3 % - AR 4 P 4 » ~
LAk A R R i R S 2

Super Node Selection for 1P Communication System

FoyoA g id

Rk EP R R

FERBALTAEAB



N %2, 4L - g AN 4 > O
W pkd AR G EanEH S 2

Super Node Selection for IP Communication System

Moyo4 w1 Student : Zhi-Hong Tzeng
dp g RP A FR Advisor : Prof. Ming-Feng Chang
B = = i x

i

R i S A N 1 A = S-S

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
June 2006

Hsinchu, Taiwan, Republic of China

-4

PEARAY LT AT



R A Y 3% S EhniE g S 2

g4 0% 504 B w1

¢oY R
%% BEtEE(Peer-to-Peer) & bu g 1% kB — IR P gag T Gk FTEb e A
S GEE e SR T B R D TAER L 4 R BT RGh AT B N
R A G RAE L B E oS A RET Y Rl PR el FARAEL AR o
3 & & gh(super node) o AN i BRI leaad 2k Se Y o A g o gt B & En kg
BhH 2T P AR B 3 i 4 (Network Address Translator, NAT) {5 & 12 %

Frosw i 7 AR e g nh R ] o BRI T 0 Y SRR a R ahiR

:&%;‘dﬁ?&mﬁffﬂség‘iﬁﬁmlé%—ﬁ Z[LO ﬁél‘i"—]—f,d-\]]ﬂm‘gﬂ‘ ‘z‘,gﬁ']’
* ﬁ QW%’léﬁﬁii&-&F%?mﬁ»qgm@x;d‘ BAE G RSLd T

B Ggf " FEEAT HBF 2k R AR EI P R FRIERR T F R
o PR AR RS TR AR Y o AR - EFE 0 R
E”T%ﬁﬁﬁﬁi$$%oﬂb’%ﬁﬁ B E AT A LB aEE o gLt s S
PR RREREHECOR Y LT F RIS BA F R BT E o RS PR
PR EAEE YRR PR B R Grn g o RIRAR R EP T AP AR B 3 R 9 E TG

if%’#iﬂz i & &8



Super Node Selection for IP Communication System

Student: Zhi-Hong Tzeng Advisor: Dr. Ming-Feng Chang

Department of Computer Science and Information Engineering

National Chiao Tung University

Abstract

Many Peer-to-Peer (P2P) systems take advantage of a subset of the peers that have
better capability (sufficient network bandwidth, high computation power, more disk space,
etc.) to enhance the quality and/or the functionalities of the services provided. These special
peers are often referred to as super nodesz@n.the IP.communication platform developed at
Internet Communication Lab, NCTU, we utilized super nodes to help users in determining
whether they are behind NAT (Network Address Translator) and in punching through the
NAT. In certain conditions, users behind NAT need a super node to relay media streams for
communication with others. If the relay super node is far from the communicating pair, it
may impair the voice quality. In the thesis, we propose a greedy algorithm to search super
nodes which are close to the end-users. Therefore, it can reduce unnecessary relaying delay
between the users and the super node. In addition, we adopt a hierarchy structure to reduce
network traffic in performing our super node selection algorithm. Finally, we evaluate our
algorithm using computer simulation. The simulation results indicate that super nodes

selected by our algorithm are indeed close to the end-users.
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Chapter 1 Introductions

1.1 Introduction

Recently, Peer-to-Peer (P2P) applications where no dedicated server is required,
such as P2P media multicasting, P2P file sharing and P2P communicating software
have become more and more popular. In P2P systems, peers with more resources
(computation power, network bandwidth, disk space, etc.), often referred to as super
nodes (SN), are essential for P2P services because many functions can be achieved
with the assistance of a super node. For example, SNs can help in NAT traversal and
application level routing support. Some P2P applications, such as Kazaa [1] and
Skype [2] select a subset of the peers to handle several special tasks, such as searching
files and routing support. Since:extra tasks need to be performed by the supper nodes,
load-balancing, how to evenly distribute the tasks-among the super nodes, is also an
important issue. In this thesis, we take the spatial locality into account and we present

a super node selection strategy to select a super node close to the user.

