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Abstract

Instruction set extension (ISE)-isian effective way-to meet the growing efficiency
demands for both circuit and speed in ‘many applications. ISE generation flow usually
consists of ISE exploration and ISE selection phases. In ISE exploration, in order to
achieve the highest speed-up ratio,”most-works deploy the fastest implementation
option for each operation in application specific functional unit (ASFU) which
executes instruction in ISEs. Nevertheless, the fastest implementation option may be
not the best choice. Two considerations are important in selecting an implementation
option for each operation in ASFU: (1) the execution time of an ASFU should meet
pipestage timing constraint, i.e. fit to an integral number of original pipeline cycles;
and (2) under (1), the ASFU should use the least silicon area. To conform to these
considerations, we propose an ISE exploration algorithm which not only explores ISE
candidates but also their implementation options to minimize the execution time
meanwhile use less silicon area. Results with MiBench indicate that the approach
achieves up to 35.28%, 15.92% and 22.41% (max., min. and avg.) of further reduction
in extra silicon area usage and only has maximally 1.06% performance loss compared
with the approach without the consideration of pipestage timing constraint for ASFU.
Furthermore, simulation results also show that our approach is very close to optimal

one, but takes much less computing time.
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Chapter 1

Introduction

1.1 Instruction Set Extension

Recently, more and more applications are dramatically driving up the performance
demands on embedded system design. Instruction set extension (ISE) is an effective
way to meet the growing efficiency demands for both circuit and speed in embedded
applications. Since several instruction patterns are executed frequently in most
applications, grouping these instruction patterns into the ISEs is an effective way of
improving the performance. ISEs‘are realized by using application specific functional

units (ASFU) within the execution'stage of pipeline. -

Register File

X
] [

..... ASFU

Main Memory

Figure 1.1.1: The diagram of CPU core and ASFU

1.2 Physical Constraints

Instruction Set Architecture (ISA) Format
ISA format usually imposes two kinds of constraints on ISEs. The first is the
input/output register number of ISEs. This is due to instruction format limitation or

number of register file read/write ports. The other constraint is the number of ISEs.



Generally speaking, the number of ISEs can’t exceed number of unused opcode.

Total Silicon Area

The total silicon area restricts extra area used by ASUF.

Pipestage Timing

Because of the pipelining, the execution time of the ISE is the nearest integer cycle
which is bigger than the delay of the ISE. Sometimes, there are several different
implementation options for an operation, each has different delay and extra area cost.
Figure 1.2.1 is an example. An ISE (delay = 0.6 cycle, area = 5000um?) wastes 0.4
cycle in the execution stage. If slower implementation option of operation in this ISE
is used instead, delay and area is 0,8 eycle and 3500um” respectively. It still need one
cycle for execution, but less extra area cost is.used. Above all, pipestage timing

should be considered.

[ F T w [ exB ™Mem [ we ]

N

06 cycle wasted

(5000pm2)

IF D | ex N wem WB

L IN

0.8 cycle  less wasted

(3500um?2)

Figure 1.2.1: An example of pipestage timing

1.3 ISE Design Flow

The ISE design flow consists of application(s) profiling, basic block (BB) selection

and ISE generation, shown in figure 1.3.1. After profiling, BB is selected as the input
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of ISE exploration according to its execution time. ISE exploration finds frequently
executed instruction patterns as ISE candidates which must conform to predefined
constraints, such as input/output ports, ISA format, timing and instruction types.
Under certain constraints, such as silicon area and ISA format, ISE selection selects

ISEs which has the highest performance improvement among ISE candidates.

Application(s)

Profiling

l

BB Selection

BBs ISE | Architecture
Exploration Specification

ISE candidates

ISE Selection

|

ISE(s)

Figure 1,3.1¢1ISE design flow

1.4 Motivation

Because of pipelining, if different implementation options of operations of ISE can be
explored, then the wasted execution time may be decreased. Thus, extra area cost can

be lower.

1.5 Objective

Considering pipestage timing in ISE exploration to reduce extra area cost of ISEs.
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Chapter 2

Relative Works and Background

2.1 Relative Works

Instruction Set Extension (ISE) generation in the most works of [3, 4, 5, 6, 7, 9 and 13]

consists of ISE exploration and ISE selection.

ISE exploration

Authors in [3] propose an algorithm, called exact algorithm, to explore all possible
ISE candidates such that it can’be seen las-an optimal solution. The exact algorithm
maps the ISE search space, such as a basic block, to' a binary tree and then discards
some portion of the tree which“wiolates predefined constraints. Nevertheless, this
algorithm is highly computing-intensive so that it hardly processes a larger search
space. For example, it must spend about one hour to process a search space consisting
of only 30 instructions. To reduce the computing complexity, [3, 4] propose heuristic
algorithms which are derived from the genetic algorithm and K-L algorithm

respectively.

The work in [5] examines the impact of different constraints, such ISA format,
hardware area and control flow, for ISE generation. These constraints would limit the
performance improvement of the ISEs. ISA format limits the number of read and
write ports to the register file. The limitation of control flow is whether the search

space can cross basic block boundaries or not. In order to satisfy real-time constraints,

12



the search spaces are identified according to whether they locate on the worst-case
execution path instead of execution time in [6]. This is because that the most
frequently executed basic block or instruction may not contribute to the worst-case
execution path. The granularity of each vertex within search space can be varied from
one instruction to multiple subroutine calls in [13]. They also claim that one search

space can consist of multiple basic blocks in their proposed algorithm.

From a different view point, [15] characterizes each basic block as a polynomial
representation. At first, multiple-input single-output (MISO) algorithm extracts
symbolic algebraic patterns from the search spaces and represents these patterns as
polynomials on behalf of ISE candidates. Then these ISE candidates are mapped to
the polynomial representations cof program ‘segments by symbolic algebraic

manipulations.

