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Abstract

Recently, voxel-based morphometry (VBM) has been widelyiagdpb statistically in-
fer the structural anomalies between the brains of two stilgg@ups, in a voxel-by-voxel
manner. This method is effective for mapping massive antt@ered discrepancy. How-
ever, it may suffer from the poor sensitivity to subtle andely-distributed discrepancy in

brain structures.

In this work, we propose a novel multivariate morphometryw/(¥) method that can be
used to delineate the anatomical discrepancy between wgpgrof MR images. Rather
than voxel-by-voxel manner in VBM, the proposed MVM simukansly considers all of
the voxels in MR volumes and map the group differences bygusie linear discrimi-
nant analysis to determine the most.diseriminant projactector. Each element in the
projection vector represents the 'discrimination weighhefcorresponding voxel involved
in the combination of the most discriminant components. seight can thus be re-
garded as the significance level.of the corresponding vokehwvdifferentiating two groups
of MR volumes. This multivariate ‘approach is appropriatetiaracterize group discrep-
ancy, particularly when the brain atrophy distributes wid&loreover, we prove that the
discriminability remains the same no matter the projectieator is calculated from the
original MR volumes or from the smoothed ones. Hence we aaplgiuse the original
data without the interference of the blurring artifact aiby the smoothing operation. On
the contrary, VBM method applies the Gaussian smoothing fiteeduce image noise as
well as to incorporate spatial support from neighboringelsx|t is difficult to determine
an appropriate kernel size for the smoothing filter becaaigget kernel can reduce more

noise, but with the penalty of more smeared image.

According to our experiments, we demonstrate the effectigs of the proposed method
by using the simulation data set containing artificial atpppround the cerebellum area.

Compared to the VBM method, the proposed MVM method can acladeadter sensitiv-



ity to subtle and widely-distributed variation of brainwgtture. When applied to a clinical
study of SCA3 disease, the MVM method clearly reveals moreifsiggnt atrophy in the
disease-related areas within the brain volumes of thergagieup, than the VBM method

does.
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Chapter 1

Introduction




Introduction

In this chapter, we will briefly introduce the human brairustures, the magnetic res-
onance imaging (which is an imaging tool often used to degpathologic tissues from
normal tissues), and then the current morphometric methaded on medical images to
analyze differennces of brain structures. One of the mgstilao morphometric approach
is the voxel-based morphomety, which have been applied nymesearches of brain struc-
tures, but it has a inherent defect while detecting subttedastributed changes. Our goal
is to overcome this darwback and to propose a better morptnicmeethod in this work.

In the final of the chapter, we will guide the organizationtostthesis.

1.1 Brain Structures

Brain is the most sophisticated and elegant organ of humaggeit plays an important
role in the control of human mind-and behavior. Several imtdry activities, such as
heartbeat, respiration, and digestion, and consciougitsesi, such as thought, reasoning,
and abstraction, are all operated by-the brain. In the 3rtlcgB.C., Doctor Herophilus
in Alexandria, the "Father of Anatomy”, is considered asfih& person to dissect human
body for the purpose of scientific research. He obtained aflstientific discoveries, and
one of his main contributions is to discover four rooms oftihen, that is, ventricles. Until
now, people have done various researches on the brain aedstanad many the tissues and

structures of the human brain.

A brain consists of three parts, which are the cerebrumbedten, and brain stem.
Brain stem is below the cerebrum and above the spinal cordsahd major route to con-
nect the cerebrum, cerebellum, and spinal cord. Its maictimis to maintain individual
life, including heartbeat, breath, digestion and the otmgortant physiological faculties.
Cerebellum is below the cerebrum and behind the brain stechcamposed of left and
right two hemispheres. Cerebellum can balance the body &lo$ture, and also control

the motion of muscle with the cerebral cortex. Cerebrum isimred as the most impor-
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Frontal lobe

Parietal lobe

Occipital lobe

L- Cerebrum

Temporal lobe
Spinal cord — 7/ Brain stem

Figure 1.1: Main structures of the human brain. There ametparts, which are the cere-
brum, cerebellum, and brain stem. According to sulci and gfycerebral hemispheres,
brain cortex is divided into four lobes: the frontal lobeg tharietal lobe, the temporal
lobe, and the occipital lobe. Pheto courtesy:of the webditéemrt and Stroke Foundation
(http://ww2.heartandstroke.cal).

tant nerve center, and divides into left and right two ceatbemispheres. Between two
cerebral hemispheres is the corpus callosum to commuriaaterebral hemisphere and
right cerebral hemisphere. Moreover, according to suldigyri of the exterior of cerebral

hemispheres, brain cortex can be segmented into four |&loegal lobe, parietal lobe, tem-

poral lobe, and occipital lobe. The frontal lobe is undeydtas the central administration
of thought. The parietal lobe receives and handles kindselfrfg signals. The temporal
lobe has relations with perception and recognition of augisignals and memory. And
the occipital lobe is the center of visual processing. Feglil shows main structures of

the human brain.

According to the type of brain tissues, they can be genesalbarated into gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF). Graytterais composed of
nerve cell bodies responsible for processing informatonl, white matter is composed of
of the axons responsible for transmissing information.y@natter forms the exterior part

of the brain, and is referred to as the cortex; white mattenfathe interior part of the brain,
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Figure 1.2: Brodmann’s maps. The human brainis classifiedsatdiscrete cortical areas
in a cytoarchitectonic way. The partitions are referredstth@ Brodmann’s areas.

and referred to as the medulla. Cerebrospinal fluid, whichascblorless and transparent
fluid, fills ventricles and surrounds the brain and the spooati. Cerebrospinal fluid can
absorb the shock to the brain or to the spinal cord, and als@i@n out waste materials

from the brain or from the spinal cord.

In 1909, Brodmann cytoarchitectonically classified brabo B2 discrete cortical areas
using a light microscope, and sketched the anatomical miaibe dhuman brain [1]. Each
and every area is labeled with a number. Theses are knowe &dldmann’s areas (BAS).
Figure 1.2 is the famous Brodmann’s maps. Many BAs were ldtews that they are
associated to specific functions, such as BA 17 and BA 18 iotkegital lobe (associated

to vision). Brodmann's areas have become a common classifidat scientists to refer to
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a particular region of the brain cortex and the related ng\anctions. In 1988, Talairach
and Tournoux drew a 3-D stereotaxic atlas and defined therdelacoordinates of the
human brain, by anatomizing the brain of a European femadel &9 [2]. They used
Brodmann’s maps as the basis for the architectonic paricellat their atlas. It is very
useful for localization of brain tissues. Thus, when give8-@ coordinate in Talairach
space, we can indicate that which brain structure it is kdtatt and which BA it belongs
to, and then know broadly about its associated functionse Tdiairach brain is usually

taken as the standard stereotaxic space when investidgatmgn brain structures.

Along with progress of science and technology, the first oienaging technique, the
pneumoencephalography (PEG), was developed in the eadd¥s1Invention of the brain
imaging technology makes observing the human brain ondikings come true. By these
medical images, scientists and‘doctors can investigateatker diagnosis about those
diseases resulting from some brainidisorder as.the patentill alive, rather than dissect
patients’ bodies as they were"died. Up to now; there are mamgtibnal brain imaging
technologies, such as positron emissionitomography (PEd)single photon emission
computed tomography (SPECT); as well.as structural imagiagrtologies, such as X-ray
computer tomography (CT) and magnetic resonance imaging)NfRhis thesis, we used
magnetic resonance images as experimental materials tthnstructural differences of
different brains. In the next section, we will briefly introck this technology, magnetic

resonance imaging.

1.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of popular imagimgstéor clinical diagno-
sis in recent years. It was developed by Paul Lauterber iR 137 The technique is based
on the principles of nuclear magnetic resonance (NMR) toyzedlata images of internal

physical and chemical characteristics of an object. Thegimal name of this technique
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Figure 1.3: A typical MR scanner. Photo courtesy of Lab. aé¢mated Brain Research,
Department of Research and Education, Taipei Veterans &ldrespital.
LT,

exposure in the late 1970's.

An MR scanner is shown in Figure‘ i:‘.g?iiiféfﬁffs%ahner includesthrain hardware de-
vices: a main magnet, a magnetic field gradient system, afFagystem [4]. The main
magnet generates a strong uniform magnetic field for p@tor of nuclear spins in an ob-
ject; the magnetic field gradient system produce contrdifed-varying gradient fields in
different directions to make each of the regions of spin eégpees a unique magnetic field
for signal localization; the RF (radio frequency) systemegates a rotating magnetic field
in a pulse sequence to excite spins and detects signals fi@spins. All the components
of the scanner are placed in a scan room to segregate outstiference. After analysis
and reconstruction of signals by a computer, a magneticiees® image representing the

spatial distribution of the inside of living organisms isained like Figure 1.4.

MR imaging has many advantages. One is that it is a noninvagiy to detect signals

inside the body, so people are unnecessary to bear with@sufted from invaders of med-
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Figure 1.4: A 3-D magnetic resonance image of a human he&lstiown in the coronal,
sagittal and axial views.

ical treatments. Moreover, this imaging uses magneticdialtd non-ionizing radiation.
According to current knowledge, they do not have potengaihtful effects to humans. In
comparison with some other'scanning methads like CT, it ig safe. Another advantage
of MR imaging, probably the mostimportant character, isfllebilty of data acquisition
and the outstanding contrast resolution. Therefore, itbmansed as spectroscopic imag-
ing, diffusion-weight imaging, angiogarphic imaging, dodctional imaging. That makes
MR images able to provide much respectable information avttbw the thecnique with

superior scientific and dianostic values [4].

Because of the clear contrast resolution, MR images are afted to observe patho-
logic tissues from normal tissues, and help doctors to disgmmedical conditions and
disorders of the brain. However, such a manual diagnosigng subjective and time-
consuming, especially when the amount of images is larganR#to the advances in com-
puter, computerized approaches can help to deal with the hog complex data. Many
morphometric analysis methods were proposed to quamétatanalyze MR images by

computers.
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1.3 Morphometrics

By using MR images, a number of vivo anatomical studies of the human brain have
been done. Most studies are based on the defined regionseoéstg (ROIs), and then
analyze each tissue volumes [5-7] in ROI. However, this petihas some limitations. It
wastes a lot of time to define the ROIs, especially when theréaage amount of subjects
[8]. In addition, when analyzing a certain disease, useve kmknow the most concerned
regions [9] before selecting ROIs. It makes ROI-based amalgiconvenient to be used in

practice.

Therefore, another kind of automatic morphometric methou®lving the technique
of spatial normalization, to characterize heuroanatohuigerences has been developed.
These methods broadly fall under two categories: (1) onedlaanacroscopic differences
in shape of brain, and (2) ones handle microscepic-diffexemt brain tissue as the shape
differences have been discounted.;When connecting thels¢heitechnique of spatial nor-
malization, the first kind of methods analyzes the parammetethe deformation fields used
during the normalization; and the second kind of method$yaea resulting normalized

images after normalization.

The first family of morphometric method includes the pati#r@oretic approach [10],
deformation-based method [11, 12], tensor-based metid &1, and factor analytic ap-
proach [15]. These methods quantify brain shape by usirgehettion fields obtained from
nonlinear registration. This kind of methods can potelytiabtain a precise estimation of
the brain shape, but it is very sensitive to the accuracy efuhderlying normalization

approach. Consequently, there are some limitations inipeaj&].

The second family of morphometric methods characterizasoany in brain tissue by
estimating voxel intensities of normalized images. Bec#isaype of methods makes use

of images after normalization, the differences in the bsluape are eliminated. Thus, it is



1.4 Motivation 9

suitable for analyzing local and subtle differences intbteEsue. A common-used method,
voxel-based morphometry [16], is belong to this family. Blesi the RAVENS [9] is also

a kind of these methods.

This thesis emphasizes the second family of morphometribade. The targeted im-
ages are all normalized. Now, the voxel-based morphom®&tBM) is the most popular
method applied to analysis of structural brain discrepdratyween different groups of im-
ages. For each and every voxel from the normalized imageskes a standard statistical
test to examine if there exists a significant difference airbstructure on the location of
this voxel. Although VBM is an intuitional and simple apprbait has a fatal defect so that
its sensitivity to some kind of group differences is bad. Qoal is to propose a method to
ameliorate this lack. In the following, we will briefly indi¢e the main drawbacks of the
VBM analysis, and try to improve according to the fundameoégalse of it. It goes into

details in chapter 2.

1.4 Motivation

Although VBM is one of most popular morphometric method and been applied
successfully in many instances, there are still limitagitmat make VBM disable to detect
particular anatomical differences in some situations. sEHenitations are caused by the
inherent defect of this approach. It is because VBM is a vbyeloxel manner, i.e. a
univariate method, to analysis differences by using stahstatistical tests at each distinct
voxel. That means when VBM tests group difference at a pdatiotoxel, it only takes
measurements of images at this voxel in account at a timegliandrds potential informa-
tion carried by other voxels adjacent to this voxel. The wAyBM to analyze the brain
structures makes this method simple to use. However, frensplatial point of view, such
the voxel-wise manner to find anatomical differences agpwaproper, because it treats

each voxel as an independent object. Adjacent brain tissumdd have relations to each
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other. As a result, this method is criticized for its capiépto estimate widely-distributed,

continuous and subtle changes in brain structure [17].

