

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

考 量 管 線 時 間 之 延 伸 指 令 集

Instruction Set Extension with Consideration of Pipestage

Timing

研 究 生：黃士嘉

指導教授：鍾崇斌 教授

中 華 民 國 九 十 五 年 七 月

考 量 管 線 時 間 之 延 伸 指 令 集

Instruction Set Extension with Consideration of Pipestage Timing

研 究 生：黃士嘉 Student：Shih-Chia Huang

指導教授：鍾崇斌 Advisor：Chung-Ping Chung

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年七月

 1

考 量 管 線 時 間 之 延 伸 指 令 集

學生：黃士嘉 指導教授：鍾崇斌 教授

國立交通大學資訊科學與工程研究所 碩士班

摘要
延伸指令集(ISE)是一種有效的方式可以滿足在許多應用上不斷增加的電路以及

速度的需求。ISE 產生的流程通常包含了 ISE Exploration 以及 ISE Selection 兩個

步驟，在 ISE Exploration 的步驟中，為了要達到最高的加速效果，大多數的研究

都直接使用速度最快的實做方式來實做每一個在特殊的功能單元(ASFU)中的基

本運算，而 ASFU 也就是複雜執行延伸指令集的功能單元，儘管如此，最快速的

實作方式卻不一定是最好的選擇，在選擇 ASFU 中的運算的實作方式時，有兩點

重要的考量：(1)ASFU 的執行時間必須符合管線時間的限制，也就是必須與原本

管線時脈的整數倍相同，並且在(1)的前提下，(2)ASFU 必須使用最少的額外面

積，為了要滿足這些考量，我們提出了一個 ISE Exploration 的演算法不只可以探

索 ISE 候選者，也同時考慮了它們的實作方式以期能夠減少最多的執行時間，並

且在此同時使用較少的面積。使用 Mibench 的模擬結果顯示，與沒有考量管線時

間的 ASFU 比較，這個方法可以額外節省 35.28%、15.92%以及 22.41%(最大、

最小以及平均)的面積，而且最多只有 1.06%的效能損失，模擬的結果更進一步

的顯示我們的方法在足夠小的例子中，找出來的結果與最佳解相當接近，但卻節

省了相當多的計算時間。

 2

Instruction Set Extension with Consideration of

Pipestage Timing

student：Shih-Chia Huang Advisors：Dr. Chung-Ping Chung

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

Abstract
Instruction set extension (ISE) is an effective way to meet the growing efficiency
demands for both circuit and speed in many applications. ISE generation flow usually
consists of ISE exploration and ISE selection phases. In ISE exploration, in order to
achieve the highest speed-up ratio, most works deploy the fastest implementation
option for each operation in application specific functional unit (ASFU) which
executes instruction in ISEs. Nevertheless, the fastest implementation option may be
not the best choice. Two considerations are important in selecting an implementation
option for each operation in ASFU: (1) the execution time of an ASFU should meet
pipestage timing constraint, i.e. fit to an integral number of original pipeline cycles;
and (2) under (1), the ASFU should use the least silicon area. To conform to these
considerations, we propose an ISE exploration algorithm which not only explores ISE
candidates but also their implementation options to minimize the execution time
meanwhile use less silicon area. Results with MiBench indicate that the approach
achieves up to 35.28%, 15.92% and 22.41% (max., min. and avg.) of further reduction
in extra silicon area usage and only has maximally 1.06% performance loss compared
with the approach without the consideration of pipestage timing constraint for ASFU.
Furthermore, simulation results also show that our approach is very close to optimal
one, but takes much less computing time.

 3

誌謝
 首先感謝我的指導老師 鍾崇斌教授，在他的諄諄教誨、辛勤指導與勉勵下，

得以順利完成此篇論文。同時感謝我的口試委員楊竹星、盧能彬以及單智君教

授，在他們的建議之下，使此篇論文更加完整。

 感謝博士班學長─吳奕緯學長，以及其他的博士班學長。也感謝實驗室其他

同學們熱心的與我討論，給我意見和鼓勵。

 此外，感謝諸位同學和學弟妹們，你們的陪伴讓我的生活充滿歡樂；也讓這

兩年來的研究生活更加的多采多姿與充實。最後感謝我的家人，謝謝你們在背後

全心全意的支持我、關懷我與鼓勵我。讓我在這研究的路上走得更順利，進而能

更全無後顧的用功學習。

 所有支持我、勉勵我的師長與親友，奉上我最誠摯的感謝與祝福，謝謝你們。

黃士嘉

2006.8.22

 4

Table of Contents
摘要..2
Abstract ..3
誌謝..4
Table of Contents ...5
List of Figures ..6
List of Tables..8
Chapter 1 Introduction ...9

1.1 Instruction Set Extension ...9
1.2 Physical Constraints...9
1.3 ISE Design Flow..10
1.4 Motivation..11
1.5 Objective ..11

Chapter 2 Relative Works and Background...12
2.1 Relative Works...12
2.2 Background ─ Ant Colony Optimization (ACO) Algorithm................14

Chapter 3 ISE Exploration ...17
3.1 Implementation option...18
3.2 Formulation of ISE Exploration...19
3.3 ISE Exploration Algorithm ..20
3.4 Optimal Solution..28

Chapter 4 ISE Selection ...29
Chapter 5 Experimental Results...31

5.1 Experimental setup...31
5.2 Experimental results...33
5.3 Optimal Solution..40

Chapter 6 Conclusion...43
Reference ...45
Appendix A ..47

A.1. Simulation results of ACO(Input/Output, T) ...47
A.2. Simulation results of ACO(Input/Output)..51
A.3. Simulation results of Genetic(Input/Output, T)55

 5

List of Figures
Figure 1.1.1: The diagram of CPU core and ASFU...9
Figure 1.2.1: An example of pipestage timing...10
Figure 1.3.1: ISE design flow ..11
Figure 2.2.1: An example of ant behavior..16
Figure 3.1.1: An example of G+ ..19
Figure 3.3.1: ISE Exploration Algorithm ..23
Figure 3.3.2: Examples of Hardware-Grouping ..25
Figure 3.3.3: Algorithm of merit function ...27
Figure 5.2.1: Execution time reduction..34
Figure 5.2.2: Extra silicon area cost...35
Figure 5.2.3: Extra area saving percentage..36
Figure 5.2.4: Execution time reduction per unit area (2/1)..37
Figure 5.2.5: Execution time reduction per unit area (4/2)..37
Figure 5.2.6: Execution time reduction per unit area (6/3)..38
Figure 5.2.7: Execution time reduction under different silicon area constraint...........39
Figure 5.2.8: ISE Number under different silicon area constraint39
Figure A.1.1: Execution time reduction of ACO(2/1, T) ...47
Figure A.1.2: Execution time reduction of ACO(4/2, T) ...48
Figure A.1.3: Execution time reduction of ACO(6/3, T) ...48
Figure A.1.4: Execution time reduction of ACO(8/4, T) ...48
Figure A.1.5: Extra area cost of ACO(2/1, T)..49
Figure A.1.6: Extra area cost of ACO(4/2, T)..49
Figure A.1.7: Extra area cost of ACO(6/3, T)..50
Figure A.1.8: Extra area cost of ACO(8/4, T)..50
Figure A.2.1: Execution time reduction of ACO(2/1) ...51
Figure A.2.2: Execution time reduction of ACO(4/2) ...51
Figure A.2.3: Execution time reduction of ACO(6/3) ...52
Figure A.2.4: Execution time reduction of ACO(8/4) ...52
Figure A.2.5: Extra area cost of ACO(2/1) ..53
Figure A.2.6: Extra area cost of ACO(4/2) ..53
Figure A.2.7: Extra area cost of ACO(6/3) ..54
Figure A.2.8: Extra area cost of ACO(8/4) ..54
Figure A.3.1: Execution time reduction of Genetic(2/1) ...55
Figure A.3.2: Execution time reduction of Genetic(4/2) ...56

 6

Figure A.3.3: Execution time reduction of Genetic(6/3) ...56
Figure A.3.4: Execution time reduction of Genetic(8/4) ...57
Figure A.3.5: Extra area cost of Genetic(2/1)..57
Figure A.3.6: Extra area cost of Genetic(4/2)..58
Figure A.3.7: Extra area cost of Genetic(6/3)..58
Figure A.3.8: Extra area cost of Genetic(8/4)..59

 7

List of Tables
Table 5.1.1: Hardware implementation option setting...31
Table 5.2.1: Execution time reduction under different silicon area constraint39
Table 5.3.1: Comparison of optimal solution and ISE Exploration Algorithm (result)

..41
Table 5.3.2: Comparison of optimal solution and ISE Exploration Algorithm

(processing time)..42

 8

Chapter 1

Introduction

1.1 Instruction Set Extension

Recently, more and more applications are dramatically driving up the performance

demands on embedded system design. Instruction set extension (ISE) is an effective

way to meet the growing efficiency demands for both circuit and speed in embedded

applications. Since several instruction patterns are executed frequently in most

applications, grouping these instruction patterns into the ISEs is an effective way of

improving the performance. ISEs are realized by using application specific functional

units (ASFU) within the execution stage of pipeline.

