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考 量 管 線 時 間 之 延 伸 指 令 集 

學生：黃士嘉                       指導教授：鍾崇斌  教授 

 

國立交通大學資訊科學與工程研究所 碩士班 

摘要 
延伸指令集(ISE)是一種有效的方式可以滿足在許多應用上不斷增加的電路以及

速度的需求。ISE 產生的流程通常包含了 ISE Exploration 以及 ISE Selection 兩個

步驟，在 ISE Exploration 的步驟中，為了要達到最高的加速效果，大多數的研究

都直接使用速度最快的實做方式來實做每一個在特殊的功能單元(ASFU)中的基

本運算，而 ASFU 也就是複雜執行延伸指令集的功能單元，儘管如此，最快速的

實作方式卻不一定是最好的選擇，在選擇 ASFU 中的運算的實作方式時，有兩點

重要的考量：(1)ASFU 的執行時間必須符合管線時間的限制，也就是必須與原本

管線時脈的整數倍相同，並且在(1)的前提下，(2)ASFU 必須使用最少的額外面

積，為了要滿足這些考量，我們提出了一個 ISE Exploration 的演算法不只可以探

索 ISE 候選者，也同時考慮了它們的實作方式以期能夠減少最多的執行時間，並

且在此同時使用較少的面積。使用 Mibench 的模擬結果顯示，與沒有考量管線時

間的 ASFU 比較，這個方法可以額外節省 35.28%、15.92%以及 22.41%(最大、

最小以及平均)的面積，而且最多只有 1.06%的效能損失，模擬的結果更進一步

的顯示我們的方法在足夠小的例子中，找出來的結果與最佳解相當接近，但卻節

省了相當多的計算時間。 
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Abstract 
Instruction set extension (ISE) is an effective way to meet the growing efficiency 
demands for both circuit and speed in many applications. ISE generation flow usually 
consists of ISE exploration and ISE selection phases. In ISE exploration, in order to 
achieve the highest speed-up ratio, most works deploy the fastest implementation 
option for each operation in application specific functional unit (ASFU) which 
executes instruction in ISEs. Nevertheless, the fastest implementation option may be 
not the best choice. Two considerations are important in selecting an implementation 
option for each operation in ASFU: (1) the execution time of an ASFU should meet 
pipestage timing constraint, i.e. fit to an integral number of original pipeline cycles; 
and (2) under (1), the ASFU should use the least silicon area. To conform to these 
considerations, we propose an ISE exploration algorithm which not only explores ISE 
candidates but also their implementation options to minimize the execution time 
meanwhile use less silicon area. Results with MiBench indicate that the approach 
achieves up to 35.28%, 15.92% and 22.41% (max., min. and avg.) of further reduction 
in extra silicon area usage and only has maximally 1.06% performance loss compared 
with the approach without the consideration of pipestage timing constraint for ASFU. 
Furthermore, simulation results also show that our approach is very close to optimal 
one, but takes much less computing time. 
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Chapter 1 

Introduction 

1.1 Instruction Set Extension 

Recently, more and more applications are dramatically driving up the performance 

demands on embedded system design. Instruction set extension (ISE) is an effective 

way to meet the growing efficiency demands for both circuit and speed in embedded 

applications. Since several instruction patterns are executed frequently in most 

applications, grouping these instruction patterns into the ISEs is an effective way of 

improving the performance. ISEs are realized by using application specific functional 

units (ASFU) within the execution stage of pipeline. 

 

 

Figure  1.1.1: The diagram of CPU core and ASFU 

1.2 Physical Constraints 

Instruction Set Architecture (ISA) Format 

ISA format usually imposes two kinds of constraints on ISEs. The first is the 

input/output register number of ISEs. This is due to instruction format limitation or 

number of register file read/write ports. The other constraint is the number of ISEs. 
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Generally speaking, the number of ISEs can’t exceed number of unused opcode. 

 

Total Silicon Area 

The total silicon area restricts extra area used by ASUF. 

 

Pipestage Timing 

Because of the pipelining, the execution time of the ISE is the nearest integer cycle 

which is bigger than the delay of the ISE. Sometimes, there are several different 

implementation options for an operation, each has different delay and extra area cost. 

Figure 1.2.1 is an example. An ISE (delay = 0.6 cycle, area = 5000µm2) wastes 0.4 

cycle in the execution stage. If slower implementation option of operation in this ISE 

is used instead, delay and area is 0.8 cycle and 3500µm2 respectively. It still need one 

cycle for execution, but less extra area cost is used. Above all, pipestage timing 

should be considered. 

 

 

Figure  1.2.1: An example of pipestage timing 
 

1.3 ISE Design Flow 

The ISE design flow consists of application(s) profiling, basic block (BB) selection 

and ISE generation, shown in figure 1.3.1. After profiling, BB is selected as the input 
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of ISE exploration according to its execution time. ISE exploration finds frequently 

executed instruction patterns as ISE candidates which must conform to predefined 

constraints, such as input/output ports, ISA format, timing and instruction types. 

Under certain constraints, such as silicon area and ISA format, ISE selection selects 

ISEs which has the highest performance improvement among ISE candidates. 

 

Profiling

BB Selection ISE 
Exploration

ISE Selection

Application(s)

ISE(s)

Architecture 
Specification

BBs

ISE candidates

 

Figure  1.3.1: ISE design flow 
 

1.4 Motivation 

Because of pipelining, if different implementation options of operations of ISE can be 

explored, then the wasted execution time may be decreased. Thus, extra area cost can 

be lower. 

 

1.5 Objective 

Considering pipestage timing in ISE exploration to reduce extra area cost of ISEs. 
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Chapter 2 

Relative Works and Background 

2.1 Relative Works 

Instruction Set Extension (ISE) generation in the most works of [3, 4, 5, 6, 7, 9 and 13] 

consists of ISE exploration and ISE selection. 

