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雙軌的自時管線微處理器實作 

研究生：蔡宏岳                              指導教授：陳昌居 

國立交通大學 資訊工程學系 

摘要 

    一非同步 PIC18 於 2006 年發表於國立交通大學。這顆命名為「APIC18」的

微處理器乃基於延遲遲鈍 (delay-insensitive)模型開發設計，可廣泛應用於各種不

穩定的環境，諸如工作電壓、溫度或是製程參數等。但受限於延遲遲鈍模型先天

上的限制，此電路在設計上缺乏彈性、易受制肘，亦間接成為效能提升之瓶頸。 

    此篇論文闡述一全新的管線架構以改善前述之問題，藉由特殊的暫停機制，

僅需少量額外電路即可在效能上獲得相當程度的提升。唯一令人扼腕的，在理論

上它並非理想的延遲遲鈍，尚須滿足額外的時間假設。然而，就現階段的製程技

術而論，要滿足此假設並非難事，故其電路之正確性亦是無庸置疑的。 
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Abstract 
  In 2006, the asynchronous PIC18[1], APIC18, had been proposed in NCTU. It is a 

delay-insensitive (DI) implementation, and very robust to the environment, including 

supply voltage, temperature and processing parameter. However, because of the DI 

nature, it is inflexible that makes the circuits design difficult. In order to meet the DI 

constraints, it also limits the performance improvement. 

In this thesis, a new pipeline architecture is developed to improve the performance 

for original APIC18. A stall policy is proposed and added to our previous 

implementation. The asynchronous PIC18 with stall policy, the APIC18S, has higher 

performance than APIC18 with just a little overhead. However it slightly violates the 

DI model, but in practice it still operates correctly with present processing technology.
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Chapter 1: Introduction 
1.1 Overview 

  Most high performances processors are based on synchronous design method. In 

general, there are several advantages in synchronous design methodology. For 

example, it is easy to design because all signals are controlled by a global clock. All 

things need to do is to ensure that all works must be done during a clock period. 

Furthermore, the CAD tools are plentiful. From high level modeling to back-end 

testing, it is easy to find the relative tools. However, as long as systems become larger 

and more complex, some serious problems appear. First, the power consumption has 

become larger and larger because of the fast transistor switching and large clock 

distributing circuits. Second, the clock period is bounded by the critical path delay 

time. It cause the worst case delay time. With system becoming more complex, it is 

more difficult to balance each pipeline stage; therefore the performance is harder to 

improve. 

  Asynchronous circuits design, alternatively, is a good choice for large and complex 

processor. Instead of the global clock, the synchronization is done via handshaking 

protocols. Therefore the power consumption is lower than synchronous circuits 

inherently. On the other hand, its working time is not bounded by the worst-case clock 

period, and each pipeline stage only communicates with its adjacent stages, regardless 

of the other stages. 

  Besides of these advantages, asynchronous circuit design still has other 

advantages[2], including low EMI, robustness for environment, and no clock skew 

problems. 

  Although asynchronous circuit design has so many benefits, only some processors 

are designed with such methodology. In 2006, a RISC architecture microcontroller, 
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APIC18[1], had been developed in NCTU. Its instruction set is compatible with 

Microchip’s PIC18 serious microprocessors. However, APIC18 doesn’t deal control 

hazard and data hazard with an effective approach. 

  In this thesis, a novel stall policy is proposed, and is applied to APIC18. The 

asynchronous PIC18 with the stall policy, APIC18S, is developed. It has higher 

performance than APIC18, with only a little extra cost. We implemented it with 

Verilog hardware description language, and verified it with ModelSim. Moreover, we 

used design compiler to compiler with present processing technology, and measured 

its performance and area. 

1.2 Motivations 

  Besides APIC18, there are some asynchronous processors have been proposed. 

AMULET1/2/3[3, 4, 5] are ARM compatible processors developed in University of 

Manchester. TITAC[6, 7] developed in Tokyo is an asynchronous processor 

implemented with QDI delay model. Asynchronous MIPS R3000[8] developed in 

California Institute of Technology is compatible with MIPS R3000 instruction set. 

Moreover, Lutonium, an asynchronous 8051[9], have better performance and lower 

power consumption than original synchronous 8051, and it is commercialized by 

Philips.  

