion is an important clue to annotate video and select interesting video 

segments. However, if the projective transformation parameter is utilized to recover 

camera motion, the camera motion does necessarily dominate the change in image 

intensity between frames. Although we can exploit robust statistics technique to deal 

with noisy motion vectors, the global motion estimation may be poor if the underlying 

motion vectors field is totally unreliable, for instance with unstructured scenes or the 

loss of focus caused by fast camera movement. Hence we must evaluate the quality of 

motion vectors fields before applying regression procedure. 

D. Zhong et al.[5] proposed a general framework to analyze the temporal 

structure of live broadcasted sports videos. They formulated structure analysis as the 

problem of detecting the fundamental views by using supervised learning and 

domain-specific rules. For instance, in tennis, we can determine the serve scene by 

detecting the court view. They utilized the techniques of color-filtering, object 

segmentation and edge verification. This kind of view-based approach depends on 

two assumptions: 1) the fundamental views consist of unique visual cues, such as 

color, motion, and object layout; 2) the basic units start with a special scene. Since 

sports videos usually feature a fixed number of camera views, it is useful to perform 

frame-level view analysis. However, the complete view analysis does not make full 

use of motion vectors information. Despite the combination of view analysis and 

individual motion field analysis [6], it is difficult to capture the distinguished dynamic 

characteristics from an individual motion vector field, which could be contaminated. 

An alternative is to perform motion analysis at the shot level and capture the dominant 
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motion pattern within one shot.  

We have discussed several representative works in sports video analysis with an 

emphasis on motion information usage. Now let us briefly review some other related 

works. G. Sudhir et al. [7] developed an approach for automatic classification of 

tennis video. They used the automatically extracted tennis court lines and the players’ 

position for highlevel reasoning where the relative positions of the two players are 

mapped to high-level events such as baseline-rallies, passing-shot, etc. W. Hua et al. 

[8] introduced the maximum entropy scheme to integrate multimedia clues for 

baseball scene classification. J. Assfalg et al. [9] tried to use HMM for modeling the 

transitions between the states of camera motion patterns or players locations for each 

soccer highlights. Once all the HMMs are trained, the maximum likelihood function is 

computed to recognize an unknown video shot. 

Below, we will review related works about shot classification. C.W. Ngo et al. 

[10] proposed a hierarchical clustering approach by aggregating shots with similar 

motion and color features. By coupling clustering issues with retrieval problems, the 

clustering structure inherently provides an indexing scheme for retrieval. Through 

manual investigation of the clustering results, they have tried to explain the semantic 

meanings for each cluster. However, this kind of clustering procedure did not 

establish direct relationships between resulting shot clusters and clear semantic 

meaning. Moreover, the clustering-based approach did not provide a feasible solution 

for classifying unknown video shots into known shot classes with strong semantic 

meanings. 

J. Assfalg et al. [11] proposed an approach for semantic annotation of sports 

video according to elements of visual content at different layers of semantic 

significance. They used neural network classifiers to perform the classification of 

visual shot features (e.g. edge, segment, and color features, etc.) in terms of playing 
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field, player, and audience classes. Such classification scheme is based on the key 

frames. Motion information has never been used.  

 

2.3 Related Work in Tracking 

 Most researches track players by using template matching[12-14], however, 

users often have to specify the position of players manually during occlusion. 

Moreover, most methods do not track a ball or only track a ball in easy cases [15, 16]. 

[17] proposed a system which could automatically track players and a ball in soccer 

games in the images taken by fixed camera. The method proposed in [17] can also 

cope with occlusion and the posture change and can calculate the position of the 

players on the field and the position of the ball in the 3D space. 

 

2.4 Related Work in Camera Calibration 

The mapping between the observed image and the real-world coordinates can be 

taken to be a projective transform. With a set of positions well-defined in an image, 

we can obtain the transformation parameters. Lines provide a good feature for 

calibration when the sport has specific line structure on the playfield. In early work[7], 

a method to detect four predefined points on a tennis court for calibration is proposed. 

However, the algorithm has to be initialized manually and it is not robust against 

occlusions of the court lines connecting these four points. In[18, 19], more detection 

of court (for soccer videos) is described, but it requires computationally complex 

initialization because of using an exhaustive search through the parameter space. [20] 

applys a Hough transformation to detect court lines for calibration, but the use of 

heuristics to assign the detected lines in the court model is not suitable for general 
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case. [21] uses a combinatorial search to establish correspondences between the lines 

that were detected with a Hough transform and the court model. This provides a high 

robustness even for bad lightening conditions or large occlusions.  

2.4.1 Transformation from 3D to 2D 

We typically use a pinhole camera model that maps points in a 3D camera frame 

to a 2D projected image frame. Using similar triangles, we can relate 2D image plane 

and 3D real world space coordinates by a transformation matrix. As Fig. 2-2 shows, 

CCC ZandYX ,  are three axes in 3D camera coordinates; yandx  are the 

axes in 2D image plane. We have 3D points ),,0( CC ZYP =  and ),0,( CC ZXQ =  

which project onto the image plane at ),0( yp =  and )0,(xq = . cO  is the origin of 

camera coordinate system, known as the center of projection (COP) of the camera. 