 

ISE exploration 

Authors in [3] propose an algorithm, called exact algorithm, to explore all possible 

ISE candidates such that it can be seen as an optimal solution. The exact algorithm 

maps the ISE search space, such as a basic block, to a binary tree and then discards 

some portion of the tree which violates predefined constraints. Nevertheless, this 

algorithm is highly computing-intensive so that it hardly processes a larger search 

space. For example, it must spend about one hour to process a search space consisting 

of only 30 instructions. To reduce the computing complexity, [3, 4] propose heuristic 

algorithms which are derived from the genetic algorithm and K-L algorithm 

respectively. 

 

The work in [5] examines the impact of different constraints, such ISA format, 

hardware area and control flow, for ISE generation. These constraints would limit the 

performance improvement of the ISEs. ISA format limits the number of read and 

write ports to the register file. The limitation of control flow is whether the search 

space can cross basic block boundaries or not. In order to satisfy real-time constraints, 
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the search spaces are identified according to whether they locate on the worst-case 

execution path instead of execution time in [6]. This is because that the most 

frequently executed basic block or instruction may not contribute to the worst-case 

execution path. The granularity of each vertex within search space can be varied from 

one instruction to multiple subroutine calls in [13]. They also claim that one search 

space can consist of multiple basic blocks in their proposed algorithm. 

 

From a different view point, [15] characterizes each basic block as a polynomial 

representation. At first, multiple-input single-output (MISO) algorithm extracts 

symbolic algebraic patterns from the search spaces and represents these patterns as 

polynomials on behalf of ISE candidates. Then these ISE candidates are mapped to 

the polynomial representations of program segments by symbolic algebraic 

manipulations. 

 

ISE selection 

The work in [7] transforms ISE selection as an area minimization problem. There 

have been many relative researches of the area minimization problem in the logic 

synthesis domain. [8] proposes another algorithm that uses divide-and-conquer search 

technique to solve ISE selection. To synchronize pipeline between CPU core and 

ASFU, [9] first adjusts the timing of CPU core to same with ASFU if the execution 

time of ASFU is larger than CPU core. Then, different number of ASFU’s pipeline 

stage, from one, two, three … until no performance improvement, are evaluated. At 

meanwhile, timing of CPU core is also adjusted with ASFU. Finally, the number of 

ASFU’s pipestage with best performance improvement is then chosen. 

 

In addition, to reduce hardware cost, [14] adds new stages, called ISE combination, 
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between ISE exploration and ISE selection stages, to merge multiple similar ISE 

candidates together. 

 

2.2 Background ─ Ant Colony Optimization (ACO) 

Algorithm 

Why Ant Colony Optimization Algorithm？ 

In order to indicate which part of a DFG is going to be ISE; the implementation of 

nodes should be decided. If we only consider the situation that there is only single 

hardware implementation option of a node, then there will be 2N possible ISE patterns 

(legal or illegal) that N is the DFG size. When N is 100 (it’s a usually case), the 

combinations is emphatic 2100！Obviously, this is a NP-hard problem. For the sake of 

an efficiently solution, the way of evolutionary computation which is operative to 

many existing NP-hard problems is considered. 

 

There are many computation models belong to evolutionary computation, like genetic, 

simulated annealing, etc. One of them named “Ant Colony Optimization” is thought 

to be the easiest one to map to the problem. The selection among the models is 

processed by the difficulty of the mapping to the problem. An intuitive and easier 

mapping usually brings a simple and effective design of the algorithm. 

 

One of the concepts of ACO is the selection a path among many choices (one or two 

or more) to get the shortest path. I think the selection among many different 

implementation options of each node is just like that. This is the main reason that 

ACO outperforms other models. The only problem is how do the nodes 
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“communicate” to each other. The merit computation in the design takes it into 

account. 

 

Basic Idea of Ant Colony Optimization Algorithm 

Ant Colony Optimization algorithm is inspired by the behavior of ants in finding 

paths from the colony to food and has been extensively used to solve many 

optimization problems. Initially, ants wander randomly and lay down pheromone on 

the paths have been passed through. The density of the pheromone determines the 

probability of which path the next ant will pass through. Since the pheromone 

evaporates with the time, a shortest path gets marched over faster and thus has the 

higher density of pheromone. After a period of time, i.e. several iterations, more and 

more ants choose the shortest path such that the density of pheromone on this path 

grows increasingly. Finally, each ant almost chooses the shortest path and the 

pheromones of other paths evaporate to nearly zero. 

 

Figure 2.2.1 is an example. Suppose 50 ants are in the ant colony. Now they are going 

to find food. There are two paths to get food. One is twice longer than the other. At t = 

1, there is no pheromone on both paths. The ants choose paths with equal probability. 

Suppose 25 ants choose one path, and 25 ants choose another. One ant leaves one unit 

of pheromone on the path. But the pheromone evaporates 5 units after t = 1. So the 

paths ant passed has 25 – 5 = 20 pheromone. At t = 2, ants start again. After t = 2, we 

can see the pheromone on each path segment. Next time, the right hand side path will 

be chosen by ants with higher probability than the left hand side path. 
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Ant Colony (50 ants) Ant Colony Ant Colony 

 
Figure  2.2.1: An example of ant behavior 
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Chapter 3 

ISE Exploration 

In this paper, the purpose of ISE exploration is to find frequently executed instruction 

patterns as ISE candidates and evaluates all implementation options of each operation 

in ISE candidates to minimize the execution time with less silicon area. The input and 

output of ISE exploration algorithm are BBs and ISE candidates as well as their 

implementation option, respectively. Implementation option(s) of an operation 

represents its implementation method(s), and can be roughly divided into two 

categories, hardware and software. 

