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中文摘要 

很多點對點(Peer-to-Peer)系統會利用系統中一部分功能較強的電腦來幫助他們完成

一些特別的任務。這些電腦通常需要具備下列條件：有足夠的網路頻寬，較強的計算能

力以及大容量的硬碟空間等。這些被系統選到用來做更多事的電腦通常被稱為系統中的

主要節點(super node)。在我們實驗室之前做的通訊系統中，我們使用這些主要節點來幫

助使用者判斷他們是否在網路位址轉換機制(Network Address Translator, NAT)後面以及

幫助他們穿越網路位址轉換機制。在某些情況下，使用這種網路位址轉換機制的使用者

必需藉由其它人的幫忙才能與外界的使用者通訊。這種情形下，我們的通訊系統會幫使

用者找一個主要節點，使用者先將通訊用的聲音串流傳送給這個主要節點，然後再由這

個主要節點幫使用者轉送通訊用的聲音串流。但是如果選到的主要節點距離使用者很

遠，那麼轉送的過程將會使通訊品質下降。於本論文中，我們提出一種演算法，能夠找

尋離使用者較近的主要節點。因此，能夠減少由於轉送所造成的不必要延遲。此外，我

們採用了階級架構以減少為了搜尋較靠近的主要節點而需要的網路流量。最後我們模擬

網路架構並且測試我們演算法的效率。測試結果說明了我們的演算法的確能夠選到較靠

近使用者的主要節點。 
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Abstract 

Many Peer-to-Peer (P2P) systems take advantage of a subset of the peers that have 

better capability (sufficient network bandwidth, high computation power, more disk space, 

etc.) to enhance the quality and/or the functionalities of the services provided. These special 

peers are often referred to as super nodes. On the IP communication platform developed at 

Internet Communication Lab, NCTU, we utilized super nodes to help users in determining 

whether they are behind NAT (Network Address Translator) and in punching through the 

NAT. In certain conditions, users behind NAT need a super node to relay media streams for 

communication with others. If the relay super node is far from the communicating pair, it 

may impair the voice quality. In the thesis, we propose a greedy algorithm to search super 

nodes which are close to the end-users. Therefore, it can reduce unnecessary relaying delay 

between the users and the super node. In addition, we adopt a hierarchy structure to reduce 

network traffic in performing our super node selection algorithm. Finally, we evaluate our 

algorithm using computer simulation. The simulation results indicate that super nodes 

selected by our algorithm are indeed close to the end-users. 
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Chapter 1 Introductions 
 

1.1 Introduction 
 

Recently, Peer-to-Peer (P2P) applications where no dedicated server is required, 

such as P2P media multicasting, P2P file sharing and P2P communicating software 

have become more and more popular. In P2P systems, peers with more resources 

(computation power, network bandwidth, disk space, etc.), often referred to as super 

nodes (SN), are essential for P2P services because many functions can be achieved 

with the assistance of a super node. For example, SNs can help in NAT traversal and 

application level routing support. Some P2P applications, such as Kazaa [1] and 

Skype [2] select a subset of the peers to handle several special tasks, such as searching 

files and routing support. Since extra tasks need to be performed by the supper nodes, 

load-balancing, how to evenly distribute the tasks among the super nodes, is also an 

important issue. In this thesis, we take the spatial locality into account and we present 

a super node selection strategy to select a super node close to the user. 

 

1.2 Related Works 
 

 Super nodes are generally more powerful peers in terms of bandwidth, 

processing power and memory size. In Kazaa, super nodes are responsible for 

searching files and forwarding query messages to other super nodes. When a user 

wants to locate files, the user first sends query messages to a super node. In the IP 

communication platform developed by Internet Communications Lab, NCTU, we 

make use of super nodes to help users detecting NAT type and crossing NAT. If the 
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NAT type is a symmetric one [9], we need a super node to relay the media stream 

between the communicating pair. In these cases, if the super node is far from the 

communicating users, sending media streams through the super node may take up too 

much time and thus impair the performance. Since a P2P network is composed of a 

large number of hosts, naive strategies such as randomly selecting a super node or 

attempting to explore all nodes in P2P network seem not reasonable.  

