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Decoder Design of the Asynchronous 8051

Microcontroller

Student : Tuan-Chieh Wang Advisor : Dr. Chang-Jiu Chen
Department of Computer Science

National Chiao-Tung University

Abstract

Recently mobile devices have been popularly used, and low power is becoming
an import subject. With the data-driven,feature, the asynchronous circuit is suited to
be used for low-power design.We will-propose a new decoder design of the
asynchronous 8051 microcontroller’ because+the-8051 is one of the most popular
microcontroller and is often used in.applications where low energy consumption is
important.

The circuit is a complied VLSI-program, using Balsa as VLSI-programming
language which is a CSP-based asynchronous hardware description language and
synthesis tool. A Verilog netlist for XST (XILINX Synthesis Tool) is generated by
Balsa. We will compare asynchronous 8051 and synchronous 8051 in XILINX FPGA

and then use Cadence tools and Synopsys tools to synthesis the layout of the circuit.
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Chapter 1 INTRODUCTION

The goal of this thesis is to design and implement a new decoder for a pipelined
asynchronous 8051 microcontroller. In this chapter, section 1 describes the motivation
of decoder design of asynchronous 8051 microcontroller. Section 2 discusses the
advantages and challenges of the asynchronous circuit design. Section 3 describes the

Balsa synthesis tool. Session 4 describes the organization of this thesis.

1-1 Motivations

Research in asynchronous circuit design can be traced back to the mid 1950s,
however, because of testability and easy,to design issues, synchronous design
becomes the major technology of digitalicireuit design. However, in the late 1990s
projects in academia and industry demonstrated “that it is possible to design
asynchronous circuits which ‘exhibit.“significant- benefits in nontrivial real-life
examples, and therefore commercialization of the technology began to take place.

We hope to design a new decoder with low power and high performance features,

and thus the asynchronous design technology is the one we chose for this purpose.

1-2 Asynchronous circuit design

Because the asynchronous circuit works only when necessary, it has the potential
for low power consumption. However, it is quite difficult to design the asynchronous
circuit because of its complex handshake circuits.

An example of asynchronous circuit is shown in figure 1-1
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Figure 1-1 An example of asynchronous circuit

This is so the called four-phase bundled data handshake protocol. When the

and the Ack, and the handshake is completed.

By using the handshake protocol,

asynchronous circuit.

® Low power consumption

Due to fine-grain clock gating.and zero'standby power consumption.

High operating speed

there are several

advantages of

Operating speed is determined by actual local latencies rather than global
worst-case latency.

Less emission of electro-magnetic noise

The local clocks tend to tick at random points in time.

Robustness towards variations in supply voltage, temperature, and

fabrication process parameters

Timing is based on matched delays (and can even be insensitive to circuit
and wire delays).

Better composability and modularity

Because of the simple handshake interfaces and the local timing.



® No clock distribution and clock skew problems

There is no global signal that needs to be distributed with minimal phase
skew across the circuit.

On the other hand there are also some drawbacks.

® Overhead (area, speed, power)
The additional handshake control circuits.

® Hard to design
Converting sync to async is hard to achieve the results.

® Few CAD tools
There are few CAD tools for asynchronous design.

1-3 Balsa synthesis.tool

There is a synthesis tool for asynchronous circuits, Balsa[1], which is developed
at Manchester University. This tool"uses‘a“language, Balsa, which is a CSP-based
language, and is easily used to describe ‘behaviors of asynchronous circuit. The Balsa
program would be compiled automatically into a handshake circuit description. The
handshake circuits are composed about 40 basic components which use handshake for
communication. This tool can also provide behavioral simulations and a

transformation from handshake circuits to gate-level netlists.

The design flow is shown in the figure 1-2.
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Figure 1-2 Balsa design flow

The designer writes the Balsa description, and then compiles it with Balsa
synthesis tool. It will construct a Breeze description which describes the netlist of
handshake components. We can use the Breeze description to do Balsa behavioural

simulation or to convert it to Verilog gate level netlist.