 

The flow of ISE exploration is briefly described as follows: each input BB is first 

transformed to data flow graphs (DFG), and an implementation option (IO) table 

which represents all implementation options for an operation is appended to each 

operation in DFG. In this extended DFG, ISE exploration algorithm is repeatedly 

executed until no ISE candidate can be found. Note that ISE exploration algorithm 

only explores one ISE candidate at each round. A round usually consists of multiple 

iterations. Initially, ISE exploration algorithm chooses one implementation option in 

each operation according to a probability value (p). The probability value (p) is a 

function of pheromone and merit values. The meaning of pheromone is the same with 

the pheromone in the ACO algorithm, i.e. how many times an implementation option 

is chosen in previous iterations. The merit value represents the benefit of one 

implementation option being chosen. After making a choice, the pheromone value is 

updated. And then, the algorithm evaluates implementation option of each operation 
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in DFG, i.e. calculates their merit value, according to which implementation option is 

chosen in its neighboring ones at previous iteration. Above process are iteratively 

performed until the probability values (p) of all operations in DFG have exceeded a 

predefined threshold value, P_END. 

 

3.1 Implementation option 

According to profiling results, a BB with longer execution time is transformed to 

DFG. A DFG is represented by a directed acyclic graph G(V,E) where V is a set of 

vertices and E is a set of directed edges. Each vertex v∈V represents an assembly 

instruction, called “operation” hereafter in BB. Each edge (u,v)∈E from operation u 

to operation v indicates that the execution of operation v requires the data produced 

by operation u. 

 

Each operation usually has multiple implementation options which can be divided 

into two categories, hardware and software. Hardware implementation option means 

this operation is included in an ISE and implemented in extra hardware, i.e. ASFU. 

Due to different speed and area requirements, the operation usually has at least one 

hardware implementation option. On the other hand, software implementation option 

means this operation is executed in CPU core, and its execution time depends on the 

execution cycle count of each operation defined in CPU specification. 

 

To represent all implementation options in a node, we add a table, called 

implementation option (IO) table, to each operation. Each entry in the IO table 

consists of one implementation option of the operation and its delay and area. Delay 

and area represent the execution cycle and the extra silicon area cost of this 
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implementation option, respectively. Obviously, using software implementation 

option for an operation requires one execution cycle at least but no extra silicon cost 

is introduced. On the other hand, using hardware implementation option can reduce 

execution cycle but consumes extra silicon area. After adding IO table to G, a new 

graph G+ is generated. Figure 3.1.1 shows an example of G+. This example consists 

of two operations, are A and B. In this example, we assume the delay of software 

implementation option as one cycle.  

 

 
Figure  3.1.1: An example of G+

 

3.2 Formulation of ISE Exploration 

ISE exploration explores ISE candidates in G+ and evaluates all implementation 

options of each operation in ISE candidates. An ISE candidate in G+ is a subgraph S

⊆G+. The proposed ISE exploration can be formulated as follows: 

 

ISE exploration: Given a graph G+, find S⊆G+ and evaluate all implementation 

options of vertex v∈S to minimize the execution cycle count with less silicon area 

under the following constraints: 

1. IN(S) ≤ Nin, 

2. OUT(S) ≤ Nout, 
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3. S is convex, 

4. Load and store operations ∉ S. 

 

IN(S) (OUT(S)) represents the number of input (output) values used (produced) by Si. 

The user-defined values Nin and Nout indicate the register file read and write ports 

limitations, respectively. The convex constraint is that the ISE’s output can not 

connect to its input via other operations not grouped in ISE. In other words, if there 

exists no path from a operation u∈S to another operation v∈S which involves a 

operation w S, then S is convex. To conform to the limitation of RISC architecture 

and to degrade the complexity of the algorithm, load and store operations are 

prohibited from being grouped into ISE. 

  ∉

 

In fact, if the limitation of EX and MEM stage in usually pipeline can be eliminated, 

the execution and memory access can take place with non-certain sequence, then load 

and store operations are possibly grouped into ISE. And it is reasonably to enhance 

the benefit of ISE 

 

3.3 ISE Exploration Algorithm 

The ISE exploration algorithm is driven from ACO algorithm. Conceptually, we can 

imagine that one entry in IO table, i.e. one implementation option, represents one or 

part of path from colony to food in ACO algorithm. Exploring ISE candidate with 

evaluating different implementation options is just like an ant finding the shortest 

path from colony to food. 
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Similar with ACO algorithm, which implementation option would be chosen depends 

on its probability value (p). The probability value (p) of each implementation option 

in an operation represents its probability of being chosen at each iteration of ISE 

exploration algorithm. On the other hand, choosing implementation option according 

to the probability value (p) can prevent local optimal solutions. The probability value 

(px,j) of j-th implementation option in operation x is a function of the pheromone and 

the merit values, as shown in equation (1). The meaning of the pheromone value is 

identical with the pheromone in the ACO algorithm. It reveals how many times an 

implementation option is chosen in previous iterations. Here, we denote the 

pheromone value of j-th implementation option of operation x by pheromonex,j in 

which pheromonex,0 is designated as the pheromone value of software implementation 

option. Just like the pheromone, the pheromone value must be updated after each 

iteration. The merit value is defined as the benefit of one implementation option being 

chosen, and it is calculated by the merit function which will be described in detail 

later. The merit value of j-th implementation option of operation x is denoted by 

meritx,j in which meritx,0 is designated as the merit value of software implementation 

option. The probability of j-th implementation option of operation x being chosen (px,j) 

is computed by: 

 

10and0
1

1

0
,,

,,
, ≤≤≤≤

⋅−+⋅

⋅−+⋅
=

∑
=

α k j  , 
)meritα)(pheromone(α
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p k

j
jxjx

jxjx
jx      (3.1) 

 

where k is the number of hardware implementation options in operation x and α is 

used to determine the relative influence of pheromone and merit, and 
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j
jxp                            (3.2) 

 

Figure 3.3.1 shows the proposed ISE exploration algorithm. Here, we assume that 

there are m (m > 0) operations in a DFG and each operation has n (n > 0) 

implementation options. Initially, i.e. in step 1, the algorithm sets initial values for the 

pheromone and merit values of each implementation option of all operations. Note 

that the initial merit value of hardware and software implementation options is 

different. This is because we wish that the algorithm has higher has more opportunity 

to choose hardware implementation option at the beginning of execution. In step 2, 

the algorithm checks operation x (x=1 to m) whether it has hardware implementation 

option. If yes, the algorithm chooses one among all implementation options in 

operation x according to their probability values (px,j); if no, it chooses software 

implementation option. 

