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可被窄寬度運算共用之單一管線資料路徑設計 
 

學生：林聖勳                              指導教授：鍾崇斌 博士 

 

國立交通大學 資訊科學與工程研究所 碩士班 

 

摘要 

 

現今大多數之處理器之架構都採 32 位元或者更高之位元數. 然

而整數運算大多數時間都不會用到資料路徑中完整的寬度. 若將

Source Operand Bus 及 ALU 分割為多組 block, 則此資料路徑便具備

同時處理一道以上運算之能力. 

本論文提出讓單一資料路徑被兩道具備窄寬度特性之指令合用

之設計. 讓其中一道運算之Operand Block以反轉(Turnaround)之次

序, 來達到極有效率之資料路徑合用機制.相較於傳統以直接 Shift

方式, 本設計不論就面積與電路延遲上, 都有較佳之表現. 此外, 

本論文亦提出一縮短 ALU因分割為多組 ALU Block 所造成延遲之設計. 

最後, 本論文提出將此機制整合至一典型五階 MIPS 管線之方式. 
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A Single Pipeline Datapath Design for Joinable Narrow-operand 

Operations 
 
Student: Sheng-Hsun Lin                      Advisor: Dr. Chung-Ping Chung 
 

Institute of Computer Science and Engineering 
National Chiao Tung University 

 

Abstract 
 

Most general-purpose processors and embedded processors have 32-bit word 

widths or wider. However, integer operations rarely need the full 32-bit dynamic 

range of the datapath. If we partition the operand bus, result bus, and ALU into 

several blocks, the datapath could perform more than one operation in parallel.  

In this thesis, mechanisms to join two narrow-operand operations together to 

share a single datapath are proposed. We proposed one novel ALU-sharing scheme by 

turning around operation-block ordering. Efficient designs to merge operands to share 

buses and ALU based on the technique are proposed and discussed. Compared with 

traditional “shift” approach, the turnaround approach has many advantages on area 

and delay. Besides, a technique to mitigate the delay overhead of the partitioned ALU 

by swapping operands is proposed. We also made performance simulation to help 

decide how to partition the datapath. Finally, how to integrate such datapath into a 

MIPS five-stage pipeline and required modifications are discussed.  
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Chapter 1.  Introduction 

Most general-purpose processors and embedded processors have 32-bit word 

widths or wider. However, integer operations rarely need the full 32-bit dynamic 

range of the datapath. In other words, part of the datapath, including part of ALU and 

bus lines, is occupied by redundant bits which are the duplicates of the sign-bit of the 

values. With appropriate partitioning, those parts of datapath could be used by another 

operation. 

 

1.1.  Narrow-Operand ALU Operations 
Bits of a value can be classified into the following two parts: 

i. Significant part 

ii. Insignificant part 

 

Bits which are sufficient to represent the magnitude and its sign (or leading bits 

which are the same with its most significant bit) are called the significant part of the 

value, while the rest of bits in the value are called the insignificant part. 

When performing an operation, bus lines and part of the ALU occupied with 

higher order data bits which belong to the insignificant part of both operands and 

result might always represent the same bit-value with the sign-bit of the significant 

part. In other words, part of the ALU generates result bits identical to the sign-bit of 

the significant part on the result bus lines.  

Assuming an ALU is partitioned into several blocks, an ALU operation whose 

operands and results all have narrower significant part so that at least one ALU block 
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is not necessary for calculating its correct result1 is called a narrow-operand ALU 

operation. 

With appropriate modifications on circuits, including partitioning the ALU and 

buses and additional checking mechanism, another narrow-operand operation could 

be joined into the datapath to exploit the part of datapath which is originally used to 

carry and calculate result for insignificant part of an operation. 

 

1.2.  Significant Bit-width of an ALU Operation 
So how many bits should be reserved for one ALU operation? The required 

bit-width of an operation determines how many bus lines and ALU blocks should be 

allocated. Before execution of an operation, we can obtain the significant bit-width of 

all its operands. From the relationship between the significant bit-widths of operands 

and results, we classify ALU operations into two major types: 

 

i. Operations that won’t increase the number of significant bits 

Bit-wise Logic Operation: 

 Since one bit representing for the leading bit value is reserved, the result of 

a bit-wise logic operation could certainly be “sign-extended” from the bit 

position that we reserved to represent its most significant bit. 

 

00000110
00000010
11111011

+

 
Figure 1-1 a 8-bit XNOR operation 

 
                                                 
1 “Correct” means we can get its full-width result by sign-extending the “narrower” result. 
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ii. Operations that might increase the number of significant bits 

Addition: 

Significant bit-width of the result of an addition operation could be more 

than the maximum bit-widths of its operands due to carry-in.  

 

 

Figure 1-2 A 8-bit add operation 

 

Subtraction: 

The same situation of increased significant bit-width of the result would 

occur under subtraction. 

 

 
Figure 1-3 A 8-bit subtraction operation 

 

Shift / Rotation: 

To estimate the significant bit-width of the result for a shift operation, not 

only the significant bit-width of its operand is required but also the direction it 

shifts to and its shift amount. Besides, to partition a shifter into two or more parts 

to shift for different amounts is more complex than partitioning an ALU into 

ALU blocks. The shift operation is not discussed in this thesis. 

00000001
11111101-
00000100

00001100
00001001+
00010101
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Multiplication: 

The significant bit-width of the result from a multiplication operation can be 

decided from its multiplicand and multiplicator. But multiplication is not very 

frequently used and to partition the multiplier is also more complex than 

partitioning the ALU, how to share a multiplier is not discussed in this thesis. 

 

We focus on the mechanism to efficiently share the buses and ALU only. The 

ALU in our design supports addition, subtraction, and bit-wise logic operations. So 

how do we decide the number of bits which should be reserved for an ALU operation? 

From the two classifications above, for simplicity, the required bit-width of an ALU 

operation is equal to the larger one of the significant bit-widths of operands plus one 

bit. The reserved bit is for the consideration of addition and subtraction. Besides, 

whether the addition or subtraction operation is signed or unsigned, the full-width 

result could be correctly sign-extended. 

 

1.3.  Organization of this Thesis 
In Chapter 2, we described a related work about datapath-sharing and background 

for flexible ALU-sharing. Our motivation and objective are. In Chapter 3, designs 

about sharing the datapath are proposed. Chapter 4 shows the experiments and 

simulation results. A final proposal about designing the ALU is suggested. In Chapter 

5, we summarized our conclusions. 

 



 5

Chapter 2.  Background and Related Work 

 

2.1.  Distribution of Significant Bit-widths of ALU 

Operations 
Before we start to propose possible designs, we first perform some profiling on 

dynamic instruction behaviors. Figure 2-1 shows statistics in dynamic instruction-type 

distributions. The raw data is retrieved from our simulation environment which is 

mentioned in chapter 4. Data-processing instructions which require only ALU in 

execution stage fall into the category of ALU, while those require the shifter are 

classified into Shift category. Data-transferring instructions, such as Load and Store, 

belong to the category Memory. Branch and jump instructions fall into the category 

“Branch”. Instructions performing multiplication and other operations are classified 

into “Misc” category.  