The origin of the image plane is O . The camera focal length is denoted by cf . 

 

 

 

 

 

 

 

 

 

 

Fig. 2-2 Image geometry showing relationship between 

3D points and 2D image plane pixels. 
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 From similar triangles cOPP1  and cpoO  and also similar triangles cOQQ1  

and cqoO , we can write down the relationships: 
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If cf =1, note that perspective projection is just scaling a world coordinate by its 

Z  value. All 3D points along a line from the COP through a position ),( yx  will 

have the same image plane coordinates. We can also describe perspective projection 

by the matrix equation: 
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where s  is a scaling factor and [ ]Tyx 1,, are the projected coordinates in the image 

plane.  

We can generate image space coordinates from projected camera space 

coordinates. However, in image processing, we use the actual pixel values. Hence we 

have to transform the 2D image coordinates ),( yx  to pixel values ),( vu  by scaling 

the camera image plane coordinate in the x  and y  directions, and adding a 

translation to the origin of the image space plane. We can call these scale factors xD  

and yD , and the translation to the origin of the image plane as ),( 00 vu . If the pixel 

coordinates of the projected point ),( yx  are ),( vu , then we can write: 

0uu
D
x

x

−=   ; 0vv
D
y

y

−=  

   
xD

xuu += 0   ; 
yD

yvv += 0  
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where xD  and yD  are the physical dimensions of a pixel and ),( 00 vu  is the origin 

of the pixel coordinate system. 
xD

x  and 
yD

y  are simply the number of pixels, and 

we center them at the pixel coordinate origin. We can also put this into matrix form 

as: 
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Combine (1) and (2), we obtain: 
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 Camera calibration is used to find the mapping from 3D to 2D image space 

coordinates. There are 2 approaches: 

 Method I: Find both extrinsic and intrinsic parameters of the camera system. 

However, this can be difficult to do.  

 Method 2: An easier method is the “Lumped” transform. Rather than finding 

individual parameters, we find a composite matrix that relates 3D to 2D. Given 

Eq.(3), we can derive a 3x4 calibration matrix C : 
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We apply method 2 which finds the 11 parameters to transform an arbitrary 3D 

world point to a pixel in a computer image: 

 

 

                                                                 (5) 

 

C  is a single 3x4 transform that we can calculate empirically. 
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Multiplying out the equations, we get: 

⎪
⎩

⎪
⎨

⎧

=+++
=+++
=+++

wczcycxc
vczcycxc
uczcycxc

34333231

24232221

14131211

                  (7) 

Substituting wuu '=  and wvv '= , we get: 

                                                               (8) 

                                                               (9) 

 If we know all the ijc  and x, y, z, we can find 'u , 'v . This means that if we 

know calibration matrix C  and a 3D point, we can predict its image space 

coordinates. 

 If we know x, y, z, 'u , 'v , we can find ijc  . Each 5-tuple gives 2 equations in ijc . 

This is the basis for empirically finding the calibration matrix C  (more on this 

later).  
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 If we know ijc , 'u , 'v ,we have 2 equations in x, y and z. The two equations 

represent two planes in 3-D and form an intersection which is a line. These are 

the equations of the line emanating from the center of projection of the camera, 

through the image pixel location ( 'u , 'v ) and containing point (x, y, z). 

Set up a linear system to solve for ijc  : AC = B 

 

 

 

 

 

 

 

 

 

N is the number of points whose 2D and 3D coordinates are known and used to solve 

for ijc . Each set of points x, y, z, 'u ,and 'v  yields 2 equations in 11 unknowns (the 

ijc ’s). To solve for C, A needs to be invertible (square). We can over determine A and 

find a Least-Squares fit for C by using a pseudo-inverse solution. 

If A is 2N x11, where 2N > 11: 
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 For basketball video, most of the previous work emphasizes on shot 

classification and event detection[22-25]. In this paper, we want to stress the analysis 

of tactics.  
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Chapter 3  

Scene Change Detection of Basketball Video and 

Its Application in Tactic Analysis 

In this chapter, we will present the framework of our system as depicted in Fig. 

3-1. The system architecture has three main parts: Full Court Shot Retrieval, 2D Ball 

Trajectory Extraction, and 3D Shooting Location Positioning. Full Court Shot 

Retrieval utilizes scene change detection to cut a video into clips and classifies each 

clip as close-up view, medium view, or full court view shot. 2D Ball Trajectory 

Extraction uses all the full court view shots to search the ball candidates and to track 

the 2D ball trajectory. 3D Shooting Location Positioning applies camera calibration to 

find the relationship between 2D and 3D points. Therefore, we can extract the 3D 

trajectory of the basketball. Finally the shooting position could be found.  

 

 

 

 

 

 

 

Fig. 3-1 The framework of the system. 
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Section3.1 introduces a GOP-based approach to detect scene changes in videos. 

Section 3.2 constructs a shot classification model to find “full-court view shots”. 

Section 3.3 shows how to find ball candidates. Section 3.4 represents the tracking 

process of the ball. In section 3.5, we describe a camera calibration model to establish 

correspondence between points in the video image and the determined court model. 

 

3.1 Scene Change Detection Using GOP-Based Method 

 In order to analyze tactics in the basketball video, we have to detect scene 

change and cut the video into clips. After that, we classify clips into three kinds of 

shot and choose the full-court view shots to do further processing. 