ISE selection

The work in [7] transforms ISE selection as an area minimization problem. There
have been many relative researches of the area minimization problem in the logic
synthesis domain. [8] proposes another algorithm that uses divide-and-conquer search
technique to solve ISE selection. To synchronize pipeline between CPU core and
ASFU, [9] first adjusts the timing of CPU core to same with ASFU if the execution
time of ASFU is larger than CPU core. Then, different number of ASFU’s pipeline
stage, from one, two, three ... until no performance improvement, are evaluated. At
meanwhile, timing of CPU core is also adjusted with ASFU. Finally, the number of

ASFU’s pipestage with best performance improvement is then chosen.

In addition, to reduce hardware cost, [14] adds new stages, called ISE combination,

13



between ISE exploration and ISE selection stages, to merge multiple similar ISE

candidates together.

2.2 Background — Ant Colony Optimization (ACO)

Algorithm

Why Ant Colony Optimization Algorithm ?

In order to indicate which part of a DFG is going to be ISE; the implementation of
nodes should be decided. If we only consider the situation that there is only single
hardware implementation option of a node, then there will be 2" possible ISE patterns
(legal or illegal) that N is the DFG size. When N is 100 (it’s a usually case), the
combinations is emphatic 2'° | Obviously, this is a NP-hard problem. For the sake of
an efficiently solution, the way of evolutionary computation which is operative to

many existing NP-hard problems is considered.

There are many computation models belong to evolutionary computation, like genetic,
simulated annealing, etc. One of them named “Ant Colony Optimization” is thought
to be the easiest one to map to the problem. The selection among the models is
processed by the difficulty of the mapping to the problem. An intuitive and easier

mapping usually brings a simple and effective design of the algorithm.

One of the concepts of ACO is the selection a path among many choices (one or two
or more) to get the shortest path. I think the selection among many different
implementation options of each node is just like that. This is the main reason that

ACO outperforms other models. The only problem is how do the nodes

14



“communicate” to each other. The merit computation in the design takes it into

account.

Basic Idea of Ant Colony Optimization Algorithm

Ant Colony Optimization algorithm is inspired by the behavior of ants in finding
paths from the colony to food and has been extensively used to solve many
optimization problems. Initially, ants wander randomly and lay down pheromone on
the paths have been passed through. The density of the pheromone determines the
probability of which path the next ant will pass through. Since the pheromone
evaporates with the time, a shortest path gets marched over faster and thus has the
higher density of pheromone. After a period of time, i.e. several iterations, more and
more ants choose the shortest path such that the'density of pheromone on this path
grows increasingly. Finally, each.ant almost choeses the shortest path and the

pheromones of other paths evaporateito nearly-zero.

Figure 2.2.1 is an example. Suppose 50 ants are in the ant colony. Now they are going
to find food. There are two paths to get food. One is twice longer than the other. Att=
1, there is no pheromone on both paths. The ants choose paths with equal probability.
Suppose 25 ants choose one path, and 25 ants choose another. One ant leaves one unit
of pheromone on the path. But the pheromone evaporates 5 units after t = 1. So the
paths ant passed has 25 — 5 = 20 pheromone. At t = 2, ants start again. After t =2, we
can see the pheromone on each path segment. Next time, the right hand side path will

be chosen by ants with higher probability than the left hand side path.
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Ant Colony (50 ants)

10

Food
Before Start (t=0)

Ant Colony

A 25ants
25 ants
Food

Go (t=2)

D = Distance, P = Pheromone

Ant Colony Ant Colony
25ants .2\ 5, 25 ants P=25-20
P=25->20
)
25 ants
Food Food
Go (t=1) Evaporation (t=1)
Ant Colony Ant Colony

P=20—15 25 ants
P=45->40
P=45—40
P=25-20 25 ants
Food Food
Evaporation (t=2) After (t=2)

Figure 2.2.1: An example of ant behavior
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Chapter 3

ISE Exploration

In this paper, the purpose of ISE exploration is to find frequently executed instruction
patterns as ISE candidates and evaluates all implementation options of each operation
in ISE candidates to minimize the execution time with less silicon area. The input and
output of ISE exploration algorithm are BBs and ISE candidates as well as their
implementation option, respectively. Implementation option(s) of an operation
represents its implementation method(s), and can be roughly divided into two

categories, hardware and software.

The flow of ISE exploration is briefly described as:follows: each input BB is first
transformed to data flow graphs(DFG), and an‘implementation option (IO) table
which represents all implementation options for an operation is appended to each
operation in DFG. In this extended DFG, ISE exploration algorithm is repeatedly
executed until no ISE candidate can be found. Note that ISE exploration algorithm
only explores one ISE candidate at each round. A round usually consists of multiple
iterations. Initially, ISE exploration algorithm chooses one implementation option in
each operation according to a probability value (p). The probability value (p) is a
function of pheromone and merit values. The meaning of pheromone is the same with
the pheromone in the ACO algorithm, i.e. how many times an implementation option
is chosen in previous iterations. The merit value represents the benefit of one
implementation option being chosen. After making a choice, the pheromone value is

updated. And then, the algorithm evaluates implementation option of each operation
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in DFG, i.e. calculates their merit value, according to which implementation option is
chosen in its neighboring ones at previous iteration. Above process are iteratively
performed until the probability values (p) of all operations in DFG have exceeded a

predefined threshold value, P_END.

3.1 Implementation option

According to profiling results, a BB with longer execution time is transformed to
DFG. A DFG is represented by a directed acyclic graph G(V,E) where V is a set of
vertices and E is a set of directed edges. Each vertex vE V represents an assembly
instruction, called “operation” hereafter in BB. Each edge (1,v) €E from operation u
to operation v indicates that the exeetition of operation v requires the data produced

by operation u.