From figure 2-1, we can see that about 50% of executed instructions belong to 

ALU category. Considering instructions classified into Memory2 category, about 70% 

of executed instructions requires ALU3.  

                                                 
2 In our reference model, data-transferring instructions need ALU to calculate their data-address. 
3 Branch instructions have an independent address adder in our reference model. 
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Figure 2-1 Run-time instruction types distributions 

 

Next we perform significant bit-width analysis in performed ALU operations in 

our benchmark suite. Figure 2-2 shows cumulative ratio of executed ALU operations 

by data-processing instructions. 
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Figure 2-2 Cumulative distributions of significant bit-widths of ALU operations in data-processing 
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instructions 

 

As we can see, about 53% of such operations only require half or less width of 

ALU in a 32-bit architecture.  

Figure 2-3 shows the same statistics on ALU operations executed by 

data-transferring instructions. 
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Figure 2-3  Cumulative distributions of significant bit-widths of ALU operations in data-transferring 

instructions 

 

Due to the characteristics of addressing range, most ALU operations performed 

by Load / Store have wider significant part.  

 

Figure 2-4 shows statistics on all executed ALU operations. This is the 

distribution of significant bit-width of ALU operations in a typical 5-stage MIPS-like 

single pipeline machine. 
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Figure 2-4  Cumulative distributions of significant bit-widths of all ALU operations 

 

Although significant bit-widths of ALU operations in data-transferring 

instructions make the overall significant bit-width wider, about 49% of ALU 

operations require less than or equal to 19-bit of actual ALU width. 

 From the profiling results above, if the part of the ALU which is originally 

occupied with insignificant parts could be shared with other ALU operations, we have 

high opportunity to improve the performance. 

 

2.2.  Datapath in Multi-Bitwidth Pipeline 
A single 64-bit datapath design which can perform one 64-bit operation or four 

16-bit operations is proposed in [Loh 2002]. They propose a Multi-Bit-Width (MBW) 

micro-architecture which takes the wires normally used to route the operands and 

bypass the result of a 64-bit instruction, and instead uses them for multiple 

narrow-width instructions. 



 9

They divide the ALU into four 16-bit ALU blocks, each having independent 

function-controls. Operand sources are read from reservation station (RS). Figure 2-5 

shows the bus lines and ALU usage when performing a 64-bit operation. Bus lines of 

each operand and result are divided into four groups in the figure, each group contains 

16 bits of data. 

 

  

 

Figure 2-5 Data path for a single 64-bit instruction 

 

Figure 2-6 shows the bus lines and ALU usage when performing two 16-bit 

operations. Operands of the two operations, j and k, are stored in RSj and RSk. 

Significant bit-widths of both operations are 16-bit and two ALU blocks are to be 

used. Bit 0 to 15 of the operand bus lines are occupied by the lower 16-bit 

operand-bits of operation j and so are the ALU block whose input were the lowest 

16-bit data on the bus. Significant operand-bits of operation k are to be place between 

the 16th to 31st lines. Before operand-bits are put on those lines, they are firstly shifted 

the correct bit-positions.  
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Figure 2-6 Data path for two 16-bit instructions sharing a single 64-bit datapath 

 

This technique increases the effective issue width of a superscalar processor 

without adding many additional wires by reusing already existing datapaths. But it has 

the limitation that only instructions with data-width of 16-bit could share the proposed 

datapath. For two operations, one’s data-width is 16-bit and the other’s is 48-bit, the 

datapath cannot be shared by them.  

 

2.3.  More Flexible ALU-sharing Mechanism 
The approach in the related work limits the significant bit-widths of instructions 

to 16-bit. We could relax the limitation by allowing operations which requires the 

multiples of 16-bits to share the ALU as long as the ALU could accommodate them. 

In the case of partitioning the ALU into four blocks and share by two operations, the 

relationship between possible inputs operand blocks and target ALU blocks is as 

figure 2-74. Those upper B’s mean blocks of operands of the operations. The lower 

B’s means blocks of operands bus belonging to the ALU blocks. 

 

                                                 
4 Similar concepts are proposed in “Value-Based Clock Gating and Operation Packing: Dynamic 
Strategies for Improving Processor Power and Performance”, DAVID BROOKS and MARGARET 
MARTONOSI, 2000. But all operations must be the same. It’s like a dynamic form of SIMD. 
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B0B1B2B3

B0B1B2B3B0B1B2

Blocks of Operation 0Blocks of Operation 1

ALU Operand Bus  
Figure 2-7 Relationship between possible inputs and target blocks 

 

The limitations on data-width could also be relaxed by partitioning the ALU with 

finer granularity, which means the ALU blocks become smaller. For example, if we 

partition an ALU into eight ALU blocks. The number of possible combinations of 

data-widths of joined operations is increased. 

 

But partitioning the ALU into smaller blocks certainly has some effects: 

i. More complex circuits for aligning operands 

In figure 2-8, the figure shows the differences when we partition the ALU 

with doubled number of ALU blocks. 

 

B0B1B2B3B4B5B6B7

B0B1B2B3B4B5B6B7B0B1B2B3B4B5B6

Blocks of Operation 0Blocks of Operation 1

ALU Operand Bus  
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Figure 2-8 Relationship between possible inputs and target blocks of finer granularity 

 

As the block size becomes smaller, the complexity for the bus lines to select 

operand bits increases. If we partition the ALU into n ALU blocks, the complexity of 

the number of inputs is O(n2). And in this case, it only supports sharing by two 

operations. If the ALU is going to be shared by more than two operations, the number 

of possible inputs would significantly increase. 

 

ii. ALU consisting of smaller ALU blocks leads to longer delay 

Another effect is the delay by the carry-propagation between ALU blocks. As we 

divide the ALU into smaller blocks and make the carry-signal propagate serially, the 

critical path could increase. 

 

2.4.  Motivation 
When an operation is going to be joined to share the datapath, if its operand 

blocks occupy ALU blocks with turned around ordering, i.e. its least significant block 

is allocated to the ALU block in the highest block position, then each ALU block 

selects its input blocks from only two possible blocks. Figure 2-9 shows the 

relationship when we partition the ALU into eight blocks. 
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Figure 2-9 Turnaround approach 

 

 The complexity of the number of inputs now becomes O(n). With the same 

flexibility, the required circuit for aligning operand blocks is significantly reduced. 