 

In step 3, ISE exploration algorithm updates the pheromone value of each 

implementation option j in operation x (x=1 to m) according to whether the 

implementation option j is chosen or not. The pheromone value of chosen 

implementation option is increased with ρ, a positive constant value, and others are 

decreased with ρ. The algorithm in step 4 calculates the merit value of each 

implementation options in operation x. Same as in step 2, the algorithm also first 

checks operation x (x=1 to m) whether it has hardware implementation option. If yes, 

the algorithm executes Hardware Grouping function that determines whether 

operation x can be grouped with its neighboring ones as a virtual ISE candidate, if it 

can, Hardware-Grouping function uses this virtual ISE candidate to calculate the 

execution time and silicon area of each hardware implementation option in operation 
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x. We will describe Hardware-Grouping function in detail later. And then, the merit 

value (meritx,j) of implementation option j (j=1 to n) in operation x is generated by 

using merit function. Finally, ISE exploration algorithm checks the end condition in 

step 5. If the end condition is not satisfied, ISE exploration algorithm returns to step 2 

and enters the next iteration; else, it terminates. 

 

1. 
 

2. 

3. 
 

4. 

5. 

The e

imple

 

(Initialization) 
For implementation option j (j=0 to n) of operation x (x=1 to m) in DFG
 pheromonex,j = 0;  
 If (j=0) 

meritx,0 = initial value of software implementation option; 
 Else 

meritx,j = initial value of hardware implementation option; 
(Calculating probability value (p) and choosing implementation option) 
For operation x (x=1 to m) 
 If (x has hardware implementation option) 

For implementation option j (j=0 to n) in operation x 
 Calculate px,j; 
Choose one implementation option according to its probability 
value (p); 

Else 
 Choose software implementation option; 

(Pheromone update) 
For implementation option j (j=0 to n) of operation x (x=1 to m) in DFG
 If the implementation option is selected 
  ρ+= jxjx trailtrail ,, ; 
 Else 
  ρ−= jxjx trailtrail ,, ; 
(Calculating merit) 
For operation x (x=1 to m) 
 If (x has hardware implementation option) 
  For implementation option j (j=1 to n) in operation x 

Execute Hardware_Grouping; 
   Calculate meritx,j; 
(Terminating condition) 
If not (end_condition) goto step 2;
  

Figure  3.3.1: ISE Exploration Algorithm 
 

nd condition is that for all operations in DFG, the probability value (p) of one of 

mentation options exceeds P_END which is a predefined threshold value and 
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very closed to 100%. A larger P_END have greater opportunity to obtain better result, 

but it needs longer convergence time, i.e. takes more computing time. An 

implementation option with the probability value (p) over P_END is called taken 

implementation option. A single ISE candidate is a group of connected operations in 

the DFG which all have taken hardware implementation option. 

 

Hardware-Grouping 

If the operation x has hardware implementation option, a function, called 

Hardware-Grouping, must be executed before computing the merit value of each 

hardware implementation option. Hardware-Grouping checks whether the operation x 

can be grouped with its neighboring ones as a virtual ISE candidate. It recursively 

groups operation x with neighboring ones which have chosen hardware 

implementation option in previous iteration as a virtual ISE candidate, i.e. a virtual 

subgraph vSx. Here, we denote the result of Hardware-Grouping of operation x using 

j-th implementation option by vSx,j. Note that vSx,0 is meaningless due to 0-th 

implementation option is software one. Using the vSx,j, Hardware-Grouping evaluates 

the execution time and silicon area of vSx,j. Note that the execution time of vSx,j is the 

critical path time in vSx,j and the silicon area of vSx,j is the sum of silicon area of vSx,j. 

 

We use figure 3.3.2 to explain how the Hardware-Grouping operates. The table in 

figure 3.3.2 represents delay and area of each implementation option for all operations 

and specifies the chosen implementation option in previous iteration. In both top and 

bottom left of figure 3.3.2, nodes in dotted line are treated as a virtual ISE candidate. 

For operation #2, Hardware-Grouping groups operation #2 and #3 as a virtual ISE 

candidate, i.e. vS2, as shown in the top left of figure 3.3.2. Since only one hardware 

implementation option exists in operation #2, vS2 has one evaluating result in 
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execution time and silicon area (execution time = 0.8, silicon area = 1200). The 

bottom left of figure 3.3.2 is another example in which Hardware-Grouping groups 

operation #5 and its neighboring ones, are #2, #3, #6 and #7, as a virtual ISE 

candidate, i.e. vS5. Since operation #5 has two hardware implementation options, there 

are two evaluating results in vS5, one is vS5,1 (execution time = 1.7, silicon area = 

2400) and another is vS5,2 (execution time = 1.4, silicon area = 3000). 

 

 

Figure  3.3.2: Examples of Hardware-Grouping 
 

Merit Function 

The purpose of merit function is to calculate the benefit, i.e. merit value, of 

implementation option. Briefly, the merit function consists of three cases: size 

checking (case 1), constraints violation determination (case 2) and benefit calculating 

 
Hardware grouping of operation #5 

Hardware grouping of operation #2 

Operation 
ID 

Choice in 
previous 
iteration 

Implementation 
Option 

Delay Area 

1 ● software 1 0 

 software 1 0 
2 

● hardware 0.4 600 

 software 1 0 
3 

● hardware 0.4 600 

4 ● software 1 0 

● software 1 0 

 hardware 1 0.6 400 5 

 hardware 2 0.3 1000 

 software 1 0 
6 

● hardware 0.3 500 

 software 1 0 
7 

● hardware 0.2 300 

 

2 

3 

4 5 

1 

7 6 

2 

3 

4 5 

1 

7 6 
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(case 3). Figure 3.3.3 depicts the algorithm of merit function. Initially, in the case 1, 

the algorithm checks whether size(vSx,j), is denoted as the number of operation in vSx,j, 

is equal to one. If yes, since there is only one operation, i.e. operation x, in vSx,j, it is 

impossible to improve performance, so that the algorithm adjusts the merit value to 

decrease the chance of choosing hardware implementation option, this comparatively 

rises the choosing probability of software implementation option. And then, the 

calculation of merit function is terminated. Note that in this paper, we assume each 

operation is one-cycle delay. If multiple-cycle delay is assumed, case 1 may be 

tailored to fit the situation. If no, goto case 2. 