Each operation usually has multiple implementation options which can be divided
into two categories, hardware and software. Hardware implementation option means
this operation is included in an ISE and implemented in extra hardware, i.e. ASFU.
Due to different speed and area requirements, the operation usually has at least one
hardware implementation option. On the other hand, software implementation option
means this operation is executed in CPU core, and its execution time depends on the

execution cycle count of each operation defined in CPU specification.

To represent all implementation options in a node, we add a table, called
implementation option (IO) table, to each operation. Each entry in the IO table
consists of one implementation option of the operation and its delay and area. Delay

and area represent the execution cycle and the extra silicon area cost of this

18



implementation option, respectively. Obviously, using software implementation
option for an operation requires one execution cycle at least but no extra silicon cost
is introduced. On the other hand, using hardware implementation option can reduce
execution cycle but consumes extra silicon area. After adding IO table to G, a new
graph G is generated. Figure 3.1.1 shows an example of G'. This example consists
of two operations, are A and B. In this example, we assume the delay of software

implementation option as one cycle.

Implementation options Delay Area
Software 1 0
Hardware - 1 0.4 900

Hardware - 2 0.2 2000

Implementation options Delay Area
<:> Software 1 0
Hardware 0.5 600

Figure 3.1.1:An example of G

3.2 Formulation of ISE Exploration

ISE exploration explores ISE candidates in G* and evaluates all implementation
options of each operation in ISE candidates. An ISE candidate in G is a subgraph S

C G". The proposed ISE exploration can be formulated as follows:

ISE exploration: Given a graph G', find SCG" and evaluate all implementation
options of vertex vES to minimize the execution cycle count with less silicon area
under the following constraints:

1. IN(S) < Nin,

2. OUT(S) < Nout,

19



3. §'is convex,

4. Load and store operations ¢ S.

IN(S) (OUT(S)) represents the number of input (output) values used (produced) by S;.
The user-defined values Nin and Nout indicate the register file read and write ports
limitations, respectively. The convex constraint is that the ISE’s output can not
connect to its input via other operations not grouped in ISE. In other words, if there
exists no path from a operation u<S to another operation v&S which involves a
operation w ¢ S, then S is convex. To conform to the limitation of RISC architecture
and to degrade the complexity of the algorithm, load and store operations are

prohibited from being grouped into ISE.

In fact, if the limitation of EX and MEM stage:in usually pipeline can be eliminated,
the execution and memory access can take place, with non-certain sequence, then load
and store operations are possibly grouped into ISE. And it is reasonably to enhance

the benefit of ISE

3.3 ISE Exploration Algorithm

The ISE exploration algorithm is driven from ACO algorithm. Conceptually, we can
imagine that one entry in IO table, i.e. one implementation option, represents one or
part of path from colony to food in ACO algorithm. Exploring ISE candidate with
evaluating different implementation options is just like an ant finding the shortest

path from colony to food.
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Similar with ACO algorithm, which implementation option would be chosen depends
on its probability value (p). The probability value (p) of each implementation option
in an operation represents its probability of being chosen at each iteration of ISE
exploration algorithm. On the other hand, choosing implementation option according
to the probability value (p) can prevent local optimal solutions. The probability value
(px,) of j-th implementation option in operation x is a function of the pheromone and
the merit values, as shown in equation (1). The meaning of the pheromone value is
identical with the pheromone in the ACO algorithm. It reveals how many times an
implementation option is chosen in previous iterations. Here, we denote the
pheromone value of j-th implementation option of operation x by pheromone;; in
which pheromone, o is designated as the pheromone value of software implementation
option. Just like the pheromone, ;the pheromone'.value must be updated after each
iteration. The merit value is defined.as the benefit of one implementation option being
chosen, and it is calculated by-the metit-function which will be described in detail
later. The merit value of j-th implementation option of operation x is denoted by
merit,; in which merit, is designated as the merit value of software implementation
option. The probability of j-th implementation option of operation x being chosen (p. )

is computed by:

_ o~ pheromone, ; +(1—a)-merit, 0<i<iand 0<aq<l .
P =% ,0<j<kand 0<a < 3.1

Z(a - pheromone, ; +(1-a)-merit, ;)

Jj=0

where k is the number of hardware implementation options in operation x and « is

used to determine the relative influence of pheromone and merit, and
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k
>.p., =1 (3.2)
Jj=0

Figure 3.3.1 shows the proposed ISE exploration algorithm. Here, we assume that
there are m (m > 0) operations in a DFG and each operation has n (n > 0)
implementation options. Initially, i.e. in step 1, the algorithm sets initial values for the
pheromone and merit values of each implementation option of all operations. Note
that the initial merit value of hardware and software implementation options is
different. This is because we wish that the algorithm has higher has more opportunity
to choose hardware implementation option at the beginning of execution. In step 2,
the algorithm checks operation x (x=1 to m) whether it has hardware implementation
option. If yes, the algorithm chooses, one _among all implementation options in
operation x according to their probability values'(p.); if no, it chooses software

implementation option.

In step 3, ISE exploration algorithm ‘updates the pheromone value of each
implementation option j in operation x (x=1 to m) according to whether the
implementation option j is chosen or not. The pheromone value of chosen
implementation option is increased with p, a positive constant value, and others are
decreased with p. The algorithm in step 4 calculates the merit value of each
implementation options in operation x. Same as in step 2, the algorithm also first
checks operation x (x=1 to m) whether it has hardware implementation option. If yes,
the algorithm executes Hardware Grouping function that determines whether
operation x can be grouped with its neighboring ones as a virtual ISE candidate, if it
can, Hardware-Grouping function uses this virtual ISE candidate to calculate the

execution time and silicon area of each hardware implementation option in operation
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x. We will describe Hardware-Grouping function in detail later. And then, the merit
value (merit.;) of implementation option j (j=1 to n) in operation x is generated by
using merit function. Finally, ISE exploration algorithm checks the end condition in
step 5. If the end condition is not satisfied, ISE exploration algorithm returns to step 2

and enters the next iteration; else, it terminates.