In this work, we proposed a novel method that can considerneiations between
voxels, called the multivariate volumetric morphometry\(M). In this method, a high-
dimensional classification technology is employed. It s¢bk most discriminative hyper-
plane that separates populations by minimizing the soattein each individual group and
simultaneously maximizing the scatter between groups. diseriminative hyper-plane
not only has the ability to classify different groups, budaals appropriate to be used in
this application of characterizing the anatomical grolgzdipancy. Besides, before using
this classification technique to find brain differences, @nebination of the spatial and
frequency signals is performed for the multiresolutionlgsia. Our method is built on the

classification and the data recombination techniques.

In this thesis, we not only demonstrate the effectivenesbeproposed method, but
also develop an efficient computational implementationaiegime for analysis. More-
over, a part of idea of this method-has been proved in this watkperimental results
showed that the multivariate volumetric morphometry (MVikideed has a better sensitiv-
ity to subtle and distributed changes of brain structuresit$s very useful to characterize
early symptoms of a disease especially. The details of gmorewhy we need a multivari-

ate approach and the proposed method are described in thiecBand 3, respectively.

In the following chapters, we introduce the voxel-basedpghometry and its drawbacks
in chapter 2, and then our method in chapter 3. In chaptermesxperiments are used
to estimate the accuracy of the proposed method, and thearsop between the results
of MVM and VBM is performed. Finally, we will bring up some isssiabout our method

MVM in chapter 5, and conclude this work in chapter 6.
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Voxel-Based Morphometry
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This chapter is about one of the most popular morphometrg—tixel-based mor-
phometry (VBM). After the introduction, there is a brief inpeetation of the basic concept
and the optimized protocol of VBM. In the end of this chapteg, statement the inherent
drawback of such a voxel-based morphometric analysis, laaidig the motive for us to

develop another method characterizing anatomical diffes.

2.1 Introduction to VBM

The voxel-based morphometry (VBM) is a technique measumamgentrative or volu-
metric group differences of brain tissues through a voxskwnalysis of MR images [16].
It is an unbiased and objective method, which explores whadéns rather than specific
regions to find the significant structural discrepancy betwdifferent groups of subjects.
That means people can use the method without the need foatkgtound knowledge of

where the discrepancy may exist.

Due to its simplicity, feasibility, and effectiveness, VBM$1been widely applied to
structural brain studies in the recent years. It is showranier researches that many dis-
eases are related to the abnormal brain structures. Thetddémage, or irregularity of
the brain structure will cause irregular behavior of paserSeveral studies using VBM
characterizing brain differences in a certain disease el gutcomes consistent with
observations of those previous researches, such as sbheng[18-20], Alzheimer’s dis-
ease (AD) [21-23], autism [24,25], spinocerebellar atéKiaA) [26], and attention deficit
hyperactivity disorder (ADHD) [27].

VBM includes a preprocessing and a voxel-based paramedtiststal analysis. Basi-
cally, the preprocessing involves spatial normalizatsegmentation, and smoothing [16].
The spatial normalization is responsible for registeringiftbimages of different subjects

into the same stereotactic space defined by a template imaghe space, we assume
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Figure 2.1: The normalization. Images in the upper row, thedie row and the lower
row are native MR images, template image and normalized esnagspectively. Before
normalization, the scales and shapes of heads of diffevdects are dissimilar. Normal-
izing images with a standard brain template makes all imagthe same stereotactic space
where the voxel-wise comparison can be preformed.
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gray Wil
matter P L matter

Figure 2.2: The segmentation. The figure’shows segmentaftiamormalized image into
different tissue classes. The resulting segments incladeay matter (GM) image, a white
matter (WM) image, and a cerebrospinal fluid (CSF) image.

that measurements of one certain voxel in different normaihimages should represent
the same brain tissue. In the segmentation, the images gmeeséed into different tis-

sue classes as the gray matter (GM), white matter (WM) or cespimal fluid (CSF).

That makes statistical analysis can be performed on diffdnain tissues. The smoothing
is necessary for the following statistical analysis. It ditions the data more normally-
distributed and reduces the registration error resultech fthe normalization, to increase
the validity of inferences based on parametric tests. Eigut and Figure 2.2 illustrate the
concept of normalization and segmentation respectivelyerAoreprocessing, the voxel-
based statistical analysis is performed by comparing thiemalized and smoothed GM

or/and WM images of different groups of subjects. That issgsia standard (univariate)
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statistical test with a null hypothesis at each and everglda evaluate whether the voxel
values of different groups reach the significant level itistia. If reaching the significant
level, we can say there is a difference between the grougssaposition of this voxel.
The resulting statistical parameters are assembled inbmage. Finally, voxels with the
statistical parameters preceding the significant levehftire regions representative of the

detected group differences.

The following is the summary of basic VBM steps [16], and itsresponded flowchart
is shown in Figure 2.3:

1. Spatially normalization of all images to the same stexetat space

2. Segmentation of normalized images into GM, WM, and CSF

3. Smoothing

4. \oxel-based statistical analysis

5. Making inferences about group differences

Actually, there are various methodological implementagiof voxel-based morphome-
tric analysis. For example, the RAVENS [9] applied segmeamtdirst, and then normal-
ization, smoothing and statistical analysis. In next sectve will introduce one of the

most popular the implementations—the optimized VBM protd28]. It was used and

compared to our mehtod in this thesis.

2.2 Optimized VBM Protocol

There are several cases that some structural differences foy VBM do not really

exist between groups of subjects when using the basic VBMssté@jhe misinterpreted
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Normalization

Template

Segmentation

Smoothing

Voxel-Based
Analysis

Figure 2.3: Flowchart of basic VBM steps.
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differences may be resulted from bad results of normabmatrhich induce subsequently
inappropriate comparison between dissimilar brain stmest [29]. Although missegmen-
tation leads to the incorrect comparison seemingly, in facdsegmented tissues are often
caused from badly normalized images. It is because in théeimgnt of segmentation
of normalized images into gray matter, white matter andlrespinal fluid (CSF), Ash-
burner and Friston use a mixture model cluster analysiggdasing the distributions of
voxel intensity of specific tissue types, and use a priorbpholity maps describing a priori
knowledge of the distribution of different brain tissuesnormalized normal subjects to
accomplish tissue segmentation [16]. Notice that the arippi@bability maps are in the
normalized stereotactic space. The efficiency of segment& influenced by effect of
normalization, because better normalization makes aipgammwledge of the brain tissue
distribution can be used more validly in the segmentatidrus] to minimize the probability
of inappropriate comparison between dissimilar brairugssand structures is to minimize
potential error of normalization.' For the:reason, when wanto measure group differ-
ences of GM/WM, normalization is-preformed on the segment®dMEM images rather
than on the whole brain images to increase correctness o¥MBMregistration results. If
the GM/WM images used for normalization are well segmenteel) hormalization will
most likely be fine. It becomes interesting that, a good aute@f normalization could
lead to a good outcome of segmentation, and vice versa. dicgly, the optimized VBM
protocol proposed by Good et al. [28] adopts an iterativeigarof segmentation and nor-

malization to improve effects of preprocessing.

The following is the optimized VBM protocol for measuring gmdifferences of gray

matter [28], and its flow diagram is shown in Figure 2.4:

1. Creation of customized T1 template and a prior probability maps of GM, WM
and CSF
Customized template is used to reduce potential bias whatlitsefrom the scanner

and the subject population differing from the existing téaga All brain images are
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Figure 2.4: Flowchart of the preprocessing of optimized VBidtpcol for estimating brain
discrepancy of gray matter. It is executed in order of (1attom of customized T1 template
and a prior probability maps of GM, WM and CSF, (2) segmentatiod extraction of
affine-registered whole brain images, (3) obtaining oédinormalization parameters by
normalizing GM images into GM template, (4) normalizatidnadniole brain T1 images
with optimized normalization parameters, (5) segmentaéind extraction of normalized
whole brain images, (6) modulation (if need), and (7) smingth
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first normalized to the ICBM 152 template (Montreal Neurolagimstitute), and

then segmented into different brain tissues as gray matteie matter and CSF. Fi-
nally, the normalized T1, gray matter, white matter and CS&ges are smoothed
with an 8mm FWHM isotropic Gaussian kernel and then averagedsate the cus-

tomized T1/gray/white/CSF mean images (template and priors

2. Segmentation and extraction of affine-registered whole bria images
In the step, all original structural MR images are affineistaged to the customized
T1 template and then segmented with the GM/WM/CSF a prior fnidhyamaps
derived from above step in native space, followed by momdichl operations to
remove unconnected non-brain tissues of segmented imaeike that there is a
caveat that the segmentation is preformed in native spacehé a priori probabil-
ity maps are in the normalized stereotactic space. Theretbere will be another
segmentation of normalized images:in: the following to prmlbetter segmented

images.

3. Obtaining optimized normalization parameters by normalizing GM images into
GM template
To obtaining the optimized normalization parameters, seged gray matter images
are normalized to the customized gray matter template, iwisiche GM a prior
probability map derived from the first step, by applying Htameter affine trans-
formation and nonlinear spatial warping using discretaneobasis functions. As
a result of normalization of gray matter images rather thaole/brain images, the
normalization parameters of gray matter are optimized leygmting any deforma-
tion contributions of non-GM tissues. When wanting to meagioup differences
in white matter instead, we obtain the optimized normalmaparameters just by

normalizing WM images into the WM template.

4. Normalization of whole brain T1 images with optimized normalization param-

eters
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All original MR images then are normalized with the optindzeormalization pa-
rameters. The resolution of normalized images should lagively high for reduc-
ing partial volume effects, which means there is a mixturditbérent tissue types at
one voxel and confounds the subsequent tissue segmentatioommon cases, the

voxel size of the normalized image is isotropic in three disiens.

. Segmentation and extraction of normalized whole brain imags

This step involved segmentation of optimally-normalizethges. The images are
divided into gray matter, white matter and CSF partitionshie normalized stereo-
tactic space. Non-brain tissues are removed by using mtogical operations and
a brain mask. In addition, this step also incorporates aectian of image intensity
nonuniformity [16] which is mainly caused by magnetic fialthomogeneity of the
RF coils during image acquisition: The resulting images ateaeted gray matter
partition. When estimating WM group differences, extracted \Mhges are the

ticket.

. Correction for volume changes (optional)

In the segmented image, the value“of each voxel is assigmeeal plosteriori proba-
bility that the voxel is classified into this particular tigstype, ranging between 0
and 1. Thus, the segmented GM/WM/CSF data will represent theerdration of
GM/WM/CSF. To preserve the total amount of brain tissue, aeobion for volume
changes, which is usually referred to as “modulation”, ifgrened by multiplying
a voxel value by its Jacobian determinant, which is the ikdatolume before and
after normalization (in step 4). After this correction, skemodulated images rep-
resent the volume of brain tissues. And, to analyze the nadeldilimages is to test
group structural differences in the absolute amount ofrbtigsues. In this thesis,
we always used modulated data to estimate volumetric gridigrahces rather than

used non-modulated images to consider the differencesicectration.

7. Smoothing
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The normalized, segmented, and modulated images are sadowith a Gaussian
kernel in this step. Smoothing is necessary for the follgmwoxel-based paramet-
ric tests. It substitutes the value of each of voxels with ghted average of sur-
rounding voxels. By the central limit theorem, this actiomditions the data more
normally distributed such that the validity of inferenceséd on statistical tests can
be increased. Smoothing also reduces the registrationarspatial normalization.
However, it is worth noticing that, the choice of the smonthkernel size should
be corresponding to the size of the expected regional diffees [30]. Many studies

adopt an 8-mm or 12-mm FWHM smoothing kernel when using the VBathwod.

8. Statistical analysis

After the preprocessing, the final step is a voxel-wise &tiatil analysis of normal-
ized and smoothed gray matter images. Statistical anadysdoys the general lin-
ear model, which is a flexible framewaork allowing many diéfet tests to be applied,
to distinguish significant differences in brain structucédifferent groups under
study [31]. In this thesis, werapplied two-sampitest as the fitting model to de-
scribe data of two groups, and used the standard (univapatametrict tests to
evaluate the residuals at each and every voxel. The reguliatistical parameters of
t tests are assembled into an image called:ttest map. By setting a significance
level and a minimum cluster size to thdest map, voxels with the statistical pa-
rameters preceding the significant level and in the clustéisse size is larger than
the minimum cluster size form the regions representatiib@ietected significant

group differences.

In this work, we not only applied the optimized voxel-basearpmometry to compare
the capability of revealing structural brain discrepaneyween different groups with one
of our method, but also used the preprocessing of the ooBM protocol to deal with
MR images before analyzing them by the proposed method. i$htte implementation

of this image preprocessing was also applied in our methoedre kve used the SPM2
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Figure 2.5: Concept of a MR image lying in a high-dimensiorgdce. x represents a
image with/V voxels. If we rearranged voxels of the 3-D image to producerague 1-D
vector by a particular fixed order, thancan be regarded as one point ilvadimensional
space, where each dimensiostands for voxel, fori =1,..., N.

software (the Wellcome Department of.lmaging Neurosciedogversity College London,
UK) implemented in Matlab 6.5 (the MathWorks,:Inc:. Natick AMUSA) to accomplish

all procedures involved in the optimized voxel-based morpétry.

2.3 Drawbacks of VBM

Since an individual MR image, a kind of morphological prafjles commonly de-
scribed as a collection of voxel-wise morphological measwents, it can be placed in a
high-dimensional space where each dimension presentimgel.vThat is, a MR image
is thought as one sample point in a high-dimensional spacsevtimensionality is equal
to the number of voxels of the MR image. Figure 2.5 graphyddllistrates this concept.
When all images have the same sizes and have been normalia¢dersame stereotactic
space, where voxels at the same position in all the imagagdleontain the same brain
tissue, the patient morphological profiles and the normajpmalogical profiles will form

two distributions in the high-dimensional space, like Feg2.6 shows.
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(a) (b)
Voxell 1

Figure 2.6: Schematic illustration of the significant bia¥BM. Each ellipse represents a
population of one group. In the case of (a), we can see thajrthe discrepancy almost
centralizes at the position of voxel 1, so it is very probdbé VBM detects a difference at
voxel 1 but has no finding at voxel.2. In.contrast, because thediscrepancy is spread
at voxel 1 and voxel 2 in the case of (b), the difference at vxand voxel 2 is obscure.