Figure 1.1.1: The diagram of CPU core and ASFU

1.2 Physical Constraints

Instruction Set Architecture (ISA) Format

ISA format usually imposes two kinds of constraints on ISEs. The first is the

input/output register number of ISEs. This is due to instruction format limitation or

number of register file read/write ports. The other constraint is the number of ISEs.

 9

Generally speaking, the number of ISEs can’t exceed number of unused opcode.

Total Silicon Area

The total silicon area restricts extra area used by ASUF.

Pipestage Timing

Because of the pipelining, the execution time of the ISE is the nearest integer cycle

which is bigger than the delay of the ISE. Sometimes, there are several different

implementation options for an operation, each has different delay and extra area cost.

Figure 1.2.1 is an example. An ISE (delay = 0.6 cycle, area = 5000µm2) wastes 0.4

cycle in the execution stage. If slower implementation option of operation in this ISE

is used instead, delay and area is 0.8 cycle and 3500µm2 respectively. It still need one

cycle for execution, but less extra area cost is used. Above all, pipestage timing

should be considered.

Figure 1.2.1: An example of pipestage timing

1.3 ISE Design Flow

The ISE design flow consists of application(s) profiling, basic block (BB) selection

and ISE generation, shown in figure 1.3.1. After profiling, BB is selected as the input

 10

of ISE exploration according to its execution time. ISE exploration finds frequently

executed instruction patterns as ISE candidates which must conform to predefined

constraints, such as input/output ports, ISA format, timing and instruction types.

Under certain constraints, such as silicon area and ISA format, ISE selection selects

ISEs which has the highest performance improvement among ISE candidates.

Profiling

BB Selection ISE
Exploration

ISE Selection

Application(s)

ISE(s)

Architecture
Specification

BBs

ISE candidates

Figure 1.3.1: ISE design flow

1.4 Motivation

Because of pipelining, if different implementation options of operations of ISE can be

explored, then the wasted execution time may be decreased. Thus, extra area cost can

be lower.

1.5 Objective

Considering pipestage timing in ISE exploration to reduce extra area cost of ISEs.

 11

Chapter 2

Relative Works and Background

2.1 Relative Works

Instruction Set Extension (ISE) generation in the most works of [3, 4, 5, 6, 7, 9 and 13]

consists of ISE exploration and ISE selection.

ISE exploration

Authors in [3] propose an algorithm, called exact algorithm, to explore all possible

ISE candidates such that it can be seen as an optimal solution. The exact algorithm

maps the ISE search space, such as a basic block, to a binary tree and then discards

some portion of the tree which violates predefined constraints. Nevertheless, this

algorithm is highly computing-intensive so that it hardly processes a larger search

space. For example, it must spend about one hour to process a search space consisting

of only 30 instructions. To reduce the computing complexity, [3, 4] propose heuristic

algorithms which are derived from the genetic algorithm and K-L algorithm

respectively.

The work in [5] examines the impact of different constraints, such ISA format,

hardware area and control flow, for ISE generation. These constraints would limit the

performance improvement of the ISEs. ISA format limits the number of read and

write ports to the register file. The limitation of control flow is whether the search

space can cross basic block boundaries or not. In order to satisfy real-time constraints,

 12

the search spaces are identified according to whether they locate on the worst-case

execution path instead of execution time in [6]. This is because that the most

frequently executed basic block or instruction may not contribute to the worst-case

execution path. The granularity of each vertex within search space can be varied from

one instruction to multiple subroutine calls in [13]. They also claim that one search

space can consist of multiple basic blocks in their proposed algorithm.

From a different view point, [15] characterizes each basic block as a polynomial

representation. At first, multiple-input single-output (MISO) algorithm extracts

symbolic algebraic patterns from the search spaces and represents these patterns as

polynomials on behalf of ISE candidates. Then these ISE candidates are mapped to

the polynomial representations of program segments by symbolic algebraic

manipulations.

ISE selection

The work in [7] transforms ISE selection as an area minimization problem. There

have been many relative researches of the area minimization problem in the logic

synthesis domain. [8] proposes another algorithm that uses divide-and-conquer search

technique to solve ISE selection. To synchronize pipeline between CPU core and

ASFU, [9] first adjusts the timing of CPU core to same with ASFU if the execution

time of ASFU is larger than CPU core. Then, different number of ASFU’s pipeline

stage, from one, two, three … until no performance improvement, are evaluated. At

meanwhile, timing of CPU core is also adjusted with ASFU. Finally, the number of

ASFU’s pipestage with best performance improvement is then chosen.

In addition, to reduce hardware cost, [14] adds new stages, called ISE combination,

 13

between ISE exploration and ISE selection stages, to merge multiple similar ISE

candidates together.

2.2 Background ─ Ant Colony Optimization (ACO)

Algorithm

Why Ant Colony Optimization Algorithm？

In order to indicate which part of a DFG is going to be ISE; the implementation of

nodes should be decided. If we only consider the situation that there is only single

hardware implementation option of a node, then there will be 2N possible ISE patterns

(legal or illegal) that N is the DFG size. When N is 100 (it’s a usually case), the

combinations is emphatic 2100！Obviously, this is a NP-hard problem. For the sake of

an efficiently solution, the way of evolutionary computation which is operative to

many existing NP-hard problems is considered.

There are many computation models belong to evolutionary computation, like genetic,

simulated annealing, etc. One of them named “Ant Colony Optimization” is thought

to be the easiest one to map to the problem. The selection among the models is

processed by the difficulty of the mapping to the problem. An intuitive and easier

mapping usually brings a simple and effective design of the algorithm.

One of the concepts of ACO is the selection a path among many choices (one or two

or more) to get the shortest path. I think the selection among many different

implementation options of each node is just like that. This is the main reason that

ACO outperforms other models. The only problem is how do the nodes

 14

“communicate” to each other. The merit computation in the design takes it into

account.

Basic Idea of Ant Colony Optimization Algorithm

Ant Colony Optimization algorithm is inspired by the behavior of ants in finding

paths from the colony to food and has been extensively used to solve many

optimization problems. Initially, ants wander randomly and lay down pheromone on

the paths have been passed through. The density of the pheromone determines the

probability of which path the next ant will pass through. Since the pheromone

evaporates with the time, a shortest path gets marched over faster and thus has the

higher density of pheromone. After a period of time, i.e. several iterations, more and

more ants choose the shortest path such that the density of pheromone on this path

grows increasingly. Finally, each ant almost chooses the shortest path and the

pheromones of other paths evaporate to nearly zero.

Figure 2.2.1 is an example. Suppose 50 ants are in the ant colony. Now they are going

to find food. There are two paths to get food. One is twice longer than the other. At t =

1, there is no pheromone on both paths. The ants choose paths with equal probability.

Suppose 25 ants choose one path, and 25 ants choose another. One ant leaves one unit

of pheromone on the path. But the pheromone evaporates 5 units after t = 1. So the

paths ant passed has 25 – 5 = 20 pheromone. At t = 2, ants start again. After t = 2, we

can see the pheromone on each path segment. Next time, the right hand side path will

be chosen by ants with higher probability than the left hand side path.

