e 2 Bl et kg 8 4

A Practical CollisionFiltering for Complex Environments
Using Image=based Techniques

FopoA g

i
NE)
—&;é\;

¥

%
M

B ER T R

hEREE LHE £ NS

A FETR B 2B R AL R “%f Ey
A Practical Collision Filtering for Complex Environments Using
Image-based Techniques

Student : Yong-Cheng Chen

Foyod imy s
R EEE Advisor : Jung-Hong Chuang
B ol +F
FAfE a1 A g
L R
A Thesis

Submitted to Institute of Computer Science and Engineering
College of*Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
June 2006

Hsinchu, Taiwan, Republic of China

ﬂg—%gliijgig

2

AR - B P ook S endhAg e R R AL R e B2 o AP R
SRR S E'?"’Eiﬁ_i)é“,% be it ¥ RGBes S B £ (potentially colliding set,
PCS) A | 2B+ & & o 3 29 2 pize 5 CULLIDE s & 7% [13] 0 Asnidpd i
RTREE G 2T R ende R R R g B S A IR A S g B oA
LT - BACRIT VGRS RS IR KE PR L n B 2 g
FIRPFLAF AR NP MR BCBMERE F > AP 2 < R
A G oRigtE o ¥t B FRORR A TSR LT e B G R
REFEED AR G VRBAAREE S, B SR NEE VR AR
Wopleh=tdc o 8 0 241 * 50~200 B d 800 B = & A4 = hF]FRIRIEHL (7%
oo TP R ap i WRIFFR S 0.85-T 0 REREE CEF AP 2N

F g et 0 IR S TRk 2 v

A Practical Collision Filtering for Complex Environments
using Image-based Techniques

Student: Yong-Cheng Chen Advisor: Dr. Jung-Hong Chuang

Department of Computer Science and Information Engineering

National Chiao Tung University

ABSTRACT

We present an algorithm for efficient and exact-collision detection between complex geo-
metric models in large environmentssusing graphics hardware. The purpose of our algo-
rithm is to improve image-based collision eulling and partition the potentially colliding set
(PCS) into subsets. Our algorithm eliminates objects which are fully visible in PCS using
occlusion query in linear time. It is based on CULLIDE and decides an order of rendering
to supply a more efficient culling performance. We can conspicuously reduce the extent of
culling to rely on the depth complexity of the scene along the view direction. Despite there
are some collision-free objects are occluded by other objects, they may be pruned in our al-
gorithm. Furthermore, our algorithm determines whether separating surfaces exist between
the subsets of the PCS. The computation of collision pairs would be beneficial to divide the
PCS into multiple sets during the collision culling. Finally, we measured the performance
of our algorithm using 50-200 torii with 800 triangles. The average collision detection time
is around 0.85-7 milliseconds. In the experiments, our approach had shown to be efficient

for collision detection in physics simulation and applied to real-time applications.

Contents

[List of Figures| iv
[List of Algorithms| vii
[List of Tables| viii
1__Intr 1 1
(L1 Collision Detection| . .= IS % WS, O 1
[1.2 Collision Detection Algorithms|. .o L o0 ..o oo 2
[[3 Motvation. E W< e0c I 4
(1.4 Organization|. 0wt o o o e e e 5

2 Related Workl 6
2.1 RayCasting| 6
2.2 Counting Boundary Crossings| 8
2.3 Layered Depth Images| 11
2.4 CollistonCullingl 14

3 Image-based Collision Filtering 16
BI _Overviewl oo v 16
(3.2 Collision filtering with depthorder 18
[3.3 Collision Independent Sets Construction Using Separating Surfaces| 20
[3.3.1 First Pass in Collision Culling| 27

[3.3.2 Second Pass in Collision Culling|. 28

[3.3.3 A detailed process of collision independent sets construction| 28

(3.4 Collision filtering 1n hierarchical structure| 29

i1

[3.4.1 Bounding Volume Hierarchy Construction|. 29

(3.4.1.1 Bounding Volume Hierarchy Optimization| 36

[3.4.2 Sorting and collision independent sets construction| 37

4 Results] 39
4.1 Performance analysis in simple environment| 40
4.2 Performance comparison for environments of high geometry complexity |

| and low depth complexity|. 0oL 45
4.3 Performance comparison for environments of high depth complexity and |

| low geometry complexity| L oL 48
5__Conclusion| 57
5.1 Summary| 57
0.2 Futureworkl 58
Bibliograp 59

11

List of Figures

2.1 Passible Z-interval cases[BWS99] 1|
[2.2 Passible Z-interval cases[BWS99] 9
[2.3 Semi-infinite rays from a point in a closed mesh[KPO3] 9|
2.4 Update the depth buffer[KPO3] 10|
[2.5 Increases the stencil buffer when r_en_dcla_rlng “front-facing” polygons[KPO3]. 10|
[2.6 Decreases the stencil buflfe'r":\;/:hen %end,_e-;:;‘l-ﬂg _”back—facmg” polygons[KPO3]. 11|
[2.7 (a) Vol for A and B; (b) I;Z:X;trendea&ifol;t:b -o'bta-ni an outside face for A[HTGO3|]. 12]
2.8 LDI for two pixels, unsorted apq.rsér:t-ed with réspect to depth values[HTGO3]]. 13
[2.9 Intersection volume for.-Ii_-I:l_ot-"'éti’:l-d Dfégo_llllﬂ_ ;fG03 | . 14
(3.1 The flowchart of the proposed éc;lhmlc')'n detection system.| 17
[3.2 The worst case of CULLIDE: (a) It shows that there are no intersections |

in the environment; (b) All the projections of objects overlap with each |

other; (C) We only can prune the object C" using visibility-based pruning in |

| CULLIDE] s s 19
(3.3 Projectionand sorting.|o 20
[3.4 The result of our collision culling: (a) It shows that there are no intersec- |

tions 1n the environment; (b) All the projections of objects overlap with |

each other; (c),(d) There are no occlusion in two passes.|. 22

B3

If S and S5 do not collide with each other, we can find a separating surface |

amongthem. 23

36

(a) Collision independent set; (b) The projection of green objects overlap |

with the collision independent set, and the projection of yellow objects dose |

notoverlap withtheset,|. 24

v

[3.7 An example for collision independent sets construction.| 26
[3.8 An example, a scene consists of O, Os, O3, Oy, O, Og, O7, and Og|. . . . 30
[3.9 Traverse projection elements of e, eg, and e3. The global probing surface |
PSgisupdatedtobs.|o oo oo 30
[3.10 Traverse projection elements of b5 and bg, collision independent set C'/.5; |
1sconstructed at Og.|. 31
[3.11 Traverse projection elements of e4 and b3, and the expansion of C'[5] 1s |
finish at bs.| 31
[3.12 Traverse projection elements of e; and b4, collision independent set C'/ S5 |
1sconstructed at Oa.. L 32
[3.13 Traverse projection elements of e, e and 05, and the expansion of C'/55 |
ishnishatbs. 32
[3.14 'Traverse projection elements of e; and bg, collision independent set C'/ 53 |
1s constructed at Og.f.+ 3 Mgy, - - - - 33
13.15 After the first pass, three 1ndepencllfjlnt c'élhdihg sets, PC'S; = {Og}, PCS; = |
{O,}, and PCS5 = {06,07}, élllldlthree ;e'[oarating surfaces, 551, S5, |
SSIARTOUT] . . . 4 fees b e 33
[3.16 After the second pass, th-ézitl}r;z_g\éolilsilsr:l 1ﬁdependent sets will be finalized |
a5 TS, = {050, CTS, = 105.0,7, and 0TS, = {05.05.0:T.and |
there are two separating surfaces found.| 34
[3.17 Bounding volume hierarchy witha 8-ary tree.| 36
[3.18 Bounding volume hierarchy construction using (a) three eigenvectors of the |
covariance matrix; (b) optimizing principal components|. 37
4.1 Figures (a)-(f) show the simulating process in environment 1.[. 41
4.2 Performance comparison between our approach and CULLIDE 1n environ- |
ment 1l 42
4.3 Performance comparison with CULLIDE, CULLIDE with hierarcical bound- |
ing volume, and our approach in environment 1 at frame buffer resolution |
800x800. e 43
4.4 The number of collision independent sets constructed for environment 1 at |
frame buffer resolution 800x800.] 44
4.5 Figures (a)-(f) show the simulating process 1n environment 2| 46

