
國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

非 同 步 8 0 5 1 微 控 器 之 解 碼 器 設 計

Decoder Design of the Asynchronous 8051 Microcontroller

研 究 生：王端傑

指導教授：陳昌居 博士

中 華 民 國 九 十 五年 六 月

非同步 8051 微控器之解碼器設計

Decoder Design of the Asynchronous 8051 Microcontroller

研 究 生：王端傑 Student：Tuan-Chieh Wang

指導教授：陳昌居 Advisor：Chang-Jiu Chen

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

非同步 8051 微控器之解碼器設計

研究生：王端傑 指導教授：陳昌居

 國立交通大學 資訊科學與工程學系

摘要

 近來可攜式裝置的使用越來越普遍，因此低耗電的設計成為重要的目標，由

於資料驅動的特性使得非同步電路適用於低耗電設計，我們會提出一個新的非同

步 8051 微控制器的解碼器設計，這是由於 8051 是最普遍使用的解碼器之一，而

且往往在其應用上低耗電特性是相當重要的。

 在本論文中電路設計使用 Balsa 語言，一種以 CSP (Communication

Sequential Process)為基礎的非同步電路硬體描述語言並且可以合成非同步電

路，由 Balsa 可以合成適用於 Xilinx 合成器的 Verilog netlist，我們可以比

較非同步與同步電路在Xilinx FPGA上的表現或使用其它CAD工具來實現晶片設

計.

i

 Decoder Design of the Asynchronous 8051

Microcontroller

Student :Tuan-Chieh Wang Advisor : Dr. Chang-Jiu Chen

Department of Computer Science

National Chiao-Tung University

Abstract
Recently mobile devices have been popularly used, and low power is becoming

an import subject. With the data-driven feature, the asynchronous circuit is suited to

be used for low-power design. We will propose a new decoder design of the

asynchronous 8051 microcontroller because the 8051 is one of the most popular

microcontroller and is often used in applications where low energy consumption is

important.

 The circuit is a complied VLSI-program, using Balsa as VLSI-programming

language which is a CSP-based asynchronous hardware description language and

synthesis tool. A Verilog netlist for XST (XILINX Synthesis Tool) is generated by

Balsa. We will compare asynchronous 8051 and synchronous 8051 in XILINX FPGA

and then use Cadence tools and Synopsys tools to synthesis the layout of the circuit.

ii

Acknowledgment
 完成這篇論文要感謝眾多在我週遭幫助我的人，首先是陳昌居老師在這兩年

的辛苦指導，另外是鄭緯民學長熱心的協助我論文的完成，還有蔡瑞夫同學的合

作，另外實驗室的其他同學與學弟也給我很多的支持與鼓勵，最後還要感謝我的

家人，讓我能夠安穩的完成學業。

iii

CONTENTS
摘要 ..i

ABSTRACT..ii

ACKNOWLEDGMENT ... iii

CONTENTS ..iv

LIST OF FIGURES ..vi

LIST OF TABLES..vii

CHAPTER 1 INTRODUCTION..1

 1-1 Motivations...1

 1-2 Asynchronous circuit design ...1

 1-3 Balsa synthesis tool ..3

 1-4 The organization of this thesis..5

CHAPTER 2 RELATED WORKS...6

 2-1 Overview of 8051 ...6

 2-2 Instruction Set..7

 2-3 Balsa Back-End.. 11

 2-3-1 Basic Elements.. 11

 2-3-2 Handshake Components..14

CHAPTER 3 THE DESIGN ...18

 3-1 The architecture of the pipelined asynchronous 8051..............................18