Therefore, the voxel-based morphometry may-fail to find affgrences, even though the
discrepancy between the two groups has the same overallitmagnvith case (a). These
simple two cases show the‘instability that, the ability of VBd/detect group discrepancy
is influenced by the distribution, or pattern;;of the disamgy.

However, Davatzikos [17] pointed out that there is a sigaiftcbias of VBM to ren-
der inferences about group differences. Let consider tvsesavhere the morphological
differences between two groups have the same overall matgstin Figure 2.6 (a) and
(b). For the purpose of display, there are only two dimersionthe figure, but the di-
mensionality is much higher in practice. Because voxel-dbaserphometry detect group
differences voxel-by-voxel, only the values along one disien are taken into account at
a time. In the Figure 2.6 (a), there is a significant groupedéhce at the voxel 1, since
the two distributions along voxel 1 are easily separated.dtobable that VBM can detect
a difference at voxel 1. Along the voxel 2, the situation ipagte, thus VBM may fail
to find any difference at voxel 2. Now we focus on the case inRigeire 2.6 (b). It is
clear that there is a group discrepancy spreading at voxetivaxel 2. But in the voxel

respect, a large overlap of distributions of two groupstexasong both voxel 1 and voxel
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2. This situation may cause VBM disable to detect any diffeesmat either voxel. This
simple example in Figure 2.6 (b) reveals that when applyimxgirbased morphometry to
estimate group discrepancy, some subtle and complex patéibrain differences, which
are widely distributed over many voxels, may not be significat each single voxel for
VBM to detect.

From the cases in Figure 2.6, we know there is a bias in VBM thdgtects relatively
localized differences much easier than relatively disted differences involved with sev-
eral brain structures [17]. This bias is an unavoidable atal problem to VBM, and it
makes the analysis result of VBM forced to be relied upon tseaBe characteristics. The
problem results from that VBM analyzes the group discrepamaywoxel-by-voxel manner
rather than considers the entirety of voxels simultangouisisuch the voxel-wise analysis
method, related information carried by.the neighboringalexare not considered, so it may
cause the disability to measure the subtle and widely+diged discrepancy located in a
large region composed of many voxels. Therefore, we prapasether unbiased and au-
tomatic method, using a multivariate analysisrapproadtedthe multivariate volumetric

morphometry (MVM) to break this limitation of univariate @gsis.



Chapter 3

Multivariate Volumetric Morphometry
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Owing to the congenital problem of this voxel-wise compamigpproach, in this chap-
ter we will introduce the proposed method called the mulfiata volumetric morphometry
(MVM) which can assess anatomical brain differences. TheWNcludes a preprocess-
ing and an analysis step as VBM does. The image preprocessiMy M is the same
with one of VBM (shown in Figure 2.4), in which the modulatiarequired to charac-
terize volumetric group differences of brain tissues, betdata smoothing is omitted. In
the statistical analysis step, MVM adopts a reformatory LRs#sed method as the basis
of multivariate analysis, and conjugates the wavelet foang which is used to rearrange
the spatial and frequency information for the multiresolutanalysis, to measuring group
differences. Because each and every voxel represents adagevaranalysis, thus MVM
is a multivariate approach. This method overcomes the daakvbf voxel-based analysis,

and is appropriate for estimating the structural brainréisancy between different groups.

3.1 Ideas of the Propased Method

The multivariate volumetric morphometry: (MVM) is the prageal method which char-
acterizes volumetric anatomical discrepancy betweeprdifit groups through a multivari-
ate analysis of MR images of particular brain tissues. Itnsuabiased, objective and
whole-brain measurement. The multivariate volumetricphometry contains several pro-
cesses like VBM does, and the chief breakthrough of thissheshe multivariate analysis.

Thus, in the following, we only focus on the statistical s& step of MVM.

In the multivariate analysis stage, it employs a high-disi@mal classification tech-
nique, which considers all voxels of MR images at one timeadémtify the most discrim-
inative hyper-plane that well separates the populatiorgradips in the high-dimensional
space. This hyper-plane goes along with a unique normabyebe most discriminant pro-
jection vectorw, which is the direction shifted from one population to amothopulation.

The appearance of a shift might be resulted from some faofargerest cause the group
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Voxell 1

»

v

Voxel 2

Figure 3.1: Sketchily showing how a high-dimensional afasgtion technique can be used
to measure group differences. Assume the yellow pointshergatients’ morphological

profiles, and the corresponding yellow elliptic area is taggnts’ distribution; either are

the blue ones for normal subjects. A classification techadgtermines the most discrim-
inative hyper-plane, which is presented by.the dotted larej the corresponding most
discriminant projection vectow. In-such'the projection vector, each element denotes
the discrimination weight of:group discrepancy.-Thereftite vectorw can be considered

as a spatial map containing.the regions representativeoopgtifferences.

discrepancy under study. The most discriminant projectexstor is also an image which
has the same size of all sample images. The way of using afidasen technique to find
such the most discriminant projection vector does not needihcide along any voxels (di-
mensions), that voxel-based analyses are unable to aclkextéer, each of the parameters
from the most discriminant projection vecter denotes the weighting, or the discrimina-
tion of characterizing group discrepancy, so the most giisoant projection vector can
regarded as the analytic image containing the resultintysisgparameters. In this way,
we can quantify differences throughout the whole brain eetwdifferent groups by such

a high-dimensional classification technique. Figure 3ukiiates the idea schematically.
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3.2 Framework of Multivariate Volumetric Morphometry

Before the multivariate analysis, we used the first six stépiseooptimized VBM pro-
tocol mentioned in the chapter 2 to obtain individual noiiread and modulated gray/white
matter images. Notice that the smoothing was disused. ds®nrewhy we do not smooth
the images in the multivariate volumetric morphometry Vol explained in chapter 5,
discussion. Then, in the central multivariate method, wedus reformatory LDA-based
method, the discriminative common vector method [32], td flre most discriminant pro-
jection vector which minimizes the scatter within eachwndlial group and simultaneously
maximizes the scatter between groups without the small kasige problem. The result-
ing projection vector forms a spatial map, whose image sittes same with all gray/white
matter images used for the analysis, containing the regvbich are most representative of
group differences. The details of the methad and.its efficraplementation we proposed

for implementation will be interpreted.in the next section.

Besides the discriminative common vector method, we alsd t=wavelet transform
rearranging the spatial and frequency information of MRgesato improve the effect of
MVM upon catching significant group differences, in severied scales. The reason we
applied the discriminative common vector method in the Wetvgpace is that, although
the method considers all voxels of images simultaneouskyrwastimating group differ-
ences, there are the same forces of relationships betwepaia of two voxels in the
method; no matter the two voxels are adjacent to or far away feach other. Thus, to
increase spatial correlations between neighboring voxe¢s3-D wavelet transformation
is used to restructure voxel data into space-scale featur@ierarchical representation
way. After that, we then apply the discriminative commontgemethod on these wavelet
features. Moreover, the wavelet transform also makes thlysia become a multivariate

multiresolution analysis.

After getting the most discriminant projection vector obtgroups’ features, the weight
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of each feature from the projection vector represents thyeegeof importance for charac-
terizing the group differences. The number of featuresaktuthe number of voxels in
a MR image, is usually a huge amount. Only the features witfetaweights in the most
discriminant projection vector are used when performirgitiverse 3-D wavelet transfor-
mation, to obtain the final discriminating map in the origvaxel-based space. Discarding
the features with small weights helps to remove triflingatiénces and to improve accuracy

of the multivariate analysis.

Finally, for the purpose of determining and displaying whiegions representative of
the significant group differences, a smoothing and threkhglof discrimination weights
of the parameters in the discriminating map are needed. Asiomebefore, each parameter
of the discriminating map denotes the discrimination ofrabterizing the group discrep-
ancy, so in an intuitively thinking, the changes. of the wésgbf neighboring parameters
should be slight. However,:in practice, it does riot ofterklemooth as we think. It may
result from the noise or the‘variation-within groups, or th@eproduced during the pre-
processing like a wrong image.registration or tissue seggtien. It happens especially
when we abandon the smoothing step in MVM preprocessing.refér@, to constrain
the smoothness of discrimination weights in the discrirngamap regionally, we use a
smoothing for the discriminating map. In addition, a thidding is done before displaying
the discriminating map to show the detected regions moseseptative of group discrep-
ancy. Only voxels with a parameter value preceding the limidsin the discriminating
map are considered to reach the significant level and to beashowed. The minimum
cluster size of the parameters also can be set to reject thentall regions. Although
the smoothing and thresholding are not the parts of the vauidite analysis step, they are
need for visualizing the discrepancy pattern between tbapg. Of course, both of the
procedures can be regulated by users. In the end of the MV sisave can also obtain
a whole-brain confidence in explaining whether the detegtedp discrepancy is correct,

by caculating thep-value associated with the T-statistic on the two groupsrofegted
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images onto the discriminating map.

Summarily, the multivariate volumetric morphometry (MVMdntains the following

steps:

H

. Spatially normalization of all images to the same ste&at space

N

. Segmentation of normalized images into GM, WM, and CSF

3. Correction for volume changes of segmented images

SN

. Multivariate analysis

(a) Forward 3-D wavelet transformation to the multiresoluispace

(b) Discriminative common vectar method te obtain the mastmiminant projec-

tion vector

(c) Discarding unimportantwavelet features with smaltdigination weights in

the most discriminant projection vector

(d) Inverse 3-D wavelet transformation to obtain the dieamating map in the

stereotactic normalization space
5. Visualization of the discrepancy pattern

(a) Smoothing

(b) Thresholding

Figure 3.2 is the flowchart of the multivariate analysis mdrtMVM. In implementation,

we used the first six steps of the optimized VBM protocol to agelish the step 1 and
2 of MVM. In the following sections we will introduce the tegigues used in the mul-
tivariate analysis step, including the discriminative coom vector method, the efficient

implementation for the discriminative common vector, dmel 3-D wavelet transform.
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Forward
DWT

Discriminative Common
Vector Method

Thresholding Wavelets
& Inverse DWT

Display Smoothing
& Thresholding

Figure 3.2: Flowchart of multivariate analysis and viszaiion in MVM.
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3.3 Multivariate Analysis using a Reformatory LDA-Based

Method

3.3.1 Conventional Linear Discriminant Analysis and Its Potential Prob-

lem

The linear discriminant analysis (LDA) is one of the most plap linear projection
techniques. It was invented by Ronald A. Fisher in 1936 [38{ has been successfully
applied in many classification problems such as image retognmultimedia informa-
tion retrieval and so on. Its goal is to find the most discramihprojection vectow, in
which direction groups can be separated with the maximunvdsi-class scatter and the

minimum within-class scatter.

Let K be the number of classes (groups), whereitheclass containd/,, samples, and
let x* be aN-dimensional column vector which-denotes thth sample of theith class.
There is a total of\/ = Zszl M, samples. The within-class scatter mat8iyy and the

between-class scatter matBy are defined as

K My
Sw=>_ Y (xk —pF)(xh — )" (3.1)
k=1 m=1
and
K
Sp=>_ M(u* — )k — )", (3.2)
k=1
wherep* = 1/M;, 3™ x* as the mean of samples in thth class, and

p=1/MY M xk as the mean of all samples. The objective of LDA is to find a

m=1
projection matrixP|q5 that maximizes the Fisher’s linear discriminant criteritivat is
IPTSP|
IPTSWP|’
According to linear algebra, the ratio is maximized whendbiimn vectors oPy5 are

P|ga = arg max F(P) = arg max (3.3)

the eigenvectors dﬁ\j\}Sb. In implementation, each individual morphological proige
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first reshaped into a sample vector by arranging the 3-D velumsome consistent order
before applying the linear discriminant analysis. Moreptieere are only two groups in
our case, i.eK = 2, so we can immediately obtain the most discriminant praectector

w, which is the only one eigenvector composiPgy,, by the formulaw = Sy (1 — 1i2).

However, LDA encounters difficulties when the number of sk®ps much smaller
than the dimensionality of the sample space. This situatiuses the within-class scatter
matrix singular and not invertible, so the LDA cannot be @aptirectly. It is known as the
small sample size (SSS) problem [34]. Therefore, we empleydiscriminative common
vector method [32], which was proposed by Cevikalp and Wifkedace recognition, to

solve this problem.

3.3.2 Discriminative Common/Vector-Method

The discriminative commaon vector method for the small sanspte problem is based
on a variation of the LDA by maximizing the - modified Fisheifsar discriminant criterion
[35]. The general idea of the common vector is to find a vectuciwvcan represent a class
by extracting common properties of the class, or saying thnvaeliminating differences
between the samples in the class. After getting each commexctonof every class, we can
use the principal components analysis (PCA) [36] to find thecgyal components which

actually equate the most discriminant projection vectotdA.