1.3 The Organization of This Thesis 

  In chapter 1, the overview and motivation is presented. In chapter 2, some basic 

asynchronous circuits design concepts will be introduced. In chapter 3, we introduce 

our previous implementation, the APIC18, and discuss the bottleneck of its 

performance. In chapter 4, we describe our new design, APIC18S, and its design 

methodology and the related constraint in detail. In chapter 5, we show the 
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performance and area. Finally, the conclusion of this thesis and our future work are 

shown in chapter 6.
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Chapter 2: Background 
2.1 The 4-Phase Handshake Protocols 

  In dual-rail handshake protocols, data signals and timing information are combined 

by a special encoding mechanism. It can be used to detect whether the signal is ready 

or not by the encoding signals directly. Therefore this protocol is very robust for 

delays, and can be applied to variable environments. In the 4-phase dual-rail protocol, 

two physical wires are needed to encode one-bit information. A data, D, is represented 

by d.t and d.f as shown in table 2.1. The signal (d.t, d.f) = (0, 1) or (1, 0) is used to 

represent a valid 0 or 1 information. The signal (d.t, d.f) = (0, 0) means that the data is 

still not ready and this signal is used to separate two valid data. The 4-phase 

handshake protocol is illustrated in figure 2.1. 

Table 2.1 1-bit dual-rail encoding 

  d.t d.f 

Empty 0 0 

Valid "0" 0 1 

Valid "1" 1 0 

Not used 1 1 

 

 
Figure2.1 4-Phase Dual-Rail Protocol 



 5

2.2 Delay models 

  Because data and timing information are combined, the circuits can operate 

correctly under any gate and wire delay. These circuits are classified as 

delay-insensitive (DI) circuits. Besides dual-rail, there are still some other encoding 

techniques, such as 1-of-4. With these coding mechanisms, data and timing 

information are also combined and the circuits can be delay-insensitive, too. 

  However, there are too many constraints in pure DI circuits that make it hard to 

implement. A simple solution is to permit isochronic fork under DI model. The 

isochronic fork means that the wire delay of fork is the same, for example delay1 = 

delay2 in figure 2.2. Such flexible delay model is called quasi-delay-insensitive (QDI). 

In later chapters, the DI and QDI don’t be distinguished seriously. 

 

Figure 2.2 Quasi-Delay Insensitive Delay Model 

2.3 Muller C-element 

  The Muller C-element is widely used for asynchronous circuits design. The 

truth-table of 2-input C-element is shown in table 2.2. The output will change to 1 (or 

0) only if both two input are change to 1 (or 0), otherwise the output will hold the 

previous value. The transistor level implementation of C-element is shown in 

figure2.3[10]. An alternative costless implementation of C-element is shown in 

figure2.4, which is used when the number of inputs is large.  
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Table 2.2 Truth Table of 2-Input Muller C-element 

in1 in2 out 

0 0 0 

0 1 no change 

1 0 no change 

1 1 1 

 

 

Figure 2.3 Transistor-Level Implementation of 2-Input Muller C-element 

 
Figure 2.4 Alternative Muller C-element Implementation 

2.4 4-Phase Dual-Rail Pipeline 

  A 4-phase dual-rail pipeline is based on the Muller Pipeline[11]; however the 

request signal can be eliminated by the encoding of data. Figure 2.5 shows the three 
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stage dual-rail pipeline model. Because two valid consecutive data are separated by an 

empty data in DI circuits, the utilization of the pipeline is only 50%. 

 

Figure 2.5 Dual-Rail pipeline 



 8

Chapter 3: Previous Work 
  APIC18 is developed by us in NCTU in 2006. The APIC18 is an asynchronous 

RISC processor which implements most instructions of Microchip’s PIC18. It is based 

on QDI delay-model and four-phase handshake protocol. It is robust for supply 

voltage, temperature, and processing parameters. 

  The instruction set and architecture of Microchip’s PIC18 will be described roughly 

in this chapter first. Then the design concepts and each function block of APIC18 will 

be introduced. Most of these features will be used in APIC18S. Finally, the bottleneck 

of performance will be discussed in section 3.2.7. 