Most of existed approaches detect scene change frame by frame. However, the 

scene change does not occur on each frame, hence it is not necessary to do frame-wise 

scene change detection. We use a GOP-based method to improve the efficiency of 

scene change detection. The format of MPEG-Ⅱ includes a GOP layer. As Fig. 3-2 

shows, a GOP structure contains the header and an intra-frame coding frame (I-frame) 

accompanies series of frames in two types including predictive coding frame 

(P-frame), and bi-directionally predictive coding frame (B-frame). 

 

GOP Header I B B P B B P B B P B B GOP Header I B B

 
Fig. 3-2 Structure of GOP. 

 

 The GOP-based scene change detection approach has two steps[26]. The 

workflow of this approach is shown in Fig. 3-3. In the first step (Inter-GOP scene 
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change detection), the possible occurrence of scene change is checked GOP by GOP 

instead of frame by frame. If a GOP is detected having possible scene change, go to 

the second step. In the second step (Intra-GOP scene change detection), we check 

whether the scene change exits and find the actual frame where the scene change 

occurs within the GOP. The detailed process of the two steps is described in Section 

3.1.1 and 3.1.2, respectively. 

 
Fig. 3-3 The workflow of the scene change detection method. 

 

3.1.1 Inter-GOP scene change detection 

For each I frame, divide it into k sub-regions. Sum the DC values in each 

sub-region. The image feature of a GOP },...1|{
1

,, kiDCSumDCg
iN

j
jiig === ∑

=

, where 

i  is the index of sub-region in I-frame, iN  is the total number of DC values in the 

i th sub-region, and jiDC , is the j th DC value of sub-region i . The Distance 

Inter-GOP scene change detection
Calculate the difference  

in each GOP-pair 

Intra-GOP scene change detection
Find out the actual scene change 

 frame within the GOP 

Does the difference 
exceed the threshold?

Yes 

No 

Step 1. 

Step 2. 
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between two GOPs g and g+1 is represented as )1,( +ggD , and the value of D(g,g+1) 

is computed as follows: 

   1=imark  subregionthresholdSumDCSumDCif igig _|| ,1, >− +  

   0=imark  otherwise  

∑
=

=+
k

i
imarkggD

1
)1,(  

When GOPthresholdggD _)1,( ≤+ , which means the successive GOPs are similar, 

we say no scene change occurs. When GOPthresholdggD _)1,( >+  which means 

GOP g and GOP g+1 are dissimilar, we assume that a possible scene change occurs in 

GOP g+1. However, large difference may be caused by the camera motion and object 

moving rather than the real scene change. To solve this problem, Intra-GOP scene 

change detection is proposed. 

 

3.1.2 Intra-GOP scene change detection 

The Fast Pure Motion Vector Approach[27] is used for efficient scene change 

detection within a GOP. This approach only uses motion vectors of B-frames to detect 

scene change since B-frames are motion-compensated with respect to referential 

frames. If a B-frame is most similar to previous referential frame, most of the motion 

vector will refer to forward direction. If a B-frame is most similar to back referential 

frame, most of the motion vector will refer to backward direction. Two notations are 

defined below. 

Rb : The ratio of number of backward motion vectors over the number of 

forward motion vectors.  

Rf : The ratio of number of forward motion vectors over the number of 

backward motion vectors.  

In a GOP, there are three cases where scene change may occur: 
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B I B B BBPB…… …… 

More Backward Less Forward 

Peak Rb 

Scene change 

Case1: Scene change occurs on I-frame or P-frame. 

Case2: Scene change occurs on the first B-frame between two successive reference 

frames. 

Case3: Scene change occurs on the second or later B-frame between two successive 

reference frames. 

We discuss the three cases and infer the rule to find the actual scene change frame. 

 
Fig. 3-4 Scene change occurs on I-frame or P-frame. 

  

Case 1 is shown in Fig. 3-4. If scene change occurs on I-frame or P-frame, the 

first previous B-frame will be similar to its previous referential frame. Therefore, 

most of the motion vectors of the first previous B-frame refer to the forward 

referential frame, and Rf of the first previous B-frame will be very large and exceed 

the threshold_ Rf .  

 

 

 

 

 

 

Fig. 3-5 Scene change occurs on the first B-frame. 

Scene change

Less BackwardMore Forward

Peak Rf

B I B B BBPB…… …… 
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Scene change 

Less BackwardMore Forward 

Peak Rf Peak Rb 

More BackwardLess Forward 

B I B B BBPB…… …… 

Case 2 is shown in Fig. 3-5. If Scene change occurs on the first B-frame between 

two successive reference frames, the B-frame itself will be similar to its back 

referential frame. Therefore, most of the motion vectors of this B-frame refer to the 

backward referential frame, and Rb of the first B-frame will be very large and exceed 

the threshold_ Rb .  

 

 

 

 

 

 

 

Fig. 3-6 Scene change occurs on the second or later B-frame. 