1-4 The organization of this thesis

In this thesis, we will illustrate the related work in chapter 2 including the
overview and the instruction set of the 8051, the back-end of the Balsa synthesis
system. In chapter 3 we will illustrate the decoder design of asynchronous pipelined
8051. In chapter 4 we will illustrate the implementation and verification. In chapter 5
we will illustrate the results. Finally, a brief conclusion and future work are discussed

in chapter 7.



Chapter 2 Related Works

In this section we will describe the instruction set and the architecture of the Intel

8051[5]. Then, we will illustrate the back-end of the balsa synthesis system.

2-1 Overview of 8051

The 8051 is the original member of the MCS-51 family, and is the core for all MCS-51

devices. The features of the 8051 core are

8-bit CPU optimized for control applications

Extensive Boolean processing (Single-blt logic) capabtilties
64K Program Memory address’space

64K Data Memory address space

32 bidirectional and individually-addressable 1/0 lines

Two 16-bit timer/counters

Full duplex UART

6-source/5-vector interrupt structure with two priority levels

On-chip clock oscillator

The basic architecture of the 8051 core is shown in figure 2-1.
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Figure 2-1 Architecture of 8051 core

2-2 Instruction Set

The instruction set of the 8051 is a complex.instruction set computer (CISC). There are
255 instructions with variable-length from one to three bytes and eights addressing modes. We
can determine an instruction from the first byte of an instruction and the remained bytes
always are operands. Besides, the 8051 is a Havard architecture and its instruction memory
and data memory are separate.
The eight addressing modes are depicted in figure 2-2:
(@) register addressing: instructions are encoded using the three least-significant bits of the
instruction opcode.
(b) direct addressing: the operand is specified by an 8-bit address field in the instruction
representing an address in the internal data RAM or a special-function register (SFR).
(c) indirect addressing: the instruction specifies a register (RO or R1) containing the

address of the operand in data memory.



(d) immediate addressing: the constant operand value is part of the instruction.

(e) relative addressing: a relative address (or offset) is an 8-bit signed value, which is
added to the program counter to form the address of the next instruction executed.

(f) absolute addressing: these instructions allow branching within the current 2K page of
code memory by providing the 11 least-significant bits of the destination address.

(9) long addressing: these instructions include a full 16-bit destination address as bytes 2
and 3 of the instruction.

(h) indexed addressing: uses a base register (either the program counter or the data pointer)
and an offset (the accumulator) in forming the effective address for a JMP or MOVC

instruction.



[T T I
Opcode
[ I

(a) Register addressing (e.g. ADD A, RS)

[T T T 1T
Opcode
I I

Direct address
A T T A

(b) Direct addressing (e.g. ADD A,55H)

[ T T T 177
Opcode
I

(¢) Indirect addressing (e.g. ADD A,@RO0)

[T T T 1T
Opcode
T

[T T T 17T T7
Immediate data
A T T A

(d) Immediate addressing (e.g. ADD A,#4

[T T T 1T
Opcode
T

[T T T 17T T7
Relative offset
A T T A

(e) Relative addressing (e.g.«SIMP AHEAD)

[ T
A10-A8 | Opcode
[ [

T 7T 17 T
A7-A0
I

(f) Absolute addressing (¢.g. AIMP BACK)

[T T T 1T
Opcode
T

T T T 17 T
A15-A8
I

(g) Long addressing (e.g. LIMP FAR_AHEAD)

Base Register

PC or DPTR

(h) Indexed addressing (e.g. MOVC A, @A+PC)