 3-2 The design of IF stage..19

 3-2-1 Mem Interface ..19

 3-2-2 Buffers ...20

 3-2-2 Fetcher Ctrl...21

 3-3 The design of ID stage ...22

iv

 3-3-1 The ID1 stage ..22

 3-3-2 The ID2 stage ..23

CHAPTER 4 IMPLEMENTATION AND VERIFICATION25

 4-1 The design flow of FPGA ..25

 4-2 Verification ...26

CHAPTER 5 THE RESULT...29

 5-1 Simulation result..29

 5-1-1 The performance of the decoder ...29

 5-1-2 The performance of the pipelined asynchronous 805130

 5-2 Area cost ...31

 5-3 The discussion of the result...32

CHAPTER 6 CONCLUSIONS AND FUTURE WORKS34

REFERENCE...35

v

LIST OF FIGURES

1-1 An example of asynchronous circuit ..2

1-2 Balsa design flow..4

2-1 Architecture of 8051 core ..7

2-2 Eight addressing mode ..9

2-3 The Muller C-element ...12

2-4 The NC2P-element...13

2-5 The S-element...13

2-6 The multiplexer..14

2-7 The de-multiplexer ..14

2-8 The Fetch Component ...15

2-9 The Sequence Component ..15

2-10 The Concurrent Component...16

2-11 The Variable Component ..16

3-1 The architecture of asynchronous pipelined 8051 ..18

3-2 The architecture of IF stage..19

3-3 the flow chart of the mem interface ...20

3-4 the flow chart of the buffer ...21

3-5 the flow chart of the fetcher ctrl...21

3-6 The architecture of ID stage ...22

3-7 The flow chart of the ID1 stage ..23

3-8 The flow chart of the ID2 stage ..24

4-1 The FPGA design flow...26

4-2 PA8051 simulation environment ..27

4-3 THE ROM MODEL..28

vi

LIST OF TABLES

2-1 ISA of 8051 ...10

5-1 The comparison of different numbers of buffers..29

5-2 The comparison of different sizes of buffers ...30

5-3 The The performance of the whole pipelined asynchronous 8051 with

different sizes of buffers ..30

5-4 The comparison between the 1-cycle asynchronous 8051 and the pipelined

asynchronous 8051 ...31

5-5 The Cost of Every Part of 8051 ..32

vii

Chapter 1 INTRODUCTION

The goal of this thesis is to design and implement a new decoder for a pipelined

asynchronous 8051 microcontroller. In this chapter, section 1 describes the motivation

of decoder design of asynchronous 8051 microcontroller. Section 2 discusses the

advantages and challenges of the asynchronous circuit design. Section 3 describes the

Balsa synthesis tool. Session 4 describes the organization of this thesis.

1-1 Motivations

Research in asynchronous circuit design can be traced back to the mid 1950s,

however, because of testability and easy to design issues, synchronous design

becomes the major technology of digital circuit design. However, in the late 1990s

projects in academia and industry demonstrated that it is possible to design

asynchronous circuits which exhibit significant benefits in nontrivial real-life

examples, and therefore commercialization of the technology began to take place.

We hope to design a new decoder with low power and high performance features,

and thus the asynchronous design technology is the one we chose for this purpose.

1-2 Asynchronous circuit design

Because the asynchronous circuit works only when necessary, it has the potential

for low power consumption. However, it is quite difficult to design the asynchronous

circuit because of its complex handshake circuits.

An example of asynchronous circuit is shown in figure 1-1

 1

Figure 1-1 An example of asynchronous circuit

This is so the called four-phase bundled data handshake protocol. When the

data of the sender is ready, the sender pulls up the request signal, Req, and then

the receiver also pulls up the acknowledge signal, Ack, and receives the data at

the same time. At the end, both the sender and the receiver pull down the Req

and the Ack, and the handshake is completed.

By using the handshake protocol, there are several advantages of

asynchronous circuit.

 Low power consumption
Due to fine-grain clock gating and zero standby power consumption.

 High operating speed

Operating speed is determined by actual local latencies rather than global
worst-case latency.

 Less emission of electro-magnetic noise

The local clocks tend to tick at random points in time.

 Robustness towards variations in supply voltage, temperature, and
fabrication process parameters

Timing is based on matched delays (and can even be insensitive to circuit
and wire delays).

 Better composability and modularity

Because of the simple handshake interfaces and the local timing.

 2

 No clock distribution and clock skew problems

There is no global signal that needs to be distributed with minimal phase
skew across the circuit.

On the other hand there are also some drawbacks.

 Overhead (area, speed, power)

The additional handshake control circuits.

 Hard to design

Converting sync to async is hard to achieve the results.

 Few CAD tools

There are few CAD tools for asynchronous design.

1-3 Balsa synthesis tool

There is a synthesis tool for asynchronous circuits, Balsa[1], which is developed

at Manchester University. This tool uses a language, Balsa, which is a CSP-based

language, and is easily used to describe behaviors of asynchronous circuit. The Balsa

program would be compiled automatically into a handshake circuit description. The

handshake circuits are composed about 40 basic components which use handshake for

communication. This tool can also provide behavioral simulations and a

transformation from handshake circuits to gate-level netlists.

The design flow is shown in the figure 1-2.

 3

Figure 1-2 Balsa design flow

The designer writes the Balsa description, and then compiles it with Balsa

synthesis tool. It will construct a Breeze description which describes the netlist of

handshake components. We can use the Breeze description to do Balsa behavioural

simulation or to convert it to Verilog gate level netlist.