4.6 Performance comparison between our approach and CULLIDE 1n environ- |

ment 2. ... e 47

4.7 Performance comparison with CULLIDE, CULLIDE with hierarcical bound- |

g volume, and our approach 1n environment 2 at frame buffer resolution |

800x800. o 49

4.8 Performance comparison between CULLIDE with hierarcical bounding |

volume and our approach in environment 2 at frame buffer resolution 800x800., 50

4.9 The number of collision independent constructed for in environment 2 at |

frame buffer resolution 800x&800.] 51

4.10 Figure shows the simulating process in environment 3. 52

.11 Performance comparison between our approach and CULLIDE 1n environ- |

ment 3] . .. e e, 53

.12 Performance comparison with CULLIDE, CULLIDE with hierarcical bound- |

ing volume, and our approach an‘environment 3 for 200 toru at frame buffer |

resolurion S00XB00] . %+ i, o o 55

@.13 The number of collision 1ndependent sets constructed for environment 3 |

for 200 toru at frame buffer re'so]:utlon_SDOx 8'00 | 56

Vi

List of Algorithms

2.1 Thelogical low of RECODE 8
2.2 'The algorithm of collistonculling| 15
3.1 Our collision culling algorithm|. 21
13.2 The algorithm of collision independent sets construction| 35

vii

List of Tables

(3.1 Parameters of collision independent sets construction| 27
4.1 Timing statistics for environment 1.| 45
4.2 Timing statistics for environment2.| L., 48
4.3 Timing statistics for environment 3.| 52

viil

Acknowledgments

I would like to thank my advisors, Professor Jung-Hong Chuang, for his guidance, in-
spirations, and encouragement. I am grateful to Tan-Chi Ho for his comments and advices.
Thanks to my colleagues in CGGM lab.: Yi-Chun Lin, Chao-Wei Juan, Roger Hong, Chen-
Li Hao, Yu-Shuo Lio, Chia-Lin Ko, Yung-Cheng Chen, Zhi-Wen Zhang, and Ya-Jing Qiu.
for their assistances and discussions. Lastly, I would like to thank my parents and my girl

friend Si-Ning Li for their love, encouragement, and support.

iX

CHAPTER 1

Introduction

In recent years, with the growth of the developments in games, virtual reality, physics
simulation, surgery simulators, and:robotics, the r€alistic an efficient physical simulation
appears more and more important: Collision detection aiming to determine when and where
objects colliding each other, plays an important role on the physical simulation system.
Collision detection in general is a computationally expensive problem due to its O(n?) time

complexity.

1.1 Collision Detection

The interference among objects is usually detected by using the special data structure and

geometric computation, and is often categorized two phases:

e Broad phase: For broad phase, we regard an object or a group of objects as a base
unit. We determine whether base unit collide with each other.The ultimate goal is to
avoid testing O(n?) times for all potential pairs, where n is the number of base units.
The outcome of the broad phase is a set of paired objects or base units that potentially

collide each other.

e Narrow phase: For narrow phase, we perform collision detection between the prim-
itives of objects, such as polygons. The goal is to greatly reduce the number of test

for potential paired primitives. In narrow phase, in addition to accurately computing

1.2 Collision Detection Algorithms

the collisions among objects, one should capture other information, such as collision

position, collision time, and penetrating depth etc.

Collision detection is a fundamental problem in interactive applications. Real-time
performance is the ultimate goal for all collision detection algorithm. To this end, several
coherence properties are generally applied, which can be classified into three categories as

follow:

e Spatial coherence: The problem of collision detection is how to find the geometric
overlapping information in 3D space. The spatial coherence depicts the relations
among objects in the space. We can assume that an object usually spans only a
relatively small portion of the space, and its collisions to the other are fairly rare,

only when there are close to each other.

e Temporal coherence: In the dynamic environments, the location of objects will be
changed with time. Under the assumption that the motion of objects is small among
continues timestamps, if an interferénce occurs at a timestamp then it may occur at

next timestamp.

e Image coherence: The problem of collision detection can be transferred from 3D
to 2D image. The dimensional reducing will decrease the complexity of geometric
computation. The intersection could be detected by using graphics hardware. For

example, if an object is fully visible with respect to others then it does not collide.

1.2 Collision Detection Algorithms

The problem of collision detection has been extensively studied in recent years. We refer
the readers to these recent surveys [JTTO1, ILG98]]. The collision detection algorithms can
be classified into two categories: object-space collision detection and image-based collision
detection.

Most of the object-space approaches are proposed to accelerate collision detection
by using hierarchical data structure and spatial partition. For narrow phase, hierarchi-
cal bounding volume is commonly used to speed up the interferences detection of paired
objects. The representation of hierarchical bounding volume is a tree structure formed

by some simple shapes, such as spheres, axis-aligned bounding boxes, oriented bounding

1.2 Collision Detection Algorithms

boxes, discrete orientation polytopes, quantized orientation slabs with primary orientations,
spherical shells, etc. [GLM96,[He99, [Hub93| [Hub93, [Hub96, HDLM96, ITTO1, KHM 98|
KPLMO98, PG9S, Qui94, Zac93]]. That hierarchical representations are frequently used for
collision detection and based on data structures that can be more or less pre-computed.
These representations are used to cull away portions of each object that are not in close
proximity. However, the hierarchical bounding volumes are hardly used for deformable
objects, because they must be rebuilded or updated when the shape of objects changes.
Some extensions of hierarchical representation are proposed for handling deformable ob-
jects [JPO4, KZ0S, ILAMOI, lvan97], focusing on how to update hierarchy and bounding
volumes efficiently.

Spatial partition is usually used in either narrow phase or broad phase. Common spa-
tial decomposition techniques are BSP trees, octrees, k-d trees, or voxel grid [CLMP95,
GASF94, HKM95, MW 88|, INAT90, TN8&7, [Y'T93].

Recently, the image-based techniquesupplies new avenues for collision detection. The
conceptions of ray tracing are exploited for detecting the interference of two convex ob-
jects [BWS99, MOK93|. The relation among a‘ray with two convex objects is categorized
into several situations. The interferences-are found by checking whether the intervals over-
lap along the ray. However, these algorithms are.limited by the depth complexity and
only applicable to simple shape or convex objects. An algorithm is proposed for han-
dling multi-body environments by exploiting the shadow volume technique [KPO3]]. This
algorithm is very efficient for deformable and non-convex objects. Layered depth image
technique is introduced for efficient collision detection of arbitrarily shaped, water-tight
objects [HTGO3, HT'G04l]. Layered depth images are used to approximate the volume of
an objects. In this way, the volumetric intersection of objects will be detected. A reliable
image-based collision culling algorithm is presented in [GRLMO3) \GLMO04]. It computes
a potentially colliding set using hardware occlusion queries. The techniques are based on
CULLIDE for handling self-intersection [BMO04, I(GLMO3b, |GLMO05a]. The image-based
collision detection is also applied to some specific applications, including cloth animation
and virtual surgery [GLMOSb, IGLMO5a, [LCN99, [VSCOI]]. In chapter 2, we will give a

more detailed introduction to image-based techniques for collision detection.

1.3 Motivation

1.3 Motivation

With the growth of the graphics hardware, many image-based techniques for collision de-
tection have been proposed, and have attempted to maximally utilize the functionality of
graphics hardware. Hardware-based techniques usually do not require the complex data
structure and reduce the load of CPU by using graphics hardware. These techniques rely
on rasterizing the objects of a collision query into color, depth, or stencil buffer, and are
approximate collision detection method. However, frame buffer readbacks will become the
bottleneck of these approaches.

