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Student: Hung-Yue Tsai Advisor: Dr. Chang-Jiu Chen
Department of Computer Science and Information Engineering

National Chial-Tung University

Abstract

In 2006, the asynchronous PI1C18[1], ARPIC18, had.been proposed in NCTU. It is a
delay-insensitive (DI) implementation, and very robust te the environment, including
supply voltage, temperature and processing parameter. However, because of the DI
nature, it is inflexible that makes the circuits design difficult. In order to meet the DI
constraints, it also limits the performance improvement.

In this thesis, a.new:pipeline architecture is developed to improve the performance
for original APIC18. A stall policy is proposed and -added to our previous
implementation. The asynchronous PIC18 with stall policy, the APIC18S, has higher
performance than APIC18 with just a little overhead. However it slightly violates the

DI model, but in practice it still operates correctly with present processing technology.
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Chapter 1: Introduction

1.1 Overview

Most high performances processors are based on synchronous design method. In
general, there are several advantages in synchronous design methodology. For
example, it is easy to design because all signals are controlled by a global clock. All
things need to do is to ensure that all works must be done during a clock period.
Furthermore, the CAD tools are plentiful. From high level modeling to back-end
testing, it is easy to find the relative tools. However, as long as systems become larger
and more complex, some serious problems appear. First, the power consumption has
become larger and larger-because of the fast transistor switching and large clock
distributing circuits. Second, the clock period, is ‘bounded by the critical path delay
time. It cause the worst case delay time. With system becoming more complex, it is
more difficult 1o balance each pipeline stage; therefore the performance is harder to
improve.

Asynchronous circuits design, alternatively; is-a geod choice for large and complex
processor. Instead offthe global clock, the synchronization s done via handshaking
protocols. Therefore the power consumption IS lower than synchronous circuits
inherently. On the other hand, its working time is not bounded by the worst-case clock
period, and each pipeline stage only communicates with its adjacent stages, regardless
of the other stages.

Besides of these advantages, asynchronous circuit design still has other
advantages[2], including low EMI, robustness for environment, and no clock skew
problems.

Although asynchronous circuit design has so many benefits, only some processors

are designed with such methodology. In 2006, a RISC architecture microcontroller,



APIC18[1], had been developed in NCTU. Its instruction set is compatible with
Microchip’s PIC18 serious microprocessors. However, APIC18 doesn’t deal control
hazard and data hazard with an effective approach.

In this thesis, a novel stall policy is proposed, and is applied to APIC18. The
asynchronous PIC18 with the stall policy, APIC18S, is developed. It has higher
performance than APIC18, with only a little extra cost. We implemented it with
Verilog hardware description language, and verified it with ModelSim. Moreover, we
used design compiler to compiler with present processing technology, and measured

its performance and area.

1.2 Motivations

Besides APIC18, there are some asynchronous processors have been proposed.
AMULET1/2/3[3, 4, 5] are ARM compatible processors developed.in University of
Manchester. TITAC[6, 7] developed. in . Tokyo is an: asynchronous processor
implemented with QDI delay ‘'model:"Asynchronous-MIPS R3000[8] developed in
California Institute’ of  Technology "is compatible with MIPS R3000 instruction set.
Moreover, Lutonium;.an asynchronous 8051[9], have better. performance and lower
power consumption than original synchronous 8051, “and it is commercialized by

Philips.

1.3 The Organization of This Thesis

In chapter 1, the overview and motivation is presented. In chapter 2, some basic
asynchronous circuits design concepts will be introduced. In chapter 3, we introduce
our previous implementation, the APIC18, and discuss the bottleneck of its
performance. In chapter 4, we describe our new design, APIC18S, and its design

methodology and the related constraint in detail. In chapter 5, we show the



performance and area. Finally, the conclusion of this thesis and our future work are

shown in chapter 6.




Chapter 2: Background

2.1 The 4-Phase Handshake Protocols

In dual-rail handshake protocols, data signals and timing information are combined
by a special encoding mechanism. It can be used to detect whether the signal is ready
or not by the encoding signals directly. Therefore this protocol is very robust for
delays, and can be applied to variable environments. In the 4-phase dual-rail protocol,
two physical wires are needed to encode one-bit information. A data, D, is represented
by d.t and d.f as shown in table 2.1 The signal (d.t, d.f) = (0, 1) or (1, 0) is used to
represent a valid 0 or Linformation. The signal (d.t, d.f) = (0, 0) means that the data is
still not ready and: this signal is used’to separate two valid data. The 4-phase

handshake protocol is illustrated in figure 2.1.

Table 2.1 1-bit dual-rail encoding

d.t|d.f

Empty 010
Valid "0" | 0 | 1
Valid"1" | 1 | O
Not used | 1 1

Data {d.t, d.f}
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Figure2.1 4-Phase Dual-Rail Protocol




2.2 Delay models

Because data and timing information are combined, the circuits can operate
correctly under any gate and wire delay. These circuits are classified as
delay-insensitive (DI) circuits. Besides dual-rail, there are still some other encoding
techniques, such as 1-of-4. With these coding mechanisms, data and timing
information are also combined and the circuits can be delay-insensitive, too.

However, there are too many constraints in pure DI circuits that make it hard to
implement. A simple solution is to permit isochronic fork under DI model. The
isochronic fork means that the wire' delay of fork is‘the same, for example delay; =
delay; in figure 2.2. Such flexible delay model is called quasi-delay-insensitive (QDI).

