A Single Pipeline Datapath Design for Joinable Narrow-operand

Operations

HES SR LR

FERBE hht+t37 £F/1\A

TAFTREL LY 2 B - FATRRER

A Single Pipeline Datapath Design for Joinable Narrow-operand

Operations
MoyoA I REE Student : Sheng-Hsun Lin
hERR I HIR Advisor : Chung-Ping Chung

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

August 2006

Hsinchu, Taiwan, Republic of China

;J;:J:i‘.a&@g],i‘;;r_{a‘;,\a

hErE A Eg gL

¥ F A& qesT g oer gL

i &

RS Ml AU E 2 BT 32 A R

EA SR § 0 TR

L S
B 5% & block, Bl FAEISTE R

34

Source Operand Bus %2 ALU%

= .

e P R~ i 04 B B 2R
A ROGRE - TR

¥ 2_ Operand Block ' ¥ ## (Turnaround) 2. =%

LR A - By

(CVPTE T L S SR

B, JETIET RS L TAELE Y B4 4RO B 501 4 Shift
1L (4’

& ‘,5’34 P2 LI,

i
=H

%

7

2

w B 4t

=h

\

—x

Ame N - e ALU B4 & 5 % 2 ALUBlock #7ig = af 8 2 K3,

Bois, R RO BFIE S D - £ 20T 1 NIPS F s o 5

A Single Pipeline Datapath Design for Joinable Narrow-operand

Operations

Student: Sheng-Hsun Lin Advisor: Dr. Chung-Ping Chung

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Most general-purpose processors and embedded processors have 32-bit word
widths or wider. However, integer operations rarely need the full 32-bit dynamic
range of the datapath. If we partition the operand bus, result bus, and ALU into
several blocks, the datapath could perform mote than one operation in parallel.

In this thesis, mechanismsto join two narrow-operand operations together to
share a single datapath are proposed. We proposed one novel ALU-sharing scheme by
turning around operation-block ordering. Efficient designs to merge operands to share
buses and ALU based on the technique are proposed and discussed. Compared with
traditional “shift” approach, the turnaround approach has many advantages on area
and delay. Besides, a technique to mitigate the delay overhead of the partitioned ALU
by swapping operands is proposed. We also made performance simulation to help
decide how to partition the datapath. Finally, how to integrate such datapath into a

MIPS five-stage pipeline and required modifications are discussed.

il

it

FPANERESA N ERdR EAQEF o AFE KL ALY PR
PER S T RARRE L BRI R R T S
B e S VR R EN A R e L DRSS SRy bP; SRS
TR o A RE MR RN - e B 50 g
ST FA R] itk PR B0 AE § enfle ko B R R P
CRAR RppEiEy RUER R AT R0 AF S TR X)
WP AR 2 o RAHmT G [R E

Ry ERHFHRZTATIEL - PEPANEFH LA ALY R EN AR
B o AR F LR G P A TR 0 L MRS L o 4 W
R#HEFTRE L - L 295 & > LowPower BehE > o~ F 5~ BF A~ 9 %
ERE > Nz2F1ERER TR TE G

B BREFHANDRA NI PRGSO F A EAT 20 >4 e R

R
2006 & ~ 1

il

Table of Contents

B B e i
ADSTIACT. ..ottt 11
T e et e e e et e e e e e—eeeeeatareeaan 1
Table of CONLENLSccoooiiiiiiiiiie et v
LSt Of FIGUIES......cocoiiiiiiie e et vi
List 0f TabIes..........coooiiiiii et viil
Chapter 1. INErOAUCHION ... iieiiiie ettt e e e e sbe e e 1
1.1. Narrow-Operand ALU Operationscccccoeovernieniennienicnneennenn 1
1.2. Significant Bit-width of an ALU Operation................c...cccccoecinniennnn. 2
1.3. Organization of this Thesisc..ccocoiiiiiiiiii 4
Chapter 2. Background and Related WOtkcccooveeiiieiiiiiiiieeeeee e, 5
2.1. Distribution of Significant Bit-widths of ALU Operations 5
2.2. Datapath in Multi-Bitwidth Pipeline....................c...ccoi, 8
2.3. More Flexible ALU-sharing Mechanismccccocoeninnennnn. 10
2.4, MOtIVALION.........oooihlhiii e s s cosodheeneeneneeneenieeereenineeneesaneeneenaneenne 12
2.5, Objective............. il il i 13
Chapter 3. DISTTos D (B " S N 15
3.1. Overview of Datapath-Sharing. ... 15
3.1.1. Constraints for Joining Two Instructions...................c...cccceiinen, 15
3.1.1.1. Structural Hazards ... 15
3.1.1.2. Data Hazards................coooiiiiiiiicec e 16
3.1.2. How ALU is Shared by Two Operations.............c.c.ccoceevienninneennn. 17
3.1.3. Possible Modifications in a Five-stage MIPS-like Pipeline 18
3.2. Modifications in Instruction-Decode Stage...................ccoevinnnnnnn. 20
3.2.1. Type-Check and Data-dependency Check.................cooceeiiiniinnen, 20
3.2.2. WIdth-Checkccocooiiiiiiiiiiiieee e 20
3.2.2.1. Width-Determination LogicC..............coocooiiiiiiniiininiiiiciceee 20
3.2.2.2. Operand-boundary Signals...............cccooiiiiiiniininee 25
3.2.2.3. Width-Check LOGIC..........coooviiiiiiiiiiiicicceteeceeeeeee e 26
3.3. Modifications in Execution Stagecccccoeciiiiiniiniiiniiniienee 30
3.3.1. Deciding the Block Width..................cooiiiiiee, 30
3.3.2. Merging Operands from Two Operationsc.cccocceevveeneennen. 31
3.3.3. ALU in the Turnaround Approach.................cccccooiiiiiiiinniinn. 34
3.3.3.1. Operation SWappingcoceoiiiiiiiiiiniiieeeceeeesee e 39
3.3.3.2. Widening the ALU ... 42

v

34.
3.4.1.
3.5.

Chapter 4.
4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

Chapter 5.
5.1.
5.2.
5.3.
ALU
5.4.
5.5.

References

Modifications in Memory Access and Write-back Stage.................... 42

Sign-extending the Joined Results....................c..ccoinn. 43
Integrating the Design into a Five-stage MIPS-like Pipeline Datapath
45

EXPETIMENTS ..cc.eviiiiiieciieecee et e s 49
Goals of Our Experiments................cccccooiiiiiiniiiiiiniiiecniececneeieens 49
Simulation Environmentccccooiiiiiiiiiieee 49
Comparison between Different Operand-Merging Schemes............. 50
Hardware Cost of Operation-Swapping Mechanism 52
Choosing ALU Block Width...............ccooiiiiiiiiieeeens 54
Choosing ALU Width.............ccoooiiiiiiiececeeeeen 57
Final Proposal of the ALU Designcccccooiiniiiiininiiinicceeen, 58

Conclusion and Future Workcccccoceviiniiiiniininnninecceecen 61
The Turnaround-based Sharing Mechanism..................c...cccceeeeiens 61

Reducing Additional Delay by Avoiding Unnecessary Partitioning..61
Applying the Design to Architectures with Shifter Concatenated with
62

Clock Gating to Freéze Unused BIocks.................ccccooiiiiiiniiniinnen, 63
Future Work ... 0. i i 63
... 65

List of Figures

FIGURE 1-1 A 8-BIT XINOR OPERATIONceeeitiiesiieeiieeeneeeireenseeessseesseeessseessessnsseessessnsssessessnsessssessssessssess 2
FIGURE 1-2 A 8-BIT ADD OPERATIONceeitteittienireenireenseeessseenseeesseesseesssssessesssssesssessssssessessnsessssessnsessnsess 3
FIGURE 1-3 A 8-BIT SUBTRACTION OPERATIONccciuvierureeireeneeeesreenseeesseenseesssseessessssesessessssessssessnseesssess 3
FIGURE 2-1 RUN-TIME INSTRUCTION TYPES DISTRIBUTIONS.......ccvevetieteireereereeseessesessesseeseeseeseessessensensens 6

FIGURE 2-2 CUMULATIVE DISTRIBUTIONS OF SIGNIFICANT BIT-WIDTHS OF ALU OPERATIONS IN
DATA-PROCESSING INSTRUCTIONS ... ottt 6

FIGURE 2-3 CUMULATIVE DISTRIBUTIONS OF SIGNIFICANT BIT-WIDTHS OF ALU OPERATIONS IN

DATA-TRANSFERRING INSTRUCTIONScvietietieurenreireeseeseeseeseessesesessseseessessessessesessssseessessessessensenns 7
FIGURE 2-4 CUMULATIVE DISTRIBUTIONS OF SIGNIFICANT BIT-WIDTHS OF ALL ALU OPERATIONS 8
FIGURE 2-5 DATA PATH FOR A SINGLE 64-BIT INSTRUCTIONceeitteestreeireeneeeeneeeesseesseeessessnseesssesssseesnseens 9
FIGURE 2-6 DATA PATH FOR TWO 16-BIT INSTRUCTIONS SHARING A SINGLE 64-BIT DATAPATH................. 10
FIGURE 2-7 RELATIONSHIP BETWEEN POSSIBLE INPUTS AND TARGET BLOCKScvevviveviereereereeereneennenns 11

