
 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

碩 士 論 文 
 

 
 

 

多變量體積型態法用於磁振造影影像 
群組間結構差異性之定量分析 

 

Multivariate Volumetric Morphometry  
for Characterizing Anatomical Discrepancy  

in MR Images of Different Groups 
 
 
 
 

 
 

研 究 生：楊承嘉 

指導教授：陳永昇  博士 

 
 

中 華 民 國  九 十 五  年 七 月 





多 變 量 體 積 型 態 法 用 於 磁 振 造 影 影 像 
群 組 間 結 構 差 異 性 之 定 量 分 析 

Multivariate Volumetric Morphometry for Characterizing 
Anatomical Discrepancy in MR Images of Different Groups 

 
 
 
 

研 究 生：楊承嘉          Student：Cheng-Chia Yang 

指導教授：陳永昇          Advisor：Yong-Sheng Chen 
 
 

國 立 交 通 大 學 
資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 
 
 

A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 
Computer Science 

 
July 2006 

 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國九十五年七月 



 



 壹 

 
摘  要 

 

以體素為基礎的型態計量學（voxel-based morphometry, VBM），近年來已被廣

泛應用在許多腦部結構研究上，以統計的方式量化、比較兩組人腦結構每一體素之

型態是否具有顯著的差異。體素型態學使用單變異量統計，對於較為集中且巨大的

差異具有簡單有效的優點。但是由於此方法沒有考慮相鄰體素間的連帶關係，因此

可能無法找出差異量較為分散且微小的腦部區域。 

 

本研究中我們提出了一個新的腦部結構評估技術— 多變量體積形態法 

（multivariate volumetric morphometry, MVM），以運用於磁振造影影像群組間結構差

異性之定量分析。相對於以體素為基礎的型態計量學，多變量體積形態法採用線性

鑑別度分析（linear discriminant analysis, LDA）作為多變量的估計方法來取代單變量的

分析。此方法能同時考慮全部的體素，以找出對於群組間結構差異性最具鑑別力的

投影軸。位於該投影軸上之每一元素即代表相對應體素具有的鑑別力比重

（discrimination weight），且此鑑別力比重可被視為用來評估磁振造影影像群組間結

構差異之程度等級(significance level)。此種多變量的計量方法能突顯群組間較為細微

的結構性差異，很適合用於分析腦部結構差異的研究。此外，我們也證明了不論使

用原始的磁振造影影像或是平滑化過後的影像，此方法所能達到的最大區辨能力是

一樣的，因此可以直接在原始影像而非在人工處理平滑化後的影像上推論分析結

果。相反地，以體素為基礎的型態計量學卻必須使用平滑化的處理來增加分析的正

確性，同時加強相鄰體素間的連帶關係。然而使用平滑化處理時，要決定其恰當的

影響範圍是很困難的一個問題，因為較大範圍的平滑化處理雖然可降低影像雜訊，

但卻必須付出細部資訊被模糊的代價。 

 

透過模擬小腦周圍區域萎縮的實驗，我們驗證了多變量體積形態法的有效性與

正確性。比起以體素為基礎的型態計量學，該方法確實更有能力可偵測到群組間細

微的腦部結構差異之處。應用在脊髓小腦運動失調症（spinocerebellar ataxia, SCA）

的結構差異分析上，多變量體積形態法也比以體素為基礎的型態計量學更明顯地找

出和病理相關的腦部結構組織。 
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Abstract

Recently, voxel-based morphometry (VBM) has been widely applied to statistically in-

fer the structural anomalies between the brains of two subject groups, in a voxel-by-voxel

manner. This method is effective for mapping massive and centralized discrepancy. How-

ever, it may suffer from the poor sensitivity to subtle and widely-distributed discrepancy in

brain structures.

In this work, we propose a novel multivariate morphometry (MVM) method that can be

used to delineate the anatomical discrepancy between two groups of MR images. Rather

than voxel-by-voxel manner in VBM, the proposed MVM simultaneously considers all of

the voxels in MR volumes and map the group differences by using the linear discrimi-

nant analysis to determine the most discriminant projection vector. Each element in the

projection vector represents the discrimination weight ofthe corresponding voxel involved

in the combination of the most discriminant components. This weight can thus be re-

garded as the significance level of the corresponding voxel when differentiating two groups

of MR volumes. This multivariate approach is appropriate tocharacterize group discrep-

ancy, particularly when the brain atrophy distributes widely. Moreover, we prove that the

discriminability remains the same no matter the projectionvector is calculated from the

original MR volumes or from the smoothed ones. Hence we can simply use the original

data without the interference of the blurring artifact caused by the smoothing operation. On

the contrary, VBM method applies the Gaussian smoothing filter to reduce image noise as

well as to incorporate spatial support from neighboring voxels. It is difficult to determine

an appropriate kernel size for the smoothing filter because larger kernel can reduce more

noise, but with the penalty of more smeared image.

According to our experiments, we demonstrate the effectiveness of the proposed method

by using the simulation data set containing artificial atrophy around the cerebellum area.

Compared to the VBM method, the proposed MVM method can achievea better sensitiv-

i



ity to subtle and widely-distributed variation of brain structure. When applied to a clinical

study of SCA3 disease, the MVM method clearly reveals more significant atrophy in the

disease-related areas within the brain volumes of the patient group, than the VBM method

does.

ii
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Chapter 1

Introduction



2 Introduction

In this chapter, we will briefly introduce the human brain structures, the magnetic res-

onance imaging (which is an imaging tool often used to detectpathologic tissues from

normal tissues), and then the current morphometric methodsbased on medical images to

analyze differennces of brain structures. One of the most popular morphometric approach

is the voxel-based morphomety, which have been applied in many researches of brain struc-

tures, but it has a inherent defect while detecting subtle and distributed changes. Our goal

is to overcome this darwback and to propose a better morphometric method in this work.

In the final of the chapter, we will guide the organization of this thesis.

1.1 Brain Structures

Brain is the most sophisticated and elegant organ of human beings. It plays an important

role in the control of human mind and behavior. Several involuntary activities, such as

heartbeat, respiration, and digestion, and conscious activities, such as thought, reasoning,

and abstraction, are all operated by the brain. In the 3rd century B.C., Doctor Herophilus

in Alexandria, the ”Father of Anatomy”, is considered as thefirst person to dissect human

body for the purpose of scientific research. He obtained a lotof scientific discoveries, and

one of his main contributions is to discover four rooms of thebrain, that is, ventricles. Until

now, people have done various researches on the brain and understand many the tissues and

structures of the human brain.

A brain consists of three parts, which are the cerebrum, cerebellum, and brain stem.

Brain stem is below the cerebrum and above the spinal cord, andis the major route to con-

nect the cerebrum, cerebellum, and spinal cord. Its main function is to maintain individual

life, including heartbeat, breath, digestion and the otherimportant physiological faculties.

Cerebellum is below the cerebrum and behind the brain stem, and composed of left and

right two hemispheres. Cerebellum can balance the body and the posture, and also control

the motion of muscle with the cerebral cortex. Cerebrum is considered as the most impor-
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Figure 1.1: Main structures of the human brain. There are three parts, which are the cere-
brum, cerebellum, and brain stem. According to sulci and gyri of cerebral hemispheres,
brain cortex is divided into four lobes: the frontal lobe, the parietal lobe, the temporal
lobe, and the occipital lobe. Photo courtesy of the website of Heart and Stroke Foundation
(http://ww2.heartandstroke.ca/).

tant nerve center, and divides into left and right two cerebral hemispheres. Between two

cerebral hemispheres is the corpus callosum to communicateleft cerebral hemisphere and

right cerebral hemisphere. Moreover, according to sulci and gyri of the exterior of cerebral

hemispheres, brain cortex can be segmented into four lobes:frontal lobe, parietal lobe, tem-

poral lobe, and occipital lobe. The frontal lobe is understood as the central administration

of thought. The parietal lobe receives and handles kinds of feeling signals. The temporal

lobe has relations with perception and recognition of auditory signals and memory. And

the occipital lobe is the center of visual processing. Figure 1.1 shows main structures of

the human brain.

According to the type of brain tissues, they can be generallyseparated into gray matter

(GM), white matter (WM), and cerebrospinal fluid (CSF). Gray matter is composed of

nerve cell bodies responsible for processing information,and white matter is composed of

of the axons responsible for transmissing information. Gray matter forms the exterior part

of the brain, and is referred to as the cortex; white matter forms the interior part of the brain,
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Figure 1.2: Brodmann’s maps. The human brain is classified into 52 discrete cortical areas
in a cytoarchitectonic way. The partitions are referred to as the Brodmann’s areas.

and referred to as the medulla. Cerebrospinal fluid, which is the colorless and transparent

fluid, fills ventricles and surrounds the brain and the spinalcord. Cerebrospinal fluid can

absorb the shock to the brain or to the spinal cord, and also can drain out waste materials

from the brain or from the spinal cord.

In 1909, Brodmann cytoarchitectonically classified brain into 52 discrete cortical areas

using a light microscope, and sketched the anatomical maps of the human brain [1]. Each

and every area is labeled with a number. Theses are known as the Brodmann’s areas (BAs).

Figure 1.2 is the famous Brodmann’s maps. Many BAs were later shown that they are

associated to specific functions, such as BA 17 and BA 18 in theoccipital lobe (associated

to vision). Brodmann’s areas have become a common classification for scientists to refer to
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a particular region of the brain cortex and the related nervous functions. In 1988, Talairach

and Tournoux drew a 3-D stereotaxic atlas and defined the Talairach coordinates of the

human brain, by anatomizing the brain of a European female aged 60 [2]. They used

Brodmann’s maps as the basis for the architectonic parcellation in their atlas. It is very

useful for localization of brain tissues. Thus, when given a3-D coordinate in Talairach

space, we can indicate that which brain structure it is located at and which BA it belongs

to, and then know broadly about its associated functions. The Talairach brain is usually

taken as the standard stereotaxic space when investigatinghuman brain structures.

Along with progress of science and technology, the first neuroimaging technique, the

pneumoencephalography (PEG), was developed in the early 1900s. Invention of the brain

imaging technology makes observing the human brain on living beings come true. By these

medical images, scientists and doctors can investigate or make a diagnosis about those

diseases resulting from some brain disorder as the patientsare still alive, rather than dissect

patients’ bodies as they were died. Up to now, there are many functional brain imaging

technologies, such as positron emission tomography (PET) and single photon emission

computed tomography (SPECT); as well as structural imaging technologies, such as X-ray

computer tomography (CT) and magnetic resonance imaging (MRI). In this thesis, we used

magnetic resonance images as experimental materials to findthe structural differences of

different brains. In the next section, we will briefly introduce this technology, magnetic

resonance imaging.

1.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of popular imaging tools for clinical diagno-

sis in recent years. It was developed by Paul Lauterber in 1972 [3]. The technique is based

on the principles of nuclear magnetic resonance (NMR) to produce data images of internal

physical and chemical characteristics of an object. The original name of this technique
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Figure 1.3: A typical MR scanner. Photo courtesy of Lab. of Integrated Brain Research,
Department of Research and Education, Taipei Veterans General Hospital.

was nuclear magnetic resonance imaging (NMRI), but people called it magnetic resonance

imaging (MRI) because of the word nuclear with the negative connotations of radiation

exposure in the late 1970’s.

An MR scanner is shown in Figure 1.3. An scanner includes three main hardware de-

vices: a main magnet, a magnetic field gradient system, and anRF system [4]. The main

magnet generates a strong uniform magnetic field for polarization of nuclear spins in an ob-

ject; the magnetic field gradient system produce controlledtime-varying gradient fields in

different directions to make each of the regions of spin experiences a unique magnetic field

for signal localization; the RF (radio frequency) system generates a rotating magnetic field

in a pulse sequence to excite spins and detects signals from the spins. All the components

of the scanner are placed in a scan room to segregate outside interference. After analysis

and reconstruction of signals by a computer, a magnetic resonance image representing the

spatial distribution of the inside of living organisms is obtained like Figure 1.4.

MR imaging has many advantages. One is that it is a noninvasive way to detect signals

inside the body, so people are unnecessary to bear with pain resulted from invaders of med-
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Figure 1.4: A 3-D magnetic resonance image of a human head. Itis shown in the coronal,
sagittal and axial views.

ical treatments. Moreover, this imaging uses magnetic fields and non-ionizing radiation.

According to current knowledge, they do not have potential harmful effects to humans. In

comparison with some other scanning methods like CT, it is very safe. Another advantage

of MR imaging, probably the most important character, is theflexibilty of data acquisition

and the outstanding contrast resolution. Therefore, it canbe used as spectroscopic imag-

ing, diffusion-weight imaging, angiogarphic imaging, andfunctional imaging. That makes

MR images able to provide much respectable information and endow the thecnique with

superior scientific and dianostic values [4].

Because of the clear contrast resolution, MR images are oftenused to observe patho-

logic tissues from normal tissues, and help doctors to diagnose medical conditions and

disorders of the brain. However, such a manual diagnosis is very subjective and time-

consuming, especially when the amount of images is large. Thanks to the advances in com-

puter, computerized approaches can help to deal with the huge and complex data. Many

morphometric analysis methods were proposed to quantitatively analyze MR images by

computers.
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1.3 Morphometrics

By using MR images, a number ofin vivo anatomical studies of the human brain have

been done. Most studies are based on the defined regions of interests (ROIs), and then

analyze each tissue volumes [5–7] in ROI. However, this method has some limitations. It

wastes a lot of time to define the ROIs, especially when there are large amount of subjects

[8]. In addition, when analyzing a certain disease, users have to know the most concerned

regions [9] before selecting ROIs. It makes ROI-based analysis inconvenient to be used in

practice.

Therefore, another kind of automatic morphometric methods, involving the technique

of spatial normalization, to characterize neuroanatomical differences has been developed.