An image-based approach, called CULLIDE, dose not perform frame buffer readbacks
but readbacks a few bytes per object. It computes the potentially colliding set by using
graphics hardware, and intersections will be determined on CPU. Since CULLIDE prunes
some objects which do not collide using visibility analysis, it will produce many factors
which affect the performance of collision 'detection seriously. There are four limitations

described as follows:

(1) Depth complezity: The First limitation is the depth complexity of the scene. CUL-
LIDE reduces the space from three dimensions'to two dimensions by using rasteri-
zation of graphics hardware. Despite an object dose not collide with any one, but it
may be occluded by others. When the number of overlapping between orthographic
projections of objects along view direction is frequent, it is able to decrease the per-

formance of collision culling.

(2) The coarseness of single PC'S: The second limitation in CULLIDE is that the PCS
is too coarse. CULLIDE proposed a method to efficiently return the PCS. However,
it is a pity that it can not partition PCS into subsets during collision culling. The
computation of collision pairs will be simpler if a colliding set is divided into several

subsets.

(3) Non-volumetric intersections: The third limitation is that it is not able to detect
volumetric intersections, penetrating depths and distances between objects. It is only

to determine whether overlapping triangles exist between different objects.

(4) Preciston issue: The last limitation is that the accuracy of collision detection is extent

of the frame buffer resolution and the depth buffer precision. In fact, collisions will

1.4 Organization

be missed or too conservative during rasterization due to the frame buffer is not used

appropriately.

Therefore, the final purpose of this paper is to accelerate collision detection for real-
time system. Our algorithm uses two-pass structure in CULLIDE and efficiently detects
collision among rigid or deformable objects. We will discuss the first two limitations de-
scribed above and propose some methods to improve CULLIDE, and expect to improve
the culling efficiency by using sorted order. It can decrease the impact on collision culling
from depth complexity of a scene along view direction. In our approach, we can efficiently
prune an object which does not collide with others and is occluded or not. We also can
partition the PCS into multiple collision independent sets in linear time such that the cost
of exact collision computations will be reduced. Finally, we construct bounding volume
hierarchy for each object, and the proposed algorithm will be applied to hierarchical struc-
ture. Hierarchical bounding volume and collision independent sets construction can reduce

influence of geometry complexity and depth complexity, respectively.

1.4 Organization

The rest of the thesis is organized as follows: In'Chapter 2, we give a survey of image-based
collision detection techniques, including ray casting, counting boundary crossing, layered
depth images, and collision culling. In Chapter 3, we give an overview of our framework
and present our approach to determine multiple collision independent sets by using sepa-
rating surfaces. In Chapter 4, we highlight the performance on different benchmarks, and
make a comparison with CULLIDE and Quick-CULLIDE by physical simulation. Finally,

in Chapter 5, we give the conclusion.

CHAPTER 2

Related Work

With the growth of the graphics hardware, many statistics show that the computational
power of the graphics processing units (GPUs) exceed that of the central processing units
(CPUs) in some specific applications. Although there-are a lot of restrictions on the ma-
nipulation of GPUs, and the frequencies of GPUs are usually lower than the frequencies of
CPUs of the same period; However, GPUs have the parallel computation ability and sup-
port programable vertex and pixel processors. Such developments have greatly contributed
to the techniques of rendering. Besides, there are many application, which are transferred
to GPU. Therefore, the researches and discussions on GPU are more and more important in
recent years. In this chapter, we will give a review of prior work on image-based techniques

for collision detection.

2.1 Ray Casting

The basis of the ray casting is based on the conception of the ray tracing. It determines
the relations among a ray with two objects, and categorizes the intersection of them into
several situations. However, the graphics hardware dose not use the ray tracing to render
the image but the ray casting. Therefore, in this section, we will describe how to achieve
the intersection of the ray with two objects using the ray casting technique.

The intersection of a ray with two convex objects could be categorized into eight sit-

uations [BWS99, MOKO93]], as shown in Figure @ Case 0 means that the ray dose not

2.1 Ray Casting

il
Ig::s

i
IEB:'
Eto

oo

macd

i
ls]
IEB:'
oo

7 maz]

[

T maz]

i
ls]
(us)

IEB:'

7 2]

wu)
i
(us)
IEB:'

T 2]

< oY Ul WP o
yn)
£
VAVAVAVAVAVAVAVY,

wu)
o
i
IEB:'

T iz

Figure 2.1: Passible Z-interval cases[BWS99]

overlap with any object. In case L the ray passes.through A, but no face of B overlaps the
ray. In both case 2 and 7, the range on the depth covered by A and B, but [B,,.in, Bzl
dose not overlap the interval [A, ins Amaz]+ Hence, 40 cases 0, 1, 2, and 7, we can decide
that A and B do not overlap.

In RECODE, it reduce the collision detection problem to a one-dimensional interval
test along the z-axis. As show in Figure first it determines MOR(A,B), which is the
minimum overlapping region of the projection of the volume occupied by the overlapping
bounding boxes of objects A and B. Then it sets the rendering viewport, which is the frame
buffer viewport allocated for rendering object A, to correspond only to the region covered
by the MOR(A,B). The maximum Z-values of object A are stored in the depth buffer by
the function RenderSetZ(A, >). This map is then used as reference in the first rendering
pass in order to establish a class of the possible cases of B overlapping A along the Z-axis.

Then it tests against eight independent cases, as illustrated in Figure[2.2] First the stencil
buffer is initialized to zero. If there are no objects at pixel (x, y) then the corresponding
stencil value remains zero. If at least one object overlaps pixel (z, y) then the corresponding
stencil value 18 incremented to one. In cases 0, 1, 2, and 7, there is no intersection between
A and B that described above. In cases 3 and 4 the interval occupied by B overlaps [Z,,i,

Aiaz]. That is, only one face of B crosses over A,,,.. Hence, the stencil value at (z,) is

2.2 Counting Boundary Crossings

Algorithm 2.1: The logical flow of RECODE
RECORDA, B = RenderingArea — MOR(A, B);

RenderSetZ(A, >);
RenderTestZ(B, <);

if zIntervalOverlap(A, B) = TRUE then
return collision = TRUE;

end

if secondRendering = TRUE then
RenderSetZ(B, >);

RenderTestZ(A, <);

if zIntervalOverlap(A,B) = TRUE then
return collision = TRUE;

end

end

incremented to two. If stencil values equal to two; then the interferences of A and B are
detected in the first pass. However, cases S‘and 6 will be missed because the stencil values
equal to three. In order to detect cases S'and 6, it stores the maximum Z-values of B in the
depth buffer first and then render object' A in the second pass. The cases 5 and 6 will be
captured by checking whether the stencil values equals to two in the second pass.
RECORD presented an image-based technique for collision detection. It determines
whether the interferences between two convex object occur by reading the stencil buffer.
However, it can not compute some collision responds, such as the positions and the nor-
mals. It only can handle convex objects and does not attend to self-intersections. The

stencil buffer readbacks are the main bottlenecks in RECORD.

2.2 Counting Boundary Crossings

An approach exploit the shadow volume technique, a polygonal mesh is created that repre-
sents the volume of space that lies in the shadow cast by an object. Determining whether
or not a point lies in shadow involves casting a ray from the viewer toward the point. This
approach is called CInDeR [KPO3]]. Its collision detection algorithm is predicated on the

following property: Two polyhedral objects are interfering with each other if and only if an

2.2 Counting Boundary Crossings

Z-buffer amtents at P x,v)

Figure 2.2: Passible Z-interval cases[BWS99]

/
/

/[

Figure 2.3: Semi-infinite rays from a point in a closed mesh[KPO3]

edge of one object intersects the volume occupied by the other.