Balsa description

Breeze description

Gate-level netlist

Layout/ bitstream

Balsa-C

Balsa-Netlist

Commercial

CAD tool

Balsa

simulator

Gate-level

simulation

Layout

simulation

Behavioral result

Gate-level result

Layout result

 4

1-4 The organization of this thesis

In this thesis, we will illustrate the related work in chapter 2 including the

overview and the instruction set of the 8051, the back-end of the Balsa synthesis

system. In chapter 3 we will illustrate the decoder design of asynchronous pipelined

8051. In chapter 4 we will illustrate the implementation and verification. In chapter 5

we will illustrate the results. Finally, a brief conclusion and future work are discussed

in chapter 7.

 5

Chapter 2 Related Works

 In this section we will describe the instruction set and the architecture of the Intel

8051[5]. Then, we will illustrate the back-end of the balsa synthesis system.

2-1 Overview of 8051

 The 8051 is the original member of the MCS-51 family, and is the core for all MCS-51

devices. The features of the 8051 core are

 8-bit CPU optimized for control applications

 Extensive Boolean processing (Single-blt logic) capabtilties

 64K Program Memory address space

 64K Data Memory address space

 32 bidirectional and individually addressable 1/0 lines

 Two 16-bit timer/counters

 Full duplex UART

 6-source/5-vector interrupt structure with two priority levels

 On-chip clock oscillator

The basic architecture of the 8051 core is shown in figure 2-1.

 6

Figure 2-1 Architecture of 8051 core

2-2 Instruction Set

 The instruction set of the 8051 is a complex instruction set computer (CISC). There are

255 instructions with variable-length from one to three bytes and eights addressing modes. We

can determine an instruction from the first byte of an instruction and the remained bytes

always are operands. Besides, the 8051 is a Havard architecture and its instruction memory

and data memory are separate.

 The eight addressing modes are depicted in figure 2-2:

(a) register addressing: instructions are encoded using the three least-significant bits of the

instruction opcode.

(b) direct addressing: the operand is specified by an 8-bit address field in the instruction

representing an address in the internal data RAM or a special-function register (SFR).

(c) indirect addressing: the instruction specifies a register (R0 or R1) containing the

address of the operand in data memory.

 7

(d) immediate addressing: the constant operand value is part of the instruction.

(e) relative addressing: a relative address (or offset) is an 8-bit signed value, which is

added to the program counter to form the address of the next instruction executed.

(f) absolute addressing: these instructions allow branching within the current 2K page of

code memory by providing the 11 least-significant bits of the destination address.

(g) long addressing: these instructions include a full 16-bit destination address as bytes 2

and 3 of the instruction.

(h) indexed addressing: uses a base register (either the program counter or the data pointer)

and an offset (the accumulator) in forming the effective address for a JMP or MOVC

instruction.