These methods broadly fall under two categories: (1) ones handle macroscopic differences

in shape of brain, and (2) ones handle microscopic differences in brain tissue as the shape

differences have been discounted. When connecting these with the technique of spatial nor-

malization, the first kind of methods analyzes the parameters or the deformation fields used

during the normalization; and the second kind of methods analyzes resulting normalized

images after normalization.

The first family of morphometric method includes the pattern-theoretic approach [10],

deformation-based method [11, 12], tensor-based method [13, 14], and factor analytic ap-

proach [15]. These methods quantify brain shape by using deformation fields obtained from

nonlinear registration. This kind of methods can potentially obtain a precise estimation of

the brain shape, but it is very sensitive to the accuracy of the underlying normalization

approach. Consequently, there are some limitations in practice [9].

The second family of morphometric methods characterizes anatomy in brain tissue by

estimating voxel intensities of normalized images. Becausethis type of methods makes use

of images after normalization, the differences in the brainshape are eliminated. Thus, it is
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suitable for analyzing local and subtle differences in brain tissue. A common-used method,

voxel-based morphometry [16], is belong to this family. Besides, the RAVENS [9] is also

a kind of these methods.

This thesis emphasizes the second family of morphometric methods. The targeted im-

ages are all normalized. Now, the voxel-based morphometry (VBM) is the most popular

method applied to analysis of structural brain discrepancybetween different groups of im-

ages. For each and every voxel from the normalized images, itmakes a standard statistical

test to examine if there exists a significant difference of brain structure on the location of

this voxel. Although VBM is an intuitional and simple approach, it has a fatal defect so that

its sensitivity to some kind of group differences is bad. Ourgoal is to propose a method to

ameliorate this lack. In the following, we will briefly indicate the main drawbacks of the

VBM analysis, and try to improve according to the fundamentalcause of it. It goes into

details in chapter 2.

1.4 Motivation

Although VBM is one of most popular morphometric method and has been applied

successfully in many instances, there are still limitations that make VBM disable to detect

particular anatomical differences in some situations. These limitations are caused by the

inherent defect of this approach. It is because VBM is a voxel-by-voxel manner, i.e. a

univariate method, to analysis differences by using standard statistical tests at each distinct

voxel. That means when VBM tests group difference at a particular voxel, it only takes

measurements of images at this voxel in account at a time, anddiscards potential informa-

tion carried by other voxels adjacent to this voxel. The way of VBM to analyze the brain

structures makes this method simple to use. However, from the spatial point of view, such

the voxel-wise manner to find anatomical differences appears improper, because it treats

each voxel as an independent object. Adjacent brain tissuesshould have relations to each
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other. As a result, this method is criticized for its capability to estimate widely-distributed,

continuous and subtle changes in brain structure [17].

In this work, we proposed a novel method that can consider interrelations between

voxels, called the multivariate volumetric morphometry (MVM). In this method, a high-

dimensional classification technology is employed. It seeks the most discriminative hyper-

plane that separates populations by minimizing the scatterwithin each individual group and

simultaneously maximizing the scatter between groups. Thediscriminative hyper-plane

not only has the ability to classify different groups, but also is appropriate to be used in

this application of characterizing the anatomical group discrepancy. Besides, before using

this classification technique to find brain differences, a recombination of the spatial and

frequency signals is performed for the multiresolution analysis. Our method is built on the

classification and the data recombination techniques.

In this thesis, we not only demonstrate the effectiveness ofthe proposed method, but

also develop an efficient computational implementation to save time for analysis. More-

over, a part of idea of this method has been proved in this work. Experimental results

showed that the multivariate volumetric morphometry (MVM)indeed has a better sensitiv-

ity to subtle and distributed changes of brain structures. So, it is very useful to characterize

early symptoms of a disease especially. The details of the reason why we need a multivari-

ate approach and the proposed method are described in the chapter 2 and 3, respectively.

In the following chapters, we introduce the voxel-based morphometry and its drawbacks

in chapter 2, and then our method in chapter 3. In chapter 4, some experiments are used

to estimate the accuracy of the proposed method, and the comparison between the results

of MVM and VBM is performed. Finally, we will bring up some issues about our method

MVM in chapter 5, and conclude this work in chapter 6.



Chapter 2

Voxel-Based Morphometry
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This chapter is about one of the most popular morphometry—the voxel-based mor-

phometry (VBM). After the introduction, there is a brief interpretation of the basic concept

and the optimized protocol of VBM. In the end of this chapter, we statement the inherent

drawback of such a voxel-based morphometric analysis, and that is the motive for us to

develop another method characterizing anatomical differences.

2.1 Introduction to VBM

The voxel-based morphometry (VBM) is a technique measuring concentrative or volu-

metric group differences of brain tissues through a voxel-wise analysis of MR images [16].

It is an unbiased and objective method, which explores wholebrains rather than specific

regions to find the significant structural discrepancy between different groups of subjects.

That means people can use the method without the need for the background knowledge of

where the discrepancy may exist.

Due to its simplicity, feasibility, and effectiveness, VBM has been widely applied to

structural brain studies in the recent years. It is shown in earlier researches that many dis-

eases are related to the abnormal brain structures. The defect, damage, or irregularity of

the brain structure will cause irregular behavior of patients. Several studies using VBM

characterizing brain differences in a certain disease had good outcomes consistent with

observations of those previous researches, such as schizophrenia [18–20], Alzheimer’s dis-

ease (AD) [21–23], autism [24,25], spinocerebellar ataxia(SCA) [26], and attention deficit

hyperactivity disorder (ADHD) [27].

VBM includes a preprocessing and a voxel-based parametric statistical analysis. Basi-

cally, the preprocessing involves spatial normalization,segmentation, and smoothing [16].

The spatial normalization is responsible for registering brain images of different subjects

into the same stereotactic space defined by a template image.In the space, we assume
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Figure 2.1: The normalization. Images in the upper row, the middle row and the lower
row are native MR images, template image and normalized images respectively. Before
normalization, the scales and shapes of heads of different subjects are dissimilar. Normal-
izing images with a standard brain template makes all imagesin the same stereotactic space
where the voxel-wise comparison can be preformed.
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Figure 2.2: The segmentation. The figure shows segmentationof a normalized image into
different tissue classes. The resulting segments includesa gray matter (GM) image, a white
matter (WM) image, and a cerebrospinal fluid (CSF) image.

that measurements of one certain voxel in different normal brain images should represent

the same brain tissue. In the segmentation, the images are segmented into different tis-

sue classes as the gray matter (GM), white matter (WM) or cerebrospinal fluid (CSF).

That makes statistical analysis can be performed on different brain tissues. The smoothing

is necessary for the following statistical analysis. It conditions the data more normally-

distributed and reduces the registration error resulted from the normalization, to increase

the validity of inferences based on parametric tests. Figure 2.1 and Figure 2.2 illustrate the

concept of normalization and segmentation respectively. After preprocessing, the voxel-

based statistical analysis is performed by comparing the normalized and smoothed GM

or/and WM images of different groups of subjects. That is, it uses a standard (univariate)
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statistical test with a null hypothesis at each and every voxel, to evaluate whether the voxel

values of different groups reach the significant level in statistic. If reaching the significant

level, we can say there is a difference between the groups at this position of this voxel.

The resulting statistical parameters are assembled into animage. Finally, voxels with the

statistical parameters preceding the significant level form the regions representative of the

detected group differences.

The following is the summary of basic VBM steps [16], and its corresponded flowchart

is shown in Figure 2.3:

1. Spatially normalization of all images to the same stereotactic space

2. Segmentation of normalized images into GM, WM, and CSF

3. Smoothing

4. Voxel-based statistical analysis

5. Making inferences about group differences

Actually, there are various methodological implementations of voxel-based morphome-

tric analysis. For example, the RAVENS [9] applied segmentation first, and then normal-

ization, smoothing and statistical analysis. In next section we will introduce one of the

most popular the implementations—the optimized VBM protocol [28]. It was used and

compared to our mehtod in this thesis.

2.2 Optimized VBM Protocol

There are several cases that some structural differences found by VBM do not really

exist between groups of subjects when using the basic VBM steps. The misinterpreted
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Figure 2.3: Flowchart of basic VBM steps.
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differences may be resulted from bad results of normalization which induce subsequently

inappropriate comparison between dissimilar brain structures [29]. Although missegmen-

tation leads to the incorrect comparison seemingly, in fact, missegmented tissues are often

caused from badly normalized images. It is because in the implement of segmentation

of normalized images into gray matter, white matter and cerebrospinal fluid (CSF), Ash-

burner and Friston use a mixture model cluster analysis designating the distributions of

voxel intensity of specific tissue types, and use a priori probability maps describing a priori

knowledge of the distribution of different brain tissues innormalized normal subjects to

accomplish tissue segmentation [16]. Notice that the a priori probability maps are in the

normalized stereotactic space. The efficiency of segmentation is influenced by effect of

normalization, because better normalization makes a priori knowledge of the brain tissue

distribution can be used more validly in the segmentation. Thus, to minimize the probability

of inappropriate comparison between dissimilar brain tissues and structures is to minimize

potential error of normalization. For the reason, when wanting to measure group differ-

ences of GM/WM, normalization is preformed on the segmented GM/WM images rather

than on the whole brain images to increase correctness of GM/WM registration results. If

the GM/WM images used for normalization are well segmented, then normalization will

most likely be fine. It becomes interesting that, a good outcome of normalization could

lead to a good outcome of segmentation, and vice versa. Accordingly, the optimized VBM

protocol proposed by Good et al. [28] adopts an iterative version of segmentation and nor-

malization to improve effects of preprocessing.

The following is the optimized VBM protocol for measuring group differences of gray

matter [28], and its flow diagram is shown in Figure 2.4:

1. Creation of customized T1 template and a prior probability maps of GM, WM

and CSF

Customized template is used to reduce potential bias which results from the scanner

and the subject population differing from the existing template. All brain images are
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Figure 2.4: Flowchart of the preprocessing of optimized VBM protocol for estimating brain
discrepancy of gray matter. It is executed in order of (1) creation of customized T1 template
and a prior probability maps of GM, WM and CSF, (2) segmentationand extraction of
affine-registered whole brain images, (3) obtaining optimized normalization parameters by
normalizing GM images into GM template, (4) normalization of whole brain T1 images
with optimized normalization parameters, (5) segmentation and extraction of normalized
whole brain images, (6) modulation (if need), and (7) smoothing.



2.2 Optimized VBM Protocol 19

first normalized to the ICBM 152 template (Montreal Neurological Institute), and

then segmented into different brain tissues as gray matter,white matter and CSF. Fi-

nally, the normalized T1, gray matter, white matter and CSF images are smoothed

with an 8mm FWHM isotropic Gaussian kernel and then averaged to create the cus-

tomized T1/gray/white/CSF mean images (template and priors).

2. Segmentation and extraction of affine-registered whole brain images

In the step, all original structural MR images are affine-registered to the customized

T1 template and then segmented with the GM/WM/CSF a prior probability maps

derived from above step in native space, followed by morphological operations to

remove unconnected non-brain tissues of segmented images.Notice that there is a

caveat that the segmentation is preformed in native space, but the a priori probabil-

ity maps are in the normalized stereotactic space. Therefore, there will be another

segmentation of normalized images in the following to produce better segmented

images.

3. Obtaining optimized normalization parameters by normalizing GM images into

GM template

To obtaining the optimized normalization parameters, segmented gray matter images

are normalized to the customized gray matter template, which is the GM a prior

probability map derived from the first step, by applying 12-parameter affine trans-

formation and nonlinear spatial warping using discrete cosine basis functions. As

a result of normalization of gray matter images rather than whole brain images, the

normalization parameters of gray matter are optimized by preventing any deforma-

tion contributions of non-GM tissues. When wanting to measure group differences

in white matter instead, we obtain the optimized normalization parameters just by

normalizing WM images into the WM template.

4. Normalization of whole brain T1 images with optimized normalization param-

eters
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All original MR images then are normalized with the optimized normalization pa-

rameters. The resolution of normalized images should be relatively high for reduc-

ing partial volume effects, which means there is a mixture ofdifferent tissue types at

one voxel and confounds the subsequent tissue segmentation. In common cases, the

voxel size of the normalized image is isotropic in three dimensions.

5. Segmentation and extraction of normalized whole brain images

This step involved segmentation of optimally-normalized images. The images are

divided into gray matter, white matter and CSF partitions in the normalized stereo-

tactic space. Non-brain tissues are removed by using morphological operations and

a brain mask. In addition, this step also incorporates a correction of image intensity

nonuniformity [16] which is mainly caused by magnetic field inhomogeneity of the

RF coils during image acquisition. The resulting images are extracted gray matter

partition. When estimating WM group differences, extracted WMimages are the

ticket.

6. Correction for volume changes (optional)

In the segmented image, the value of each voxel is assigned the a posteriori proba-

bility that the voxel is classified into this particular tissue type, ranging between 0

and 1. Thus, the segmented GM/WM/CSF data will represent the concentration of

GM/WM/CSF. To preserve the total amount of brain tissue, a correction for volume

changes, which is usually referred to as “modulation”, is performed by multiplying

a voxel value by its Jacobian determinant, which is the relative volume before and

after normalization (in step 4). After this correction, these modulated images rep-

resent the volume of brain tissues. And, to analyze the modulated images is to test

group structural differences in the absolute amount of brain tissues. In this thesis,

we always used modulated data to estimate volumetric group differences rather than

used non-modulated images to consider the differences in concentration.

7. Smoothing
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The normalized, segmented, and modulated images are smoothed with a Gaussian

kernel in this step. Smoothing is necessary for the following voxel-based paramet-

ric tests. It substitutes the value of each of voxels with a weighted average of sur-

rounding voxels. By the central limit theorem, this action conditions the data more

normally distributed such that the validity of inferences based on statistical tests can

be increased. Smoothing also reduces the registration error of spatial normalization.

However, it is worth noticing that, the choice of the smoothing kernel size should

be corresponding to the size of the expected regional differences [30]. Many studies

adopt an 8-mm or 12-mm FWHM smoothing kernel when using the VBM method.