Offset

+ ACC

Effective address

Figure 2-2 Eight addressing mode



H 0 1 2 3 4 5 6 7 8 9 A B Cc D E F
L
0 NOP JBC JB JNB JC JNC JzZ INZ SIMP MOV ORL ANL PUSH POP MOVX MOVX
bit,rel bit,rel bit,rel rel rel rel rel rel DPTR# C,/bit C,/bit dir dir A, @DPTR,
dara 16 @DPTR A
1 AIJMP | ACALL | AJMP | ACALL AIMP ACALL AIMP ACALL AIMP ACALL AIMP ACALL AJMP | ACALL AIMP ACALL
2 LIJMP | LCALL RET RETI ORL ANL XRL ORL ANL MOV MOV CPL CLR SETB MOVX MOVX
addr1l6 | addrl6 dir,A dir,A dir, A C,bit C,bit bit,C C,bit bit bit bit A,@RO @RO,A
3 RR RRC RL RLC ORL ANL XRL JMP MOVC MOVC INC CPL CLR SET MOVX MOVX
A A A A dir#data | dir#data | dir#data | @A+*DPTR | A, @A+PC A@A+DPTR DPTR C C C A,@R1 @R1,A
4 INC DEC ADD ADDC ORL ANL XRL MOV DIV SUBB MUL CINEA, SWAP DA CLR CPL
A A A#data | A#data | A#data | A#data | At#data A #data AB A #data AB #data, A A A A
rel
5 INC DEC ADD ADDC ORL ANL XRL MOV MQV SUBB CINEA, XCH DJINZ MOV MOV
dir dir Adir Adir Adir Adir Adir dir#data dir,dir Adir dirrel Adir dir,rel Adir dirA
6-7 INC DEC ADD ADDC ORL ANL XRL MOV MOV SUBB MOV CJINE XCH XCHD MOV MOV
@Ri @Ri A@Ri | A@Ri A @RI A,@Ri A @RI @Ri #data dir,@Ri A @RI @Ri,dir @Ri A@Ri | A@Ri A @Ri @Ri,A
#data
rel
8-F INC DEC ADD ADDC ORL ANL XRL MOV MOV SUBB MOV CJINE XCH DINZ MOV MOV
Rn Rn ARnN ARn ARnN ARnN ARn Rn,#data dir,Rn ARnN Rn,dir Rn ARnN Rn,rel ARnN Rn,A
#data

Jrel

Table 2-1 !OSA of 8051




Table 2-1 illustrates the full instruction set of 8051. We can determine an
instruction from the first byte. In this table the rows represent the four least significant
bits of the opcode while the columns represent the four most significant bits. In
addition, Row 8-F are instructions of register addressing, and the register which is
used is according to the last three bits. Row 6-7 are instructions of indirect addressing,
and the last bit indicates which register (RO or R1) will be used as indirect address.

And A5H is reserved.

2-3 Balsa Back-End

The Balsa synthesis system could convert handshake circuits into gate-level
netlists. The netlists are composed by:the standard cells of the Xliinx FPGA. We will

describe basic some handshake components.in Balsa synthesis system.

2-3-1 Basic Elements

The standard cells of Xilinx FPGA used by Balsa are AND, OR, NOR, XOR,
NADN, BUF, XNOR, INV, FD (D-type flip-flop), FDC and FDCE. And the most
basic cell in asynchronous circuit is the Muller C-element as shown in Figure 2-3. It is
a sequential circuit which holds the past state. With all-0 inputs, the output is set to 0.
With all-1 inputs, the output is set to 1. With other inputs, the output does not change.
A Muller C-element is a fundamental component that is extensively used in

asynchronous circuits.

11



0 il |q

. C q 0 0 |0
i 0 1 |nochange
(a) I 0 |nochange
1 1 1
(b)

B q

(¢)
Figure 2-3: The Muller C-element, (a) symbol (b) truth table

(c) gate-level implementation

Figure 2-4 shows the NC2P element. It behaves a little like a C-element. When i0
is equal to 0, the output is 0. When i0 and il are equal to 1, the output is 1. With other

inputs , the output does not change.