FIGURE 2-9 TURNAROUND APPROACH..........vvee i B i cr et 13
FIGURE 3-1 BLOCK DIAGRAM OF SHARING'THE ALU,BY, TWO.ORERATIONSccceeerureerrreeereennreenereenneenns 17
FIGURE 3-2 LOGIC FUNCTIONS FOR GENERATING BR SIGNAL L. .0k e evieeiieeiieeiie et eeveesive e 22
FIGURE 3-3 LOGIC TO GENERATE BR SIGNALS ... ifiiitiiri it teameeeeieeeieeeireeieeeiaeesaeessaessnesnsseensnennns 22
FIGURE 3-4 WIDTH-DETERMINATION LOGICt sttt ere et ane e 23
FIGURE 3-5 SCHEMATIC OF THE PRIORITY ENCODERccoftiituieeiiieiieeiieeieeenireeeeesieeesveeeneeesssneeneneenns 24
FIGURE 3-6 BLOCK DIAGRAM OF THE WIDTH-CHECK LOGICccoiiiiiieiieeiieeie et 27
FIGURE 3-7 SCHEMATIC OF CMP LOGIC......cceciiiiiiiieiieeiieeiieesiieeiteesveeieeeiveeaeestveeaeessaesssesnssesnssennns 28
FIGURE 3-8 SCHEMATIC OF THE RBN CHECK LOGIC (M = 8)...ccutteiuieeiieeniieeireenireesveesireeseveesnneesnseessneenns 29
FIGURE 3-9 POSSIBLE OPERAND BLOCKS WITH TURN-AROUND APPROACH WHEN N =8........ccccevvrrennnene 31

FIGURE 3-10 LOGIC TO MERGE OPERAND BLOCKS WITH TURN-AROUND APPROACH WHEN N = 8 (EACH

MUX CONSISTS OF SEVERAL 2-TO-1 MULTIPLEXERS)uvteiviesiieeteenireesreeeseesseesseesseessessseesseess 32
FIGURE 3-11 BLOCK DIAGRAM OF OMLooiiiiiiiiiiiiieiie ettt teetteesteeive e aeesaaeesssaesnaeesnsaennneenns 32
FIGURE 3-12 OM DECODER LOGICcccutiiiiieiieiiieeiieeieeeiteesieeeieeeieeeteeestaeesaeesssaeeseesssesnssessssessseennns 33
FIGURE 3-13 OM BLOCK......ccctttectitiitieeitieeitteecttesiteeteeeteeeteestaeesseesssaeesseeassseeseesssseenssesnsssssssessssesnssennes 34
FIGURE 3-14 FUNCTION-SELECT LINES, PASS-TRANSISTORS, AND ALU BLOCKSccooevvvvvveeieiiiiinnenene. 35
FIGURE 3-15 CS GENERATING LOGIC......cccctieiiieiiieeiieeiieetteeniteeieeeteeeteessaeesaeesssaeenseesnssesnssessssessseennns 36
FIGURE 3-16 SCHEMATIC OF A PTSoiiiiiiiiieeiie ettt ettt ettt e et eaee et eeaaestaeesneesseensneenns 37
FIGURE 3-17 DIRECTIONS OF CARRY-PROPAGATION IN TURNAROUND ORDERING SCHEMEc......... 38
FIGURE 3-18 MULTIPLEXER TO SELECT CARRY-IN SOURCES FOR BLOCK-REVERSED ORDERING................ 38
FIGURE 3-19 ALU ORGANIZATION FOR OPERATION-SWAPPINGc.uceeitreerieeireenueeeireeseeeensseesssesssseennesnns 39
FIGURE 3-20 BLOCK DIAGRAM OF THE OPERATION-SWAPPING LOGIC.......ccccveeriieiiieiieeiieecieesieeeeneenns 40

vi

FIGURE 3-21 SCHEMATIC OF OS GEN LOGICciiouiiieiiii ettt eeaee e e e s eeaaaneee s 41

FIGURE 3-22 SCHEMATIC OF THE OS SWITCHEScccttiitteeitteestieeniteesteeesseeesreessnesssseesseessssesssssssssessssesnns 41
FIGURE 3-23 SCHEMATIC OF SIGN-EXTENDING BLOCKccciiiiieiiieiieeiie et eee e eee e eeeeeiveesane e 43
FIGURE 3-24 SCHEMATIC OF SIGN-BIT GENERATING LOGICceeiiiiiiieiieeiieeiie e eeeeieeeeeeeiveeseee e 44
FIGURE 3-25 SCHEMATIC OF PASS GENERATING LOGIC......cccciiiieiiiiiieeiieeiieeiie e eieeeieeeeeeesvveesane e 44
FIGURE 3-26 A POSSIBLE PIPELINE DATAPATH DESIGNcccctiiitieeiuieeireenteeeereesseessseeesseessssessssessssesseesns 45

FIGURE 3-28 SIMPLIFIED WIDTH-CHECK LOGIC IN THE SIX-STAGE DESIGN.......cccctteriieeruieenereenreenreenneenns 46
FIGURE 4-1 AREA OVERHEAD OF CIRCUITS TO MERGE OPERANDSceevuiierireenuieeieeeneeeessreensnesnsneensnesnes 51
FIGURE 4-2 DELAY OF CIRCUITS TO MERGE OPERANDS......cccuttiititeruieeireenteeesreenseesssneesseessssessseessssessseses 51
FIGURE 4-3 REDUCTIONS OF TURNAROUND APPROACH OVER SHIFT APPROACHc.ccveovieveereereenrenrennenn. 52
FIGURE 4-4 DELAY OF OPERAND-SWAPPING LOGICccuvieiiiiiiiieiieeiieeiiecieeeteeeeeeeesiee e eseveesene e 53
FIGURE 4-5 AREA OF OPERAND-SWAPPING LOGICceeiuiieiiieiieeiieeiieeiteeieeeiteeiveenaeeesieeeaneessneenaneenes 54
FIGURE 4-6 RATIO OF DELAY OVER AVERAGED UTILIZED BITS IN OPTIMAL CASEccvcovievievieeiereenrerennenn. 55
FIGURE 4-7 RATIO OF JOINED ALU OPERATIONS WITH DIFFERENT ALU WIDTHS.......ccovteerieerreenireenneenns 56
FIGURE 4-8 RATIO OF ALU DELAY OVER JOINED ALU OPERATIONS......ccu0eerveeriieerireennreenreensreesseenneees 57
FIGURE 4-9 RATIO OF JOINED ALU OPERATIONS:WITH DIEFERENT ALU WIDTHSccccvvvvivierireeniieenineenne 58

vii

List of Tables

TABLE 3-1 FUNCTION OF PRIORITY ENCODER FOR WIDTH-DETERMINATION LOGICc.ccveeveereerrenrenrennenn. 23
TABLE 3-2 FUNCTION OF DECODING OPERAND-BOUNDARY SIGNALSccccvttitieenureeriieenreenreenreesseenseenns 26
TABLE 3-3 POSSIBLE RBN COMBINATIONS WHEN M = 8ccctttiitieeiiieeiieeieeeireeaeeesreesseeesneesssessssesssnennns 29
TABLE 3-4 FUNCTION OF CS DECODERutiiitiiiitieeitieeiteeieeesteeesseessseesessssseesseesssseessesssssesssssssssessseesns 36
TABLE 3-5 FUNCTION OF BIT-FILLING LOGICcuveviveetiorieteeteeseeseeseeseeseeseeseessessessesesseesseseessessessensensenns 47
TABLE 3-6 FUNCTION OF BIT-FILLING LOGICccutteitteeitreeitieesireeueeeieeeseesseeesseessssessseesnsssssseessssesssnesnes 48

viii

Chapter 1. Introduction

Most general-purpose processors and embedded processors have 32-bit word
widths or wider. However, integer operations rarely need the full 32-bit dynamic
range of the datapath. In other words, part of the datapath, including part of ALU and
bus lines, is occupied by redundant bits which are the duplicates of the sign-bit of the
values. With appropriate partitioning, those parts of datapath could be used by another

operation.

1.1. Narrow-Operand ALU Operations

Bits of a value can be classified into the.following two parts:
1. Significant part

ii. Insignificant part

Bits which are sufficient to represent the magnitude and its sign (or leading bits
which are the same with its most significant bit) are called the significant part of the
value, while the rest of bits in the value are called the insignificant part.

When performing an operation, bus lines and part of the ALU occupied with
higher order data bits which belong to the insignificant part of both operands and
result might always represent the same bit-value with the sign-bit of the significant
part. In other words, part of the ALU generates result bits identical to the sign-bit of
the significant part on the result bus lines.

Assuming an ALU is partitioned into several blocks, an ALU operation whose

operands and results all have narrower significant part so that at least one ALU block

is not necessary for calculating its correct result' is called a narrow-operand ALU
operation.

With appropriate modifications on circuits, including partitioning the ALU and
buses and additional checking mechanism, another narrow-operand operation could
be joined into the datapath to exploit the part of datapath which is originally used to

carry and calculate result for insignificant part of an operation.

1.2. Significant Bit-width of an ALU Operation

So how many bits should be reserved for one ALU operation? The required
bit-width of an operation determines how many bus lines and ALU blocks should be
allocated. Before execution of an operation,,we can obtain the significant bit-width of
all its operands. From the relationship between the significant bit-widths of operands

and results, we classify ALU operations into'two major types:

1. Operations that won ¥ increase'the number of significant bits
Bit-wise Logic Operation:
Since one bit representing for the leading bit value is reserved, the result of
a bit-wise logic operation could certainly be “sign-extended” from the bit

position that we reserved to represent its most significant bit.

__ 00000110
(+) 00000010
11111011

Figure 1-1 a 8-bit XNOR operation

! “Correct” means we can get its full-width result by sign-extending the “narrower” result.

2

1l Operations that might increase the number of significant bits
Addition:
Significant bit-width of the result of an addition operation could be more

than the maximum bit-widths of its operands due to carry-in.

00001100
+ 00001001
00010101

Figure 1-2 A 8-bit add operation

Subtraction:

The same situation ofiincreased significant bit-width of the result would

occur under subtraction.