8. Statistical analysis

After the preprocessing, the final step is a voxel-wise statistical analysis of normal-

ized and smoothed gray matter images. Statistical analysisemploys the general lin-

ear model, which is a flexible framework allowing many different tests to be applied,

to distinguish significant differences in brain structuresof different groups under

study [31]. In this thesis, we applied two-samplet-test as the fitting model to de-

scribe data of two groups, and used the standard (univariate) parametrict tests to

evaluate the residuals at each and every voxel. The resulting statistical parameters of

t tests are assembled into an image called thet-test map. By setting a significance

level and a minimum cluster size to thet-test map, voxels with the statistical pa-

rameters preceding the significant level and in the clusterswhose size is larger than

the minimum cluster size form the regions representative ofthe detected significant

group differences.

In this work, we not only applied the optimized voxel-based morphometry to compare

the capability of revealing structural brain discrepancy between different groups with one

of our method, but also used the preprocessing of the optimized VBM protocol to deal with

MR images before analyzing them by the proposed method. Thatis, the implementation

of this image preprocessing was also applied in our method. Here we used the SPM2
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Figure 2.5: Concept of a MR image lying in a high-dimensional space. x represents a
image withN voxels. If we rearranged voxels of the 3-D image to produce anunique 1-D
vector by a particular fixed order, thenx can be regarded as one point in aN -dimensional
space, where each dimensioni stands for voxeli, for i = 1, . . . , N .

software (the Wellcome Department of Imaging Neuroscience, University College London,

UK) implemented in Matlab 6.5 (the MathWorks, Inc. Natick, MA, USA) to accomplish

all procedures involved in the optimized voxel-based morphometry.

2.3 Drawbacks of VBM

Since an individual MR image, a kind of morphological profiles, is commonly de-

scribed as a collection of voxel-wise morphological measurements, it can be placed in a

high-dimensional space where each dimension presenting a voxel. That is, a MR image

is thought as one sample point in a high-dimensional space whose dimensionality is equal

to the number of voxels of the MR image. Figure 2.5 graphically illustrates this concept.

When all images have the same sizes and have been normalized into the same stereotactic

space, where voxels at the same position in all the images should contain the same brain

tissue, the patient morphological profiles and the normal morphological profiles will form

two distributions in the high-dimensional space, like Figure 2.6 shows.
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Figure 2.6: Schematic illustration of the significant bias of VBM. Each ellipse represents a
population of one group. In the case of (a), we can see that thegroup discrepancy almost
centralizes at the position of voxel 1, so it is very probablethat VBM detects a difference at
voxel 1 but has no finding at voxel 2. In contrast, because the group discrepancy is spread
at voxel 1 and voxel 2 in the case of (b), the difference at voxel 1 and voxel 2 is obscure.
Therefore, the voxel-based morphometry may fail to find any differences, even though the
discrepancy between the two groups has the same overall magnitude with case (a). These
simple two cases show the instability that, the ability of VBMto detect group discrepancy
is influenced by the distribution, or pattern, of the discrepancy.

However, Davatzikos [17] pointed out that there is a significant bias of VBM to ren-

der inferences about group differences. Let consider two cases where the morphological

differences between two groups have the same overall magnitudes in Figure 2.6 (a) and

(b). For the purpose of display, there are only two dimensions in the figure, but the di-

mensionality is much higher in practice. Because voxel-based morphometry detect group

differences voxel-by-voxel, only the values along one dimension are taken into account at

a time. In the Figure 2.6 (a), there is a significant group difference at the voxel 1, since

the two distributions along voxel 1 are easily separated. Itis probable that VBM can detect

a difference at voxel 1. Along the voxel 2, the situation is opposite, thus VBM may fail

to find any difference at voxel 2. Now we focus on the case in theFigure 2.6 (b). It is

clear that there is a group discrepancy spreading at voxel 1 and voxel 2. But in the voxel

respect, a large overlap of distributions of two groups exists along both voxel 1 and voxel
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2. This situation may cause VBM disable to detect any differences at either voxel. This

simple example in Figure 2.6 (b) reveals that when applying voxel-based morphometry to

estimate group discrepancy, some subtle and complex patterns of brain differences, which

are widely distributed over many voxels, may not be significant at each single voxel for

VBM to detect.

From the cases in Figure 2.6, we know there is a bias in VBM that,it detects relatively

localized differences much easier than relatively distributed differences involved with sev-

eral brain structures [17]. This bias is an unavoidable and fatal problem to VBM, and it

makes the analysis result of VBM forced to be relied upon the disease characteristics. The

problem results from that VBM analyzes the group discrepancyin a voxel-by-voxel manner

rather than considers the entirety of voxels simultaneously. In such the voxel-wise analysis

method, related information carried by the neighboring voxels are not considered, so it may

cause the disability to measure the subtle and widely-distributed discrepancy located in a

large region composed of many voxels. Therefore, we proposed another unbiased and au-

tomatic method, using a multivariate analysis approach, called the multivariate volumetric

morphometry (MVM) to break this limitation of univariate analysis.



Chapter 3

Multivariate Volumetric Morphometry
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Owing to the congenital problem of this voxel-wise comparison approach, in this chap-

ter we will introduce the proposed method called the multivariate volumetric morphometry

(MVM) which can assess anatomical brain differences. The MVM includes a preprocess-

ing and an analysis step as VBM does. The image preprocessing of MVM is the same

with one of VBM (shown in Figure 2.4), in which the modulation is required to charac-

terize volumetric group differences of brain tissues, but the data smoothing is omitted. In

the statistical analysis step, MVM adopts a reformatory LDA-based method as the basis

of multivariate analysis, and conjugates the wavelet transform, which is used to rearrange

the spatial and frequency information for the multiresolution analysis, to measuring group

differences. Because each and every voxel represents one variate in analysis, thus MVM

is a multivariate approach. This method overcomes the drawback of voxel-based analysis,

and is appropriate for estimating the structural brain discrepancy between different groups.

3.1 Ideas of the Proposed Method

The multivariate volumetric morphometry (MVM) is the proposed method which char-

acterizes volumetric anatomical discrepancy between different groups through a multivari-

ate analysis of MR images of particular brain tissues. It is an unbiased, objective and

whole-brain measurement. The multivariate volumetric morphometry contains several pro-

cesses like VBM does, and the chief breakthrough of this thesis is the multivariate analysis.

Thus, in the following, we only focus on the statistical analysis step of MVM.

In the multivariate analysis stage, it employs a high-dimensional classification tech-

nique, which considers all voxels of MR images at one time, toidentify the most discrim-

inative hyper-plane that well separates the populations ofgroups in the high-dimensional

space. This hyper-plane goes along with a unique normal vector, the most discriminant pro-

jection vectorw, which is the direction shifted from one population to another population.

The appearance of a shift might be resulted from some factorsof interest cause the group
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Figure 3.1: Sketchily showing how a high-dimensional classification technique can be used
to measure group differences. Assume the yellow points are the patients’ morphological
profiles, and the corresponding yellow elliptic area is the patients’ distribution; either are
the blue ones for normal subjects. A classification technique determines the most discrim-
inative hyper-plane, which is presented by the dotted line,and the corresponding most
discriminant projection vectorw. In such the projection vectorw, each element denotes
the discrimination weight of group discrepancy. Therefore, the vectorw can be considered
as a spatial map containing the regions representative of group differences.

discrepancy under study. The most discriminant projectionvector is also an image which

has the same size of all sample images. The way of using a classification technique to find

such the most discriminant projection vector does not need to coincide along any voxels (di-

mensions), that voxel-based analyses are unable to achieve. Further, each of the parameters

from the most discriminant projection vectorw denotes the weighting, or the discrimina-

tion of characterizing group discrepancy, so the most discriminant projection vector can

regarded as the analytic image containing the resulting analysis parameters. In this way,

we can quantify differences throughout the whole brain between different groups by such

a high-dimensional classification technique. Figure 3.1 illustrates the idea schematically.
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3.2 Framework of Multivariate Volumetric Morphometry

Before the multivariate analysis, we used the first six steps of the optimized VBM pro-

tocol mentioned in the chapter 2 to obtain individual normalized and modulated gray/white

matter images. Notice that the smoothing was disused. The reason why we do not smooth

the images in the multivariate volumetric morphometry willbe explained in chapter 5,

discussion. Then, in the central multivariate method, we used a reformatory LDA-based

method, the discriminative common vector method [32], to find the most discriminant pro-

jection vector which minimizes the scatter within each individual group and simultaneously

maximizes the scatter between groups without the small sample size problem. The result-

ing projection vector forms a spatial map, whose image size is the same with all gray/white

matter images used for the analysis, containing the regionswhich are most representative of

group differences. The details of the method and its efficient implementation we proposed

for implementation will be interpreted in the next section.

Besides the discriminative common vector method, we also used the wavelet transform

rearranging the spatial and frequency information of MR images to improve the effect of

MVM upon catching significant group differences, in severalvaried scales. The reason we

applied the discriminative common vector method in the wavelet space is that, although

the method considers all voxels of images simultaneously when estimating group differ-

ences, there are the same forces of relationships between all pairs of two voxels in the

method; no matter the two voxels are adjacent to or far away from each other. Thus, to

increase spatial correlations between neighboring voxels, the 3-D wavelet transformation

is used to restructure voxel data into space-scale featuresin a hierarchical representation

way. After that, we then apply the discriminative common vector method on these wavelet

features. Moreover, the wavelet transform also makes the analysis become a multivariate

multiresolution analysis.

After getting the most discriminant projection vector of two groups’ features, the weight
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of each feature from the projection vector represents the degree of importance for charac-

terizing the group differences. The number of features, equal to the number of voxels in

a MR image, is usually a huge amount. Only the features with larger weights in the most

discriminant projection vector are used when performing the inverse 3-D wavelet transfor-

mation, to obtain the final discriminating map in the original voxel-based space. Discarding

the features with small weights helps to remove trifling differences and to improve accuracy

of the multivariate analysis.

Finally, for the purpose of determining and displaying which regions representative of

the significant group differences, a smoothing and thresholding of discrimination weights

of the parameters in the discriminating map are needed. As mention before, each parameter

of the discriminating map denotes the discrimination of characterizing the group discrep-

ancy, so in an intuitively thinking, the changes of the weights of neighboring parameters

should be slight. However, in practice, it does not often look smooth as we think. It may

result from the noise or the variation within groups, or the error produced during the pre-

processing like a wrong image registration or tissue segmentation. It happens especially

when we abandon the smoothing step in MVM preprocessing. Therefore, to constrain

the smoothness of discrimination weights in the discriminating map regionally, we use a

smoothing for the discriminating map. In addition, a thresholding is done before displaying

the discriminating map to show the detected regions most representative of group discrep-

ancy. Only voxels with a parameter value preceding the threshold in the discriminating

map are considered to reach the significant level and to shallbe showed. The minimum

cluster size of the parameters also can be set to reject the too small regions. Although

the smoothing and thresholding are not the parts of the multivariate analysis step, they are

need for visualizing the discrepancy pattern between the groups. Of course, both of the

procedures can be regulated by users. In the end of the MVM analysis, we can also obtain

a whole-brain confidence in explaining whether the detectedgroup discrepancy is correct,

by caculating thep-value associated with the T-statistic on the two groups of projected
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images onto the discriminating map.

Summarily, the multivariate volumetric morphometry (MVM)contains the following

steps:

1. Spatially normalization of all images to the same stereotactic space

2. Segmentation of normalized images into GM, WM, and CSF

3. Correction for volume changes of segmented images

4. Multivariate analysis

(a) Forward 3-D wavelet transformation to the multiresolution space

(b) Discriminative common vector method to obtain the most discriminant projec-

tion vector

(c) Discarding unimportant wavelet features with small discrimination weights in

the most discriminant projection vector

(d) Inverse 3-D wavelet transformation to obtain the discriminating map in the

stereotactic normalization space

5. Visualization of the discrepancy pattern

(a) Smoothing

(b) Thresholding

Figure 3.2 is the flowchart of the multivariate analysis partof MVM. In implementation,

we used the first six steps of the optimized VBM protocol to accomplish the step 1 and

2 of MVM. In the following sections we will introduce the techniques used in the mul-

tivariate analysis step, including the discriminative common vector method, the efficient

implementation for the discriminative common vector, and the 3-D wavelet transform.



3.2 Framework of Multivariate Volumetric Morphometry 31

Figure 3.2: Flowchart of multivariate analysis and visualization in MVM.
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3.3 Multivariate Analysis using a Reformatory LDA-Based

Method

3.3.1 Conventional Linear Discriminant Analysis and Its Potential Prob-

lem

The linear discriminant analysis (LDA) is one of the most popular linear projection

techniques. It was invented by Ronald A. Fisher in 1936 [33], and has been successfully

applied in many classification problems such as image recognition, multimedia informa-

tion retrieval and so on. Its goal is to find the most discriminant projection vectorw, in

which direction groups can be separated with the maximum between-class scatter and the

minimum within-class scatter.

LetK be the number of classes (groups), where thekth class containsMk samples, and

let xkm be aN -dimensional column vector which denotes themth sample of thekth class.

There is a total ofM =
∑K

k=1
Mk samples. The within-class scatter matrixSw and the

between-class scatter matrixSb are defined as

Sw =
K∑

k=1

Mk∑

m=1

(xkm − µk)(xkm − µk)T , (3.1)

and

Sb =
K∑

k=1

Mk(µ
k − µ)(µk − µ)T , (3.2)

whereµk = 1/Mk

∑Mk

m=1
xkm as the mean of samples in thekth class, and

µ = 1/M
∑K

k=1

∑Mk

m=1
xkm as the mean of all samples. The objective of LDA is to find a

projection matrixPlda that maximizes the Fisher’s linear discriminant criterion, that is

Plda = arg max
P

F (P) = arg max
P

|PTSbP|
|PTSwP| . (3.3)

According to linear algebra, the ratio is maximized when thecolumn vectors ofPlda are

the eigenvectors ofS−1

w Sb. In implementation, each individual morphological profileis
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first reshaped into a sample vector by arranging the 3-D volume in some consistent order

before applying the linear discriminant analysis. Moreover, there are only two groups in

our case, i.e.K = 2, so we can immediately obtain the most discriminant projection vector

w, which is the only one eigenvector composingPlda, by the formulaw = S−1

w (µ1 − µ2).