1.  (Initialization)
For implementation option j (=0 to n) of operation x (x=1 to m) in DFG
pheromone, ;= 0;
If (j=0)
merit, o = initial value of software implementation option;
Else
merity; = initial value of hardware implementation option;
2. (Calculating probability value (p) and choosing implementation option)
For operation x (x=1 to m)
If (x has hardware implementation option)
For implementation option j (=0 to ) in operation x
Calculate p, j;
Choose one implementation option according to its probability
value (p);
Else
Choose software implementation option;
3. (Pheromone update)
For implementation option j (=0 to n) of operation x (x=1 to m) in DFG
If the implementation option is selected
trail, ; =trail, ; + p;

Else
trail, , =trail ;- p;
4. (Calculating merit)
For operation x (x=1 to m)
If (x has hardware implementation option)
For implementation option j (j=1 to n) in operation x
Execute Hardware Grouping;
Calculate merit, j;
5. (Terminating condition)
If not (end condition) goto step 2;

Figure 3.3.1: ISE Exploration Algorithm

The end condition is that for all operations in DFG, the probability value (p) of one of

implementation options exceeds P END which is a predefined threshold value and

23



very closed to 100%. A larger P END have greater opportunity to obtain better result,
but it needs longer convergence time, i.e. takes more computing time. An
implementation option with the probability value (p) over P_END is called taken
implementation option. A single ISE candidate is a group of connected operations in

the DFG which all have taken hardware implementation option.

Hardware-Grouping

If the operation x has hardware implementation option, a function, called
Hardware-Grouping, must be executed before computing the merit value of each
hardware implementation option. Hardware-Grouping checks whether the operation x
can be grouped with its neighboring ones as a virtual ISE candidate. It recursively
groups operation x with neighboring “ones which have chosen hardware
implementation option in previous iteration as a virtual ISE candidate, i.e. a virtual
subgraph vS,. Here, we denote the result-of Hardware-Grouping of operation x using
j-th implementation option by WSg;. Note that vS., is meaningless due to 0-th
implementation option is software one. Using the vS;, Hardware-Grouping evaluates
the execution time and silicon area of vS ;. Note that the execution time of vS,; is the

critical path time in vS;; and the silicon area of vS,; is the sum of silicon area of vSy .

We use figure 3.3.2 to explain how the Hardware-Grouping operates. The table in
figure 3.3.2 represents delay and area of each implementation option for all operations
and specifies the chosen implementation option in previous iteration. In both top and
bottom left of figure 3.3.2, nodes in dotted line are treated as a virtual ISE candidate.
For operation #2, Hardware-Grouping groups operation #2 and #3 as a virtual ISE
candidate, i.e. vS>, as shown in the top left of figure 3.3.2. Since only one hardware

implementation option exists in operation #2, vS; has one evaluating result in
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execution time and silicon area (execution time = 0.8, silicon area = 1200). The
bottom left of figure 3.3.2 is another example in which Hardware-Grouping groups
operation #5 and its neighboring ones, are #2, #3, #6 and #7, as a virtual ISE
candidate, i.e. vSs. Since operation #5 has two hardware implementation options, there
are two evaluating results in vSs, one is vSs; (execution time = 1.7, silicon area =

2400) and another is vSs (execution time = 1.4, silicon area = 3000).

Operation Chou}e mn Implementation
previous ] Delay Area
ID iteration Option
1 o software 1 0
software 1 0
2
[ J hardware 0.4 600
software 1 0
3
[ J hardware 0.4 600
4 o software 1 0
o software 1 0
5 hardware 1 0.6 400
hardware 2 0.3 1000
software 1 0
6
[ J hardware 0.3 500
software 1 0
7
[ J hardware 0.2 300

Hardware grouping of operation #5

Figure 3.3.2: Examples of Hardware-Grouping

Merit Function

The purpose of merit function is to calculate the benefit, i.e. merit value, of
implementation option. Briefly, the merit function consists of three cases: size

checking (case 1), constraints violation determination (case 2) and benefit calculating
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(case 3). Figure 3.3.3 depicts the algorithm of merit function. Initially, in the case 1,
the algorithm checks whether size(vSy), is denoted as the number of operation in vS, ,
is equal to one. If yes, since there is only one operation, i.e. operation x, in vS,, it is
impossible to improve performance, so that the algorithm adjusts the merit value to
decrease the chance of choosing hardware implementation option, this comparatively
rises the choosing probability of software implementation option. And then, the
calculation of merit function is terminated. Note that in this paper, we assume each
operation is one-cycle delay. If multiple-cycle delay is assumed, case 1 may be

tailored to fit the situation. If no, goto case 2.

The case 2 checks whether vS, violates input/output port and convex constraints. If
yes, the merit value of each hardware implementation option is multiplied by a
constant 5, > or B3 (0 <f;< 120 <> <1 and 0 < fz < 1). This relatively reduces the
opportunity of selection of software implementation option just the same as in case 1.
And then, the calculation of merit funetion is terminated. The reason why we only
divide the merit value of each hardware implementation option in operation x by a
constant rather than exclude the possibility of operation x becoming an ISE candidate
is that operation x will have an opportunity to be grouped as an ISE candidate in the

next iteration. If no, enter case 3.