Counting boundary crossings technique is to observe a point relative to a closed mesh
by casting a semi-infinite ray from the point. The number of the object’s boundary that the
ray passes through are counted. It is commonly used to solve the point-in-polygon problem.
For a semi-infinite ray from the point, it can specify whether or not an intersection of the ray
with a solid corresponds to the ray entering or leaving the solids volume. A semi-infinite
ray cast from the interior of a solid will leave the solid one more time than it enters the
solid, as shown in Figure[2.3]

Collision detection is performed by sampling the boundaries of objects and looking
for object edges that are interior to other volumes. This is done using the rasterization

of graphics hardware. Rays are cast through the pixels of the viewport toward objects of

2.2 Counting Boundary Crossings

10

DO TVEM— <

DEPTH—>

Figure 2.4: Update the depth buffer[KP03]

s & sH % s
T b p— T
E[1 — E E
N AN NH L N
C c C
I —4— 1 I
L ~ 7 LH L ,
—_ ~ i F+ N
DEPTH—> DEPTH—* DEPTH—*

Figure 2.5: Increases the stencil buffer when rendering “front-facing” polygons[KPO3].

interest. Rays that strike those objects edges are of particular interest.

First, it clears the depth buffer and sets the stencil buffer to zero. In the first rendering
pass, it renders all of the edges of objects, and updates the depth buffer with their depth
values, as shown in Figure[2.4] This ensures that all rays cast through pixels will be targeted
at polygon edges.

In the second rendering pass, it draws only those polygons whose normals face toward
the ray’s origin, as shown in Figure 2.5] That is, all polygons will be rejected for which the
dot product of the normal with the ray direction is positive. In the graphics hardware this
corresponds to a back-face cull. If the pixel passes the depth test then increases the stencil
value.

In the third rendering pass, it draws only those polygons whose normals face away the
ray’s origin, as shown in Figure [2.6] That is, all polygons will be rejected for which the

dot product of the normal with the ray direction is negative. In the graphics hardware this

2.3 Layered Depth Images

11

r=nNnZm-Auwu
TN Zm=wv
r—nNnZm-uwu

DEPTH—* DEPTH— DEPTH—

——nNZm-uw

——=NnZm-Hwn

Figure 2.6: Decreases the stencil buffer when rendering “back-facing” polygons[KPO3].

corresponds to a front-face cull. If the pixel passes the depth test then decreases the stencil
value. After the third pass, the stencil buffer value ‘at each pixel gives the results of the
collision detection. Finally, it check interferences by scanning the values in the stencil
buffer.

This approach is linear in both the.number of objects and the number of polygons
comprising those objects. It performs broad phase collision detection and narrow phase
collision detection at the same time. The additional collision information, such as collision
positions and identifications of objects, can be obtained using the depth buffer and the color
buffer. However, It is seriously restricted by viewport resolution and is not robust in case

of occluded edges.

2.3 Layered Depth Images

A Layered Depth Image (LDI) are used for the computation of volumetric intersections of
complex polygonal meshes [HTGO3|]. LDIs have been introduced as an efficient image-
based rendering technique. The depth values of a pixel are stored in multiple depth images.
Such approach can conserve the occluded surfaces of the complex object.

First, it computes the axis-aligned bounding box (AABB) for a pair of objects. If the

bounding boxes of the two objects do not collide then there is no intersection between

2.3 Layered Depth Images

12

L

7
Uy

)

(a) (b)

Figure 2.7: (a) Vol for A and B; (b) Extended Vol to obtain an outside face for A[HTGO3].

b

\\ outside faces A

outside faces B

them. If it is not, the LDIs computation is applied to the AABB intersection volume, called
Volume-of-Interest (VoI). The Vol is bounded by pairs of their faces. Figure[2.7(a) shows a
VoI with corresponding outside faces in two dimensions. In some cases, for instance when
one box is entirely within anothér box, appropriate outside faces for both objects cannot
be found. This problem is solved by extendingthe Vol. If the outside face of one object
is fixed, the opposite face of the Vol can be scaled to touch the bounding box of the other
object, as shown in Figure [2.7(b).

In order to generate an LDI, the object is rendered multiple times. The viewing pa-
rameters for the rendering process are determined by the selected outside faces of the Vol
defining the near planes, and their opposite faces defining the far planes. Orthographic pro-
jection is used for rendering. Objects are rendered 7,,,,, times for LDI generation, where
Nmaz denotes the depth complexity of the relevant part of the object within the Vol.

The first rendering pass generates a single LDI and computes nmax. First, depth testing
and face culling are disabled. Only the stencil test is employed to discard fragments. The
stencil test configuration allows the first fragment per pixel to pass, while the corresponding
stencil value is incremented. Subsequent fragments are discarded by the stencil test, but
still increment the stencil buffer. Hence, after the first rendering pass the depth buffer
contains the first object layer per pixel and the stencil buffer contains a map representing
the depth complexity per pixel. Thus, 7n,,,., is found by searching the maximum stencil

value of the stencil buffer. If n,,,, > 1, additional rendering passes 2 to 7,,,, generate the

2.3 Layered Depth Images

13

Vol

unsorted LDI

sorted LDI

Figure 2.8: LDI for two pixels, unsorted and sorted with respect to depth values[HTGO3|].

remaining layers. The rendering setup is similar to the first pass. However, during the n-th
rendering pass, the first n fragments per pixel pass the stencil test and, as a consequence, the
resulting depth buffer contains the n-th LDI layer. During these passes, the stencil buffer is
not incremented, if the stencil test fails.

It generates unsorted LDIs due to fragemmts are rendered in an arbitrary order. There-
fore, the LDIs are sorted per pixel for further processing. Only the first n,, layers per pixel
are considered, where n,, is the depth complexity of this pixel. n, is taken from the stencil
buffer as computed in the first rendering pass, If n, is smaller than n,,,,, layers n,,; to
Nmae do not contain valid LDI values for this pixel and are discarded, as shown in Figure
2.8l

The computed LDIs can be used to process a variety of collision queries. Two LDIs can
be combined to compute an intersection volume, as shown in Figure [2.9] The LDIs for two
colliding objects are discretized with the same resolution on corresponding sampling grids,
but with opposite viewing directions. Hence, pixels in both LDIs represent corresponding
volume spans. The intersection volumes can be computed by a pixelwise intersection along
depth direction. Besides, it can performs another collision query for checking the vertex-
in-volume, whether the vertex allocates between a closed interval in a fragment. This
approach can handle deformable and non-convex objects. It use multiple depth image to
store the different depths of a mesh. The depth complexity is the major restriction due to
the approach heavily relies on the frame buffer readbacks. The LDIs technique is improved

for detecting the self-intersection in [HTGO04].

2.4 Collision Culling

14

Figure 2.9: Intersection volume for Knot and Dragon[HTGO03]

2.4 Collision Culling

Govindaraju et al. proposed CULL[]),_E" \;/hiéhhélihligated some objects that did not collide
with any object, and returned a setf called p;iéent-i.élly <.;'(')_11iding set (PCS) [GRLMO3]. Given
a set O that composed of n obje:;t:s, Ox, Oz, L O, _j?or each O;, we divide O into two
corresponding sets S—; = {0y, . -."-,-_,_ Oz_ll}_m; ——-_—"{IOZ-H, ..., On}. If O; is a colliding
free object, then we can ensure that- Oz Will_ not Ic_ol-lidé with S_; and S-;. Therefore, there is
a trivial solution that we can determine whether O is colliding free. We render S_; and S-;
to depth buffer and then perform visibility test for O; using occlusion query. If O; is fully
visible with S_; and S-;, then we can present that O; dose not collide with others. By this
way, we can conservatively prune some objects which are fully visible with corresponding
sets. It is completed in O(n?), where n is the number of objects. An approach to PCS
computation in O(n) is presented in CULLIDE. It uses a two-pass rendering algorithm to
perform linear time PCS pruning. In the first pass, the depth buffer is cleared to z-far and
the objects are rendered in the order Oy, ...,0,, along with occlusion queries. In other
words, for each object in O4, . . .,0,,, it renders the object and tests if it is fully visible with
respect to the objects rendered prior to it. In the second pass, it clears the depth buffer and
renders the objects in the opposite order along with occlusion queries. Then it perform the
same operations as in the first pass while rendering each object. At the end of each pass,
it tests if an object is fully visible or not. An object classified as fully-visible in both the

passes does not belong to the PCS. The algorithm is shown in Figure[2.2] Finally, the exact

2.4 Collision Culling

15

triangle-triangle intersection tests are performed on the CPU.