 15

Ant Colony (50 ants) Ant Colony Ant Colony

Figure 2.2.1: An example of ant behavior

P=25→20

Food Food Food

25 ants 25 ants

D=20

D=20

D=10

D=10
P=25→20

P=25→20

25 ants

Food

Ant Colony

25 ants
25 ants

Food

Ant Colony

25 ants
P=45→40

P=20→15

P=45→40
25 ants

Food

Ant Colony

P=20

P=15

P=40

P=40

Before Start (t=0) Go (t=1) Evaporation (t=1)

Go (t=2) Evaporation (t=2) After (t=2)

D = Distance, P = Pheromone

 16

Chapter 3

ISE Exploration

In this paper, the purpose of ISE exploration is to find frequently executed instruction

patterns as ISE candidates and evaluates all implementation options of each operation

in ISE candidates to minimize the execution time with less silicon area. The input and

output of ISE exploration algorithm are BBs and ISE candidates as well as their

implementation option, respectively. Implementation option(s) of an operation

represents its implementation method(s), and can be roughly divided into two

categories, hardware and software.

The flow of ISE exploration is briefly described as follows: each input BB is first

transformed to data flow graphs (DFG), and an implementation option (IO) table

which represents all implementation options for an operation is appended to each

operation in DFG. In this extended DFG, ISE exploration algorithm is repeatedly

executed until no ISE candidate can be found. Note that ISE exploration algorithm

only explores one ISE candidate at each round. A round usually consists of multiple

iterations. Initially, ISE exploration algorithm chooses one implementation option in

each operation according to a probability value (p). The probability value (p) is a

function of pheromone and merit values. The meaning of pheromone is the same with

the pheromone in the ACO algorithm, i.e. how many times an implementation option

is chosen in previous iterations. The merit value represents the benefit of one

implementation option being chosen. After making a choice, the pheromone value is

updated. And then, the algorithm evaluates implementation option of each operation

 17

in DFG, i.e. calculates their merit value, according to which implementation option is

chosen in its neighboring ones at previous iteration. Above process are iteratively

performed until the probability values (p) of all operations in DFG have exceeded a

predefined threshold value, P_END.

3.1 Implementation option

According to profiling results, a BB with longer execution time is transformed to

DFG. A DFG is represented by a directed acyclic graph G(V,E) where V is a set of

vertices and E is a set of directed edges. Each vertex v∈V represents an assembly

instruction, called “operation” hereafter in BB. Each edge (u,v)∈E from operation u

to operation v indicates that the execution of operation v requires the data produced

by operation u.

Each operation usually has multiple implementation options which can be divided

into two categories, hardware and software. Hardware implementation option means

this operation is included in an ISE and implemented in extra hardware, i.e. ASFU.

Due to different speed and area requirements, the operation usually has at least one

hardware implementation option. On the other hand, software implementation option

means this operation is executed in CPU core, and its execution time depends on the

execution cycle count of each operation defined in CPU specification.

To represent all implementation options in a node, we add a table, called

implementation option (IO) table, to each operation. Each entry in the IO table

consists of one implementation option of the operation and its delay and area. Delay

and area represent the execution cycle and the extra silicon area cost of this

 18

implementation option, respectively. Obviously, using software implementation

option for an operation requires one execution cycle at least but no extra silicon cost

is introduced. On the other hand, using hardware implementation option can reduce

execution cycle but consumes extra silicon area. After adding IO table to G, a new

graph G+ is generated. Figure 3.1.1 shows an example of G+. This example consists

of two operations, are A and B. In this example, we assume the delay of software

implementation option as one cycle.

Figure 3.1.1: An example of G+

3.2 Formulation of ISE Exploration

ISE exploration explores ISE candidates in G+ and evaluates all implementation

options of each operation in ISE candidates. An ISE candidate in G+ is a subgraph S

⊆G+. The proposed ISE exploration can be formulated as follows:

ISE exploration: Given a graph G+, find S⊆G+ and evaluate all implementation

options of vertex v∈S to minimize the execution cycle count with less silicon area

under the following constraints:

1. IN(S) ≤ Nin,

2. OUT(S) ≤ Nout,

 19

3. S is convex,

4. Load and store operations ∉ S.

IN(S) (OUT(S)) represents the number of input (output) values used (produced) by Si.

The user-defined values Nin and Nout indicate the register file read and write ports

limitations, respectively. The convex constraint is that the ISE’s output can not

connect to its input via other operations not grouped in ISE. In other words, if there

exists no path from a operation u∈S to another operation v∈S which involves a

operation w S, then S is convex. To conform to the limitation of RISC architecture

and to degrade the complexity of the algorithm, load and store operations are

prohibited from being grouped into ISE.

 ∉

In fact, if the limitation of EX and MEM stage in usually pipeline can be eliminated,

the execution and memory access can take place with non-certain sequence, then load

and store operations are possibly grouped into ISE. And it is reasonably to enhance

the benefit of ISE

3.3 ISE Exploration Algorithm

The ISE exploration algorithm is driven from ACO algorithm. Conceptually, we can

imagine that one entry in IO table, i.e. one implementation option, represents one or

part of path from colony to food in ACO algorithm. Exploring ISE candidate with

evaluating different implementation options is just like an ant finding the shortest

path from colony to food.

 20

Similar with ACO algorithm, which implementation option would be chosen depends

on its probability value (p). The probability value (p) of each implementation option

in an operation represents its probability of being chosen at each iteration of ISE

exploration algorithm. On the other hand, choosing implementation option according

to the probability value (p) can prevent local optimal solutions. The probability value

(px,j) of j-th implementation option in operation x is a function of the pheromone and

the merit values, as shown in equation (1). The meaning of the pheromone value is

identical with the pheromone in the ACO algorithm. It reveals how many times an

implementation option is chosen in previous iterations. Here, we denote the

pheromone value of j-th implementation option of operation x by pheromonex,j in

which pheromonex,0 is designated as the pheromone value of software implementation

option. Just like the pheromone, the pheromone value must be updated after each

iteration. The merit value is defined as the benefit of one implementation option being

chosen, and it is calculated by the merit function which will be described in detail

later. The merit value of j-th implementation option of operation x is denoted by

meritx,j in which meritx,0 is designated as the merit value of software implementation

option. The probability of j-th implementation option of operation x being chosen (px,j)

is computed by:

10and0
1

1

0
,,

,,
, ≤≤≤≤

⋅−+⋅

⋅−+⋅
=

∑
=

α k j ,
)meritα)(pheromone(α

meritα)(pheromoneα
p k

j
jxjx

jxjx
jx (3.1)

where k is the number of hardware implementation options in operation x and α is

used to determine the relative influence of pheromone and merit, and

 21

1
0

, =∑
=

k

j
jxp (3.2)

Figure 3.3.1 shows the proposed ISE exploration algorithm. Here, we assume that

there are m (m > 0) operations in a DFG and each operation has n (n > 0)

implementation options. Initially, i.e. in step 1, the algorithm sets initial values for the

pheromone and merit values of each implementation option of all operations. Note

that the initial merit value of hardware and software implementation options is

different. This is because we wish that the algorithm has higher has more opportunity

to choose hardware implementation option at the beginning of execution. In step 2,

the algorithm checks operation x (x=1 to m) whether it has hardware implementation

option. If yes, the algorithm chooses one among all implementation options in

operation x according to their probability values (px,j); if no, it chooses software

implementation option.

In step 3, ISE exploration algorithm updates the pheromone value of each

implementation option j in operation x (x=1 to m) according to whether the

implementation option j is chosen or not. The pheromone value of chosen

implementation option is increased with ρ, a positive constant value, and others are

decreased with ρ. The algorithm in step 4 calculates the merit value of each

implementation options in operation x. Same as in step 2, the algorithm also first

checks operation x (x=1 to m) whether it has hardware implementation option. If yes,

the algorithm executes Hardware Grouping function that determines whether

operation x can be grouped with its neighboring ones as a virtual ISE candidate, if it

can, Hardware-Grouping function uses this virtual ISE candidate to calculate the

execution time and silicon area of each hardware implementation option in operation

 22

x. We will describe Hardware-Grouping function in detail later. And then, the merit

value (meritx,j) of implementation option j (j=1 to n) in operation x is generated by

using merit function. Finally, ISE exploration algorithm checks the end condition in

step 5. If the end condition is not satisfied, ISE exploration algorithm returns to step 2

and enters the next iteration; else, it terminates.