A well-known mechanism for selecting super node was presented in Gnutella 

protocol [3]. In Gnutella system, an ultrapeer (super node) acts as a proxy and relay 

query messages for other peers. Ultrapeers are used to reduce network traffic and 

speed up file searching. Since Gnutella is a decentralized P2P file-sharing system, any 

peer can determine if it is to become an ultrapeer by itself. A peer can be an ultrapeer 

only if following requirements are met: it is not firewalled, it runs on an OS that can 

handle large numbers of sockets, it has sufficient bandwidth, it has been up for at least 

a few hours and it has sufficient RAM and CPU speed. Although the strategy for 

selecting a super node in Gnutella system is simple and fast, Gnutella can not ensure 

that an ultrapeer is close to the peer it serves. Therefore, communicating delay may 

increase when an ultrapeer is far from the peer it serves. 

 Virginia Lo et al. [4] proposed a generic super node selection protocol in CAN 

[5], and Pastry [6]. Both are structured P2P networks and use a distributed hash table 

(DHT) to organize overlay structure and improve the searching ability. Virginia Lo 

presented a mechanism to store super node information in the DHT for fast and easy 

lookup. By utilizing the DHT, CAN and Pastry can enhance the searching 

performance. However, they don’t account for location information and it is hard to 

maintain the overlay structure. 

 PASS [7] is a novel P2P file-sharing system. PASS divides its overlay into 

multiple areas. Nodes are classified by using a geographical division such as a ZIP 
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code or an administrative network domain. Then, PASS selects a portion of 

high-capacity machines (super nodes) in each area for routing support. PASS shows 

that hierarchy structure and selecting super nodes by using location information can 

improves the file search performance. In PASS system, users may need to offer 

additional information so that PASS can assign them to a proper area.  

In our thesis, we try to examine the location relationship between the user and 

the super node by measuring round-trip delay from the user to several super nodes.  

 

1.3 Objectives 
 

 The objective of this thesis is to develop a P2P-like solution to establish and 

maintain a tree structure of super node group such that the each user is close to the 

super nodes of the same group and the overall distance of the entire tree structure is as 

minimum as possible. Therefore, it can reduce the transmission delay from the user to 

the super node. This mechanism can be applied to our previous research result, an IP 

communication platform that provides NAT traversal. We adopt the concept of 

hierarchy structure to reduce the network traffic in accomplishing our goals. We 

classify peers that can be super nodes into groups according to the transmission delay 

information. When a user needs a super node, he performs our algorithm to search a 

nearby group and choose one of the super nodes in this group. Since the super node 

may leave at any time and the media stream it serves needs to be relayed by another 

super node, fault tolerance is also a critical issue. We also propose a scheme to 

prevent a communication from being suspended due to the departure or failure of a 

super node. 
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1.4 Overview of This Thesis 
 

The rest of this thesis is organized as follows. Chapter 2 describes the basic 

concepts and our super node selection algorithm. Chapter 3 presents the simulation 

results and analysis. Conclusions are given in Chapter 4 
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Chapter 2 Super Node Selection 
Algorithm 
 

2.1 Basic Concepts 
 

The principle of our algorithm is trying to partition all super nodes into many 

groups. Super nodes in the same group are considered close to each other. Each group 

has a boot host (the leader). When a user needs a super node, he can first make use of 

our algorithm to negotiate with the boot host and execute some measurements to find 

nearby group. Then, this user picks hosts in this group as super nodes. Because this 

super node is close to the user, thus, it can reduce the probability of inefficient routing 

mentioned in section 1.2. 

Before describing the algorithm, we need to introduce some terms used in our 

algorithm and the system architecture which is shown in Fig 2.1. 

Rendezvous Point (RP): RP is an entry point of a P2P network. Users which 

want to join a P2P network need to contact RP first in order to retrieve necessary 

information. Besides, RP maintains all super nodes data and structure information in 

our system.  

Super Node: A host can be a super node only if certain requirement is matched. 