In later chapters, the DI and QDI don’t be distinguished seriously.

Figure 2.2 Quasi-Delay Insensitive Delay Model

2.3 Muller C-element

The Muller C-element is widely used for asynchronous circuits design. The
truth-table of 2-input C-element is shown in table 2.2. The output will change to 1 (or
0) only if both two input are change to 1 (or 0), otherwise the output will hold the
previous value. The transistor level implementation of C-element is shown in
figure2.3[10]. An alternative costless implementation of C-element is shown in

figure2.4, which is used when the number of inputs is large.
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Table 2.2 Truth Table of 2-Input Muller C-element

inl | in2 out
0 0 0
0 1 | no change
1 0 | no change
1 1 1

VCC

" |

IN2— INT—]

|
GND

Figure 2.3 Transistor-Level Implementation of 2-Input Muller C-element

o

Figure 2.4 Alternative Muller C-element Implementation

2.4 4-Phase Dual-Rail Pipeline
A 4-phase dual-rail pipeline is based on the Muller Pipeline[11]; however the

request signal can be eliminated by the encoding of data. Figure 2.5 shows the three



stage dual-rail pipeline model. Because two valid consecutive data are separated by an

empty data in DI circuits, the utilization of the pipeline is only 50%.
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Chapter 3: Previous Work

APIC18 is developed by us in NCTU in 2006. The APIC18 is an asynchronous
RISC processor which implements most instructions of Microchip’s PIC18. It is based
on QDI delay-model and four-phase handshake protocol. It is robust for supply
voltage, temperature, and processing parameters.

The instruction set and architecture of Microchip’s PIC18 will be described roughly
in this chapter first. Then the design concepts and each function block of APIC18 will
be introduced. Most of these features'will be used.in APIC18S. Finally, the bottleneck

of performance will be discussed in section 3.2.7.

3.1 Introduction ef Microchip’s P1C18 Microcontroller

The APIC18. is an asynchronous implementation " of ' Microchip’s PIC18
microcontrollers The PIC18 is an 8-bit RISC.microcontrofler based, on the Harvard
architecture. Itshas the separated instruction memory (up to 2MB) and data memory
(up to 4MB). The instruction is 16-bit wide, and the data is 8-bit wide. There are 77
instructions provided. Besides, there is a multiplier in PIC18 that makes the multiply

execution in a single instruction cycle.

3.1.1 Data Memory Map

The data memory is 4MB, and each data is 8 bits. That is to say, it needs 12 bits
address to access such memory. In PIC18, it has 16 banks of 256 bytes data memory.
Corresponsively, a 4-bit base address from BSR and an 8-bit relative offset to
generate the 12-bit physical address, as shown in figure 3.1. It should be noted that, a

segment of bank0 and a segment of bank15 comprise the “access bank”.
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Figure 3.1 Access bank

There is a special bit, “a”, to index whether the access bank isfused or not in ALU

or MOV instructions. The format of ALU instructions is shown in figure 3.2.

15 10 9 8 7 0
OPCODE|d | a f

Figure 3.2 Format of ALU instructions

The “f” field represents the relative address. If the “a”field is set to 1, it will access
the address in some target bank in according to the 4-bit BSR. If the “a” field is set to
0, it will access the address in the access back and ignore the BSR. Most of the special
function registers, including BSR, are in the access bank. If the target bank needs to

be changed, the BSR in access bank should be modified first.

3.1.2 Instruction Set

There are 77 instructions available in PIC18 series. Each instruction is a 16-bit
word that divided into an opcode and one or more operands.

The instruction set is highly orthogonal and grouped into four basic categories:

* Byte-oriented operations



* Bit-oriented operations

* Literal operations

« Control operations
Most byte-oriented instructions have three operands:

1. The file register (specified by ‘f’)

2. The destination of the result (specified by ‘d”)

3. The accessed memory (specified by ‘a’)
The file register designator “f” specifies which file register is to be used by the
instruction. The destination designator-“d” specifies where the result of the operation
is to be placed. If ‘d’ is zero, the result is placed in the WREG.register. If ‘d’ is one,
the result is placed:in the file register specified in the instruction.
All bit-oriented instructions have three"operands:

1. The file‘register (specified by “f*)

2. The bit‘in the file register (specified’by ‘b’)

3. The accessed memory (specifiediby=‘a’)

The bit field designator ‘b” selects the number of the bit-affected by the operation,

while the file register designator ‘f’ represents the number of'the file
The literal instructions may use some of the following operands:

* A literal value to be loaded into a file register (specified by ‘k’)

* The desired FSR register to load the literal value into (specified by ‘f”)
The control instructions may use some of the following operands:

* A program memory address (specified by ‘n’)

» The mode of the CALL or RETURN instructions (specified by ‘s’)