1.

2.

3.

4.

5.

The e

imple

(Initialization)
For implementation option j (j=0 to n) of operation x (x=1 to m) in DFG
 pheromonex,j = 0;
 If (j=0)

meritx,0 = initial value of software implementation option;
 Else

meritx,j = initial value of hardware implementation option;
(Calculating probability value (p) and choosing implementation option)
For operation x (x=1 to m)
 If (x has hardware implementation option)

For implementation option j (j=0 to n) in operation x
 Calculate px,j;
Choose one implementation option according to its probability
value (p);

Else
 Choose software implementation option;

(Pheromone update)
For implementation option j (j=0 to n) of operation x (x=1 to m) in DFG
 If the implementation option is selected
 ρ+= jxjx trailtrail ,, ;
 Else
 ρ−= jxjx trailtrail ,, ;
(Calculating merit)
For operation x (x=1 to m)
 If (x has hardware implementation option)
 For implementation option j (j=1 to n) in operation x

Execute Hardware_Grouping;
 Calculate meritx,j;
(Terminating condition)
If not (end_condition) goto step 2;

Figure 3.3.1: ISE Exploration Algorithm

nd condition is that for all operations in DFG, the probability value (p) of one of

mentation options exceeds P_END which is a predefined threshold value and

23

very closed to 100%. A larger P_END have greater opportunity to obtain better result,

but it needs longer convergence time, i.e. takes more computing time. An

implementation option with the probability value (p) over P_END is called taken

implementation option. A single ISE candidate is a group of connected operations in

the DFG which all have taken hardware implementation option.

Hardware-Grouping

If the operation x has hardware implementation option, a function, called

Hardware-Grouping, must be executed before computing the merit value of each

hardware implementation option. Hardware-Grouping checks whether the operation x

can be grouped with its neighboring ones as a virtual ISE candidate. It recursively

groups operation x with neighboring ones which have chosen hardware

implementation option in previous iteration as a virtual ISE candidate, i.e. a virtual

subgraph vSx. Here, we denote the result of Hardware-Grouping of operation x using

j-th implementation option by vSx,j. Note that vSx,0 is meaningless due to 0-th

implementation option is software one. Using the vSx,j, Hardware-Grouping evaluates

the execution time and silicon area of vSx,j. Note that the execution time of vSx,j is the

critical path time in vSx,j and the silicon area of vSx,j is the sum of silicon area of vSx,j.

We use figure 3.3.2 to explain how the Hardware-Grouping operates. The table in

figure 3.3.2 represents delay and area of each implementation option for all operations

and specifies the chosen implementation option in previous iteration. In both top and

bottom left of figure 3.3.2, nodes in dotted line are treated as a virtual ISE candidate.

For operation #2, Hardware-Grouping groups operation #2 and #3 as a virtual ISE

candidate, i.e. vS2, as shown in the top left of figure 3.3.2. Since only one hardware

implementation option exists in operation #2, vS2 has one evaluating result in

 24

execution time and silicon area (execution time = 0.8, silicon area = 1200). The

bottom left of figure 3.3.2 is another example in which Hardware-Grouping groups

operation #5 and its neighboring ones, are #2, #3, #6 and #7, as a virtual ISE

candidate, i.e. vS5. Since operation #5 has two hardware implementation options, there

are two evaluating results in vS5, one is vS5,1 (execution time = 1.7, silicon area =

2400) and another is vS5,2 (execution time = 1.4, silicon area = 3000).

Figure 3.3.2: Examples of Hardware-Grouping

Merit Function

The purpose of merit function is to calculate the benefit, i.e. merit value, of

implementation option. Briefly, the merit function consists of three cases: size

checking (case 1), constraints violation determination (case 2) and benefit calculating

Hardware grouping of operation #5

Hardware grouping of operation #2

Operation
ID

Choice in
previous
iteration

Implementation
Option

Delay Area

1 ● software 1 0

 software 1 0
2

● hardware 0.4 600

 software 1 0
3

● hardware 0.4 600

4 ● software 1 0

● software 1 0

 hardware 1 0.6 400 5

 hardware 2 0.3 1000

 software 1 0
6

● hardware 0.3 500

 software 1 0
7

● hardware 0.2 300

2

3

4 5

1

7 6

2

3

4 5

1

7 6

 25

(case 3). Figure 3.3.3 depicts the algorithm of merit function. Initially, in the case 1,

the algorithm checks whether size(vSx,j), is denoted as the number of operation in vSx,j,

is equal to one. If yes, since there is only one operation, i.e. operation x, in vSx,j, it is

impossible to improve performance, so that the algorithm adjusts the merit value to

decrease the chance of choosing hardware implementation option, this comparatively

rises the choosing probability of software implementation option. And then, the

calculation of merit function is terminated. Note that in this paper, we assume each

operation is one-cycle delay. If multiple-cycle delay is assumed, case 1 may be

tailored to fit the situation. If no, goto case 2.

The case 2 checks whether vSx violates input/output port and convex constraints. If

yes, the merit value of each hardware implementation option is multiplied by a

constant β1, β2 or β3 (0 < β1 < 1, 0 < β2 < 1 and 0 < β3 < 1). This relatively reduces the

opportunity of selection of software implementation option just the same as in case 1.

And then, the calculation of merit function is terminated. The reason why we only

divide the merit value of each hardware implementation option in operation x by a

constant rather than exclude the possibility of operation x becoming an ISE candidate

is that operation x will have an opportunity to be grouped as an ISE candidate in the

next iteration. If no, enter case 3.

In the case 3, the merit value of j-th implementation option (meritx,j, j > 0) in the

operation x is calculated according to (1) how much speed up can be achieved by vSx,j;

or (2) the extra area used by vSx,j. The execution time, cycle reduction and silicon area

of the virtual subgraph vSx,j is denoted by ET(vSx,j), speedupx,j and areax,j, respectively.

The basic idea is (1) if vSx,j can improvement the performance, j-th implementation

option should have larger merit value than software implementation; (2) if a hardware

 26

implementation option in the operation x has higher cycle reduction, it should have

larger merit value than lower ones; and (3) if several hardware implementation

options in the operation x have the highest cycle reduction, the one uses less extra

silicon area should have higher merit value. Based on above, the merit value of j-th

implementation option is first multiplied by speedupMAX which the maximal speedup

can be achieved in operation x. Than, if the speedup of j-th implementation option is

equal to speedupMAX, the merit value of j-th implementation option is scaled by the

silicon area used for j-th implementation option. AreaMAX is the largest silicon area

used in operation x. Otherwise, the merit of j-th implementation option is scaled by

the speedup of this hardware implementation option.

Case 1. (The size of vSx is equal to 1)
If (size(vSx) = 1)

For each hardware implementation option (j=1 to k) in operation x
 1,, β×= jxjx meritmerit ;
Case 2. (Violate constraints and the size of vSx,j is larger than 1)
If (vSx violates in/out constraint)

For each hardware implementation option (j=1 to k) in operation x
2,, β×= jxjx meritmerit ;

If (vSx violates convex constraint)
For each hardware implementation option (j=1 to k) in operation x

3,, β×= jxjx meritmerit ;
Case 3. (Conform with constraints and the size of vSx,j is larger than 1)
If (vSx observes in/out and convex constraint)

For each hardware implementation option (j=1 to k) in operation x
0,,)1(xMAXjx meritspeedupmerit ×+=

If (speedupx,j = speedupMAX)

jx

MAX
jxjx Area

Areameritmerit
,

,, ×= ;

Else
jxmerit ,
 jxMAX
jx speedupspeedup

merit
,

,)1(−+
= ;

Figure 3.3.3: Algorithm of merit function

27

3.4 Optimal Solution

The optimal solution can be identified as follows. At first, step 1, all of the possible

patterns in the DFG are enumerated and tested to the input/output and convex

constraints, and those passed the test are listed as legal ISEs. In step 2, exact

implementation option evaluation of each ISE in the list is calculated. Suppose the

DFG size is n and there are k legal ISEs are listed and the maximum hardware

implementation option number is c, then the time complexity of step 1 and step 2 are

O(2n)·O(n) and k·O(cn)·O(n) respectively. Finally in step 3, all of the combinations of

legal ISEs are enumerated, and then we can get the best cycle reduction number and

corresponding minimum area cost of the DFG. The complexity of this step is O(2k).