12



©
Figure 2-4: The NC2P-element (a) symbol (b) truth table (c)
gate-level implementation

Ar
Ba NC2P
Ar S — Br

(a)

®)

©

Figure 2-5: The S-element (a) symbol (b) gate-level

implementation (c) handshaking protocol

Figure 2-5 shows the S-element which perform a series of handshake. An
S-element has 4 pins including 2 request/acknowledge handshake pairs — ‘Ar’/’Aa’

and ‘Br’/’Ba’. It is composed by nc2p, NOR and AND gates.

13
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Figure 2-6: The multiplexer (a) function block (b) true table

(c) gate level implementation

S |O1 Oo

Oo
i 0
0 i

demux 1

(b)

sel

O1

(@) <

Qo

()
Figure 2-7: The de-multiplexer (a) function block (b) true

table (c) gate level implementation

The basic multiplexer and de-multiplexer are shown in figure 2-6 and figure 2-7.

They are used in many elements such as Basla full adder and BrzCase.

2-3-2 Handshake Components

There are about 40 handshake components in Balsa. Each handshake

components maps to a individual gate level implementation. We will illustrate some
14



of them.

activate

[activate_0r inp_0r»
BUF
[[inp_Oa out_0r>
np out BUF
| out_Da activate_Oa ™
BUF
| inE Dd531‘D by I out Ddg}ﬂtﬂé)
L20r
(a)
()

Figure 2-8: The Fetch Component (a) handshake component

(b) gate level implementation

Figure 2-8 shows the Fetch component. This component is used to transfer data

from input channels to variables, from variables to output channels, and from

variables to variables.

activateOut_Or

activate Or [CactivateOut_1a ALAS
—
activateOut 1 acfivatoOut O

r

@

activateOut_1r

r activateOut_Or

activate 0a,

Figure 2-9: The Sequence Component (a) handshake

component (b) gate level implementation

Figure 2-9 and figure 2-10 are sequence and concurrent component respectively.

They control the executing of the components which is sequential or parallel.

15
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achate0d Ta 2civale 02 B K ! 1
activateOut_Ir achvaeOu_TracivaleOd 0y

(a)

Figure 2-10: The Concurrent Component (a) handshake

component (b) gate level implementation

write Read[0]

Read[1]

| read Or ALIAS [min) ite 02>
b FD write Oa
read 1r NV NV
D 0 ALKS

(b)

Figure 2-11: The Variable Component (a) handshake

component (b) gate level implementation

Figure 2-11 shows the variable component. It uses D-type flip-flop to store data.

16



When we declare variables in out Balsa programs, they will be mapped into variable
components. Data is stored when the signal write_Or is set, and read when the signal

read_Or or read_1r is set.

17



This chapter describes the decoder design of asynchronous 8051 microprocessor.
This decoder is for pipelined 8051 with IF, ID, OF, EXE, and WB stages.

Chapter 3 The Design

3-1 The architecture of the pipelined asynchronous 8051

The architecture of asynchronous pipelined 8051 is show in figure 3-1

RAM

ROM

RAM INTERFACE

E———)>
T

|

WB

- —>
IF ID | OF :>EXE
_ — :\>
— —
?
CORE

Figure 3-1 The architecture of asynchronous pipelined

There are five stages of our pipeline, and an interface between the processor

8051

core and the RAM. The IF (instruction fetch) stage fetches instructions from ROM.
The ID (instruction decode) stage decodes the instruction and handles the branch
instruction. The OF (operand fetch) stage fetches operands from RAM. The EXE
(execute) stage execute instructions according to opcodes of instructions. The WB

18




(write back) stage write back the result into RAM.