 8

 9

Figure 2-2 Eight addressing mode

10

H

L

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NOP JBC

bit,rel

JB

bit,rel

JNB

bit,rel

JC

rel

JNC

rel

JZ

rel

JNZ

rel

SJMP

rel

MOV

DPTR,#

dara 16

ORL

C,/bit

ANL

C,/bit

PUSH

dir

POP

dir

MOVX

A,

@DPTR

MOVX

@DPTR,

A

1 AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL AJMP ACALL

2 LJMP

addr16

LCALL

addr16

RET RETI ORL

dir,A

ANL

dir,A

XRL

dir,A

ORL

C,bit

ANL

C,bit

MOV

bit,C

MOV

C,bit

CPL

bit

CLR

bit

SETB

bit

MOVX

A,@R0

MOVX

@R0,A

3 RR

A

RRC

A

RL

A

RLC

A

ORL

dir,#data

ANL

dir,#data

XRL

dir,#data

JMP

@A+DPTR

MOVC

A,@A+PC

MOVC

A,@A+DPTR

INC

DPTR

CPL

C

CLR

C

SET

C

MOVX

A,@R1

MOVX

@R1,A

4 INC

A

DEC

A

ADD

A,#data

ADDC

A,#data

ORL

A,#data

ANL

A,#data

XRL

A,#data

MOV

A,#data

DIV

AB

SUBB

A,#data

MUL

AB

CJNE A,

#data,

rel

SWAP

A

DA

A

CLR

A

CPL

A

5 INC

dir

DEC

dir

ADD

A,dir

ADDC

A,dir

ORL

A,dir

ANL

A,dir

XRL

A,dir

MOV

dir,#data

MOV

dir,dir

SUBB

A,dir

 CJNE A,

dir,rel

XCH

A,dir

DJNZ

dir,rel

MOV

A,dir

MOV

dir,A

6-7 INC

@Ri

DEC

@Ri

ADD

A,@Ri

ADDC

A,@Ri

ORL

A,@Ri

ANL

A,@Ri

XRL

A,@Ri

MOV

@Ri,#data

MOV

dir,@Ri

SUBB

A,@Ri

MOV

@Ri,dir

CJNE

@Ri

,#data

,rel

XCH

A,@Ri

XCHD

A,@Ri

MOV

A,@Ri

MOV

@Ri,A

MOV

Rn,A

8-F INC

Rn

DEC

Rn

ADD

A,Rn

ADDC

A,Rn

ORL

A,Rn

ANL

A,Rn

XRL

A,Rn

MOV

Rn,#data

MOV

dir,Rn

SUBB

A,Rn

MOV

Rn,dir

CJNE

Rn

,#data

,rel

XCH

A,Rn

DJNZ

Rn,rel

MOV

A,Rn

Table 2-1 ISA of 8051

11

Table 2-1 illustrates the full instruction set of 8051. We can determine an

instruction from the first byte. In this table the rows represent the four least significant

bits of the opcode while the columns represent the four most significant bits. In

addition, Row 8-F are instructions of register addressing, and the register which is

used is according to the last three bits. Row 6-7 are instructions of indirect addressing,

and the last bit indicates which register (R0 or R1) will be used as indirect address.

And A5H is reserved.

2-3 Balsa Back-End

The Balsa synthesis system could convert handshake circuits into gate-level

netlists. The netlists are composed by the standard cells of the Xliinx FPGA. We will

describe basic some handshake components in Balsa synthesis system.

2-3-1 Basic Elements

 The standard cells of Xilinx FPGA used by Balsa are AND, OR, NOR, XOR,

NADN, BUF, XNOR, INV, FD (D-type flip-flop), FDC and FDCE. And the most

basic cell in asynchronous circuit is the Muller C-element as shown in Figure 2-3. It is

a sequential circuit which holds the past state. With all-0 inputs, the output is set to 0.

With all-1 inputs, the output is set to 1. With other inputs, the output does not change.

A Muller C-element is a fundamental component that is extensively used in

asynchronous circuits.

Figure 2-3: The Muller C-element, (a) symbol (b) truth table

(c) gate-level implementation

Figure 2-4 shows the NC2P element. It behaves a little like a C-element. When i0

is equal to 0, the output is 0. When i0 and i1 are equal to 1, the output is 1. With other

inputs , the output does not change.

12

Figure 2-4: The NC2P-element (a) symbol (b) truth table (c)

gate-level implementation

 Figure 2-5: The S-element (a) symbol (b) gate-level

implementation (c) handshaking protocol

 Figure 2-5 shows the S-element which perform a series of handshake. An

S-element has 4 pins including 2 request/acknowledge handshake pairs – ‘Ar’/’Aa’

and ‘Br’/’Ba’. It is composed by nc2p, NOR and AND gates.

13

Figure 2-6: The multiplexer (a) function block (b) true table

(c) gate level implementation

Figure 2-7: The de-multiplexer (a) function block (b) true

table (c) gate level implementation

The basic multiplexer and de-multiplexer are shown in figure 2-6 and figure 2-7.

They are used in many elements such as Basla full adder and BrzCase.

2-3-2 Handshake Components

 There are about 40 handshake components in Balsa. Each handshake

components maps to a individual gate level implementation. We will illustrate some

14

of them.

Figure 2-8: The Fetch Component (a) handshake component

(b) gate level implementation

 Figure 2-8 shows the Fetch component. This component is used to transfer data

from input channels to variables, from variables to output channels, and from

variables to variables.

 Figure 2-9: The Sequence Component (a) handshake

component (b) gate level implementation

 Figure 2-9 and figure 2-10 are sequence and concurrent component respectively.

They control the executing of the components which is sequential or parallel.

15

Figure 2-10: The Concurrent Component (a) handshake

component (b) gate level implementation

Figure 2-11: The Variable Component (a) handshake

component (b) gate level implementation

 Figure 2-11 shows the variable component. It uses D-type flip-flop to store data.

16

17

When we declare variables in out Balsa programs, they will be mapped into variable

components. Data is stored when the signal write_0r is set, and read when the signal

read_0r or read_1r is set.