 28

Chapter 4

ISE Selection

Due to the constraints of silicon area and original ISA format, the subset of ISE

candidates which has the best performance improvement under the constraints should

be selected. This problem is formulated as the multi-constrained 0/1 Knapsack

problem as follows:

ISE selection: Suppose there are n ISE candidates, the area of the ith ISE is ai and the

performance improvement of the ith ISE is wi, the area of selected ISEs can’t exceed

the total area A, the limitation of the number of extended instructions is E, and then

get the maximum of

∑
=

=
n

i
iin xwxxf

1
1),...,(and }1,0{∈ix ， ni ≤≤1 (4.1)

where xi is 1 if the ith ISE is selected, and vice versa, and subject to

Ex
n

i
i ≤∑

=1

， and Axa
n

i
ii ≤∑

=1

}1,0{∈ix ， ni ≤≤1 (4.2)

Noticeable, the constraints on ISE selection in this paper are silicon area and original

ISA format. However, if we add new constraints on ISE selection, only the equation

(4.2) needs to be changed as follows:

 29

j

n

i
ijij bxctC ≤∑

=1
,: and }1,0{∈ix ， ni ≤≤1 (4.3)

where Cj represents which constraint is applied, cti,j is resource consumption values of

ith ISE and bj is the given resource limits.

 30

Chapter 5

Experimental Results

5.1 Experimental setup

We use Portable Instruction Set Architecture (PISA) [10] which is a MIPS-like ISA

and MiBench [11] with different register input/output ports constraint to evaluate our

proposed algorithm. Each benchmark is compiled by gcc 2.7.2.3 for PISA with -O0

and -O3 optimizations. Due to the limitation in library and compiler, 6 benchmarks,

such as mad, typeset, ghostscript, rsynth, sphinx and pgp, can not be compiled

successfully. For both algorithms, we evaluate 6 cases, includes 2/1, 4/2 and 6/3

register file read/write ports as well as using -O0 and -O3 optimization.

Table 5.1.1: Hardware implementation option setting

Operation Delay (ns) Area (µm2) Operation Delay (ns) Area (µm2)

4.04 926.33 and
andi 1.58 214.31 add

addi
addu
addiu 2.12 2075.35 or

ori 1.85 214.21

4.04 926.33 xor 4.17 375.1 sub
subu 2.14 2049.41 xori 2.01 565.14
mult 5.77 84428
multu 5.65 79778.1
nor 2.00 250.00

2.64 1144
slt
slti
sltu
sltiu 1.01 2636

sll
sllv
srl
srlv
sra
srav

3.00 400.00

In this simulation, we assume that: (1) the CPU core is synthesized in 0.13 µm CMOS

technology and executes in 100MHz; (2) the CPU core area is 1.5 mm2; (3) the

 31

read/write ports of register file are 2/1, 4/2 and 6/3, respectively; and (4) the execution

time of all instructions in PISA is one cycle, i.e. 10 (ns). Table 5.1.1 shows the

hardware implementation option settings (delay and area) of instructions in PISA.

Note that we only list instructions which are capable of being grouped into ISE in

table 5.1.1. These settings reference from either [12] or synthesized by Synopsys

Design Compiler with standard cells. Since increasing the read/write ports of register

file needs extra silicon area, we also synthesize different read/write ports of register

file. The silicon area of CPU core with 4/2 and 6/3 (register file read/write ports) are

1574138.80µm2 and 1631359.54µm2, respectively.

Because of the heuristic nature of the ISE exploration algorithm, the exploration is

repeated 5 times within each basic block, and the result among the 5 iterations having

minimal execution cycle count with less extra area cost is selected.

To make things easy as much as possible, the parameters are usually fixed and to

adjust one of them one at a time. For the sake of clarity, one parameter is designed to

influence only one thing, although they usually effect with each other. For example,

the parameter β decides the decay speed of merit when one of the constraints is

violated. When we have a fitting magnitude of β, there are always other things

changed at the same time due to the alternation of β. Then we adjust other parameters

one at a time just like we did to β. After many times of regulation, we can find that the

interval of the parameter at each regulation is less and less. Finally, we get a set of

suitable parameters.

The following is the parameters in this paper and their meaning.

α：The weight of merit and pheromone in px,j. Increase α to get a solution more slowly,

 32

decrease α to get a solution more quickly, but usually worse one.

β1：The tendency to choose hardware implementation option in a node.

β2：The decay speed when the input/output constraint is violated.

β3：The decay speed when the convex constraint is violated.

In our experiments, we use the initial value of software implementation option of 100,

initial value of hardware implementation option of 200, P_END of 99%. The

parameter α used in the calculation of probability value, β1, β2 and β3 used in merit

function are 0.25, 0.9, 0.9 and 0.5, respectively.

In the simulation, the ISE selection is implemented as a greedy algorithm. ISE

number and silicon area constraints can be easily applied within the greedy algorithm.

ISE selection algorithm first sorts ISE candidates according to their cycle count

reduction. The ISEs are then selected sequentially according to this sorted list until the

number of ISEs exceeds ISE number constraint or total silicon area is over. For the

sake of clarity, the simulation result only shows the impact of the ISE number

constraint. We divide the total saving cycle count of selected ISEs by the total cycle

count of original application to get the execution time reduction in the figures.

5.2 Experimental results

Figure 5.2.1 and 5.2.2 show the average execution time reduction and average extra

silicon area cost of Mibench, respectively, under different number of ISE. In both

figure 5.2.1 and 5.2.2, each bar consists of several segments which indicate the

execution time reduction under different number of ISE, are 1, 2, 4, 8, 16 and 32,

respectively.

 33

In order to show the effectiveness of the consideration of pipestage timing is

remarkable. We assume the proposed algorithm doesn’t consider the effect of

pipestage timing. Therefore there is only one hardware implementation option for the

operation can be included into ISE. In here, we always take it as the fastest

implementation option.

The label on X axis in both figure 5.2.1 and 5.2.2 represents ISE exploration

algorithm with different arguments is used. The first and second symbols in

parenthesis of each label on X axis represent the number of register file read/write

ports used and which optimization scheme (-O0 or -O3) is used. (4/2, O3), for

example, means register file has 4 read ports and 2 write ports and -O3 optimization

scheme is used. The third symbol “T” in parenthesis represents “thinking” of

pipestage timing.

0%

5%

10%

15%

20%

25%

30%

ACO(2/
1,

O0,
T)

ACO(2/
1,

O3,
T)

ACO(2/
1,

O0)

ACO(2/
1,

O3)

ACO(4/
2,

O0,
T)

ACO(4/
2,

O3,
T)

ACO(4/
2,

O0)

ACO(4/
2,

O3)

ACO(6/
3,

O0,
T)

ACO(6/
3,

O3,
T)

ACO(6/
3,

O0)

ACO(6/
3,

O3)

E
xe

cu
tio

n
Ti

m
e

R
ed

uc
tio

n

1 2 4 8 16 32

Figure 5.2.1: Execution time reduction

 34

0

100000

200000

300000

400000

500000

600000

ACO(2/
1,

O0,
T)

ACO(2/
1,

O3,
T)

ACO(2/
1,

O0)

ACO(2/
1,

O3)

ACO(4/
2,

O0,
T)

ACO(4/
2,

O3,
T)

ACO(4/
2,

O0)

ACO(4/
2,

O3)

ACO(6/
3,

O0,
T)

ACO(6/
3,

O3,
T)

ACO(6/
3,

O0)

ACO(6/
3,

O3)

E
xt

ra
 A

re
a

C
os

t (
µm

2)
1 2 4 8 16 32

Figure 5.2.2: Extra silicon area cost

For both algorithms, -O3 shows better execution time reduction than -O0 under same

read/write ports constraint. The possible reason is that -O3 usually makes program

execution faster in various ways of compiler techniques. Some of these techniques

(like loop unrolling, function inlining, etc.) remove branch instructions and increase

the size of certain critical basic blocks. The bigger the basic block size is, the larger

the search space exists and the more possibility the ISEs which have more cycle

reduction can be explored in these bigger basic blocks. Also noteworthy is that most

of execution time reduction is contributed by several ISEs. This is because the execute

time of most program takes on small fraction of code segment, i.e. the execution time

reduction is dominated by several ISEs. In most cases, 8 ISEs can achieve half or

more of execution time reduction and only consume a little fraction of the maximum

extra area cost. For example, 8 ISEs using 4/2 (register file read/write ports) register

file can save average 14.95% execution time and cost 81467.5µm2 silicon area, that’s

5.43% of the original core area. On the other hand, if we select 32 ISEs, the average

 35

execution time reduction can increase to 20.62% but extra area cost also rises to

345135.45µm2, that’s 23.01% of the original core area.