1.2 Related Works

Super nodes are generally more powerful peers in terms of bandwidth,
processing power and memory size. In Kazaa, super nodes are responsible for
searching files and forwarding query messages to other super nodes. When a user
wants to locate files, the user first sends query messages to a super node. In the IP
communication platform developed by Internet Communications Lab, NCTU, we

make use of super nodes to help users detecting NAT type and crossing NAT. If the
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NAT type is a symmetric one [9], we need a super node to relay the media stream
between the communicating pair. In these cases, if the super node is far from the
communicating users, sending media streams through the super node may take up too
much time and thus impair the performance. Since a P2P network is composed of a
large number of hosts, naive strategies such as randomly selecting a super node or
attempting to explore all nodes in P2P network seem not reasonable.

A well-known mechanism for selecting super node was presented in Gnutella
protocol [3]. In Gnutella system, an ultrapeer (super node) acts as a proxy and relay
query messages for other peers. Ultrapeers are used to reduce network traffic and
speed up file searching. Since Gnutella is a decentralized P2P file-sharing system, any
peer can determine if it is to become an ultrapeer by itself. A peer can be an ultrapeer
only if following requirements are‘met: it is not firewalled, it runs on an OS that can
handle large numbers of sockets; it.has sufficient bandwidth, it has been up for at least
a few hours and it has sufficient RAM-and.CPU speed. Although the strategy for
selecting a super node in Gnutella'system is.simple and fast, Gnutella can not ensure
that an ultrapeer is close to the peer it serves. Therefore, communicating delay may
increase when an ultrapeer is far from the peer it serves.

Virginia Lo et al. [4] proposed a generic super node selection protocol in CAN
[5], and Pastry [6]. Both are structured P2P networks and use a distributed hash table
(DHT) to organize overlay structure and improve the searching ability. Virginia Lo
presented a mechanism to store super node information in the DHT for fast and easy
lookup. By utilizing the DHT, CAN and Pastry can enhance the searching
performance. However, they don’t account for location information and it is hard to
maintain the overlay structure.

PASS [7] is a novel P2P file-sharing system. PASS divides its overlay into

multiple areas. Nodes are classified by using a geographical division such as a ZIP
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code or an administrative network domain. Then, PASS selects a portion of
high-capacity machines (super nodes) in each area for routing support. PASS shows
that hierarchy structure and selecting super nodes by using location information can
improves the file search performance. In PASS system, users may need to offer
additional information so that PASS can assign them to a proper area.

In our thesis, we try to examine the location relationship between the user and

the super node by measuring round-trip delay from the user to several super nodes.

1.3 Objectives

The objective of this thesis is to,develop a P2P-like solution to establish and
maintain a tree structure of super: node group such.that the each user is close to the
super nodes of the same group andthe overall distance of the entire tree structure is as
minimum as possible. Therefore;-it can.reduce-the transmission delay from the user to
the super node. This mechanism can be‘applied to our previous research result, an IP
communication platform that provides NAT traversal. We adopt the concept of
hierarchy structure to reduce the network traffic in accomplishing our goals. We
classify peers that can be super nodes into groups according to the transmission delay
information. When a user needs a super node, he performs our algorithm to search a
nearby group and choose one of the super nodes in this group. Since the super node
may leave at any time and the media stream it serves needs to be relayed by another
super node, fault tolerance is also a critical issue. We also propose a scheme to
prevent a communication from being suspended due to the departure or failure of a

super node.



1.4 Overview of This Thesis

The rest of this thesis is organized as follows. Chapter 2 describes the basic
concepts and our super node selection algorithm. Chapter 3 presents the simulation

results and analysis. Conclusions are given in Chapter 4



Chapter 2 Super Node Selection
Algorithm

2.1 Basic Concepts

The principle of our algorithm is trying to partition all super nodes into many
groups. Super nodes in the same group are considered close to each other. Each group
has a boot host (the leader). When a user needs a super node, he can first make use of
our algorithm to negotiate with the boot host and execute some measurements to find
nearby group. Then, this user picks hosts in this group as super nodes. Because this
super node is close to the user, thus; it can reduce the probability of inefficient routing
mentioned in section 1.2.