Chapter 3 The Design
This chapter describes the decoder design of asynchronous 8051 microprocessor.

This decoder is for pipelined 8051 with IF, ID, OF, EXE, and WB stages.

3-1 The architecture of the pipelined asynchronous 8051

The architecture of asynchronous pipelined 8051 is show in figure 3-1

18

Figure 3-1 The architecture of asynchronous pipelined

8051

There are five stages of our pipeline, and an interface between the processor
core nd t

a he RAM. The IF (instruction fetch) stage fetches instructions from ROM.

The ID (instruction decode) stage decodes the instruction and handles the branch
instruction. The OF (operand fetch) stage fetches operands from RAM. The EXE
(execute) stage execute instructions according to opcodes of instructions. The WB

IF ID OF EXE WB

RAM INTERFACE

CORE

RAM

ROM

(write back) stage write back the result into RAM.

19

3-2 The design of IF stage

The architecture of the IF stage is show in figure 3-2.

Figure 3-2 The architecture of IF stage

here are three basic components in the IF stage- mem interface, buffer, and
fetch rs.

3-2-1 Mem Interface

ms, there exists a problem that the inputs of a merge circuit
may

T
er ctrl. Mem interface is a arbitrator to arbitrate requests from one of the buffe

Buffers are controlled by fetcher ctrl. According to the control signal, buffers prefetch
instructions from the external ROM or provide the target byte which fetcher ctrl needs.
Fetcher ctrl receives the value of the program counter, and check if it is hit in one of
the buffers or miss. If it is hit, fetcher ctrl sends a request of read to the hit buffer, and
if it is miss, fetcher ctrl sends a request of prefetch to all buffers. In addition, if the
buffer is read the last byte, fetcher ctrl would send a request of prefetch.

mem

interface

buffer1

buffer2IF_2_mem_addr

fetcher

ctrl

mem_2_IF_data

interface_2_buf1_data

interface_2_buf2_data

buf1_2_interface_addr

buf2_2_interface_addr

ctrl_2_buf1_addr

ctrl_2_buf1_RnW

buf1_2_ctrl_data

ctrl_2_buf2_addr

ctrl_2_buf2_RnW

buf2_2_ctrl_data

IF_2_ID_data

ID_2_IF_addr

mem

interface

buffer1

buffer2IF_2_mem_addrIF_2_mem_addr

fetcher

ctrl

mem_2_IF_datamem_2_IF_data

interface_2_buf1_datainterface_2_buf1_data

interface_2_buf2_datainterface_2_buf2_data

buf1_2_interface_addrbuf1_2_interface_addr

buf2_2_interface_addrbuf2_2_interface_addr

ctrl_2_buf1_addr

ctrl_2_buf1_RnW

buf1_2_ctrl_data

ctrl_2_buf1_addr

ctrl_2_buf1_RnW

buf1_2_ctrl_data

ctrl_2_buf2_addr

ctrl_2_buf2_RnW

buf2_2_ctrl_data

ctrl_2_buf2_addr

ctrl_2_buf2_RnW

buf2_2_ctrl_data

IF_2_ID_dataIF_2_ID_data

ID_2_IF_addrID_2_IF_addr

In asynchronous syste
come simultaneously. In Balsa, we can use an arbitrator component to solve this

problem. The mem interface may receive a address for one of the buffers and access
the ROM according to this address. However, it would happen that both buffers send
addresses to the mem interface and the circuit might be error. Thus, we use the
“arbitrate description” to resolve this problem.

20

arbitrate
rface_addr then

 buf1_2_interface_addr;

dr then
f2_2_interface_addr;

face behaves as the flow chart shown in Figure 3-3.

Figure 3-3 the flow chart of the mem interface

3-2-2 Buffers

fer, it receives the target address and the action signal from fetcher
ctrl.

buf1_2_inte
 interface_2_mem_addr <-

 direct := 1
 |buf2_2_interface_ad
 interface_2_mem_addr <- bu
 direct := 0
 end
 The mem inter

start

Arbitrate
buf1,buf2

Buf1?

Buf1
fetch

Buf12

fetch

y n

startstart

Arbitrate
buf1,buf2
Arbitrate
buf1,buf2

Buf1?Buf1?

Buf1
fetch
Buf1
fetch

Buf12

fetch

Buf12

fetch

y n

For each buf
If the action signal is read, it returns the target byte according to the address. If

the action signal is write, it fetches 32 byte data which start from the address. The
buffer behaves as the flow chart shown in Figure 3-4.

start

Get action and
address

Read?