There is one thing should be noticed in figure 5.2.1 that ACO (2/1, O0) seems to be

better than ACO (2/1, O3). In fact, with 1, 2 and 4 ISE number, –O3 still behaves

better than –O0, the situation reverses only with larger ISE number. This is caused by

the results of some special benchmark. For example, there are only 4 ISEs can be

found by –O3, but –O0 can find over 4 ISEs and totally get more execution time

reduction. When the ISE number is more than 4, then –O0 looks like better than –O3.

0%

5%

10%

15%

20%

25%

30%

35%

1 2 4 8 16 32
ISE Number

E
xt

ra
 A

re
a

S
av

in
g

P
er

ce
nt

ag
e

ACO(2/1, O0, T) ACO(2/1, O3, T) ACO(4/2, O0, T) ACO(4/2, O3, T) ACO(6/3, O0, T) ACO(6/3, O3, T)

Figure 5.2.3: Extra area saving percentage

Since the proposed ISE exploration algorithm explores not only ISE candidate but

also their implementation option, less extra silicon area is used in all cases. Figure

5.2.3 illustrates the extra area saving percentage for all cases and figure 5.2.4 to figure

5.2.6 shows the execution time reduction per unit area. In these figures, the

 36

consideration of pipestage timing obviously reduces the extra area usage.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 2 4 8 16 32
ISE Number

E
xe

cu
tio

n
Ti

m
e

R
ed

uc
tio

n
pe

r U
ni

t A
re

a

ACO(2/1, O0, T) ACO(2/1, O3, T) ACO(2/1, O0) ACO(2/1, O3)

Figure 5.2.4: Execution time reduction per unit area (2/1)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 2 4 8 16 32
ISE Number

E
xe

cu
tio

n
Ti

m
e

R
ed

uc
tio

n
pe

r U
ni

t A
re

a

ACO(4/2, O0, T) ACO(4/2, O3, T) ACO(4/2, O0) ACO(4/2, O3)

Figure 5.2.5: Execution time reduction per unit area (4/2)

 37

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

1 2 4 8 16 32
ISE Number

E
xe

cu
tio

n
Ti

m
e

R
ed

uc
tio

n
pe

r U
ni

t A
re

a
ACO(6/3, O0, T) ACO(6/3, O3, T) ACO(6/3, O0) ACO(6/3, O3)

Figure 5.2.6: Execution time reduction per unit area (6/3)

From another perspective, under the same silicon area constraints, using miser

implementation option can employ more ISEs in processor core. This leads to better

performance improvement. We illustrate this perspective with figure 5.2.7 and 5.2.8.

In figure 5.2.7, each bar consists of several segments which indicate the execution

time reduction under different silicon area constraint, are 5%, 10%, 15%, 20%, 25%

and 30% of original CPU core, respectively. Figure 5.2.8 shows ISE number can be

used in different silicon area constraint. Note that the silicon area of CPU core with

different register file read/write ports is different. In all cases, the proposed ISE

exploration algorithm has better improvement in the execution time reduction. It is

more noteworthy that the improvement of execution time reduction is not in

proportion to available silicon area. This is because most execution time reduction is

dominated by several ISEs. Table 5.2.1 shows the detailed results of figure 5.2.7 and

5.2.8.

 38

0%

5%

10%

15%

20%

25%

30%

ACO(2/
1,

O0,
T)

ACO(2/
1,

O3,
T)

ACO(2/
1,

O0)

ACO(2/
1,

O3)

ACO(4/
2,

O0,
T)

ACO(4/
2,

O3,
T)

ACO(4/
2,

O0)

ACO(4/
2,

O3)

ACO(6/
3,

O0,
T)

ACO(6/
3,

O3,
T)

ACO(6/
3,

O0)

ACO(6/
3,

O3)

E
xe

cu
tio

n
Ti

m
e

R
ed

uc
tio

n

5% 10% 15% 20% 25% 30%

Figure 5.2.7: Execution time reduction under different silicon area constraint

0

10

20

30

40

50

60

70

80

90

100

ACO(2/
1,

O0,
T)

ACO(2/
1,

O3,
T)

ACO(2/
1,

O0)

ACO(2/
1,

O3)

ACO(4/
2,

O0,
T)

ACO(4/
2,

O3,
T)

ACO(4/
2,

O0)

ACO(4/
2,

O3)

ACO(6/
3,

O0,
T)

ACO(6/
3,

O3,
T)

ACO(6/
3,

O0)

ACO(6/
3,

O3)

IS
E

 N
um

be
r

5% 10% 15% 20% 25% 30%

Figure 5.2.8: ISE Number under different silicon area constraint

Table 5.2.1: Execution time reduction under different silicon area constraint
Silicon area
constraint 5% 10% 15% 20% 25% 30%

 Number of ISE being selected
ACO(2/1, O0, T) 13 28 50 71 102 128

 39

ACO(2/1, O3, T) 12 27 40 55 79 100
ACO(2/1, O0) 10 21 34 50 64 86
ACO(2/1, O3) 10 19 31 44 55 72
 Execution time reduction
ACO(2/1, O0, T) 8.60% 9.81% 10.38% 10.61% 10.76% 10.83%
ACO(2/1, O3, T) 7.57% 8.49% 8.94% 9.29% 9.54% 9.64%
ACO(2/1, O0) 6.49% 7.21% 7.61% 7.90% 8.02% 8.11%
ACO(2/1, O3) 6.65% 7.28% 7.72% 8.01% 8.20% 8.36%
 Number of ISE being selected
ACO(4/2, O0, T) 8 18 23 34 46 56
ACO(4/2, O3, T) 6 14 20 26 34 45
ACO(4/2, O0) 6 13 20 24 32 42
ACO(4/2, O3) 5 12 17 22 27 33
 Execution time reduction
ACO(4/2, O0, T) 13.61% 17.26% 18.19% 19.31% 20.13% 20.64%
ACO(4/2, O3, T) 14.98% 19.04% 20.46% 21.30% 22.09% 22.84%
ACO(4/2, O0) 12.13% 15.06% 16.69% 17.27% 18.08% 18.77%
ACO(4/2, O3) 14.15% 17.51% 18.64% 19.43% 20.04% 20.62%
 Number of ISE being selected
ACO(6/3, O0, T) 5 12 19 25 31 39
ACO(6/3, O3, T) 6 9 14 19 25 32
ACO(6/3, O0) 4 9 15 19 24 29
ACO(6/3, O3) 4 7 11 15 20 25
 Execution time reduction
ACO(6/3, O0, T) 14.95% 19.25% 20.97% 21.77% 22.33% 22.87%
ACO(6/3, O3, T) 18.76% 20.92% 22.72% 23.77% 24.61% 25.32%
ACO(6/3, O0) 13.83% 17.19% 19.37% 20.19% 20.94% 21.56%
ACO(6/3, O3) 16.91% 19.76% 21.74% 22.92% 24.00% 24.81%

5.3 Optimal Solution

In order to illustrate the quality of ISEs explored by the proposed algorithm, a set of

basic blocks are processed to get the optimal solution. In table 5.3.1, we compare the

result of proposed algorithm and the optimal solution. And the corresponding

processing time is listed in table 5.3.2. The legal pattern number is the number of

 40

patterns that are legal to be ISEs (input/output constraint, convex, no load/store

operation). The processing time of the optimal solution of a DFG is decided by the

DFG size or legal pattern number. This can be observed from the time complexity of

optimal solution mentioned earlier. For the cases that optimal solution can be obtained

successfully, the proposed algorithm exhibits wonderful solution quality compared to

the optimal one. It can get cycle reduction and extra area cost closed to the optimal

one with tremendous computing time saving. For the legal pattern number up to 45 or

even 108, the optimal solution needs considerable computing time and even can’t

terminate in a reasonable interval. On the other hand, the proposed algorithm just

consumes a few seconds to get the solution. Another observation is the released

input/output constraint usually leads the increment of legal pattern number. In this

situation, to obtain the optimal solution is more difficult, but proposed algorithm still

behaves well.