Before describing the algorithm,-we-need-to introduce some terms used in our
algorithm and the system architecture which.is:shown in Fig 2.1.

Rendezvous Point (RP): RP is an entry point of a P2P network. Users which
want to join a P2P network need to contact RP first in order to retrieve necessary
information. Besides, RP maintains all super nodes data and structure information in
our system.

Super Node: A host can be a super node only if certain requirement is matched.
In our IP communication platform, the function of a super node is used to relay media
stream for those hosts behind NAT. So, the basic requirement of our super node is it
must have a public IP address. RP will examine this requirement when a host contacts
RP. In addition, we also take workload and computer power of a host into account.

Boot host: A boot host is a leader in a group. It is responsible for replying the

measuring request for searching a nearby super node from a new host. When a new
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host attempts to apply our algorithm to search a nearby super node, it just negotiates
with the boot host in this group.

Group: A group is a set of hosts which are close to the boot host. A group acts
as an end host. By utilizing this kind of hierarchical architecture can reduce
communicating traffic and negotiation time.

Neighbor Group: A neighbor group is a nearby group in the physical network.
As shown in Fig 2.1, both group 2 and group 3 are the neighbor group of group 1.

Grouping Criterion: Grouping criterion determines which group a new host
should belong to. If the distance (the distance can be the round-trip time) from a new
host to a boot host in one group is smaller then a threshold, we say the grouping
criterion is met and this new host can join this group. To be more understandable, we
use notation D(X,Y) to represent the distance. form X to Y in the following

paragraphs.

bot host
RP
=
group 3
bot host
new host

group 2

Fig 2.1 System architecture



2.2 Select a Super Node

In this section, we describe the detailed super node selection algorithm. We use a
recursive algorithm to search the group close to the user. The pseudo code of our

algorithm is shown as follows,

(bootHost, bootGroup) = fetchInformation(RP);
while (true)
{
If(grouping criterion is met)
{
joinGroup(newHost, bootGroup);
return;

¥

else
{
Dmin = distance(newHost, bootHost);
(minBootHost, minBootGroup) = measureClosestNeighbor(bootGroup);
Dmin’ = distance(newHost, minBootHost);
[f(Dmin <= Dmin’)
{
newGroup = createGroup(newHost);
addNeighborGroup(newGroup bootGroup);
return;

}
Else

{

bootHost = minBootHost;
bootGroup = minBootGroup;

¥




When a new host wants to find nearby super nodes, it must contact RP to acquire
necessary information. After RP receives the request of this new host, RP will
randomly select a boot host for him. As illustrated in Fig 2.2-1, host N communicates
to RP, than RP informs host N that the boot host is host B and host B is in group 1.
Besides, RP also tells host N the neighbors of group 1 (group 2, group 3 and group 4)

and each boot host in these neighbors.

RP @ group 2
@@
S

Fig.2.2-1 Illustrate super node selection algorithm

After host N receives these information from RP, host N measures the distance
from itself to the boot host. As illustrated in Fig 2.2-1, host N measures D(N, B). If
the grouping criterion is met, it means host N is close to host B and host N can join
group 1. Host N will notify RP it belongs to group 1 and our algorithm is finished.
Finally, our system structure is shown in Fig 2.2-2 (a).

If the grouping criterion is not met, host N will record D(N, B) and denote as
Dmin. Dmin is the minimum distance and group 1 is the closest group up to now.
Than, host N will sequentially measure the distance from itself to each boot host in
host B’s neighbor groups. After completing these measurements, host N can

determines the smallest distance and denotes as Dmin’. In this example, we assume



D(N, C) is the smallest.

If Dmin’ is greater than Dmin, it means Dmin is the best distance which our
algorithm can find and our algorithm is finished. Host N will notify RP to create a
new group for him and the group which holds Dmin will be chosen as its neighbor
group. The new system structure is shown in Fig 2.2-2 (b). If Dmin’ is smaller then

Dmin, host N will recursively repeat above paragraph to search the closest group.