Return data Fetch 32 bytes
data

startstart

Get action and
address

Get action and
address

Read?Read?

Return dataReturn data Fetch 32 bytes
data

Fetch 32 bytes
data

21

Figure 3-4 the flow chart of the buffer

3-2-3 Fetcher Ctrl

ls all the buffers. It fetches the value of the program counter
first.

s the

Figure 3-5 the flow chart of the fetcher ctrl

Fetcher ctrl contro
Then it checks if the target byte exists in one of the buffers. If there is a buffer

which has the byte, Fetcher ctrl sends a read request and the address to the buffer and
then passes the target byte to the ID stage. If the target byte is the last byte of the
buffer, fetcher ctrl will send a write request to the buffer. However, if no buffer ha
target byte, fetcher ctrl will flush all the buffers. The behavior of fetcher ctrl is shown
in Figure 3-5.

start

Get PC

In Buf1?
y n

Return data
In Buf2?

Return data

y n

Fill buffer

Return data
Check end

Check end

startstart

Get PCGet PC

In Buf1?In Buf1?
y n

Return dataReturn data
In Buf2?In Buf2?

Return dataReturn data

y n

Fill bufferFill buffer

Return dataReturn data
Check endCheck end

Check endCheck end

22

-3 The design of ID stage

 show in figure 3-3.

The ID stage is divided into ID1 and ID2 two stages. In the ID1, it fetches the

first byte of an instruction, decodes this

Figure 3-6 The architecture of ID stage

3-3-1 The ID1 s

he instruction byte, it would determine that this instruction
This could decrease the size of the multiplexer. Then,

acco
rder

3

The architecture of the ID stage is

instruction, determine the remained bytes,

abstract the opcode, and generate the control signal of this instruction. In the ID2, it

would fetch remained bytes and provide completed control signals for the OF stage. If

the current instruction is a branch instruction, the ID2 stage would calculate the target

address and handle the branch action.

tage

When ID1 receives t
is regular or non-regular.

rding to the instruction, ID1 generates the signals needed by the following stages
such as the remained bytes, the opcode, the read signal, and the write signal. In o
to decrease the area cost, we use the shared procedure in Balsa, which would
construct only one component whatever times this procedure is called. The example
description of the shared procedure is shown in the below.

shared readMEMB is

ID_2_IF_addr

IF_2_ID_data

ActionCtrl

ID1

jmp

ReadOut ReadIn

ID2 WriteOut WriteIn

OpcodeOut Opcodein

begin

23

B

ehavior of the ID1 stage is shown in Figure 3-7.

read_data.ctrl := MEM
end

The b

start

Get instruction

Check regular

Regular?

Regular case Irregular case

Send control
signals

startstart

Get instructionGet instruction

Check regularCheck regular

Regular?Regular?

Regular caseRegular case Irregular caseIrregular case

Send control
signals

Send control
signals

Figure 3-7 The flow chart of the ID1 stage

3-3-2 The ID2

ill fetch the remained bytes first. To avoid the race condition
the “handshake enclosure” description in

Bals

 fetches all remained bytes, ID2 would transform these bytes into suitable

operands and pass all signals to the OF stage. If the instruction is a branch instruction,
ID2 .

 stage

In the ID2 stage, it w
between the ID1 stage and ID2 stage, we use

a to promise that ID2 fetches the remained bytes before ID1 fetches a new
instruction. The handshake enclosure is shown in the below.

ActionCtrl -> then
 case ActionCtrl of

…
end

After

would calculate the target address and change the PC value if the branch is taken
The behavior of the ID2 stage is shown in Figure 3-8.

start

Pass the
control signal

Case
ActionCt

rl of?

Fetches 1 byte Fetches 2 byte

0 remained
byte

1 remained
byte

2 remained
byte

Handle branch

Branch
instruction

startstart

Pass the
control signal

Pass the
control signal

Case
ActionCt

rl of?

Case
ActionCt

rl of?

Fetches 1 byteFetches 1 byte Fetches 2 byteFetches 2 byte

0 remained
byte

1 remained
byte

2 remained
byte

Handle branchHandle branch

Branch
instruction

Figure 3-8 The flow chart of the ID2 stage

24

25

Chapter 4 Implementation and

Verification
We will show the design flow of implementations and the simulation in this

chapter. Because this project is cooperated with the pipelined asynchronous 8051,
we will simply illustrate the hole design with the pipelined asynchronous 8051.