10



Table 3.1: The PIC18 Instruction Set

16-Bit Instruction Word

Mnemonic, C Status
o ds Description Cycles Affected Notes
. MSh LSk
BYTE-ORIENTED FILE REGISTER OPERATIONS
f.d, a |Add WREG and f 1 0010 0lda f£fff ££££|C DC Z OV, N|1,2
f,d, a |Add WREG and Carry bit to f |1 o010 ooda f£Efff ££££|C, DC Z OV, N(1, 2
f.d, a |AND WREG with f 1 0001 0lda f£££ff E£E£E|Z N 1.2
f.a Clear f 1 0110 10la £££f ££££f |2 2
COMF f, d, a |Complement f 1 0001 1lda f£££ff £E£E|Z N 1,2
CPFSEQ f.a Compare fwith WREG skip = |1(2or 3)J 0110 00la ffff £E££f |None 4
CPF3GT f, a Compare fwith EG skip= |1(2or3)Jo110 0lo0a £f£ff £E£££ |None 4
CPFSLT f.a Compare fwith WREG skip = |1 (2 or 3)] 0110 000a £££ff £££f |None 1.2
DECF f.d, a |Decrement f 1 0000 0lda f£fff ££££f|C DC Z OV.N|1.2 3.4
DECFSZ f, d, a |Decrementf, SkipifO 1(2or3)|00l0 11da £f£ff £E£££ |None 1,23 4
DCFSNZ  f, d, a |Decrement f, Skip if Not 0 1(2or3)| 0100 1lda £f£ff £E£££ |None 1,2
INCF f, d, a |Increment 1 0010 1oda f£Eff £E££|C, DC Z OV, N(1,2 3 4
INCFSZ f, d, a |Incrementf, Skip if O 1(2or3)| 0011 11da £f£ff £E£££ |None 4
f, d.a |Increment f, Skip if Not 0 1(2or3)]0100 10da £££f ££££ |[Norne 1,2
f, d, a |Inclusive OR WREG with f 1 0001 ooda fEff £EEfE|Z N 1.2
MOWVF f.d a |[Movef 1 0101 o0oda f£E££ff £E£E£[|Z N 1
MOVFF fo fg  |Move f; (source) to 1st word |2 1100 f££ff £fff £££f |Mone
fy (destination) Znd word 1111 f£fff f£fff E£fff
f.a Move WREG to f 1 0110 11la ffff £E££f |None
f,a Multiply WREG with f 1 0000 00la f£fff £E££f |None
f, a Negate f 1 0110 1lo0a ff£ff ££f££|C DC Z OV. N|1, 2
f, d, a |Rotate Left f through Carry 1 0011 0lda ffff ££££|C, Z N
RLNCF f.d a |Rotate Left f (Mo Carry) 1 0100 0lda f£££ff £E£££[|Z N 1.2
RRCF f, d, a |Rotate Right f through Carry 1 0011 o0oda ffff ££££f|C Z N
RENCF f, d, a |Rotate Right f (No Carry) 1 0100 ooda f£Eff f£E£fE|Z N
SETF f.a Setf 1 0110 1oo0a f£f££ff £E£££ |None
SUBFW f. d, a |Subtract f from WREG with 1 0101 0lda f£f£ff ££££|C DC Z OV, N|1,2
borron
SUBW f. d, a |Subtract WREG from f 1 0101 1lda f£fff ££££|C DC Z OV, N
SUBWFE f, d a |Subtract WREG from f with 1 0101 1oda f£fff ££££|C DC Z OV, N|1,2
borrow
SWAPF f,d, a |Swap nibbles inf 1 0011 10da ffff £E£££ |None 4
TSTFSZ f,a Test f, skip if 0 1(2or3)|0110 01lla £E££ff £E£££ |None 1,2
KORW f. d, a |Exclusive OR WREG with f 1 0001 1loda f£E££ff E£E£E|Z N
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF f. b, a |Bit Clear f 1 1001 bbba f£fff £E£££ |None 1,2
BSF f. b, a |BitSetf 1 1000 bbba ffff £E££f |[None 1,2
BTFSC f, b, a |Bit Test f, Skip if Clear 1(2or3)|1011 bbba ffff £E£££f |None 3.4
BTFSS f. b, a |Bit Test f, Skip if Set 1(2or3)|1010 bbba f£fff £E£££f |None 3.4
BTG f, d, a |Bit Toggle f 1 0111 bbba ffff £E£££ |None 1,2
Mnemonic, e 16-Bit Instruction Word Status
Description Cycles Notes
Cperands MSh LSh Affected
LITERAL OPERATIONS
ke Add literal and WREG 1 0000 1111 kkkk kkkk |C,DC Z OV, N
ke 1 0000 1011 kkkk kkkk |Z, N
ke Incl = OR literal with WREG |1 0000 1001 kkkk kkkk [Z N
f. k Move literal {12-bit) 2nd word |2 1110 1110 o00ff kkkk |Mone
to FSRx 1st word 1111 0000 kkkk kkkk
k Mave literal to BSR=3:0= 1 0000 0001 0000  kkkk |Mone
ke Move literal to WREG 1 0000 1110 kkkk  kkkk |Mone
[ Multiply literal with WREG 1 0000 1101 kkkk  kkkk |Mone
ke Return with literal i REG 2 0000 1100 kkkk  kkkk |Mone
SUBLW ke Subtract WREG from literal 1 0000 1000 kkkk kkkk |C, DC Z OV N
KORLW ke Exclusive OR literal with 1 0000 1010 kkkk kkkk |Z N
WREG
DATA MEMORY < PROGRAM MEMORY OPERATIONS
TELRD" Table Read 2 0000 0000 0000 1000 |Mone
TELRD*+ Table Read with post-increment 0000 0000 0000 1001 |Mone
TELRD*- Table Read with post-decrement 0000 0000 0000 1010 |Mone
Table Read with pre-increment 0000 0000 0000 1011 |Mone
2(5) 0000 0000 0000 1100 |Mone
with post-increment 0000 0000 0000 1101 |Mone
with post-decrement 0000 0000 0000 1110 |Mone
Table Write with pre-increment 0000 0000 0000 1111 |Mone
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Table 3.1: The PIC18 Instruction Set (Continued)