: (b)
(@) host B

group 3

host N

Fig 2.2-2 Illustrate system architecture

Those peers which don’t satisfy super node requirements can also follow the
above procedure to find their super nodes. The difference is they only tell RP which

group their preferred super nodes are located; they don’t need to join our system.

2.3 Improvements

Our algorithm would fail to find the closest group in the scenario shown in Fig
2.3-1. A new user, host N, attempts to find the closest super node. In this example, we
assume D(N, A) is smaller than D(N, B) and group 3 is the closest group for host N. If

RP choose host A in group 1 as the boot host and inform host N. By following our
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algorithm, host N measures D(N, A) and it finds D(N,A) do not satisfy the grouping
criterion. Next, host N will search the neighbor group of group 1. Then, host N finds
the closest neighbor group is group2 but D(N, B) is greater than D(N, A). So, it will
inform RP to create a new group and notify RP that group 1 is the neighbor group of
this new group. In this scenario, host N do not have chance to measure the distance
from itself to the boot host in group 3. Thus, host N can not find the super nodes in

group 3.

host N

group 2

Fig 2.3-1 Exception scenario

In order to have better performance, we present two methods to improve the
drawback. First, RP gives the new host more boot hosts and the new host executes our
algorithm from more boot hosts at the same time. By searching more hosts, it can
increase the probability to search the closest super node. We evaluate the performance
by giving the new host three boot hosts and five boot hosts.

Second, a new group connects to more than one neighbor. Our structure will

change from tree structure to graph structure. The effect of connecting more
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neighbors is the same as above improvement. A new host will search more hosts and
increase the probability to find the closest super node. Fig 2.3-2 illustrates the method
to find more neighbors. As illustrated in Fig 2.3-2 (a), host N completes our algorithm
and find group 1 is the closest group. We assume D(N, A) is not met the grouping
criterion. Thus, host N will form a new group and select group 1 as its neighbor.
Because of the locality characteristic, the neighbor groups of group 1 may be close to
the new group. Therefore, host N can select more nearby neighbor groups from group

1’s neighbor groups. In Fig 2.3.2 (b), host N also connects to group 2 and group 3.

@ (b)

group 3 group 4

host N

roup 2
new group Y new group

group 2

Fig 2.3-2 Change from tree structure to graph structure

The third improvement method is to select a boot host close to the new host. This
can be done by checking IP address. We can select the boot host which has the same
IP class as the new host. If we can give the new host a nearby boot host in the
beginning, it can reduce many unnecessary measurements. In simulation, we first
select the boot host with the distance from this boot host to the new host is smaller
than a range. This range is greater than the threshold of the grouping criterion. If we

can not find such boot hosts, we will randomly select a boot host from all boot hosts.
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2.4 Fault Tolerant Model

In order to prevent a communication being suspended due to the departure or
failure of a super node, we present a scheme to relieve this problem. In addition to the
super node for relaying media stream, a user can acquire a set of backup super nodes,
hence a user can switch to another super node as it is aware of the serving super node
is leaved.

A super node may leave our system for any reason at any time. To detect the
unpredictable departure of a super node, a super node is asked to periodically send out
“keep alive” messages to the user it served. If a super node failed, the user can detect
this phenomenon after a period of time as it didn’t receive “keep alive” message.

Those super nodes which don’t serve anyone.need another mechanism to detect
the unpredictable departure. All hosts needs:to maintain the same host list which
includes all hosts in this group- When a-new-host decides to join a certain group, it
would notify RP and the boot host in that group. After the boot host knows a new host
joins this group, it will notify other hosts to update their host list. The boot host needs
to periodically send out “keep alive” messages to other hosts in this group. When
other hosts receive “keep alive” message, they will ack “keep alive” message in order
to indicate their existence. If the second host in the host list didn’t receive “keep
alive” message after a period of time, it will automatically become the boot host and
notify RP the departure of the original boot host. Besides, the boot host also sends out
“keep alive” messages to boot hosts in its neighbor groups. If there is only one host in
a group, the departure of the boot host, the only one host, can be detected by the boot
host in its neighbor groups. The reason for two kinds of mechanism is the previous

mechanism requires more real-time reaction to the departure of a super node.