3.1 Introduction of Microchip’s PIC18 Microcontroller 

  The APIC18 is an asynchronous implementation of Microchip’s PIC18 

microcontroller. The PIC18 is an 8-bit RISC microcontroller based on the Harvard 

architecture. It has the separated instruction memory (up to 2MB) and data memory 

(up to 4MB). The instruction is 16-bit wide, and the data is 8-bit wide. There are 77 

instructions provided. Besides, there is a multiplier in PIC18 that makes the multiply 

execution in a single instruction cycle. 

3.1.1 Data Memory Map 

  The data memory is 4MB, and each data is 8 bits. That is to say, it needs 12 bits 

address to access such memory. In PIC18, it has 16 banks of 256 bytes data memory. 

Corresponsively, a 4-bit base address from BSR and an 8-bit relative offset to 

generate the 12-bit physical address, as shown in figure 3.1. It should be noted that, a 

segment of bank0 and a segment of bank15 comprise the “access bank”. 
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Figure 3.1 Access bank 

  There is a special bit, “a”, to index whether the access bank is used or not in ALU 

or MOV instructions. The format of ALU instructions is shown in figure 3.2.  

 

Figure 3.2 Format of ALU instructions 

  The “f” field represents the relative address. If the “a” field is set to 1, it will access 

the address in some target bank in according to the 4-bit BSR. If the “a” field is set to 

0, it will access the address in the access back and ignore the BSR. Most of the special 

function registers, including BSR, are in the access bank. If the target bank needs to 

be changed, the BSR in access bank should be modified first. 

3.1.2 Instruction Set 

  There are 77 instructions available in PIC18 series. Each instruction is a 16-bit 

word that divided into an opcode and one or more operands. 

  The instruction set is highly orthogonal and grouped into four basic categories:  

• Byte-oriented operations 
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• Bit-oriented operations 

• Literal operations 

• Control operations 

Most byte-oriented instructions have three operands: 

 1. The file register (specified by ‘f’) 

2. The destination of the result (specified by ‘d’) 

3. The accessed memory (specified by ‘a’) 

The file register designator ‘f’ specifies which file register is to be used by the 

instruction. The destination designator ‘d’ specifies where the result of the operation 

is to be placed. If ‘d’ is zero, the result is placed in the WREG register. If ‘d’ is one, 

the result is placed in the file register specified in the instruction. 

All bit-oriented instructions have three operands: 

1. The file register (specified by ‘f’) 

2. The bit in the file register (specified by ‘b’) 

3. The accessed memory (specified by ‘a’) 

The bit field designator ‘b’ selects the number of the bit affected by the operation, 

while the file register designator ‘f’ represents the number of the file 

The literal instructions may use some of the following operands: 

• A literal value to be loaded into a file register (specified by ‘k’) 

• The desired FSR register to load the literal value into (specified by ‘f’) 

The control instructions may use some of the following operands: 

• A program memory address (specified by ‘n’) 

• The mode of the CALL or RETURN instructions (specified by ‘s’)
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Table 3.1: The PIC18 Instruction Set 
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Table 3.1: The PIC18 Instruction Set (Continued) 

 
Note  

1: When a Port register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value 

used will be that value present on the pins themselves. For example, if the data latch is ‘1’ for a 

pin configured as input and is driven low by an external device, the data will be written back with 

a ‘0’. 

2: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler 

will be cleared if assigned. 

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two 

cycles. The second cycle is executed as a NOP. 

4: Some instructions are 2-word instructions. The second word of these instructions will be 

executed as a NOP unless the first word of the instruction retrieves the information embedded in 

these 16 bits. This ensures that all program memory locations have a valid instruction. 
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3.2 Asynchronous PIC18 Implementation – APIC18 

APIC18 is a 4-stage pipelined processor based on the 4-phase dual-rail handshake 

protocol and QDI delay model. In this section, each block of APIC18, including 

pipeline stages, registers, memory interface, and bypass circuits etc. will be described 

in detail. The drawback will also be discussed before introducing the new 

implementation, the APIC18S. 

3.2.1 Construct the Basic Elements 

There are several design methodology to construct the DI circuits, including 

DIMS[12] and NCL gates[13]. The former is easy to design, but the cost is higher. 

APIC18 is based on DIMS, and developed with Verilog hardware description 

language. The basic elements are modeled in gate level, and all the large blocks are 

composed of the basic elements.  