Mnemanic, L 16-Bit Instruction Word Status
Operands Description Cycles Affected Notes
MSb LSb

CONTROL OPERATIONS
BC n Branch if Carry 1(2) 1110 0010 nnnn nnnn |[Mone
BN n Branch if Negative 1(2) 1110 0110 nnnn  nnnn [Mone
BMC n Branch if Mot Carry 1(2) 1110 0011 mnnnn nonn |[None
BNM n Branch if Not Negative 1(2) 1110 0111 nnnn nnnn |[Mone
BNOV n Branch if Not Cverflow 1(2) 1110 0101 nnnn  nnnn [Mone
BMNZ n Branch if Mot Zero 1(2) 1110 0001 nnno nannn |None
BOV n Branch if Overflow 1(2) 1110 0100 nnnn nnnn |None
BRA f Branch Unconditionally 2 1101 Onnn nnnno  nnnn [Mone
BZ n Branch if Zero 1(2) 1110 0000 nnnon nnnn |None
CALL n, s Call subroutine 1st word 2 1110 110s kkkk kkkk [Mone

2nd word 1111 kkkk kkkk kkkk|__
CLRWDT — Clear Watchdog Timer 1 0ooo 0000 Qooo  0loo |TO,PD
DAW — Decimal Adjust WREG 1 0000 0000 0000 0111 |C, DC
GOTO n Go to address  1st word 2 1110 1111 kkkk kkkk |[None

2nd word 1111 kkkk kkkk kkkk
NOP — Mo Operation 1 0000 0000 Q000 0000 |Mone
NOP — Mo Operation {Note 4) 1 1111 xxxx  xxxx xxxx |[Mone
POP — Pop top of return stack (TOS) |1 0000 0000 0000 0110 [Mone
PUSH — Push top of return stack {TOS) |1 0000 0000 0000 0101 [Mone
RCALL n Relative Call 2 1101 1nnn nnnn nnnn [Mone
RESET Software device Reset 1 0000 0000 1111 1111 [All
RETFIE 5 Return from interrupt enable |2 0000 0000 000l o0oos |GIE/GIEH,

PEIE/GIEL
RETLW 3 Return with literal in WREG 2 0000 1100 kkkk kkkk |Mone
RETURN s Return from Subroutine 2 0000 0000 0001 00ls |Mone
SLEEP — Go into Standby made 1 0000 0000 ooooc 001l |TO PD
Note

1: When a Port register is modified as a function'of itself (e.g., MOVF PORTB, 1, 0), the value
used will be that value present on the pins.themselves. For example, if the data latch is ‘1’ for a
pin configured as-input and is drivenJdow by an external device, the data will-be written back with
a‘0.

2: If this instruction is€xecuted on the TMRO register (and where applicable, d = 1), the prescaler
will be cleared if assigned.

3: If Program Counter (PC) is'modified or a:conditional test is true, the instruction requires two
cycles. The second cycle is executed as aiINOP.

4: Some instructions are 2-word instructions. The second word of these instructions will be
executed as a NOP unless the first word of the instruction retrieves the information embedded in

these 16 bits. This ensures that all program memory locations have a valid instruction.
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3.2 Asynchronous PIC18 Implementation — APIC18

APIC18 is a 4-stage pipelined processor based on the 4-phase dual-rail handshake
protocol and QDI delay model. In this section, each block of APIC18, including
pipeline stages, registers, memory interface, and bypass circuits etc. will be described
in detail. The drawback will also be discussed before introducing the new

implementation, the APIC18S.

3.2.1 Construct the Basic Elements

There are several design methodology .to_construct the DI circuits, including
DIMS[12] and NCL gates[13]: The former is easy to design, but the cost is higher.
APIC18 is based on DIMS, and developed with \erilog .hardware description
language. The basic elements.are modeled in gate level, and'all the large blocks are

composed of the basic elements.

int.f

Iiﬂl.t — E_
D=t

in2.f C

in2.t C) out.t

Figure 3.3 The 2-input dual-rail AND gate

Figure 3.3 shows the 2-input dual-rail AND gate. Only when both inputs are valid
data, the output becomes valid data; only when both inputs are NULL, the output
becomes NULL. By using the same concepts, other dual-rail basic elements are
constructed, including OR, XOR etc. These basic elements are used to construct the

half adder, full adder, 8-bit ripple adder, and ALU block in hierarchical.



3.2.2 Pipeline Architecture

The block diagram of APIC18 is shown in figure 3.4.

__ APIC18 |

P =

{ PC ] [ Registers l |
Instruction E % EXE
Memory 1 o) e E DF 2|l [/WB

[ DMEMAdp | |

4

Data Memory

Figure3.4 4-stage pipeline architecture

Instructions sare executed through 4 stages, namely, IF (Instruction Fetch), ID

(Instruction Decaede), OF (Operand Fetch), and EXE/WB (Execution & Write Back).