Algorithm 2.2: The algorithm of collision culling

//15¢ pass;
Clear Buf fer(DEPTH);

foreach object O, i=1,.. .,n do
/Iperforms visibility test;

DepthMask(FALSE);
DepthFunc(GEQUAL);
RerderUsingOcclusionQuery(O;);
/lupdates to depth buffer;
DepthMask(TRUE);

DepthFunc(LESS);

Rerder(O;);
end

foreach object O; do
GetQuery(O;);

end
//2" pass;

//Same as First pass, except that the twe ’For each object” loops are run with

i=n,...1;

In CULLIDE, spatial relationships among objects are builded using occlusion queries,
which are supported on graphics hardware. CULLIDE is suitable for complex environ-
ments and large objects in real-time application due to it can determine PCS rapidly in
linear time. The PCS is computed using occlusion queries widely available on commodity
graphics hardware. Occlusion queries involve very low bandwidth requirements in com-
parison to frame buffer readbacks. Quick-CULLIDE presents an extension to CULLIDE to
perform inter- and intra-object collisions between complex models [HT'G04]]. It performs
a visibility-based classification scheme to determine potentially colliding set and separate
two collision-free subset from PCS, which considerably improves the performance of the

collision culling.

CHAPTER 3

Image-based Collision
Filtering

3.1 Overview

In this chapter, we present a framework: for the proposed collision filtering system. The
framework consists of construction of the bounding volume hierarchies, projection and
depth sorting, visibility pruning collision filtering with depth sorting, and collision inde-
pendent sets construction using the hierarchical structure, as shown in Figure

In preprocessing, we construct a bounding volume hierarchy in a top-down manner for
each object using oriented bounding boxes. This bounding volume hierarchy describes an
object at various levels of detail. During runtime, we perform hierarchy traversal for col-
lision filtering. The bounding volumes of objects are projected on the view direction, and
sorted in a near-to-far order. Such sorted order is used in visibility pruning and enhances
the performance of CULLIDE in the cause of collision filtering. During hierarchical prun-
ing, we can select different view direction at each level for collision filtering and construct
multiple collision independent sets which will greatly reduce the pairwise computation and
the times of occlusion query and rendering. Finally, the exact intersection test among po-
tentially colliding triangles are performed on the CPU.

As stated before, the performance of CULLIDE is restricted by the extent of projection

overlapping along the view, and the resulting single potentially colliding set implies a po-

16

3.1 Overview

17

Preprocessin
p g 01101!" '&On

Bounding volume hierarchy

construction
<0;, BVH,;>,<0,,
BVH,>
!. * ‘E{OIIS B\;Hn}

Runtime

Hierarchy traversal

Projection and sorting

Collision filtering and
independent sets
construction

No

Has non-leaf node

Yes

Traverse children

Exact intersection test

Figure 3.1: The flowchart of the proposed collision detection system.

3.2 Collision filtering with depth order

18

tential large number of collision detections. For simplicity reson, in this chapter, we first
introduce the collision filtering based on depth order, then incorporate collision indepen-
dent sets construction into the collision filtering process. Finally, the hierarchical traversal

for collision filtering is presented.

3.2 Collision filtering with depth order

The visibility-based collision filtering in CULLIDE analyses the projection of objects from
3D to 2D image using rasterization of graphics hardware. It is quite often that objects are
disjoint in 3D space, but can not be claimed disjoint by CULLIDE, due to the projections
could overlap with each other. As shown in Figure (3.2} all five objects are disjoint, but only
object C' can be excluded from the resulting potentially colliding set.

In order to amend the performance of visibility pruning in CULLIDE, we render objects
in an order sorted by depth. The axis-aligned bounding box of each object is projected onto
the view direction. Two extreme, M ax; and:Min;, of the projection of object O;, for all
objects, are sorted. In general, :a sort would take-O(n - logn), where n is the number
of objects. However, under the ‘assumption of slow' motion, temporal coherence can be
applied. In addition to sorting, we-need to keep track of the changes in overlap status of
interval pairs. By doing so, the time complexity of the sorting will be reduced to O(n + €),
where ¢ is the number of exchanges in the list [CLMP95]]. Figure[3.3]is a result of projection
and sorting.

Using hardware supported, occlusion queries, we can obtain how many pixels are ren-
dered on the frame buffer [GRLMO3]. and judge whether an object is fully visible with re-
spect to the previously rendered objects. As in CULLIDE, fully visible objects are pruned
in two passes from potentially colliding set. We decide a rendering order as O}, O, .. .,
O;@, and let Min; > Min;, where ¢ < j. To avoid the problem described in Figure
objects are rendered from far to near far-to-near in the first pass.

In the second pass, if objects are rendered in a near-to-far order, farer objects might
be occluded by nearer ones. Instead, we move the view from z-near to z-far and render
objects in a far-to-near order. In addition, we offset a tolerance distance to depth value in
two passes, to make sure that the depth values of all pixels in the first pass are closer than
depth values in the second pass. The depth buffer clearing is only performed once during

collision pruning. Our algorithm is shown in Algorithm [3.1] Figure 3.4 shows a result of

3.2 Collision filtering with depth order

View

(a)

PCS

57 Fully visible
in two pass

View

(c)
Figure 3.2: The worst case of CULLIDE: (a) It shows that there are no intersections in the
environment; (b) All the projections of objects overlap with each other; (C) We only can

prune the object C' using visibility-based pruning in CULLIDE.

3.3 Collision Independent Sets Construction Using Separating Surfaces

20

Far
h"lﬂxp]
Max
Ming
Ming
Max,
Max E

Min,
Ming

MHJ&“ = - _——
Ming L —

Near

view

Figure 3.3% Projectionand sorting.

our collision filtering with depth order.

3.3 Collision Independent Sets Construction Using Sepa-
rating Surfaces

CULLIDE prunes away objects that do not collide with any object in the final PCS. Concep-
tually, for each pruned object, there is a separating surface between it and the PCS. Such a
concept can be extended to partition the PCS into several collision independent sets, which
are sets of objects satisfying the property that any pair of objects from two different sets
will not collide. A separating surface partitions a set of objects into two nonempty subsets,
placed at opposite side of the surface, as shown in Figure 3.5

If a set S'is a collision independent set, then it will not collide with any other objects, as
shown in Figure [3.6(a). To determine whether S is a collision independent set, we perform
the visibility test for the objects that are not in .S. When all of these objects are fully visible
with respect to .S, we can conclude that objects in S do not collide with these objects, and
hence S is a collision independent set. In the following, two lemmas are given. Lemma

1 implies that the visibility test is not required when S and O do not overlap along the

3.3 Collision Independent Sets Construction Using Separating Surfaces

21

Algorithm 3.1: Our collision culling algorithm

/115 pass;
Clear Buf fer(DEPTH);
DepthO f fset(-¢);

foreach object O; in a far-to-near order do
DepthMask(FALSE);

DepthFunc(GEQUAL);
RerderUsingOcclusionQuery(O;);
DepthMask(TRUE);

DepthFunc(LESS);

Rerder(O;);

end

foreach object O; do
GetQuery(O;);

end

/1277 pass;

DepthOffset(+¢<);

foreach object O; in a near-to-far.order-de

if /sVisibleInlst(O;) =="true then
DepthMask(FALSE);

DepthFunc(LEQUAL);

RerderUsingOcclusionQuery(O;);
end

if IsInvisibleInlst(O;) == true then
DepthMask(TRUE);

DepthFunc(GREATER);
Rerder(O;);
end
end

foreach object O; do
GetQuery(O;);

if IsVisibleInTwoPasses(O;) == true then
RemoveFromPCS(O;);

end

end

3.3 Collision Independent Sets Construction Using Separating Surfaces

Depth value Depth value

%

View
(@ O % (b)
Depth value] Depth value

Depth offset

Fully visible in

Depth offset Ist pass] 2nd pass

() (d)
Figure 3.4: The result of our collision culling: (a) It shows that there are no intersections
in the environment; (b) All the projections of objects overlap with each other; (c¢),(d) There

are no occlusion in two passes.