In our IP communication platform, the function of a super node is used to relay media 

stream for those hosts behind NAT. So, the basic requirement of our super node is it 

must have a public IP address. RP will examine this requirement when a host contacts 

RP. In addition, we also take workload and computer power of a host into account. 

Boot host: A boot host is a leader in a group. It is responsible for replying the 

measuring request for searching a nearby super node from a new host. When a new 
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host attempts to apply our algorithm to search a nearby super node, it just negotiates 

with the boot host in this group. 

Group: A group is a set of hosts which are close to the boot host. A group acts 

as an end host. By utilizing this kind of hierarchical architecture can reduce 

communicating traffic and negotiation time. 

Neighbor Group: A neighbor group is a nearby group in the physical network. 

As shown in Fig 2.1, both group 2 and group 3 are the neighbor group of group 1. 

Grouping Criterion: Grouping criterion determines which group a new host 

should belong to. If the distance (the distance can be the round-trip time) from a new 

host to a boot host in one group is smaller then a threshold, we say the grouping 

criterion is met and this new host can join this group. To be more understandable, we 

use notation D(X,Y) to represent the distance form X to Y in the following 

paragraphs. 

 

 

Fig 2.1 System architecture 
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2.2 Select a Super Node  
 

In this section, we describe the detailed super node selection algorithm. We use a 

recursive algorithm to search the group close to the user. The pseudo code of our 

algorithm is shown as follows, 

 

 

(bootHost, bootGroup) = fetchInformation(RP); 
while (true)  
{ 
 If(grouping criterion is met) 

{ 
  joinGroup(newHost, bootGroup); 

 return; 
} 
else 
{ 
 Dmin = distance(newHost, bootHost); 

(minBootHost, minBootGroup) = measureClosestNeighbor(bootGroup); 
Dmin’ = distance(newHost, minBootHost); 
If(Dmin <= Dmin’) 
{ 
 newGroup = createGroup(newHost); 
 addNeighborGroup(newGroup bootGroup); 
 return; 
} 
Else 
{ 
 bootHost = minBootHost; 
 bootGroup = minBootGroup; 
} 

} 
} 
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When a new host wants to find nearby super nodes, it must contact RP to acquire 

necessary information. After RP receives the request of this new host, RP will 

randomly select a boot host for him. As illustrated in Fig 2.2-1, host N communicates 

to RP, than RP informs host N that the boot host is host B and host B is in group 1. 

Besides, RP also tells host N the neighbors of group 1 (group 2, group 3 and group 4) 

and each boot host in these neighbors. 

 

 
Fig.2.2-1 Illustrate super node selection algorithm 

 

After host N receives these information from RP, host N measures the distance 

from itself to the boot host. As illustrated in Fig 2.2-1, host N measures D(N, B). If 

the grouping criterion is met, it means host N is close to host B and host N can join 

group 1. Host N will notify RP it belongs to group 1 and our algorithm is finished. 

Finally, our system structure is shown in Fig 2.2-2 (a). 

If the grouping criterion is not met, host N will record D(N, B) and denote as 

Dmin. Dmin is the minimum distance and group 1 is the closest group up to now. 

Than, host N will sequentially measure the distance from itself to each boot host in 

host B’s neighbor groups. After completing these measurements, host N can 

determines the smallest distance and denotes as Dmin’. In this example, we assume 
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D(N, C) is the smallest.  

If Dmin’ is greater than Dmin, it means Dmin is the best distance which our 

algorithm can find and our algorithm is finished. Host N will notify RP to create a 

new group for him and the group which holds Dmin will be chosen as its neighbor 

group. The new system structure is shown in Fig 2.2-2 (b). If Dmin’ is smaller then 

Dmin, host N will recursively repeat above paragraph to search the closest group.  

 

Fig 2.2-2 Illustrate system architecture 
 

Those peers which don’t satisfy super node requirements can also follow the 

above procedure to find their super nodes. The difference is they only tell RP which 

group their preferred super nodes are located; they don’t need to join our system. 