 

Figure 3.3 The 2-input dual-rail AND gate 

Figure 3.3 shows the 2-input dual-rail AND gate. Only when both inputs are valid 

data, the output becomes valid data; only when both inputs are NULL, the output 

becomes NULL. By using the same concepts, other dual-rail basic elements are 

constructed, including OR, XOR etc. These basic elements are used to construct the 

half adder, full adder, 8-bit ripple adder, and ALU block in hierarchical. 
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3.2.2 Pipeline Architecture 

  The block diagram of APIC18 is shown in figure 3.4. 

 

Figure3.4 4-stage pipeline architecture 

  Instructions are executed through 4 stages, namely, IF (Instruction Fetch), ID 

(Instruction Decode), OF (Operand Fetch), and EXE/WB (Execution & Write Back). 

3.2.3 DeMUX and MERGE 

  In synchronous processor design, data path may have several different works 

depending on the instruction type. Because the clock period is restricted in worst case 

delay, designers usually do all the works in parallel and simply use a multiplexer to 

select one result to output. But in DI circuits, the data and timing signals are 

combined and it is possible to determine the accurate delay time. It’s possible to 

design circuits that can operate in different length of time and no longer to let data 

flow through all function blocks. For this reason, the DeMUX-MERGE pair is 

proposed to control the data flow. The 1-bit-select DeMUX-MERGE pair is shown in 

figure 3.5. 
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Figure 3.5 DeMUX-MERGE pair and its implementation 

  In figure 3.5, the DeMUX consists of two C-elements. Only one of them will 

output 1 depending on the select signals. Then the data will be send to only one 

function block and the other function block will still be NULL. The MERGE is 

composed of OR gate simply. Because only one function block has valid data, it will 

not influence other unrelated function block and thus the average case delay time is 

guaranteed. 

3.2.4 Design for Each Stage 

  As introduced in section 3.2.2, APIC18 has four pipelined stages. They are 

described more detailed as follows. 

IF stage: 

In the IF stage, the “Read” signal controls the output for valid data or null data. 

When the Read signal is high, it reads PC value from the PC register and then 

retrieves the instruction from the program ROM. In addition, the current PC value is 
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sent to ID stage for calculating the next PC value.  

ID stage: 

In order to deal with conditional branch instructions simply, the conditional branch 

instructions are treated as two instruction cycle instructions. The conditional branch 

instructions are handled in the ID stage. The ID stage mainly consists of four parts, 

which are described in the following. 

Instruction Decode: The Instruction Decode block decodes the input instructions 

and generates the control signals to the whole processor. It also requests NPC to 

generate next PC value directly if the input instruction is not a conditional branch. 

Branch Control: If the current input instruction is a conditional branch instruction, 

the Instruction Decode requests the Branch Control to deal with it. The Branch 

Control reads the value in the STATUS register to decide whether the branch is a 

taken or non-taken branch and then request the NPC to generate corresponding next 

PC value. 

Stall Control: If the instruction is a conditional branch instruction and it is executed 

the first time, the Stall Control will request the NPC to generate the same PC value 

again in order to retrieve this instruction again. The mechanism can guarantee that 

the STATUS register can be correctly updated by the EX/WB stage. 

NPC Control: The NPC Control is responsible to generate the correct next PC 

value corresponding to the input control signals. 

OF Stage: 

The OF stage is responsible to prepare source data and destination information for 

the EXE/WB stage. The address mapping is also done in this stage. 

EXE/WB Stage: 

The EXE/WB is the final stage of our pipeline and is responsible for computations 

and saving the results back in according to the input operands and control signals 
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from the OF stage. Figure 3.6 is the block diagram of EXE/WB Stage. The 

DeMUX-MERGE pairs described in section 3.2.3 are widely used to control the data 

flow to accomplish the average case delay. Besides the top of the stage, we also 

implemented this model on the all sub-stages of EXE/WB stage. With this model, the 

EXE/WB stage may exploit data-dependent operations easily. Some operations of 

each of all the three sub-stages may even be directly bypassed without waste of time.  