3.2.3 DeMUX and MERGE

In synchronous processor ‘design, data path may have several different works
depending on the instruction type. Because the clock period is restricted in worst case
delay, designers usually do all the works in parallel and simply use a multiplexer to
select one result to output. But in DI circuits, the data and timing signals are
combined and it is possible to determine the accurate delay time. It’s possible to
design circuits that can operate in different length of time and no longer to let data
flow through all function blocks. For this reason, the DeMUX-MERGE pair is
proposed to control the data flow. The 1-bit-select DeMUX-MERGE pair is shown in

figure 3.5.
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Figure 3.5 DeMUX-MERGE pair and its implementation

In figure 3:5; the DeMUX consists of two’'C-elements. Only ene of them will
output 1 depending on the select signals. Then the data will be'send to only one
function block and the other function block will_still be NULL. The MERGE is
composed of OR gate simply. Because only one function.block "has valid data, it will
not influence other unrelated function block and-thus the average case delay time is

guaranteed.

3.2.4 Design for Each Stage

As introduced in section 3.2.2, APIC18 has four pipelined stages. They are
described more detailed as follows.
IF stage:

In the IF stage, the “Read” signal controls the output for valid data or null data.
When the Read signal is high, it reads PC value from the PC register and then

retrieves the instruction from the program ROM. In addition, the current PC value is
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sent to ID stage for calculating the next PC value.
ID stage:

In order to deal with conditional branch instructions simply, the conditional branch
instructions are treated as two instruction cycle instructions. The conditional branch
instructions are handled in the ID stage. The ID stage mainly consists of four parts,
which are described in the following.

Instruction Decode: The Instruction Decode block decodes the input instructions

and generates the control signals to the whole processor. It also requests NPC to

generate next PC value directly if the input instruction is not a conditional branch.

Branch Control: Ifithe-current input instruction is-a conditional branch instruction,

the InstructionDecode requestssthe Branch Control to deal-with it. The Branch

Control reads‘the value in"the STATUS register to _decide whether the branch is a

taken or non-taken branch and then request.the NPC to generate corresponding next

PC value.

Stall Control: If the instruction is:arconditionalsbranch instruction and it is executed

the first time, the Stall Control will request the NPC to generate the same PC value

again in order to retrieve this instruction again. The mechanism can guarantee that
the STATUS register can be ‘correctly updated by the EX/WB stage.

NPC Control: The NPC Control is responsible to generate the correct next PC

value corresponding to the input control signals.
OF Stage:

The OF stage is responsible to prepare source data and destination information for
the EXE/WB stage. The address mapping is also done in this stage.

EXE/WB Stage:
The EXE/WB is the final stage of our pipeline and is responsible for computations

and saving the results back in according to the input operands and control signals

16



from the OF stage. Figure 3.6 is the block diagram of EXE/WB Stage. The
DeMUX-MERGE pairs described in section 3.2.3 are widely used to control the data
flow to accomplish the average case delay. Besides the top of the stage, we also
implemented this model on the all sub-stages of EXE/WB stage. With this model, the
EXE/WB stage may exploit data-dependent operations easily. Some operations of

each of all the three sub-stages may even be directly bypassed without waste of time.

EXE/WB block

source1[7:0]
source9(7:0]
result(7:0] /
.Multiply.

status[7:0]
physical address[11:0]

function code[1:0]

opcode[1:0]

"

dest[3:0]

N

neg status[7:D]

e

Figure 3.6 Block diagram of EXE/WB block

,

status write

3.2.5 Registers

The registers of APIC18 is similar to TITAC’s ones. Figure 3.7 shows a 1-bit

dual-rail registers
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din.t

_D dout.t

din.f

— dout.f

read ~read

Figure 3.7 Register

The two NOR gates comprise-a latch and“is used to hold the value of data. The
acknowledgement is set to 1 only when input-Signals have been saved in the latch.
This can be guaranteed by comparing the inputs and outputs of the latch. In APIC18,
the registers can be combined with DeMUX-MERGE pairs:.to make the operation
more effective. If the current instruction doesn’t need to write the result to the register,
the valid data doesn’t send to the register and the acknowledgement will be NULL. To
read the data from the register, the *“read™ signal is set to 1 and the dout.f and dout.t
will be sent back. Finally, it should be pointed out that because the DeMUX-MERGE
pairs are only applied to the EXE/WB stage in APIC18 but not to OF stage, it needs
an extra OR gate to produce the data0O back to the OF stage that makes the instruction

continue to be executed.

3.2.6 Memory Interface
Because the cost of dual-rail memory is high, the traditional synchronous memory

is used in APIC18. However, it needs an extra circuit to transfer signals from
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single-rail to dual-rail, and vice verse. Figure 3.8 shows the adapter between

instruction memory and the IF stage.

IF stage MEMAdp synMEM

addr[O]ﬁ _\ /_
addr[0].t : > addr[0]

-

addr[20].f :
addr[20].t > addr[20]

inst[0].f € CI:_°<|_

inst[0].t «—( inst[0]
inst[31].f «—— | ]

inst[311.t ¢——( | inst[31]

VRN JoN

Figure 3.8 Memory interface

3.2.7 Data Hazards and Control Hazard
In order to avoid data hazard, the execution and write back part are combined in
EXE/WB stage and adjacent to OF stage. The data memory and WREG register
cannot be read and written at the same time, and thus the data hazard never happens.
The control hazard of PIC18 is similar to data hazard because whether the branch is
taken or not depends on the status register that is set in the previous instruction.