3.3 Collision Independent Sets Construction Using Separating Surfaces

23

Separating
Surface

Figure 3.5: If S; and S5 do not collide with each other, we can find a separating surface

among them.
viewing direction.

Lemma 1. [fa set of objects S and-an object O do not overlap along the viewing direction,

then there exists a separating surface between'S and O.

Proof: By separating axis theorem, if projections of two objects do not overlap along a
direction, then two objects do not collide with each other. Besides this, we can find a
surface which separates these two objects. By the same way, if projections of a set of
objects S and an object O do not overlap along the viewing direction, then any object in S

and O do not collide with each other. Therefore, we can find a surface separating S and O.

Lemma 2. If a set of objects S and an object O overlap along a direction, but O is fully

visible with respect to S, then there exists a separating surface between S and O.

Proof: It have been proven in [GRLMO3]| that there are no intersections between an object
O and a set .5, if O; is fully visible with respect to S. Though the projections of O and S

overlap along a direction, we will still find a separating surface between them.

In determining if S in Figure [3.6]is a collision independent set, by Lemma[I] O, and
O, are free from the visibility test. Only the green objects O; and O3 should be tested. If

3.3 Collision Independent Sets Construction Using Separating Surfaces

24

Collision
independent set
S

View direction View direction

(a) (b)
Figure 3.6: (a) Collision independent set; (b) The projection of green objects overlap with
the collision independent set, and the projection of yellow objects dose not overlap with

the set.

all of the green objects are fully visible with respectto S, then S is a collision independent
set. If any of the green objects is not fully visible, then.we insert the object into .S.

In the first pass, we reduce objects|in far-to-near order based on the minimum depth
Min; of object O;. If an object is fully visible, it is discarded; otherwise, it is the first
element of a newly created collision independent set. Once a collision independent set .S is
constructed. We continue to render the objects that are overlapped with .S along the view
direction. We discard the one that is fully visible and insert to the S the one that is not fully
visible. Note that once such an insertion occur, we need a way to indicate which objects
are overlapped with the new S. After all the objects overlapped with S are rendered, we
continue to render the remaining objects and search for the next object is not fully visible
and construct the next collision independent set. After the first pass, we guarantee there is
no overlapping among the interval of the projection of potential collision independent sets
along the view direction. Furthermore, we indicate the separating surfaces at the nearest
part of potential collision independent sets.

Collision independent sets constructed in the first pass generally are not complete.
Those objects that are fully visible with respect to the previously rendered object may
collide with objects in some collision independent sets. In the second pass, we move the
view from near to far an render those objects in far-to-near order, and insert each object

that is not fully visible to an appropriate collision independent set. Such a independent set

3.3 Collision Independent Sets Construction Using Separating Surfaces

25

can be found in constant time by using separating surface indicated in the first pass.

In order to perform the collision independent sets construction in linear time, we expect
to have one visibility test for each object in the first pass. We propose a method for updating
the overlapping region with respective to the collision independent set under construction.
We design a probing surface pointing to the minimum depth of objects that are overlapped
with the object to be rendered. Probing surface will be assigned to overlapping region once
an object becomes the first object in a newly created collision independent set or is inserted
into a collision independent set.

Since we construct collision independent sets on the 1D view direction, if two collision
independent sets overlap along the view direction then we can not distinguish them. In
section 3.4, we will apply the algorithm to a hierarchical structure, and replace single view
direction with multiple view directions to reduce this limitation.

Regard Figure [3.7| as the example. The visibility test of objects of Os, Os, O3, Oy, Oo,
Og, O1, and O7 are performed in the first'passs We disregard O; due to it is fully visible.
Og is non-fully visible, we construct a collisionindependent set C'/.S; and insert Og into it
set. The only overlapped object withh C'1.S; is:O3 and-Os is fully visible, we can confirm
that C'IS; will not collide with any ebjects that are not yet rendered. Similarly, C'I S,
containing Oy is constructed since Q4 is not fullyvisible, and the overlapped object O is
fully visible. C'I.S; also dose not collide with remaining objects. After C'/.S5 containing
Og 1s constructed, we do visibility test for the overlapped objects O; and O7. Only O7 is
not fully visible, and inserted into C'IS3. Separating surfaces SS7, 5595, and S.S3 point
to the minimum depth of C'IS53, C'1S;, and C'15], respectively. In the second pass, we
only perform visibility test for O, Os, O3, and O3, since these objects are fully visible
in first pass. O, O3, and Os are not fully visible, and inserted into C'IS3, CIS,, and
CISy, respectively. As a result of three collision independent sets PC'S; = {Os, Os},
PCSy ={03,0,}, and PCS;5 = {O3, Og, O} are constructed.

Some symbols are described before we introduce the proposed algorithms. E; is a temp
for traversing all projection elements in the sorted list. In each iteration, F; scans the list
from far to near in the first pass and then from near to far in the second pass. ActiveCIS is
used to indicate the collision independent set that is being constructed. SS is a separating
surface. It will separate the ActiveCIS from other collision independent sets. P.S is a

probing surface pointing to the minimum depth of objects that are overlapped with the

3.3 Collision Independent Sets Construction Using Separating Surfaces

26

View direction

Figure 3.7: An example for collision independent sets construction.

3.3 Collision Independent Sets Construction Using Separating Surfaces

27

Table 3.1: Parameters of collision independent sets construction

Notation Description

E; each sorted element after projection
ActiveCIS the constructing collision independent set
SS the potential separating surface
ov overlapping region corresponding to ActiveC'IS

PS probing surface for updating overlapped region

object to be rendered. OV’ is a depth indicating the overlapping region of ActiveCIS. PS
will be assigned to OV once an object becomes the first object in a newly created collision
independent set of is inserted into ActiveC'[.S. The algorithm of collision independent sets

construction is shown in Algorithm

3.3.1 First Pass in Collision Culling

PS is set to positive infinity initially. We traverse all projection elements from far to near
and construct collision independent sets:* Tf F; points 'the maximum depth of an object O;
and PS is greater than the minimum depth'of (9;, then we update P S to the minimum depth
of O;. If F; is a minimum value of O;, then O; is performed visibility test. If O; is not fully
visible,we check whether the ActiveCIS exists. If ActiveClIS is nil, then we construct a new
collision independent set, represented by ActiveCIS; otherwise we insert O; into ActiveCIS,
and update separating surface SS and overlapping region OV. The separating surface SS
points to the minimum value of O; showing that there might be a separating surface pass
through it. OV points to the position of probing surface PS.

After O, performed visibility test, if the ActiveCIS exists (ActiveCIS # nil) and E; point
to a overlapping region OV/, then we can make sure that there is a separating surface passing
through SS and separating ActiveClS and other untested objects. We record the ActiveCIS
and SS into a list of collision independent set, and set ActiveCIS to nil. This means that

there is no potentially colliding set expanding.

3.3 Collision Independent Sets Construction Using Separating Surfaces

28

3.3.2 Second Pass in Collision Culling

In the second pass, we detect objects that belong to the collision independent sets con-
structed in the first pass. It is completed in linear time using the separating surfaces which
are derived in the first pass. These separating surfaces will avoid ambiguous situations and
ensure that each potentially colliding object will be inserted into correct collision indepen-
dent set. We scan projection elements from near to far. If £; is a minimum value of O;, then
we check whether O; is fully visible in the first pass. If the object is not fully visible in the
first pass and F; points to separating surface SS, then we assign the collision independent
set corresponding to S.S to ActiveCIS. If the object is fully visible in the first pass, then we
perform visibility test for it, and insert it into ActiveClIS if the object is non-fully visible in

the second pass.