 

Figure 3.6 Block diagram of EXE/WB block 

3.2.5 Registers 

The registers of APIC18 is similar to TITAC’s ones. Figure 3.7 shows a 1-bit 

dual-rail registers
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Figure 3.7 Register 

The two NOR gates comprise a latch and is used to hold the value of data. The 

acknowledgement is set to 1 only when input signals have been saved in the latch. 

This can be guaranteed by comparing the inputs and outputs of the latch. In APIC18, 

the registers can be combined with DeMUX-MERGE pairs to make the operation 

more effective. If the current instruction doesn’t need to write the result to the register, 

the valid data doesn’t send to the register and the acknowledgement will be NULL. To 

read the data from the register, the “read” signal is set to 1 and the dout.f and dout.t 

will be sent back. Finally, it should be pointed out that because the DeMUX-MERGE 

pairs are only applied to the EXE/WB stage in APIC18 but not to OF stage, it needs 

an extra OR gate to produce the data0 back to the OF stage that makes the instruction 

continue to be executed.   

3.2.6 Memory Interface 

  Because the cost of dual-rail memory is high, the traditional synchronous memory 

is used in APIC18. However, it needs an extra circuit to transfer signals from 
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single-rail to dual-rail, and vice verse. Figure 3.8 shows the adapter between 

instruction memory and the IF stage. 

 

Figure 3.8 Memory interface 

3.2.7 Data Hazards and Control Hazard 

  In order to avoid data hazard, the execution and write back part are combined in 

EXE/WB stage and adjacent to OF stage. The data memory and WREG register 

cannot be read and written at the same time, and thus the data hazard never happens.  

The control hazard of PIC18 is similar to data hazard because whether the branch is 

taken or not depends on the status register that is set in the previous instruction. 

Therefore it must guarantee that the branch instruction must be executed after the 



 20

result of previous instruction has been written. Because the branch instruction is 

handled in the ID stage and status is written in the EXE/WB stage in APIC18, they 

may be porcessed at the same time. Thus, it may cause some trouble on branch 

instruction handling in ID stage. In order to simplify the branch instruction handling, 

if the current instruction is a branch instruction and it is executed the first time, the 

next program counter will be set to current program counter and this branch 

instruction is changed to NOP instruction. Then the branch instruction will be 

retrieved again and the status has been completely written back at this time. 

To deal with control and data hazard with this mechanism is simple and it only 

needs an extra “stall” flag and the cost is very small. However, it may cause serious 

performance degradation. A new implementation will be proposed in the next chapter.
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Chapter 4: A High-Performance 
Implementation – APIC18S 

  Based on our pervious design introduced in chapter 3, some new approaches are 

proposed in APIC18S to improve the performance observably. 

  A new stall policy is added into the new implementation, APIC18S, and thus the 

branch instruction can be handled more effectively. An acknowledge wire is added 

between the ID and WB stage. If the previous instruction has been finished in the WB 

stage, the acknowledgement signal will be generated. When a control hazard has been 

detected, the branch instruction will be stalled at the ID stage until the 

acknowledgement signal has been pulled up to inform that the previous instruction 

has been finished. It no longer needs to fetch the instruction twice from memory, and 

the performance and power consumption can both be improved. 

  By use of the stall policy, not only branch hazard but the data hazard can be solved 

easily. The dependent instruction stalls in the ID stage, and simply waits for the 

previous instruction finished. Because of solving data hazard problem with stall 

mechanism, the EXE/WB stage doesn’t need to be merged into one stage at all. They 

can be divided into two separate pipeline stages (EXE stage and WB stage). In other 

words, the memory (or WREG register) can be read and written at the same time if 

there is no data dependency among consecutive instructions. It improves the 

performance by increasing the parallelism of the pipeline stages. 

  However, this implementation is no longer a pure delay-insensitive circuit. It needs 

to add a timing constraint and extra circuits to guarantee the correctness of the 

pipeline. These overheads will be discussed in sections 4.5 and 4.6. 

4.1 Pipeline architecture 
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  The new pipeline is shown in figure 4.1. 