00000001
- 11111101
00000100

Figure 1-3 A 8-bit subtraction operation

Shift / Rotation:

To estimate the significant bit-width of the result for a shift operation, not
only the significant bit-width of its operand is required but also the direction it
shifts to and its shift amount. Besides, to partition a shifter into two or more parts
to shift for different amounts is more complex than partitioning an ALU into

ALU blocks. The shift operation is not discussed in this thesis.

3

Multiplication:

The significant bit-width of the result from a multiplication operation can be
decided from its multiplicand and multiplicator. But multiplication is not very
frequently used and to partition the multiplier is also more complex than

partitioning the ALU, how to share a multiplier is not discussed in this thesis.

We focus on the mechanism to efficiently share the buses and ALU only. The
ALU in our design supports addition, subtraction, and bit-wise logic operations. So
how do we decide the number of bits which should be reserved for an ALU operation?
From the two classifications above, for simplicity, the required bit-width of an ALU
operation is equal to the larger one of the significant bit-widths of operands plus one
bit. The reserved bit is for the consideration of'addition and subtraction. Besides,
whether the addition or subtraction operation-is-signed or unsigned, the full-width

result could be correctly sign-extended:

1.3. Organization of this Thesis

In Chapter 2, we described a related work about datapath-sharing and background
for flexible ALU-sharing. Our motivation and objective are. In Chapter 3, designs
about sharing the datapath are proposed. Chapter 4 shows the experiments and
simulation results. A final proposal about designing the ALU is suggested. In Chapter

5, we summarized our conclusions.

Chapter 2. Background and Related Work

2.1. Distribution of Significant Bit-widths of ALU

Operations

Before we start to propose possible designs, we first perform some profiling on
dynamic instruction behaviors. Figure 2-1 shows statistics in dynamic instruction-type
distributions. The raw data is retrieved from our simulation environment which is
mentioned in chapter 4. Data-processing instructions which require only ALU in
execution stage fall into the category of ALU, while those require the shifter are
classified into Shift category. Data-transferring instructions, such as Load and Store,
belong to the category Memory. Branch and juimp ifistructions fall into the category
“Branch”. Instructions performing multiplication and other operations are classified
into “Misc” category.

From figure 2-1, we can see that about 50% of executed instructions belong to
ALU category. Considering instructions classified into Memory” category, about 70%

of executed instructions requires ALU”.

2 In our reference model, data-transferring instructions need ALU to calculate their data-address.
? Branch instructions have an independent address adder in our reference model.

5

100%

90%

80%

70%

60%

50%

40%

30%

20%

Distribution of Instruction Types during Run-time

10%

Benchmarks

Figure 2-1 Run-time instruction types distributions

T LTI
& -» "‘Q‘
.r’_‘.-

.

B Misc

O Branch
O Shift

B Memory
EALU

Next we perform s1gn1ﬁcam‘1‘ialt£ /i E{ﬁ Ran performed ALU operations in

our benchmark suite. Figure 2- ﬁshovzsﬂ

7
= | : -:‘.\1.-'

= |

N L-._-.Ej: LRl

%
by data-processing instructions. fdé‘?grg?;__ﬁ;;}.ﬁ
) A A DR B

o |]
o | |] il B
P Y O = e S
- i
s I e [~ e e D A B
1 I %< N N O A A
e
0%0 ; : ” " . . " ’

Bit-width of Significant Part on ALU Operations in Data Processing Instructions

Figure 2-2 Cumulative distributions of significant bit-widths of ALU operations in data-processing

6

instructions

As we can see, about 53% of such operations only require half or less width of
ALU in a 32-bit architecture.
Figure 2-3 shows the same statistics on ALU operations executed by

data-transferring instructions.

100% ‘

0% — —— —— ——

ao%——‘——

|
S A T

]
O N R
|
| | | e —
——=—————

— e — —

3 e]

50%——‘——

Cumulative Ratio

40%——‘——

30%——‘——
20% —m —— — ——= e —— _— — — — —

0% — — —— ——

)y =woa

0% J
4

Bit-width of Significant Parts on ALU Operations in Data Transfer Instructions

Figure 2-3 Cumulative distributions of significant bit-widths of ALU operations in data-transferring

instructions

Due to the characteristics of addressing range, most ALU operations performed

by Load / Store have wider significant part.

Figure 2-4 shows statistics on all executed ALU operations. This is the
distribution of significant bit-width of ALU operations in a typical 5-stage MIPS-like

single pipeline machine.

100% ‘

0% — —— —— ——

80% —— ——

0% —— ——

50% —— ——

40% —— ——

Cumulative Ratio

30% —— ——

|
S T N
S L
|

O E

|
B N N

20% — —— —— -~

10% —— - Y

| | | |

Bit-width of Significant Parts on All ALU Operations

Figure 2-4 Cumulative distributions of significant bit-widths of all ALU operations

Although significant bit-widths 'of ALU operations in data-transferring
instructions make the overall significant bit-wadth wider, about 49% of ALU
operations require less than or equalto-19-bit.of actual ALU width.

From the profiling results above, if the part of the ALU which is originally
occupied with insignificant parts could be shared with other ALU operations, we have

high opportunity to improve the performance.

2.2. Datapath in Multi-Bitwidth Pipeline

A single 64-bit datapath design which can perform one 64-bit operation or four
16-bit operations is proposed in [Loh 2002]. They propose a Multi-Bit-Width (MBW)
micro-architecture which takes the wires normally used to route the operands and
bypass the result of a 64-bit instruction, and instead uses them for multiple

narrow-width instructions.

They divide the ALU into four 16-bit ALU blocks, each having independent
Sfunction-controls. Operand sources are read from reservation station (RS). Figure 2-5
shows the bus lines and ALU usage when performing a 64-bit operation. Bus lines of

each operand and result are divided into four groups in the figure, each group contains

16 bits of data.

RS;

/ALUO

Figure 2-5 Data path'for-a-single 64-bit instruction

Figure 2-6 shows the bus lines and ALU usage when performing two 16-bit
operations. Operands of the two operations, j and k, are stored in RS; and RSy.
Significant bit-widths of both operations are 16-bit and two ALU blocks are to be
used. Bit 0 to 15 of the operand bus lines are occupied by the lower 16-bit
operand-bits of operation j and so are the ALU block whose input were the lowest
16-bit data on the bus. Significant operand-bits of operation k are to be place between
the 16™ to 31%" lines. Before operand-bits are put on those lines, they are firstly shifted

the correct bit-positions.

RS

Figure 2-6 Data path for two 16-bit instructions sharing a single 64-bit datapath

This technique increases the effective issue width of a superscalar processor
without adding many additional wires by reusing already existing datapaths. But it has
the limitation that only instructions with data-width of 16-bit could share the proposed
datapath. For two operations, one’s data-width 15.16-bit and the other’s is 48-bit, the

datapath cannot be shared by them.

2.3. More Flexible ALU-sharing Mechanism

The approach in the related work limits the significant bit-widths of instructions
to 16-bit. We could relax the limitation by allowing operations which requires the
multiples of 16-bits to share the ALU as long as the ALU could accommodate them.
In the case of partitioning the ALU into four blocks and share by two operations, the
relationship between possible inputs operand blocks and target ALU blocks is as
figure 2-7*. Those upper B’s mean blocks of operands of the operations. The lower

B’s means blocks of operands bus belonging to the ALU blocks.

* Similar concepts are proposed in “Value-Based Clock Gating and Operation Packing: Dynamic
Strategies for Improving Processor Power and Performance”, DAVID BROOKS and MARGARET
MARTONOSI, 2000. But all operations must be the same. It’s like a dynamic form of SIMD.

10

Blocks of Operation 1 Blocks of Operation 0

B2 Bl BO B3 B2 B1 BO

182 181 1BO
ALU Operand Bus

Figure 2-7 Relationship between possible inputs and target blocks

The limitations on data-width could also be relaxed by partitioning the ALU with
finer granularity, which means the ALU blocks become smaller. For example, if we
partition an ALU into eight ALU bloeks. The ntmber of possible combinations of

data-widths of joined operations‘is increased.

But partitioning the ALU into smaller blocks certainly has some effects:
1. More complex circuits for aligning operands
In figure 2-8, the figure shows the differences when we partition the ALU

with doubled number of ALU blocks.

Blocks of Operation 1 Blocks of Operation 0

B6 B5 B4 B3 B2 B1 BO B7 B6 B5 B4 B3 B2 B1 BO

e

-« &« ®« PV S 4
187 186 185 1B4 183 182 181 lBO

ALU Operand Bus

11

Figure 2-8 Relationship between possible inputs and target blocks of finer granularity

As the block size becomes smaller, the complexity for the bus lines to select
operand bits increases. If we partition the ALU into » ALU blocks, the complexity of
the number of inputs is O(n’). And in this case, it only supports sharing by two
operations. If the ALU is going to be shared by more than two operations, the number

of possible inputs would significantly increase.

il. ALU consisting of smaller ALU blocks leads to longer delay
Another effect is the delay by the carry-propagation between ALU blocks. As we
divide the ALU into smaller blocks and make the carry-signal propagate serially, the

critical path could increase.

2.4. Motivation

When an operation is going to be joined'to share the datapath, if its operand
blocks occupy ALU blocks with turned around ordering, i.e. its least significant block
is allocated to the ALU block in the highest block position, then each ALU block
selects its input blocks from only two possible blocks. Figure 2-9 shows the

relationship when we partition the ALU into eight blocks.

12

Blocks of Operation 1 Blocks of Operation 0
BO B1 82 B3 B4 BS B6 B7 B6 B5 B4 B3 BZ B1 BO

B6 15 1B4 183 182 181 lBO

Figure 2-9 Turnaround approach

-—
w
\I

-—

The complexity of the number of inputs now becomes O(n). With the same

flexibility, the required circuit for aligning operand blocks is significantly reduced.