 

2.3 Improvements 
 

 Our algorithm would fail to find the closest group in the scenario shown in Fig 

2.3-1. A new user, host N, attempts to find the closest super node. In this example, we 

assume D(N, A) is smaller than D(N, B) and group 3 is the closest group for host N. If 

RP choose host A in group 1 as the boot host and inform host N. By following our 
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algorithm, host N measures D(N, A) and it finds D(N,A) do not satisfy the grouping 

criterion. Next, host N will search the neighbor group of group 1. Then, host N finds 

the closest neighbor group is group2 but D(N, B) is greater than D(N, A). So, it will 

inform RP to create a new group and notify RP that group 1 is the neighbor group of 

this new group. In this scenario, host N do not have chance to measure the distance 

from itself to the boot host in group 3. Thus, host N can not find the super nodes in 

group 3. 

 

 

Fig 2.3-1 Exception scenario 

 

In order to have better performance, we present two methods to improve the 

drawback. First, RP gives the new host more boot hosts and the new host executes our 

algorithm from more boot hosts at the same time. By searching more hosts, it can 

increase the probability to search the closest super node. We evaluate the performance 

by giving the new host three boot hosts and five boot hosts. 

Second, a new group connects to more than one neighbor. Our structure will 

change from tree structure to graph structure. The effect of connecting more 
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neighbors is the same as above improvement. A new host will search more hosts and 

increase the probability to find the closest super node. Fig 2.3-2 illustrates the method 

to find more neighbors. As illustrated in Fig 2.3-2 (a), host N completes our algorithm 

and find group 1 is the closest group. We assume D(N, A) is not met the grouping 

criterion. Thus, host N will form a new group and select group 1 as its neighbor. 

Because of the locality characteristic, the neighbor groups of group 1 may be close to 

the new group. Therefore, host N can select more nearby neighbor groups from group 

1’s neighbor groups. In Fig 2.3.2 (b), host N also connects to group 2 and group 3. 

 

 

Fig 2.3-2 Change from tree structure to graph structure 

 

The third improvement method is to select a boot host close to the new host. This 

can be done by checking IP address. We can select the boot host which has the same 

IP class as the new host. If we can give the new host a nearby boot host in the 

beginning, it can reduce many unnecessary measurements. In simulation, we first 

select the boot host with the distance from this boot host to the new host is smaller 

than a range. This range is greater than the threshold of the grouping criterion. If we 

can not find such boot hosts, we will randomly select a boot host from all boot hosts. 
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2.4 Fault Tolerant Model 
 

In order to prevent a communication being suspended due to the departure or 

failure of a super node, we present a scheme to relieve this problem. In addition to the 

super node for relaying media stream, a user can acquire a set of backup super nodes, 

hence a user can switch to another super node as it is aware of the serving super node 

is leaved. 

A super node may leave our system for any reason at any time. To detect the 

unpredictable departure of a super node, a super node is asked to periodically send out 

“keep alive” messages to the user it served. If a super node failed, the user can detect 

this phenomenon after a period of time as it didn’t receive “keep alive” message. 

 Those super nodes which don’t serve anyone need another mechanism to detect 

the unpredictable departure. All hosts needs to maintain the same host list which 

includes all hosts in this group. When a new host decides to join a certain group, it 

would notify RP and the boot host in that group. After the boot host knows a new host 

joins this group, it will notify other hosts to update their host list. The boot host needs 

to periodically send out “keep alive” messages to other hosts in this group. When 

other hosts receive “keep alive” message, they will ack “keep alive” message in order 

to indicate their existence. If the second host in the host list didn’t receive “keep 

alive” message after a period of time, it will automatically become the boot host and 

notify RP the departure of the original boot host. Besides, the boot host also sends out 

“keep alive” messages to boot hosts in its neighbor groups. If there is only one host in 

a group, the departure of the boot host, the only one host, can be detected by the boot 

host in its neighbor groups. The reason for two kinds of mechanism is the previous 

mechanism requires more real-time reaction to the departure of a super node. 
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Component Information 

RP all super nodes information, system structure information 

Super nodes the information of hosts in the same group, the neighbor groups 

information, the neighbor boot hosts information 

Normal users which group he belongs to 

Table 2.4 The information stored in each component 

 

2.5 Restructure Architecture 
 

If all hosts in a group have leaved, that will result in an isolation of our structure. 