 

Figure 4.1 Pipeline in APIC18S 

  There are 5 stages in APIC18S, including instruction fetch (IF), instruction decode 

(ID), operand fetch (OF), execution (EXE), and write back (WB). The 10-bit program 

counter is saved in the PC register. Some 8-bit registers, such as WREG 

(accumulator), STATUS (flag), BSR (address mapping index), and SKTPTR (stack 

pointer), etc, can be read and written by these pipeline stages. Because the instruction 

memory and data memory are both single-rail synchronous memory, it needs an 

additional circuit to deal with the signal transformations from single-rail to dual-rail, 

and vice versa. This is done by DMEMAdp and IMEMAdp (the IMEMAdp is in IF 

stage, and omitted in Figure 4.1). 

In the IF stage, it reads the program counter from PC, and sends the address to the 

instruction memory to retrieve the instruction. During the ID stage, instruction is 

decoded, and the control signals are generated. The stall controller and branch 

controller are also located in the ID stage. They are responsible for dealing with data 
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dependency and control dependency. In the OF stage, the operands are fetched from 

memory and WREG. These two operands are processed in EXE stage, and the result 

are written back to memory or WREG in the WB stage. 

4.2 Stall Policy 

  The APIC18S has a special stall policy to handle data dependency and control 

dependency by stalling the dependent instruction. The stall controller is shown in 

figure 4.2. 

 

Figure 4.2 Stall controller 

In figure 4.2, the control signals (single-rail) are shown as dash-line, and the data 

signals (dual-rail) are shown as bold-line. Because not every instruction has to be 

stalled, It needs a DeMUX-MERGE pair (as describe in section 3.2.4) to bypass the 

non-stall instructions. 

When the processor is powered on, the two C-elements are initialized to 0 and the 

output signal (opCode) is NULL. If a non-stall instruction arrives, the DeMUX sends 

it to MERGE immediately (bypass circuit) and produces the output. If a dependent 

instruction arrives and has to wait the completion of previous instruction, the DeMUX 
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sends it to C-element pair (stall circuit). Because C-elements are initialized to 0 and 

only one input of C-elements is changed to 1, the output is still 0. After the previous 

instruction is finished and the acknowledge signal (ack) is set to 1, the C-elements 

pass the signal. Thus the instruction can be continued to execute. 

In the pure DI circuits, the output will stay at NULL until all of the inputs are 

VALID. That is to say that only one bit needs to be stalled in the stall controller. Thus, 

this control circuit is very small. In order to identify the instruction easily, we 

modified the original APIC18 ISA a little. In APIC18S, the branch instructions are 

identified by inst[15:11], and the ALU instructions are identified by inst[15:12]. Thus, 

the inst[15] (opCode) can be used to control the stall mechanism. If inst[15] is 

blocked, the result is never produced even if all other signals are ready. 

4.3 ID Stage 

ID stage is the second stage of APIC18S. It decodes the instruction and generates 

the control signals to the OF stage. Additionally, it deals with stall mechanism and 

branch handling. The block diagram of ID stage is shown in figure 4.3. 

 

Figure 4.3 ID block 
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The ID block receives the program counter (PC) and instruction (inst) from the IF 

stage, and it produces control signals to the OF stage. It contains the following major 

blocks: 

Stall controller: As described in section 4.2. It blocks the opCode signal when the 

instruction has to be stalled. The readSTATUS signal is sent out 

from the stall controller to deal with control hazards.  

Adder: There are two adders in ID stage. They are used to calculate the next program 

counter. 

Branch controller: It deals with branch instructions and sends the next program 

counter to PC. For a non-branch instruction, it sends next program 

counter immediately. Otherwise, for a branch instruction, it reads 

the STATUS register, and decides whether the branch is taken or 

not. 

Control signal generator & address mapping: It generates the control signals and the 

physical address for data memory. It also accepts signals from stall 

controller and sends signals to the next stage only if the data hazard 

has been eliminated. 

  The adders are independent to the stall controller. It can calculate the next program 

counter when inputs are ready, even if the instruction is stalled. 

4.4 OF Stage 

  The OF stage is similar to our previous implementation except it has 

DeMUX-MERGE circuits to bypass some signals. It is shown in figure 4.4. 

  In APIC18, OF stage has no DeMUX-MERGE pair circuits; thus it reads WREG 

and data memory for every instruction including branch instructions and NOP 

instructions. Obviously, its performance is not good. In APIC18S, two 
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DeMUX-MERGE pairs are added. If the current instruction does not require the 

source operand, the signals will be bypassed directly. 