3.3.3 A detailed process of collision independent sets construction

An example is shown in Figure traverse the projection elements: es, es, €3, bs, bs, €4,
bs, es, b4, €1, €g, ba, €7, bg, by, and b7, where ¢; and b;=are the farthest and nearest part of
O; with respect to the view direction, tespectively. Objects of Os, Og, O3, Oy, O4, Og, O1,
and Oy are performed visibility test‘in the first pass:

In Figure [3.9] we sequentially traverse projection elements of es, es, and es. es, eg, and
es are farthest part of objects, and probing surface P.S is updated to b3, the nearest position
of O3, Og, and Os. PSS records the conservative overlapping region with respect to es.

bs and bg are traversed, and O3 and Og are performed visibility test in order. Only Og
is non-fully visible, and then we construct a potentially collision independent set C'I S,
insert Og into the set and assign C'I.S; to ActiveCIS. The separating surface S5; and
overlapping region OV} point to bg and PSS, respectively. This means that there may exist a
separation surface between C'IS; and untested objects. The result is shown in Figure [3.10)
If all untested objects are fully visible before OV}, then C'I.5] is a collision independent set
and there is a separating surface pass through b3.

e4 and by are traversed in order, P.S is updated to b, and O3 is performed visibility test.
Os is fully visible and PS5 points to bs. This means all overlapped objects with respect to
C'15] are fully visible, and C'1.S; will not collide with any objects that nearer than S.5;. we
record C'1.S; and S.Sp, and assign nil to ActiveC1S, as shown in Figure

3.4 Collision filtering in hierarchical structure

29

We traverse e, and b, in order, update P.S to b, and perform visibility test for O4. C'1.5
is constructed and assigned to ActiveC'IS due to Oy is non-fully visible and ActiveC1S
is nil. S.S; and OV, with respect to C'I S5 point to by and P.S, respectively, as shown in
Figure A new collision independent set is found at Oy, and OV is indicated by PS.

e1, eg and by are traversed in order, PS is updated to b; and O, is performed visibility
test. The expansion of C'1.5 is finished due to O, is fully visible and OV, points to bo,
and we remove C'1.S; from ActiveC1S, as shown in Figure Os is an only overlapped
object with C'1.55, and it is fully visible. This means C'I S5 dose not collide any objects that
nearer than S'5;.

We traverse e; and bg in order, update P.S to b; and perform visibility test for Og. C'1.55
is constructed and assigned to ActiveC'IS due to Oy is non-fully visible and ActiveC'1S
is nil. S.S5 and OV3 with respect to C'I S5 point to bg and PS, respectively, as shown in
Figure b, and b7 are traversed, and we perform visibility test with O; and O in order.
Only O is non-fully visible and ActiyeCIS is not nil, then we insert O; into C'/.S5. The
result of the example in the first pass, is-shown in Figure There are three collision
independent sets PC'S| = {Os }+PCS5 = {O4}, and PC S5 = {Og, O;} found.

In the second pass, we traverse the projection elements in near-to-far order, and perform
visibility test for objects of O, Oz;.03, and Os which are fully visible in first pass. Os,
O3, and Os are non-fully visible, and inserted into C'IS3, C'IS;, and C'I Sy, respectively.
There are three collision independent sets PC'S; = {Os,0s}, PCSy; = {O3,0,}, and
PCS3 = {04, Og, 07}, and two separating surfaces are found among collision independent

sets. The result is shown in Figure

3.4 Collision filtering in hierarchical structure

3.4.1 Bounding Volume Hierarchy Construction

The construction of bounding volume hierarchy can be done in either top-down, bottom-up,
or incremental fashion. In order to build a complete tree and group neighboring primitives,
we use top-down construction. Collision culling will be processed in a coarse to fine man-
ner by traversing the bounding volume hierarchy which will substantially reduce the time

required for visibility queries [BMO4]. This should be handled by broad phase collision

3.4 Collision filtering in hierarchical structure

Rendering order

Cs -~~~ —=————

T 8

b}g ____b]t; _________ _% _________

by [--=bs f----

by |-—-by |---—-

& ———————=F———————fp—————- -
b -—-by [--————--- T ST
o R O | Os
bc ____b6 ___________________________
b f---b f-——--——- 0
I S —
View

Figure 3.8: An example, a scéne -COHSEIS 0-.f;:.0;1,;02, O3, O4, Os, Og, O7, and Os.
ol = I-I_, X -

O ullyvisbie | ~ ActiveCIS{ }

X i non-fully visible'

A 'chdcring

order

Passl\\l €5 [—————————————————————
Co |
G

bj L T e e 8

by [-——bg [----——--- B @ TR S —

e [——--

PS = [by |-———by f-——- -

& |----- I 0 N

by |--=—by |-—--

g f======== 02

€ F——————-—f-——————f—————- - - -
by [———by |-——m—mm S A
ol I O | Os
L T e e B
N 0O,
L] e
vie

Figure 3.9: Traverse projection elements of e, eg, and e3. The global probing surface PS5,

is updated to b3.

3.4 Collision filtering in hierarchical structure

Q: fully visible | ActiveCIS{ }
X non-fully visible'
_________________ 'chdcrmg
order
Pasle/ €5 [-————————————————————
g m-— e "Bl
o Us
(@) bs |F-==bs |--—------p - pm - 8

SS; X | bs ———E' ————————— Dyt

ov, ps =3 | bs [F===bs --—— e

€ [—————

by |—-—by [----

g [-=—======- Oz

e" ———————————————————————— —
by f———by |- AN -
Pl I O | Os
L T e T S
N —— 0
by fr===by |~=mmm e m e
vie

Figure 3.10: Traverse projection !elérhénmgf by and-;'bg, collision independent set C'I.S; is

constructed at Os. = | St v =

O: fully visible | Acti\;eCIS{} PCS={0s}

x non-fully visible'
................. 'Rendering

order
Passl\\/ T

L e 8

)] — A T
" _"Eﬂ _____ O,

by F———by [--—-

S5

oV,

Y 0 XO

Figure 3.11: Traverse projection elements of e, and b3, and the expansion of C'1.S; is finish

at bg.

3.4 Collision filtering in hierarchical structure

QO : fully visible | ActiveCIS{ CIS, } CIS;={Os}
x non-fully visible ! CISZ={04}

----------------- 'Rendering
order

Pasle{ €g [————————

bs |--=bs |---=-=-=—f}-—-—f---m—- 8

bs |--—bs |--------- B T ——

by |F———by f-———1 -

oV, PS b, F——=b, |--———————- e = ————
2 =2 | b 2 -__Ql__- 06

S5,

X 0O XO

S8,

Figure 3.12: Traverse projection 9lémentsip;f e gndib{;, collision independent set C'I S is

constructed at Oy. =] ey =

Q: fully visible i Acti\;eCIS{} CIS,={Os}
x non-fully visible' CISZ={O4}

................. 'Rendering
order

Passl\\/ R

G Us

€y F—————=———
bs [~===bg |-========fmmm e 8

bg [-===by |--=====un B @ TN S

04 ———
by F———by F———-1 L

S5

X 0O XO

88, by F-——by |--—-

e f--—--—--- 0O,
B S0 TR O,

€y |-/~
b(, ----bb ---------------------------

ov,

O
5

b'g ____b']r _____________________

Figure 3.13: Traverse projection elements of e;, eg and bo, and the expansion of C'I S, is

finish at b,.