Let us use all previous definitions and let the total scatirimbe defined as
K My
Z Z — p)(xk, — )" = Sw + Sp,. (3.4)
k=1 m=1
The modified Fisher’s linear discriminant criterion

. |PTS,P| |PTS,P|
(P) = rast = .
IPTStP|  |[PTSwP + PTSpP|

(3.5)
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has been proved that it is exactly equivalent to the origikisher’s criterion by Liu et
al. [35], saying that
arg max F(P) = arg max F(P). (3.6)

The modified criterion will attain a maximum in the speciateaproved in [37], where
p"Swp = 0 andp”Spp # 0, for all projection vectorp € RV \ {0}. Under these

conditions forp, a better criterion [38] will be

PTS,.P| = P7S:P|.
arg max JPTSpP| =arg max | [PTStP

That is to say, if we transform all samples onto the null spd &3y to restrict the projected

within-class scatter matrix to be a zero matrix, and theoutate the principal components
that maximize|P7S{P| by performing PCA, we will obtain the most discriminant pro-
jection vectors without the small sample size problem. ttalled the null space method

proposed by Chen et al. [37].

The transformation matrix from the original sample spacth&onull space oByy is
QQ’, where the column vectors ‘@ ate the-vectors spanning the null spaceSef.
Cevikalp and Wilkes [32] have proved that, projecting eveasnplesx® (which denotes
the mth sample of thé:th class) in thekth class onto the null space 8fy will produce
exactly one vectokfom = QQTX,’; , Which is referred to the common vector; moreover,
because 0QQ’ x* = x¥ — QQ”x* , the common vectoxkom of the kth class can be

calculated withou€) by using

X¢om = X5, — QQx},, (3.7)

where Q is the matrix whose column vectors are the orthonormal vecpanning the
range space oby. Since the number of columns @ is about)M and the number of
columns inQ is aboutN — M, the size ofQ is much smaller than the size €. It states

that the method can greatly reduce the computational buhdenthe null space method.

After obtaining the common vector for each and every groug principal components

of those common vectors will be the most discriminant priopecvectors. It is because
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there is exactly one class over the common vectors now. Tir@seipal components of
the common vectors are called the discriminative commotovecAgain, in our practice,
samples are divided into only two groups, so there is onlydseriminative common vec-
tor in the event. We obtain the most discriminant projectiectorw by directly subtracting

of the two common vectors, namely, = xtom — Xéon

So the steps of the discriminative common vector method afell@ws:

1. Compute the eigenvectats, as, . . . , a,. corresponded to the nonzero eigenvalues of

Sw, wherer is the rank ofSy, and seQ = [ag ay -+ .

2. Obtain the common vectors for each class by choosing anpledrom each class

and projecting it onto the null space 8§y, those are
Xéom:X:n_QQTxrlm m &€ {1,...,]\/[1}, (38)

and
Xéom:Xi—Q TX2 m € {1,...,M2}. (39)

m?

3. Compute the only one discriminative common vector, i.ee rost discriminant
projection vectosw by

W = Xcom — XCom (3.10)

3.3.3 Efficient Implementation for Computing Discriminative Com-

mon Vectors

Although the discriminative common vector method solvessimall sample size prob-
lem, there are still come difficulties in implementation.idtbecause the dimensionality
of the sample space is a very huge amount. For example, a 3aDeiwith the size
157 x 189 x 156 has more thad.6 x 10° voxels. Therefore, we proposed an efficient

implementation for computing the discriminative commontoe
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Since the within-class scatter matrix is define®as= "1, S M (x* — u*)(xE, —
it can be rewrited as

Sw = AAT, (3.11)

where the matrixA = [x; — p' -+ xj3, —p' x} —p* - x3, — p?]. Rather
than directly calculating the larg&-by-N matrix Sy, we used a computationally fea-
sible method [39, 40] to compute the eigenvectord@’ by multiplying the matrixA by
the matrixQ whose columns are the eigenvectors\dfA. So the matrix representation of

the subsequent operations is written as

Q = AQ
xcom = X1 —Q(Q'x))
x¢om = X mQQx))
W = XComTXCom (3.12)

where we choose the first sample -of each class to obtain thenoarector.

However, there is still a heavy camputational cost if we s$tate these equations into
programming codes without simplifying them." 1t is known ttha matrix multiplication
BC needsi; x ny x ng multiplications when the matriB is n,-by-n, and the matri>xC is
no-by-n3. So, how many multiplications it will take if we do not chanipe computation
way? For this purpose, we developed an efficient implemientab achieve the above

objective (3.12). The following is the pseudo-code:

lfor j:=1tordo

2 fori:=1to N do

3 q;(2) =0

4 for [ :=1to M do

5 q;(i) == q;(7) + A(3,1) « Q(l,7)
6 end
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7 end

8 q; := NormalizeVector(q;)

9 doty := Dot2Vectors(qj, x7)

10 doty := Dot2Vectors(q;,x3)

11 for i :==1to N do

12 QQtX, (i) == QQtX, (i) + q;(i)  dot,
13 QQtX, (i) := QQtX,(7) + q;(i) * dot,
14 end

15end

16for 7 :=1to N do

17 w(i) := (x1(i) — QQtX, (i) + (xi(i) — QQtX,(i))
18end

In this code fragment, the scalarsV, M-are the number of column vectors composed
of Q, the dimensionality of the sample space; and the numbet s&aiples, respectively.
The vectorq; represents thgth column vector ofQ. The N-by-M matrix A and the
M-by-r matrix Q represent as the definitions before. And, the veQ@tX,, used to
calculate the common vecteiggm, represents the projected samplexgfof the range
space oSy, for k = 1, 2. Furthermore, the functioiormalizeV ector() makes the input
vector turning out a vector with the norm equalltan the same direction. The function
Dot2Vectors() returns the scalar product of the input vectors. Finally,rédsulting vector

w is the most discriminant projection vector.
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3.4 Multiresolution Analysis using Wavelet Transform

In image processing, there are many methods and theoriesdeveloped. Owing to
convenience of analysis, it usually transforms domain ghais. In engineering applica-
tion, the most popular method is Fourier transform. Four@nsform can transform the
signals from spatial domain to frequency domain, but thermftion of spatial domain is
lost after applying Fourier Transform on an image. In manyliaptions, however, it needs
to analyze both frequency and spatial information at theesame. To avoid the lack
of spatial information, Haar, Goupillaud, Grossman, andIstgroposed and improved

wavelet transform [41].

Wavelet transform is one of multi-resolution analysis. lattransform not only can
transform an image from spatial domain to frequency domaihalso has information of
both two domains. Similar to the Fourier transform; waveketsform consists of continu-
ous wavelet transform (CWT), and discrete wavelet transf@wT). However, continu-
ous wavelet transform is limited by the redundancy .and itprality in image processing.

Therefore, the discrete wavelet transform is-applied is tihesis.
3.4.1 3-D Discrete Wavelet Transform
The most important parameter in wavelet transform is calladelet function, which is

also called mother wavelet. Wavelet functiofiz), where x is the parameter in the spatial

domain, has to satisfy two properties as follows:

1. The integration of wavelet function has to be zero,

/OO Y(x)dx = 0. (3.13)
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2. Wavelet function has finite energy,

/OO (@) da? < 0. (3.14)

[e.9]

First property represents that wavelet function is odailtg so wave function is always like
an oscillatory wave. Second property represents finiteggnso wavelet function decays to
zero in both positive and negative directions. Compared atimonic waveform, wavelet

function is relative smaller. This is the underlying rea#iuat it is called "wave-let”.

In this thesis, wavelet transform is used for the multireBoh analysis. Wavelet trans-
form based multiresolution analysis is to analyze the dggpaimages under different
scales and resolutions. Utilizing the multiresolutionlgsig, an image with complex fre-
guencies can be decomposed into many images with simplednetges. The decomposed
images can be analyzed independently oriin.community. Taudssthe method of multi-
resolution analysis, besides:‘wavelet/functions, thesgdlinctions, usually inferred to the
father wavelet, have to befintroduced. Define-the scalingtfon ¢(x), which have to

satisfy three basic properties:

1. The integration of scaling function has to be 1,
/ b(a)dz = 1. (3.15)
2. The energy of scaling function is equal to 1,

/OO |p(z)dz|? = 1. (3.16)

3. The scaling functiow(x) and its transformation by shifting B{x —n), compose of

an orthogonal set,
< é(), dx —n) >= d(n), (3.17)

whered(n) is Kronecker delta symbolé(n) = 1 asn = 0, anddj(n) = 0 asn # 0.

Wavelets can be defined by the wavelet function and the gcalimction. Moreover, the
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wavelet function and the scaling function are usually setatitsfy the orthogonal relation.
When the scaling function and the scaling function are omwhad) besides computing eas-
ily, image energy can be divided in the spatial domain andréguency domain. This is

really a useful property in practice.

The forward 1-D discrete wavelet transform and the inverBediscrete wavelet trans-

form are defined respectively that

Wola.t) = —= 3 F@)o( ) (3.18)
W@) = —= 3 fau(=). (3.19)

and

1 z—>b y el B r—b
f(w)Z%zb:Wda(a,b)qﬁ( - >+ﬁ;;wa,bw< —), (320

wheref(z) is a spatial signal to decompos$as the spatial shift or translation factarand

a are called the spatial scaling or dilatation‘factor whictedaine the size of the spatial

axis translation|¥,(a, b) is is the scaling coefficient, aridl’, is the wavelet coefficient.

In practice, all discrete wavelet transforms make use @frfifanks that contain band-
pass filters separating the input signal into several compisn Each component carries
a single frequency sub-band of the original signal. In tHe Gase, the 1-D analysis filter
bank is applied in turn to each of the three dimensions. UWsuhé overwhelming majority
of the signal information appears in the component with tiveekt frequency band. So it
is often to separate the existing component with the lowesfuency band in a recursive
way. The level of a discrete wavelet transformation represskow many times the signal

separation is preformed. Figure 3.3 interprets this ideammatically.

The data used to be analyzed by the discriminative commawvewthod, which are
illustrated in Figure 3.4, are these wavelet coefficierasfthe 3-D discrete wavelet trans-

form. After the discriminative common vector method anelysd a wavelet thresholding
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Level 1

Level 2

Level3 = . iiiiiiia

Figure 3.3: Analysis by 3-D discrete wavelet transform Viitler banks. The 1-D analysis
filter bank is applied in turn to each of dimensions. And treutlieng component with the
lowest frequency band continues to decompose in the nesitd¢DWT.
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Figure 3.4: A MR image by discrete wavelet transfdtm witHedint levels. (a) Original
MR image. Decomposed images; or.the wavelet coefficients) {ib) 1-level DCT, (c)
2-level DCT, (d) 3-level DCT.

which is introduced in the next sectibn, we perform the iseed-D discrete wavelet trans-

form to obtain the discriminating map of MVM.

3.4.2 Wavelet Thresholding

As the mention before, a thresholding of wavelets coeffisies performed before
the inverse wavelet transform, in order to preserve theeslaigcrimination weights for
a good discriminating map. There are three simple thresiplapproaches in common
use: the hard thresholding, soft thresholding, and peagenthresholding [42]. We used
the percentage thresholding approach to preserve ceudaia gf the total discrimination
to characterize the discrepancy between groups. By setimgércentage%, we keep

the wavelet coefficients with larger absolute discrimioativeights from the most discrim-
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inant projection vector, so that the sum of these absolutght&comprises: percents of

the total of the absolute weights from the LDA projectionteec And, we discard other
wavelet coefficients which have the smaller absolute wsightter doing thex percentage
thresholding, the inverse wavelet transform is now peréatro obtain the discriminating

map in the original voxel-based space.
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Chapter 4

Experiments
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This chapter shows the experimental results which utilixdWand VBM respectively
to analyze the anatomical differences between two diftegeoups. It includes the ex-
perimental parameters, the results and comparison bettvedwo analysis methods, and
some other related methods about the experiments. Siomldita were used to assess
the capability for MVM and VBM to reveal the group discrepandyhese two methods
were also applied on real SCA3 data. In both simulation and S{eréments, the pro-
posed method expresses a better sensitivity to subtle aselyadistributed variation of

brain structure.

4.1 Capability Assessment for Discrepancy Revelation

To validate whether the proposed'multivariate method céectlenore distributed atro-
phy than voxel-based analysis, simulation MR images-weneigeed. We used thin-plate
splines (TPS) [43], which is an interpolationtool. and sdiiter image morphing, to sim-
ulate normal and patient groups ofsimages. The:most partslvdrdages of using the
simulation data are that we can control the'difference pastbetween two groups, and
we have the ground truth to verify and compare the resultseofwo analysis approaches.
The methods of data generation and accuracy evaluationthaneixperiment results and

comparisons will be presented in order.

4.1.1 Materials

We used a normalized gray matter MR image of a nhormal subgatieasource image to
simulate one normal group and eight patient groups by thmeqlaite spline (TPS) method.
The simulated atrophy of patients is around the cerebelhem. &ight patient groups have
different degrees of simulated atrophy to compare with thenal group. The general

idea of TPS is first choosing several control points on thec®image, and then moving



4.1 Capability Assessment for Discrepancy Revelation a7

these control points to produce a new image by interpolatiim thin-plate splines. The

simulation procedure is described below:

1. Select one optimized-normalized and modulated GM imea hormal subjects to
be the simulation source image. All simulation data are peced form this image.
The reason why the simulation was preformed on a normalizddegmented image
rather than on a native T1-weighted image is that, we wamtedaid other factors,
such as normalization and segmentation, which might affectiracy of simulation
data for analysis and which should be not considered undestidy. The sizes of
the source image and simulation data arg&lk 94 x 78 with a voxel size2 x 2 x
2mne.