3-2 The design of IF stage

The architecture of the IF stage is show in figure 3-2.

ctrl_2_bufl_addr
interface_2_bufl_da IF_2_ID_data

mem_2_IF_data trl_2_bufl_RnW

bufl_2_interface_ad| buf1_2_ctrl_data

ctrl_2_buf2_addr

ctrl_2_buf2_RnW
! o Ly

ID_2_IF_addr

Figure 31‘2‘ 'FJ_ ghjeq&Jre of IF stage

i-!. s‘*‘ sl

| 3

-.'-E_;: 1856 Y

There are three basic compon‘e@&m the IE-rséfge mem interface, buffer, and
fetcher ctrl. Mem interface is a arbitrator to afbltrate requests from one of the buffers.
Buffers are controlled by fetcher ctrl. According to the control signal, buffers prefetch
instructions from the external ROM or provide the target byte which fetcher ctrl needs.
Fetcher ctrl receives the value of the program counter, and check if it is hit in one of
the buffers or miss. If it is hit, fetcher ctrl sends a request of read to the hit buffer, and
if it is miss, fetcher ctrl sends a request of prefetch to all buffers. In addition, if the
buffer is read the last byte, fetcher ctrl would send a request of prefetch.

k- ¥

3-2-1 Mem Interface

In asynchronous systems, there exists a problem that the inputs of a merge circuit
may come simultaneously. In Balsa, we can use an arbitrator component to solve this
problem. The mem interface may receive a address for one of the buffers and access
the ROM according to this address. However, it would happen that both buffers send
addresses to the mem interface and the circuit might be error. Thus, we use the
“arbitrate description” to resolve this problem.

19



arbitrate

bufl 2 interface_addr then
interface_2_ mem_addr <- bufl_2_interface_addr;
direct :=1

|buf2_2_interface_addr then
interface_2_ mem_addr <- buf2_2_interface_addr;
direct :=0

end

The mem interface behaves as the flow chart shown in Figure 3-3.

Figure 3-3 the flow chart of the mem interface

3-2-2 Buffers

For each buffer, it receives the target address and the action signal from fetcher
ctrl. If the action signal is read, it returns the target byte according to the address. If
the action signal is write, it fetches 32 byte data which start from the address. The
buffer behaves as the flow chart shown in Figure 3-4.

20
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Figure 3-4 the flow chart of the buffer

3-2-3 Fetcher Ctrl

Fetcher ctrl controls all the buffers. It fetches the value of the program counter
first. Then it checks if the target byte eﬁfgijg?one of the buffers. If there is a buffer
which has the byte, Fetcher ctrl serﬁ_lgé‘% réa‘d’r'eﬁlg%gt and the address to the buffer and
then passes the target byte to the:?zﬁ jtagg}.}p::ﬁ%g\anéet byte is the last byte of the
buffer, fetcher ctrl will send a V\ﬁ‘i e eque‘:é E@-ﬁhﬁbu!ﬂer However, if no buffer has the
target byte, fetcher ctrl will flush all the buffers
in Figure 3-5. ‘

Figure 3-5 the flow chart of the fetcher ctrl

21



3-3 The design of ID stage

The architecture of the ID stage is show in figure 3-3.

The ID stage is divided into ID1 and 1D2 two stages. In the I1D1, it fetches the
first byte of an instruction, decodes this instruction, determine the remained bytes,
abstract the opcode, and generate the control signal of this instruction. In the ID2, it
would fetch remained bytes and provide completed control signals for the OF stage. If
the current instruction is a branch instruction, the 1D2 stage would calculate the target

address and handle the branch action.

ActionCtrl

IF_2 ID_data

ReadOut

! i1 E! T

v

ID_2_IF addr I

v

Figure 3-6 The architecture of ID stage

3-3-1 The ID1 stage

When ID1 receives the instruction byte, it would determine that this instruction
is regular or non-regular. This could decrease the size of the multiplexer. Then,
according to the instruction, ID1 generates the signals needed by the following stages
such as the remained bytes, the opcode, the read signal, and the write signal. In order
to decrease the area cost, we use the shared procedure in Balsa, which would
construct only one component whatever times this procedure is called. The example
description of the shared procedure is shown in the below.

shared readMEMB is
22

v



begin
read_data.ctrl := MEMB
end

The behavior of the ID1 stage is shown in Figure 3-7.