In the case 3, the merit value of j-th implementation option (merit.;, j > 0) in the
operation x is calculated according to (1) how much speed up can be achieved by vSi j;
or (2) the extra area used by vS, ;. The execution time, cycle reduction and silicon area
of the virtual subgraph vS,; is denoted by ET(vS, ), speedup.; and area. j, respectively.
The basic idea is (1) if vS,; can improvement the performance, j-th implementation

option should have larger merit value than software implementation; (2) if a hardware
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implementation option in the operation x has higher cycle reduction, it should have
larger merit value than lower ones; and (3) if several hardware implementation
options in the operation x have the highest cycle reduction, the one uses less extra
silicon area should have higher merit value. Based on above, the merit value of j-th
implementation option is first multiplied by speedupysx which the maximal speedup
can be achieved in operation x. Than, if the speedup of j-th implementation option is
equal to speedupyix, the merit value of j-th implementation option is scaled by the
silicon area used for j-th implementation option. Areayx is the largest silicon area
used in operation x. Otherwise, the merit of j-th implementation option is scaled by

the speedup of this hardware implementation option.

Case 1. (The size of vS; is equal to 1)
If (size(vSy) = 1)
For each hardware implementation option (j=1 to k) in operation x
merit, ; = merit, ; x f3,;
Case 2. (Violate constraints and the size of vS,; is larger than 1)
If (vS, violates in/out constraint)
For each hardware implementation option (j=1 to k) in operation x
merit, ; = merit, ; x [3,;
If (vS, violates convex constraint)
For each hardware implementation option (j=1 to k) in operation x
merit, ; = merit, ; X f3;;
Case 3. (Conform with constraints and the size of vSy; is larger than 1)
If (vS\ observes in/out and convex constraint)
For each hardware implementation option (j=1 to k) in operation x
merit, . = (1+ speedup,,,, ) x merit_,

If (speedup, ; = speedupyiix)

merit,_; = merit, ;% %;
x.J
Else
_ merit, ;
merit, ; = :

(I+ speedup,,,, ) — speedup, ’

Figure 3.3.3: Algorithm of merit function
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3.4 Optimal Solution

The optimal solution can be identified as follows. At first, step 1, all of the possible
patterns in the DFG are enumerated and tested to the input/output and convex
constraints, and those passed the test are listed as legal ISEs. In step 2, exact
implementation option evaluation of each ISE in the list is calculated. Suppose the
DFG size is n and there are k legal ISEs are listed and the maximum hardware
implementation option number is ¢, then the time complexity of step 1 and step 2 are
0(2"):O(n) and kO(c") O(n) respectively. Finally in step 3, all of the combinations of
legal ISEs are enumerated, and then we can get the best cycle reduction number and

corresponding minimum area cost of the DFG. The complexity of this step is O(2).
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Chapter 4

ISE Selection

Due to the constraints of silicon area and original ISA format, the subset of ISE
candidates which has the best performance improvement under the constraints should
be selected. This problem is formulated as the multi-constrained 0/1 Knapsack

problem as follows:

ISE selection: Suppose there are n ISE candidates, the area of the ith ISE is a; and the
performance improvement of the ith ISE‘is wy, the area of selected ISEs can’t exceed
the total area A4, the limitation of'the number: of extended instructions is £, and then

get the maximum of

f(xl,...,xn):iwixl. and x, e{0,1} > 1<i<n 4.1)

i=1

where x; is 1 if the ith ISE is selected, and vice versa, and subject to

D x,<E’ iaixigA and x, {01} > 1<i<n 4.2)

i=1 i=l

Noticeable, the constraints on ISE selection in this paper are silicon area and original
ISA format. However, if we add new constraints on ISE selection, only the equation

(4.2) needs to be changed as follows:
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C,: >t x,<b, and x, e{0]} > 1<i<n (4.3)
i=l

where C; represents which constraint is applied, ct;; is resource consumption values of

ith ISE and by is the given resource limits.
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Chapter 5

Experimental Results

5.1 Experimental setup

We use Portable Instruction Set Architecture (PISA) [10] which is a MIPS-like ISA
and MiBench [11] with different register input/output ports constraint to evaluate our
proposed algorithm. Each benchmark is compiled by gcc 2.7.2.3 for PISA with -O0
and -O3 optimizations. Due to the limitation in library and compiler, 6 benchmarks,
such as mad, typeset, ghostscript, «#synth, sphinx and pgp, can not be compiled

successfully. For both algorithms, we evaluate. 6 cases, includes 2/1, 4/2 and 6/3

register file read/write ports as well as using -O0 and 203 optimization.

Table 5.1.1: Hardware implementation option setting

Operation | Delay (ns) | Area (um”) | Operation | Delay (ns) | Area (um®)
add 4.04 926.33 and 1.58 21431
addi and1
addu or

addiu 2.12 2075.35 ori 1.85 214.21
sub 4.04 926.33 XOr 4.17 375.1
subu 2.14 2049.41 xori 2.01 565.14
mult 5.77 84428 1

multu 5.65 79778.1 SSH
nor 2.00 250.00 SﬂV

slt i 3.00 400.00
slti 2.64 1144 Stiv

st s
sltiu 1.01 2636 v

In this simulation, we assume that: (1) the CPU core is synthesized in 0.13 pum CMOS

technology and executes in 100MHz; (2) the CPU core area is 1.5 mm?; (3) the
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read/write ports of register file are 2/1, 4/2 and 6/3, respectively; and (4) the execution
time of all instructions in PISA is one cycle, i.e. 10 (ns). Table 5.1.1 shows the
hardware implementation option settings (delay and area) of instructions in PISA.
Note that we only list instructions which are capable of being grouped into ISE in
table 5.1.1. These settings reference from either [12] or synthesized by Synopsys
Design Compiler with standard cells. Since increasing the read/write ports of register
file needs extra silicon area, we also synthesize different read/write ports of register
file. The silicon area of CPU core with 4/2 and 6/3 (register file read/write ports) are

1574138.80um” and 1631359.54um?, respectively.

Because of the heuristic nature of the ISE exploration algorithm, the exploration is
repeated 5 times within each basic;block, and the result among the 5 iterations having

minimal execution cycle count with.less extra.area.cost is selected.