Therefore it must guarantee that the branch instruction must be executed after the
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result of previous instruction has been written. Because the branch instruction is
handled in the ID stage and status is written in the EXE/WB stage in APIC18, they
may be porcessed at the same time. Thus, it may cause some trouble on branch
instruction handling in ID stage. In order to simplify the branch instruction handling,
if the current instruction is a branch instruction and it is executed the first time, the
next program counter will be set to current program counter and this branch
instruction is changed to NOP instruction. Then the branch instruction will be
retrieved again and the status has been completely written back at this time.

To deal with control and,data hazard with this mechanism is simple and it only
needs an extra “stall’sflag and-the cost is very small. However, it may cause serious

performance degradation. A new implementation will be proposedin the next chapter.
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Chapter 4: A High-Performance
Implementation — APIC18S

Based on our pervious design introduced in chapter 3, some new approaches are
proposed in APIC18S to improve the performance observably.

A new stall policy is added into the new implementation, APIC18S, and thus the
branch instruction can be handled more effectively. An acknowledge wire is added
between the ID and WB stage. If the previous instruction has been finished in the WB
stage, the acknowledgement signal will be genérated. When a control hazard has been
detected, the branch_sinstruction will be stalled at the ID stage until the
acknowledgement signal has been pulled up to inform that the previous instruction
has been finished. It no longer needs to_fetch the instruction twice from memory, and
the performance and, power consumption can both-be improved.

By use of the stall policy, not only branch hazard but the data hazard can be solved
easily. The dependent instruction stalls in the 1D stage, and, simply waits for the
previous instruction finished, Because of-solving-data hazard problem with stall
mechanism, the EXE/WB stage doesn’t need to be merged into one stage at all. They
can be divided into two separate pipeline stages (EXE stage and WB stage). In other
words, the memory (or WREG register) can be read and written at the same time if
there is no data dependency among consecutive instructions. It improves the
performance by increasing the parallelism of the pipeline stages.

However, this implementation is no longer a pure delay-insensitive circuit. It needs
to add a timing constraint and extra circuits to guarantee the correctness of the

pipeline. These overheads will be discussed in sections 4.5 and 4.6.

4.1 Pipeline architecture
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The new pipeline is shown in figure 4.1.

__ APIC18S e
7 “\\_
r PC | { Registers "
n;ltructlon IF D HOF WB
emory
‘ DMEMAdp

Data Memory

Figure 4.1 Pipeline in APIC18S

There are 5stages in"APIC18S, including instruction fetch (IF), instruction decode
(ID), operand fetch (OF), execution(EXE), and write back (WB). The 10-bit program
counter is saved in-the PC  register. Some | 8-bit registers,  such as WREG
(accumulator), STATUS (flag), BSR (address mapping-index), and SKTPTR (stack
pointer), etc, can be read and written by these pipeline stages. Because the instruction
memory and data memory are both "single-rail synchronous memory, it needs an
additional circuit to deal with the signal transformations from single-rail to dual-rail,
and vice versa. This is done by DMEMAdp and IMEMAdp (the IMEMAdp is in IF
stage, and omitted in Figure 4.1).

In the IF stage, it reads the program counter from PC, and sends the address to the
instruction memory to retrieve the instruction. During the ID stage, instruction is
decoded, and the control signals are generated. The stall controller and branch

controller are also located in the ID stage. They are responsible for dealing with data
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dependency and control dependency. In the OF stage, the operands are fetched from
memory and WREG. These two operands are processed in EXE stage, and the result

are written back to memory or WREG in the WB stage.

4.2 Stall Policy
The APIC18S has a special stall policy to handle data dependency and control

dependency by stalling the dependent instruction. The stall controller is shown in

figure 4.2.
— Stall controller
4 N
inst[ O] opCode
DeMUX | — - —; C MERGE
- r -:
[
\I\ ) I E /
stall '|r'_ _E_z
. | ack
N
Figure 4.2 Stall controller

In figure 4.2, the control signals‘(single-rail) are shown as dash-line, and the data
signals (dual-rail) are shown as bold-line. Because not every instruction has to be
stalled, It needs a DeMUX-MERGE pair (as describe in section 3.2.4) to bypass the
non-stall instructions.

When the processor is powered on, the two C-elements are initialized to 0 and the
output signal (opCode) is NULL. If a non-stall instruction arrives, the DeMUX sends
it to MERGE immediately (bypass circuit) and produces the output. If a dependent

instruction arrives and has to wait the completion of previous instruction, the DeMUX
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sends it to C-element pair (stall circuit). Because C-elements are initialized to 0 and
only one input of C-elements is changed to 1, the output is still 0. After the previous
instruction is finished and the acknowledge signal (ack) is set to 1, the C-elements
pass the signal. Thus the instruction can be continued to execute.

In the pure DI circuits, the output will stay at NULL until all of the inputs are
VALID. That is to say that only one bit needs to be stalled in the stall controller. Thus,
this control circuit is very small. In order to identify the instruction easily, we
modified the original APIC18 ISA a little. In APIC18S, the branch instructions are
identified by inst[15:11], and.the ALU-Instructions are identified by inst[15:12]. Thus,
the inst[15] (opCode). can be used to control the stall mechanism. If inst[15] is

blocked, the resultiis never produced-even if all other signals are réady.