  The “Complement” is used for SUB instruction. It produces a 2’s complement 

value for source2. 

 

Figure 4.4 OF block 

4.5 Registers and Memory feedback problem 

  In the Muller pipeline, there is no feedback signal between adjacent stages. But in 

our processor design, the storage elements such as WREG and data memory need 

some feedback signals. It will make the circuits fault, and must be dealt carefully. 

  In APIC18, the EXE and WB stage are combined in one EXE/WB stage and 

adjacent to the OF stage. Thus, the data memory and WREG register cannot be read 

and written at the same time. However, the EXE and WB stage are separated in the 

new APIC18S core. It is possible to read and write data at the same time. 

  Figure 4.5 shows the dual-rail pipeline with WREG. In the original Muller pipeline, 

there is no feedback circuits, data may pass through each stage as fast as possible if 
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the front stages are not full. If there are two paths from OF to WB, they can flow 

independently. The shorter path can send data to next stage without waiting the longer 

path to be finished in the same stage. Based on this mechanism, the performance will 

be the average case delay, not the worst case delay. For example, if there are two paths 

P1 and P2, and their delays of each stage are t1OF, t1EXE, t1WB and t2OF, t2EXE, t2WB 

respectively, the delay will be  

max(t1OF + t1EXE, + t1WB , t2OF + t2EXE, + t2WB),  not  

max(t1OF, t2OF) + max(t1EXE, t2EXE) + max(t1 WB, t2WB). 

   

 

Figure 4.5 Dual-rail pipeline with WREG 

However, it will become very complex if there are any feedback circuits. In the 

new APIC18S core, the operand is fetched from WREG in the OF stage and sent to 

the EXE stage. Then in the EXE stage, the results of the operands are calculated and 

sent to the WB stage. If a ripple adder is implemented in the EXE stage, because of 

the propagation delay, the lower bits of result will be generated earlier than the higher 

bits. Thus, it may cause that the lower bit is written back to the WREG register, even 

if the higher bits are still in EXE stage. Under this situation, the lower bit in WREG is 

changed and sent back to OF stage for next instruction execution then to the EXE 



 28

stage again. It cause very serious fault. 

A simple solution is to give up the average-case delay profit. Thus in the WB stage, 

the result doesn’t be written back until all of the signals in EXE stage have been 

completed. 

4.6 Timing Constraint 

  In the pure DI circuits, both wires and gates can have arbitrary delay. However, it 

must have an extra timing constraint to keep the correctness of the circuits in the 

APIC18S core. That’s because it needs synchronization between the ID stage and WB 

stage. There is no global clock and the ID stage and the WB stage are not adjacenct. If 

a dependent instruction is sent to the ID stage, the previous instruction may have three 

possible states. It may have been completed; it may totally be incomplete; it may be in 

execution. If an instruction is stalled and the previous instruction has been completed, 

the acknowledgement will never be returned. The stalled instruction will always be 

stalled and the circuits will break down.  

  A timing constraint must be added to the stall policy. Assuming that the delay time 

from IF to stall controller is td and the delay time from OF to WB is tp, we must 

ensure that td is always smaller than tp. 

  Although the timing constraint cannot be guaranteed theoretically, it is easy to 

achieve in practice. That’s because it depends on a relative value, not an absolute 

value. Furthermore, only the instruction followed by an ALU instruction has to be 

stalled. Thus, tp includes the data read from data memory, ALU operation and write 

back; it isn’t simply the bypass delay time. In fact, in current VLSI technology, td is 

always smaller than tp, and thus the circuit will work correctly.
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Chapter 5: Simulation Result 

5.1 Testing Environment 

  In order to verify the correctness of the design, ModelSim 6.0 is used to verify the 

correctness of the functionality. Figure 5.1 shows the waveform of the functional 

simulation. Furthermore, we also tried to synthesize our gate-level deign with Design 

Compiler. The transistor-level of C-element has been shown in previous chapter. An 

alternative implementation in gate-level is shown in Figure5.2 and Figure5.3. They 

are used for synthesis with cell-library, the TSMC .13 process library. 