As can be seen from Fig 2.5 (a), if there is no host in group 1, our structure will 

separate into disconnected parts. Obviously the isolation will affect the functionality 

of our algorithm. To solve this problem, RP must notify the boot hosts in group 2 and 

group 3 of re-executing our algorithm and inform them the boot host is in group 4. 

After the boot hosts in group 2 and group 3 finished the algorithm in section 2.2, the 

final system structure is illustrated in Fig 2.5 (b).   

 

 
Fig 2.5 Restructure architecture 
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2.6 Path Optimization 
 

 Considering a situation in Fig. 2.6.1 (a), a new super node, host N, intends to join 

our system. The boot host of group1 is host B and the boot host of group 2 is host C. 

In this topology, we assume D(N, B) is greater than D(N, C) and both D(N, B) and 

D(N, C) are smaller then D(B, C). Both D(N, B) and D(N, C) do not meet grouping 

criterion. RP informs host N that the boot host is host B. By following our algorithm 

in section 2.2, host N will create a new group and choose group 2 as its neighbor 

group.  

 If a boot host is far from the boot hosts in its neighbor group, it will increase the 

cost of fault tolerant model. Because both D(N, B) and D(N, C) are smaller then D(B, 

C), the time for sending KAM to its neighbor boot hosts in topology of Fig 2.6.1 (a) is 

greater than that in topology of Fig 2.6.1 (b). In order to achieve better performance, 

we should adjust the topology of Fig 2.6.1 (a) to the topology of Fig 2.6.1 (b). D(B, C) 

has been measured when host B or host C joined our system. D(N, B) and D(N, C) are 

measured when host N intends to join our system. Therefore, by comparing these data, 

we can know the relation between group 1, group 2 and group 3 and modify our 

structure to Fig 2.6.1 (b). 
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Fig 2.6.1 Path optimization 

 

The effect of path optimization is either good or bad to our super node selection 

algorithm. As shown in Fig 2.6.2, path optimization will help the new host to find the 

closest group. Assuming the distance relationship in Fig 2.6.2 is D(N, C)>D(N, 

A)>D(N, B)>D(N, D) and D(N, C), D(N, A), D(N, B) and D(N, D) do not satisfy the 

grouping criterion. After the new host N contacts RP to retrieve the information of the 

boot host. RP informs the new host N that the boot host is host A and host A is in 

group 1. In Fig 2.6.2 (a), we do not perform path optimization for host B. By 

following our algorithm, host N measures D(N, A) and knows D(N, A) do not meet 

the grouping criterion. Then host N searches the neighbor group of group 1. He also 

finds D(N, C) do not meet the group criterion and D(N, C) is greater than D(N, A). 

Host N will create a new group and choose group 1 as its neighbor group. In Fig 2.6.2 

(b), we perform path optimization for host B. By following our algorithm, host N has 

the chance to measure host B and host D. Thus, host N can find the closest group is 

group 4. 
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Fig 2.6.2 Path optimization may increases performance 

 

As shown in Fig 2.6.3, the effect path optimization will make the new host hard 

to find the closest group. Assuming the distance relationship in Fig 2.6.3 is D(N, 

B)>D(N, A)>D(N, C)>D(N, D) and D(N, B), D(N, A), D(N, C) and D(N, D) do not 

satisfy the grouping criterion. After the new host N contacts RP to retrieve the 

information of the boot host. RP informs the new host N that the boot host is host A 

and host A is in group 1. In Fig 2.6.3 (a), we do not perform path optimization for 

host B. By following our algorithm, host N has the chance to measure host C and host 

D. Thus, host N can find the closest group is group 4. In Fig 2.6.3 (b), we perform 

path optimization for host B. By following our algorithm, host N measures D(N, A) 

and knows D(N, A) do not meet the grouping criterion. Then host N searches the 

neighbor group of group 1. He also finds D(N, B) do not meet the group criterion and 