 

2.5.  Objective 
In this work, we focus on sharing an ALU by two operations. The ALU in this 

thesis supports addition, subtraction, and bit-wise logic operations only. We designed 

a mechanism to share the buses and ALU in one single pipeline datapath by two ALU 

operations with: 

i. High utilization of ALU and buses by flexible sharing 

ii. Low overhead on space 

 

Modifications on other part of datapath to integrate the design into a single 

pipeline are proposed to make the whole mechanism work. 
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Chapter 3.  Design 

 

3.1.  Overview of Datapath-Sharing 
In this section, we discussed about issues that must be considered when sharing 

one single pipeline datapath by two ALU operations. In the following discussions, our 

reference machine is a five-stage MIPS-like pipeline. 

 

3.1.1. Constraints for Joining Two Instructions 

When joining operations from two instructions, there are some constraints 

between the two instructions. These constraints come from structural hazards and data 

hazards. 

 

3.1.1.1. Structural Hazards 

Structural hazards arise from resource conflicts when the hardware cannot 

support all possible combinations of instructions simultaneously. Our design shares 

the ALU in one single pipeline datapath by two operations. In some cases the datapath 

can accommodate two operations and in other cases it cannot. This is determined by 

whether the ALU blocks could accommodate the two operations. Such procedure is 

called Width-Check. The width-check could be performed when information about the 

significant bit-widths (or blocks) for each operand is available. The width-check 

should be completed before we merge the operand blocks to share the ALU. 

Except sharing the ALU and the operand / result buses, we did not duplicate 

other units such as data memory in current design, so we must make sure that no other 

resource conflicts exist between the two instructions except ALU and the operand / 
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results buses. This procedure is called Type-Check in our design. This could be 

performed by checking the opcode fields of incoming instructions while decoding. 

 

3.1.1.2. Data Hazards 

Since the two operations are executed in parallel, there must be no 

data-dependencies between the two. To illustrate the relationship among operations, 

we consider operations i, j, and k, with i occurring before j in program order. There 

are three types of data hazards that we should consider: 

 

RAW (read after write): 

Since the two operations are executed in parallel, if there exists RAW between i 

and j, i should be performed alone. In next cycle, operation j could be performed due 

to the availability of its operand value. 

 

WAW (write after write): 

When i and j are executed in parallel and try to write the same destination, the 

WAW may arise. Since no out-of-order execution in our design is adopted, the WAW 

hazards should not occur. 

 

WAR (write after read) 

When j tries to write a destination before it is read by I, WAR would arise. In our 

design, we only check two consecutive instructions to see when they can be joined. 

This is a static issue pipeline so that WAR will never happen since operands of the 

two operations are read simultaneously in ID stage. 
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Summarize the discussion above. When performing data-dependency check, we 

only have to make sure that there exist no RAW dependencies between the two 

operations. The data-dependency check could also be performed by checking the 

destination register filed of i and source register field of j while instruction-decoding. 

 

3.1.2. How ALU is Shared by Two Operations 
To share a single ALU by two different operations, we divide the ALU5 into 

several ALU blocks and bits of operands are also grouped into blocks according to 

their bit-positions. Each ALU block has its own function-select signals. When the 

ALU is going to be shared by two operations, four m-bit operands from the two 

operations are first merged into two n-bit operands by OML (operand-merging logic). 

The merged n-bit operands are input to the ALU. The output n-bit result consists of 

result blocks from the two operations. Before the results are written into register-file 

or used as address to data-memory, the results must be sign-extended to full-width 

results by SXL (sign-extending logic). 

 

ALU

O
M

L
O

M
L

SXL
SXL

A Operand of Operation 0

B Operand of Operation 0

A Operand of Operation 1

B Operand of Operation 1

Result of Operation 0

Result of Operation 1

Operand-boundary Signals

m-bit

m-bit

m-bit

m-bit
m-bit

m-bit

n-bit

n-bit

n-bit

 

Figure 3-1 Block diagram of sharing the ALU by two operations 

 

Extra control signals are required for the OML, ALU, and SXL to known which 

                                                 
5 The ALU in our design performs addition, subtraction, and bit-wise logic operations 
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blocks belong to which operation. Such signals are named after operand-boundary 

signals. 

 

3.1.3. Possible Modifications in a Five-stage 

MIPS-like Pipeline 
Now we propose how these mechanisms could be possibly integrated into a 

five-stage MIPS-like pipeline.  

 

Instruction-Fetch: 

 Since we are able to perform two ALU operations, up to two consecutive 

instructions are fetched. An instruction queue with two entries (entry 0 and 1 – the 

instruction in entry 0 are before the instruction in entry 1 in program order) is required. 

When only one (the instruction originally in entry 0) is consumed in previous cycle, 

the instruction originally in entry 1 is moved to entry 0 and the fetcher fetches one 

instruction and put it into entry 1. If the two instructions can be joined, then next two 

instructions are fetched and put into the queue. 

 

Instruction-Decode: 

 We have to add one extra instruction-decoder for the additional instruction that 

might be joined. Logic for the additional decoder could be simpler than a regular 

instruction-decoder since the decoder doesn’t have to recognize all types of 

operations – only operations that require ALU during execution stage must be 

recognized. Besides, the type-check and data-dependencies check should be 

performed while instruction-decoding. 

Operand-reading is also performed in this stage. Before we perform the 
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width-check to make sure the ALU is able to accommodate the two operations, the 

number of significant blocks of each operand is required. Since the data-width of each 

operand must be decided dynamically, we could obtain the number of significant 

blocks of each block when it’s read out from register-file or the immediate filed in 

instruction words. The procedure which determines the number of significant blocks 

of a value is called width-determination and performed by WDL 

(Width-Determination Logic) in our design. The results from WDL are sent to 

width-check logic. In this stage, we should perform three checks – type-check, 

data-dependency check, and width-check. Only when all the three checks are passed 

the two operations can be joined. Whether the two operations can be joined must 

inform the instruction-fetcher so it can correctly update the instruction queue. 

In this stage, the operand-boundary signals must also be generated so that in the 

latter stages the logic involved with the two joined operations could function 

correctly. 

 

Execute: 

 Operands from the two operations are merged and put on the operand bus to the 

ALU. Before input to ALU, the merged operands might be swapped. 

 

Memory Access and Write-back: 

Since results are also joined, so they should be separated and sign-extended 

when sending address to memory address port and writing back to register-file. How 

the joined results should be sign-extended is decided by operand-boundary signals. 

 

In the following sub-sections, we have closer discussions about the design. 
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3.2.  Modifications in Instruction-Decode Stage 

3.2.1. Type-Check and Data-dependency Check 
An additional instruction-decoder for the instruction that might be joined is 

required. The decoder checks the opcode in the instruction word and to see if it falls 

in the type that could be joined or not. 