However, LDA encounters difficulties when the number of samples is much smaller

than the dimensionality of the sample space. This situationcauses the within-class scatter

matrix singular and not invertible, so the LDA cannot be applied directly. It is known as the

small sample size (SSS) problem [34]. Therefore, we employ the discriminative common

vector method [32], which was proposed by Cevikalp and Wilkesfor face recognition, to

solve this problem.

3.3.2 Discriminative Common Vector Method

The discriminative common vector method for the small sample size problem is based

on a variation of the LDA by maximizing the modified Fisher’s linear discriminant criterion

[35]. The general idea of the common vector is to find a vector which can represent a class

by extracting common properties of the class, or saying that, by eliminating differences

between the samples in the class. After getting each common vector of every class, we can

use the principal components analysis (PCA) [36] to find the principal components which

actually equate the most discriminant projection vectors of LDA.

Let us use all previous definitions and let the total scatter matrix be defined as

St =
K∑

k=1

Mk∑

m=1

(xkm − µ)(xkm − µ)T = Sw + Sb. (3.4)

The modified Fisher’s linear discriminant criterion

F̂ (P) =
|PTSbP|
|PTStP| =

|PTSbP|
|PTSwP + PTSbP| (3.5)
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has been proved that it is exactly equivalent to the originalFisher’s criterion by Liu et

al. [35], saying that

arg max
P

F̂ (P) = arg max
P

F (P). (3.6)

The modified criterion will attain a maximum in the special case, proved in [37], where

pTSwp = 0 andpTSbp 6= 0, for all projection vectorsp ∈ R
N \ {0}. Under these

conditions forp, a better criterion [38] will be

arg max
|PT SwP|=0

|PTSbP| = arg max
|PT SwP|=0

|PTStP|.

That is to say, if we transform all samples onto the null spaceof Sw to restrict the projected

within-class scatter matrix to be a zero matrix, and then calculate the principal components

that maximize|PTStP| by performing PCA, we will obtain the most discriminant pro-

jection vectors without the small sample size problem. It iscalled the null space method

proposed by Chen et al. [37].

The transformation matrix from the original sample space tothe null space ofSw is

Q̄Q̄
T
, where the column vectors of̄Q are the vectors spanning the null space ofSw.

Cevikalp and Wilkes [32] have proved that, projecting every samplesxkm (which denotes

themth sample of thekth class) in thekth class onto the null space ofSw will produce

exactly one vectorxkcom = Q̄Q̄
T
xkm , which is referred to the common vector; moreover,

because of̄QQ̄
T
xkm = xkm − QQTxkm, the common vectorxkcom of thekth class can be

calculated without̄Q by using

xkcom = xkm − QQTxkm, (3.7)

whereQ is the matrix whose column vectors are the orthonormal vectors spanning the

range space ofSw. Since the number of columns inQ is aboutM and the number of

columns inQ̄ is aboutN −M , the size ofQ is much smaller than the size of̄Q. It states

that the method can greatly reduce the computational burdenthan the null space method.

After obtaining the common vector for each and every group, the principal components

of those common vectors will be the most discriminant projection vectors. It is because
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there is exactly one class over the common vectors now. Theseprincipal components of

the common vectors are called the discriminative common vectors. Again, in our practice,

samples are divided into only two groups, so there is only onediscriminative common vec-

tor in the event. We obtain the most discriminant projectionvectorw by directly subtracting

of the two common vectors, namely,w = x1

com− x2

com.

So the steps of the discriminative common vector method are as follows:

1. Compute the eigenvectorsα1, α2, . . . , αr corresponded to the nonzero eigenvalues of

Sw, wherer is the rank ofSw, and setQ = [α1 α2 · · · αr].

2. Obtain the common vectors for each class by choosing any sample from each class

and projecting it onto the null space ofSw, those are

x1

com = x1

m − QQTx1

m, m ∈ {1, . . . ,M1}, (3.8)

and

x2

com = x2

m − QQTx2

m, m ∈ {1, . . . ,M2}. (3.9)

3. Compute the only one discriminative common vector, i.e. the most discriminant

projection vectorw by

w = x1

com− x2

com. (3.10)

3.3.3 Efficient Implementation for Computing Discriminative Com-

mon Vectors

Although the discriminative common vector method solves the small sample size prob-

lem, there are still come difficulties in implementation. Itis because the dimensionality

of the sample space is a very huge amount. For example, a 3-D image with the size

157 × 189 × 156 has more than4.6 × 106 voxels. Therefore, we proposed an efficient

implementation for computing the discriminative common vector.
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Since the within-class scatter matrix is defined asSw =
∑K

k=1

∑Mk

m=1
(xkm − µk)(xkm − µk)T ,

it can be rewrited as

Sw = AAT , (3.11)

where the matrixA = [x1

1
− µ1 · · · x1

M1
− µ1 x2

1
− µ2 · · · x2

M2
− µ2]. Rather

than directly calculating the largeN -by-N matrix Sw, we used a computationally fea-

sible method [39,40] to compute the eigenvectors ofAAT by multiplying the matrixA by

the matrixQ̃ whose columns are the eigenvectors ofATA. So the matrix representation of

the subsequent operations is written as

Q = AQ̃

x1

com = x1

1
− Q(QTx1

1
)

x2

com = x2

1
− Q(QTx2

1
)

w = x1

com− x2

com, (3.12)

where we choose the first sample of each class to obtain the common vector.

However, there is still a heavy computational cost if we translate these equations into

programming codes without simplifying them. It is known that, a matrix multiplication

BC needsn1 ×n2 ×n3 multiplications when the matrixB is n1-by-n2 and the matrixC is

n2-by-n3. So, how many multiplications it will take if we do not changethe computation

way? For this purpose, we developed an efficient implementation to achieve the above

objective (3.12). The following is the pseudo-code:

1 for j := 1 to r do

2 for i := 1 to N do

3 qj(i) := 0

4 for l := 1 to M do

5 qj(i) := qj(i) + A(i, l) ∗ Q̃(l, j)

6 end
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7 end

8 qj := NormalizeV ector(qj)

9 dot1 := Dot2V ectors(qj,x
1

1
)

10 dot2 := Dot2V ectors(qj,x
2

1
)

11 for i := 1 to N do

12 QQtX
1
(i) := QQtX

1
(i) + qj(i) ∗ dot1

13 QQtX
2
(i) := QQtX

2
(i) + qj(i) ∗ dot2

14 end

15end

16 for i := 1 to N do

17 w(i) := (x1

1
(i) − QQtX

1
(i)) + (x2

1
(i) − QQtX

2
(i))

18end

In this code fragment, the scalarsr,N ,M are the number of column vectors composed

of Q̃, the dimensionality of the sample space, and the number of all samples, respectively.

The vectorqj represents thejth column vector ofQ. TheN -by-M matrix A and the

M -by-r matrix Q̃ represent as the definitions before. And, the vectorQQtXk, used to

calculate the common vectorxkcom, represents the projected sample ofxk
1

of the range

space ofSw, for k = 1, 2. Furthermore, the functionNormalizeV ector() makes the input

vector turning out a vector with the norm equal to1 in the same direction. The function

Dot2V ectors() returns the scalar product of the input vectors. Finally, the resulting vector

w is the most discriminant projection vector.
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3.4 Multiresolution Analysis using Wavelet Transform

In image processing, there are many methods and theories to be developed. Owing to

convenience of analysis, it usually transforms domain of signals. In engineering applica-

tion, the most popular method is Fourier transform. Fouriertransform can transform the

signals from spatial domain to frequency domain, but the information of spatial domain is

lost after applying Fourier Transform on an image. In many applications, however, it needs

to analyze both frequency and spatial information at the same time. To avoid the lack

of spatial information, Haar, Goupillaud, Grossman, and Morlet proposed and improved

wavelet transform [41].

Wavelet transform is one of multi-resolution analysis. Wavelet transform not only can

transform an image from spatial domain to frequency domain,but also has information of

both two domains. Similar to the Fourier transform, wavelettransform consists of continu-

ous wavelet transform (CWT), and discrete wavelet transform (DWT). However, continu-

ous wavelet transform is limited by the redundancy and impracticality in image processing.

Therefore, the discrete wavelet transform is applied in this thesis.

3.4.1 3-D Discrete Wavelet Transform

The most important parameter in wavelet transform is calledwavelet function, which is

also called mother wavelet. Wavelet functionψ(x), where x is the parameter in the spatial

domain, has to satisfy two properties as follows:

1. The integration of wavelet function has to be zero,

∫ ∞

−∞

ψ(x)dx = 0. (3.13)
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2. Wavelet function has finite energy,
∫ ∞

−∞

|ψ(x)dx|2 < 0. (3.14)

First property represents that wavelet function is oscillating, so wave function is always like

an oscillatory wave. Second property represents finite energy, so wavelet function decays to

zero in both positive and negative directions. Compared withharmonic waveform, wavelet

function is relative smaller. This is the underlying reasonthat it is called ”wave-let”.

In this thesis, wavelet transform is used for the multiresolution analysis. Wavelet trans-

form based multiresolution analysis is to analyze the signals or images under different

scales and resolutions. Utilizing the multiresolution analysis, an image with complex fre-

quencies can be decomposed into many images with simple frequencies. The decomposed

images can be analyzed independently or in community. To discuss the method of multi-

resolution analysis, besides wavelet functions, the scaling functions, usually inferred to the

father wavelet, have to be introduced. Define the scaling function φ(x), which have to

satisfy three basic properties:

1. The integration of scaling function has to be 1,
∫ ∞

−∞

φ(x)dx = 1. (3.15)

2. The energy of scaling function is equal to 1,
∫ ∞

−∞

|φ(x)dx|2 = 1. (3.16)

3. The scaling functionφ(x) and its transformation by shifting n,φ(x−n), compose of

an orthogonal set,

< φ(x), φ(x− n) >= δ(n), (3.17)

whereδ(n) is Kronecker delta symbol.δ(n) = 1 asn = 0, andδ(n) = 0 asn 6= 0.

Wavelets can be defined by the wavelet function and the scaling function. Moreover, the
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wavelet function and the scaling function are usually set tosatisfy the orthogonal relation.

When the scaling function and the scaling function are orthogonal, besides computing eas-

ily, image energy can be divided in the spatial domain and thefrequency domain. This is

really a useful property in practice.

The forward 1-D discrete wavelet transform and the inverse 1-D discrete wavelet trans-

form are defined respectively that

Wφ(a, b) =
1√
a

∑

x

f(x)φ(
x− b

a
), (3.18)

Wψ(ā, b) =
1√
ā

∑

x

f(x)ψ(
x− b

ā
), (3.19)

and

f(x) =
1√
a

∑

b

Wφ(a, b)φ(
x− b

a
) +

1√
ā

∞∑

ā=a

∑

b

Wψ(ā, b)ψ(
x− b

ā
), (3.20)

wheref(x) is a spatial signal to decompose,b is the spatial shift or translation factor,a and

ā are called the spatial scaling or dilatation factor which determine the size of the spatial

axis translation,Wφ(a, b) is is the scaling coefficient, andWψ is the wavelet coefficient.

In practice, all discrete wavelet transforms make use of filter banks that contain band-

pass filters separating the input signal into several components. Each component carries

a single frequency sub-band of the original signal. In the 3-D case, the 1-D analysis filter

bank is applied in turn to each of the three dimensions. Usually, the overwhelming majority

of the signal information appears in the component with the lowest frequency band. So it

is often to separate the existing component with the lowest frequency band in a recursive

way. The level of a discrete wavelet transformation represents how many times the signal

separation is preformed. Figure 3.3 interprets this idea schematically.

The data used to be analyzed by the discriminative common vector method, which are

illustrated in Figure 3.4, are these wavelet coefficients from the 3-D discrete wavelet trans-

form. After the discriminative common vector method analysis and a wavelet thresholding
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Figure 3.3: Analysis by 3-D discrete wavelet transform withfilter banks. The 1-D analysis
filter bank is applied in turn to each of dimensions. And the resulting component with the
lowest frequency band continues to decompose in the next level of DWT.
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Figure 3.4: A MR image by discrete wavelet transform with different levels. (a) Original
MR image. Decomposed images, or the wavelet coefficients, from (b) 1-level DCT, (c)
2-level DCT, (d) 3-level DCT.

which is introduced in the next section, we perform the inverse 3-D discrete wavelet trans-

form to obtain the discriminating map of MVM.

3.4.2 Wavelet Thresholding

As the mention before, a thresholding of wavelets coefficients is performed before

the inverse wavelet transform, in order to preserve the large discrimination weights for

a good discriminating map. There are three simple thresholding approaches in common

use: the hard thresholding, soft thresholding, and percentage thresholding [42]. We used

the percentage thresholding approach to preserve certain quota of the total discrimination

to characterize the discrepancy between groups. By setting the percentageα%, we keep

the wavelet coefficients with larger absolute discrimination weights from the most discrim-
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inant projection vector, so that the sum of these absolute weights comprisesα percents of

the total of the absolute weights from the LDA projection vector. And, we discard other

wavelet coefficients which have the smaller absolute weights. After doing theα percentage

thresholding, the inverse wavelet transform is now performed to obtain the discriminating

map in the original voxel-based space.



44 Multivariate Volumetric Morphometry



Chapter 4

Experiments
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This chapter shows the experimental results which utilize MVM and VBM respectively

to analyze the anatomical differences between two different groups. It includes the ex-

perimental parameters, the results and comparison betweenthe two analysis methods, and

some other related methods about the experiments. Simulation data were used to assess

the capability for MVM and VBM to reveal the group discrepancy. These two methods

were also applied on real SCA3 data. In both simulation and SCA experiments, the pro-

posed method expresses a better sensitivity to subtle and widely-distributed variation of

brain structure.