Table 5.3.1: Comparison of optimal solution and ISE Exploration Algorithm (result)

Optimal Solution Proposed Algorithm DFG
Size

Legal
Pattern
Number

In / Out
Constraint Cycle

Reduction
Extra Area

Cost
Cycle

Reduction
Extra Area

Cost
13 4 2 / 1 3 1228 3 1228
26 9 2 / 1 5 7381 5 7603
20 30 2 / 1 8 11683 6 9152
41 7 2 / 1 7 10028 7 10028
64 1 2 / 1 1 1141 1 1141
32 45 2 / 1 --* -- 16 107160
23 75 2 / 1 -- -- 9 13886

13 2 / 1 5 6454 4 5128
12

28 4 / 2 6 8752 6 8752
13 2 / 1 9 9127 9 9350
46 4 / 2 -- -- 13 13929 44
108 6 / 3 -- -- 15 14357

P.S. *: means the solution can’t be obtained in practical time.

 41

Table 5.3.2: Comparison of optimal solution and ISE Exploration Algorithm
(processing time)

Optimal Solution Proposed Algorithm DFG
Size

Legal
Pattern
Number

In / Out
Constraint Processing

Time
Processing

Time
13 4 2 / 1 0.01s 0.03s
26 9 2 / 1 0.03s 1.21s
20 30 2 / 1 14m22.46s 2.705s
41 7 2 / 1 2m12.53s 1.249s
64 1 2 / 1 4.08s 0.753s
32 45 2 / 1 --* 4.49s
23 75 2 / 1 -- 2.333s

13 2 / 1 0.01s 0.438s
12

28 4 / 2 2m15.33s 0.777s
13 2 / 1 4.73s 1.786s
46 4 / 2 -- 2.102s 44
108 6 / 3 -- 3.067s

P.S. *: means the solution can’t be obtained in practical time.

 42

Chapter 6

Conclusion

The proposed ISE exploration and selection algorithms can significantly reduce extra

silicon area cost with almost no performance loss. Previous researches, to achieve the

highest speed-up ratio, overlook several important microarchitectural constraints, such

as pipestage timing constraint and instruction set architecture (ISA) format. To

conform to pipestage timing constraint, an ISE exploration algorithm which evaluates

different implementation options of each operation in DFG during exploring ISE

candidates is proposed. On the other hand, we formulate ISE selection as the

multi-constrained 0/1 Knapsack problem to comply with different microarchitectural

constraints. The benefits of our approach are: (1) conform to several important

microarchitectural constraints; (2) significantly reduce extra silicon area cost; (3) both

algorithms are polynomial time solvable. Experiment results show that our design can

further reduce up to 35.28%, 15.92% and 22.41% (max., min. and avg.) of extra

silicon area, and only has maximally 1.06% performance loss.

In addition, we conclude several issues which can be addressed in future work. First,

with adjusting parameters (α, β1, β2 and β3) used in probability value, ISE exploration

algorithm and merit function, we observe that these parameters greatly affect

experimental results. Although we only use a same set of parameters for different

cases, i.e. different combination of register file read/write ports and the size of BB, in

this work, it will be an interesting if we study the dynamic adjustment for these

parameters in our approach. Second, the running time of ISE generation algorithm is

 43

one noteworthy issue. In this paper, ISE exploration algorithm only explores one ISE

candidate at each round. However, if the algorithm simultaneously explores multiple

ISE candidates at each round, the running time can significantly be reduced. Third,

[combination] raises one interesting issue “ISE combination”. Without introducing

any performance loss, if we merge several analogous ISE candidates as one or use one

hardware resource to execute identical operations in same ISE, the silicon area can be

further reduced.

 44

Reference
[1] Gang Wang, Wenrui Gong and Ryan Kastner, “Application Partitioning on

Programmable Platforms Using the Ant Colony Optimization”, to appear in the
Journal of Embedded Computing, Vol. 2, Issue 1, 2006.

[2] Mouloud Koudil, Karima Benatchba, Said Gharout, Nacer Hamani: Solving
Partitioning Problem in Codesign with Ant Colonies. IWINAC (2) 2005:
324-337.

[3] Laura Pozzi, Kubilay Atasu, and Paolo Ienne. Exact and Approximate Algorithms
for the Extension of Embedded Processor Instruction Sets. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on Volume 25,
Issue 7, Jul 2006 Page(s):1209 – 1229.

[4] Partha Biswas, Sudarshan Banerjee, Nikil Dutt, Laura Pozzi, and Paolo Ienne.
Fast automated generation of high-quality instruction set extensions for processor
customization. In Proceedings of the 3rd Workshop on Application Specific
Processors, Stockholm, September 2004.

[5] Pan Yu, Tulika Mitra: Characterizing embedded applications for instruction-set
extensible processors. DAC 2004: 723-728.

[6] Pan Yu, Tulika Mitra: Satisfying real-time constraints with custom instructions.
CODES+ISSS 2005: 166-171.

[7] Jason Cong, Yiping Fan, Guoling Han, Zhiru Zhang. Application-Specific
Instruction Generation for Configurable Processor Architectures. Twelfth
International Symposium on Field Programmable Gate Arrays, 183-189, 2004.

[8] Samik Das, P. P. Chakrabarti, Pallab Dasgupta: Instruction-Set-Extension
Exploration Using Decomposable Heuristic Search. VLSI Design 2006: 293-298.

[9] F. Sun, S. Ravi, A. Raghunathan, and N. K. Jha, "Custom-Instruction Synthesis
for Extensible-Processor Platforms," IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 23, pp. 216--228, February 2004.

[10] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An infrastructure for computer
system modeling. IEEE Computer, 35(2), 2002.

[11] M. R. Guthaus et al. Mibench: A free, commercially representative embedded
benchmark suite. In IEEE Annual Workshop on Workload Characterization, 2001.

[12] A Lindstrom and M. Nordseth. (2004, Mars). Arithmetic Database. [Online].
Available: http://www.ce.chalmers.se/arithdb/

[13] Edson Borin, Felipe Klein, Nahri Moreano, Rodolfo Azevedo, and Guido Araujo.
“Fast Instruction Set Customization”, 2nd Workshop on Embedded Systems for

 45

http://www.ce.chalmers.se/arithdb/

Real-Time Multimedia (ESTIMedia'04). Stockholm - Sweden, September 2004.
[14] Nathan T. Clark, Hongtao Zhong, Scott A. Mahlke, "Automated Custom

Instruction Generation for Domain-Specific Processor Acceleration," IEEE
Transactions on Computers, vol. 54, no. 10, pp. 1258-1270, Oct., 2005.

[15] Armita Peymandoust, Laura Pozzi, Paolo Ienne, and Giovanni De Micheli.
Automatic Instruction-Set Extension and Utilization for Embedded Processors. In
Proceedings of the 14th International Conference on Application-specific
Systems, Architectures and Processors, The Hague, The Netherlands, June 2003.

[16] A. Lindström, M. Nordseth and L. Bengtsson. "0.13 µm CMOS Synthesis of
Common Arithmetic Units", Technical Report 03-11, Department of Computer
Engineering, Chalmers University of Technology, June 2003.

[17] Laura Pozzi, Paolo Ienne: Exploiting pipelining to relax register-file port
constraints of instruction-set extensions. CASES 2005: 2-10.

[18] Maria Luisa Lopez-Vallejo, Jesus Grajal, Juan Carlos Lopez, "Constraint-Driven
System Partitioning," date, p. 411, Design, Automation and Test in Europe
(DATE '00), 2000.