Case 3 is shown in Fig. 3-6. If scene change occurs on the second or later 

B-frame between two successive reference frames, the B-frame itself will be similar 

to its back referential frame and the first preceding B-frame will be similar to previous 

referential frame. Therefore, most of the motion vectors of the first preceding B-frame 

refer to its forward referential frame, and the second B-frame mostly refer to the 

backward referential frame; i.e. Rf of the first B-frame and Rb of the second B-frame 

will be very large. 

 After examining values of Rb  and Rf  on B-frames, scene changes could be 

detected in GOP while Rb  or Rf  on B-frame exceeds the predefined threshold. 

Some noise such as camera or object moving which leads to possible scene change in 

the first step can be removed because such kinds of frame are usually not similar to 

both its previous and back referential frame, and its values of Rb  and Rf  on 

B-frames will not exceed the threshold. 
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3.2 Shot Classification 

To analyze tactics in basketball video, we must have enough information to 

support the inference of possible shot positions. Three kinds of basketball shots such 

as close-up view, medium view and full court view are predefined. We will use the 

full court view shots which contain more information of the game to do better analysis. 

Some related works in shot classification are described in Chapter 2, and we apply the 

main idea of dominant color ratio [28].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-7 Flowchart of dominant color region detection algorithm. 

 

The flowchart of dominant color region detection algorithm is shown in Fig. 3-7. 

At start-up, the system computes initial statistics and the values of several parameters 

for each color space from the frames in the training set. After the initialization of 
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parameters, dominant color region for each new frame is detected in both control and 

primary color spaces. Segmentation results in these spaces are used by the fusion 

algorithm to obtain more accurate final segmentation mask. The rest of the blocks in 

the flowchart are utilized for adaptation of primary color space statistics by two 

feedback loops. The inner feedback loop, connected with the dashed lines, computes 

local statistics in primary color space and captures local variations, whereas the other 

feedback loop, connected with the dotted lines, becomes active when segmentation 

results conflict with each other, which indicates drifting of local statistics from true 

statistics in primary color space. The activation of this outer feedback loop resets 

primary color statistics to their initial values. 

The RGB and HSI histograms of dominant color (the color of the court) are 

illustrated in Fig. 3-8, where the x-axis represents the quantized bins for each color 

component, and the y-axis is the number of pixels in corresponding bin. The ratio of 

dominant color pixels can be exploited to identify which kind of shot the current 

frame belongs to.  

 

 

 

 

 

 

 

 

 

 

Fig. 3-8 The histograms of dominant color (court color). 



 23

Fig. 3-9 (a) shows an instance of close-up view and its histograms in RGB and 

HSI color space. Since a close-up view shot contains less part of court, the color 

distribution of a close-up view image is much different from the color distribution of 

the dominant color. (b) shows an instance of medium view and its histograms in RGB 

and HIS color space. A medium view shot have a moderate amount of court pixels, 

hence the distribution of a medium view image is a little similar to the color 

distribution of the dominant color. (c) shows an instance of full court view and its 

histograms in RGB and HIS color space. A full court view shot usually implies a large 

number of court pixels, and consequently the distribution of a full court view image is 

much similar to the color distribution of the dominant color.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Close-up View 
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(b) Medium View 

  

 

 

 

 

 

 

 

 

 

 

 

(c) Full Court View 

Fig. 3-9 Three kinds of view shots. 
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After obtaining the scene change frams of basketball video, we identify the full 

court view shot since most information about tactics is involved in this kind of shots. 

For full-court view shots, the ratio of dominant color pixels should be large. Therefore, 

with a threshold ratioT  , we can filter out Close-up view or Medium view. 

Since clips with longer length comprise more information of tactics, we select 

long clips having length bigger than minL , and use these clips to achieve better 

analysis.  

 

3.3 Ball Candidate Search  

Identifying a ball in the image is difficult because the ball is usually small and 

sometimes moves very fast. The process of ball candidate identification is described 

in Fig. 3-10. For each frame in a full court view clip, we use color filtering, 

background subtraction, morphological operation, shape and size filtering to find 

possible ball candidates. The ball candidate reduction step is applied to simplify the 

tracking process by avoid too much ball candidates.  

 

 

 

 

 

 

Fig. 3-10 The process of ball candidate identification. 

 

In the color filtering step, color feature is utilized for ball pixel identification. For 

each frame, the image is divided into overlapping blocks of size MxN. The 
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overlapping is achieved by moving the center of the first block by 2
Mm×  and 2

Nn×  

to span the whole image, where m and n are arbitrary integers. Calculate the averages 

of R and G values in each block, and identify whether this block contains ball color.  

However, the color of a basketball is not steady owing to the light condition and 

the angle of view. After choosing ball blocks from different video source manually 

and calculating their mean values of R, G, B, H, S, and I components, we observe that 

the R and G values of the basketball are in the range 175110 ≤≤ r  and 13570 ≤≤ g . 

Therefore, we identify blocks having average R and G values in the basketball color 

range to be possible ball blocks. Fig. 3-11 demonstrates some cases of ball block color. 

In case (a), the ball is stationary and its color is similar to the real ball color. Case (b), 

(c), and (d) show the moving ball color. Since the ball moves fast, its color is 

influence by the background. 

 

 

 

 

     (a)                                    (b) 

 

 

 

 

     (c)                                    (d) 

Fig. 3-11 Observation of the color of basketball.  