2.5. Objective

In this work, we focus on sharing an ALU by two operations. The ALU in this
thesis supports addition, subtraction, and bit-wise logic operations only. We designed
a mechanism to share the buses and ALU'in'on¢ single pipeline datapath by two ALU
operations with:

1. High utilization of ALU and buses by flexible sharing

11. Low overhead on space

Modifications on other part of datapath to integrate the design into a single

pipeline are proposed to make the whole mechanism work.

13

Chapter 3. Design

3.1. Overview of Datapath-Sharing

In this section, we discussed about issues that must be considered when sharing
one single pipeline datapath by two ALU operations. In the following discussions, our

reference machine is a five-stage MIPS-like pipeline.

3.1.1. Constraints for Joining Two Instructions

When joining operations from two instructions, there are some constraints
between the two instructions. These constraints come from structural hazards and data

hazards.

3.1.1.1. Structural Hazards

Structural hazards arise from resource conflicts when the hardware cannot
support all possible combinations of instructions simultaneously. Our design shares
the ALU in one single pipeline datapath by two operations. In some cases the datapath
can accommodate two operations and in other cases it cannot. This is determined by
whether the ALU blocks could accommodate the two operations. Such procedure is
called Width-Check. The width-check could be performed when information about the
significant bit-widths (or blocks) for each operand is available. The width-check
should be completed before we merge the operand blocks to share the ALU.

Except sharing the ALU and the operand / result buses, we did not duplicate
other units such as data memory in current design, so we must make sure that no other

resource conflicts exist between the two instructions except ALU and the operand /

15

results buses. This procedure is called Type-Check in our design. This could be

performed by checking the opcode fields of incoming instructions while decoding.

3.1.1.2. Data Hazards

Since the two operations are executed in parallel, there must be no
data-dependencies between the two. To illustrate the relationship among operations,
we consider operations 7, j, and k, with i occurring before j in program order. There

are three types of data hazards that we should consider:

RAW (read after write):
Since the two operations are executed.in parallel, if there exists RAW between i
and j, i should be performed along: In nexticycle, operation j could be performed due

to the availability of its operand-value.

WAW (write after write):
When i and j are executed in parallel and try to write the same destination, the
WAW may arise. Since no out-of-order execution in our design is adopted, the WAW

hazards should not occur.

WAR (write after read)

When j tries to write a destination before it is read by I, WAR would arise. In our
design, we only check two consecutive instructions to see when they can be joined.
This is a static issue pipeline so that WAR will never happen since operands of the

two operations are read simultaneously in ID stage.

16

Summarize the discussion above. When performing data-dependency check, we
only have to make sure that there exist no RAW dependencies between the two
operations. The data-dependency check could also be performed by checking the

destination register filed of i and source register field of j while instruction-decoding.

3.1.2. How ALU is Shared by Two Operations

To share a single ALU by two different operations, we divide the ALU’ into
several ALU blocks and bits of operands are also grouped into blocks according to
their bit-positions. Each ALU block has its own function-select signals. When the
ALU is going to be shared by two operations, four m-bit operands from the two
operations are first merged into two n-bit operands by OML (operand-merging logic).
The merged n-bit operands are input to the/ALLU. The output n-bit result consists of
result blocks from the two operations. Before the results are written into register-file
or used as address to data-memory; the results'must be sign-extended to full-width

results by SXL (sign-extending logic).

Operand-boundary Signals
m-bit /—L ,L

A Operand of Operation 0 == o | ™ot
m-bit X =P Result of Operation 0
A Operand of Operation 1 == ~
-~/
n-bit
ALU 1
m-bit
B Operand of Operation 0 == o n-bit o | Mot
M-bit | 2 — X = Result of Operation 1
B Operand of Operation 1 ==p»| ™ / ~
~— -)

Figure 3-1 Block diagram of sharing the ALU by two operations

Extra control signals are required for the OML, ALU, and SXL to known which

> The ALU in our design performs addition, subtraction, and bit-wise logic operations

17

blocks belong to which operation. Such signals are named after operand-boundary

signals.

3.1.3. Possible Modifications in a Five-stage

MIPS-like Pipeline

Now we propose how these mechanisms could be possibly integrated into a

five-stage MIPS-like pipeline.

Instruction-Fetch:

Since we are able to perform two ALU operations, up to two consecutive
instructions are fetched. An instruction queue with two entries (entry 0 and / — the
instruction in entry 0 are before the instruction in.entry 1 in program order) is required.
When only one (the instruction originally-in entry 0) is consumed in previous cycle,
the instruction originally in entry ‘I is moved to entry 0 and the fetcher fetches one
instruction and put it into entry 1. If the two instructions can be joined, then next two

instructions are fetched and put into the queue.

Instruction-Decode:

We have to add one extra instruction-decoder for the additional instruction that
might be joined. Logic for the additional decoder could be simpler than a regular
instruction-decoder since the decoder doesn’t have to recognize all types of
operations — only operations that require ALU during execution stage must be
recognized. Besides, the type-check and data-dependencies check should be
performed while instruction-decoding.

Operand-reading is also performed in this stage. Before we perform the

18

width-check to make sure the ALU is able to accommodate the two operations, the
number of significant blocks of each operand is required. Since the data-width of each
operand must be decided dynamically, we could obtain the number of significant
blocks of each block when it’s read out from register-file or the immediate filed in
instruction words. The procedure which determines the number of significant blocks
of a value is called width-determination and performed by WDL
(Width-Determination Logic) in our design. The results from WDL are sent to
width-check logic. In this stage, we should perform three checks — type-check,
data-dependency check, and width-check. Only when all the three checks are passed
the two operations can be joined. Whether the two operations can be joined must
inform the instruction-fetcher so it can correctly update the instruction queue.

In this stage, the operand-boundary signals must also be generated so that in the
latter stages the logic involved with.the two joined.operations could function

correctly.

Execute:
Operands from the two operations are merged and put on the operand bus to the

ALU. Before input to ALU, the merged operands might be swapped.

Memory Access and Write-back:
Since results are also joined, so they should be separated and sign-extended
when sending address to memory address port and writing back to register-file. How

the joined results should be sign-extended is decided by operand-boundary signals.

In the following sub-sections, we have closer discussions about the design.

19

3.2. Modifications in Instruction-Decode Stage

3.2.1. Type-Check and Data-dependency Check

An additional instruction-decoder for the instruction that might be joined is
required. The decoder checks the opcode in the instruction word and to see if it falls
in the type that could be joined or not.

The type-check and data-dependency check are performed while
instruction-decoding. Since the information that is required for performing these two
checks all exists in instruction words, the two checks can be performed in the early
half-cycle in ID stage. If one of the two checks fails, the two instructions cannot be
joined. Each of the check outputs a'signal to represent whether it passed. The signals
are useful for width-check for generating operand-boundary signals and have

influences on instruction-fetching.

3.2.2. Width-Check

Besides type-check and data-dependency check, width-check is performed in ID
stage. The information that the width-check needs is the number of significant blocks
for each operand and the results from type-check and data-dependency check. The
width-check logic generates operand-boundary signals according to whether the two

operations can be joined together.

3.2.2.1. Width-Determination Logic

Width-determination logic is used to decide the number of significant blocks of a

value. The significant bits of a value should be sufficient to represent its magnitude

20

and sign (or its most significant bit). But according to our observation, to correctly
sign-extend the result to full-width, the required bit-width of an operation should be
the maximal significant bit-width among its operands plus one bit. So the
width-determination logic checks how many blocks are required to accommodate the
significant bits of a value plus one bit.

To determine the bit-width of a value, we must know that beginning from the
most significant bit in the value to the least significant bit, at which bit-position the bit
value firstly differs from the most significant bit. Once we found the bit-position, say
bit i, we know that the significant bit-width of the value is i+3. (If i+3 exceeds the
word width of the architecture, then the significant bit-width should be the full-width
of the architecture.) Such function can be simply achieved by exclusive-OR each bit
with the bit value of most significant bit and connect result to a priority-encoder. The
output from the priority encoder-plus 3 is the significant bit-width we defined.

In our design, each bit in a valué.is divided.into several blocks according to its
bit position. Assume a value is divided-into m-blocks (from block 0 to block m-1) and
each block has a fixed size n. A block might be insignificant when the n bits within it
all have the same values. But simply checking the # bits is not enough, it can only
tells between whether this block might fall in the bit-range to represent the magnitude.
In our definition, besides bits to represent the magnitude, we have to reserve two bits.
For block i, only when the 7 bits in block i and the highest two bits in block i-7 all
have the same bit value, block i could be insignificant. If we check only the highest
bit in block i-1, when we try to sign-extend result from the highest bit in block m-1/
could be incorrect due to carry in an addition operation that changes the bit-value of

the bit-position which we originally regard as the correct bit for sign-extension.

21

BR. = (b(i*n)+n71b(i*n)+n72 o .b(i*n)b(i*n)—lb(i*n)—z) + (b(i*n)Jrn—l + b(i*n)+n72 +et b

i (i*n)

+ b(i*n)—l + b(i*n)—Z)

BR,=(b

n—1

b,_y-+by)+(b,_ +b,_,+-+b)

Figure 3-2 Logic functions for generating BR signal

Assume we have a bit with its highest order bit which differs from the most
significant bit at bit j. Bit j falls in the bit-range of block k. The BR signals of block
k+2, k+3, ..., m—I must all be unset since all the bits within them are all the same.
BR,,, isunsetonly when j<(k+1)*n—2 andissetonly when j>(k+1)*n-2,
i.e. the highest two bits in most significant block must be the same with the most
significant bit of the full-width value. Figure 3-3:shows the logic for generating a BR
signal. The “One-Detection” logic is logically a NAND gate. The “Zero-Detection”

logic is logically a NOR gate.