The type-check and data-dependency check are performed while 

instruction-decoding. Since the information that is required for performing these two 

checks all exists in instruction words, the two checks can be performed in the early 

half-cycle in ID stage. If one of the two checks fails, the two instructions cannot be 

joined. Each of the check outputs a signal to represent whether it passed. The signals 

are useful for width-check for generating operand-boundary signals and have 

influences on instruction-fetching. 

 

3.2.2. Width-Check 
Besides type-check and data-dependency check, width-check is performed in ID 

stage. The information that the width-check needs is the number of significant blocks 

for each operand and the results from type-check and data-dependency check. The 

width-check logic generates operand-boundary signals according to whether the two 

operations can be joined together. 

 

3.2.2.1. Width-Determination Logic 
Width-determination logic is used to decide the number of significant blocks of a 

value. The significant bits of a value should be sufficient to represent its magnitude 
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and sign (or its most significant bit). But according to our observation, to correctly 

sign-extend the result to full-width, the required bit-width of an operation should be 

the maximal significant bit-width among its operands plus one bit. So the 

width-determination logic checks how many blocks are required to accommodate the 

significant bits of a value plus one bit. 

 To determine the bit-width of a value, we must know that beginning from the 

most significant bit in the value to the least significant bit, at which bit-position the bit 

value firstly differs from the most significant bit. Once we found the bit-position, say 

bit i, we know that the significant bit-width of the value is i+3. (If i+3 exceeds the 

word width of the architecture, then the significant bit-width should be the full-width 

of the architecture.) Such function can be simply achieved by exclusive-OR each bit 

with the bit value of most significant bit and connect result to a priority-encoder. The 

output from the priority encoder plus 3 is the significant bit-width we defined. 

In our design, each bit in a value is divided into several blocks according to its 

bit position. Assume a value is divided into m blocks (from block 0 to block m-1) and 

each block has a fixed size n. A block might be insignificant when the n bits within it 

all have the same values. But simply checking the n bits is not enough, it can only 

tells between whether this block might fall in the bit-range to represent the magnitude. 

In our definition, besides bits to represent the magnitude, we have to reserve two bits. 

For block i, only when the n bits in block i and the highest two bits in block i-1 all 

have the same bit value, block i could be insignificant. If we check only the highest 

bit in block i-1, when we try to sign-extend result from the highest bit in block m-1 

could be incorrect due to carry in an addition operation that changes the bit-value of 

the bit-position which we originally regard as the correct bit for sign-extension. 
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Figure 3-2 Logic functions for generating BR signal 

 

Assume we have a bit with its highest order bit which differs from the most 

significant bit at bit j. Bit j falls in the bit-range of block k. The BR signals of block 

k+2, k+3, …, m–1 must all be unset since all the bits within them are all the same. 

1kBR +  is unset only when ( 1)* 2j k n< + −  and is set only when ( 1)* 2j k n≥ + − , 

i.e. the highest two bits in most significant block must be the same with the most 

significant bit of the full-width value. Figure 3-3 shows the logic for generating a BR 

signal. The “One-Detection” logic is logically a NAND gate. The “Zero-Detection” 

logic is logically a NOR gate. 

 

Bit i*4+3
Bit i*4+2
Bit i*4+1
Bit i*4

Bit (i-1)*4+3
Bit (i-1)*4+2

...
...

BR i

...
...

...
...

 
Figure 3-3 Logic to Generate BR Signals 

 

 Beginning from 1mBR − , one we find the first BR which is set, say kBR , then block 
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k, block k-1, …, block 0 all belong to significant blocks. If we connect those BR 

signals to a priority encoder, then its output is an encoded value which represents the 

number of significant blocks of the value. 

 

The priority encoder encodes the input BR signals as the following rules: 

 

Input BR Signals 

BRm-1 BRm-2 … BR1 BR0 

Encoded Output Value 

(Number of Significant Blocks) 

1 x xxx x x m-1 

0 1 xxx x x m-2 

…… … 

0 0 0 1 x 1 

0 0 0 0 1 0 

Table 3-1 Function of priority encoder for width-determination logic 

 

Figure 3-4 shows the block diagram of the width-determination logic. 
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BR
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Blocks

…
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Figure 3-4 Width-Determination Logic 
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Figure 3-5 shows the schematic of priority encoder in Width-Determination 

Logic. 

 

 

Figure 3-5 Schematic of the Priority Encoder 

 

The delay of width-determination logic is proportional to the block size n and the 

number of blocks, m. The actual delay of WDL in .18 um process technology is about 

0.47ns when m=10 and n=4. However, the numbers of significant blocks generated by 

width-determination logic is required for width-check. If we always perform 

width-determination when operands are ready from register-file, then the width-check 

may not fit in the ID stage. In the load / store architecture, operands come either from 

register-file or immediate field in instruction word and writing a value into 

register-file usually requires shorter time than reading. If we perform 

width-determination when a value is written into the register-file and store the number 

of significant blocks in extra fields in register-file, then the delay between 

register-read and width-check could be removed. 
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3.2.2.2. Operand-boundary Signals 
The operand-boundary signals are used to represent how two operations share 

the ALU and bus. It indicates that from which block the joined operation starts to 

occupy. Thus the operand-merging logic (OML), ALU, sign-extending logic (SXL) all 

needs the operand-boundary signals.  

Operand-boundary signals are generated by width-check logic. The number of 

conditions it represents amounts to the number of partitioned operand-blocks.  

 

Rules to decide the operand-boundary signals: 

Assumption: 

Operation i requires x blocks 

Operation j requires y blocks 

ALU is partitioned into m blocks with the same size 

(x and y must be less than or equal to m) 

 

If x + y ≤ m and both type-check and data-dependency check passed, 

operand-boundary signal is set to x – 1. The first x blocks are occupied by operation i 

and the rest are for operation j. 

If x + y > m or type-check or data-dependency check does not pass, then 

operand-boundary signal is set to n – 1, which means all blocks are allocated to 

operation i. 

 

There exists decoding logic to generate control for each block in OML, ALU, 

and SXL. The decoding logic generates control signal as the following table: 
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Operand-boundary 

Signals 

Signal for 

block m-1 

Signal for 

block m-2 

…… Signal for 

block 2 

Signal for 

block 1 

Signal for 

block 0 

m-1 0 0 … 0 0 0 

m-2 1 0 … 0 0 0 

… …… 

2 1 1 … 0 0 0 

1 1 1 … 1 0 0 

0 1 1 … 1 1 0 

Table 3-2 Function of decoding operand-boundary signals 

 

 For OML, the decoded signals can be used to select blocks from operation i 

(when the signal = 0) or operation j (when the signal = 1). For each ALU blocks, the 

decoded signals can be used to select function-select signals and carry-in sources. For 

SXL, these decoded signals can be used to indicate the block value should be directly 

bypassed or filled with sign bits. 

 

3.2.2.3. Width-Check Logic 
Width-check logic is used to determine whether two operations can be joined by 

checking the limitation of ALU width. Its inputs are number of significant blocks of 

operands and the result of type-check and data-dependency check. It outputs the 

operand-boundary signals. 