12



Component Information

RP all super nodes information, system structure information

Super nodes the information of hosts in the same group, the neighbor groups

information, the neighbor boot hosts information

Normal users which group he belongs to

Table 2.4 The information stored in each component

2.5 Restructure Architecture

If all hosts in a group have leaved, that will result in an isolation of our structure.
As can be seen from Fig 2.5 (a), if there is no host in group 1, our structure will
separate into disconnected parts. ©bviously the iselation will affect the functionality
of our algorithm. To solve this problem, RP must natify the boot hosts in group 2 and
group 3 of re-executing our algorithm"and-inform them the boot host is in group 4.
After the boot hosts in group 2 and“group-3-finished the algorithm in section 2.2, the

final system structure is illustrated in Fig 2.5 (b).

(a) group 4 (b) group 4

group 2

group 2

group 3 group 3

Fig 2.5 Restructure architecture
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2.6 Path Optimization

Considering a situation in Fig. 2.6.1 (a), a new super node, host N, intends to join
our system. The boot host of groupl is host B and the boot host of group 2 is host C.
In this topology, we assume D(N, B) is greater than D(N, C) and both D(N, B) and
D(N, C) are smaller then D(B, C). Both D(N, B) and D(N, C) do not meet grouping
criterion. RP informs host N that the boot host is host B. By following our algorithm
in section 2.2, host N will create a new group and choose group 2 as its neighbor
group.

If a boot host is far from the boot hosts in its neighbor group, it will increase the
cost of fault tolerant model. Because both D(N, B).and D(N, C) are smaller then D(B,
C), the time for sending KAM te its.neighbor.boot.hosts in topology of Fig 2.6.1 (a) is
greater than that in topology of-Fig 2.6.1.(b).-In order to achieve better performance,
we should adjust the topology of Fig 2:6.1 (a)to.the topology of Fig 2.6.1 (b). D(B, C)
has been measured when host B or host C joined our system. D(N, B) and D(N, C) are
measured when host N intends to join our system. Therefore, by comparing these data,
we can know the relation between group 1, group 2 and group 3 and modify our

structure to Fig 2.6.1 (b).
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Fig 2.6.1 Path optimization

The effect of path optimization is either good or bad to our super node selection
algorithm. As shown in Fig 2.6.2,.path optimization will help the new host to find the
closest group. Assuming the distance relationship-in Fig 2.6.2 is D(N, C)>D(N,
A)>D(N, B)>D(N, D) and D(N;C), D(N;-A):-D(N, B) and D(N, D) do not satisfy the
grouping criterion. After the new host:N.contacts RP to retrieve the information of the
boot host. RP informs the new host N that the boot host is host A and host A is in
group 1. In Fig 2.6.2 (a), we do not perform path optimization for host B. By
following our algorithm, host N measures D(N, A) and knows D(N, A) do not meet
the grouping criterion. Then host N searches the neighbor group of group 1. He also
finds D(N, C) do not meet the group criterion and D(N, C) is greater than D(N, A).
Host N will create a new group and choose group 1 as its neighbor group. In Fig 2.6.2
(b), we perform path optimization for host B. By following our algorithm, host N has
the chance to measure host B and host D. Thus, host N can find the closest group is

group 4.
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(b)

host A

group 4

Fig 2.6.2 Path optimization may increases performance

As shown in Fig 2.6.3, the effect path optimization will make the new host hard
to find the closest group. Assuming the distance relationship in Fig 2.6.3 is D(N,
B)>D(N, A)>D(N, C)>D(N, D) and D(N;1B); D(N;.A), D(N, C) and D(N, D) do not
satisfy the grouping criterion.= After the .new host"N contacts RP to retrieve the
information of the boot host. RP-informs the-new host N that the boot host is host A
and host A is in group 1. In Fig 2.6.3 (a),'we do not perform path optimization for
host B. By following our algorithm, host N has the chance to measure host C and host
D. Thus, host N can find the closest group is group 4. In Fig 2.6.3 (b), we perform
path optimization for host B. By following our algorithm, host N measures D(N, A)
and knows D(N, A) do not meet the grouping criterion. Then host N searches the
neighbor group of group 1. He also finds D(N, B) do not meet the group criterion and
D(N, B) is greater than D(N, A). Host N will create a new group and choose group 1