4.1 Capability Assessment for Discrepancy Revelation

To validate whether the proposed multivariate method can detect more distributed atro-

phy than voxel-based analysis, simulation MR images were generated. We used thin-plate

splines (TPS) [43], which is an interpolation tool and suited for image morphing, to sim-

ulate normal and patient groups of images. The most parts of advantages of using the

simulation data are that we can control the difference patterns between two groups, and

we have the ground truth to verify and compare the results of the two analysis approaches.

The methods of data generation and accuracy evaluation, andthe experiment results and

comparisons will be presented in order.

4.1.1 Materials

We used a normalized gray matter MR image of a normal subject as the source image to

simulate one normal group and eight patient groups by the thin-plate spline (TPS) method.

The simulated atrophy of patients is around the cerebellum area. Eight patient groups have

different degrees of simulated atrophy to compare with the normal group. The general

idea of TPS is first choosing several control points on the source image, and then moving
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these control points to produce a new image by interpolationwith thin-plate splines. The

simulation procedure is described below:

1. Select one optimized-normalized and modulated GM image from normal subjects to

be the simulation source image. All simulation data are produced form this image.

The reason why the simulation was preformed on a normalized and segmented image

rather than on a native T1-weighted image is that, we wanted to avoid other factors,

such as normalization and segmentation, which might affectaccuracy of simulation

data for analysis and which should be not considered under this study. The sizes of

the source image and simulation data are all78 × 94 × 78 with a voxel size2 × 2 ×
2mm3.

2. Choose control points for the thin-plate spline (TPS) transformation. 68 control

points were manually selected on the surface of cerebellar gray matter, and 140 con-

trol points were automatically selected on the surface of cerebral cortex by a program.

Specifically, 30 of the 68 control points, which are on the exterior surface of cere-

bellar gray matter, were used to simulate atrophy around thecerebellum; Other 38 of

the 68 control points, which are on the interior surface of cerebellar gray matter or on

the interface between the cerebellum and cerebrum, were used to avoid global mo-

tion effects of the atrophy simulation as using TPS interpolation. We used these two

different groups of (30 and 38) control points on the cerebellum to vary the thickness

of cerebellar gray matter, rather than the size of cerebellum (in that way it only needs

the 30 control points on the exterior surface of cerebellum). Figure 4.1 sketches the

distribution of these control points.

3. Move the 30 control points on the exterior surface of cerebellar gray matter towards

the individual cerebellar hemisphere centers to create thickness atrophy of the cere-

bellum. The distance of movement is one of control parameters in this simulation. By

setting different distances, we can produce various degrees of simulated cerebellum

atrophy. This step should be skipped when generating simulated normal images.
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Figure 4.1: The distribution of control points for TPS simulation. The orange points repre-
sent these control points on the exterior surface of cerebellar gray matter, which were used
to generate cerebellar atrophy; The green points representones on the interior surface of
cerebellar gray matter, which were used to avoid global motion effects of TPS interpolation;
The blue points represent ones on the surface of cerebral cortex. Finally, to simulate the
variance within a group, all points were used to render the cerebral and cerebellar surfaces
with a white noise.

4. Shift all control points in arbitrary directions with thesmall distances by using a

white noise to randomly render the cerebral and cerebellar surfaces. The shifting

distance is also a control parameter in this simulation to produce the inter-subject

variation.

5. Perform the TPS transformation on the source image to generate simulated images

with or without the atrophy around the cerebellum area. Images with the simulated

atrophy form the patient group, and ones without the simulated atrophy form the

normal group.

To generate the normal group and eight patient groups with different degrees of cerebel-

lum atrophy, we used the TPS simulation procedure with a white noise, which has standard

deviation 2mm along each dimension, on all control points for all the normal and patient

groups, and with the eight atrophy distances from 1mm to 8mm on these control points on
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the exterior surface of cerebellum for the patient groups. In every group, there were 20

simulated images. Thus we had eight pairs of the simulated normal and patient groups to

perform eight analyses with distinct degrees of structuraldifferences by using both MVM

and VBM. Figure 4.2 shows the source image and simulated images with 1mm, 3mm, 5mm

and 7mm cerebellum atrophy.

4.1.2 Accuracy Evaluation

Because the simulation parameters and data are under our control, we can use the

ground truth of the discrepancy pattern we already knew to test and verify the results with

some evaluation methods. The ground truth is an image containing the region with the

structural discrepancy between the simulated normal and patient groups. It was obtained

by subtracting an image, which was generated by the same TPS procedure without noise

appended on the control points but only with the atrophy distance producing the cerebellar

atrophy, from the source image. If the simulated images werewell generated with good

parameters that make the distribution within the group of the images near the normal dis-

tribution, the ground truth is good for representation of the actual difference between two

simulated groups.

After analyzing the simulation data and determining the significant level (threshold) of

a result image with the analytic parameters, i.e. a discriminating map of MVM or at-test

map of VBM, a voxel-wise comparison between the result image and the ground truth is

preformed to find the regions of true-positive (TP), false-positive (FP), true-negative (TN),

and false-negative (FN). The four terms TP, FP, TN, and FN mean that:

• True-positive (TP): the analysis result predicts the voxelis in the atrophy area, and

in reality it is in the atrophy area of the ground truth;

• False-positive (FP): the analysis result predicts the voxel is in the atrophy area, but
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Figure 4.2: The source and simulated images by TPS shown in the coronal, sagittal and
axial views. (a) is the source image used to generated simulation data; (b) is a simulated
normal image; and (c), (d), (e), (f) are the simulated patient images with atrophy around the
outer cerebellar cortex with a atrophy distance of 1mm, 3mm,5mm, and 7mm respectively.
All simulated images were rendered with a white noise whose standard deviation is 2mm
along each dimension. We can see the thickness of the cerebellum in the simulated images
is thinner and thinner from (b) to (f). The sizes of these images are all78× 94× 78 with a
voxel size2 × 2 × 2mm3, and the red cross is placed at the voxel (52, 25, 17)
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Table 4.1: Definitions of TP, FP, TN, and FN.

Predicted
Yes No

Actual

Yes TP FN

No FP TN

in reality it isnot in the simulated atrophy area of the ground truth;

• True-negative (TN): the analysis result predicts the voxelis not in the atrophy area,

and in reality it isnot in the simulated atrophy area of the ground truth;

• False-negative (FN): the analysis result predicts the voxel is not in the atrophy area,

but in reality it is in the simulated atrophy area of the ground truth.

Table 4.1 shows the brief definitions of them. The analysis result could be true in two

respects TP and TN; and it could be false in two respects FP andFN. In statistics, we call

FN the type I error, and call FP the type II error. Moreover, the rates of TP, FP, TN and FN

are defined as:

TPrate =
TP

TP + FN
, (4.1)

FPrate =
FP

TN + FP
, (4.2)

TNrate =
TN

TN + FP
, (4.3)

FNrate =
FN

TP + FN
. (4.4)

After we got these regions, we can assess an analysis result by displaying the result image

with labeled TP, FP, FN regions. More TP regions and fewer FP,FN regions indicate the

result is more accurate. The comparison between two morphometric analysis methods

MVM and VBM is done by showing their labeled result images and TP/FN rates, in the

case of that their FP rates are equal to each other.
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Another more precise assessment is to use the receiver operating characteristic (ROC),

which employssensitivityandspecificityto present achievements of a prediction method

in a graphic way. In this study, the sensitivity means the ability of a method to identify

which voxels has actually atrophy, so it is simply the TP rate; and the specificity means

the ability to identify which voxels do not have actually atrophy, so it is the TN rate. The

ROC curve of a method is obtained by plotting sensitivity against 1-specificity via vary-

ing the value of the parameter of this method. In our case, thevaried parameter of MVM

is the display threshold of the discrimination weights in the discriminating map, and the

varied parameter of VBM is the display threshold of thet values in thet-test map. In gen-

eral, a method with a ROC curve closer to the top left corner represents that it has a better

performance and is more accurate when a good parameter valueis chosen. When quantify-

ing ROC curves, one of the common summary indices is the area under the curve (AUC),

which is defined geometrically, as its name suggests. The AUCindex can be interpreted

as the overall probability of correct identification. In this work, we used the partial area

under the curve (PAUC) [44] as the basis of the comparison between different ROC curves,

because the curves were not long enough to separate the area under the curve and the area

over the curve in practice. Only a specific region of the ROC curves was employed. Al-

though the computed areas of AUC and PAUC are distinct, theirconcepts are similar that:

an AUC/PAUC index with a larger area indicates a better achievement of the prediction

method. Figure 4.3 gives an example of a ROC curve.

4.1.3 Comparisons between MVM and VBM

Simulation data were analyzed by both MVM and VBM (excluding the preprocessing

part). Before the VBM analyses, all images were smoothed with a4mm FWHM isotropic

Gaussian kernel, and then we applied the two-samplet-test to obtain thet-test maps. In

contract, MVM analyzed images without smoothing them. We used the wavelets proposed

by Abdelnour and Selesnick [45] to transform the simulated images to the 3-level wavelet
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Figure 4.3: Example of a ROC curve. It is obtained by varying the value of the parameter
of a method and then plotting sensitivity (TP rate) against 1-specificity (FP rate) under this
parameter value. In general, methods with ROC curves closerto the top left corner indicate
better performances. When wanting to compare performances of different methods, we
often use the summary statistics for ROC curves, such as AUC and PAUC indices.

space, then preformed the discriminative common vector method, and setα = 20 to pre-

serve coefficients with larger absolute weights of the most discriminant projection vector

and to discard other coefficients before the inverse wavelettransform. Finally, a 4mm

FWHM isotropic Gaussian kernel was applied to the discriminating map for the MVM

analysis result. Averagely, the MVM cost 51 seconds to analyze a set of data, and the

VBM cost averagely 65 seconds. Both were on the same PC equippedWindows XP with a

processor 1.83GHz and 1GB RAM.

The ROC curves of analyses results of MVM and VBM for detectingsimulated group

differences with the atrophied thickness of cerebellum from 1mm to 8mm are shown in

Figure 4.4. The corresponding PAUC indices, in a specific region where the TP rate ranges

form 0.8 to 1 and the FP rate ranges form 0 to 0.2, are listed in Table 4.2. By comparing

ROC curves of two approaches in Figure 4.4, we found that the MVM curves are closer

to the top left corner than VBM, and this appearance is obviousespecially in the cases of

1mm and 2mm atrophy analyses. That is, the MVM produced a moreaccurate result than
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Figure 4.4: ROC curves of MVM and VBM results with the simulation data. Notice that
both horizontal axes are limited from 0 to 0.2 and both vertical axes are limited from 0.8 to
1 for more specific display. It is manifest that MVM curves arecloser to the top left corner
than VBM in the same analysis data, especially when the simulated atrophy distance is
small.
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Table 4.2: PAUC indices for ROC curves of MVM and VBM results with the simulation
data. The partial area was calculated in a specific region where the TP rate ranges form 0.8
to 1 and the FP rate ranges form 0 to 0.2. As this specific regiondenotes 1, we have 0≤
PAUC≤ 1. It is manifest that MVM PAUC indices are greater than VBM ones in the same
analysis data, especially when the simulated atrophy distance is small.

Atrophy size MVM VBM

1mm 0.73466 0.38676

2mm 0.92286 0.81895

3mm 0.95521 0.88867

4mm 0.96613 0.91171

5mm 0.95836 0.92719

6mm 0.95398 0.91616

7mm 0.95465 0.91302

8mm 0.95357 0.92445

VBM when the atrophy was subtle and refined, as well as what we supposed. Besides,

there is a general trend of the two results that, as the atrophy size increases, the ROC curve

moves toward the top left corner. This trend is reasonable since large group differences

are more easily detected by nature. But, the situation ends when the simulated atrophy

size is bigger than 4mm. The curves almost go forward to the corner on longer but tend to

fall into a pattern there. It might be evidence that the capability of two analysis methods

for finding the group discrepancy will achieve an extremity when the group discrepancy is

large enough. Similar findings were observed in their PAUC indices in Table 4.2. We could

see that MVM have greater PAUC than VBM in the same analysis case, and the difference

between MVM and VBM PAUC indices is large especially when the simulated atrophy

is small. Both Figure 4.4 and Table 4.2 illustrate our method has a better sensitivity and

accuracy than the VBM analysis.
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To demonstrate the analysis results of MVM and VBM for detecting the cerebellar at-

rophy with the same FP rate, the result images are presented by displaying several slices,

overlaying the same slices of the source image, with labeledTP, FP and FN regions. First

we chose a reasonablet value of the VBMt-test map, and then selected the display thresh-

old of the MVM discriminating map by the strategy that, this MVM threshold should make

the FP rate of MVM analysis result equal to the FP rate of VBM. By comparing the re-

sult image with the ground truth of discrepancy pattern, each and every voxel of the result

image was decided as a particular type of TP, TN, FP or FN. Finally these voxels were

stained by different colors: green, yellow and red, that indicate the TP, FN and FP regions

respectively.

In the case of 1mm cerebellar atrophy, the FP rate is approximate 0.0013 when choosing

the threshold of VBMt value as 3.32 (i.e.p value = 0.001 uncorrected as degree of freedom

= 38). The TP rates of MVM and VBM are approximate 0.4155 and 0.1632 respectively.