2. Choose control points for the;thin-plate spline (TPS)dfarmation. 68 control
points were manually selected-en.the surface of cerebelgrmatter, and 140 con-
trol points were automatically selected on the surface lmal cortex by a program.
Specifically, 30 of the-68 control points, which are on thesert surface of cere-
bellar gray matter, were'used to simulate atrophy aroundehebellum; Other 38 of
the 68 control points, which are on‘the interior surface oébellar gray matter or on
the interface between the cerebellum and cerebrum, werktaseroid global mo-
tion effects of the atrophy simulation as using TPS inteapoh. We used these two
different groups of (30 and 38) control points on the cerebelo vary the thickness
of cerebellar gray matter, rather than the size of cerefvefin that way it only needs
the 30 control points on the exterior surface of cerebelluagure 4.1 sketches the

distribution of these control points.

3. Move the 30 control points on the exterior surface of celtabgray matter towards
the individual cerebellar hemisphere centers to creatérless atrophy of the cere-
bellum. The distance of movement is one of control pararaétehis simulation. By
setting different distances, we can produce various degyesimulated cerebellum

atrophy. This step should be skipped when generating stediformal images.
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Figure 4.1: The distribution of control points for TPS silatibn. The orange points repre-
sent these control points on the exterior surface of celaatgpiay matter, which were used
to generate cerebellar atrophy; The green points represest on the interior surface of
cerebellar gray matter, which were used to avoid globalonaifects of TPS interpolation;
The blue points represent ones on:the surface of cerebraixcdrinally, to simulate the
variance within a group, all points were used to render.thelral and cerebellar surfaces
with a white noise.

4. Shift all control points in arbitrary. directions with ttsenall distances by using a
white noise to randomly render the cerebral and cerebalidases. The shifting
distance is also a control parameter in this simulation tmlpce the inter-subject

variation.

5. Perform the TPS transformation on the source image torgensimulated images
with or without the atrophy around the cerebellum area. kesagith the simulated
atrophy form the patient group, and ones without the sinedlatrophy form the

normal group.

To generate the normal group and eight patient groups wigrdint degrees of cerebel-
lum atrophy, we used the TPS simulation procedure with aentoise, which has standard
deviation 2mm along each dimension, on all control pointsalbthe normal and patient

groups, and with the eight atrophy distances from 1mm to 8mitthese control points on
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the exterior surface of cerebellum for the patient groupseuery group, there were 20
simulated images. Thus we had eight pairs of the simulatesh@lcand patient groups to
perform eight analyses with distinct degrees of structdiféérences by using both MVM
and VBM. Figure 4.2 shows the source image and simulated isnaggle 1mm, 3mm, 5mm

and 7mm cerebellum atrophy.

4.1.2 Accuracy Evaluation

Because the simulation parameters and data are under ouplcam can use the
ground truth of the discrepancy pattern we already knewsbated verify the results with
some evaluation methods. The ground truth is an image congathe region with the
structural discrepancy between,the simulated normal atidnpayroups. It was obtained
by subtracting an image, which|was-generated by the same fide8dure without noise
appended on the control points but only with the atrophyadisé producing the cerebellar
atrophy, from the source image. i thersimulated images walé generated with good
parameters that make the distribution within‘the group efithages near the normal dis-
tribution, the ground truth is good for representation & #ictual difference between two

simulated groups.

After analyzing the simulation data and determining thaisicant level (threshold) of
a result image with the analytic parameters, i.e. a disaatmg map of MVM or a-test
map of VBM, a voxel-wise comparison between the result imagethe ground truth is
preformed to find the regions of true-positive (TP), falesipve (FP), true-negative (TN),
and false-negative (FN). The four terms TP, FP, TN, and FNmtleai:

e True-positive (TP): the analysis result predicts the voxeh the atrophy area, and

in reality it is in the atrophy area of the ground truth;

e False-positive (FP): the analysis result predicts the Msxi® the atrophy area, but
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Figure 4.2: The source and simulated images by TPS showreindfonal, sagittal and
axial views. (@) is the source image used to generated diinildata; (b) is a simulated
normal image; and (c), (d), (e), (f) are the simulated patrmages with atrophy around the
outer cerebellar cortex with a atrophy distance of 1mm, 36mm, and 7mm respectively.
All simulated images were rendered with a white noise wheosedsrd deviation is 2mm
along each dimension. We can see the thickness of the clenebalthe simulated images
is thinner and thinner from (b) to (f). The sizes of these igggre allr'8 x 94 x 78 with a
voxel size2 x 2 x 2mm?, and the red cross is placed at the voxel (52, 25, 17)
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Table 4.1: Definitions of TP, FP, TN, and FN.

Predicted
Yes No
Actual

Yes TP FN
No FP TN

in reality it isnot in the simulated atrophy area of the ground truth;

e True-negative (TN): the analysis result predicts the vaxabt in the atrophy area,

and in reality it isnot in the simulated atrophy area of the ground truth;

e False-negative (FN): the analysis result predicts the Mex®ot in the atrophy area,

but in reality it is in the simulated atrophy area of the grdtruth.

Table 4.1 shows the brief definitions of them. “The analysssiltecould be true in two
respects TP and TN; and it'couldbe-falserin two respects FRFFENth statistics, we call
FN the type | error, and call FP the type ll.error. Moreovee, tates of TP, FP, TN and FN

are defined as:

TP
TPrate = W7 (4.1)
FPrate = W, (4.2)
TNrate = W, (4.3)
F'Nrate = TPLFN (4.4)

After we got these regions, we can assess an analysis rgdlikfdaying the result image
with labeled TP, FP, FN regions. More TP regions and fewelFRPyregions indicate the
result is more accurate. The comparison between two morptraranalysis methods
MVM and VBM is done by showing their labeled result images afiFN rates, in the

case of that their FP rates are equal to each other.
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Another more precise assessment is to use the receivettiogerharacteristic (ROC),
which employssensitivityand specificityto present achievements of a prediction method
in a graphic way. In this study, the sensitivity means thditglof a method to identify
which voxels has actually atrophy, so it is simply the TP ;rated the specificity means
the ability to identify which voxels do not have actuallyaghy, so it is the TN rate. The
ROC curve of a method is obtained by plotting sensitivityiagial-specificity via vary-
ing the value of the parameter of this method. In our caseydhed parameter of MVM
is the display threshold of the discrimination weights ie thiscriminating map, and the
varied parameter of VBM is the display threshold of thalues in the-test map. In gen-
eral, a method with a ROC curve closer to the top left corngragents that it has a better
performance and is more accurate when a good parametersaloesen. When quantify-
ing ROC curves, one of the common summary indices is the ardéeruhe curve (AUC),
which is defined geometrically, as its hame,suggests. The WdEX can be interpreted
as the overall probability of correct identification. Inghwork, we used the partial area
under the curve (PAUC) [44] as the basis of'the comparisondmiwlifferent ROC curves,
because the curves were not long enough to separate theratexatie curve and the area
over the curve in practice. Only a specific region of the RO&/&si was employed. Al-
though the computed areas of AUC and PAUC are distinct, ttweicepts are similar that:
an AUC/PAUC index with a larger area indicates a better aemmnt of the prediction

method. Figure 4.3 gives an example of a ROC curve.

4.1.3 Comparisons between MVM and VBM

Simulation data were analyzed by both MVM and VBM (excludihg preprocessing
part). Before the VBM analyses, all images were smoothed wdtiman FWHM isotropic
Gaussian kernel, and then we applied the two-samypst to obtain the-test maps. In
contract, MVM analyzed images without smoothing them. Wb e wavelets proposed

by Abdelnour and Selesnick [45] to transform the simulateddes to the 3-level wavelet
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= TP rate

Sensitivity

v

1 — Specificity = FP rate

Figure 4.3: Example of a ROC curve. It is obtained by varyimgalue of the parameter
of a method and then plotting sensitivity (TP rate) agairspécificity (FP rate) under this
parameter value. In general, methods with ROC curves ctogbe top left corner indicate
better performances. When wanting to compare performarfcédferent methods, we

often use the summary statisticsifor ROC curves, such as Ad@AUC indices.

space, then preformed thediscriminative common vectohaagtand setv = 20 to pre-
serve coefficients with larger absolute-weights of the mastrominant projection vector
and to discard other coefficients before the inverse watsesform. Finally, a 4mm
FWHM isotropic Gaussian kernel was applied to the discritmgamap for the MVM
analysis result. Averagely, the MVM cost 51 seconds to aaly set of data, and the
VBM cost averagely 65 seconds. Both were on the same PC equifipeldws XP with a
processor 1.83GHz and 1GB RAM.

The ROC curves of analyses results of MVM and VBM for detectimyulated group
differences with the atrophied thickness of cerebellunmfromm to 8mm are shown in
Figure 4.4. The corresponding PAUC indices, in a specifioreghere the TP rate ranges
form 0.8 to 1 and the FP rate ranges form 0 to 0.2, are listecinheT4.2. By comparing
ROC curves of two approaches in Figure 4.4, we found that t@IMurves are closer
to the top left corner than VBM, and this appearance is obvesyecially in the cases of

1mm and 2mm atrophy analyses. That is, the MVM produced a amrerate result than
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Figure 4.4: ROC curves of MVM and VBM results with the simubatidata. Notice that
both horizontal axes are limited from 0 to 0.2 and both valtaxes are limited from 0.8 to
1 for more specific display. It is manifest that MVM curves al@ser to the top left corner
than VBM in the same analysis data, especially when the steullatrophy distance is

small.



4.1 Capability Assessment for Discrepancy Revelation 55

Table 4.2: PAUC indices for ROC curves of MVM and VBM resultdtwihe simulation
data. The partial area was calculated in a specific regiomenthe TP rate ranges form 0.8
to 1 and the FP rate ranges form 0 to 0.2. As this specific redgmotes 1, we have €
PAUC < 1. Itis manifest that MVM PAUC indices are greater than VBM snethe same
analysis data, especially when the simulated atrophyraistas small.

Atrophy size| MVM VBM

1Imm 0.73466 0.38676
2mm 0.92286 0.81895
3mm 0.95521 0.88867
4mm 0.96613 0.91171
smm 0.95836 0.92719
6mm 0.95398 0.91616
mm 095465 0.91302
8mm 0.95357 0.92445

VBM when the atrophy was subtle and refined, as well as what \wpased. Besides,
there is a general trend of the two results that, as the atreigh increases, the ROC curve
moves toward the top left corner. This trend is reasonalnleesiarge group differences
are more easily detected by nature. But, the situation ends e simulated atrophy
size is bigger than 4mm. The curves almost go forward to theeran longer but tend to
fall into a pattern there. It might be evidence that the cdpalof two analysis methods
for finding the group discrepancy will achieve an extremityaw the group discrepancy is
large enough. Similar findings were observed in their PAUfices in Table 4.2. We could
see that MVM have greater PAUC than VBM in the same analysks, @axl the difference
between MVM and VBM PAUC indices is large especially when timeutated atrophy
Is small. Both Figure 4.4 and Table 4.2 illustrate our methasl & better sensitivity and

accuracy than the VBM analysis.
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To demonstrate the analysis results of MVM and VBM for detegthe cerebellar at-
rophy with the same FP rate, the result images are presentddflaying several slices,
overlaying the same slices of the source image, with labeRed=P and FN regions. First
we chose a reasonabigalue of the VBMt-test map, and then selected the display thresh-
old of the MVM discriminating map by the strategy that, thi¥M threshold should make
the FP rate of MVM analysis result equal to the FP rate of VBM. Byparing the re-
sult image with the ground truth of discrepancy patternheatd every voxel of the result
image was decided as a particular type of TP, TN, FP or FN.llifitizese voxels were
stained by different colors: green, yellow and red, thaidatk the TP, FN and FP regions

respectively.

In the case of 1mm cerebellar atrophy; the FPrate is appeirith0013 when choosing
the threshold of VBM value as 3.32.(i.en value = 0,001 'uncorrected as degree of freedom
= 38). The TP rates of MVM and YBM are approximate 0.4155 an@3RIrespectively.
Analysis results of MVM and VBM:are shownin-Figure 4.5 and Fegd.6. From these
two figures, we can see that there are‘'more TP regions in the Mgt than in the VBM,
as well as that their TP rates reveal. Moreover, a rough sbhtiee exterior cerebellum
is shown in the MVM TP result in lower slices, but in the VBM r&sOP regions are too
loose to form a shape. Becides, since the simulated atropbywidely-distributed and
was a very small quantity all over on the exterior surfacess€bellum, the FN regions of
the two approaches are both large. It is instinctive thaugrdifference is difficult to be
detected when it is samll. However, it is still visible th&t Fegions of MVM are fewer than
ones of VBM. On the side, both results had some FP regions. Sa@resin the cerebrum,
and some were around the cerebellum. Ones in the cerebruentarght to be the false
outcomes of the analyses, where should not have atrophyh8apipearance of FP regions
around the cerebellum could be thought resulted from theotimrgg, which is either the
data smoothing in VBM or the display smoothing in MVM. This &iof FP false is not

very taken to heart.
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FP FN TP

Figure 4.5: Analysis result of MVM for 1mm simulated cerdbel atrophy. The FP
rate and TP rate are approximate 0.0013 and 0.4155 resglgctWhite-edge images are
zoomed in for exquisite demonstration. Compared with the VBBUIt, the MVM had a
better accuracy to detect the simulated atrophy aroundetebellum area, in the case of
the 1mm atrophy simulation.
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Figure 4.6: Analysis result of VBM for 1mm simulated cerebellatrophy. The FP rate
and TP rate are approximate 0.0013 and 0.1632 respectivdlite-edge images are
zoomed in for exquisite demonstration. Compared with the Mkégult, the VBM had
a worse accuracy to detect the simulated atrophy arouncetiebellum area, in the case of
the 1mm atrophy simulation.
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Figure 4.7 and Figure 4.8 are similar overlays of analysslte of MVM and VBM for
2mm cerebellar atrophy. Both results have the same FP ratexapyately 0.0021, when
choosing the threshold of VBMvalue as 4.12 (i.ep value = 0.0001 uncorrected as degree
of freedom = 38). The TP rates of MVM and VBM are approximatel88and 0.5061
respectively. Since the simulated atrophy size is only 2ammnference is similar to one of
1mm atrophy simulation: there are more TP regions and feNaegions in MVM than in
VBM. ltillustrates that, when atrophy is subtle and disttdmy MVM can produce a more
accurate result than VBM, once again. Furthermore, by coimgp@&mm atrophy results
with 1mm atrophy results, we found that amounts of TP regioneased and amounts
of FN regions decreased in individual analysis approactat eans the analysis results
with 2mm atrophy had a higher accuracy than 1mm ones. The daoavery was found

in their ROC curves that Figure 4.4 displays.