as its neighbor group.
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(a)

group4 o5t N

host C
group 3 host A host A
f’
group | group 1
group 2 group 2
host B host B

Fig 2.6.3 Path optimization may decreases performance

2.7 Reduce Overhead of Querying Neighbors

This problem is a new host need to contact'RP to fetch neighbors’ information
when it wants to perform next measurement. I this new host is far from RP, this will
increase cost of our algorithm. To be:more clearly, the negotiation flow can be shown
as Fig 2.7. To overcome this disadvantage, the boot host needs to store its neighbors’
information. When a new host creates a new group and notifies RP its neighbor group,
RP also informs the boot host in its neighbor group to update neighbor’s information.
While a boot host receives a measure request from a new host, the boot host will reply

the neighbors’ information to the new host.
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query neighbors and repeat step 3,4,5,6

Fig 2.7 Negotiation Flow for completing selecting algorithm
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Chapter 3 Simulation and Analysis

In the following sections, we carry out a simulation to verify the results and

quantify the performance of our algorithm.

3.1 Implementation of the Simulator

We have implemented a simulator on Microsoft Windows Platform and our
developing tool is Borland JBuilder 2005. The language version is Java(TM) 2 SDK,
Standard Edition 1.4.2. In the simulator, we use JFreeChart 1.0.1 to produce analysis

report.

Fig 3.1 (a) Random topology (b) Waxman topology

We use two kind of network topology as our experimental environment. The first

network topology is shown in Fig 3.1 (a). We randomly generate hosts on a plane and
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the distance between two hosts is this distance on this plane. In the following
paragraphs, we use Random topology to stand for this topology.

The second network topology is shown in Fig 3.1 (b) and it is generated by
BRITE [13]. BRITE is a widely-used network topology generator and it is used in
many famous network simulation tools such as ns and SSF. There are several kinds of
topology mode in BRITE and we use Waxman [14] model to generate network
topology. Waxman model produces a random graph on a plane, but it includes
network specific characteristics and it uses a probability function to connect two
nodes. The distance between two hosts which do not have direct connection is
calculated by Dijkstra shortest path algorithm. The configuration file we used for
setting Waxman model is shown in Table 3.1. The number of nodes (N) and the size

of main plane (HS) are assigned for-different simulation.

BeginModel
Name = 3 #Router Waxman = 1, AS Waxman = 3
N =X #Number of nodes in graph
HS=Y #Size of main plane (number of squares)
LS =100 #Size of inner planes (number of squares)

NodePlacement = 1#Random = 1, Heavy Tailed = 2
GrowthType=1  #Incremental = 1, All =2

m=2 #Number of neighboring node each new node connects to.
alpha =0.15 #Waxman Parameter
beta =0.2 #Waxman Parameter
BWDist=1 #Constant = 1, Uniform = 2, HeavyTailed = 3, Exponential = 4
BWMin =10.0
BWMax = 1024.0

EndModel

Table 3.1 Waxman model parameters
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3.2 Simulation Results and Analysis

We first present the topology produced by our simulator. Then, we discuss the

analysis reports about randomly selecting a boot host and two improvements.

3.2.1 Simulation Results

The system structure produced by our algorithm can be seen in Fig 3.2.1. There
are 100 hosts in Fig 3.2.1. Each circle stands for a host and only the boot host has

edges to connect neighbor groups.