 

The case 2 checks whether vSx violates input/output port and convex constraints. If 

yes, the merit value of each hardware implementation option is multiplied by a 

constant β1, β2 or β3 (0 < β1 < 1, 0 < β2 < 1 and 0 < β3 < 1). This relatively reduces the 

opportunity of selection of software implementation option just the same as in case 1. 

And then, the calculation of merit function is terminated. The reason why we only 

divide the merit value of each hardware implementation option in operation x by a 

constant rather than exclude the possibility of operation x becoming an ISE candidate 

is that operation x will have an opportunity to be grouped as an ISE candidate in the 

next iteration. If no, enter case 3. 

 

In the case 3, the merit value of j-th implementation option (meritx,j, j > 0) in the 

operation x is calculated according to (1) how much speed up can be achieved by vSx,j; 

or (2) the extra area used by vSx,j. The execution time, cycle reduction and silicon area 

of the virtual subgraph vSx,j is denoted by ET(vSx,j), speedupx,j and areax,j, respectively. 

The basic idea is (1) if vSx,j can improvement the performance, j-th implementation 

option should have larger merit value than software implementation; (2) if a hardware 
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implementation option in the operation x has higher cycle reduction, it should have 

larger merit value than lower ones; and (3) if several hardware implementation 

options in the operation x have the highest cycle reduction, the one uses less extra 

silicon area should have higher merit value. Based on above, the merit value of j-th 

implementation option is first multiplied by speedupMAX which the maximal speedup 

can be achieved in operation x. Than, if the speedup of j-th implementation option is 

equal to speedupMAX, the merit value of j-th implementation option is scaled by the 

silicon area used for j-th implementation option. AreaMAX is the largest silicon area 

used in operation x. Otherwise, the merit of j-th implementation option is scaled by 

the speedup of this hardware implementation option. 

 

 

 

Case 1. (The size of vSx is equal to 1) 
If (size(vSx) = 1) 

For each hardware implementation option (j=1 to k) in operation x 
  1,, β×= jxjx meritmerit ; 
Case 2. (Violate constraints and the size of vSx,j is larger than 1) 
If (vSx violates in/out constraint) 

For each hardware implementation option (j=1 to k) in operation x 
2,, β×= jxjx meritmerit ; 

If (vSx violates convex constraint) 
For each hardware implementation option (j=1 to k) in operation x 

3,, β×= jxjx meritmerit ; 
Case 3. (Conform with constraints and the size of vSx,j is larger than 1) 
If (vSx observes in/out and convex constraint) 

For each hardware implementation option (j=1 to k) in operation x 
0,, )1( xMAXjx meritspeedupmerit ×+=  

If (speedupx,j = speedupMAX) 

jx

MAX
jxjx Area

Areameritmerit
,

,, ×= ; 

Else 
jxmerit ,
 jxMAX
jx speedupspeedup

merit
,

, )1( −+
= ; 

Figure  3.3.3: Algorithm of merit function 
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3.4 Optimal Solution 

The optimal solution can be identified as follows. At first, step 1, all of the possible 

patterns in the DFG are enumerated and tested to the input/output and convex 

constraints, and those passed the test are listed as legal ISEs. In step 2, exact 

implementation option evaluation of each ISE in the list is calculated. Suppose the 

DFG size is n and there are k legal ISEs are listed and the maximum hardware 

implementation option number is c, then the time complexity of step 1 and step 2 are 

O(2n)·O(n) and k·O(cn)·O(n) respectively. Finally in step 3, all of the combinations of 

legal ISEs are enumerated, and then we can get the best cycle reduction number and 

corresponding minimum area cost of the DFG. The complexity of this step is O(2k). 
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Chapter 4 

ISE Selection 

Due to the constraints of silicon area and original ISA format, the subset of ISE 

candidates which has the best performance improvement under the constraints should 

be selected. This problem is formulated as the multi-constrained 0/1 Knapsack 

problem as follows: 

 

ISE selection: Suppose there are n ISE candidates, the area of the ith ISE is ai and the 

performance improvement of the ith ISE is wi, the area of selected ISEs can’t exceed 

the total area A, the limitation of the number of extended instructions is E, and then 

get the maximum of 

 

∑
=

=
n

i
iin xwxxf

1
1 ),...,(  and }1,0{∈ix ， ni ≤≤1             (4.1) 

 

where xi is 1 if the ith ISE is selected, and vice versa, and subject to 

 

Ex
n

i
i ≤∑

=1

，  and Axa
n

i
ii ≤∑

=1

}1,0{∈ix ， ni ≤≤1            (4.2) 

 

Noticeable, the constraints on ISE selection in this paper are silicon area and original 

ISA format. However, if we add new constraints on ISE selection, only the equation 

(4.2) needs to be changed as follows: 
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j

n

i
ijij bxctC ≤∑

=1
,:  and }1,0{∈ix ， ni ≤≤1              (4.3) 

 

where Cj represents which constraint is applied, cti,j is resource consumption values of  

ith ISE and bj is the given resource limits. 
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Chapter 5 

Experimental Results 

5.1 Experimental setup 

We use Portable Instruction Set Architecture (PISA) [10] which is a MIPS-like ISA 

and MiBench [11] with different register input/output ports constraint to evaluate our 

proposed algorithm. Each benchmark is compiled by gcc 2.7.2.3 for PISA with -O0 

and -O3 optimizations. Due to the limitation in library and compiler, 6 benchmarks, 

such as mad, typeset, ghostscript, rsynth, sphinx and pgp, can not be compiled 

successfully. For both algorithms, we evaluate 6 cases, includes 2/1, 4/2 and 6/3 

register file read/write ports as well as using -O0 and -O3 optimization. 