4.3 ID Stage
ID stage is the second stage of APIC18S. It decodes the instruction and generates
the control signals to the OF stage. Additionally, it deals with stall mechanism and

branch handling. The block diagram of ID stage is shown in figure:4.3.

readSTATUS STATUS newPC

__ID f

. Adder(PC + offset)
—> Branch
Adder(PC + 1) —>|{controller
|
I
Stall I
controller Control signal control
i generator & signal\
inst address >
- mapping J
1 | ack_final
. 2 STt m—mmmm—m—m—-—-= ‘7 —————

Figure 4.3 ID block
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The ID block receives the program counter (PC) and instruction (inst) from the IF
stage, and it produces control signals to the OF stage. It contains the following major
blocks:

Stall controller: As described in section 4.2. It blocks the opCode signal when the
instruction has to be stalled. The readSTATUS signal is sent out
from the stall controller to deal with control hazards.

Adder: There are two adders in ID stage. They are used to calculate the next program
counter.

Branch controller: It deals with branch instructions.and sends the next program
counter to PC. For a non-branch instruction, it sends next program
counter immediately. Otherwise, for a branchfinstruction, it reads
the STATUS Tregister, and ‘decides whether the branch is taken or
not.

Control signal‘generator & address mapping: It generates the control signals and the
physical address for-datasmemory=itralso aceepts signals from stall
contreller and sends signals to the next stage enly if the data hazard
has been eliminated.

The adders are independent toithe stall controller. It can calculate the next program

counter when inputs are ready, even if the instruction is stalled.

4.4 OF Stage

The OF stage is similar to our previous implementation except it has
DeMUX-MERGE circuits to bypass some signals. It is shown in figure 4.4.

In APIC18, OF stage has no DeMUX-MERGE pair circuits; thus it reads WREG
and data memory for every instruction including branch instructions and NOP

instructions. Obviously, its performance is not good. In APIC18S, two
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DeMUX-MERGE pairs are added. If the current instruction does not require the
source operand, the signals will be bypassed directly.
The “Complement” is used for SUB instruction. It produces a 2’s complement

value for source2.

)
OF readWREG source?2
— control
/ | ™~ .
I signal ~
| | ,
L _! >
source?
DeMUX Complement
control ‘;
signal 1‘
address >ﬁ sourcel
DeMUX MERGE >
L > |
1 =
\ | | address_
\ T 7 r g
\\___ I __//
readMEM i sourcel
Figure 4.4 OF block

4.5 Registers and Memory feedback problem

In the Muller pipeline, there is no feedback signal between adjacent stages. But in
our processor design, the storage elements such as WREG and data memory need
some feedback signals. It will make the circuits fault, and must be dealt carefully.

In APIC18, the EXE and WB stage are combined in one EXE/WB stage and
adjacent to the OF stage. Thus, the data memory and WREG register cannot be read
and written at the same time. However, the EXE and WB stage are separated in the
new APIC18S core. It is possible to read and write data at the same time.

Figure 4.5 shows the dual-rail pipeline with WREG. In the original Muller pipeline,

there is no feedback circuits, data may pass through each stage as fast as possible if
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the front stages are not full. If there are two paths from OF to WB, they can flow
independently. The shorter path can send data to next stage without waiting the longer
path to be finished in the same stage. Based on this mechanism, the performance will
be the average case delay, not the worst case delay. For example, if there are two paths
P1 and P2, and their delays of each stage are tlof, tlexe, tlws and t2of, t2exe, t2ws
respectively, the delay will be

max(tlor + tlexg, + tlws , t20F + t2exg, + t2wB), nOt

max(tlop, t20|:) + max(tlEXE, tZEXE) + max(tl WB, tZWB).

| WREG ]
4 > )
<H—
c © o
+] [+
I @i o k=3
OF | |_ ||EXE[[_ WB
HO 1©) o
—
HC) c C
a= — L« —— ¢
Figure 4.5 Dual-rail pipeline with WREG

However, it will become very complex if there are any feedback circuits. In the
new APIC18S core, the operand is fetched from WREG in the OF stage and sent to
the EXE stage. Then in the EXE stage, the results of the operands are calculated and
sent to the WB stage. If a ripple adder is implemented in the EXE stage, because of
the propagation delay, the lower bits of result will be generated earlier than the higher
bits. Thus, it may cause that the lower bit is written back to the WREG register, even
if the higher bits are still in EXE stage. Under this situation, the lower bit in WREG is

changed and sent back to OF stage for next instruction execution then to the EXE
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stage again. It cause very serious fault.
A simple solution is to give up the average-case delay profit. Thus in the WB stage,
the result doesn’t be written back until all of the signals in EXE stage have been

completed.

4.6 Timing Constraint

In the pure DI circuits, both wires and gates can have arbitrary delay. However, it
must have an extra timing constraint to keep the correctness of the circuits in the
APIC18S core. That’s because it needs synchronization between the 1D stage and WB
stage. There is no global clock and the ID stage and the WB stage are not adjacenct. If
a dependent instruction is sent to the ID Stage, the previous instruction may have three
possible states. It may ‘have been-completed;.it may. totally be incomplete; it may be in
execution. If an‘tnstruction is stalled and the previous instruction has.been completed,
the acknowledgement will“never be returned. The stalled. instruction will always be
stalled and the circuits will break.down.