Fig 3.2.1 System structure
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3.2.2 Simulation Analysis

We evaluate our algorithm by the following two terms. Join Cost is used to
calculate the number of hosts are measured after a new host completes our algorithm.
Performance is used to determine whether the super node selected by our algorithm is

the closest one or not.

the number of hosts are measured after a host (A) completes our algorithm
the number of hosts in our system when A executes our algorithm

Join Cost =

the rank of distance froma host (A) to a group selected by our algorithm
the number of groups in our systemwhen A executesour algorithm

Performance =

Fig 3.2-1 is performed in first topology with 100 nodes. Fig 3.2-2 is performed in
second topology with 100 nodes. Both analyses show that our algorithm can not find
the closest group. Because we d‘o‘ not exploreall nodes, we can not ensure that there

are no other super nodes are closer than the super ndde we selected. Table 3.2.2-1 is

the distribution of the performance.-Only-37% nodes can find the closest group in

Random topology and 32% nodes find the closest group in Waxman topology.
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Random Topology:100 nodes,1 boot host,Random Select
100 ulq-no et e p ﬁ .on
I| 32 Elr i‘ ' II|ql' "TI E’I "‘u |1;2f-:| | T EU.
g | | || || I | ]
m ] |
= 50 -r" i H J!l H |:u
o sas ] [ l
5 |I I' '.. " i " ll b ¢
-~ DR F TR T
L i " e T N K R

Maode

= Join Cost e Average Performance:87%

Fig 3.2.2-1 100 nodes and 1 boot host in Random topology
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Fig 3.2.2-2 100 nodes and 1 boot host in Waxman topology

Table 3.2.2-1 Performance results with 100 nodes and 1 boot host

Num of Nodes
Random Topology Waxman Topology
Performance
< 80% 21 25
80%~89% 10 21
90%~99% 32 22
100% 37 32

Fig 3.2-3 is performed in first topology with 100 nodes and three boot hosts. Fig
3.2-4 is performed in first topology with 100 nodes and five boot hosts. As can be
seen from Fig 3.2-3 and Fig 3.2-4, given three boot hosts can achieve better balance
between performance and the cost of selecting a super node. Giving more boot hosts

can’t improve the performance significantly but increasing more traffic.
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Fig 3.2.2-3 100 nodes and 3 boot hosts in Random topology
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Fig 3.2.2-4 100 nodes and 5 boot hosts in Random topology

Table 3.2.2-2 Performance results with multi boot hosts in Random topology

Num of Nodes
3 boot hosts 5 boot hosts
Performance
< 80% 2 1
80%~89%
90%~99% 24 16
100% 67 80
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Fig 3.2-5 is performed under Waxman topology with 100 nodes and three boot
hosts. Fig 3.2-6 is performed under Waxman topology with 100 nodes and five boot

hosts. Both analyses show the first improvement method also works in Waxman

topology.

2 Analysis |ZJEEI
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Fig 3.2.2-5 100 no"d__és and 3-beet-hosts m Waxman topology
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Fig 3.2.2-6 100 nodes and 5 boot hosts in Waxman topology
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Table 3.2.2-3 Performance results with multi boot hosts in Waxman topology

Num of Nodes
3 boot hosts 5 boot hosts
Performance
< 80% 1 0
80%~89% 3 1
90%~99% 33 11
100% 63 88

Fig 3.2-7 and Fig 3.2-8 are evaluated under Random topology and Waxman
topology with 100 nodes and one boot host. Both simulations adopt the second
improvement method. These two analyses show the second improvement can greatly

enhance the performance even if there is only one boot host.
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Fig 3.2.2-7 100 nodes and 1 boot host in Random topology
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Fig 3.2.2-8 100 nodes and 1 boot host in Waxman topology

Table 3.2.2-4 Performance results with locality selection

Performance

Num of Nodes
Random Topology Waxman Topology

< 80%

80%~89%

90%~99% 18 16

100% 82 79

Following analyses are evaluated with 500 nodes. Fig 3.2-9 is performed in

Random topology with 500 nodes and three boot hosts. Fig 3.2-10 adopts the second

improvement and is performed in Random topology with 500 nodes and one boot host.