The width-check first decides the required number of blocks for each operation – 

which is identical to the larger number of significant blocks of its operands. Then 

required numbers of blocks for the two operations are added together to see if it 
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exceeds the number of ALU blocks. Finally, the width-check logic generates 

operand-boundary signals. 
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Figure 3-6 Block diagram of the Width-Check Logic 

 

Figure 3-6 shows the block diagram of the width-check logic. The widths of the 

bold lines are identical. Assume we divide the operands into m blocks. In the figure, 

SBN means number of significant blocks. SBN is generated by Width-Determination 

Logic. SBN0A means the number of significant blocks of A operand of operation 0. 

The SBN signals are sent into a comparator (CMP) to tell which one is larger. Since 

the larger one could represent the number of required blocks for the operation. The 

CMP generates a select signal for the mux to choose output between the two SBNs. 

Then the number of required blocks of the operation is selected from the larger SBN 

and called RBN. 

To compare two SBN, the delay of CMP logic varies with 2log m and the fan-in 

of logic gates. The output equation of the CMP logic is whether SBNA is greater than 

SBNB. The Boolean equation is  
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1 1 1 2 2 1 2 1 0 0A B n n n n n n nSBN gtSBN a b i a b i i i a b− − − − − − −= + + +" "  

Where logn m= ⎡ ⎤⎢ ⎥ , k k ki a b= ⊕ ,  

 

For the case when m=8,  

2 2 2 1 1 2 1 0 0A BSBN gtSBN a b i a b i i a b= + +  

 The schematic of the CMP logic is shown in figure 3-7. 

 

 

Figure 3-7 Schematic of CMP Logic 

 

 Then the mux could choose the larger one between SBNA and SBNB to represent 

the number of required blocks of the operation. We call the number of required blocks 

of an operation RBN. After choosing the numbers of required blocks for the two 

operations, they are sent to logic to check whether the two belong to combinations 
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that the ALU can accommodate. The check is performed with the RBN Check logic 

according to the following equation. 

0 1 2RBN RBN m+ ≤ −  

Take the case when m=8 for example. The RBN check is passed when the 

following conditions occurs. 

 

RBN0 RBN1 

110 000 

101 000, 001 

100 000, 001, 010 

011 000, 001, 010, 011 

010 000, 001, 010, 011, 100 

001 000, 001, 010, 011, 100, 101 

000 000, 001, 010, 011, 100, 101, 110 

Table 3-3 Possible RBN combinations when m = 8 

 

 

Figure 3-8 Schematic of the RBN check logic (m = 8) 
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If the RBN passed and both type-check and data-dependency check passed, the 

operand-boundary signals are set to the RBN of operation 0. Otherwise, the 

operand-boundary signals are set to m-1, which means all ALU blocks are occupied 

by operation 0. 

 

3.3.  Modifications in Execution Stage 
When the ALU is going to be shared by two operations, four m-bit operands 

from the two operations are first merged into two n-bit operands by OML 

(operand-merging logic). The merged n-bit operands are input to the ALU. Before the 

n-bit results are written into register-file or used as address to data-memory, they are 

sign-extended to full-width results by SXL (sign-extending logic). 

Based on our observation, for sharing the ALU blocks by two operations, one 

operation occupies ALU blocks in regular ordering and the other does in turned 

around block ordering to increase the flexibility of sharing. In following sub-sections, 

we will show the design based on the turn-around approach. 

 

3.3.1. Deciding the Block Width 
The first decision we met is how to group operand bits into blocks. Should every 

block have the same size? From the observation on significant bit-width distribution 

in chapter 2, there’s no obvious tendency towards some specific bit-width. So bits in a 

value are uniformly grouped into blocks with the same size in our design. From the 

block width of operand blocks, we can infer the minimal ALU block width so that the 

ALU could satisfy the granularity. To deserve to be mentioned, unlike operand blocks, 

the ALU does not always need to be partitioned into ALU blocks with the same width. 
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This issue will be discussed in section 3.3.3.1. Now we assume each ALU blocks has 

the same width that is identical to the width of an operand block. 

 So what width is good considering both circuit delay and the flexibility to fully 

use the ALU? As the block width goes narrower, the flexibility increases but circuit 

delay may also become longer. To make the decision, related experiments are 

performed in chapter 4. 

 

3.3.2. Merging Operands from Two Operations 
Assume we divide the ALU into n blocks and two operations, operation 0 and 

operation 1, which can be joined together. To merge operand blocks of operation 1 

with the significant blocks of operation 0, extra 2-to-1 multiplexers to select operand 

bits from operation 0 and operation 1 are required. Those multiplexers are controlled 

according to operand-boundary signals. Those multiplexers are grouped into eight 

groups, from multiplexer group 0 to multiplexer group n-1. Inputs to the multiplexer 

group 0 are operand block 0 of operation 0 and operand block n-2 of operation 1; 

inputs to the multiplexer group 1 are operand block 1 of operation 0 and operand 

block n-3 of operation 1 and so on. 

 

B0B1B2B3B4B5B6B7

B0B1B2B3B4B5B6B7B6B5B4B3B2B1B0

 

Figure 3-9 Possible operand blocks with turn-around approach when n = 8 

 

 In figure 3-10, relationship between operand blocks and the grouped 
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multiplexers are shown. 

 

 

Figure 3-10 Logic to merge operand blocks with turn-around approach when n = 8 (each mux consists 

of several 2-to-1 multiplexers) 

 

 Due to the turn-around approach, there exists no alignment problem so that the 

circuits are so simple. 

 The logic for merging operands from two operations is called OML 

(Operand-Merging Logic) in our design. Figure 3-11 shows the block diagram. 
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Figure 3-11 Block diagram of OML 
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 The OM Decoder decodes Operand-boundary signals and generates S signals to 

control OM blocks so that they select the correct blocks from input blocks. Each 

block has an independent S signal. The relationship between S signals and 

operand-boundary signals is as table 3-2. A sample logic diagram for generating S 

signals for five blocks is shown in figure 3-12. 