A timing constraint must be added to the-stall policy. Assuming that the delay time
from IF to stall contreller-is t; and the delay time from OF“to WB is t,, we must
ensure that tq is always smaller than tp.

Although the timing constraint cannot be guaranteed theoretically, it is easy to
achieve in practice. That’s because it depends on a relative value, not an absolute
value. Furthermore, only the instruction followed by an ALU instruction has to be
stalled. Thus, t, includes the data read from data memory, ALU operation and write
back; it isn’t simply the bypass delay time. In fact, in current VLSI technology, tq is

always smaller than tp, and thus the circuit will work correctly.
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Chapter 5: Simulation Result

5.1 Testing Environment

In order to verify the correctness of the design, ModelSim 6.0 is used to verify the
correctness of the functionality. Figure 5.1 shows the waveform of the functional
simulation. Furthermore, we also tried to synthesize our gate-level deign with Design
Compiler. The transistor-level of C-element has been shown in previous chapter. An
alternative implementation in gate-level is shown in Figure5.2 and Figure5.3. They

are used for synthesis with cell:library; the TSMC .13"process library.
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Figure 5.1 The waveform of the functional simulation
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Figrue 5.2 Gate-level implementation of C-element

L

inl .
in2 | }—out
~reset
Figure 5.3 C-element with reset
5.2 Area Report

With TSMC .13 process, the area of basic element is shown in table 5.1. The area

of each block of APIC18S is shown in table 5.2.
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Table 5.1 The area of basic element

element area(um’)
original OR gate 6.8
C-element 25.5
C-element with reset 27.2
dual-rail OR gate 112
2-way DeMUX-MERGE 109
ripple adder ( 8 bits ) 13008

Table 5.2 The area of each block of APIC18S

area(um’) |%
IF stdge 552 0.648
ID stage 43151 307
(stall) (169) (0:198)
OF stage 4062 4.77
EXE stage . [34505 370
WB stage 3711 4.36
MEMAdp  |630 0.74
Registers 1569 1.84
(WREG) }(480) (0.564)
(STATUS)|(480) (0.564)
(PC) (609) (0.715)
total 85180 100

The DI elements consist of Tots of C-elements and are much larger than single-rail
ones. So the area of non-DI part, such as “MEMAdp” and “Registers”, is smaller. The
ID stage consists of decoder circuits, stall controller, branch controller and two adders
for next-program-counter, and its area is the largest of overall design. Besides, it is
noticed that the area of stall controller is very small and only 0.198% of whole

circuits.

5.2 Timing Report

We also use ModelSim6.0 to run the post simulation. The worst case delay of each
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stage is shown in Table 5.3

Table 5.3 The worst case delay time of each stage

Delay time (ps)
C-element 131
IF 550
D 3378
OF 5382
EXE 25497
WB 3086

Because the delay time of IF stage

g problem discussed in
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Chapter6: Conclusion and Future Work

In this thesis, we proposed a stall policy for dual-rail 4-phase processor and applied
it to our pervious asynchronous PIC processor. With this design method, the data
hazard and control hazard can be solved more effectively. It no longer fetches branch
instruction twice and the memory reads and writes can be done at the same time when
there is no data dependency. Therefore the parallelism of pipeline will be increased.
We also synthesis the design with TSMC 0.13 process to make sure that it will work
correct. It should be noticed that the extra cost:is just only 0.198%.

The dependent instruction should be stalled in the ID stage, and wait for finish
execution of the {revious instruction. In addition, the result is*written to registers
(WREG and STATUS) or memory in-the WB'stage. In fact, the'register write is faster
than memory write. There are two benefits if-the register is written in the EXE stage.
First, branch instructions that wait for STATUS can be executed quickly. Second,
some ALU instructions that wait WWREG-finishedrdoesn’t need to stall at all, because
the OF stage and EXE stage are adjacent. However it will,increase the complication
of the design and also introduee. the higher cost.

We will increase the utilization.of our pipeline if we add some latches between two
stages. In the original 4-phase dual-rail pipeline, the utilization is only 50% and only
the dependence between two adjacent instructions needs to be checked. If the latches
are added, we need to check the four adjacent instructions and it will also make the
stall circuits hard to design.

Besides that, there are still other interesting topics for research in the future.
Although there is a complete-detect policy in DI circuits, in most situations the delay
time is still the worst case delay rather than average case delay. For example, we

always need to wait for the sum and carry signals of highest bit in an 8-bit ripple
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adder to complete, even if the addition is only 4 bits. A simple solution is to add
DeMUX-MERGE pairs to the adder. The adder is separated into two parts. If the
addition is less than 4 bits, the DeMUX will bypass the higher part of the adder, and
then the execution time can be reduced to only half of original one. Moreover, the
area of DeMUX-MERGE pair is very small, as shown in table 5.1 and it can be
widely used in dual-rail circuits to improve the performance.

The cost of dual-rail circuits is too high to be commercialized. In practice it may
mix with bundled data circuits to reduce the cost. Only the critical path is designed
with dual-rail to make the timing correct and others.are designed with single-rail.
With this design methodology, we don’t need to spend lot. of time to adjust the
matching delay Zand -the _areay doesn’t become: too ' large. Moreover, the

DeMUX-MERGE pairs can be applied to improve the perfermance; too.
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