These results show that our algorithm works well and do not cost too much network

traffic when network topology grows due to the characteristic of the tree structure.
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Fig 3.2.2-9 500 nodes and 3 boot host in Random topology
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Fig 3.2.2-10 500 nodes and 1 boot host in Random topology
Table 3.2.2-5 Performance results with 500 nodes in Random topology
Num of Nodes 3 boot hosts 1 boot host
Performance Random selection Locality selection
< 80% 36 2
80%~89% 55 0
90%~99% 273 152
100% 136 346
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Fig 3.2-11 is performed under Waxman topology with 500 nodes and three boot
hosts. Fig 3.2-12 adopts the second improvement and is evaluated under Waxman
topology with 500 nodes and two boot hosts. Our algorithm also works well in

Waxman topology and do not cost too much network traffic when network topology

grows.
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Fig 3.2.2-11 500 nodé"s‘“'énd 3 boot Hosts in Waxman topology
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Fig 3.2.2-12 500 nodes and 2 boot hosts in Waxman topology
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Table 3.2.2-6 Performance results with 500 nodes in Waxman topology

Num of Nodes 3 boot hosts 1 boot host
Performance Random selection Locality selection
< 80% 9 13
80%~89% 23 33
90%~99% 293 109
100% 175 345

Following tables are the comparison of the effect of path optimization and the
effect of the graph structure. The analyses are average results of 100 simulations. As
can be seen from Table 3.2.2-7, path optimization can slightly increase the
performance of our algorithm. The graph structure would increase a little join cost and
slightly enhance the performancé. Table=3:3:3-8 1S, evaluated in Waxman topology.

The effect of path optimization.and graph structure isthe same as Table 3.2.2-7.

Table 3.2.2-7 Comparison of path optimization and graph structure in Random

topology
Num of Nodes Path Without Path | Path Optimization

Performance Optimization Optimization Graph
< 80% 21.46 25.23 16.39
80%~89% 13.28 13.64 10.91
90%~99% 29.75 28.61 30.28

100% 35.51 32.52 42.42

Average % 87.19 84.78 89.36

Average Join Cost 55 5.3 5.8
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Table 3.2.2-8 Comparison of path optimization and graph structure in Waxman

topology
Num of Nodes Path Without Path | Path Optimization

Performance Optimization Optimization Graph
< 80% 23.97 25.14 21.81
80%~89% 13.36 17.51 11.65
90%~99% 30.4 30.39 29.87

100% 32.27 26.96 36.67

Average % 86.61 85.3 87.42

Average Join Cost 6.1 5.7 7.2
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Chapter 4 Conclusions

In this thesis, we present an algorithm to overcome the disadvantages of
selecting a super node without taking locality into consideration. In order to prevent
selecting a super node that is far from both communicating pairs, we try to find a
super node close to one of them. We adopt a greedy algorithm to search such super
nodes. Computer simulation has also been conducted to evaluate our algorithm. The
simulation results indicate this greedy algorithm can not obtain the closest super node.
To improve the performance, we present three approaches and these approaches
indeed work in simulation result. First, giving more boot hosts to the new host. By
searching more hosts, it can increase, the. probability to find the closest group.
Experimental result reveals that given three beot hosts can achieve acceptable balance
between the performance and the cost of selecting a super node. Second, a new group
can connect to more than one group. “The graph structure also increases the number of
searched hosts. Third, RP selects a boot host close to the new host. This can be done
by checking IP address. Experimental result shows that the second approach can
significantly enhance the performance and reduce the cost of selecting a super node.

Because we adopt a P2P-like solution to choose peers with high capacity as
super nodes, we have to select super nodes from a large number of hosts and
dynamically changing network. In order to prevent exploring all networks and reduce
network traffic, we use a hierarchy structure and partition super nodes into groups by
measuring the transmission delay. Furthermore, we also present a mechanism relieve
the problem due to the unpredictable departure of a super node.

The future work is to ensure each node in the same group is close to each other.

In order to reduce network traffic, we only measure the distance from a host to a boot
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host. As a result, each node in the same group is only close to the boot host. If the
current boot host leaves, nodes in the same group may not be close to the next boot
host. In order to achieve this requirement, the new host may measure more hosts in

one group.
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