 

 

Figure 3-12 OM Decoder Logic 

 

The design of an OM block is shown in figure 3-13.  
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Figure 3-13 OM Block 

 

3.3.3. ALU in the Turnaround Approach 
Since the ALU is performing two operations, function-select signals for two 

operations are required. When the ALU is shared by two operations, function-select 

for ALU blocks in higher positions differs from that for ALU blocks in lower 

positions. To reuse the existing lines for function-select signals, we put function-select 

signals for the two operations on two ends of the lines and pass-transistors are put in 

the lines to “cut” the two function-select controls at appropriate position. the 

relationship between function-select lines, pass-transistors, and ALU blocks is shown 

in figure 3-14. 
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Figure 3-14 Function-Select Lines, Pass-Transistors, and ALU Blocks 

 

The CS signals are used to control the pass-transistors so that the signals on the 

lines could be stopped at appropriate position. The CS signals are generated according 

to operand-boundary signals and the mapping is shown in table 3-4. 
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Operand-boundary 

Signals 

CS m-1 CS m-2 …… CS 2 CS 1 CS 0 

m-1 0 1 … 1 1 1 

m-2 1 0 … 1 1 1 

… …… 

2 1 1 … 0 1 1 

1 1 1 … 1 0 1 

0 1 1 … 1 1 0 

Table 3-4 Function of CS Decoder 

 

 The PTs is a group of pass-transistors controlled by a single CS signal. The logic 

for generating CS signals in shown in figure 3-15. 

 

 

Figure 3-15 CS Generating Logic 
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A PTs is shown in figure 3-16.  

cs i

Function-select Lines  

Figure 3-16 Schematic of a PTs 

 

The turnaround ordering of the joined operand blocks has no effect on bit-wise 

operations but its does on addition. The direction of carry-chain for the joined 

operation is different from traditional designs. Carry-signal is propagating from 

higher stage of ALU block to lower stage. So the carry-in signal is the carry-out from 

its precedent stage if the ALU block is working for operation 0. If the ALU block is 

working for operation 1, its carry-in signal is the carry-out from its following stage. 

Figure xxx shows the directions of carry-propagating between ALU blocks. Figure 

3-17 shows the direction of carry-propagation. The ALU is divided into eight blocks. 

Operation 0 requires 2 blocks and operation 1 requires 6 blocks. 
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Figure 3-17 Directions of carry-propagation in turnaround ordering scheme 

 

A multiplexer is placed at the carry-in port of each ALU block as figure 3-18 to 

accomplish the requirement. 
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Figure 3-18 Multiplexer to select carry-in sources for block-reversed ordering 

 

Those multiplexers could incur additional delay. The worst case delay of ALU 

with such organization occurs when the ALU is not shared by two operations, i.e. the 
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carry signal propagates from the lower order block to the highest order block.  

Besides extra circuits to accelerate the generation of carry signal, we also 

propose an enhancement design by avoiding unnecessary partitioning the ALU. 

 

3.3.3.1. Operation Swapping 
Observing the ALU block requirements, we found that when the ALU can be 

shared by two operations, one operation must require less than or equal to half width 

of the ALU and the other operation must require larger than or equal to half width of 

the ALU. If we always put operand blocks of the operation which is allocated wider 

width of ALU at the lower stages of the ALU, the implementation of the lower half of 

ALU can be one large ALU block.  

 

 

Figure 3-19 ALU organization for operation-swapping 
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Not only extra circuits and wires for function-selecting and selection of carry-in 

sources are simplified, but also the worst case delay of the ALU could be reduced. 

To achieve such function, following signals are affected: 

i. Block-ordering of the input operands should be turned around 

ii. ALU control signals of the two operations should be swapped 

iii. Destination register indexes are swapped 

iv. Signals which decide the boundary of the two operations need to be 

re-mapped 

 

Logic for changing the signals above is not complex since they are all two-to-one 

mappings and the block diagram of the unit is shown in figure 3-20. 
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Figure 3-20 Block Diagram of the Operation-Swapping Logic 
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Figure 3-21 Schematic of OS Gen Logic 
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Figure 3-22 Schematic of the OS Switches 

 

Although the operation-swapping mechanism reduces the number of ALU blocks, 

the lines that the operand-boundary requires might not be reduced. If we divide the 

operands into m blocks with the same size, 2log m⎡ ⎤⎢ ⎥  lines are required. By adopting 

the operation-swapping mechanism so that half-width of the ALU is implemented as a 

block, the conditions become to 1
2
m
+ . The number of required lines is 

2log 1
2
m⎡ ⎤⎛ ⎞+⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

 and thus it may not decrease. 
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3.3.3.2. Widening the ALU 
The total number of ALU blocks is a constraint for joining another operation. 

From our profiling on bit-width distribution, in a single pipeline machine, some ALU 

operations are used to calculate effective addresses by load / store instructions. It 

raises the bit-width distribution so that about half of ALU operations requires less 

than or equal to 19-bit. We can relax the limitation by appending extra ALU blocks. 

As for how wide the ALU should be extended, we performed some performance 

simulations. Based on the result of simulation, a recommended ALU width 

considering the increased ratio of performance improvement over increased ALU 

hardware is proposed. 

The widened part of ALU won’t increase the maximal delay of the ALU since 

the longest delay still occurs when only one operation is using the ALU. Besides, the 

extended ALU blocks could be implemented as a single block. And widening the ALU 

won’t increase the number of conditions that the operand-boundary signals should be 

able to represent. 

 

3.4.  Modifications in Memory Access and 

Write-back Stage 
Results of the two joined operations are also joined together on the result bus. 

Before any units, such as register-file or memory, requires the result, it should be 

sign-extended to full-width results. How it is sign-extended is determined by the most 

significant bit in its most significant block. 
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3.4.1. Sign-extending the Joined Results 
To sign-extend the joined results to full-width results, the sign-extending logic 

must know 

i. The correct sign-bit for extending 

ii. Which block should be filled with sign bits and which block should simply be 

bypassed 

 

Each result block which might contain significant bits or should be 

sign-extended is connected to an Sign-Extending Block (SEB), which is controlled by 

a pass signal and sign-bit signal. When the pass signal is set, the SEB passes the block. 

When the pass signal is not set, the SEB fills the output with the sign-bit. The 

schematic of a sign-extending logic is shown in figure 3-23. 

 

 
Figure 3-23 Schematic of Sign-Extending Block 
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The sign-bit could be decided from the most significant bit in the most 

significant block. The logic for select sign-bit according to operand-boundary signals 

and most significant bits in possible blocks is shown in figure 3-24. 

 

 

Figure 3-24 Schematic of Sign-bit Generating Logic 

 

 The logic for generating pass signals according to operand-boundary signals to 

each sign-extending block is shown in figure 3-25. 