D(N, B) is greater than D(N, A). Host N will create a new group and choose group 1 

as its neighbor group.  
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Fig 2.6.3 Path optimization may decreases performance 

 

2.7 Reduce Overhead of Querying Neighbors 
 

 This problem is a new host need to contact RP to fetch neighbors’ information 

when it wants to perform next measurement. If this new host is far from RP, this will 

increase cost of our algorithm. To be more clearly, the negotiation flow can be shown 

as Fig 2.7. To overcome this disadvantage, the boot host needs to store its neighbors’ 

information. When a new host creates a new group and notifies RP its neighbor group, 

RP also informs the boot host in its neighbor group to update neighbor’s information. 

While a boot host receives a measure request from a new host, the boot host will reply 

the neighbors’ information to the new host. 
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Fig 2.7 Negotiation Flow for completing selecting algorithm 
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Chapter 3 Simulation and Analysis  
 

 In the following sections, we carry out a simulation to verify the results and 

quantify the performance of our algorithm. 

 

3.1 Implementation of the Simulator 
 

We have implemented a simulator on Microsoft Windows Platform and our 

developing tool is Borland JBuilder 2005. The language version is Java(TM) 2 SDK, 

Standard Edition 1.4.2. In the simulator, we use JFreeChart 1.0.1 to produce analysis 

report. 

 

 

Fig 3.1 (a) Random topology (b) Waxman topology 

 

We use two kind of network topology as our experimental environment. The first 

network topology is shown in Fig 3.1 (a). We randomly generate hosts on a plane and 
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the distance between two hosts is this distance on this plane. In the following 

paragraphs, we use Random topology to stand for this topology. 

The second network topology is shown in Fig 3.1 (b) and it is generated by 

BRITE [13]. BRITE is a widely-used network topology generator and it is used in 

many famous network simulation tools such as ns and SSF. There are several kinds of 

topology mode in BRITE and we use Waxman [14] model to generate network 

topology. Waxman model produces a random graph on a plane, but it includes 

network specific characteristics and it uses a probability function to connect two 

nodes. The distance between two hosts which do not have direct connection is 

calculated by Dijkstra shortest path algorithm. The configuration file we used for 

setting Waxman model is shown in Table 3.1. The number of nodes (N) and the size 

of main plane (HS) are assigned for different simulation. 

 

 

BeginModel 
 Name = 3   #Router Waxman = 1, AS Waxman = 3 
 N = X   #Number of nodes in graph 
 HS = Y   #Size of main plane (number of squares) 
 LS = 100   #Size of inner planes (number of squares) 
 NodePlacement = 1 #Random = 1, Heavy Tailed = 2 
 GrowthType = 1 #Incremental = 1, All = 2 
 m = 2   #Number of neighboring node each new node connects to. 
 alpha = 0.15  #Waxman Parameter 
 beta = 0.2   #Waxman Parameter 
 BWDist = 1  #Constant = 1, Uniform = 2, HeavyTailed = 3, Exponential = 4 
 BWMin = 10.0 
 BWMax = 1024.0 
EndModel 

Table 3.1 Waxman model parameters 
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3.2 Simulation Results and Analysis 
 

We first present the topology produced by our simulator. Then, we discuss the 

analysis reports about randomly selecting a boot host and two improvements. 

 

3.2.1 Simulation Results 

 

The system structure produced by our algorithm can be seen in Fig 3.2.1. There 

are 100 hosts in Fig 3.2.1. Each circle stands for a host and only the boot host has 

edges to connect neighbor groups. 

 

 

Fig 3.2.1 System structure 
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3.2.2 Simulation Analysis 

 

 We evaluate our algorithm by the following two terms. Join Cost is used to 

calculate the number of hosts are measured after a new host completes our algorithm. 

Performance is used to determine whether the super node selected by our algorithm is 

the closest one or not. 