 

Figure 5.1 The waveform of the functional simulation
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Figrue 5.2 Gate-level implementation of C-element 

 

Figure 5.3 C-element with reset 

5.2 Area Report 

  With TSMC .13 process, the area of basic element is shown in table 5.1. The area 

of each block of APIC18S is shown in table 5.2.
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Table 5.1 The area of basic element 

element area(um2)

original OR gate 6.8 

C-element 25.5 

C-element with reset 27.2 

dual-rail OR gate 112 

2-way DeMUX-MERGE 109 

ripple adder ( 8 bits ) 13008 

Table 5.2 The area of each block of APIC18S 

  area(um
2) % 

IF stage 552 0.648 

ID stage 43151 50.7 

  (stall) (169) (0.198) 

OF stage 4062 4.77 

EXE stage 31505 37.0 

WB stage 3711 4.36 

MEMAdp 630 0.74 

Registers 1569 1.84 

  (WREG) (480) (0.564) 

  (STATUS) (480) (0.564) 

  (PC) (609) (0.715) 

total 85180 100 

  The DI elements consist of lots of C-elements and are much larger than single-rail 

ones. So the area of non-DI part, such as “MEMAdp” and “Registers”, is smaller. The 

ID stage consists of decoder circuits, stall controller, branch controller and two adders 

for next-program-counter, and its area is the largest of overall design. Besides, it is 

noticed that the area of stall controller is very small and only 0.198% of whole 

circuits. 

5.2 Timing Report 

  We also use ModelSim6.0 to run the post simulation. The worst case delay of each 
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stage is shown in Table 5.3 

Table 5.3 The worst case delay time of each stage 

  Delay time (ps)

C-element 131 

IF 550 

ID 3378 

OF 5382 

EXE 25497 

WB 3086 

The memory access time is ignored in Table 5.3. Because the delay time of IF stage 

is smaller than other stages, we can ensure that the timing problem discussed in 

section 4.6 will not happen. 

.
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Chapter6: Conclusion and Future Work 

  In this thesis, we proposed a stall policy for dual-rail 4-phase processor and applied 

it to our pervious asynchronous PIC processor. With this design method, the data 

hazard and control hazard can be solved more effectively. It no longer fetches branch 

instruction twice and the memory reads and writes can be done at the same time when 

there is no data dependency. Therefore the parallelism of pipeline will be increased. 

We also synthesis the design with TSMC 0.13 process to make sure that it will work 

correct. It should be noticed that the extra cost is just only 0.198%. 

  The dependent instruction should be stalled in the ID stage, and wait for finish 

execution of the previous instruction. In addition, the result is written to registers 

(WREG and STATUS) or memory in the WB stage. In fact, the register write is faster 

than memory write. There are two benefits if the register is written in the EXE stage. 

First, branch instructions that wait for STATUS can be executed quickly. Second, 

some ALU instructions that wait WREG finished doesn’t need to stall at all, because 

the OF stage and EXE stage are adjacent. However it will increase the complication 

of the design and also introduce the higher cost. 

  We will increase the utilization of our pipeline if we add some latches between two 

stages. In the original 4-phase dual-rail pipeline, the utilization is only 50% and only 

the dependence between two adjacent instructions needs to be checked. If the latches 

are added, we need to check the four adjacent instructions and it will also make the 

stall circuits hard to design. 

  Besides that, there are still other interesting topics for research in the future. 

Although there is a complete-detect policy in DI circuits, in most situations the delay 

time is still the worst case delay rather than average case delay. For example, we 

always need to wait for the sum and carry signals of highest bit in an 8-bit ripple 
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adder to complete, even if the addition is only 4 bits. A simple solution is to add 

DeMUX-MERGE pairs to the adder. The adder is separated into two parts. If the 

addition is less than 4 bits, the DeMUX will bypass the higher part of the adder, and 

then the execution time can be reduced to only half of original one. Moreover, the 

area of DeMUX-MERGE pair is very small, as shown in table 5.1 and it can be 

widely used in dual-rail circuits to improve the performance. 

  The cost of dual-rail circuits is too high to be commercialized. In practice it may 

mix with bundled data circuits to reduce the cost. Only the critical path is designed 

with dual-rail to make the timing correct and others are designed with single-rail. 

With this design methodology, we don’t need to spend lot of time to adjust the 

matching delay and the area doesn’t become too large. Moreover, the 

DeMUX-MERGE pairs can be applied to improve the performance, too. 
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