 

Only using the values of R and G is not enough to find out correct ball 

candidates because of complex background and noise. Background subtraction is also 
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used to select the correct ball candidates. Each possible ball block is compared to the 

corresponding position in the previous frame. Since the basketball is moving in high 

speed, the ball blocks must have large luminance difference between the two frames. 

As shown in Fig. 3-12, (a) is a source image containing a moving ball, and (b) shows 

the pixels having large luminance difference between (a) and its previous frame. If the 

luminance difference is large enough, the pixel is dotted as white; otherwise, the pixel 

is dotted as black. The red circles indicate the ball positions. Most of the possible ball 

blocks that are not the ball will be filtered by background subtraction.  

 

 

 

 

 

 

 

 

       (a) Source image.                       (b) Frame difference. 

Fig. 3-12 Background subtraction of the image. 

 

The region with largest number of connected ball blocks is found after applying 

a region generation algorithm [31]. The minimum bounding rectangle (MBR) around 

the region is defined for two purposes: 1) Filter out noise having the same color 

feature such as the audience. 2) Obtain the center of the ball region.  

Many noisy regions rather than the ball region might be detected. Therefore, the 

area and aspect ratio of the minimum bounding rectangle (MBK) are used as 

characteristics to identify the possible ball region. Moreover, we define the ball center 
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pixel in the minimum bounding rectangle and ),( ii PyPx  is the coordinate of pixel 

i . 

Fig. 3-13 shows the result of ball candidate search after color and shape filtering. 

(a) is the case without camera motion and (b) is the case with camera motion. When 

the camera is fixed, there are fewer ball candidates. However, when there is camera 

motion, there will be too many ball candidates in a frame. To reduce the number of 

ball candidates, we perform the Ball-Candidate-Reduction step.  

 

 

 

 

 

 

 
(a) Without camera motion.               (b) With camera motion. 

Fig. 3-13 Result of ball candidate search after color and shape filtering. 

 

Ball-Candidate-Reduction is implemented by examining each ball candidate to 

see whether the search range around it has any other candidate. Take the average 

coordinate of all candidates in the search range as the new candidate position. Thus 

we can delete many noisy candidates. As shown in Fig. 3-14, (a) represents ball 

candidates before reduction, and (b) depicts ball candidates after reduction. Fig. 3-15 

is the result of applying Ball-Candidate-Reduction step to the real image, where (a) 

shows the candidate positions before reduction with blue circles and (b) displays the 

new ball candidates after reduction with red circles.  
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(a) Before Reduction of ball candidates.      (b) After Reduction of ball candidates. 

 

 

 

 

 

 

Fig. 3-14 Ball Candidate Reduction. 

 

 

 

 

 

 

 

Fig. 3-15 Result of ball candidate reduction. 

 

3.4 Ball Tracking 

An array of basketball positions in different frames is found in the foregoing 

processing. However, there are still chances that some of the data are not the ball. To 

track the ball, route detection based on dynamic programming is used to find out the 

correct trajectory among such data. 

Suppose there are two frames, frame i  and frame )( jij < . The 2D velocity of 

the ball can be calculated by 

 

(a) Before Reduction of ball candidates.      (b) After Reduction of ball candidates. 



 30
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X 

C1 
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C3 

C4 

t t+1 t+2 t+3 

where ),( ii YX  and ),( jj YX  are the positions of the ball candidates in frame i  

and j , and jiT →  is the time duration between frame i  and j . For two near frames 

in a shot, the velocity of the ball will be in a certain range. The tracking conception is 

described in Fig. 3-16. The X and Y axes represent 2D coordinates of the ball 

candidates, and the horizontal axis shows frame number of the current candidate. 

Assume the candidates are nodes of Fig. 3-16. When the velocity of the ball 

calculated by candidates in frame i  and j  satisfy the velocity constraint, the nodes 

corresponding to these candidates will be connected by an edge. 

 

 

 

 

 

 

 

 

 

Fig. 3-16 Tracking process. 

 

After connecting the candidates by edges, a complete route that represents the 

trajectory of the ball is searched. If a candidate is not connected within frameT  frames, 

we check its current connected route to see whether it is a ball trajectory by calculating 

the variance and distortion of all candidates in the route. Since the ball is usually 

passed or shot by players, its position will not stay in a small range and its route will 

be a parabola. We estimate the parabola and determine the distortion as the sum of 
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difference between the parabola and each candidate position. For each route, if the 

length is long enough, the variance is large, and the distortion is small, we determine it 

as a possible ball trajectory. As we can see in Fig. 3-17, the tracking process may 

result in several 2D trajectories. We will introduce a method to find out the real 

shooting ball trajectory in section 3.5. 

 

 

 

 

 

 

 

Fig. 3-17 Result of tracking ball. 

 

More tracking algorithm are described in [29, 30]. Robust tracking requires 

multiple levels of representation. A robust, integrated system needs less specific 

models for tracking. Tracking players is much more difficult than tracking the ball 

since the number of people determines the complexity of tracking process and 

accuracy. Moreover, object occlusion is also a problem in tracking process. 