Analysis results of MVM and VBM are shown in Figure 4.5 and Figure 4.6. From these

two figures, we can see that there are more TP regions in the MVMresult than in the VBM,

as well as that their TP rates reveal. Moreover, a rough shapeof the exterior cerebellum

is shown in the MVM TP result in lower slices, but in the VBM result TP regions are too

loose to form a shape. Becides, since the simulated atrophy was widely-distributed and

was a very small quantity all over on the exterior surface of cerebellum, the FN regions of

the two approaches are both large. It is instinctive that group difference is difficult to be

detected when it is samll. However, it is still visible that FN regions of MVM are fewer than

ones of VBM. On the side, both results had some FP regions. Somewere in the cerebrum,

and some were around the cerebellum. Ones in the cerebrum were thought to be the false

outcomes of the analyses, where should not have atrophy. But the appearance of FP regions

around the cerebellum could be thought resulted from the smoothing, which is either the

data smoothing in VBM or the display smoothing in MVM. This kind of FP false is not

very taken to heart.
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Figure 4.5: Analysis result of MVM for 1mm simulated cerebellum atrophy. The FP
rate and TP rate are approximate 0.0013 and 0.4155 respectively. White-edge images are
zoomed in for exquisite demonstration. Compared with the VBM result, the MVM had a
better accuracy to detect the simulated atrophy around the cerebellum area, in the case of
the 1mm atrophy simulation.
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Figure 4.6: Analysis result of VBM for 1mm simulated cerebellum atrophy. The FP rate
and TP rate are approximate 0.0013 and 0.1632 respectively.White-edge images are
zoomed in for exquisite demonstration. Compared with the MVMresult, the VBM had
a worse accuracy to detect the simulated atrophy around the cerebellum area, in the case of
the 1mm atrophy simulation.
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Figure 4.7 and Figure 4.8 are similar overlays of analysis results of MVM and VBM for

2mm cerebellar atrophy. Both results have the same FP rate approximately 0.0021, when

choosing the threshold of VBMt value as 4.12 (i.e.p value = 0.0001 uncorrected as degree

of freedom = 38). The TP rates of MVM and VBM are approximate 0.8184 and 0.5061

respectively. Since the simulated atrophy size is only 2mm,an inference is similar to one of

1mm atrophy simulation: there are more TP regions and fewer FN regions in MVM than in

VBM. It illustrates that, when atrophy is subtle and distributed, MVM can produce a more

accurate result than VBM, once again. Furthermore, by comparing 2mm atrophy results

with 1mm atrophy results, we found that amounts of TP regionsincreased and amounts

of FN regions decreased in individual analysis approach. That means the analysis results

with 2mm atrophy had a higher accuracy than 1mm ones. The samediscovery was found

in their ROC curves that Figure 4.4 displays.

In the analysis of simulation data with 6mm atrophy around the cerebellum, both MVM

and VBM had good outcomes. Figure 4.9and Figure 4.10 show the MVM and VBM results

with the same FP rates approximate 0.0011, when choosing astrict threshold of VBMt

value as 6.01 (i.e.p value = 0.1 FWE corrected as degree of freedom = 38) for the purpose

of display. Under this strict threshold, TP rates of MVM and VBM are approximate 0.8498

and 0.7598 respectively. Both approaches found the majorityof simulated atrophy regions

correctly as TP parts shown in Figure 4.9and Figure 4.10. Only a few atrophy regions were

not detected, which occurred in the thin cortex or fringe of the cerebellum. And in these

subtle regions, MVM still had a better ability to recognize the differences than VBM does.
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Figure 4.7: Analysis result of MVM for 2mm simulated cerebellum atrophy. The FP
rate and TP rate are approximate 0.0021 and 0.8184 respectively. White-edge images are
zoomed in for exquisite demonstration. Compared with the VBM result, the MVM had a
better accuracy to detect the simulated atrophy around the cerebellum area, in the case of
the 2mm atrophy simulation. Besides, it was also a more correct result than the result of
1mm atrophy. It is because the atrophy size became larger so that the atrophy area became
more easily detected.



4.1 Capability Assessment for Discrepancy Revelation 61

Figure 4.8: Analysis result of VBM for 2mm simulated cerebellum atrophy. The FP rate
and TP rate are approximate 0.0021 and 0.5061 respectively.White-edge images are
zoomed in for exquisite demonstration. Compared with the MVMresult, the VBM had
a worse accuracy to detect the simulated atrophy around the cerebellum area, in the case
of the 2mm atrophy simulation. Nevertheless, it was also a more correct result than the
result of 1mm atrophy. It is because the atrophy size became larger so that the atrophy area
became more easily detected.
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Figure 4.9: Analysis result of MVM for 6mm simulated cerebellum atrophy. The FP rate
and TP rate are approximate 0.0011 and 0.8498 respectively.The white-edge image is
zoomed in for exquisite demonstration. The majority of simulated atrophy regions were
correctly detected because the atrophy size was large enough. Therefore there are only
a few FN regions occurred in the thin cortex or fringe of the cerebellum. And, in these
subtle regions, such as the white-edge image, MVM still had abetter ability to recognize
the differences than VBM does.
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Figure 4.10: Analysis result of VBM for 6mm simulated cerebellum atrophy. The FP rate
and TP rate are approximate 0.0011 and 0.7598 respectively.The white-edge image is
zoomed in for exquisite demonstration. The majority of simulated atrophy regions were
correctly detected because the atrophy size was large enough. Therefore there are only a
few FN regions occurred in the thin cortex or fringe of the cerebellum. However, in these
subtle regions, such as the white-edge image, VBM still had a worse ability to recognize
the differences than MVM does.
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4.2 Structural Atrophy Analysis for Patients Suffering Spinocere-

bellar Ataxia Type 3

Spinocerebellar ataxia (SCA) is a kind of inherited neurological disorders, whose clin-

ical characteristics are the progressive neurodegeneration of the cerebellum, spinal cord,

and brain stem. The symptoms of SCA include walking unsteadily, incongruity of limbs,

dysarthria, hyperreflexia, and postural tremor, etc. The clinical behaviors of SCA patients

are various, that the patients usually have different combination of different symptoms and

different ages at falling ill. There is still no effective way to cure SCA completely now. It

can only use medicine or physiatrics to alleviate the symptoms of SCA. Up to now, SCA

is already classified into above 26 types. Most researches indicate that SCA type 3 is the

most popular type of SCA in the world. In Taiwan, SCA3 is also themost epidemic type

of spinocerebellar ataxia [46]. This experiment is accordingly to analyze the structural at-

rophy for the patients suffering SCA3, by applying two morphometric analysis methods,

MVM and VBM. The analysis results and comparison of the two methods will be presented

in the following.

4.2.1 Materials

The study group was composed of six patients carrying spinocerebellar ataxia type

3 mutations and of eighteen normal subjects from the Taipei Veterans General Hospital.

The clinical data of the patients are summarized in Table 4.3, where the international co-

operative ataxia rating scale (ICARS) [47] is a pharmacological assessment of the cere-

bella syndrome, which involves quantification of postural and stance disorders, limb ataxia,

dysarthria and oculomotor disorders.

Magnetic resonance images of all normal subjects were acquired from the same 1.5T

Siemens scanner at the Taipei Veterans General Hospital, which used a T1-weighted 3-D
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Table 4.3: Clinical data of patients carrying SCA3 under study.

Patient Gender Age ICARS score

A Male 27 19

B Female 31 19

C Male 37 22

D Female 54 19

E Male 57 16

F Female 60 37

IR sequence with TR = 9.7ms, TE = 4ms, FA = 12°, matrix size =256× 256, slices = 128,

voxel size =0.9 × 0.9 × 1.5mm3. MR images of SCA3 patients were also acquired from

the same scanner with the same attributes except the matrix size =512× 512, slices = 160,

voxel size =0.47 × 0.47 × 1mm3.

4.2.2 Results and Comparison between MVM and VBM

We used the first six steps of the optimized VBM including modulation to preprocess

all MR images by the software SPM2, and then statistically analyzed structural brain dif-

ferences between the normal and patient groups by both MVM and VBM methods. In the

preprocessing stage, the nonlinear spatial normalizationpart was performed by7 × 9 × 7

discrete cosine basis functions, and the output normalizedimages had a high resolution

with the voxel size of1 × 1 × 1mm3. Again, before the VBM analysis, all images were

smoothed with an 8mm FWHM isotropic Gaussian kernel. Then we applied a two-sample

t-test, and set the significance level atp<0.00005 uncorrected (i.e.t value>4.74 as de-

gree of freedom = 22) for the finalt-test map. Parallel to VBM, MVM analyzed those

images without smoothing them. We used the same wavelets in the simulation experiment

to transform images to the 3-level wavelet space, and setα = 20 to discard coefficients
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with smaller weights of discrimination. After obtaining the discriminating map, an 8mm

FWHM isotropic Gaussian kernel was used for the analysis result display. The display

threshold of MVM was the mean of discrimination weights of some regions corresponding

to those regions in the same locations of VBMt-test map whoset values were above 4.74

and below 5.04. It made the MVM result was not far off the result of VBM. This strategy

for choosing a compatible threshold of MVM is illustrated with Figure 4.11. To restrict the

minimum cluster size when showing analysis results, both extension thresholds of the two

methods were set for 40 voxels. Thep-value representing1− the whole-brain confidence

of MVM discriminating map was about5.83 × 10−10. It took 335 and 403 seconds in the

MVM and VBM analysis step (excluding the preprocessing) respectively, on the same PC

equipped Windows XP with a processor 1.83GHz and 1GB RAM.

Figure 4.12 illustrates gray matter volume loss in SCA3 patients by MVM analysis

method. Detected significant atrophy is marked with a circleand a number in Figure 4.12,

furthermore, it is listed in Table 4.4 with the same number inthe no. column. Com-

paring brain structure of SCA3 patients to normal subjects, volume loss of gray matter

was detected in the regions of anterior and posterior lobes of cerebellar hemispheres, ver-

mis, basal ganglia (including lentiform nucleus, caudate nucleus, thalamus), frontal areas

(including inferior, middle and superior frontal gyri), right occipital lobe, and left middle

temporal area. Most of these observed regions are symmetrical in both sides. The MVM

analysis result accentuated the atrophy of cerebellar area, and it is a fine outcome because

SCA is characterized as the neurodegeneration of the cerebellum. Basal ganglia, which

is associated with motor and learning functions, is also noticeable and reasonable finding,

as a result of that it is a main abnormal region for Parkinson’s symptom involved with

SCA3. Frontal areas are known about the cognitive functions that may be influenced by

the cerebellar dysfunction and result in frontal-executive deficits [48], so those observed

frontal areas were thought as a reasonable result. The atrophy of middle temporal area was

also reported in [26]. Since the frontal and temporal cortexwere both the target organ of
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Figure 4.11: Strategy for choosing a compatible threshold of MVM by VBM t values.
First we decided the threshold oft value in VBM, then found regions whoset values are
above 4.74 and below 5.04, and finally chosen mean of discrimination weights of MVM
discriminating map in the same regions as the MVM threshold.
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Figure 4.12: Volumetric atrophy of gray matter in SCA3 patients by MVM analysis
method. Regions detected as significant group differences are marked with circles. One
marked with a green circle is also found in the VBM analysis result; one marked with a
blue circle is only revealed in the MVM result. Numbers of theses circles represent the
importance of characterizing volume loss in SCA3 patients. Specifically, smaller number
represents higher importance and larger number representslower importance. More infor-
mation of each region is listed in Table 4.4.
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Table 4.4: Atrophy of gray matter in SCA3 patients by MVM analysis method. These
atrophy regions are arranged in order by their peak discrimination weights of each cluster,
and the numbers denote the sequence of peak discrimination weights. Some clusters are
very large so that there is more than one peak listed in a cluster. The serial numbers are
informative for revealing the significance of gray matter atrophy in SCA3.

Location Side Talairach Peak Cluster Fig. 4.12

coordinate discrimination size no.

x y z

Occipital Lobe, Lingual Gyrus R 19 -83 -8 0.2157 74086 1

Cerebellum, Anterior Lobe R 42 -53 -23 0.2089 2

Cerebellum, Anterior Lobe L -44 -48 -23 0.2021 3

Cerebellum, Posterior Lobe R 26 -81 -23 0.1760 7

Cerebellum, Posterior Lobe L -36 -75 -28 0.1638 12

Cerebellum, Vermis R 4 -48 -37 0.1618 13

Sub-lobar, Lentiform Nucleus R 26 5 4 0.1946 11083 4

Frontal Lobe, Inferior Frontal Gyrus (BA47) R 29 15 -21 0.1652 11

Frontal Lobe, Inferior Frontal Gyrus R 50 25 -4 0.1534

Sub-lobar, Lentiform Nucleus L -24 7 1 0.1889 9333 5

Temporal Lobe, Superior Temporal Gyrus L -29 15 -23 0.1585 14

Frontal Lobe, Inferior Frontal Gyrus L -42 19 -3 0.1554

Temporal Lobe, Middle Temporal Gyrus L -50 -33 0 0.1772 982 6

Thalamus 0 -6 6 0.1755 3137 8

Frontal Lobe, Middle Frontal Gyrus R 35 34 23 0.1704 6205 9

Sub-lobar, Caudate Nucleus R 13 20 6 0.1658 2777 10

Temporal Lobe, Middle Temporal Gyrus R 51 5 -34 0.1508 632

Frontal Lobe, Middle Frontal Gyrus L -33 -1 43 0.1387 270

Frontal Lobe, Superior Frontal Gyrus (BA10) L -28 62 -6 0.1387 195

Frontal Lobe, Superior Frontal Gyrus L -27 50 26 0.1380 870

Frontal Lobe, Middle Frontal Gyrus (BA9) L -41 10 37 0.1378 1157
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the cerebellar efferent tracts, the atrophy of the frontal and temporal regions in our study

may secondary to the degeneration of the cerebellum. Besides, a significant atrophy was

found in the occipital lobe, owing to some existing clinicalvision problem in our patients

accordingly.

Figure 4.13 illustrates detected gray matter volumetric atrophy in SCA3 patients by

VBM analysis method. Observed significant discrepancy is marked with a circle and a

number in Figure 4.13, furthermore, it is listed in Table 4.5with the same number in the

no. column. Comparing brain structure of SCA3 patients to normal subjects, volume loss

was detected in the regions of the basal ganglia (including lentiform nucleus and caudate

nucleus), vermis, anterior lobe of cerebellar hemisphere,frontal areas (including rectal,

inferior, superior, and precentral frontal gyri), and right occipital lobe. Some reasonable

atrophy regions that have been described in last paragraph are also detected by the VBM

approach, such as the cerebellum, basal ganglia, and areas in the frontal and occipital lobes.