 

Figure 3-25 Schematic of Pass Generating Logic 
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3.5.  Integrating the Design into a Five-stage 

MIPS-like Pipeline Datapath 
Where the mechanism should be integrated into the pipeline datapath is 

discussed in previous sub-sections, in figure 3-26, we show the possible organization. 
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Figure 3-26 A possible pipeline datapath design 

 

The instruction-fetch is not shown due to it has no significant difference with a 

dual-issue machine. In such organization, extra fields in register-file are used to store 

the numbers of significant blocks of values. Two instructions are firstly performed 

with type-check and data-dependency check and pass the result to WCL (width-check 

logic). The WCL also gets the information of numbers of significant blocks from 

register-file and that of the immediate value. Then it generates the operand-boundary 

signals. The operand-boundary signals control the OML (operand-merging logic), 

ALU, and SXL (sign-extending logic). Finally, when the results are written into 

register-file, the WDL (width-determination logic) calculate the significant blocks of 

values and write them into register-file. 
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 But delay by the width-check logic may still be too long to be fit in the latter-half 

cycle of ID stage. For this concern, we could put the WDL, WCL, OML, and OSL 

into a dedicated stage. 
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Figure 3-27 A possible pipeline datapath design with six-stage (the IF stage is not shown) 

 

Putting the WDL and WCL together has another advantage – the logic for 

performing width-determination and width-check could be simplified and the delay 

could be shorter. Figure 3-28 shows the block diagram of simplified logic for 

width-determination and width-check. 
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Figure 3-28 Simplified width-check logic in the six-stage design 
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Assuming the operands are divided into m blocks. The RBS signals are generated 

by RB generator in the width-determination logic. In the RBS signals, bits 

corresponding to block that might be required are set. By performing the bit-wise OR 

operation between RBSs of the two operands of an operation, the result bits could 

represent which block are actually required by the operation. 

The result bits output from the first bit-wise logic could be 0…01XXXX where 

the leading 0’s comes from the insignificant part and the 1XXXX comes from the 

significant part. If we could change the value into 0…011111 and perform bit-wise 

OR operation with the result bits of the other operation with turnaround bit-ordering, 

we’re able to recognize which block is actually occupied by any of the operations.  

The bit-filling logic is used to set the bits which belong to significant parts. Its 

input and output relationship is in table 3-5. 

 

Input RB Signals Output bits 

bm-1 bm-2 … b1 b0 bm-1 bm-2 … b1 b0 

1 X … X X 1 1 … 1 1 

0 1 … X X 0 1 … 1 1 

…… … 

0 0 … 1 X 0 0 … 1 1 

0 0 … 0 1 0 0 … 0 1 

Table 3-5 Function of bit-filling logic 

 

But the bit-filling logic for the two operations cannot be identical. If they are 

identical, for two operations both requires 
2
m blocks, the result bits by bit-wise OR 

will all be set and regarded as that the width-check failed. So the mapping by the 
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bit-filling logic used for the other operation must differ by shifting the result one bit 

so that when the  

 

Input RB Signals Output bits 

bm-1 bm-2 … b1 b0 bm-1 bm-2 … b1 b0 

1 X … X X 0 1 … 1 1 

0 1 … X X 0 0 … 1 1 

…… … 

0 0 … 1 X 0 0 … 0 1 

0 0 … 0 1 0 0 … 0 0 

Table 3-6 Function of bit-filling logic’ 

 

By the following function we could know whether these two operations can pass 

the width-check. 

( ) ( ) ( )1 2 1 2 1 2
1 0 2 1 0 1m m mpass b b b b b b− − −= + + +i i"i  

i
jb means block j of operation i 

The area and delay by the width-determination logic and width-check logic can 

be reduced. Besides, if the two operations can be joined, the decoded 

operand-boundary signals for controlling OML are the inverted bits from the 

bit-filling logic! 
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Chapter 4.  Experiments 

4.1.  Goals of Our Experiments 
In the experiments, we’ll compare two different operand-merging mechanisms, 

one is turnaround-based and the other is shifting-based, from area and circuit delay. 

 We also wish to choose parameters for designing the ALU. We’ll find the 

suitable ALU block width by considering both ALU delay and the utilization of ALU. 

Simulation for execution-time reduction with different ALU block width is also 

performed.  

Another ALU design issue is how width the ALU should be? Since increasing 

the ALU width could improve the opportunity of joining two operations together, we 

observe the effects on wider ALU width over ratio of increased ALU bits to make the 

conclusion. 

 

4.2.  Simulation Environment 
Synthesis Environment and Constraints 

Tool: Synopsis Design Compiler 

Technology:.18um 

Operating voltage: 1.62V 

Working frequency: 166Mhz 

 

ALU Implementation: 

Provides ADD / AND / OR / XOR. 

Adder is implemented as carry-lookahead adder blocks with ripple 

carry-propagating. 
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Software Simulation Environment 

ISA: SPARC v8 

Assuming no cache misses 

Benchmark: MiBench Suite 

Simulation Methodology: 

Generate instruction-trace with significant bit-width information from 

ArchC Simulator. Statistics about execution cycles and number of joinable 

operations is gathered from traces. 

 

4.3.  Comparison between Different 

Operand-Merging Schemes 
Based on different ALU-sharing schemes, the turnaround-based and traditional 

shift-based, the circuits for merging operands differs since the shift-based approach 

has the requirement for shifting the joined operands to correct position while the 

turnaround-based approach does not.  

Although in our design, the circuit for merging the operand bits is implemented 

in pass-transistor logic, it cannot be estimated in cell-based design. This experiment is 

implemented with logic gates so that the results only show the trends of the difference, 

NOT the actual areas of the OML. 

Figure 4-1 shows the area requirements under different block widths with the 

two approaches. 
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Figure 4-1 Area overhead of circuits to merge operands 

 

As we can see, the turnaround-approach has quite little area overhead over the 

shift-based scheme. As the block width goes finer, the difference in area overhead 

becomes grater. 

 Figure 4-2 shows the delay of the operand-merging logic under the two 

approaches. 

  

Figure 4-2 Delay of circuits to merge operands 
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Turnaround-based approach also has advantage on delay over the shift-based 

approach as granularity goes finer. From figure xxx, the delay of turnaround-based 

approach has only little improvement over the shift-based approach. This is because 

the major delay comes from the decoder logic for controlling switches when the 

block-width is wider than 4-bit, i.e. eight blocks. 

 Figure 4-3 shows the area and delay reduction by turnaround-based approach 

over the shift-based version. 

 

Figure 4-3 Reductions of Turnaround approach over shift approach 
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for shift-based approach. 

Figure 4-4 shows the delay of operation-swapping mechanism with different 

ALU block widths. We also shows the delay when we adopt such mechanism on 

shift-based approach. 

 

Figure 4-4 Delay of Operand-Swapping Logic 
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Figure 4-5 shows the area overhead of operation-swapping logic6. 

                                                 
6 The OSL in this experiment is implemented with logic gates. The results are NOT the actual areas of 
the OSL. 
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Figure 4-5 Area of Operand-Swapping Logic 
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the ALU block smaller would also increase the delay of the ALU circuit.  

In this section we’ll choose a suitable block width for the consideration of both 

circuit delay and the capability of bit-utilization of the ALU in optimal case. Under 

uniform distribution, for the block width n, the insignificant bits in the most 

significant block of an operation is 
2
n . For a m-bit ALU, the average utilized bits in 

optimal case is 
2 2
n nm − − . We choose a suitable block width by the ratio of circuit 

delay over the average utilized bits in optimal case. Figure xxx shows the result. 
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Figure 4-6 Ratio of delay over averaged utilized bits in optimal case 

 

As we can see, without the operation-swapping mechanism, ALU block width of 

8-bit has the lowest ratio. But by adopting the operation-swapping mechanism, block 

width of 4-bit and 8-bit has similar ratios. 