Bit i*4+3
Bit i*4+2 1
Bit i*4+1 ™M
Bit i*4 -1

|

[4
<
?

0 o

Bit (i-1
Bit (i-1

)4+3 —
y4+2 ———

(¢ ¢
[¢¢re ¢

L ¢r¢ ¢ ¢

Figure 3-3 Logic to Generate BR Signals

Beginning from BR,_,, one we find the first BR which is set, say BR, , then block

22

k, block k-1, ..., block 0 all belong to significant blocks. If we connect those BR
signals to a priority encoder, then its output is an encoded value which represents the

number of significant blocks of the value.

The priority encoder encodes the input BR signals as the following rules:

Input BR Signals Encoded Output Value
BRm-1 | BRm2 BR1 BRo (Number of Significant Blocks)
1 X XXX X X m-1
0 1 XXX X X m-2
0 0 0 1 X 1
0 0 0 0 1 0

Table 3-1 Function of priority-€ncoder-for width-determination logic

Figure 3-4 shows the block diagram of the width-determination logic.

Width-Determination Logic

Number of
» Significant
Blocks

Value
Bits

[]
Jojelauas) yg
Japooug Ajold

Figure 3-4 Width-Determination Logic

23

Figure 3-5 shows the schematic of priority encoder in Width-Determination

Logic.

&
CuEs g
&5 NAND2

) wigee
3
38
NOR2

i~ e

uz2 39
“NANDI GEE ’
S u2s
I N T

¥VY

uz7
NOR2!

a
o
o Lea
Ll o) noRase™

Figure 3<5 Schematic of the Priority Encoder

The delay of width-determination logic is proportional to the block size n and the
number of blocks, m. The actual delay of WDL in .18 um process technology is about
0.47ns when m=10 and n=4. However, the numbers of significant blocks generated by
width-determination logic is required for width-check. If we always perform
width-determination when operands are ready from register-file, then the width-check
may not fit in the ID stage. In the load / store architecture, operands come either from
register-file or immediate field in instruction word and writing a value into
register-file usually requires shorter time than reading. If we perform
width-determination when a value is written into the register-file and store the number
of significant blocks in extra fields in register-file, then the delay between

register-read and width-check could be removed.

24

3.2.2.2. Operand-boundary Signals

The operand-boundary signals are used to represent how two operations share
the ALU and bus. It indicates that from which block the joined operation starts to
occupy. Thus the operand-merging logic (OML), ALU, sign-extending logic (SXL) all
needs the operand-boundary signals.

Operand-boundary signals are generated by width-check logic. The number of

conditions it represents amounts to the number of partitioned operand-blocks.

Rules to decide the operand-boundary signals:
Assumption:

Operation i requires x blocks

Operation j requires)-blocks

ALU is partitioned into m blocks with the same size

(x and y must be less than or equal to m)

If x + y <m and both type-check and data-dependency check passed,
operand-boundary signal is set to x — /. The first x blocks are occupied by operation i
and the rest are for operation ;.

If x + y > m or type-check or data-dependency check does not pass, then

operand-boundary signal is set to n — /, which means all blocks are allocated to

operation i.

There exists decoding logic to generate control for each block in OML, ALU,

and SXL. The decoding logic generates control signal as the following table:

25

Operand-boundary Signal for Signalfor | ... Signal for Signal for Signal for

Signals block m-1 block m-2 block 2 block 1 block 0
m-1 0 0 0 0 0
m-2 1 0 0 0 0

2 1 1 0 0 0

Table 3-2 Function of decoding operand-boundary signals

For OML, the decoded signals can be,used toselect blocks from operation i
(when the signal = 0) or operation j(when the“signal = 1). For each ALU blocks, the
decoded signals can be used to select function=select signals and carry-in sources. For
SXL, these decoded signals can be used torindicate the block value should be directly

bypassed or filled with sign bits.

3.2.2.3. Width-Check Logic

Width-check logic is used to determine whether two operations can be joined by
checking the limitation of ALU width. Its inputs are number of significant blocks of
operands and the result of type-check and data-dependency check. It outputs the
operand-boundary signals.

The width-check first decides the required number of blocks for each operation —
which is identical to the larger number of significant blocks of its operands. Then

required numbers of blocks for the two operations are added together to see if it

26

exceeds the number of ALU blocks. Finally, the width-check logic generates

operand-boundary signals.

Operand-boundary

SBNOB Signals

Both Type-check
and Data-
RBN; dependency Check

Passed

SBNg

Figure 3-6 Blockidiagram of the Width-Check Logic

Figure 3-6 shows the block-diagram-of-the.width-check logic. The widths of the
bold lines are identical. Assume we divide the.operands into m blocks. In the figure,
SBN means number of significant blocks. SBN is generated by Width-Determination
Logic. SBNys means the number of significant blocks of A operand of operation 0.
The SBN signals are sent into a comparator (CMP) to tell which one is larger. Since
the larger one could represent the number of required blocks for the operation. The
CMP generates a select signal for the mux to choose output between the two SBNs.
Then the number of required blocks of the operation is selected from the larger SBN
and called RBN.

To compare two SBN, the delay of CMP logic varies with log, m and the fan-in
of logic gates. The output equation of the CMP logic is whether SBN, is greater than

SBNg. The Boolean equation is

27

SBN ,gtSBN, = a, b

i,)b, et Ry

n-1 n-1

Where n=[logm], i, =a, ®b,,

For the case when m=8,
SBN ,gtSBN, = a,b, +i,a,b, +i,ia,b,

The schematic of the CMP logic is shown in figure 3-7.

5
shn02 0ROy sl LR

ol
sbn0[2 sprid[0]

shni (2 3

ni20] 9 1T] sbnizEnt [3] nia
shnO[2 shrDR] | | INWRE nB —L
=N
e
nEE" Uiz
L MaNDg I
shnl[1]
shnQ[d] né Ll
skl]
L
shnpo] n? ngE T
Hnl @ UT4
L1 ManDasd na
shnl[}]
. El
shryl [20] sontEpl 0]
sbn_[nia

shn

B

shrl [2:0] shn il [{] nig

Figure 3-7 Schematic of CMP Logic

Then the mux could choose the larger one between SBN, and SBNp to represent
the number of required blocks of the operation. We call the number of required blocks
of an operation RBN. After choosing the numbers of required blocks for the two

operations, they are sent to logic to check whether the two belong to combinations

28

that the ALU can accommodate. The check is performed with the RBN Check logic
according to the following equation.
RBN,+RBN, <m-2
Take the case when m=8 for example. The RBN check is passed when the

following conditions occurs.

RBNo RBNj
110 000
101 000, 001
100 000, 001, 010
011 000, 001, 010, 011
010 000, 001, 010,011, 100
001 000, 001, 010, 011,-100, 101
000 000,-001,:010;/ 011,100, 101, 110

Table 3-3 Possible RBN-combinations when m = 8

0]

sya3
254 7

B e SBrofT]
waes Bt

shn 1 0]
m"'PDDﬁsTuz-]

synG
AT 0] sbnl (1] NOR3%4 s

om1 (0] E] <bn{ D)
synd
sbn0[1 NOR3X4 e

shn0[2:0] shn0[0] shnO[0f

Figure 3-8 Schematic of the RBN check logic (m = 8)

29

If the RBN passed and both type-check and data-dependency check passed, the
operand-boundary signals are set to the RBN of operation 0. Otherwise, the
operand-boundary signals are set to m-1, which means all ALU blocks are occupied

by operation 0.

3.3. Modifications in Execution Stage

When the ALU is going to be shared by two operations, four m-bit operands
from the two operations are first merged into two n-bit operands by OML
(operand-merging logic). The merged n-bit operands are input to the ALU. Before the
n-bit results are written into register-file or.used as address to data-memory, they are
sign-extended to full-width result§ by SXI(sign-extending logic).

Based on our observation, for'sharing the ALU blocks by two operations, one
operation occupies ALU blocks in regular'ordering and the other does in turned
around block ordering to increase the flexibility of sharing. In following sub-sections,

we will show the design based on the turn-around approach.

3.3.1. Deciding the Block Width

The first decision we met is how to group operand bits into blocks. Should every
block have the same size? From the observation on significant bit-width distribution
in chapter 2, there’s no obvious tendency towards some specific bit-width. So bits in a
value are uniformly grouped into blocks with the same size in our design. From the
block width of operand blocks, we can infer the minimal ALU block width so that the
ALU could satisfy the granularity. To deserve to be mentioned, unlike operand blocks,

the ALU does not always need to be partitioned into ALU blocks with the same width.

30

This issue will be discussed in section 3.3.3.1. Now we assume each ALU blocks has
the same width that is identical to the width of an operand block.

So what width is good considering both circuit delay and the flexibility to fully
use the ALU? As the block width goes narrower, the flexibility increases but circuit
delay may also become longer. To make the decision, related experiments are

performed in chapter 4.

3.3.2. Merging Operands from Two Operations

Assume we divide the ALU into n blocks and two operations, operation 0 and
operation 1, which can be joined together. To merge operand blocks of operation 1
with the significant blocks of operation 0, extra 2-to-1 multiplexers to select operand
bits from operation 0 and operation 1 areirequited. Those multiplexers are controlled
according to operand-boundary-signals. Those multiplexers are grouped into eight
groups, from multiplexer group 0 to multiplexer group n-1. Inputs to the multiplexer
group 0 are operand block 0 of operation 0:and operand block n-2 of operation 1;
inputs to the multiplexer group 1 are operand block 1 of operation 0 and operand

block n-3 of operation 1 and so on.