To make things easy as much as possible, the parameters are usually fixed and to
adjust one of them one at a time. For the sake of clarity, one parameter is designed to
influence only one thing, although they usually effect with each other. For example,
the parameter S decides the decay speed of merit when one of the constraints is
violated. When we have a fitting magnitude of f, there are always other things
changed at the same time due to the alternation of 5. Then we adjust other parameters
one at a time just like we did to f. After many times of regulation, we can find that the
interval of the parameter at each regulation is less and less. Finally, we get a set of

suitable parameters.

The following is the parameters in this paper and their meaning.
a - The weight of merit and pheromone in p, ;. Increase a to get a solution more slowly,
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decrease a to get a solution more quickly, but usually worse one.
[+ The tendency to choose hardware implementation option in a node.
p> + The decay speed when the input/output constraint is violated.

[ - The decay speed when the convex constraint is violated.

In our experiments, we use the initial value of software implementation option of 100,
initial value of hardware implementation option of 200, P_ END of 99%. The
parameter o used in the calculation of probability value, ), f> and f; used in merit

function are 0.25, 0.9, 0.9 and 0.5, respectively.

In the simulation, the ISE selection is implemented as a greedy algorithm. ISE
number and silicon area constraints:can be easily applied within the greedy algorithm.
ISE selection algorithm first sorts ISE candidates according to their cycle count
reduction. The ISEs are then selectedisequentially aceording to this sorted list until the
number of ISEs exceeds ISE number constraint or total silicon area is over. For the
sake of clarity, the simulation result only shows the impact of the ISE number
constraint. We divide the total saving cycle count of selected ISEs by the total cycle

count of original application to get the execution time reduction in the figures.

5.2 Experimental results

Figure 5.2.1 and 5.2.2 show the average execution time reduction and average extra
silicon area cost of Mibench, respectively, under different number of ISE. In both
figure 5.2.1 and 5.2.2, each bar consists of several segments which indicate the
execution time reduction under different number of ISE, are 1, 2, 4, 8, 16 and 32,

respectively.
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In order to show the effectiveness of the consideration of pipestage timing is
remarkable. We assume the proposed algorithm doesn’t consider the effect of
pipestage timing. Therefore there is only one hardware implementation option for the
operation can be included into ISE. In here, we always take it as the fastest

implementation option.

The label on X axis in both figure 5.2.1 and 5.2.2 represents ISE exploration
algorithm with different arguments is used. The first and second symbols in
parenthesis of each label on X axis represent the number of register file read/write
ports used and which optimization scheme (-O0 or -O3) is used. (4/2, O3), for
example, means register file has 4'read ports and'2 write ports and -O3 optimization
scheme is used. The third symbol “T™ in: parenthesis represents “thinking” of

pipestage timing.

O1m20408Mm16 O32

30%

25%

20%

15%

10%

Execution Time Reduction

5%

0%

Figure 5.2.1: Execution time reduction
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Figure 5.2.2:.Extrasilicon area cost

For both algorithms, -O3 shows-better execution time reduction than -O0 under same
read/write ports constraint. The possible-teason is that -O3 usually makes program
execution faster in various ways of compiler techniques. Some of these techniques
(like loop unrolling, function inlining, etc.) remove branch instructions and increase
the size of certain critical basic blocks. The bigger the basic block size is, the larger
the search space exists and the more possibility the ISEs which have more cycle
reduction can be explored in these bigger basic blocks. Also noteworthy is that most
of execution time reduction is contributed by several ISEs. This is because the execute
time of most program takes on small fraction of code segment, i.e. the execution time
reduction is dominated by several ISEs. In most cases, 8 ISEs can achieve half or
more of execution time reduction and only consume a little fraction of the maximum
extra area cost. For example, 8 ISEs using 4/2 (register file read/write ports) register
file can save average 14.95% execution time and cost 81467.5um? silicon area, that’s

5.43% of the original core area. On the other hand, if we select 32 ISEs, the average
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execution time reduction can increase to 20.62% but extra area cost also rises to

345135.45um’, that’s 23.01% of the original core area.

There is one thing should be noticed in figure 5.2.1 that ACO (2/1, O0) seems to be
better than ACO (2/1, O3). In fact, with 1, 2 and 4 ISE number, —O3 still behaves
better than —O0, the situation reverses only with larger ISE number. This is caused by
the results of some special benchmark. For example, there are only 4 ISEs can be
found by —O3, but —O0 can find over 4 ISEs and totally get more execution time

reduction. When the ISE number is more than 4, then —O0 looks like better than —O3.

[——ACO(2/1, 00, T) <8 ACO(2/1, O3, T) —&—ACO(4/2, 00, T) = ACO(4/2, 03, T) =¥~ ACO(6/3, 00, T) =8—ACO(6/3, 03, T)]

35%
30% =R

25% \

N

o —

15%

10% r

Extra Area Saving Percentage

5% |

0%

1 2 4 8 16 32
ISE Number

Figure 5.2.3: Extra area saving percentage

Since the proposed ISE exploration algorithm explores not only ISE candidate but
also their implementation option, less extra silicon area is used in all cases. Figure
5.2.3 illustrates the extra area saving percentage for all cases and figure 5.2.4 to figure

5.2.6 shows the execution time reduction per unit area. In these figures, the
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consideration of pipestage timing obviously reduces the extra area usage.

|——ACO(2/1, 00, T) = ACO(2/1, 03, T) =~ ACO(2/1, 00) = ACO(2/1, 03)]
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3.00 |
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0.00

1 2 4 8 16 32
ISE Number

Figure 5.2.4: Execution time reduction per unit area (2/1)

|——ACO(4/2, 00, T) -=- ACO(4/2, 03, T) =~ ACO(4/2, O0) = ACO(4/2, 03)]