Widths of ALU blocks affect the combination flexibility of different 

operand-widths. We replayed the instruction traces to see how this factor affects the 
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number of joined ALU operations. 
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Figure 4-7 Ratio of joined ALU operations with different ALU widths 

 

 

As we expected, ALU block width of 1-bit has most and ALU block width of 

2-bit has similar ratio with 4-bit configuration. 8-bit and 16-bit configurations have 

apparently lower ratios than configurations of finer granularities. Taking the worst 

case delay of the ALU into account, the ratio of ALU delay over joined ALU 

operations is shown in figure 4-8. 
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Figure 4-8 Ratio of ALU Delay over Joined ALU Operations 

 

The points consisting the lower lines is the design with operation-swapping 

mechanism while the higher one is the design without operation-swapping design so 

that its ALU is uniformly divided into ALU blocks. From the figure, the block width 

of 4-bit is a good choice. 

 

4.6.  Choosing ALU Width 
Performance could be increased if we increase the ALU width since the 

opportunities of joining two operations together would be increased. We performed 

experiments from ALU of 32-bit width to 64-bit with 4-bit step. 
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Joined ALU Operations with Different ALU Widths
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Figure 4-9 Ratio of Joined ALU Operations with Different ALU Widths 

 

The histogram in figure 4-7 is the increment compared with the configuration 

which is 4-bit narrower than it. When the widths are 40-bit, 52-bit, and 64-bit, the 

number of increased ratio is larger. And in the intervals between 40-bit~48-bit and 

52-bit~60-bit, the increases are quite small (less than 0.2). If we extend the ALU, the 

source operand and results buses are also widened. Considering the ratio of cost, in 

our design, we widen the ALU into 40-bit. 

 

4.7.  Final Proposal of the ALU Design 
From the experiment results, we have several conclusions on the proposed 

design. 

i. Operand-merging Mechanism 

Bus design is related to the arrangement of ALU blocks. In this work, we 

proposed the block-reversed ordering scheme and compared it with the regular 
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ordering scheme. Considering the hardware complexity and timing from the 

results in section 4.3, we suggest that the block-reversed ordering scheme is 

better. 

 

ii. ALU Block Width 

From the perspective of ALU hardware implementation, block width of 4-bit 

or 8-bit is commonly used as a basic ALU block due to the adder function. And 

from the results in section xxx, in most cases and on average the ratios of joined 

operations for block width of 4-bit configuration are similar to those of 1-bit and 

2-bit configurations. And 4-bit configuration has apparently better ratio than 

8-bit and 16-bit configurations. 

 

iii. ALU Width 

From the experiment in section 4.6, 40-bit is a good choice. 

 

iv. Operation Swapping 

This technique we proposed in section xx could improve the delay incurred 

by the additional multiplexers between the ALU blocks and control lines. It also 

simplifies the design of the circuits for sign-extending results. 
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Chapter 5.  Conclusion and Future Work 

5.1.  The Turnaround-based Sharing Mechanism 
The turnaround-based sharing mechanism provides high flexibility with little 

hardware overhead. Due to its characteristic that no alignment is required, quite small 

overhead in both area and delay is incurred. Compared with the shifting approach 

with the same flexibility, as the flexibility increases, the reduction becomes more 

significant.  

A prerequisite for sharing a unit with the turnaround-based approach is that the 

unit could perform the joined operation with its operand blocks in turnaround style. 

How much effort is required for a unit to support such capability depends on its logic 

characteristics. In this thesis, we partitioned the ALU into blocks. To make the ALU 

able to process the joined operation, the major modification is the re-organize the 

carry-chains. Such modifications have no significant overhead on area. For a unit 

which satisfies the prerequisite, the turnaround-based sharing mechanism could reveal 

high utilization of the chip area. 

 

5.2.  Reducing Additional Delay by Avoiding 

Unnecessary Partitioning 
To reduce additional delay by avoiding unnecessary partitioning is a technique 

which benefits from the operation-swapping mechanism. Assuming the ALU is not 

widened, we may improve the delay by not partitioning the higher order ALU blocks. 

For example, considering a m-bit ALU with the minimal block size n-bit, the widths 

of ALU blocks could be 2n, n, …, n, and 
2
m  while 2 ...

2
mn n n m+ + + + = . 

This is a trade-off between flexibility and circuit delay. For this example, two 
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operations, one requires n-bit and the other requires (m-n)-bit, cannot be joined. The 

optimal partitioning could be decided with statistical methods. 

 

5.3.  Applying the Design to Architectures with 

Shifter Concatenated with ALU 
On some architecture the shifter is concatenated with ALU, for example, the 

ARM architecture. Unlike partitioning an ALU, the shifter could not easily be 

partitioned into two parts to process two operations with different shift amounts. To 

achieve the goal, lots of internal bypass logic and wires are required. Furthermore, 

considering rotation operation, circuits become much more complex when the input 

operands are merged from two operations. 

For such architectures, we classified the joined operation pairs by requirement of 

shifter: 

i. Both don’t perform shifting 

Our datapath-sharing mechanism works fine. 

 

ii. One performs shifting and the other does not 

We need to add extra bus lines to bypass the shifter for operand bits. 

 

iii. Both performs shifting 

Due to our observation, to modify the shifter architecture to support two shift 

operations with different amounts is more complex than ALU-sharing. When both 

operations requires shifting, we could either leave it as a non-exploitable 

combinations or place the shifter which is also designed to be flexibly shared two 

operations. 
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Besides, the width-check logic must also consider the shift amount and direction 

of the joined operations so that the operand-boundary signals could be correct. 

 

5.4.  Clock Gating to Freeze Unused Blocks 
In previous researches, the abundance of narrow-operand operations is often 

used for clock-gating. With the number of significant blocks, unused ALU blocks 

could be gated and easily integrated in this design by adding extra latches. In other 

hand, our design could be integrated into such design without too much overhead. 

Logic which has similar function with WDL and SXL should already exist in such 

architecture. The major cost comes from the WCL and it amounts to about half an 

ALU. 

 

5.5.  Future Work 
Efficient partitioning mechanisms for shifters and multipliers could make more 

types of operations joinable. 

Although the significant bit-widths of operations must be determined run-time, 

previous research shows this characteristic has spatial locality. If we could profile the 

execution behaviors of a program and records the bit-width of each operation, this 

information could assist compiler to schedule the program codes. 

The dynamically scheduling mechanism considering the significant bit-widths 

information in a superscalar architecture is also a topic to efficiently utilize this 

design. 
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