B0 B1 B2 B3 B4 B5B6 B7 B6 B5 B4 B3 B2 B1 B0

S e o'
.
5, o
o
ot ‘\ = o, \,

Yﬁ ‘A v’ 0 0 0 0
1B7 186 185 184 183 182 181 180

Figure 3-9 Possible operand blocks with turn-around approach when n = 8§

In figure 3-10, relationship between operand blocks and the grouped

31

multiplexers are shown.

S 3 Bn-1
Blocks of
Spere !
P B n-3
L Bn2 Blocks of
~ Bn- * Opggasnd
B n-2
Blocks of B2
Operand of —
Operation 0 B2
B 1 B1
~ BO » BO

Figure 3-10 Logic to merge operand blocks with turn-around approach when n = 8 (each mux consists

of several 2-to-1 multiplexers)

Due to the turn-around approachy there-exists no-alignment problem so that the
circuits are so simple.

The logic for merging operands from two operations is called OML
(Operand-Merging Logic) in our design. Figure 3-11 shows the block diagram.

Operand-boundary OM
signals Decoder

------ S Signals

Operand A of Operation 1 —= st
OM Blocks * » Merged Operand A

Operand A of Operation 0 —

ubi OM Block
Operand B of Operation 1 d m i
pit OM Blocks et Merged Operand B

Operand B of Operation 0

Figure 3-11 Block diagram of OML

32

The OM Decoder decodes Operand-boundary signals and generates S signals to
control OM blocks so that they select the correct blocks from input blocks. Each
block has an independent S signal. The relationship between S signals and
operand-boundary signals is as table 3-2. A sample logic diagram for generating S

signals for five blocks is shown in figure 3-12.

I

a[2lahy

s[ZLabf(r:0] obz[]]

losD] synt
HANDRK4 /=

ndti
obs 0 SETobs (] B0 S8 | B netMI

Figure 3-12 OM Decoder Logic

The design of an OM block is shown in figure 3-13.

33

Bit (m-i-1)"n+(n-1)
from Operation 1

ALU Input

E Bit in+(n-1)

Bit /“n+(n-1)
from Operation 0

Bit (m-i-1)*n+1
from Operation 1

ALU Input
Bit /'n+17
Bit /'n+171 E
from Operation 0
Bit (m-i-7)*n
from Operation 1 E
ALU Input

E Bit /“n

Figure 3-13:OM Block

Bit / *n
from Operation 0

=+--—-t+-+---t+--——4--——1r--=

3.3.3. ALU in the Turnaround Approach

Since the ALU is performing two operations, function-select signals for two
operations are required. When the ALU is shared by two operations, function-select
for ALU blocks in higher positions differs from that for ALU blocks in lower
positions. To reuse the existing lines for function-select signals, we put function-select
signals for the two operations on two ends of the lines and pass-transistors are put in
the lines to “cut” the two function-select controls at appropriate position. the
relationship between function-select lines, pass-transistors, and ALU blocks is shown

in figure 3-14.

34

Function-select
for Operation 1

cs i#1 —PTs) B/I_ggk

csi —PTs) Bll,g(;k

cs -1 —PTs)

Function-select
for Operation O

Figure 3-14 Function-Select Eines, Pass-Transistors, and ALU Blocks

The CS signals are used to control the pass-transistors so that the signals on the

lines could be stopped at appropriate position. The CS signals are generated according

to operand-boundary signals and the mapping is shown in table 3-4.

35

Operand-boundary CS m-1 CSm-2 | ... CS2 CS1 CSO
Signals
m-1 0 1 1 1 1
m-2 1 0 1 1 1
2 1 1 0 1 1
1 1 1 1 0 1
0 1 1 1 1 0

Table 3-4 Function of CS Decoder

The PTs is a group of pass-transistors controlled by a single CS signal. The logic

for generating CS signals in shown in figure 3-15.

i
MANDIR2

synal
NOR2x4

cell"f 1 ihetad

obs(2:0] e

obsf?] | o
=
abs[1] n!

o u7
obs[D) NAND3#R1
obs[2[F

o
nd

" s
obs(l NANDI®2
ohs 2

Figure 3-15 CS Generating Logic

36

=i

s[2]

¢5[3:0]

A PTs is shown in figure 3-16.

o -4

Function-select Lines

Figure 3-16 Schematic of a PTs

The turnaround ordering of thé joined operand blocks has no effect on bit-wise
operations but its does on additien, The direction of carry-chain for the joined
operation is different from traditional.désigns..Carry-signal is propagating from
higher stage of ALU block to lower stage. So.the carry-in signal is the carry-out from
its precedent stage if the ALU block is working for operation 0. If the ALU block is
working for operation 1, its carry-in signal is the carry-out from its following stage.
Figure xxx shows the directions of carry-propagating between ALU blocks. Figure
3-17 shows the direction of carry-propagation. The ALU is divided into eight blocks.

Operation 0 requires 2 blocks and operation 1 requires 6 blocks.

37

ALU |
Block 7

ALU Blocks for B)
Operation 1 A
ALU |

Block 6

ALU |
Block 2

ALU
Block 1 —

ALU Blocks for JE— Rropa;gatfirg carry- .
Operation 0 signals of Operation
ALU

Block 0 |

Wk A

Figure 3-17 Directions of carry~propagation-in turnaround ordering scheme

A multiplexer is placed at the carry-in port of each ALU block as figure 3-18 to

accomplish the requirement.

Carry-in from Carry-in from
(i-1)th ALU (i+1)th ALU
block block

A
Operand
i-th ALU
Block Result
B
Operand

Carry-out

Figure 3-18 Multiplexer to select carry-in sources for block-reversed ordering

Those multiplexers could incur additional delay. The worst case delay of ALU

with such organization occurs when the ALU is not shared by two operations, i.e. the

38

carry signal propagates from the lower order block to the highest order block.
Besides extra circuits to accelerate the generation of carry signal, we also

propose an enhancement design by avoiding unnecessary partitioning the ALU.

3.3.3.1. Operation Swapping

Observing the ALU block requirements, we found that when the ALU can be
shared by two operations, one operation must require less than or equal to half width
of the ALU and the other operation must require larger than or equal to half width of
the ALU. If we always put operand blocks of the operation which is allocated wider
width of ALU at the lower stages of the ALU, the implementation of the lower half of

ALU can be one large ALU block.

~ block

——

' Variable-width
ALU blocks

ALU Block which
is Half of the

— ALU Width

(m = half of the
ALU width)

Figure 3-19 ALU organization for operation-swapping

39

Not only extra circuits and wires for function-selecting and selection of carry-in
sources are simplified, but also the worst case delay of the ALU could be reduced.

To achieve such function, following signals are affected:

i. Block-ordering of the input operands should be turned around

ii. ALU control signals of the two operations should be swapped

iii. Destination register indexes are swapped

iv. Signals which decide the boundary of the two operations need to be

re-mapped

Logic for changing the signals above is not complex since they are all two-to-one

mappings and the block diagram of the unit is shown in figure 3-20.

OIS i Remapped
Operand-Boundary Gen Operand-Boundary
L S R)
Swap
Lomrn may Bl

Operand A whit_ |_wp Operand A
from OML to ALU

SOUOIMS SO

Operand B whit_ |_wp Operand B
from OML to ALU

Figure 3-20 Block Diagram of the Operation-Swapping Logic

40

ufs
ogi~
ETE] ohsf2] R bRl Rt~

ChsplE] eta T~

abs(H0] obbil]
s w o
L nanpzie g
obs2] ohs[l]

o]
TRt~ obsp[z],netBIrDGmpE]

Figure 3-21 Schematic of OS Gen Logic

Swap Swap

Bit wy-7 |

ALU Input
Bit /

Bit /

—— e — £
———— T - ————

Figure 3-22 Schematic of the OS Switches

Although the operation-swapping mechanism reduces the number of ALU blocks,

the lines that the operand-boundary requires might not be reduced. If we divide the

operands into m blocks with the same size, flog2 m—| lines are required. By adopting

the operation-swapping mechanism so that half-width of the ALU is implemented as a

block, the conditions become to % +1. The number of required lines is

{log2 (% + lj—l and thus it may not decrease.

41

3.3.3.2. Widening the ALU

The total number of ALU blocks is a constraint for joining another operation.
From our profiling on bit-width distribution, in a single pipeline machine, some ALU
operations are used to calculate effective addresses by load / store instructions. It
raises the bit-width distribution so that about half of ALU operations requires less
than or equal to 19-bit. We can relax the limitation by appending extra ALU blocks.
As for how wide the ALU should be extended, we performed some performance
simulations. Based on the result of simulation, a recommended ALU width
considering the increased ratio of performance improvement over increased ALU
hardware is proposed.

The widened part of ALU won’t increase the maximal delay of the ALU since
the longest delay still occurs whefi only one operation is using the ALU. Besides, the
extended ALU blocks could be implemented as a single block. And widening the ALU
won’t increase the number of conditions thatthe operand-boundary signals should be

able to represent.

3.4. Modifications in Memory Access and

Write-back Stage

Results of the two joined operations are also joined together on the result bus.
Before any units, such as register-file or memory, requires the result, it should be
sign-extended to full-width results. How it is sign-extended is determined by the most

significant bit in its most significant block.

42

3.4.1. Sign-extending the Joined Results

To sign-extend the joined results to full-width results, the sign-extending logic
must know
i. The correct sign-bit for extending
ii. Which block should be filled with sign bits and which block should simply be

bypassed

Each result block which might contain significant bits or should be
sign-extended is connected to an Sign-Extending Block (SEB), which is controlled by

a pass signal and sign-bit signal. When the pass signal is set, the SEB passes the block.