 
Table  5.1.1: Hardware implementation option setting 

Operation Delay (ns) Area (µm2) Operation Delay (ns) Area (µm2) 

4.04 926.33 and 
andi 1.58 214.31 add 

addi 
addu 
addiu 2.12 2075.35 or 

ori 1.85 214.21 

4.04 926.33 xor 4.17 375.1 sub 
subu 2.14 2049.41 xori 2.01 565.14 
mult 5.77 84428 
multu 5.65 79778.1 
nor 2.00 250.00 

2.64 1144 
slt 
slti 
sltu 
sltiu 1.01 2636 

sll 
sllv 
srl 
srlv 
sra 
srav 

3.00 400.00 

 

In this simulation, we assume that: (1) the CPU core is synthesized in 0.13 µm CMOS 

technology and executes in 100MHz; (2) the CPU core area is 1.5 mm2; (3) the 
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read/write ports of register file are 2/1, 4/2 and 6/3, respectively; and (4) the execution 

time of all instructions in PISA is one cycle, i.e. 10 (ns). Table 5.1.1 shows the 

hardware implementation option settings (delay and area) of instructions in PISA. 

Note that we only list instructions which are capable of being grouped into ISE in 

table 5.1.1. These settings reference from either [12] or synthesized by Synopsys 

Design Compiler with standard cells. Since increasing the read/write ports of register 

file needs extra silicon area, we also synthesize different read/write ports of register 

file. The silicon area of CPU core with 4/2 and 6/3 (register file read/write ports) are 

1574138.80µm2 and 1631359.54µm2, respectively. 

 

Because of the heuristic nature of the ISE exploration algorithm, the exploration is 

repeated 5 times within each basic block, and the result among the 5 iterations having 

minimal execution cycle count with less extra area cost is selected. 

 

To make things easy as much as possible, the parameters are usually fixed and to 

adjust one of them one at a time. For the sake of clarity, one parameter is designed to 

influence only one thing, although they usually effect with each other. For example, 

the parameter β decides the decay speed of merit when one of the constraints is 

violated. When we have a fitting magnitude of β, there are always other things 

changed at the same time due to the alternation of β. Then we adjust other parameters 

one at a time just like we did to β. After many times of regulation, we can find that the 

interval of the parameter at each regulation is less and less. Finally, we get a set of 

suitable parameters. 

 

The following is the parameters in this paper and their meaning. 

α：The weight of merit and pheromone in px,j. Increase α to get a solution more slowly, 
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decrease α to get a solution more quickly, but usually worse one. 

β1：The tendency to choose hardware implementation option in a node. 

β2：The decay speed when the input/output constraint is violated. 

β3：The decay speed when the convex constraint is violated. 

 

In our experiments, we use the initial value of software implementation option of 100, 

initial value of hardware implementation option of 200, P_END of 99%. The 

parameter α used in the calculation of probability value, β1, β2 and β3 used in merit 

function are 0.25, 0.9, 0.9 and 0.5, respectively. 

 

In the simulation, the ISE selection is implemented as a greedy algorithm. ISE 

number and silicon area constraints can be easily applied within the greedy algorithm. 

ISE selection algorithm first sorts ISE candidates according to their cycle count 

reduction. The ISEs are then selected sequentially according to this sorted list until the 

number of ISEs exceeds ISE number constraint or total silicon area is over. For the 

sake of clarity, the simulation result only shows the impact of the ISE number 

constraint. We divide the total saving cycle count of selected ISEs by the total cycle 

count of original application to get the execution time reduction in the figures. 

 

5.2 Experimental results 

Figure 5.2.1 and 5.2.2 show the average execution time reduction and average extra 

silicon area cost of Mibench, respectively, under different number of ISE. In both 

figure 5.2.1 and 5.2.2, each bar consists of several segments which indicate the 

execution time reduction under different number of ISE, are 1, 2, 4, 8, 16 and 32, 

respectively. 
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In order to show the effectiveness of the consideration of pipestage timing is 

remarkable. We assume the proposed algorithm doesn’t consider the effect of 

pipestage timing. Therefore there is only one hardware implementation option for the 

operation can be included into ISE. In here, we always take it as the fastest 

implementation option. 

 

The label on X axis in both figure 5.2.1 and 5.2.2 represents ISE exploration 

algorithm with different arguments is used. The first and second symbols in 

parenthesis of each label on X axis represent the number of register file read/write 

ports used and which optimization scheme (-O0 or -O3) is used. (4/2, O3), for 

example, means register file has 4 read ports and 2 write ports and -O3 optimization 

scheme is used. The third symbol “T” in parenthesis represents “thinking” of 

pipestage timing. 
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Figure  5.2.1: Execution time reduction 
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Figure  5.2.2: Extra silicon area cost 
 

For both algorithms, -O3 shows better execution time reduction than -O0 under same 

read/write ports constraint. The possible reason is that -O3 usually makes program 

execution faster in various ways of compiler techniques. Some of these techniques 

(like loop unrolling, function inlining, etc.) remove branch instructions and increase 

the size of certain critical basic blocks. The bigger the basic block size is, the larger 

the search space exists and the more possibility the ISEs which have more cycle 

reduction can be explored in these bigger basic blocks. Also noteworthy is that most 

of execution time reduction is contributed by several ISEs. This is because the execute 

time of most program takes on small fraction of code segment, i.e. the execution time 

reduction is dominated by several ISEs. In most cases, 8 ISEs can achieve half or 

more of execution time reduction and only consume a little fraction of the maximum 

extra area cost. For example, 8 ISEs using 4/2 (register file read/write ports) register 

file can save average 14.95% execution time and cost 81467.5µm2 silicon area, that’s 

5.43% of the original core area. On the other hand, if we select 32 ISEs, the average 
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execution time reduction can increase to 20.62% but extra area cost also rises to 

345135.45µm2, that’s 23.01% of the original core area. 