 46

Appendix A

A.1. Simulation results of ACO(Input/Output, T)

Execution time reduction of ACO(2/1, T)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xe

cu
tio

n
tim

e
re

du
ct

io
n

1 2 4 8 16 32

Figure A.1.1: Execution time reduction of ACO(2/1, T)

Execution time reduction of ACO(4/2, T)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xe

cu
tio

n
tim

e
re

du
ct

io
n

1 2 4 8 16 32

 47

Figure A.1.2: Execution time reduction of ACO(4/2, T)

Execution time reduction of ACO(6/3, T)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xe

cu
tio

n
tim

e
re

du
ct

io
n

1 2 4 8 16 32

Figure A.1.3: Execution time reduction of ACO(6/3, T)

Execution time reduction of ACO(8/4, T)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xe

cu
tio

n
tim

e
re

du
ct

io
n

1 2 4 8 16 32

Figure A.1.4: Execution time reduction of ACO(8/4, T)

 48

Extra area cost of ACO(2/1, T)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xt

ra
 a

re
a

co
st

 (µ
m

2)
1 2 4 8 16 32

Figure A.1.5: Extra area cost of ACO(2/1, T)

Extra area cost of ACO(4/2, T)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xt

ra
 a

re
a

co
st

 (µ
m

2)

1 2 4 8 16 32

Figure A.1.6: Extra area cost of ACO(4/2, T)

 49

Extra area cost of ACO(6/3, T)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xt

ra
 a

re
a

co
st

 (µ
m

2)
1 2 4 8 16 32

Figure A.1.7: Extra area cost of ACO(6/3, T)

Extra area cost of ACO(8/4, T)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xt

ra
 a

re
a

co
st

 (µ
m

2)

1 2 4 8 16 32

Figure A.1.8: Extra area cost of ACO(8/4, T)

 50

A.2. Simulation results of ACO(Input/Output)

Execution time reduction of ACO(2/1)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xe

cu
tio

n
tim

e
re

du
ct

io
n

1 2 4 8 16 32

Figure A.2.1: Execution time reduction of ACO(2/1)

Execution time reduction of ACO(4/2)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xe

cu
tio

n
tim

e
re

du
ct

io
n

1 2 4 8 16 32

Figure A.2.2: Execution time reduction of ACO(4/2)

 51

Execution time reduction of ACO(6/3)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%
ba

si
cm

at
h_

O
0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xe

cu
tio

n
tim

e
re

du
ct

io
n

1 2 4 8 16 32

Figure A.2.3: Execution time reduction of ACO(6/3)

Execution time reduction of ACO(8/4)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xe

cu
tio

n
tim

e
re

du
ct

io
n

1 2 4 8 16 32

Figure A.2.4: Execution time reduction of ACO(8/4)

 52

Extra area cost of ACO(2/1)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xt

ra
 a

re
a

co
st

 (µ
m

2)
1 2 4 8 16 32

Figure A.2.5: Extra area cost of ACO(2/1)

Extra area cost of ACO(4/2)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xt

ra
 a

re
a

co
st

 (µ
m

2)

1 2 4 8 16 32

Figure A.2.6: Extra area cost of ACO(4/2)

 53

Extra area cost of ACO(6/3)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xt

ra
 a

re
a

co
st

 (µ
m

2)
1 2 4 8 16 32

Figure A.2.7: Extra area cost of ACO(6/3)

Extra area cost of ACO(8/4)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xt

ra
 a

re
a

co
st

 (µ
m

2)

1 2 4 8 16 32

Figure A.2.8: Extra area cost of ACO(8/4)

 54

A.3. Simulation results of Genetic(Input/Output, T)

The genetic algorithm presented here is referenced by [3] without consideration of the

pipestage timing, i.e. no multiple hardware implementation options. It is taken as a

reference material for execution time reduction.

Execution time reduction of Genetic(2/1)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xe

cu
tio

n
tim

e
re

du
ct

io
n

1 2 4 8 16 32

Figure A.3.1: Execution time reduction of Genetic(2/1)

 55

Execution time reduction of Genetic(4/2)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%
ba

si
cm

at
h_

O
0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xe

cu
tio

n
tim

e
re

du
ct

io
n

1 2 4 8 16 32

Figure A.3.2: Execution time reduction of Genetic(4/2)

Execution time reduction of Genetic(6/3)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xe

cu
tio

n
tim

e
re

du
ct

io
n

1 2 4 8 16 32

Figure A.3.3: Execution time reduction of Genetic(6/3)

 56

Execution time reduction of Genetic(8/4)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%
ba

si
cm

at
h_

O
0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xe

cu
tio

n
tim

e
re

du
ct

io
n

1 2 4 8 16 32

Figure A.3.4: Execution time reduction of Genetic(8/4)

Extra area cost of Genetic(2/1)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xt

ra
 a

re
a

co
st

 (µ
m

2)

1 2 4 8 16 32

Figure A.3.5: Extra area cost of Genetic(2/1)

 57

Extra area cost of Genetic(4/2)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xt

ra
 a

re
a

co
st

 (µ
m

2)
1 2 4 8 16 32

Figure A.3.6: Extra area cost of Genetic(4/2)

Extra area cost of Genetic(6/3)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xt

ra
 a

re
a

co
st

 (µ
m

2)

1 2 4 8 16 32

Figure A.3.7: Extra area cost of Genetic(6/3)

 58

Extra area cost of Genetic(8/4)

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

ba
si

cm
at

h_
O

0

ba
si

cm
at

h_
O

3

bi
tc

ou
nt

_O
0

bi
tc

ou
nt

_O
3

qs
or

t_
O

0

qs
or

t_
O

3

su
sa

n_
O

0

su
sa

n_
O

3

cj
pe

g_
O

0

cj
pe

g_
O

3

dj
pe

g_
O

0

dj
pe

g_
O

3

la
m

e_
O

0

la
m

e_
O

3

tif
f2

bw
_O

0

tif
f2

bw
_O

3

tif
f2

rg
ba

_O
0

tif
f2

rg
ba

_O
3

tif
fd

ith
er

_O
0

tif
fd

ith
er

_O
3

tif
fm

ed
ia

n_
O

0

tif
fm

ed
ia

n_
O

3

di
jk

st
ra

_O
0

di
jk

st
ra

_O
3

pa
tri

ci
a_

O
0

pa
tri

ci
a_

O
3

is
pe

ll_
O

0

is
pe

ll_
O

3

st
rin

gs
ea

rc
h_

O
0

st
rin

gs
ea

rc
h_

O
3

bl
ow

fis
h_

O
0

bl
ow

fis
h_

O
3

rij
nd

ae
l_

O
0

rij
nd

ae
l_

O
3

sh
a_

O
0

sh
a_

O
3

C
R

C
32

_O
0

C
R

C
32

_O
3

FF
T_

O
0

FF
T_

O
3

ad
pc

m
_O

0

ad
pc

m
_O

3

gs
m

_O
0

gs
m

_O
3

av
er

ag
e

E
xt

ra
 a

re
a

co
st

 (µ
m

2)
1 2 4 8 16 32

Figure A.3.8: Extra area cost of Genetic(8/4)

 59

	Thesis Paper.pdf
	Thesis Paper.pdf
	考 量 管 線 時 間 之 延 伸 指 令 集
	摘要
	Instruction Set Extension with Consideration of Pipestage Ti
	Abstract
	誌謝
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1�Introduction
	Instruction Set Extension
	Physical Constraints
	ISE Design Flow
	Motivation
	Objective

	Chapter 2�Relative Works and Background
	Relative Works
	Background ─ Ant Colony Optimization (ACO) Algorithm

	Chapter 3�ISE Exploration
	Implementation option
	Formulation of ISE Exploration
	ISE Exploration Algorithm
	Optimal Solution

	Chapter 4�ISE Selection
	Chapter 5�Experimental Results
	Experimental setup
	Experimental results
	Optimal Solution

	Chapter 6�Conclusion
	Reference
	Appendix A
	Simulation results of ACO(Input/Output, T)
	Simulation results of ACO(Input/Output)
	Simulation results of Genetic(Input/Output, T)