When the pass signal is not set, the SEB fills.the output with the sign-bit. The

schematic of a sign-extending logic 1s shown ifi.figure 3-23.

B[]

pass

ib[g0]

ol
MAND2 K

=

0]

ib
A s
MAND2 RS

=

301

o[l

MAND2 RS

Figure 3-23 Schematic of Sign-Extending Block

43

uz
NANDZ2EL

Uit
NAND2EL

NAND2EL

:0]

:0]

Uiz =
NAMDERL e k(1]

ok [3:0]

The sign-bit could be decided from the most significant bit in the most

significant block. The logic for select sign-bit according to operand-boundary signals

and most significant bits in possible blocks is shown in figure 3-24.

I
vl “cell*38inet&7

obs[20]

b (2]

ug
- NOR231

mab[2:0] msh[D] mab]

Figure 3-24 :Schematic of Sign-bit Generating Logic

The logic for generating pass sighals according to operand-boundary signals to

each sign-extending block is shown in figure 3-25.

abs[2]

L3
HANDZ2 R

obdZ0]

obs(i]

obsR0]

abs[]

pass

Figure 3-25 Schematic of Pass Generating Logic

44

passf:

3.5. Integrating the Design into a Five-stage

MIPS-like Pipeline Datapath

Where the mechanism should be integrated into the pipeline datapath is

discussed in previous sub-sections, in figure 3-26, we show the possible organization.

: Memor Write
Register Read Execute y
Access Back
Type-Check
and Data-
Dependencie
s Check
Data-width]]]
of Imm. s Operand-boundary
'S Data-width @ Q
= c;g =
S Q 2 I
o) . F
:
%) m 9] o
X = = ALU X %
»
£ Al : — -
= 3 c
[(e} x
Imm. x@ = —_— > 3
Imm. == xQ r

Figure 3-26 A possible pipeline datapath design

The instruction-fetch is not shown due to it has no significant difference with a
dual-issue machine. In such organization, extra fields in register-file are used to store
the numbers of significant blocks of values. Two instructions are firstly performed
with type-check and data-dependency check and pass the result to WCL (width-check
logic). The WCL also gets the information of numbers of significant blocks from
register-file and that of the immediate value. Then it generates the operand-boundary
signals. The operand-boundary signals control the OML (operand-merging logic),
ALU, and SXL (sign-extending logic). Finally, when the results are written into
register-file, the WDL (width-determination logic) calculate the significant blocks of

values and write them into register-file.

45

But delay by the width-check logic may still be too long to be fit in the latter-half
cycle of ID stage. For this concern, we could put the WDL, WCL, OML, and OSL

into a dedicated stage.

XN

. Width-Check Memory Write
Register Read Execute
. and Merge Access Back
?)% g;; — WCL — Operand-boundary — —
8889
- wht
. i
Q. woL 2
: .77
g = o ALU fi4 — ¢
@
e _|—L—- S
. 3
o
<

Imm.

Imm. e—

Figure 3-27 A possible pipeline datapath design with six-stage (the IF stage is not shown)

Putting the WDL and WCL together has another advantage — the logic for
performing width-determination and width-check could be simplified and the delay
could be shorter. Figure 3-28 shows the block diagram of simplified logic for

width-determination and width-check.

m
32
m-bit 8_ g
RBSoa w o o< Operand-boundary
z — = Signals
g S 2
o5
@) «Q
RBSg A w
3
73
(0]
; (@)
m-bit
RBS1a © are
: b 2
m-bit !
@ o, =
@) (8 Both Type-check and Data-
RBS1 B X dependency Check Passed

Figure 3-28 Simplified width-check logic in the six-stage design

46

Assuming the operands are divided into m blocks. The RBS signals are generated
by RB generator in the width-determination logic. In the RBS signals, bits
corresponding to block that might be required are set. By performing the bit-wise OR
operation between RBSs of the two operands of an operation, the result bits could
represent which block are actually required by the operation.

The result bits output from the first bit-wise logic could be 0...01XXXX where
the leading 0’s comes from the insignificant part and the 1 XXXX comes from the
significant part. If we could change the value into 0...011111 and perform bit-wise
OR operation with the result bits of the other operation with turnaround bit-ordering,
we’re able to recognize which block is actually occupied by any of the operations.

The bit-filling logic is used to set the bits which belong to significant parts. Its

input and output relationship is in table 3-5.

Input RB Signals Output bits
Bm-1 bm-2 e b1 bo bm-1 bm-2 ... b1 bo
1 X X X 1 1 1 1
0 1 X X 0 1 1 1
0 0 1 X 0 0 1 1
0 0 0 1 0 0 0 1

Table 3-5 Function of bit-filling logic

But the bit-filling logic for the two operations cannot be identical. If they are

identical, for two operations both requires % blocks, the result bits by bit-wise OR

will all be set and regarded as that the width-check failed. So the mapping by the

47

bit-filling logic used for the other operation must differ by shifting the result one bit

so that when the
Input RB Signals Output bits
bm-1 bm-2 s b1 bo bm-1 bm-2 ... b1 bo
1 X X X 0 1 1 1
0 1 X X 0 0 1 1
0 0 1 X 0 0 0 1
0 0 0 1 0 0 0 0

Table 3-6 Function of bit-filling logic’

By the following function we ¢ould know whether these two operations can pass

the width-check.

pass = (b, +b; (BLSHD;)e-o(by + b))
bj means block j of operation i

The area and delay by the width-determination logic and width-check logic can
be reduced. Besides, if the two operations can be joined, the decoded

operand-boundary signals for controlling OML are the inverted bits from the

bit-filling logic!

48

Chapter 4. Experiments

4.1. Goals of Our Experiments

In the experiments, we’ll compare two different operand-merging mechanisms,
one is turnaround-based and the other is shifting-based, from area and circuit delay.

We also wish to choose parameters for designing the ALU. We’ll find the
suitable ALU block width by considering both ALU delay and the utilization of ALU.
Simulation for execution-time reduction with different ALU block width is also
performed.

Another ALU design issue is how width the ALU should be? Since increasing
the ALU width could improve the opportunity of joining two operations together, we
observe the effects on wider ALU width over ratio of increased ALU bits to make the

conclusion.

4.2. Simulation Environment

Synthesis Environment and Constraints
Tool: Synopsis Design Compiler
Technology:.18um
Operating voltage: 1.62V

Working frequency: 166Mhz

ALU Implementation:
Provides ADD /AND / OR / XOR.

Adder is implemented as carry-lookahead adder blocks with ripple

carry-propagating.

49

Software Simulation Environment
ISA: SPARC v8
Assuming no cache misses
Benchmark: MiBench Suite
Simulation Methodology:
Generate instruction-trace with significant bit-width information from
ArchC Simulator. Statistics about execution cycles and number of joinable

operations is gathered from traces.

4.3. Comparison between Different

Operand-Merging Schemes

Based on different ALU-sharing schemes, the turnaround-based and traditional
shift-based, the circuits for merging operands differs since the shift-based approach
has the requirement for shifting the joined operands to correct position while the
turnaround-based approach does not.

Although in our design, the circuit for merging the operand bits is implemented
in pass-transistor logic, it cannot be estimated in cell-based design. This experiment is
implemented with logic gates so that the results only show the trends of the difference,
NOT the actual areas of the OML.

Figure 4-1 shows the area requirements under different block widths with the

two approaches.

50

Area of Operand-Merging Logic

20000.00

18000.00

16000.00

14000.00

12000.00

10000.00

Area (um?)

8000.00

6000.00

4000.00

2000.00

0.00 L L L

Block Width (bit)

Figure 4-1 Area overhead of circuits to merge operands

As we can see, the turnaround-approach has.quite little area overhead over the
shift-based scheme. As the block'width goes finer, the difference in area overhead
becomes grater.

Figure 4-2 shows the delay of the operand-merging logic under the two

approaches.

Delays of Operand-Merging Logic

P
|

9~ Tumaround ~&- Shift|

0.90

080

070

0.60

Delay (ns)

030

020 r

0.10 r

0.00

Block Width (bit)

Figure 4-2 Delay of circuits to merge operands

51

Turnaround-based approach also has advantage on delay over the shift-based
approach as granularity goes finer. From figure xxx, the delay of turnaround-based
approach has only little improvement over the shift-based approach. This is because
the major delay comes from the decoder logic for controlling switches when the
block-width is wider than 4-bit, i.e. eight blocks.

Figure 4-3 shows the area and delay reduction by turnaround-based approach

over the shift-based version.

Reduction by Turnaround Approach over Shift Approach

Normalized Ratio

Block Width (bit)

Figure 4-3 Reductions of Turnaround approach over shift approach

4.4. Hardware Cost of Operation-Swapping

Mechanism

In section 3.3.3.1, we proposed the operation-swapping mechanism which could
avoid unnecessary ALU partitioning. An ALU block whose width is half the datapath
width could be adopted in the design to shorten delay on ALU. In this section, we

examine the overhead by circuits to swap the operands and see why it is not suitable

52

for shift-based approach.
Figure 4-4 shows the delay of operation-swapping mechanism with different
ALU block widths. We also shows the delay when we adopt such mechanism on

shift-based approach.

Delays of Operand-Swapping Logic

Delay (ns)
o
[9)]
o

0.40

0.30

010 — E—

0.00

ALU Block Width (bit)

Figure 4-4 Delay of Operand-Swapping Logic

The delay in turnaround-based approach is constant since the mapping between
input and output is fixed. But in the shift-based approach, the delay is much longer
since the mapping between inputs to outputs could be a many-to-one mapping, i.e.
operand blocks has to be re-aligned to correct block positions.

Figure 4-5 shows the area overhead of operation-swapping logic®.

% The OSL in this experiment is implemented with logic gates. The results are NOT the actual areas of
the OSL.