4-1 The design flow of FPGA

We had already implemented an asynchronous pipelined 8051 with Balsa.
The Balsa program was compiled into a handshake component netlist, and finally
this netlist was converted to a verilog gate-level netlist for Xilinx FPGA. With
the gate-level netlist, we used other CAD tool to implement this circuit and do
some simulation.

Because we wanted to implement the circuit in Xilinx FPGA, first we got
the gate-level netlist by Balsa. Second, we imported this netlist into Xilinx ISE, a
CAD tool for Xilinx FPGA. Then we added "keep hierarchy" description for
each handshake component to avoid the optimization of CAD tool because the
optimization will break the timing constraint. Finally we followed the standard
design flow of the Xilinx FPGA, and burned the design into FPGA. All the flow
is shown in Figure 4-1

.

Figure 4-1. The FPGA design flow

4-2 Verification

We can do behavior simulation for PA8051 (pipelined asynchronous 8051)
in Balsa. The simulation environment is shown in figure 4-2.

26

 In Balsa environment, we can use Balsa memory module to avoid duplicate
calls of memory, which would construct duplicate memory modules. Figure 4-3
shows the memory module. We can write instructions into memory module, and
then executing CPU core and memory parallelly.

 When all instructions have been executed, we can compare the result in the
output ports with the result made bye 8051 simulator. If the results are not in the
output ports, we should add some instructions to move the results from RAM to
output port.

R
om

 a
dd

re
ss

R
om

 d
at

a

P0
 ~

 P
3

PA8051(BALSA)

Figure 4-2: PA8051 simulation environment

27

Figure 4-3. The ROM model

28

29

Chapter 5 The Result

5-1 Simulation result

We have successfully completed the behavior simulation in Balsa with small
benchmarks such as GCD and Fibnacci Code. The simulation results are shown in
the following.

5-1-1 The performance of the decoder

 Because we integrate a cache-like buffer with our decoder, we need to know
the effects with different kinds of buffers. We first measured the issue rate with
different numbers of buffers. The buffer size is 32 bytes, and because the
programs of GCD or Fibnacci Code are small, the benchmark is 256 instruction
of the additions. The result is shown in table 5-1.

The numbers of buffers
The consumed time

(in Balsa units)
The normalized result

0 155,062,000 20.55

1 11,896,100 1.58

2 7,544,200 1

3 10,012,600 1.33

Table 5-1. The comparison of different numbers of buffers

 Second, we measured the issue rate in different sizes of buffers. The buffer
size are 8 bytes, 16 bytes, 32 bytes and 64 bytes. The result is shown in table
5-2.

30

The size of buffer

(byte)

The consumed time

(in Balsa units)
The normalized result

8 7,801,000 1.03

16 7,629,800 1.01

32 7,544,200 1

64 7,501,400 0.99

Table 5-2. The comparison of different sizes of buffers

Finally, we measured the performance of the whole pipelined asynchronous
8051 with different sizes of the buffer. The result is shown in table 5-3.

The size of buffer

(byte)

The consumed time

(in Balsa units)
The normalized result

8 13,681,400 1

16 13,681,400 1

32 13,681,400 1

64 13,681,400 1

Table 5-3. The performance of the whole pipelined

asynchronous 8051 with different sizes of buffers

5-1-2 The performance of the pipelined asynchronous 8051

 The comparison of performance and cost of single-cycle asynchronous 8051
and pipelined 8051 is shown in Figure 5-1. We use the pipelined asynchronous
8051 with two 32-byte buffers to compare with the single-cycle 8051,

31

SA8051[2], which was designed by our laboratory last year.

The consumed
time

(in Balsa unit)

The
normalized

time

The cost

(in Balsa unit)

The
normalized

cost

SA8051 24,891,300 3.30 210,513.5 0.43

PA8051 7,544,200 1 494,752.25 1

 Table 5-4. The comparison between the 1-cycle

asynchronous 8051 and the pipelined asynchronous 8051

5-2 Area cost

 We use the Xilinx ISE 6.3i to synthesize our PA8051 processor, and the
target FPGA chip is Xilinx FPGA Spartan-IIE 300 ft256. The gate count and path
delay are shown in Table 5-1.

The gate and path delays of every part of PA8051 are shown in table 7. The ID
stage is the most dominant stage of the whole design, taking half of the total cost
of PA8051.

 The biggest part is the ID stage. That is because that there are 256 cases of
instructions. Even though we divided the instructions into regular and
non-regular instructions, they still need to be multiplexed and that causes the cost
so big.