In the analysis of simulation data with 6mm atrophy aroureddd#rebellum, both MVM
and VBM had good outcomes. Figure 4.9and Figure 4.10 show ¥ lshd VBM results
with the same FP rates approximate0:0011, when choosstigca threshold of VBM¢
value as 6.01 (i.ep value = 0.1 FWE corrected as degree of freedom = 38) for theggerp
of display. Under this strict threshold, TP rates of MVM an8M are approximate 0.8498
and 0.7598 respectively. Both approaches found the majgirgymulated atrophy regions
correctly as TP parts shown in Figure 4.9and Figure 4.10y @féw atrophy regions were
not detected, which occurred in the thin cortex or fringeha terebellum. And in these

subtle regions, MVM still had a better ability to recognibe differences than VBM does.
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Figure 4.7: Analysis result of MVM for 2mm simulated cerdbel atrophy. The FP
rate and TP rate are approximate 0.0021 and 0.8184 resglgctWhite-edge images are
zoomed in for exquisite demonstration. Compared with the ViBbsuUHlt, the MVM had a
better accuracy to detect the simulated atrophy aroundetebellum area, in the case of
the 2mm atrophy simulation. Besides, it was also a more coresalt than the result of
1mm atrophy. It is because the atrophy size became largbasthe atrophy area became
more easily detected.
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Figure 4.8: Analysis result of VBM for 2mm simulated cerebeilatrophy. The FP rate
and TP rate are approximate 0.0021 and 0.5061 respectiwalyite-edge images are
zoomed in for exquisite demonstration. Compared with the Mkdgult, the VBM had
a worse accuracy to detect the simulated atrophy aroundettedellum area, in the case
of the 2mm atrophy simulation. Nevertheless, it was also e&ngorrect result than the
result of Lmm atrophy. It is because the atrophy size becarger so that the atrophy area
became more easily detected.
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FP FN TP

Figure 4.9: Analysis result of MVM for 6mm simulated cerdbei atrophy. The FP rate
and TP rate are approximate 0.0011 and 0.8498 respectiVéilg. white-edge image is
zoomed in for exquisite demonstration. The majority of dated atrophy regions were
correctly detected because the atrophy size was large bBnoligerefore there are only
a few FN regions occurred in the thin cortex or fringe of theebellum. And, in these
subtle regions, such as the white-edge image, MVM still haétger ability to recognize
the differences than VBM does.
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FP FN TP

Figure 4.10: Analysis result of VBM for 6mm simulated cerdto@l atrophy. The FP rate
and TP rate are approximate 0.0011 and 0.7598 respectiVélg. white-edge image is
zoomed in for exquisite demonstration. The majority of dated atrophy regions were
correctly detected because the atrophy size was large endurgerefore there are only a
few FN regions occurred in the thin cortex or fringe of theetxrllum. However, in these
subtle regions, such as the white-edge image, VBM still had@sevability to recognize

the differences than MVM does.
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4.2 Structural Atrophy Analysis for Patients Suffering Spinocere-
bellar Ataxia Type 3

Spinocerebellar ataxia (SCA) is a kind of inherited neurmlalgdisorders, whose clin-
ical characteristics are the progressive neurodegeaogrrafithe cerebellum, spinal cord,
and brain stem. The symptoms of SCA include walking unstgaditongruity of limbs,
dysarthria, hyperreflexia, and postural tremor, etc. Theaal behaviors of SCA patients
are various, that the patients usually have different coatimn of different symptoms and
different ages at falling ill. There is still no effective wé cure SCA completely now. It
can only use medicine or physiatrics to alleviate the symgtof SCA. Up to now, SCA
is already classified into above 26 types. Most researcliisaite that SCA type 3 is the
most popular type of SCA in the world: In Taiwan; SCAS is alsori@st epidemic type
of spinocerebellar ataxia [46]. This-experiment is acaaytyi to analyze the structural at-
rophy for the patients suffering SCA3, by applying two monpietric analysis methods,
MVM and VBM. The analysis results and comparison of the twolrads will be presented

in the following.

4.2.1 Materials

The study group was composed of six patients carrying spiebellar ataxia type
3 mutations and of eighteen normal subjects from the Taipéerdns General Hospital.
The clinical data of the patients are summarized in Tablewl®re the international co-
operative ataxia rating scale (ICARS) [47] is a pharmacoklgassessment of the cere-
bella syndrome, which involves quantification of postural atance disorders, limb ataxia,

dysarthria and oculomotor disorders.

Magnetic resonance images of all normal subjects were afjfiom the same 1.5T

Siemens scanner at the Taipei Veterans General Hospitathwised a T1-weighted 3-D
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Table 4.3: Clinical data of patients carrying SCA3 under study

Patient| Gender| Age | ICARS score
Male | 27 19
B Female| 31 19
C Male | 37 22
D Female, 54 19
E Male | 57 16
F Female| 60 37

IR sequence with TR =9.7ms, TE = 4ms, FA = 12°, matrix siZ56-x 256, slices = 128,
voxel size =0.9 x 0.9 x 1.5mm?. MR images of SCA3 patients were also acquired from
the same scanner with the same attributes except the miaix 512 x 512, slices = 160,

voxel size =).47 x 0.47 x 1mnr.

4.2.2 Results and Comparison between MVM and VBM

We used the first six steps of the optimized VBM including matioh to preprocess
all MR images by the software SPM2, and then statisticalBlyaed structural brain dif-
ferences between the normal and patient groups by both M\ViWaM methods. In the
preprocessing stage, the nonlinear spatial normalizg@ohwas performed by x 9 x 7
discrete cosine basis functions, and the output normalimagies had a high resolution
with the voxel size ofl x 1 x Imm?. Again, before the VBM analysis, all images were
smoothed with an 8mm FWHM isotropic Gaussian kernel. Thenppéied a two-sample
t-test, and set the significance levelpat0.00005 uncorrected (i.et value >4.74 as de-
gree of freedom = 22) for the finaltest map. Parallel to VBM, MVM analyzed those
images without smoothing them. We used the same waveldtg isitnulation experiment

to transform images to the 3-level wavelet space, andvset 20 to discard coefficients
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with smaller weights of discrimination. After obtainingetlliscriminating map, an 8mm
FWHM isotropic Gaussian kernel was used for the analysisltresplay. The display
threshold of MVM was the mean of discrimination weights afngoregions corresponding
to those regions in the same locations of VBNest map whoseé values were above 4.74
and below 5.04. It made the MVM result was not far off the reetiMVBM. This strategy
for choosing a compatible threshold of MVM is illustratediviFigure 4.11. To restrict the
minimum cluster size when showing analysis results, botéresxon thresholds of the two
methods were set for 40 voxels. Thealue representing— the whole-brain confidence
of MVM discriminating map was abouit83 x 10~1°. It took 335 and 403 seconds in the
MVM and VBM analysis step (excluding the preprocessing) eetipely, on the same PC
equipped Windows XP with a processor 1.83GHz and 1GB RAM.

Figure 4.12 illustrates gray mafter volume loss in SCA3 pagidy MVM analysis
method. Detected significant atrophy is marked with a“ciaclé a number in Figure 4.12,
furthermore, it is listed in Table 44 with the-same numbeth@ no. column. Com-
paring brain structure of SCA3 patients.to normal subjeatdinae loss of gray matter
was detected in the regions of anterior and posterior lobesrebellar hemispheres, ver-
mis, basal ganglia (including lentiform nucleus, caudateleus, thalamus), frontal areas
(including inferior, middle and superior frontal gyri)ght occipital lobe, and left middle
temporal area. Most of these observed regions are symudtriboth sides. The MVM
analysis result accentuated the atrophy of cerebellay anekit is a fine outcome because
SCA is characterized as the neurodegeneration of the cemebeBasal ganglia, which
is associated with motor and learning functions, is alseceable and reasonable finding,
as a result of that it is a main abnormal region for Parkirs@ymptom involved with
SCA3. Frontal areas are known about the cognitive functibasmay be influenced by
the cerebellar dysfunction and result in frontal-exeautieficits [48], so those observed
frontal areas were thought as a reasonable result. Thengtodpiddle temporal area was

also reported in [26]. Since the frontal and temporal cowexe both the target organ of
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Same

Threshold=0.1098

Figure 4.11: Strategy for choosing a compatible thresh6él¥\éM by VBM ¢ values.
First we decided the threshold bf/alue in VBM, then found regions whosevalues are
above 4.74 and below 5.04, and finally chosen mean of distaitioin weights of MVM
discriminating map in the same regions as the MVM threshold.



68 Experiments

Figure 4.12: \olumetric atrophy of gray matter in SCA3 patseby MVM analysis
method. Regions detected as significant group differeneesnarked with circles. One
marked with a green circle is also found in the VBM analysisite®ne marked with a
blue circle is only revealed in the MVM result. Numbers ofgbs circles represent the
importance of characterizing volume loss in SCA3 patienfgec8ically, smaller number
represents higher importance and larger number represgrdsimportance. More infor-
mation of each region is listed in Table 4.4.
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Table 4.4: Atrophy of gray matter in SCA3 patients by MVM arssdymethod. These
atrophy regions are arranged in order by their peak dispdation weights of each cluster,
and the numbers denote the sequence of peak discriminagmhts. Some clusters are
very large so that there is more than one peak listed in aetlu$he serial numbers are
informative for revealing the significance of gray matteophy in SCA3.

Location Side Talairach Peak Cluster Fig. 4.12
coordinate discrimination size no.
T Y z

Occipital Lobe, Lingual Gyrus R 19 -83 -8 0.2157 74086 1

Cerebellum, Anterior Lobe R 42 -53 -23 0.2089 2

Cerebellum, Anterior Lobe L -44 -48 -23 0.2021 3

Cerebellum, Posterior Lobe R 26 -81 -23 0.1760 7

Cerebellum, Posterior Lobe L. .-36, -75 -28 0.1638 12

Cerebellum, Vermis R 4 ~-48 -37 0.1618 13

Sub-lobar, Lentiform Nucleus R 26 5 4 0.1946 11083 4

Frontal Lobe, Inferior Frontal Gyrus.(BA47) R 29 15 -21 0.265 11

Frontal Lobe, Inferior Frontal Gyrus R 50 25 4 0.1534

Sub-lobar, Lentiform Nucleus L -24 7 1 0.1889 9333 5

Temporal Lobe, Superior Temporal Gyrus L -29 15 -23 0.1585 14

Frontal Lobe, Inferior Frontal Gyrus L -42 19 -3 0.1554

Temporal Lobe, Middle Temporal Gyrus L -50 -33 0 0.1772 982 6

Thalamus 0O -6 6 0.1755 3137 8

Frontal Lobe, Middle Frontal Gyrus R 35 34 23 0.1704 6205 9

Sub-lobar, Caudate Nucleus R 13 20 6 0.1658 2777 10

Temporal Lobe, Middle Temporal Gyrus R 51 5 -34 0.1508 632

Frontal Lobe, Middle Frontal Gyrus L -33 -1 43 0.1387 270

Frontal Lobe, Superior Frontal Gyrus (BA10) L -28 62 -6 0.138 195

Frontal Lobe, Superior Frontal Gyrus L -27 50 26 0.1380 870

Frontal Lobe, Middle Frontal Gyrus (BA9) L -41 10 37 0.1378 511
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the cerebellar efferent tracts, the atrophy of the frontal &mporal regions in our study
may secondary to the degeneration of the cerebellum. Besdggnificant atrophy was
found in the occipital lobe, owing to some existing clinig&ion problem in our patients

accordingly.

Figure 4.13 illustrates detected gray matter volumetniopty in SCA3 patients by
VBM analysis method. Observed significant discrepancy isketawith a circle and a
number in Figure 4.13, furthermore, it is listed in Table Wit the same number in the
no. column. Comparing brain structure of SCA3 patients to mbsubjects, volume loss
was detected in the regions of the basal ganglia (includngform nucleus and caudate
nucleus), vermis, anterior lobe of cerebellar hemisphiomtal areas (including rectal,
inferior, superior, and precentral frontal gyri), and tigitcipital lobe. Some reasonable
atrophy regions that have been described in last paragrapfiso detected by the VBM
approach, such as the cerebellum,-basal ganglia; and artsesfiontal and occipital lobes.
However, there is a strange finding in the lateral ventritilenay result from an incorrect

orientation around the thalamus.