However, there is a strange finding in the lateral ventricle.It may result from an incorrect

orientation around the thalamus.

By comparing the two analysis results of MVM and VBM to each other, we found

MVM provided a better outcome in catching the structural atrophy patterns of SCA3 than

VBM. The most apparent distinction is about the cerebellum, which is mildly affected in

neuropathological findings but distributes widely. MVM notonly detected the postirier

cerebellar area that could not found in VBM, but also detectedthe atrophy area in whole

cerebellum with a larger degree of differences than other atrophy regions in the brain. By

the serial number of cerebellar areas in Figure 4.12 and Figure 4.13, it is illustrated that

MVM more highlighted the atrophy of the cerebellum than VBM does. More specifically,

when characterizing the brain structural differences between the SCA patients and normal

subjects, the cerebellum is an important area for MVM. But VBM indicates other regions

first, such as the basal ganglia and frontal lobe, and then mentions the cerebellum. Such

the analysis results may result from the situation that, there is not an obvious difference of



4.2 Structural Atrophy Analysis for Patients Suffering Spinoc erebellar Ataxia
Type 3 71

Figure 4.13: Volumetric atrophy of gray matter in SCA3 patients by VBM analysis method.
Regions detected as significant group differences are markedwith circles. One marked
with a green circle is also found in the MVM analysis result; one marked with a blue circle
is only revealed in the VBM result. Numbers of theses circles represent the importance
of characterizing volume loss in SCA3 patients. Specifically, smaller number represents
higher importance and larger number represents lower importance. More information of
each region is listed in Table 4.5.
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Table 4.5: Atrophy of gray matter in SCA3 patients by VBM analysis method. These
atrophy regions are arranged in order by their peakt values of each cluster, and the numbers
denote the sequence of peakt values. Some clusters are very large so that there is more
than one peak listed in a cluster. The serial numbers are informative for revealing the
significance of gray matter atrophy in SCA3.

Location Side Talairach Peak Cluster Fig. 4.13

coordinate t value size no.

x y z

Occipital Lobe, Lingual Gyrus R 20 -90 -4 10.553 7196 1

Frontal Lobe, Rectal Gyrus L -10 11 -27 8.356 422 2

Sub-lobar, Lentiform Nucleus R 25 3 6 8.226 5665 3

Cerebellum, Vermis R 9 -47 -35 8.066 13243 4

Brainstem, Midbrain L -5 -35 -8 6.582

Frontal Lobe, Inferior Frontal Gyrus L -42 17 -3 7.876 2282 5

Frontal Lobe, Superior Frontal Gyrus (BA9) R 5 55 22 7.696 8032 6

Inter-Hemispheric 0 59 15 6.805

Frontal Lobe, Medial Frontal Gyrus R 8 57 -6 6.386

Sub-lobar, Lentiform Nucleus L -21 7 4 7.634 5689 7

Sub-lobar, Lateral Ventricle R 2 -1 12 7.560 14168 8

Sub-lobar, Caudate Nucleus R 10 20 7 7.217 12

Cerebellum, Anterior Lobe L -41 -47 -25 7.557 1783 9

Frontal Lobe, Precentral Gyrus (BA4) L -40 -17 45 7.439 2579 10

Frontal Lobe, Precentral Gyrus L -36 -14 62 7.255 314 11

Cerebellum, Anterior Lobe R 44 -49 -27 6.935 3981 13

Frontal Lobe, Precentral Gyrus R 50 -11 50 6.847 976 14

Frontal Lobe, Superior Frontal Gyrus L -29 62 -7 6.429 469

Frontal Lobe, Middle Frontal Gyrus L -42 39 28 6.317 159

Brainstem, Midbrain R 15 -27 -6 6.297 593
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Figure 4.14: 3-D rendering of GM atrophy in SCA3 by the MVM analysis method. The de-
tected atrophy regions showed in this figure include the cerebellum, vermis, right occipital
lob, left middle temporal lobe, and inferior, middle and superior frontal gyri.

brain tissue at each voxel in the cerebellum, and it had been verified by manual comparison

between the MR images of SCA3 patients and the normal subjects. However, the MVM

analysis can collect the information from the adjacent voxels to estimate the differences,

so the widely-distributed atrophy in the cerebellum can be detected strongly. To other

piecemeal and local regions with differences, each of the performances of MVM and VBM

has its merits. Table 4.6 put the detected GM atrophy regionsof MVM and VBM in SCA3

patients together in an order of anatomical location of brain. Figure 4.14 and Figure 4.15

are the MVM and VBM analysis results presented by the 3-D rendering, respectively.

In the white matter analysis, we used the same parameters exceptp<0.001 uncorrected

(i.e. t value>3.505 as degree of freedom = 22) for the VBMt-test map and the corre-

sponding MVM display threshold 0.0915 for the discriminating map with a whole-brain

significancep-value about2.35 × 10−7. Figure 4.16 and Table 4.7 illustrate the observed

white matter volumetric atrophy in SCA3 patients by MVM analysis method. Volume
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Table 4.6: Detected GM atrophy of MVM and VBM in SCA3 patients. Anatomical lo-
cation, side, Talairach’s coordinates(x, y, z), and peak of the discrimination weights ort
values are listed for each of detected atrophy regions.

MVM VBM

Location Side x y z Discrimination x y z t value

Cerebellum

Anterior Lobe R 42 -53 -23 0.2089 44 -49 -27 6.935

L -44 -48 -23 0.2021 -41 -47 -25 7.557

Posterior Lobe R 26 -81 -23 0.1760

L -36 -75 -28 0.1638

Vermis 4 -48 -37 0.1618 9 -47 -35 8.066

Basal Ganglia

Lentiform Nucleus R 26 5 4 0.1946 25 3 6 8.226

L -24 7 1 0.1889 -21 7 4 7.634

Caudate Nucleus R 13 20 6 0.1658 10 20 7 7.217

Thalamus 0 -6 6 0.1755

Lateral Ventricle R 2 -1 12 7.560

Midbrain R 15 -27 -6 6.297

L -5 -35 -8 6.582

Occipital Lobe R 19 -83 -8 0.2157 20 -90 -4 10.553

Frontal Lobe

Superior Frontal Gyrus R 5 55 22 7.696

L -28 62 -6 0.1387 -29 62 -7 6.429

Middle Frontal Gyrus R 35 34 23 0.1704 8 57 -6 6.386

L -41 10 37 0.1378 -42 39 28 6.317

Inferior Frontal Gyrus R 29 15 -21 0.1652

L -42 19 -3 0.1554 -42 17 -3 7.876

Precentral Gyrus R 50 -11 50 6.847

L -40 -17 45 7.43

Rectal Gyrus L -10 11 -27 8.356

Middle Temporal Gyrus L -50 -33 0 0.1772
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Figure 4.15: 3-D rendering of GM atrophy in SCA3 by the VBM analysis method. The
detected atrophy regions showed in this figure include the cerebellum, right occipital lobe,
and rectal, inferior, superior, and precentral frontal gyri.

Table 4.7: Atrophy of white matter in SCA3 patients by MVM analysis method. These
atrophy regions are arranged in order by their peak discrimination weights of each cluster,
and the numbers denote the sequence of peak discrimination weights. The serial numbers
are informative for revealing the significance of white matter atrophy in SCA3.

Location Side Talairach Peak Cluster Fig. 4.12

coordinate discrimination size no.

x y z

Brainstem, Pons 3 -17 -35 0.2596 25410 1

Cerebellum, Anterior Lobe L -19 -52 -26 0.1602 3

Cerebellum, Anterior Lobe R 26 -48 -29 0.1433 6

Corpus Callosum 1 11 16 0.1942 6860 2

Frontal Lobe, Inferior Frontal Gyrus R 36 36 11 0.1590 2333 4

Sub-lobar, Lentiform Nucleus L -14 -2 -1 0.1552 2144 5

Sub-lobar, Lentiform Nucleus R 16 -1 0 0.1422 1449 7
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Figure 4.16: Volumetric atrophy of white matter in SCA3 patients by MVM analysis
method. Regions detected as significant group differences are marked with circles. One
marked with a green circle is also found in the VBM analysis result; one marked with a
blue circle is only revealed in the MVM result. Numbers of theses circles represent the
importance of characterizing volume loss in SCA3 patients. Specifically, smaller number
represents higher importance and larger number representslower importance. More infor-
mation of each region is listed in Table 4.7.
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Figure 4.17: Volumetric atrophy of white matter in SCA3 patients by VBM analysis
method. Regions detected as significant group differences are marked with circles. One
marked with a green circle is also found in the MVM analysis result; one marked with a
blue circle is only revealed in the VBM result. Numbers of theses circles represent the
importance of characterizing volume loss in SCA3 patients. Specifically, smaller number
represents higher importance and larger number representslower importance. More infor-
mation of each region is listed in Table 4.8.



78 Experiments

Table 4.8: Atrophy of white matter in SCA3 patients by VBM analysis method. These
atrophy regions are arranged in order by their peakt values of each cluster, and the numbers
denote the sequence of peakt values. The serial numbers are informative for revealing the
significance of white matter atrophy in SCA3.

Location Side Talairach Peak Cluster Fig. 4.13

coordinate t value size no.

x y z

Frontal Lobe, Rectal Gyrus R 9 13 -25 7.806 1456 1

Cerebellum, Anterior Lobe -3 -54 -19 7.685 30298 2

Cerebellum, Anterior Lobe R 29 -47 -28 6.416 3

Cerebellum, Anterior Lobe L -20 -55 -24 5.576 6

Sub-lobar, Lentiform Nucleus L -10 2 -1 5.885 2651 4

Frontal Lobe, Rectal Gyrus L -9 10 -23 5.770 343 5

Corpus Callosum 2 12 18 5.487 2761 7

Sub-lobar, Lentiform Nucleus R 11 3 1 4.569 1211 8

losses were in the pons, corpus callosum, anterior cerebellum, basal ganglia (lentiform nu-

cleus) and inferior frontal gyrus. In contrast, the detected white matter volumetric atrophy

by VBM analysis method are shown in Figure 4.17 and Table 4.8, and they are in the re-

gions of the anterior cerebellum, basal ganglia (lentiformnucleus), corpus callosum, and

frontal areas (including rectal and inferior frontal gyri). Two analysis results revealed sim-

ilar WM atrophy regions. But it could be still caught clear sight of that MVM has a better

detection of the pons atrophy, which takes part in the main neurodegeneration in spinocere-

bellar ataxia (SCA). Table 4.9 put the detected WM atrophy regions of MVM and VBM in

SCA3 patients together in some order of anatomical locationsof the brain.

Figure 4.18 and Figure 4.19 are the volumetric increase of CSFin SCA3 patients in the

MVM and VBM analysis methods, respectively. Since CSF flows through the whole acqui-

sition of MR image, the analysis of CSF has less validity than GM or WM. In our use, the

analysis result of CSF is for testing and verifying the analysis results of GM and WM. By
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Table 4.9: Detected WM atrophy of MVM and VBM in SCA3 patients. Anatomical lo-
cation, side, Talairach’s coordinates(x, y, z), and peak of the discrimination weights ort
values are listed for each of detected atrophy regions.

MVM VBM

Location Side x y z Discrimination x y z t value

Brainstem, Pons 3 -17 -35 0.2596

Cerebellum

Anterior Lobe R 26 -48 -29 0.1433 29 -47 -28 6.416

L -19 -52 -26 0.1602 -20 -55 -24 5.576

Basal Ganglia

Lentiform Nucleus R 16 -1 0 0.1422 11 3 1 4.569

L -14 -2 -1 0.1552 -20 -55 -24 5.576

Corpus Callosum 1 11 16 0.1942 2 12 18 5.487

Frontal Lobe

Inferior Frontal Gyrus R 36 36 11 0.1590

Rectal Gyrus R 9 13 -25 7.806

L -9 10 -23 5.770
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Figure 4.18: Volumetric enlargement of CSF in SCA3 patients byMVM analysis method.
It is for testing and verifying the GM and WM analysis results.The increased space are
detected around the pons, cerebellum, and ventricles, which are consistent with the GM
and WM analysis results in MVM.
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Figure 4.19: Volumetric enlargement of CSF in SCA3 patients byVBM analysis method.
It is for testing and verifying the GM and WM analysis results.We can see there are some
inconsistent revealed regions in VBM results.
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putting GM, WM, and CSF analysis results together, we can see there are more consistent

revealed regions in MVM than in VBM. MVM found the increased space around the pons,

cerebellum, and ventricles. Most of these regions were alsodetected in atrophy of GM

or WM. In contrast, The VBM CSF result seems some inconsistent. Even several regions

should not appear in CSF. Therefore, we thought the MVM produced a more compelling

analysis outcome than the VBM.



Chapter 5

Discussion
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Some points are proposed and discussed in this chapter, concluding (1) the reason that

data need not be smoothed, (2) the reason that why we employ LDA-based method as the

classifier in the high dimensional space, and (3) the possible improvements in the future.

Each point is discussed respectively in the following sections.

5.1 Why we do not smooth data

In the MVM, the method proposed in this thesis, data need not smooth before analysis to

estimate the group discrepancy. Although there are some advantages of smoothing data, the

bringing drawbacks also cannot be neglected. Specifically,these advantages are important

and useful to VBM, but seem redundant and useless to MVM. That is, the smoothing step

appears failed in the MVM analysis. Therefore the procedureof smoothing is omitted in

the proposed method.

The contributions of smoothing are limited in MVM. As the mention in chapter 2, the

advantages of smoothing are that: it can (1) render the data more normally distributed, (2)

ensure that each voxel contains the average amount of gray matter or white matter from

other adjacent voxels around this voxel, and (3) eliminate the error from spatial normaliza-

tion. The profit of the first point is enhancement of the accuracy of the following voxel-

by-voxel parametric statistical tests, and the second advantage helps compensate the voxel-

wise analysis approach to catch some information being disregarded around this voxel.