 

There is one thing should be noticed in figure 5.2.1 that ACO (2/1, O0) seems to be 

better than ACO (2/1, O3). In fact, with 1, 2 and 4 ISE number, –O3 still behaves 

better than –O0, the situation reverses only with larger ISE number. This is caused by 

the results of some special benchmark. For example, there are only 4 ISEs can be 

found by –O3, but –O0 can find over 4 ISEs and totally get more execution time 

reduction. When the ISE number is more than 4, then –O0 looks like better than –O3. 
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Figure  5.2.3: Extra area saving percentage 
 

Since the proposed ISE exploration algorithm explores not only ISE candidate but 

also their implementation option, less extra silicon area is used in all cases. Figure 

5.2.3 illustrates the extra area saving percentage for all cases and figure 5.2.4 to figure 

5.2.6 shows the execution time reduction per unit area. In these figures, the 

 36



consideration of pipestage timing obviously reduces the extra area usage. 
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Figure  5.2.4: Execution time reduction per unit area (2/1) 
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Figure  5.2.5: Execution time reduction per unit area (4/2) 
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Figure  5.2.6: Execution time reduction per unit area (6/3) 
 

From another perspective, under the same silicon area constraints, using miser 

implementation option can employ more ISEs in processor core. This leads to better 

performance improvement. We illustrate this perspective with figure 5.2.7 and 5.2.8. 

In figure 5.2.7, each bar consists of several segments which indicate the execution 

time reduction under different silicon area constraint, are 5%, 10%, 15%, 20%, 25% 

and 30% of original CPU core, respectively. Figure 5.2.8 shows ISE number can be 

used in different silicon area constraint. Note that the silicon area of CPU core with 

different register file read/write ports is different. In all cases, the proposed ISE 

exploration algorithm has better improvement in the execution time reduction. It is 

more noteworthy that the improvement of execution time reduction is not in 

proportion to available silicon area. This is because most execution time reduction is 

dominated by several ISEs. Table 5.2.1 shows the detailed results of figure 5.2.7 and 

5.2.8. 
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Figure  5.2.7: Execution time reduction under different silicon area constraint 
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Figure  5.2.8: ISE Number under different silicon area constraint 
 

Table  5.2.1: Execution time reduction under different silicon area constraint 
Silicon area 
constraint 5% 10% 15% 20% 25% 30%

 Number of ISE being selected 
ACO(2/1, O0, T) 13 28 50 71 102 128

 39



ACO(2/1, O3, T) 12 27 40 55 79 100
ACO(2/1, O0) 10 21 34 50 64 86
ACO(2/1, O3) 10 19 31 44 55 72
 Execution time reduction 
ACO(2/1, O0, T) 8.60% 9.81% 10.38% 10.61% 10.76% 10.83%
ACO(2/1, O3, T) 7.57% 8.49% 8.94% 9.29% 9.54% 9.64%
ACO(2/1, O0) 6.49% 7.21% 7.61% 7.90% 8.02% 8.11%
ACO(2/1, O3) 6.65% 7.28% 7.72% 8.01% 8.20% 8.36%
 Number of ISE being selected 
ACO(4/2, O0, T) 8 18 23 34 46 56
ACO(4/2, O3, T) 6 14 20 26 34 45
ACO(4/2, O0) 6 13 20 24 32 42
ACO(4/2, O3) 5 12 17 22 27 33
 Execution time reduction 
ACO(4/2, O0, T) 13.61% 17.26% 18.19% 19.31% 20.13% 20.64%
ACO(4/2, O3, T) 14.98% 19.04% 20.46% 21.30% 22.09% 22.84%
ACO(4/2, O0) 12.13% 15.06% 16.69% 17.27% 18.08% 18.77%
ACO(4/2, O3) 14.15% 17.51% 18.64% 19.43% 20.04% 20.62%
 Number of ISE being selected 
ACO(6/3, O0, T) 5 12 19 25 31 39
ACO(6/3, O3, T) 6 9 14 19 25 32
ACO(6/3, O0) 4 9 15 19 24 29
ACO(6/3, O3) 4 7 11 15 20 25
 Execution time reduction 
ACO(6/3, O0, T) 14.95% 19.25% 20.97% 21.77% 22.33% 22.87%
ACO(6/3, O3, T) 18.76% 20.92% 22.72% 23.77% 24.61% 25.32%
ACO(6/3, O0) 13.83% 17.19% 19.37% 20.19% 20.94% 21.56%
ACO(6/3, O3) 16.91% 19.76% 21.74% 22.92% 24.00% 24.81%
 

5.3 Optimal Solution 

In order to illustrate the quality of ISEs explored by the proposed algorithm, a set of 

basic blocks are processed to get the optimal solution. In table 5.3.1, we compare the 

result of proposed algorithm and the optimal solution. And the corresponding 

processing time is listed in table 5.3.2. The legal pattern number is the number of 
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patterns that are legal to be ISEs (input/output constraint, convex, no load/store 

operation). The processing time of the optimal solution of a DFG is decided by the 

DFG size or legal pattern number. This can be observed from the time complexity of 

optimal solution mentioned earlier. For the cases that optimal solution can be obtained 

successfully, the proposed algorithm exhibits wonderful solution quality compared to 

the optimal one. It can get cycle reduction and extra area cost closed to the optimal 

one with tremendous computing time saving. For the legal pattern number up to 45 or 

even 108, the optimal solution needs considerable computing time and even can’t 

terminate in a reasonable interval. On the other hand, the proposed algorithm just 

consumes a few seconds to get the solution. Another observation is the released 

input/output constraint usually leads the increment of legal pattern number. In this 

situation, to obtain the optimal solution is more difficult, but proposed algorithm still 

behaves well. 