By comparing the two analysis results of MVM and VBM to each agthee found
MVM provided a better outcome in catching the structurabjgltly patterns of SCA3 than
VBM. The most apparent distinction is about the cerebellummictvis mildly affected in
neuropathological findings but distributes widely. MVM raly detected the postirier
cerebellar area that could not found in VBM, but also detettedatrophy area in whole
cerebellum with a larger degree of differences than othepay regions in the brain. By
the serial number of cerebellar areas in Figure 4.12 andr&igui.3, it is illustrated that
MVM more highlighted the atrophy of the cerebellum than VBMedoMore specifically,
when characterizing the brain structural differences betwthe SCA patients and normal
subjects, the cerebellum is an important area for MVM. But VBIMicates other regions
first, such as the basal ganglia and frontal lobe, and theriomsnthe cerebellum. Such

the analysis results may result from the situation thatetienot an obvious difference of
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Figure 4.13: Volumetric atrophy of gray matter in SCA3 patisdsy VBM analysis method.

Regions detected as significant group differences are mawikedcircles. One marked

with a green circle is also found in the MVM analysis resufteanarked with a blue circle

is only revealed in the VBM result. Numbers of theses circlggesent the importance
of characterizing volume loss in SCA3 patients. Specificaligaller number represents
higher importance and larger number represents lower tapoe. More information of

each region is listed in Table 4.5.
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Table 4.5: Atrophy of gray matter in SCA3 patients by VBM anaysethod. These
atrophy regions are arranged in order by their peatues of each cluster, and the numbers
denote the sequence of pelalkalues. Some clusters are very large so that there is more
than one peak listed in a cluster. The serial numbers arenafiive for revealing the
significance of gray matter atrophy in SCA3.

Location Side Talairach Peak Cluster Fig.4.13
__coordinate ¢ value size no.
X y z
Occipital Lobe, Lingual Gyrus R 20 -90 -4 10553 7196 1
Frontal Lobe, Rectal Gyrus L -10 11 -27 8.356 422 2
Sub-lobar, Lentiform Nucleus R 25 3 6 8.226 5665 3
Cerebellum, Vermis R 97,47 -35 8.066 13243 4
Brainstem, Midbrain L =5..4-35«+ -8 6.582
Frontal Lobe, Inferior Frontal Gyrus L =42 .17~ -3 7.876 2282 5
Frontal Lobe, Superior Frontal Gyrus (BA9) R 5 55y 22 7696 B03 6
Inter-Hemispheric 0-1: 59, *15 6.805
Frontal Lobe, Medial Frontal Gyrus R 8 .57 -6 6.386
Sub-lobar, Lentiform Nucleus L -21 7 4 7.634 5689 7
Sub-lobar, Lateral Ventricle R 2 -1 12 7560 14168 8
Sub-lobar, Caudate Nucleus R 10 20 7 7.217 12
Cerebellum, Anterior Lobe L -41 -47 -25 7557 1783 9
Frontal Lobe, Precentral Gyrus (BA4) L -40 -17 45 7.439 2579 0 1
Frontal Lobe, Precentral Gyrus L -36 -14 62 7.255 314 11
Cerebellum, Anterior Lobe R 44 -49 -27 6.935 3981 13
Frontal Lobe, Precentral Gyrus R 50 -11 50 6.847 976 14
Frontal Lobe, Superior Frontal Gyrus L -29 62 -7 6.429 469
Frontal Lobe, Middle Frontal Gyrus L -42 39 28 6.317 159

Brainstem, Midbrain R 15 -27 -6 6.297 593
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Figure 4.14: 3-D rendering of GM,atrophy .in SCA3 by the MVM aysa¢ method. The de-
tected atrophy regions showed:in this figure include thebeshem, vermis, right occipital
lob, left middle temporal lobe, and inferior, middle and stipr frontal gyri.

brain tissue at each voxel inthe cerebellum, and it had beefied by manual comparison
between the MR images of SCA3 patients and the normal subjelc&ever, the MVM
analysis can collect the information from the adjacent \@xe estimate the differences,
so the widely-distributed atrophy in the cerebellum can btected strongly. To other
piecemeal and local regions with differences, each of thi®paances of MVM and VBM
has its merits. Table 4.6 put the detected GM atrophy reg@bMVM and VBM in SCA3
patients together in an order of anatomical location ofrbr&igure 4.14 and Figure 4.15

are the MVM and VBM analysis results presented by the 3-D rendgerespectively.

In the white matter analysis, we used the same parametezptexc).001 uncorrected
(i.e. t value>3.505 as degree of freedom = 22) for the VBMest map and the corre-
sponding MVM display threshold 0.0915 for the discrimingtimap with a whole-brain
significancep-value abou®.35 x 10~7. Figure 4.16 and Table 4.7 illustrate the observed

white matter volumetric atrophy in SCA3 patients by MVM arsdymethod. Volume
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Table 4.6: Detected GM atrophy of MVM and VBM in SCA3 patientsnatomical lo-
cation, side, Talairach’s coordinatés, y, z), and peak of the discrimination weightsior
values are listed for each of detected atrophy regions.

MVM VBM

Location Side «z y z Discrimination z y z tvalue
Cerebellum
Anterior Lobe R 42 -53 -23 0.2089 44 -49 -27 6.935

L -44 48 -23 0.2021 -41 47 -25 7.557
Posterior Lobe R 26 -81 -23 0.1760

L -3 -75 -28 0.1638
Vermis 4 -48 -37 0.1618 9 -47 -35 8.066
Basal Ganglia
Lentiform Nucleus R 26 5 4 0.1946 25 3 6 8.226

L -24 7 1 0:1889 -21 7 4 7.634
Caudate Nucleus R 13720 6 0.1658 10 20 7 7.217
Thalamus 0= -6 6 0.1755
Lateral Ventricle R 2 -1 12 7.560
Midbrain R 15 -27 -6 6.297

-5 -35 -8 6.582

Occipital Lobe R 19 -83 -8 0.2157 20 -90 -4 10.553
Frontal Lobe
Superior Frontal Gyrus R 5 55 22 7.696

L -28 62 -6 0.1387 -29 62 -7 6.429
Middle Frontal Gyrus R 35 34 23 0.1704 8 57 -6 6.386

L -41 10 37 0.1378 -42 39 28 6.317
Inferior Frontal Gyrus R 29 15 -21 0.1652

L 42 19 -3 0.1554 -42 17 -3 7.876
Precentral Gyrus R 50 -11 50 6.847

L -40 -17 45 743
Rectal Gyrus L -10 11 -27 8.356

Middle Temporal Gyrus L -50 -33 0 0.1772
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Figure 4.15: 3-D rendering of GM atrophyin SCA3 by the VBM am&ymethod. The
detected atrophy regions shewed in'this figure.include thebetlum, right occipital lobe,
and rectal, inferior, superior, and precentral frontai.gyr

Table 4.7: Atrophy of white ‘matterin“"SCA3 patients by MVM arsaé method. These
atrophy regions are arranged in order by.their peak disnetion weights of each cluster,
and the numbers denote the sequence of peak discriminaéimhis. The serial numbers
are informative for revealing the significance of white raattrophy in SCA3.

Location Side Talairach Peak Cluster Fig. 4.12
coordinate discrimination size no.
T Yy z
Brainstem, Pons 3 -17 -35 0.2596 25410 1
Cerebellum, Anterior Lobe L -19 -52 -26 0.1602 3
Cerebellum, Anterior Lobe R 26 -48 -29 0.1433 6
Corpus Callosum 1 11 16 0.1942 6860 2
Frontal Lobe, Inferior Frontal Gyrus R 36 36 11 0.1590 2333 4
Sub-lobar, Lentiform Nucleus L 14 -2 -1 0.1552 2144 5

Sub-lobar, Lentiform Nucleus R 16 -1 0 0.1422 1449 7
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Figure 4.16: Volumetric atrophy of white matter in SCA3 patgeby MVM analysis
method. Regions detected as significant group differeneesnarked with circles. One
marked with a green circle is also found in the VBM analysisite®ne marked with a
blue circle is only revealed in the MVM result. Numbers ofdége circles represent the
importance of characterizing volume loss in SCA3 patienfgec8ically, smaller number
represents higher importance and larger number reprelsargsimportance. More infor-
mation of each region is listed in Table 4.7.
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Figure 4.17: \Volumetric atrophy of white matter in SCA3 patge by VBM analysis
method. Regions detected as significant group differenaesnarked with circles. One
marked with a green circle is also found in the MVM analysisute one marked with a
blue circle is only revealed in the VBM result. Numbers of #gsircles represent the
importance of characterizing volume loss in SCA3 patienfgec8ically, smaller number
represents higher importance and larger number reprelsgrésimportance. More infor-
mation of each region is listed in Table 4.8.
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Table 4.8: Atrophy of white matter in SCA3 patients by VBM arsdymethod. These
atrophy regions are arranged in order by their peatues of each cluster, and the numbers
denote the sequence of peakalues. The serial numbers are informative for revealimg th
significance of white matter atrophy in SCA3.

Location Side Talairach Peak Cluster Fig.4.13
coordinate t value size no.
T Y z
Frontal Lobe, Rectal Gyrus R 9 13 -25 7.806 1456 1
Cerebellum, Anterior Lobe -3 -54 -19 7.685 30298 2

29 -47 -28 6.416 3
-20 -55 -24 5.576

-10 2 -1 5.885 2651
Frontal Lobe, Rectal Gyrus -9 10 -23 5.770 343
Corpus Callosum 200d2, 18 5.487 2761
Sub-lobar, Lentiform Nucleus R 11 3 1 4.569 1211

Cerebellum, Anterior Lobe
Cerebellum, Anterior Lobe

Sub-lobar, Lentiform Nucleus

r —r - X3

o N o ~ ©

losses were in the pons, corpus callosum; anterior cetebeliasal ganglia (lentiform nu-
cleus) and inferior frontal gyrus. In contrast;the detéatdhite matter volumetric atrophy
by VBM analysis method are shown in Figure 4.17 and Table 48,they are in the re-
gions of the anterior cerebellum, basal ganglia (lentifownsleus), corpus callosum, and
frontal areas (including rectal and inferior frontal gyfMwo analysis results revealed sim-
ilar WM atrophy regions. But it could be still caught clear dighthat MVM has a better
detection of the pons atrophy, which takes part in the maimodegeneration in spinocere-
bellar ataxia (SCA). Table 4.9 put the detected WM atrophyoregyof MVM and VBM in

SCABS patients together in some order of anatomical locatbtise brain.

Figure 4.18 and Figure 4.19 are the volumetric increase ofi@SEEA3 patients in the
MVM and VBM analysis methods, respectively. Since CSF flowsugh the whole acqui-
sition of MR image, the analysis of CSF has less validity th&h@ WM. In our use, the
analysis result of CSF is for testing and verifying the analyssults of GM and WM. By
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Table 4.9: Detected WM atrophy of MVM and VBM in SCA3 patients. atamical lo-
cation, side, Talairach’s coordinatés, y, z), and peak of the discrimination weightsor
values are listed for each of detected atrophy regions.

MVM VBM
Location Side =z y z Discrimination =z Y z tvalue
Brainstem, Pons 3 -17 -35 0.2596
Cerebellum
Anterior Lobe R 26 —+-48 29 0.1433 29 -47 -28 6.416
L .-19 -52 -26 0.1602 -20 -55 -24 5576
Basal Ganglia
Lentiform Nucleus R 16° -1 0 0.1422 11 3 1 4.569
L -14702000-1 0.1552 -20 -55 -24 5576
Corpus Callosum 1 11 16 0.1942 2 12 18 5.487
Frontal Lobe
Inferior Frontal Gyrus R 36 36 11 0.1590
Rectal Gyrus R 9 13 -25 7.806

L -9 10 -23 5.770
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Figure 4.18: Volumetric enlargement of CSF in SCAS3 patient®MM analysis method.

It is for testing and verifying the GM and WM analysis resulf$e increased space are
detected around the pons, cerebellum, and ventricles hwdrie consistent with the GM
and WM analysis results in MVM.



4.2 Structural Atrophy Analysis for Patients Suffering Spinoc erebellar Ataxia
Type 3 81

Figure 4.19: Volumetric enlargement of CSF in SCA3 patienty B analysis method.
It is for testing and verifying the GM and WM analysis resulige can see there are some
inconsistent revealed regions in VBM results.
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putting GM, WM, and CSF analysis results together, we can sge tire more consistent
revealed regions in MVM than in VBM. MVM found the increasedsep around the pons,
cerebellum, and ventricles. Most of these regions were @dtected in atrophy of GM
or WM. In contrast, The VBM CSF result seems some inconsistergn Beveral regions
should not appear in CSF. Therefore, we thought the MVM predu more compelling

analysis outcome than the VBM.
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Discussion
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Some points are proposed and discussed in this chaptetudorg (1) the reason that
data need not be smoothed, (2) the reason that why we emplayldaded method as the
classifier in the high dimensional space, and (3) the passilgbrovements in the future.

Each point is discussed respectively in the following sei

5.1 Why we do not smooth data

In the MVM, the method proposed in this thesis, data needmobsh before analysis to
estimate the group discrepancy. Although there are somangalyes of smoothing data, the
bringing drawbacks also cannot be neglected. Specifithiyge advantages are important
and useful to VBM, but seem redundant and useless to MVM. Bhdhé smoothing step
appears failed in the MVM analysis. Therefore the proceadiremoothing is omitted in

the proposed method.