As to the third advantage, because the registration error ofthe underlying normalization

method intimately influences the residual variability, which is estimated by final univariate

tests in VBM, the profit is as well as the one of the first point. That is enhancing the cor-

rection of voxel-by-voxel parametric statistical tests. However, the MVM is a multivariate

analysis approach itself, so information of all voxels is considered and analyzed at the same

time rather than separately taken into account for each voxel. For this reason, benefit from

the data smoothing is close to null for MVM.
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The drawbacks from the data smoothing consist of three partsmainly. First, improper

information spreads. Smoothing makes the information carried by a voxel disturbs other

neighbor voxels on this voxel. Consequently, the information on those GM near the bor-

der between GM and non-GM tissues disperses to regions not belonging to GM, and the

information on those WM near the border between WM and non-WM tissues disperse to

regions not belonging to WM. This kind of smoothed result is unreasonable and inappropri-

ate. Second, subtle differences are reduced. If the difference between two groups is subtle

originally, this difference will disappear after smoothing the data. Thus, small variation

of brain structures will be difficult to estimate. Third, problem to choosing the smoothing

kernel size occurs. It is always a tough question about how large the size of smoothing

kernel should be used. Analyzing data smoothed with different smoothing kernel sizes

derives different conclusions about the presence and location of the result [30]. Although

it is recommended that the size of smoothing kernel should becomparable to the size of

the expected regional differences under study [49], it is unknown in advance how large the

size of differences is in practical applications. To get a good analysis result subjectively,

the smoothing kernel size is often need to be changed many times. Accordingly, due to

this problem, it is required to analyze the data repeatedly,and the researchers also need

the background knowledge of the underlying group discrepancy. That makes choice of

smoothing kernel size adapting to various regional differences a troublesome matter.

Besides, we also have proved that, when based on Fisher’s criterion to find the most

discriminant projection vector of groups, using the smoothed data and the non-smoothed

data as the samples to be analyzed can reach the same maximum of Fisher’s criterion. Let

A be aN -by-N matrix that linearly combines elements of aN -dimensional column vector

for performing the data smoothing, and letx̃km be the smoothed sample ofxkma which is the

mth sample of thekth class before smoothing. Sõxkm can be written as

x̃km = Axkm. (5.1)

The mean of smoothed samples in thekth class and the mean of all smoothed samples are
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easily derived from the following equations respectively,that are:

µ̃k =
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Mk

Mk∑

m=1

x̃km =
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(
1
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xkm
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and

µ̃ =
1

M

K∑

k=1

Mk∑

m=1

x̃km =
1

M

K∑

k=1

Mk∑

m=1

Axkm = A

(
1

M

K∑

k=1

Mk∑

m=1

xkm

)
= Aµ. (5.3)

Now, we are going to prove that it attains to the same maximum of Fisher’s criterion no

matter using the smoothed samplesx̃km or the non-smoothed samplesxkm. The maximum

of Fisher’s criterion of smoothed samples is

max
P
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where S̃b is the between-class scatter matrix of the smoothed samples, and S̃w is the

within-class scatter matrix of the smoothed samples. By bringing Eq. (5.2) and Eq. (5.3)

into Eq. (5.4), it becomes
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This equation can continue to be derived and lead to the objective we want to prove, just by

rearranging some orders of variables and setting a new projection matrixP̄ by P̄ = ATP.

That is,
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It is to say, utilizing the smoothed data would not enlarge the maximum of Fisher’s cri-

terion. More precisely, the total discrimination of the discriminating map is the same re-

gardless of smoothing or not. So the step of data smoothing inpreprocessing becomes a

redundant procedure in our method.

In addition to the theoretical proof, we also have the empirical validation that the MVM

analysis result from non-smoothed data is indeed better than the result from smoothed

data. Figure 5.1 and Table 5.1 show the ROC curves and the corresponding PAUC indices

of MVM to analyze the same simulation data in section 4.1.1 without/with data smoothing.

It is obviously to see that, the ROC curves of the non-smoothed data are more near the

left upper corner and their PAUC indices are greater than ones of the smoothed data, when

applied to the MVM method. This represents that using non-smoothed data can obtain

more correct results in MVM method. Smoothing the data reduces the accuracy instead.

For all the reasons mentioned above in this section, including the inferences, proof, and
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Figure 5.1: ROC curves of MVM results with the non-smoothed and smoothed simulation
data. Notice that both horizontal axes are limited from 0 to 0.2 and both vertical axes are
limited from 0.8 to 1 for more specific display. It is manifestthat the curves of analysis
with the non-smoothed data are closer to the top left corner than those curves of analysis
with the smoothed data in the same analysis data.
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Table 5.1: PAUC indices for ROC curves of MVM results with thenon-smoothed and
smoothed simulation data. The partial area was calculated in a specific region where the
TP rate ranges form 0.8 to 1 and the FP rate ranges form 0 to 0.2.As this specific region
denotes 1, we have 0≤ PAUC≤ 1. It is manifest that PAUC indices of the non-smoothed
data are greater than ones of the smoothed data for the MVM method.

Simulated MVM

atrophy size Non-smoothed data Smoothed data

1mm 0.73466 0.71880

2mm 0.92286 0.87892

3mm 0.95521 0.89374

4mm 0.96613 0.92628

5mm 0.95836 0.90717

6mm 0.95398 0.90272

7mm 0.95465 0.90693

8mm 0.95357 0.88517

experiment, the proposed MVM analysis method discards the procedure of data smooth-

ing in preprocessing. But it uses a smoothing of the discriminating map for visualization

purpose, which has been explained in section 3.2.

5.2 Comparison with other classification-based techniques

Relative to the original paper which proposed we should replace the univariate ap-

proach by a multivariate approach when characterizing group differences, Lao et al. [50]

did not adopt LDA as the analytic method, but adopt the support vector machine (SVM)

as the classifier in the high-dimensional space. SVM [51] is avery powerful technique of

classification. In recent years, SVM has been applied in manyapplications, such as face
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Voxel 1

Voxel 2

Voxel 1

Voxel 2

(a) (b)

Figure 5.2: Sketch chart of how SVM determines the separating hypersurface. To display
conveniently, only display in 2-D. (a) The blue points in thelower left area denote the
samples and distribution of one groupFthe yellow points in the upper right area denote the
samples and distribution of another group. Those blue points and yellow points which are
emphasized by the circular frame represent the samples close to the interface betweens two
groups. (b) SVM utilizes these support vectors to determinethe hypersurface separating
samples from different groups. Other samples which are not the support vectors is null for
SVM.

recognition [52], and brain-computer interface system [53]. The way of SVM to deter-

mine a hypersurface dividing two groups only depends on those samples called support

vectors that are close to the interface between groups. Other samples, far away from the

interface between groups, are useless for the SVM classifierto determine the separating

hypersurface. Figure 5.2 illustrates this thought. It makes SVM easily catch subtle changes

of groups. Therefore, SVM works successfully in many classification problems.

On the other hand, SVM ignores samples far away which are subjects most represen-

tative of the group in most cases, so it may not be effective incatching significant group

differences. This is why we did not use SVM to characterize anatomical differences be-

tween groups, even though the SVM has great ability of classification. Some other clas-

sification techniques, such as SVM-based nonparametric discriminant analysis [54] and
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boosted LDA [55], have the same problem of depreciating samples far away from the inter-

face between groups. This is inappropriate on our purpose. On the contrary, LDA adopts

properties in statistics, such as group covariance, to determine the most disriminant projec-

tion vector. Therefore, it would not lay particular stress on the samples near the interface

between groups. As a result, LDA is more suitable for analyzing group differences than the

SVM in this application.

Moreover, LDA is a linear classifier, and consequently it is convenient for representa-

tion of the analysis result. The most disriminant projection vector is also an image, where

each voxel has a weight of discrimination to distinguish group discrepancy, containing re-

gions representing the spatial distribution and relative magnitudes of differences between

different groups. Displaying the most disriminant projection vector directly, as well as we

have done in chapter 4, is intuitional and meaningful one of visualization ways.

But for other nonlinear classification techniques, such as SVM, there are difficulties

in representation of detected significant differences. It is because nonlinear classifier de-

termines a hypersurface rather than a hyperplane separating groups, and it is difficult to

summarize the analysis result into an image from this hypersurface. In [50], the way of

interpretation of the analysis result is that, for every support vector, they found the vector

that is perpendicular to the separating hyperplane and passes through this support vector

from one group to another group, and then averaged all vectors to obtain a single map, like

Figure 5.3 shows. That is not a reasonable way to translate the group differences, because

averaging all vectors does not make sense. There is still a representation problem when

applying nonlinear classifiers.
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Voxel 1

Voxel 2

Figure 5.3: Vectors used to obtain a single map for nonlinearclassification. It was proposed
in [50]. First, for every sample near the separating hypersurface, the vector perpendicular to
the hyperplane and through this sample is decided. In this figure only vectors derived from
blue samples are drawn for the clear display. Then, a single map for nonlinear classification
is obtained by averaging all those vectors.

5.3 Weighted within-class and between-class scatter ma-

trices

In the proposed method, we use wavelet transformation to enhance the connection be-

tween nearby voxels, which can compensate the disadvantagethat LDA treats relations

between all voxel pairs equally. Wavelets improve this drawback, but the performance is

limited. Thus, another improved approach, weighted within-class and between-class scat-

ter matrices for LDA, is proposed. The idea of this method is quite easy. It directly uses a

number of weights to change the relations between voxel pairs to achieve the enhancement

of spatial information from MR images. It is intuitive to usea small weight for the combi-

nation of two voxels far away from each other, and a large weight for the combination of

two voxels adjacent to each other. According to the distances in the space or correlations

between brain structures, we can define, in advance, a symmetric weight matrixW which

has the same dimension (N-by-N) as within-class and between-class scatter matrices. Each
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elementwi,j in the ith row andjth column is the weight of spatial relation between the

ith voxel andjth voxel. Then, element-to-element multiply the weight matrix W by the

within-class scatter matrix and the between-class scattermatrix respectively. The weighted

within-class scatter matrix and between-class scatter matrix are definded as

Ŝw = Sw. ∗ W, (5.7)

and

Ŝb = Sb. ∗ W, (5.8)

where the operator.∗ represents the element-by-element multiplication of two matrices

with the same size. And the Fisher’s criterion yields that:

arg max
P

∣∣∣PT ŜbP

∣∣∣
∣∣∣PT ŜwP

∣∣∣
(5.9)

Although this idea is completed, until now we do not implement this method owing

to the computation problem of a huge matrix. More specifically, the technique of solv-

ing eigen-problem of the within-class scatter matrix proposed in section 3.3.3 is failed

here, so the newly most disriminant projection vector basedon the weighted within-class

and between-class scatter matrices cannot be solved. However, it is a worthily attempted

method to improve the performance of MVM in the future.

5.4 Multivariate deformation-based analysis

The proposed multivariate analysis can be not only applied in the second family of

morphometric methods for microscopic differences in braintissue, but also applied in the

first family of morphometric methods for macroscopic differences in brain shape. That is,

we can use a multivariate analysis on the deformation fields rather than on the normalized
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images. It is the multivariate deformation-based analysis. According to our experimen-

tal results, some wide-region differences in brain shape, which are hardly found by the

conventional point-wise analysis method, are expected to be revealed by this kind of mul-

tivariate deformation-based analysis. It may produce a good outcome as measuring group

differences of the brain shape.



Chapter 6

Conclusions
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We propose a novel morphometric method, the multivariate volumetric morphometry

(MVM), characterizing anatomical discrepancy by a multivariate way. MVM includes the

preprocessing, the multivariate analysis, and the smoothing and thresholding for display.

The multivariate analysis of MVM is the kernel breakthroughpart in this work. In the

multivariate analysis, it employs the discriminative common vector method to find the

representative regions of group discrepancy, and arrangesthe wavelet transform in pairs

to enhance the spatial relationship of two distinct voxels.In addition, we also proposed

an efficient implementation to calculate the discriminative common vector. According to

our experiments, the effectiveness of the proposed method is clearly demonstrated with

a good ability to catch the anatomical discrepancy between different groups. Compared

with one of most popular morphometric technique presently,voxel-based morphometriy

(VBM), MVM expresses a better sensitivity to subtle and widely-distributed variation of

brain structure than VBM. Moreover, the time cost in MVM is less than VBM, even though

MVM uses a multivariate analysis in a considerably high-dimensional space.

Other two important properties of MVM are that, it is unnecessary for MVM to smooth-

ing the data or to reduce the features before the multivariate analysis. For the first point

about data smoothing, we not only address the reasons that data smoothing has no ben-

efits but is harmful to MVM, but also prove that the maximums ofFisher’s criterion are

equivalent no matter the data is smoothed or non-smoothed. Besides, the experiment also

supported the point at issue that MVM does not need to smooth data before analysis. To the

second point about feature reduction, because the discriminative common vector method

can handle a good deal of data at one time, it is indeed no need to reducing the features for

computation problem. That makes MVM superior to other multivariate methods as well

as dealing with a huge amount of features, since no information is lost during the MVM

analysis.

Somehow, there is a fly in the ointment in the MVM method. Unlike thet-test map

of VBM, the voxel values of MVM discriminating map denotes thediscrimination weight
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distinguishing samples from groups, and they lack for absolute judgment standard to de-

termine the significant level with a given confidence. Therefore, we chose the display

threshold of MVM by a strategy mentioned in chapter 4 by consulting the VBM analysis

result. Although discrimination weights of the MVM discriminating map do not provide

confidences in whether there is a practical group differenceat this location of each voxel,

the discriminating map still provides a whole-brain confidence in explaining the detected

group discrepancy. Our work demonstrated that the MVM analysis method has a good

sensitivity to subtle and widely-distributed structural differences, and is a useful technique

in neuroimage studies.
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