%100
algorithmour  executesA  when systemour in  hosts ofnumber  the

algorithmour  completes (A)host  aafter  measured are hosts ofnumber  theCostJoin x=

%100
algorithmour  executesA  when systemour in  groups ofnumber  the

algorithmour by  selected group a  to(A)host  a from distance ofrank  theePerformanc x=
 

Fig 3.2-1 is performed in first topology with 100 nodes. Fig 3.2-2 is performed in 

second topology with 100 nodes. Both analyses show that our algorithm can not find 

the closest group. Because we do not explore all nodes, we can not ensure that there 

are no other super nodes are closer than the super node we selected. Table 3.2.2-1 is 

the distribution of the performance. Only 37% nodes can find the closest group in 

Random topology and 32% nodes find the closest group in Waxman topology. 

 

 

Fig 3.2.2-1 100 nodes and 1 boot host in Random topology 
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Fig 3.2.2-2 100 nodes and 1 boot host in Waxman topology 

 

Table 3.2.2-1 Performance results with 100 nodes and 1 boot host 

 

Num of Nodes 
Performance 

Random Topology Waxman Topology 

< 80% 21 25 
80%~89% 10 21 
90%~99% 32 22 
100% 37 32 

 

Fig 3.2-3 is performed in first topology with 100 nodes and three boot hosts. Fig 

3.2-4 is performed in first topology with 100 nodes and five boot hosts. As can be 

seen from Fig 3.2-3 and Fig 3.2-4, given three boot hosts can achieve better balance 

between performance and the cost of selecting a super node. Giving more boot hosts 

can’t improve the performance significantly but increasing more traffic. 
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Fig 3.2.2-3 100 nodes and 3 boot hosts in Random topology 

 

 

Fig 3.2.2-4 100 nodes and 5 boot hosts in Random topology 

 

Table 3.2.2-2 Performance results with multi boot hosts in Random topology 

 

Num of Nodes 
Performance 

3 boot hosts 5 boot hosts 

< 80% 2 1 
80%~89% 7 3 
90%~99% 24 16 

100% 67 80 
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 Fig 3.2-5 is performed under Waxman topology with 100 nodes and three boot 

hosts. Fig 3.2-6 is performed under Waxman topology with 100 nodes and five boot 

hosts. Both analyses show the first improvement method also works in Waxman 

topology. 

 

 

Fig 3.2.2-5 100 nodes and 3 boot hosts in Waxman topology 

 

 

Fig 3.2.2-6 100 nodes and 5 boot hosts in Waxman topology 
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Table 3.2.2-3 Performance results with multi boot hosts in Waxman topology 

 

Num of Nodes 
Performance 

3 boot hosts 5 boot hosts 

< 80% 1 0 
80%~89% 3 1 
90%~99% 33 11 

100% 63 88 

 

Fig 3.2-7 and Fig 3.2-8 are evaluated under Random topology and Waxman 

topology with 100 nodes and one boot host. Both simulations adopt the second 

improvement method. These two analyses show the second improvement can greatly 

enhance the performance even if there is only one boot host. 

 

 

Fig 3.2.2-7 100 nodes and 1 boot host in Random topology 
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Fig 3.2.2-8 100 nodes and 1 boot host in Waxman topology 

 

Table 3.2.2-4 Performance results with locality selection 

 

Num of Nodes 
Performance 

Random Topology Waxman Topology 

< 80% 0 3 
80%~89% 0 2 
90%~99% 18 16 

100% 82 79 

 

Following analyses are evaluated with 500 nodes. Fig 3.2-9 is performed in 

Random topology with 500 nodes and three boot hosts. Fig 3.2-10 adopts the second 

improvement and is performed in Random topology with 500 nodes and one boot host. 

These results show that our algorithm works well and do not cost too much network 

traffic when network topology grows due to the characteristic of the tree structure. 
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Fig 3.2.2-9 500 nodes and 3 boot host in Random topology 

 

 

Fig 3.2.2-10 500 nodes and 1 boot host in Random topology 

Table 3.2.2-5 Performance results with 500 nodes in Random topology 

 

Num of Nodes 
Performance 

3 boot hosts 
Random selection 

1 boot host 
Locality selection 

< 80% 36 2 
80%~89% 55 0 
90%~99% 273 152 

100% 136 346 
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Fig 3.2-11 is performed under Waxman topology with 500 nodes and three boot 

hosts. Fig 3.2-12 adopts the second improvement and is evaluated under Waxman 

topology with 500 nodes and two boot hosts. Our algorithm also works well in 

Waxman topology and do not cost too much network traffic when network topology 

grows. 