10.00
9.00

8.00 |

/

7.00
6.00 e

5.00
4.00 |

3.00
2.00 |
1.00

Execution Time Reduction per Unit Area

0.00
1 2 4 8 16 32

ISE Number

Figure 5.2.5: Execution time reduction per unit area (4/2)
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Figure 5.2.6: Execution time reduction per unit area (6/3)

From another perspective, undér the  same silicon area constraints, using miser
implementation option can employ more ISES in processor core. This leads to better
performance improvement. We illustrate this-‘perspective with figure 5.2.7 and 5.2.8.
In figure 5.2.7, each bar consists of ‘several segments which indicate the execution
time reduction under different silicon area constraint, are 5%, 10%, 15%, 20%, 25%
and 30% of original CPU core, respectively. Figure 5.2.8 shows ISE number can be
used in different silicon area constraint. Note that the silicon area of CPU core with
different register file read/write ports is different. In all cases, the proposed ISE
exploration algorithm has better improvement in the execution time reduction. It is
more noteworthy that the improvement of execution time reduction is not in
proportion to available silicon area. This is because most execution time reduction is
dominated by several ISEs. Table 5.2.1 shows the detailed results of figure 5.2.7 and

5.2.8.
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Figure 5.2.8: ISE Number under different silicon area constraint

Table 5.2.1: Execution time reduction under different silicon area constraint

Silicon area

. 5% 10% 15% 20% 25% 30%
constraint
Number of ISE being selected
ACO(2/1, 00, T) 13 28 50 71 102 128
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ACO(2/1,03,T) 12 27 40 55 79 100
ACO(2/1, 00) 10 21 34 50 64 86
ACO(2/1, 03) 10 19 31 44 55 72
Execution time reduction
ACO(2/1, 00, T) 8.60% 9.81%| 10.38%| 10.61%| 10.76%| 10.83%
ACO(2/1,03,T) 7.57% 8.49% 8.94% 9.29% 9.54% 9.64%
ACO(2/1, 00) 6.49% 7.21% 7.61% 7.90% 8.02% 8.11%
ACO(2/1, 03) 6.65% 7.28% 7.72% 8.01% 8.20% 8.36%
Number of ISE being selected
ACO(4/2, 00, T) 8 18 23 34 46 56
ACO(4/2,03,T) 6 14 20 26 34 45
ACO(4/2, 00) 6 13 20 24 32 42
ACO(4/2, 03) 5 12 17 22 27 33
Execution time reduction
ACO(4/2, 00, T) 13.61%| 17.26%| 18.19%| 19.31%| 20.13%| 20.64%
ACO(4/2,03,T) 14.98%| 19.04%| 20.46%| 21.30%| 22.09%| 22.84%
ACO(4/2, 00) 12.13%| _15.06%| "716.69%| 17.27%| 18.08%| 18.77%
ACO(4/2, 03) 14.15%| 17.51%]| «:18.64%| 19.43%| 20.04%| 20.62%
Number of ISE being selected
ACO(6/3,00,T) 5 12 19 25 31 39
ACO(6/3,03,T) 6 9 14 19 25 32
ACO(6/3, 00) 4 9 15 19 24 29
ACO(6/3, 03) 4 7 11 15 20 25
Execution time reduction
ACO(6/3,00,T) 14.95%| 19.25%| 20.97%| 21.77%| 22.33%| 22.87%
ACO(6/3,03,T) 18.76%| 20.92%| 22.72%| 23.77%| 24.61%| 25.32%
ACO(6/3, 00) 13.83%| 17.19%| 19.37%| 20.19%| 20.94%| 21.56%
ACO(6/3, 03) 16.91%| 19.76%| 21.74%| 22.92%| 24.00%| 24.81%

5.3 Optimal Solution

In order to illustrate the quality of ISEs explored by the proposed algorithm, a set of

basic blocks are processed to get the optimal solution. In table 5.3.1, we compare the

result of proposed algorithm and the optimal solution. And the corresponding

processing time is listed in table 5.3.2. The legal pattern number is the number of
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patterns that are legal to be ISEs (input/output constraint, convex, no load/store
operation). The processing time of the optimal solution of a DFG is decided by the
DFG size or legal pattern number. This can be observed from the time complexity of
optimal solution mentioned earlier. For the cases that optimal solution can be obtained
successfully, the proposed algorithm exhibits wonderful solution quality compared to
the optimal one. It can get cycle reduction and extra area cost closed to the optimal
one with tremendous computing time saving. For the legal pattern number up to 45 or
even 108, the optimal solution needs considerable computing time and even can’t
terminate in a reasonable interval. On the other hand, the proposed algorithm just
consumes a few seconds to get the solution. Another observation is the released
input/output constraint usually leads the increment of legal pattern number. In this
situation, to obtain the optimal solution is more difficult, but proposed algorithm still

behaves well.

Table 5.3.1: Comparison of optimal selution and ISE Exploration Algorithm (result)

D,F G PI;c:ii In/ Ou“t COptlimal Solution Proposed Algorithm
Size Constraint ycle Extra Area Cycle Extra Area
Number Reduction Cost Reduction Cost
13 4 2/1 3 1228 3 1228
26 9 2/1 5 7381 5 7603
20 30 2/1 8 11683 6 9152
41 7 2/1 7 10028 7 10028
64 2/1 1 1141 1 1141
32 45 2/1 --* -- 16 107160
23 75 2/1 -- -- 9 13886
1 13 2/1 6454 4 5128
28 4/2 8752 8752
13 2/1 9127 9350
44 46 4/2 -- -- 13 13929
108 6/3 -- - 15 14357

P.S. *: means the solution can’t be obtained in practical time.
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Table 5.3.2: Comparison of optimal solution and ISE Exploration Algorithm