53

Area of Operand-Swapping Logic

40000.00

35000.00

30000.00

25000.00

20000.00

Area (um?)

15000.00 -

10000.00

5000.00

0.00

ALU Block Width (bit)

Figure 4-5 Area of Operand-Swapping Logic

For the same reason we used to discuss.about the delay, the requirements of area
for the two approaches have the:same trend.

From the observation above, we can see under-all width configures, the logic for
turnaround-based approach is constant. But for the shift-based approach, it requires
quite large area to re-align the operand-blocks. This is why it’s not suitable for the

shift-based approach.

4.5. Choosing ALU Block Width

An ALU with smaller ALU block width makes the sharing more flexible and is
capable of high bit-utilization in the optimal case — all blocks input to the ALU are
significant blocks from the two operations. But not every bit in significant blocks is
actually significant. There might be several bits belonging to insignificant part. The
circuits for processing these bits are not really utilized. By making the block width

smaller, the number of really utilized bits is increased in the optimal case. But make

54

the ALU block smaller would also increase the delay of the ALU circuit.
In this section we’ll choose a suitable block width for the consideration of both
circuit delay and the capability of bit-utilization of the ALU in optimal case. Under

uniform distribution, for the block width », the insignificant bits in the most

significant block of an operation is g . For a m-bit ALU, the average utilized bits in

optimal case is m —g —g . We choose a suitable block width by the ratio of circuit

delay over the average utilized bits in optimal case. Figure xxx shows the result.

0.4
0.35

i)

@

2 03
©

N

3

> 025
[o)]

©

[

Z 02
5]

>

o

Z 015
[}

o

k)

S o

3

o
005 — — — — — -

ALU Block Width (bit)

Figure 4-6 Ratio of delay over averaged utilized bits in optimal case

As we can see, without the operation-swapping mechanism, ALU block width of
8-bit has the lowest ratio. But by adopting the operation-swapping mechanism, block
width of 4-bit and 8-bit has similar ratios.

Widths of ALU blocks affect the combination flexibility of different

operand-widths. We replayed the instruction traces to see how this factor affects the

55

number of joined ALU operations.

70.00%

60.00%

50.00%

3 1-bit
W 2-bit
O 4-bit
0 8-bit
W 16-bit

40.00%

30.00%

20.00%

Ratio of Joined ALU Operations

10.00%

Benchmark

Figure 4-7 Ratio of joined ALU operations with different ALU widths

As we expected, ALU block width.of 1-bit has most and ALU block width of
2-bit has similar ratio with 4-bit configuration. 8-bit and 16-bit configurations have
apparently lower ratios than configurations of finer granularities. Taking the worst
case delay of the ALU into account, the ratio of ALU delay over joined ALU

operations is shown in figure 4-8.

56

35

Ratio of ALU Delay over Joined ALU Operations

1-bit 2-bit 4-bit 8-bit 16-bit
Block Width

Figure 4-8 Ratio of ALU Delay overJoined ALU Operations

The points consisting the lower lines'is the design with operation-swapping
mechanism while the higher one is the design without operation-swapping design so
that its ALU 1s uniformly divided into ALU blocks. From the figure, the block width

of 4-bit is a good choice.

4.6. Choosing ALU Width

Performance could be increased if we increase the ALU width since the
opportunities of joining two operations together would be increased. We performed

experiments from ALU of 32-bit width to 64-bit with 4-bit step.

57

Joined ALU Operations with Different ALU Widths

0.35

0.30

0.25

0.20

0.15

0.10

Ratio of Joined ALU Operations

0.05

0.00

32-bit 36-bit 40-bit 44-bit 48-bit 52-bit 56-bit 60-bit 64-bit

ALU Width (bit)

Figure 4-9 Ratio of Joined AL’U Operations with Different ALU Widths

The histogram in figure 4-7 is the inctement compared with the configuration
which is 4-bit narrower than it. When the widths.are 40-bit, 52-bit, and 64-bit, the
number of increased ratio is larger. And in the intervals between 40-bit~48-bit and
52-bit~60-bit, the increases are quite small (less than 0.2). If we extend the ALU, the
source operand and results buses are also widened. Considering the ratio of cost, in

our design, we widen the ALU into 40-bit.

4.7. Final Proposal of the ALU Design

From the experiment results, we have several conclusions on the proposed
design.
1. Operand-merging Mechanism
Bus design is related to the arrangement of ALU blocks. In this work, we

proposed the block-reversed ordering scheme and compared it with the regular

58

ordering scheme. Considering the hardware complexity and timing from the
results in section 4.3, we suggest that the block-reversed ordering scheme is

better.

ii. ALU Block Width

From the perspective of ALU hardware implementation, block width of 4-bit
or 8-bit is commonly used as a basic ALU block due to the adder function. And
from the results in section xxx, in most cases and on average the ratios of joined
operations for block width of 4-bit configuration are similar to those of 1-bit and
2-bit configurations. And 4-bit configuration has apparently better ratio than

8-bit and 16-bit configurations.

iii. ALU Width

From the experiment in section.4:6,-40-bit is a good choice.

iv. Operation Swapping
This technique we proposed in section xx could improve the delay incurred
by the additional multiplexers between the ALU blocks and control lines. It also

simplifies the design of the circuits for sign-extending results.

59

Chapter 5. Conclusion and Future Work

5.1. The Turnaround-based Sharing Mechanism

The turnaround-based sharing mechanism provides high flexibility with little
hardware overhead. Due to its characteristic that no alignment is required, quite small
overhead in both area and delay is incurred. Compared with the shifting approach
with the same flexibility, as the flexibility increases, the reduction becomes more
significant.

A prerequisite for sharing a unit with the turnaround-based approach is that the
unit could perform the joined operation with its operand blocks in turnaround style.
How much effort is required for a unit to support such capability depends on its logic
characteristics. In this thesis, we pattitioned the ALU into blocks. To make the ALU
able to process the joined operation, the majormodification is the re-organize the
carry-chains. Such modifications have ne-significant overhead on area. For a unit
which satisfies the prerequisite, the tutnaround=based sharing mechanism could reveal

high utilization of the chip area.

5.2. Reducing Additional Delay by Avoiding

Unnecessary Partitioning
To reduce additional delay by avoiding unnecessary partitioning is a technique
which benefits from the operation-swapping mechanism. Assuming the ALU is not
widened, we may improve the delay by not partitioning the higher order ALU blocks.
For example, considering a m-bit ALU with the minimal block size n-bit, the widths

of ALU blocks could be 2n, n, ..., n, and % while 2n+n+...+n+%: m.

This is a trade-off between flexibility and circuit delay. For this example, two

61

operations, one requires n-bit and the other requires (m-n)-bit, cannot be joined. The

optimal partitioning could be decided with statistical methods.

5.3. Applying the Design to Architectures with

Shifter Concatenated with ALU

On some architecture the shifter is concatenated with ALU, for example, the
ARM architecture. Unlike partitioning an ALU, the shifter could not easily be
partitioned into two parts to process two operations with different shift amounts. To
achieve the goal, lots of internal bypass logic and wires are required. Furthermore,
considering rotation operation, circuits become much more complex when the input
operands are merged from two operations.

For such architectures, we ¢lassified the joined operation pairs by requirement of
shifter:

1. Both don’t perform shifting

Our datapath-sharing mechanism works fine.

il. One performs shifting and the other does not

We need to add extra bus lines to bypass the shifter for operand bits.

iil. Both performs shifting
Due to our observation, to modify the shifter architecture to support two shift
operations with different amounts is more complex than ALU-sharing. When both
operations requires shifting, we could either leave it as a non-exploitable
combinations or place the shifter which is also designed to be flexibly shared two

operations.

62

Besides, the width-check logic must also consider the shift amount and direction

of the joined operations so that the operand-boundary signals could be correct.

5.4. Clock Gating to Freeze Unused Blocks

In previous researches, the abundance of narrow-operand operations is often
used for clock-gating. With the number of significant blocks, unused ALU blocks
could be gated and easily integrated in this design by adding extra latches. In other
hand, our design could be integrated into such design without too much overhead.
Logic which has similar function with WDL and SXL should already exist in such
architecture. The major cost comes from.the WCL and it amounts to about half an

ALU.

5.5. Future Work

Efficient partitioning mechanisms for shifters and multipliers could make more
types of operations joinable.

Although the significant bit-widths of operations must be determined run-time,
previous research shows this characteristic has spatial locality. If we could profile the
execution behaviors of a program and records the bit-width of each operation, this
information could assist compiler to schedule the program codes.

The dynamically scheduling mechanism considering the significant bit-widths
information in a superscalar architecture is also a topic to efficiently utilize this

design.

63

References

(1) Gabriel H. Loh — Exploiting Data-Width Locality to Increase Superscalar

Execution Bandwidth, Proceedings of 35th Annual IEEE/ACM International

Symposium on Microarchitecture, 2002. (MICRO-35)

(2) R Sheen, S Wang, OTC Chen, Ruey-Liang Ma — Power consumption of a 2's

complement adder minimized by effective dynamic data ranges, Proceedings of the

1999 IEEE International Symposium on Circuits and Systems, 1999. ISCAS '99

(3) D Brooks, M Martonosi — Dynamically Exploiting Narrow Width Operands to

Improve Processor Power and Performance, Proceedings. Fifth International

Symposium On High-Performance. Computer Architecture, 1999

(4) Steve Furber, ARM:System=on=Chip Architecture, 2™ Edition

(5) Wayne Wolf, Modern VLSI Design — System-on-Chip Design

(6] John L. Hennessy and David'A. Patterson, Computer Architecture — A

Quantitative Approach 3™ Edition

(7) LEON?2 Processor, http://www.gaisler.com/products/leon2/leon.html

65

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