= F Wem

Figure 3-7;-:flth ifl,emhartof the ID1 stage
3-3-2 The ID2 stage e

In the 1D2 stage, it will fetch the remained bytes first. To avoid the race condition
between the ID1 stage and ID2 stage, we use the “handshake enclosure” description in
Balsa to promise that ID2 fetches the remained bytes before ID1 fetches a new
instruction. The handshake enclosure is shown in the below.

ActionCtrl -> then

case ActionCtrl of

end
After fetches all remained bytes, ID2 would transform these bytes into suitable
operands and pass all signals to the OF stage. If the instruction is a branch instruction,

ID2 would calculate the target address and change the PC value if the branch is taken.
The behavior of the ID2 stage is shown in Figure 3-8.
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Figure 3-8 The flow chart of the ID2 stage
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Chapter 4 Implementation and

Verification

We will show the design flow of implementations and the simulation in this
chapter. Because this project is cooperated with the pipelined asynchronous 8051,
we will simply illustrate the hole design with the pipelined asynchronous 8051.

4-1 The design flow of FPGA

We had already implemented an asynchronous pipelined 8051 with Balsa.
The Balsa program was compiled into a handshake component netlist, and finally
this netlist was converted to a verilog gate-level netlist for Xilinx FPGA. With
the gate-level netlist, we used othersCAD:tool to implement this circuit and do
some simulation.

Because we wanted to-implement the circuit in Xilinx FPGA, first we got
the gate-level netlist by Balsa. Second; we imported this netlist into Xilinx ISE, a
CAD tool for Xilinx FPGA.~Then.we-added ''keep hierarchy" description for
each handshake component to avoid the optimization of CAD tool because the
optimization will break the timing constraint. Finally we followed the standard
design flow of the Xilinx FPGA, and burned the design into FPGA. All the flow
is shown in Figure 4-1
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Figure 4-1. The FPGA design flow

4-2 Verification

We can do behavior simulation for PA8051 (pipelined asynchronous 8051)
in Balsa. The simulation environment is shown in figure 4-2.
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In Balsa environment, we can use Balsa memory module to avoid duplicate
calls of memory, which would construct duplicate memory modules. Figure 4-3
shows the memory module. We can write instructions into memory module, and
then executing CPU core and memory parallelly.

When all instructions have been executed, we can compare the result in the
output ports with the result made bye 8051 simulator. If the results are not in the
output ports, we should add some instructions to move the results from RAM to

output port.

PAS051(BALSA) >

a
o s
S = 2
© = l
§ & e
o
Execution Result
8051 H% 8051 Simulator

KEIL-oh51

8051 Object Code

HEf
i

KEIL-c51
KEIL-a51

KEIL-bI51

Source file (C)

U

Figure 4-2: PA8051 simulation environment
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BalsaMemoryROM ({12, --address width
8}, --data width
<- BalsaMemoryNew(), -- direct expression to port connection
ROM_addr, ROM_rNw, ROM_write data, ROM read data)

Figure 4-3. The ROM model
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Chapter 5 The Result

5-1 Simulation result

We have successfully completed the behavior simulation in Balsa with small
benchmarks such as GCD and Fibnacci Code. The simulation results are shown in

the following.

5-1-1 The performance of the decoder

Because we integrate a cache-like buffer with our decoder, we need to know

the effects with different kinds of buffers. We first measured the issue rate with
different numbers of buffers. The buffer size is 32 bytes, and because the
programs of GCD or Fibnacci Code are small, the benchmark is 256 instruction

of the additions. The result is.shown in table.5-1.

The numbers of buffers

The consumed time

(in Balsa units)

The normalized result

0 155,062,000 20.55
1 11,896,100 1.58
2 7,544,200 1

3 10,012,600 1.33

Table 5-1. The comparison of different numbers of buffers

Second, we measured the issue rate in different sizes of buffers. The buffer
size are 8 bytes, 16 bytes, 32 bytes and 64 bytes. The result is shown in table

5-2.
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The size of buffer The consumed time
The normalized result
(byte) (in Balsa units)
8 7,801,000 1.03
16 7,629,800 1.01
32 7,544,200 1
64 7,501,400 0.99

Table 5-2. The comparison of different sizes of buffers

Finally, we measured the performance of the whole pipelined asynchronous
8051 with different sizes of the buffer. The result is shown in table 5-3.