 

 

Fig 3.2.2-11 500 nodes and 3 boot hosts in Waxman topology 

 

 

Fig 3.2.2-12 500 nodes and 2 boot hosts in Waxman topology 
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Table 3.2.2-6 Performance results with 500 nodes in Waxman topology 

 

 

 Following tables are the comparison of the effect of path optimization and the 

effect of the graph structure. The analyses are average results of 100 simulations. As 

can be seen from Table 3.2.2-7, path optimization can slightly increase the 

performance of our algorithm. The graph structure would increase a little join cost and 

slightly enhance the performance. Table 3.3.3-8 is evaluated in Waxman topology. 

The effect of path optimization and graph structure is the same as Table 3.2.2-7. 

 

Table 3.2.2-7 Comparison of path optimization and graph structure in Random 

topology 

 

Num of Nodes 
Performance 

Path 
Optimization 

Without Path 
Optimization 

Path Optimization
Graph 

< 80% 21.46 25.23 16.39 

80%~89% 13.28 13.64 10.91 

90%~99% 29.75 28.61 30.28 

100% 35.51 32.52 42.42 

Average % 87.19 84.78 89.36 

Average Join Cost 5.5 5.3 5.8 

Num of Nodes 
Performance 

3 boot hosts 
Random selection 

1 boot host 
Locality selection 

< 80% 9 13 
80%~89% 23 33 
90%~99% 293 109 

100% 175 345 
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Table 3.2.2-8 Comparison of path optimization and graph structure in Waxman 

topology 

 

Num of Nodes 
Performance 

Path 
Optimization 

Without Path 
Optimization 

Path Optimization
Graph 

< 80% 23.97 25.14 21.81 

80%~89% 13.36 17.51 11.65 

90%~99% 30.4 30.39 29.87 

100% 32.27 26.96 36.67 

Average % 86.61 85.3 87.42 

Average Join Cost 6.1 5.7 7.2 
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Chapter 4 Conclusions 
 

In this thesis, we present an algorithm to overcome the disadvantages of 

selecting a super node without taking locality into consideration. In order to prevent 

selecting a super node that is far from both communicating pairs, we try to find a 

super node close to one of them. We adopt a greedy algorithm to search such super 

nodes. Computer simulation has also been conducted to evaluate our algorithm. The 

simulation results indicate this greedy algorithm can not obtain the closest super node. 

To improve the performance, we present three approaches and these approaches 

indeed work in simulation result. First, giving more boot hosts to the new host. By 

searching more hosts, it can increase the probability to find the closest group. 

Experimental result reveals that given three boot hosts can achieve acceptable balance 

between the performance and the cost of selecting a super node. Second, a new group 

can connect to more than one group. The graph structure also increases the number of 

searched hosts. Third, RP selects a boot host close to the new host. This can be done 

by checking IP address. Experimental result shows that the second approach can 

significantly enhance the performance and reduce the cost of selecting a super node. 

Because we adopt a P2P-like solution to choose peers with high capacity as 

super nodes, we have to select super nodes from a large number of hosts and 

dynamically changing network. In order to prevent exploring all networks and reduce 

network traffic, we use a hierarchy structure and partition super nodes into groups by 

measuring the transmission delay. Furthermore, we also present a mechanism relieve 

the problem due to the unpredictable departure of a super node. 

The future work is to ensure each node in the same group is close to each other. 

In order to reduce network traffic, we only measure the distance from a host to a boot 
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host. As a result, each node in the same group is only close to the boot host. If the 

current boot host leaves, nodes in the same group may not be close to the next boot 

host. In order to achieve this requirement, the new host may measure more hosts in 

one group. 
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