 

3.5 Camera Calibration  

 For semantic analysis of sport videos, camera calibration parameters are required 

to convert the positions of a ball and players in the video frame to 3D space in the 

real-world coordinates or vice versa. Fig. 3-18 shows the correspondence between a 

2D court image and a 3D court model. 
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2D Court Image 

3D Court model 

 

 

 

 

 

 

 

 

 

Fig. 3-18 Correspondence between 2D court image and 3D court model. 

 

As mentioned in section 2.4.1:  

 

 

 

 

 

 

 

 

 

To calculate the eleven camera parameters( ijc ), we need at least six non co-plane 

points whose 2D and 3D coordinates are both known. In court sport like basketball, 

the marker lines on the court and the backboard boundary can be used to determine 

the calibration parameters since both the color and length of the marker lines and 
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backboard boundary are determined by the official rules. Fig. 3-19 shows the line 

correspondences between image and basketball court model. If we can find white 

lines in the image, the crossing or boundary points of lines can be used to calculate 

the transformation between the image and the real court. After that, the positions of 

the ball and players on the court can be estimated by detecting the center point and 

footing points respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-19 Line correspondences between image and basketball court model. 

 

Fig. 3-20 is the flow chart of camera calibration. For each frame, image pixels 

are classified as court line and backboard boundary pixels by some color and local 

texture constraints. Hough Transform and Court Model Fitting are applied at first 
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frame to extract line candidates and initialize the court and backboard location. In 

subsequent frames, we make a fast local search for the new camera parameters with 

the previous approximate court and backboard locations rather than performing 

Hough Transform and Court Model Fitting again. We will explain each step in 

following sections. 

 

 

 

 

 

 

 

 

 

 

Fig. 3-20 The flow chart of camera calibration. 

 

3.4.1 White Pixel Detection 

The color of court lines is white by the official rule. However, there are other 

white objects in an image such as advertisement logos, part of the stadium, the 

spectators or the players dressed in white clothes. These not correctly detected white 

pixels result in too many line candidates after using the subsequent Hough 

line-detection method, and make the fitting of the court model time consuming and 

unreliable. We use additional criteria to constrain the set of court line pixels. As 

illustrated in Fig. 3-21, assume that the court line has a width=τ pixels and the 

candidate pixel is drawn as gray. Ｏ and Ｘ represent pixels that are dT  pixels 
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away from the current pixel in the vertical and horizontal directions respectively. We 

check if the brightness of Ｏ or Ｘ is darker than the candidate pixel.   

 

 

 

 

 

 

 

Fig. 3-21 Part of the image containing a white line pixel. 

 

We identify a pixel as a court line pixel or not according to Eq.(10): 

 

                                                                            (10) 

 

where ),( yxY  is the luminance value in YCbCr space. Fig. 3-22 is an example after 

applying Eq.(10) to detect possible white line pixels.(a) is the original image, (b) 

shows detected white line pixels by red points, and (c) extracts white line pixels by 

black points. 

Since pixels in finely textured areas of small white letters in logos, white areas in 

the stadium, or spectators wearing white clothes will still pass the above white line 

test, the result will contain many noise pixels. Therefore, we exclude those white 

pixels that are in textured regions to prevent too much false detection in the 

line-extraction step. 

Textured regions are recognized by observing the two eigenvalues of the 

structure matrix S, computed over a small window of size 2b + 1 around each 
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candidate pixel ),( yx pp . The structure matrix is defined in [21]: 

 

 

 

If both eigenvalues of matrix S, called 1λ  and 2λ )( 21 λλ ≥ are large, it 

indicates a two-dimensional texture area. If one eigenvalue is large and the other is 

small, image gradients are oriented along a common axis. On the straight court lines, 

the latter case will be applied to define an additional rule which retains white pixels if 

21 λλ ⋅≥ c .  

 

 

 

 

 

 

 

        (a) The original image.         (b) White line pixels shown by red points. 

 

 

 

 

 

 

                       (c) Extracted white line pixels. 

Fig. 3-22 White line pixel detection. 
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Results of the proposed structure constraint can be seen in Fig. 3-23. (a) shows 

the white line pixels without line-structure constraint by red points. (b) shows the 

white line pixels with line-structure constraint by red points. (c) extracts white line 

pixels without line-structure constraint by black points. (d) extracts white line pixels 

with line-structure constraint by black points. We can observe that many noise pixels 

in the area of small white letters in logos, white areas in the stadium, or spectators 

wearing white clothes are removed after applying line-structure constraint. 

 

 

 

 

 

 

(a)White line pixels without line-structure  (b) White line pixels with line-structure  
constraint shown by red points.           constraint shown by red points. 

 

 

 

 

 

 

(c)Extracted white line pixels without     (d) Extracted white line pixels with  
line-structure constraint.                line-structure constraint. 
 

Fig. 3-23 Applying line-structure constraint. 
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3.4.2 Court Line and Backboard Line Candidates Detection 

After obtaining the white pixels, the system has to identify the court lines and the 

top boundary of the backboard. A standard Hough transform on the set of the 

previously detected white pixels is used to detect these line candidates. As depicted in 

Fig. 3-24, the parameter space used to represent the lines is (θ, d), where θ is the 

angle between the line normal and the horizontal axis, and d is the distance of the line 

to the origin. We construct an accumulator matrix for all (θ, d) and sample the 

accumulator matrix at a resolution of one degree for θ and one pixel for d. As Fig. 