The size of buffer The consumed time
The normalized result
(byte) (in Balsa units)
8 13,681,400 1
16 13,681,400 1
32 13,681,400 1
64 13,681,400 1

Table 5-3. The performance of the whole pipelined

asynchronous 8051 with different sizes of buffers

5-1-2 The performance of the pipelined asynchronous 8051

The comparison of performance and cost of single-cycle asynchronous 8051
and pipelined 8051 is shown in Figure 5-1. We use the pipelined asynchronous
8051 with two 32-byte buffers to compare with the single-cycle 8051,
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SA8051[2], which was designed by our laboratory last year.

The consumed

time The_ The cost The
normalized normalized
: in Balsa unit
(in Balsa unit) time ( ) cost
SA8051 24,891,300 3.30 210,513.5 0.43
PA8051 7,544,200 1 494,752.25 1

Table 5-4. The comparison between the 1-cycle

asynchronous 8051 and the pipelined asynchronous 8051

5-2 Area cost

We use the Xilinx ISE 6,3ito synthesize our PA8051 processor, and the
target FPGA chip is Xilinx FPGA Spartan-lE 300 ft256. The gate count and path

delay are shown in Table 5=1.

The gate and path delays of every partofifPA8051 are shown in table 7. The ID
stage is the most dominant stage of the whole-design, taking half of the total cost

of PA8051.

The biggest part is the ID stage. That is because that there are 256 cases of
instructions. Even though we divided the instructions into regular and
non-regular instructions, they still need to be multiplexed and that causes the cost

S0 big.
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Slice gate minimum path delay(ns)

IF 1007 13987 [157
ID 5353 61973 |721
OF 564 7086 34
EXE 1284 16938 |174
MEM_INTERFACE 1098 13217 (125
RAM_READ_ARBITOR 57 1051 28
WB 232 2977 40
TOTAL 9595 117229

Table 5-5. The Cost of Every Part of 8051
5-3 The discussion of theresult

Through the comparisen of the different numbers of buffers, we can easily
find out that if there is no buffer; the-delay-of the' memory access is huge. If there
is only one buffer, it saves the memory access.time. However, if there are two
buffers, it not only saves the memory access time but also hides some accesses
when the instructions are executed. If there are three buffers, the additional
buffer doesn’t give any new contribution and the issue rate is lower.

Furthermore, with the comparisons of the different buffer sizes, the
simulation results show that if the buffer size increases, the consumed time
decreases slightly. Because the benchmark is a simple 256-addition operation
without any branch instruction, the locality is not outstanding. If we consider the
benchmark program of GCD or Fibnacci Code, the 32-byte buffer design is
enough.

With the comparison of the performance of the whole pipelined
asynchronous 8051, we got an unexpected result. The performances of different
buffer sizes are the same. That is because that the memory in balsa is not a
synthesizable component but is an emulation module, and hence the speed of the
memory overtakes the pipeline of speed of the PA8051. If we want to obtain the
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actual performance, we need to implement the whole design in the gate-level or
other physical levels.

Finally, with the comparison of the single cycle asynchronous 8051 and the

pipelined asynchronous 8051, we can see that although the area cost become two
times, the performance is increased to three times.
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Chapter 6 Conclusions and Future

Works

In this thesis, we proposed a new decoder design of asynchronous pipelined 8051
microprocessor. We have confirmed its correctness and implemented it in Xilinx
FPGA. Although it area may be a little large, it performance has been improved. The
contributions of this thesis is :

® The novel decoder for our pipelined asynchronous 8051 has been

developed.

® The design flow of using CAD:tool-to.design an asynchronous system is

confirmed.

The future works which we can do are :
® Optimizing the Balsa code to reduce the area cost.
® Completing the layout simulation and realizing our design with CMOS

chips.
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