32

 Slice gate minimum path delay(ns)

IF 1007 13987 757

ID 5353 61973 721

OF 564 7086 34

EXE 1284 16938 174

MEM_INTERFACE 1098 13217 125

RAM_READ_ARBITOR 57 1051 28

WB 232 2977 40

TOTAL 9595 117229

 Table 5-5. The Cost of Every Part of 8051

5-3 The discussion of the result

Through the comparison of the different numbers of buffers, we can easily
find out that if there is no buffer, the delay of the memory access is huge. If there
is only one buffer, it saves the memory access time. However, if there are two
buffers, it not only saves the memory access time but also hides some accesses
when the instructions are executed. If there are three buffers, the additional
buffer doesn’t give any new contribution and the issue rate is lower.

Furthermore, with the comparisons of the different buffer sizes, the
simulation results show that if the buffer size increases, the consumed time
decreases slightly. Because the benchmark is a simple 256-addition operation
without any branch instruction, the locality is not outstanding. If we consider the
benchmark program of GCD or Fibnacci Code, the 32-byte buffer design is
enough.

With the comparison of the performance of the whole pipelined
asynchronous 8051, we got an unexpected result. The performances of different
buffer sizes are the same. That is because that the memory in balsa is not a
synthesizable component but is an emulation module, and hence the speed of the
memory overtakes the pipeline of speed of the PA8051. If we want to obtain the

33

actual performance, we need to implement the whole design in the gate-level or
other physical levels.

Finally, with the comparison of the single cycle asynchronous 8051 and the
pipelined asynchronous 8051, we can see that although the area cost become two
times, the performance is increased to three times.

34

Chapter 6 Conclusions and Future

Works

In this thesis, we proposed a new decoder design of asynchronous pipelined 8051

microprocessor. We have confirmed its correctness and implemented it in Xilinx

FPGA. Although it area may be a little large, it performance has been improved. The

contributions of this thesis is :

 The novel decoder for our pipelined asynchronous 8051 has been

developed.

 The design flow of using CAD tool to design an asynchronous system is

confirmed.

 The future works which we can do are :

 Optimizing the Balsa code to reduce the area cost.

 Completing the layout simulation and realizing our design with CMOS

chips.

35

Reference

[1] A. Bardsley, D. A. Edwards, “The Balsa Asynchronous Circuit Synthesis
System”

[2] Yuan-Teng Chang, “SA8051: An Asynchronous Soft-core Processor for
Low-Power System-on-Chip Applications”, 2005.

[3] Cota, E.F.; Krug, M.R.; Lubaszewski, M.; Carro, L.; Susin, A.A,
“Implementing a self-testing 8051 microprocessor”, Integrated Circuits and
Systems Design, 1999. Proceedings. XII Symposium on 29 Sept.-2 Oct. 1999
Page(s):202 - 205

[4] van Gageldonk, H.; van Berkel, K.; Peeters, A.; Baumann, D.; Gloor, D.;
Stegmann, G.;” An asynchronous low-power 80C51 microcontroller”,
Advanced Research in Asynchronous Circuits and Systems, 1998. Proceedings.
1998 Fourth International Symposium on , 30 March-2 April 1998 Pages:96 –
107

[5] Intel, “MCS51 Microprocessor Family User’s Manual: Intel”, 1994
[6] Martin, A.J.; Nystrom, M.; Papadantonakis, K.; Penzes, P.I.; Prakash, P.; Wong,

C.G.; Chang, J.; Ko, K.S.; Lee, B.; Ou, E.; Pugh, J.; Talvala, E.-V.; Tong, J.T.;
Tura, A, “The Lutonium: a sub-nanojoule asynchronous 8051
microcontroller”, Asynchronous Circuits and Systems, 2003. Proceedings.
Ninth International Symposium on 12-15 May 2003 Page(s):14 – 23

[7] Je-Hoon Lee; Won-Chul Lee; Kyoung-Rok Cho, “A novel asynchronous
pipeline architecture for CISC type embedded controller, A8051”, Circuits
and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium on
Volume 2, 4-7 Aug. 2002 Page(s):II-675 - II-678 vol.2

[8] Chelcea, T.; Nowick, S.M.; “Resynthesis and peephole transformations for
the optimization of large-scale asynchronous systems”, Design Automation
Conference, 2002. Proceedings. 39th , 10-14 June 2002 Pages:405 – 410

	Chapter 1 INTRODUCTION
	Chapter 2 Related Works
	Chapter 1
	Chapter 3 The Design
	Chapter 4 Implementation and Verification
	Chapter 5 The Result
	Chapter 6 Conclusions and Future Works
	Reference