3-25 shows, since a line in (x, y) space corresponds to a point in (θ, d) space, line 

candidates are determined by extracting the local maxima in the accumulator array.  

 

 

 

 

 

  

Fig. 3-24 Hough transform for straight lines. 

 

 

 

 

 

 

 

 

Fig. 3-25 Line detection by Hough Transform. 

dyxL =⋅+⋅ θθ sincos:
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The Hough transform has the disadvantage that thick lines in the input image 

usually result in a bundle of detected lines, which all lie close together. Another 

disadvantage of the Hough transform is that the accuracy of the determined line 

parameters is depending on the resolution of the accumulator matrix. This problem 

cannot be easily reduced by increasing resolution of the accumulator matrix, since this 

also causes that the inexact parameter samples for an input line spread over a larger 

area in the accumulator matrix. Solve both of the above-mentioned problems by 

introducing a further step after the Hough transform to improve the accuracy of the 

detected line parameters by computing the best fit line to the input data. Furthermore, 

lines whose parameters are nearly equal are considered being duplicates and one of 

them is removed.  

With all line candidates, we can obtain six intersections of the court lines as 

indicated in Fig. 3-26. However, we need two more points of the backboard to 

calculate the camera parameters. 

 

 

 

 

 

 

 

 

Fig. 3-26 Six intersections of the court line candidates. 

 

As we can see in Fig. 3-26, the lighting condition and the material of the 

backboard usually make the white pixels only distinguishable on the top of the 
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backboard. If we can obtain the start point and end point of the backboard top-line, we 

can calculate the camera parameters. Unfortunately, the white top-line of the 

backboard is too short in comparison with the court lines, which results in the 

elimination from the line candidates during the Hough Transform step. To solve this 

problem, we use only the one fourth pixels in the top of the frame to detect the 

backboard line, and compute the line segment boundaries to know where the line 

starts and ends. The algorithm of line segment boundaries is described as follows.  

 

 

 

 

 

Fig. 3-27 Detection of line-segment boundaries. 

 

 

 

 

 

 

 

 

Fig. 3-28 Boundaries of the backboard top-line. 

 

Scanning along the detected line, a sequence of white (top-line) pixels and black 

(non top-line) pixels is obtained. Because of classification errors and occlusions, the 

data contain noisy data. In Fig.3-27, we assume that the line segment starts at position 
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start and ends at position end, and define the number of errors as the number of black 

pixels in the range start – end plus the number of white pixels outside the range 

start – end (   stands for errors). Using this error definition, we place the line 

segment boundaries such that the error is minimized. This optimization has a linear 

time complexity, and the result is shown in Fig. 3-28.  

 

3.4.3 Model Fitting 

With the intersections of court lines and the boundaries of backboard top-line 

found in the first frame, we can match the eight points to the court model and 

calculate the camera parameters as Fig. 3-29 shows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3-29 Match the eight points to the court model 

and calculate the camera parameters. 
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3.4.4 Court Parameter Refinement 

The previous calibration algorithm only need to be applied in the bootstrapping 

process when the first frame of a new shot is processed. For subsequent frames, we 

can assume that the acceleration of camera motion is small. This enables the 

prediction of the camera parameters for the next frame. Since the prediction provides 

a good first estimate of the camera parameters, a simplified version of the above 

algorithm can be applied. 

 

 

 

 

 

 

 

Fig. 3-30 Camera parameter prediction. 

 

As Fig. 3-30 shows, tH  is the camera parameters for frame t. If we know the 

camera parameters for frames t and t − 1, we can predict the camera parameters 1
ˆ

+tH  

for t + 1 by tttt HHHH 1
11

ˆ −
−+ = . The non-linear Levenberg-Marquardt minimization 

algorithm can be used to find the new camera parameters [21]. 

However, the court lines are too complex and varied when the basketball video 

has camera motion, which cause difficulty in camera parameter refinement. Since 

tracking the camera parameter is a bottleneck, we only analyze clips without camera 

motion to estimate the 3D trajectory. From 2D trajectories obtained in the ball 

tracking step, we can find a real shooting trajectory by examining whether it passes 
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C 

B 

D 

A 

through the backboard. As represented in Fig. 3-31, the four 2D image points of the 

backboard are marked as A, B, C and D, which can be derived from the 3D real world 

locations. If the parabola of the 2D trajectory passes through the minimum bounding 

rectangle of the backboard, it will be a possible shooting trajectory. 

 

 

 

 

 

 

 

 

Fig. 3-31 Extract possible 2D shooting trajectory. 