 
Table  5.3.1: Comparison of optimal solution and ISE Exploration Algorithm (result) 

Optimal Solution Proposed Algorithm DFG 
Size 

Legal 
Pattern 
Number

In / Out 
Constraint Cycle 

Reduction
Extra Area 

Cost 
Cycle 

Reduction 
Extra Area 

Cost 
13 4 2 / 1 3 1228 3 1228 
26 9 2 / 1 5 7381 5 7603 
20 30 2 / 1 8 11683 6 9152 
41 7 2 / 1 7 10028 7 10028 
64 1 2 / 1 1 1141 1 1141 
32 45 2 / 1 --* -- 16 107160 
23 75 2 / 1 -- -- 9 13886 

13 2 / 1 5 6454 4 5128 
12 

28 4 / 2 6 8752 6 8752 
13 2 / 1 9 9127 9 9350 
46 4 / 2 -- -- 13 13929 44 
108 6 / 3 -- -- 15 14357 

P.S. *: means the solution can’t be obtained in practical time. 
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Table  5.3.2: Comparison of optimal solution and ISE Exploration Algorithm 
(processing time) 

Optimal Solution Proposed Algorithm DFG 
Size 

Legal 
Pattern 
Number 

In / Out 
Constraint Processing 

Time 
Processing 

Time 
13 4 2 / 1 0.01s 0.03s 
26 9 2 / 1 0.03s 1.21s 
20 30 2 / 1 14m22.46s 2.705s 
41 7 2 / 1 2m12.53s 1.249s 
64 1 2 / 1 4.08s 0.753s 
32 45 2 / 1 --* 4.49s 
23 75 2 / 1 -- 2.333s 

13 2 / 1 0.01s 0.438s 
12 

28 4 / 2 2m15.33s 0.777s 
13 2 / 1 4.73s 1.786s 
46 4 / 2 -- 2.102s 44 
108 6 / 3 -- 3.067s 

P.S. *: means the solution can’t be obtained in practical time. 
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Chapter 6 

Conclusion 

The proposed ISE exploration and selection algorithms can significantly reduce extra 

silicon area cost with almost no performance loss. Previous researches, to achieve the 

highest speed-up ratio, overlook several important microarchitectural constraints, such 

as pipestage timing constraint and instruction set architecture (ISA) format. To 

conform to pipestage timing constraint, an ISE exploration algorithm which evaluates 

different implementation options of each operation in DFG during exploring ISE 

candidates is proposed. On the other hand, we formulate ISE selection as the 

multi-constrained 0/1 Knapsack problem to comply with different microarchitectural 

constraints. The benefits of our approach are: (1) conform to several important 

microarchitectural constraints; (2) significantly reduce extra silicon area cost; (3) both 

algorithms are polynomial time solvable. Experiment results show that our design can 

further reduce up to 35.28%, 15.92% and 22.41% (max., min. and avg.) of extra 

silicon area, and only has maximally 1.06% performance loss. 

 

In addition, we conclude several issues which can be addressed in future work. First, 

with adjusting parameters (α, β1, β2 and β3) used in probability value, ISE exploration 

algorithm and merit function, we observe that these parameters greatly affect 

experimental results. Although we only use a same set of parameters for different 

cases, i.e. different combination of register file read/write ports and the size of BB, in 

this work, it will be an interesting if we study the dynamic adjustment for these 

parameters in our approach. Second, the running time of ISE generation algorithm is 
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one noteworthy issue. In this paper, ISE exploration algorithm only explores one ISE 

candidate at each round. However, if the algorithm simultaneously explores multiple 

ISE candidates at each round, the running time can significantly be reduced. Third, 

[combination] raises one interesting issue “ISE combination”. Without introducing 

any performance loss, if we merge several analogous ISE candidates as one or use one 

hardware resource to execute identical operations in same ISE, the silicon area can be 

further reduced. 
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Appendix A 

A.1. Simulation results of ACO(Input/Output, T) 

Execution time reduction of ACO(2/1, T)
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Figure  A.1.1: Execution time reduction of ACO(2/1, T) 
 

Execution time reduction of ACO(4/2, T)
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Figure  A.1.2: Execution time reduction of ACO(4/2, T) 
 

Execution time reduction of ACO(6/3, T)
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Figure  A.1.3: Execution time reduction of ACO(6/3, T) 
 

Execution time reduction of ACO(8/4, T)
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Figure  A.1.4: Execution time reduction of ACO(8/4, T) 
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Extra area cost of ACO(2/1, T)
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Figure  A.1.5: Extra area cost of ACO(2/1, T) 
 

Extra area cost of ACO(4/2, T)
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Figure  A.1.6: Extra area cost of ACO(4/2, T) 
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Extra area cost of ACO(6/3, T)
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Figure  A.1.7: Extra area cost of ACO(6/3, T) 
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Figure  A.1.8: Extra area cost of ACO(8/4, T) 
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A.2. Simulation results of ACO(Input/Output) 
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Figure  A.2.1: Execution time reduction of ACO(2/1) 
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Figure  A.2.2: Execution time reduction of ACO(4/2) 
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Figure  A.2.3: Execution time reduction of ACO(6/3) 
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Figure  A.2.4: Execution time reduction of ACO(8/4) 
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Figure  A.2.5: Extra area cost of ACO(2/1) 
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Figure  A.2.6: Extra area cost of ACO(4/2) 
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Figure  A.2.7: Extra area cost of ACO(6/3) 
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Figure  A.2.8: Extra area cost of ACO(8/4) 
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A.3. Simulation results of Genetic(Input/Output, T) 

The genetic algorithm presented here is referenced by [3] without consideration of the 

pipestage timing, i.e. no multiple hardware implementation options. It is taken as a 

reference material for execution time reduction. 
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Figure  A.3.1: Execution time reduction of Genetic(2/1) 
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Figure  A.3.2: Execution time reduction of Genetic(4/2) 
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Figure  A.3.3: Execution time reduction of Genetic(6/3) 
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Execution time reduction of Genetic(8/4)
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Figure  A.3.4: Execution time reduction of Genetic(8/4) 
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Figure  A.3.5: Extra area cost of Genetic(2/1) 
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Extra area cost of Genetic(4/2)
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Figure  A.3.6: Extra area cost of Genetic(4/2) 
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Figure  A.3.7: Extra area cost of Genetic(6/3) 
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Extra area cost of Genetic(8/4)
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Figure  A.3.8: Extra area cost of Genetic(8/4) 
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