(processing time)

D,F G piitg;ln In/ Oq t Op‘;i)mal Sqlution Prop;sed Algorithm
Size Constraint rocessing rocessing

Number Time Time
13 4 2/1 0.01s 0.03s
26 9 2/1 0.03s 1.21s
20 30 2/1 14m22.46s 2.705s
41 7 2/1 2m12.53s 1.249s
64 1 2/1 4.08s 0.753s
32 45 2/1 --* 4.49s
23 75 2/1 -- 2.333s
19 13 2/1 0.01s 0.438s
28 4/2 2m15.33s 0.777s
13 2/1 4.73s 1.786s
44 46 4/2 -- 2.102s
108 6/3 == 3.067s

P.S. *: means the solution can’t be’obtained.in practical time.
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Chapter 6

Conclusion

The proposed ISE exploration and selection algorithms can significantly reduce extra
silicon area cost with almost no performance loss. Previous researches, to achieve the
highest speed-up ratio, overlook several important microarchitectural constraints, such
as pipestage timing constraint and instruction set architecture (ISA) format. To
conform to pipestage timing constraint, an ISE exploration algorithm which evaluates
different implementation options of each operation in DFG during exploring ISE
candidates is proposed. On the other, hand, we formulate ISE selection as the
multi-constrained 0/1 Knapsack problem to comply with different microarchitectural
constraints. The benefits of ourapproach-are: (1) conform to several important
microarchitectural constraints; (2)significantly reduce extra silicon area cost; (3) both
algorithms are polynomial time solvable. Experiment results show that our design can
further reduce up to 35.28%, 15.92% and 22.41% (max., min. and avg.) of extra

silicon area, and only has maximally 1.06% performance loss.

In addition, we conclude several issues which can be addressed in future work. First,
with adjusting parameters (o, f;, 2 and £3) used in probability value, ISE exploration
algorithm and merit function, we observe that these parameters greatly affect
experimental results. Although we only use a same set of parameters for different
cases, i.e. different combination of register file read/write ports and the size of BB, in
this work, it will be an interesting if we study the dynamic adjustment for these

parameters in our approach. Second, the running time of ISE generation algorithm is
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one noteworthy issue. In this paper, ISE exploration algorithm only explores one ISE
candidate at each round. However, if the algorithm simultaneously explores multiple
ISE candidates at each round, the running time can significantly be reduced. Third,
[combination] raises one interesting issue “ISE combination”. Without introducing
any performance loss, if we merge several analogous ISE candidates as one or use one
hardware resource to execute identical operations in same ISE, the silicon area can be

further reduced.
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Appendix A

Simulation results of ACO(Input/Output, T)

Al

Execution time reduction of ACO(2/1, T)
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Figure A.1.2: Execution time reduction of ACO(4/2, T)

Execution time reduction of ACO(6/3, T)
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Figure A.1.3: Execution time.reduction of ACO(6/3, T)

Execution time reductiqn of ACO(8/4, T)
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Figure A.1.4: Execution time reduction of ACO(8/4, T)
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Extra area cost of ACO(2/1, T)
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Extra area cast of ACO(4/2; T)
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Extra area cost of ACO(6/3, T)
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Extra area cost of ACO(8/4, T)
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Simulation results of ACO(Input/Output)

A.2.

Execution time reduction of ACO(2/1)
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Figure A.2.1: Execution/time reduction of ACO(2/1)

Execution time reduction.of ACO(4/2)
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Figure A.2.2: Execution time reduction of ACO(4/2)
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Execution time reduction of ACO(6/3)
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Figure A.2.3: Execution time reduction of ACO(6/3)

ction'of ACO(8/4)
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Extra area cost of ACO(2/1)
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Figure A.2.5

Extra area cost-of ACO(4/2)
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Extra area cost of ACO(6/3)
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Extra area cost-of ACO(8/4)
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Simulation results of Genetic(Input/Output, T)

A3

The genetic algorithm presented here is referenced by [3] without consideration of the

pipestage timing, i.e. no multiple hardware implementation options. It is taken as a

reference material for execution time reduction.

Execution time reduction of Genetic(2/1)
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Figure A.3.1: Execution time reduction of Genetic(2/1)
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Execution time reduction of Genetic(4/2)

D1E20408 W16 @32]

abelsane

£0 wsh

00 wsh
£0~ wodpe
00~ wodpe
€0 Ldd
[ EE]

€0 2€0HD
00 2€040
€0 eys

00 eys

€0 lsepulu
00 fzepul
€0 Usymolq
00" ysymolq
€0 yoreasbums
00 yaureasbums
€0 lIads!
00 lIads!
€0 eoued
00 enuyed
€0 ensilip
00 ensyilip

aBHKHHNE@NHNHj@@Fﬁﬁaaaaﬁﬁﬂﬂuﬂwmaﬁﬁﬁ

70.00% r

60.00%
50.00% r
40.00% [
30.00%
20.00% r
10.00% rf
0.00%

uoIoNpPaJ BWIN UONNIBXT

€0

00" Uelpawyi
€0 Jaynpyn
00" 1aynpyn
€0 eqbizyn
00" eqbizyn
€0 mazyn
00~ Mazyn
€0 awe|

00 ewe|

€0 Badlp

00 badlp

€0 badlb

00 Badl

€0 uesns

00 uesns

€0 Hosb

00 Mosh
€0 UNodYq
00 Junoduq
€0 yrewoiseq
00 Ylrewoiseq

Figure A.3.2: Execution time reduction of Genetic(4/2)
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Figure A.3.3: Execution time reduction of Genetic(6/3)
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Execution time reduction of Genetic(8/4)
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Extra area cost of Genetic(4/2)
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Figure A.3.6

Extra area cost of Genetic(6/3)
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Extra area cost of Genetic(8/4)
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