The contributions of smoothing:are limitednn-MVM. As the nien in chapter 2, the
advantages of smoothing are that: it can.(1) render'the data normally distributed, (2)
ensure that each voxel contains the average amount of gragrnoa white matter from
other adjacent voxels around this voxel, and (3) eliminag¢estrror from spatial normaliza-
tion. The profit of the first point is enhancement of the accyaf the following voxel-
by-voxel parametric statistical tests, and the secondradyga helps compensate the voxel-
wise analysis approach to catch some information beinggisded around this voxel.
As to the third advantage, because the registration erréneotinderlying normalization
method intimately influences the residual variability, ethis estimated by final univariate
tests in VBM, the profit is as well as the one of the first pointaflis enhancing the cor-
rection of voxel-by-voxel parametric statistical testowéver, the MVM is a multivariate
analysis approach itself, so information of all voxels iasidered and analyzed at the same
time rather than separately taken into account for eachlvere this reason, benefit from

the data smoothing is close to null for MVM.
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The drawbacks from the data smoothing consist of three paaisly. First, improper
information spreads. Smoothing makes the informationiedoy a voxel disturbs other
neighbor voxels on this voxel. Consequently, the inforrrata those GM near the bor-
der between GM and non-GM tissues disperses to regions tmidieg to GM, and the
information on those WM near the border between WM and non-Wbli&is disperse to
regions not belonging to WM. This kind of smoothed result issasonable and inappropri-
ate. Second, subtle differences are reduced. If the diféeréetween two groups is subtle
originally, this difference will disappear after smoothithe data. Thus, small variation
of brain structures will be difficult to estimate. Third, ptem to choosing the smoothing
kernel size occurs. It is always a tough question about hogel¢éhe size of smoothing
kernel should be used. Analyzing data smoothed with diffesenoothing kernel sizes
derives different conclusions about.the presence andidocat the result [30]. Although
it is recommended that the size of smoothing kernel shoulddpeparable to the size of
the expected regional differences under.study [49], it lsvawn in advance how large the
size of differences is in practical applications. To get adyanalysis result subjectively,
the smoothing kernel size is*often need to be changed mamgtirAccordingly, due to
this problem, it is required to analyze ‘the data repeatextiy, the researchers also need
the background knowledge of the underlying group discrepaihat makes choice of

smoothing kernel size adapting to various regional difiees a troublesome matter.

Besides, we also have proved that, when based on Fishegsi@nitto find the most
discriminant projection vector of groups, using the smedthata and the non-smoothed
data as the samples to be analyzed can reach the same maxirkigheay’s criterion. Let
A be aN-by-N matrix that linearly combines elements oNadimensional column vector
for performing the data smoothing, and3&t be the smoothed samplef a which is the

mth sample of théth class before smoothing. S, can be written as

k= AxF (5.1)

The mean of smoothed samples in fiikb class and the mean of all smoothed samples are
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easily derived from the following equations respectivéigt are:

~k:L§ik :Lﬁmk — A if‘;xk — Ak (5.2)
Mk m=1 " Mk m=1 " Mk m=1 " 7

and
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Now, we are going to prove that it attains to the same maximtiFisher’s criterion no
matter using the smoothed sampiés or the non-smoothed sample§. The maximum

of Fisher’s criterion of smoothed samples is

K
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whereSA,B is the between-class scatter -matrix of the smoothed sanmt&tSA\fv is the
within-class scatter matrix of the smoothed samples. BydgmEq. (5.2) and Eq. (5.3)
into Eq. (5.4), it becomes
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This equation can continue to be derived and lead to the tlgage want to prove, just by
rearranging some orders of variables and setting a newgtimjematrixP by P = A”P,
That is,
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It is to say, utilizing the smoothed-data-would-not enlarge ifleaximum of Fisher’s cri-
terion. More precisely, the total discrimination of theatiminating map is the same re-
gardless of smoothing or not. So the step of data smoothipgeiprocessing becomes a

redundant procedure in our method.

In addition to the theoretical proof, we also have the erogiwvalidation that the MVM
analysis result from non-smoothed data is indeed better tiha result from smoothed
data. Figure 5.1 and Table 5.1 show the ROC curves and thespamding PAUC indices
of MVM to analyze the same simulation data in section 4.1thewit/with data smoothing.

It is obviously to see that, the ROC curves of the non-smabtltega are more near the
left upper corner and their PAUC indices are greater thas ohthe smoothed data, when
applied to the MVM method. This represents that using nonethed data can obtain

more correct results in MVM method. Smoothing the data redube accuracy instead.

For all the reasons mentioned above in this section, inetutlie inferences, proof, and
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Figure 5.1: ROC curves of MVM results with the non-smoothed smoothed simulation

data. Notice that both horizontal axes are limited from 0.®dhd both vertical axes are
limited from 0.8 to 1 for more specific display. It is manifélsat the curves of analysis
with the non-smoothed data are closer to the top left cotraan those curves of analysis
with the smoothed data in the same analysis data.



5.2 Comparison with other classification-based techniques 89

Table 5.1: PAUC indices for ROC curves of MVM results with then-smoothed and
smoothed simulation data. The partial area was calculatedspecific region where the
TP rate ranges form 0.8 to 1 and the FP rate ranges form 0 taA8.this specific region
denotes 1, we have € PAUC < 1. Itis manifest that PAUC indices of the non-smoothed
data are greater than ones of the smoothed data for the MVMadet

Simulated MVM
atrophy sizel Non-smoothed data Smoothed data
1mm 0.73466 0.71880
2mm 0.92286 0.87892
3mm 0.95521 0.89374
4mm 0.96613 0.92628
Smm 0.95836 0.90717
6mm 0.95398 0.90272
7mm 0.95465 0.90693
8mm 0.95357 0.88517

experiment, the proposed MVM analysis method discards tbeeplure of data smooth-
ing in preprocessing. But it uses a smoothing of the disciimig map for visualization

purpose, which has been explained in section 3.2.

5.2 Comparison with other classification-based techniques

Relative to the original paper which proposed we should cepthe univariate ap-
proach by a multivariate approach when characterizingmubfierences, Lao et al. [50]
did not adopt LDA as the analytic method, but adopt the supgentor machine (SVM)
as the classifier in the high-dimensional space. SVM [51]usrg powerful technique of

classification. In recent years, SVM has been applied in nagpjications, such as face
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Figure 5.2: Sketch chart of how SVM determines the sepaydiypersurface. To display
conveniently, only display in 2-D. (a) The blue points in toever left area denote the
samples and distribution of one groupFthe yellow pointhiewupper right area denote the
samples and distribution of another.group.sThose blue paint yellow points which are
emphasized by the circular frame representithe samples tddke interface betweens two
groups. (b) SVM utilizes these support vectors to deterrttieechypersurface separating
samples from different groups. Other samples which arehsostipport vectors is null for
SVM.

recognition [52], and brain-computer interface system.[5Bhe way of SVM to deter-

mine a hypersurface dividing two groups only depends onetlsasnples called support
vectors that are close to the interface between groups.rGmples, far away from the
interface between groups, are useless for the SVM clasgifidetermine the separating
hypersurface. Figure 5.2 illustrates this thought. It nss&B&M easily catch subtle changes

of groups. Therefore, SVM works successfully in many classion problems.

On the other hand, SVM ignores samples far away which areestgmost represen-
tative of the group in most cases, so it may not be effectiveaiiching significant group
differences. This is why we did not use SVM to characterizat@amical differences be-
tween groups, even though the SVM has great ability of diaasion. Some other clas-

sification techniques, such as SVM-based nonparametrizimiimant analysis [54] and
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boosted LDA [55], have the same problem of depreciating $asrfpr away from the inter-
face between groups. This is inappropriate on our purposeth® contrary, LDA adopts
properties in statistics, such as group covariance, tamate the most disriminant projec-
tion vector. Therefore, it would not lay particular stresstbe samples near the interface
between groups. As a result, LDA is more suitable for anatygroup differences than the

SVM in this application.

Moreover, LDA is a linear classifier, and consequently itaswenient for representa-
tion of the analysis result. The most disriminant projattector is also an image, where
each voxel has a weight of discrimination:to distinguishugrdiscrepancy, containing re-
gions representing the spatial distribution.and.relatizgynitudes of differences between
different groups. Displaying the most disriminant projectvector directly, as well as we

have done in chapter 4, is intuitional-and meaningful onesifalization ways.

But for other nonlinear classification techniques, such abMStiere are difficulties
in representation of detected significant differencess liecause nonlinear classifier de-
termines a hypersurface rather than a hyperplane segagups, and it is difficult to
summarize the analysis result into an image from this hyptase. In [50], the way of
interpretation of the analysis result is that, for everymupvector, they found the vector
that is perpendicular to the separating hyperplane andepabsough this support vector
from one group to another group, and then averaged all \v&@tdabtain a single map, like
Figure 5.3 shows. That is not a reasonable way to translatgrtiup differences, because
averaging all vectors does not make sense. There is stippr@sentation problem when

applying nonlinear classifiers.
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Voxel 1

Iy

Voxel 2

Figure 5.3: Vectors used to obtain a single map for nonliokessification. It was proposed
in [50]. First, for every sample near the separating hypéase, the vector perpendicular to
the hyperplane and through this sample is decided. In thusdignly vectors derived from

blue samples are drawn for the clear display. Then; a singfefor nonlinear classification

is obtained by averaging all those vectors.

5.3 Weighted within-class and between-class scatter ma-

trices

In the proposed method, we use wavelet transformation tarexgthe connection be-
tween nearby voxels, which can compensate the disadvatitag& DA treats relations
between all voxel pairs equally. Wavelets improve this dragk, but the performance is
limited. Thus, another improved approach, weighted wittlass and between-class scat-
ter matrices for LDA, is proposed. The idea of this methoduigegeasy. It directly uses a
number of weights to change the relations between voxes$ pamchieve the enhancement
of spatial information from MR images. It is intuitive to uaesmall weight for the combi-
nation of two voxels far away from each other, and a large ktefigr the combination of
two voxels adjacent to each other. According to the distamté¢he space or correlations
between brain structures, we can define, in advance, a symmweight matrixW which

has the same dimension (N-by-N) as within-class and betwkses scatter matrices. Each
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elementw; ; in the ith row andjth column is the weight of spatial relation between the
ith voxel andjth voxel. Then, element-to-element multiply the weight mxaWv by the
within-class scatter matrix and the between-class saaiénx respectively. The weighted

within-class scatter matrix and between-class scattetxae definded as
Sw = Sw. * W, (5.7)

and

Sp = Sp. * W, (5.8)

where the operator represents the element-by-element multiplication of twatrioes
with the same size. And the Fisher’s criterion yields that:

AL 59

argmax «—————
P 'PTSWP‘

Although this idea is completed;-until-now we do not impletntris method owing
to the computation problem of a huge matrix. More specificdlie technique of solv-
ing eigen-problem of the within-class scatter matrix prsgmbin section 3.3.3 is failed
here, so the newly most disriminant projection vector basethe weighted within-class
and between-class scatter matrices cannot be solved. ldaweis a worthily attempted

method to improve the performance of MVM in the future.

5.4 Multivariate deformation-based analysis

The proposed multivariate analysis can be not only apphethé second family of
morphometric methods for microscopic differences in btasue, but also applied in the
first family of morphometric methods for macroscopic diffieces in brain shape. That is,

we can use a multivariate analysis on the deformation figltteer than on the normalized
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images. It is the multivariate deformation-based analysiscording to our experimen-
tal results, some wide-region differences in brain shapggchvare hardly found by the
conventional point-wise analysis method, are expectee tevealed by this kind of mul-
tivariate deformation-based analysis. It may produce algndcome as measuring group

differences of the brain shape.
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Conclusions
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We propose a novel morphometric method, the multivariatermetric morphometry
(MVM), characterizing anatomical discrepancy by a muliee way. MVM includes the
preprocessing, the multivariate analysis, and the smogthand thresholding for display.
The multivariate analysis of MVM is the kernel breakthroygdrt in this work. In the
multivariate analysis, it employs the discriminative coammvector method to find the
representative regions of group discrepancy, and arrathgewavelet transform in pairs
to enhance the spatial relationship of two distinct voxétsaddition, we also proposed
an efficient implementation to calculate the discrimiratdommon vector. According to
our experiments, the effectiveness of the proposed methatearly demonstrated with
a good ability to catch the anatomical discrepancy betweiereht groups. Compared
with one of most popular morphometric technique presentlyxel-based morphometriy
(VBM), MVM expresses a better sensitivity to,subtle and wyddistributed variation of
brain structure than VBM. Moreover,the timecost innMVM isdekan VBM, even though

MVM uses a multivariate analysis in a.considerably.high-esional space.

Other two important properties of MVM arethat, it 1s unnesagy for MVM to smooth-
ing the data or to reduce the features before the multieaganlysis. For the first point
about data smoothing, we not only address the reasons tteasthmothing has no ben-
efits but is harmful to MVM, but also prove that the maximumg~afher’s criterion are
equivalent no matter the data is smoothed or non-smoothesid&e the experiment also
supported the point at issue that MVM does not need to smaidthizbfore analysis. To the
second point about feature reduction, because the disativé common vector method
can handle a good deal of data at one time, it is indeed no naedtcing the features for
computation problem. That makes MVM superior to other naatiate methods as well
as dealing with a huge amount of features, since no infoomas lost during the MVM

analysis.

Somehow, there is a fly in the ointment in the MVM method. Ualtket-test map

of VBM, the voxel values of MVM discriminating map denotes thiscrimination weight
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distinguishing samples from groups, and they lack for aiegudgment standard to de-
termine the significant level with a given confidence. Themef we chose the display
threshold of MVM by a strategy mentioned in chapter 4 by ctimgythe VBM analysis
result. Although discrimination weights of the MVM disciimating map do not provide
confidences in whether there is a practical group differext¢his location of each voxel,
the discriminating map still provides a whole-brain confide in explaining the detected
group discrepancy. Our work demonstrated that the MVM aiglynethod has a good
sensitivity to subtle and widely-distributed structurdfetences, and is a useful technique

in neuroimage studies.
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