The relationship between each pair of corresponding points in the 2D and 3D space is: 

 

                                                           (11) 

                                                         

where ),( vu  is in the 2D image coordinates and ),,( CCC ZYX  is in the 3D real 

world coordinates. Moreover, the 3D ball trajectory should fit the physical property:  

  

                                                           (12) 

 

where ),,( 000 zyx  is the initial position of the ball in 3D coordinate, ),,( zyx VVV  is 

the velocity of the ball in 3D coordinate, g is acceleration of gravity, and t is the 

current time. 
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),( 11 vu

),( 22 vu

),( 33 vu

Use Eq.(12) to substitute for ),,( CCC ZYX  in Eq.(11): 

 

 

 

 

Since the eleven camera calibration parameters and the time of each point on the 

trajectory are known, we can calculate the six unknowns (
zyx VVVzyx ,,,, 00,0
) of the 

parabola with three or more arbitrary points on the 2D trajectory. Fig. 3-32 indicates 

the three points that we choose to calculate (
zyx VVVzyx ,,,, 00,0

). With camera 

parameters matrix C and six physical parameters (
zyx VVVzyx ,,,, 00,0
), we can extract 

the 3D trajectory and take the starting point of the 3D trajectory as the shot position. 

 

 

 

 

Fig. 3-32 Choose three points on the 2D trajectory.  
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Chapter 4  

Experiment 

 

In this chapter, we present the experimental results of the proposed system. We 

detect scene changes of MPEG testing sequences in compressed domain. For shot 

classification and tactic analysis steps, we use AVI sequences and implement the 

analysis process in pixel domain. The resolution of all sequences is 360×240. Section 

4.1 shows the result of scene change detection and shot classification. In section 4.2 

and section 4.3, the outcomes of 2D ball trajectory extraction and camera calibration 

are illustrated, respectively. Finally, the 3D shooting position is indicated. 

 

4.1 Experimental Result of Scene Change Detection and Shot Classification 

We use two basketball videos of HBL (High-school Basketball League) to test 

the scene change detection and shot classification algorithm. The first video is a 15 

minutes long basketball video which contains 96 shots ( 37 Close-up view shots, 27 

Medium view shots, and 32 Full-court view shots), and the other is 10 minutes long 

and contains 71 shots ( 26 Close-up view shots, 24 Medium view shots, and 21 

Full-court view shots). Table. 1 shows the classification results.

From Table. 1, the accuracy of our shot classification algorithm is about 95.2% 

(the number of correctly classified shots divided by the number of total shots). The 

miss and false situation may be caused by the angle of view. For instance, if a real full 

court view shot contains large portion of spectators, the ratio of the court dominant 

color will be lower, which results in wrong classification. 
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Close up Medium Full court         

Sequence 1 Sequence 2 Sequence 1 Sequence 2 Sequence 1 Sequence 2

Ground Truth 37 26 27 24 32 21 

No. of Miss 1 2 2 2 0 1 

No. of False 0 1 1 3 2 1 

Table. 1 Shot classification results of two testing sequences. Sequence 1 is a 15 

minutes basketball video containing 96 shots, and sequence 2 is a 10 minutes 

basketball video containing 71 shots. 

 

4.2 Experimental Result of Tracking the Ball 
Using the proposed ball candidate search and tracking methods, we can obtain 

the 2D trajectories from the full court view shots. Fig. 4-1 is the tracking result of a 

shot without camera motion, and Fig. 4-2 is the tracking result of a shot with camera 

motion. No matter the sport video is shot by stationary camera or not, we can obtain 

its possible 2D trajectories. 

 

 

 

 

 

 

 

Fig. 4-1 The tracking result of a shot without camera motion. 
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Fig. 4-2 The tracking result of a shot with camera motion. 

 

4.3 Experimental Result of Camera Calibration and Shooting Position 
In this section, we only use the clips without camera motion to test the camera 

calibration algorithm. As Fig. 4-3 shows, the location of the points for camera 

calibration and the backboard position can be derived from the image. Therefore, the 

real shooting trajectory presented by solid circles can be identified as shown in Fig. 

4-4. Use the transformation relationship from 2D coordinate to 3D coordinate, we can 

obtain the shot position. Fig. 4-5 indicates the 3D shooting position by a red point. 

 

 

 

 

 

 

 

Fig. 4-3 The 2D location of the points for camera calibration 

and the backboard position. 
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Fig. 4-4 The real 2D ball trajectory. 

 

 

 

 

 

 

 

Fig. 4-5 The obtained shooting position in 3D court model. 
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Chapter 5  

Conclusion and Future Work 

 

Sport event detection has been proposed in previous research. However, these 

events only provide the audience a more efficient way to browse through sport videos. 

We propose a system that can automatically detect the scene change of the basketball 

video and classify clips into three kinds of shots. With the full-court-view shots, we 

can track the ball in the videos, detect the court-line and the backboard positions, and 

define the transformation relationship from 2D image to 3D real-world court model. 

After mapping the position of the ball from images to court model, the system 

concludes the possible shooting positions.  

Analyzing tactics in basketball video is difficult due to the variation of view 

angle, the complexity of background and the intricacy of court lines. Our ball tracking 

method can be used for any full court view shot no matter whether there is camera 

motion or not. However, the camera calibration algorithm can only be applied for 

clips without camera motion. 

Since the camera is not fixed, the result of shooting positions might not be 

accurate enough. The future work can be concentrated on videos shot by stationary 

camera so that the system will be more reliable. Tracking players in the video is 

difficult because occlusion occurs when players get close. If we can propose a more 

effective and efficient tracking algorithm, we could gather more statistics to analyze 

the behavior of the players in the games. Furthermore, we can conclude useful 

knowledge such as the defense rank and the offense tactics for professional basketball 

players and coaches who need more detailed information of the game. 
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