3.4 Collision filtering in hierarchical structure

O: fully visible | ActiveCIS{ CIS;} CIS;={Og}
x non-fully visible ! CISZ={O4}

----------------- 'Rendering

order CIS].={06}
Pasle/ €5 [—————————————————————

G |TTTTTTTTTT T U5

€y [———=——=—-—
L e 8

by |--—bs |--------- B T ——

ey |———-

by |———by f-———1 -

& |----- 0 N

by F———by [--—-

e [-====-===- Oz

IS S 0 Y A O
" :::@:_‘:_‘: """"""""" 0,

OV PS = | by |b———by [~

S5,

X 0O XO

58,

O
5

§8;

X
g

Figure 3.14: Traverse projection 9lé:nientsipff e _and-;'bﬁ_, collision independent set C'I S5 is

constructed at Og. b A

Q) : fully visible [- ACtiVECIS{ } CIS={Os}
X non-fully visible - sering CIS,={0,}

order CIS3={06, 07}

Pass i €5 [—————————————————————

o S 0
bs [-—-=bs |[---—-=—-=f--mof oo 8

S§,

by |———by f-———1 R

X O XO
mﬁ"
?

sS, by |———by [----

) S IS I
e |-—ommmeem O Os

L e T e e el P A

e

X0OX O

58

Figure 3.15: After the first pass, three independent colliding sets, PC'S; = {Og}, PC'Sy =
{O4}, and PCS3 = {Og, O7}, and three separating surfaces, S5, S S, 593, are found.

3.4 Collision filtering in hierarchical structure

O: fully visible | ActiveCIS{} CIS:1={05,05}
| X non-fully visiblel tering CIS,={03,04
order CIS 3={ 02,0(,, 07}
Pass ZT Pasle/ e
€ [05
e ——————=*- .
X| O |bs b |-t 8
O] X |bs by |-t B @ P55 U -
SR EROR R B P e R
X| O |bs|——-by f-—-—1 -2
3 e | __04'_________.__
« . O] X |bs|--=by |---- -
§§ . ~ . 4 il A .el‘. R ()2
96 ———————————————————————— — — —
by F———by |- m e IS
o I il Bl I O I O
X| X |bs|==-bg -t
O| O b |-ty f--mmmm- 07
O| X |bif=by |-

Figure 3.16: After the second pass, the three collision independent sets will be finalized
as CIS; = {0s5,0s}, C1Sy = {05,0,}, and C1S3 = {03, O, O}, and there are two

separating surfaces found.

3.4 Collision filtering in hierarchical structure

Algorithm 3.2: The algorithm of collision independent sets construction

/115t pass;
ActiveCIS =nil, OV =nil, CISList = {}, PS = o0c;
foreach element E; in a far-to-near order do

if £, == MAX and PS > GetMin(E;) then
PS =GetMin(E;);

else if F; == MIN then
VisibilityTest(E;);

if IsInvisible(E;) == true then

if ActivePCS = nil then
ConstructCIS(ActiveC1S);

end
InsertIntoCIS(O;, ActiveCIS);
SS =E;;
OV =PS,
end

if ActivePCS # nil and OV = E; then
Complete(ActiveC TS, SS,CI1SList);

ActivePC'S = nil;
end

end

if ActivePCS # nil then
Complete(ActiveC'IS, SS);

end

/12" pass;

foreach element E; in a near-to-far order do
if E; == MIN then

if IsinvisibleInlst(E;) == true and SSExists(E;) then
ActiveClS = GetCIS(E;, CISList);

else if IsVisibleInlst(E;) == true then
VisibilityTest(E;);

if IsInvisible(E;) == true then
InsertIntoCIS(O;, ActiveCIS);

end
end

end

3.4 Collision filtering in hierarchical structure

Level {)

Level 1

Level 2
- L] -] -
- L] -] -
- - - T " -

Level k

Figure 3.17: Bounding yolume hierarchy with a 8-ary tree.

detection. But bounding volume hierarchy-is-mainly for narrow phase collision detection.
Since a frame buffer clearing is called for each level of hierarchy, we replace the original
binary trees for bounding volume-hierarchy by the 8-ary trees to decrease the height of a
tree, as shown in Figure[3.17] Moreover, weoffset boundary of volumes by a small distance

to avoid collisions missing due to insufficient frame buffer resolution in collision culling.

3.4.1.1 Bounding Volume Hierarchy Optimization

In this section, we will present how to construct oriented bounding boxes. The covariance
matrix provides a measure of the correlation among the vertices in a set. The direction
and density of the vertex distribution can be described using the eigenvalues and eigenvec-
tors of the covariance matrix. The covariance matrix [C;;] of vertices of an object can be

represented by

Cit =D, o (e + Dl + ik + 75) — ' ci!

i—1

Let vertices p', ¢*, and r* are the three vertices of the i’th triangle. where A’ = |(p’ — ¢') x
o 0 g , . 4

(p* —r")| and A" =3 ; A’ representing the area of triangle z gnd the summed area of all

triangles, respectively, ¢ = (p' + ¢' + r*)/3 and ¢! = % representing the centroid

of triangle ¢ and all triangles, respectively. The three eigenvectors of the covariance matrix

3.4 Collision filtering in hierarchical structure

37

(@) (b)

Figure 3.18: Bounding volume hierarchy construction using (a) three eigenvectors of the

covariance matrix; (b) optimizing principal components

can be used as the three axes of the or1 ed bo nding box. This, however, is not optimal.

One improved approach, called op sr ZlIl pI i}_
EFS "'r ermine two remaining eigenvectors by

S

m components [Eri03], is to first align

the box along one of the elgenv -and

using the computed minimum-ar 'bo n ctan gle of the projection of vertices onto

the plane perpendicular to the first.axis. This iﬂzu determines the best orientation of
two remaining axes and produces the smallest volume oriented bounding box. Figure 3.18]
shows the bounding volume hierarchy constructed using 3 eigenvectors of the covariance

matrix and optimizing principal components, respectively.

3.4.2 Sorting and collision independent sets construction

In subsection 3.3, we present an approach to partition potentially colliding set into multiple
subsets. We project axis-aligned bounding volumes of objects and find the separating sur-
faces along the view direction. However, if the intervals of the projections of two collision
independent sets overlap along the view direction, these sets might be unable to distinguish.
For this reason, we attempt to apply the proposed algorithm to a hierarchical structure.
During hierarchy traversal, we select the different view directions for performing col-
lision culling for each level. The axis-aligned bounding volumes of remaining objects are
rearrange along the view direction, and the projection elements are also scanned from far to

near and then from near to far. For each independent set, we maintain an additional sorted

3.4 Collision filtering in hierarchical structure

38

list for the projections of objects of the set, because we only consider the overlapping region
in the same independent set, and the subsets are computed in each collision independent
set. In this way, collision independent sets will be constructed more efficiently, we can
reduce the influence of that the projections of collision independent sets overlap on the
specific direction. Moreover, the first tested object of each collision independent set need
not carry out visibility test, and the last tested object of each collision independent set need

not update to the depth buffer.

CHAPTER 4

Results

We have implemented the proposed algorithm in C++ and OpenGL, and compare the per-
formance of the algorithm with CULLIDE [GRLMO03|] on VC 7.0 with 3.0GHz Intel Pen-
tium 4 CPU, 512 MB memory, and Geforce 6800 GPU. Three different scenes of vary-
ing benchmarks are tested. The dynamic computation-is supported by the physics engine
Tokama.

Since bounding volume hierarchy 1s‘part of*the proposed approach and it is beneficial
to the objects of high geometry complexity, performances of CULLIDE (called CULLIDE-
w/0-BVH), CULLIDE with bounding bolume hierarchy (called CULLIDE with BVH), and
our approach are compared by collision detection time. We also implement CULLIDE-
w/0-BVH in two stages, object level and sub-object level. For each level, we choose +x-
axis, —x-axis, +y-axis, —y-axis, +z-axis, and —z-axis to regard as view direction. After
potentially colliding set computation, potentially colliding pairs are determined by using
sweep-and-prune algorithm, and exact intersections of potentially colliding pairs are com-
puted on CPU eventually. For possible optimaizations in CULLIDE, we perform off-screen
rendering by using frame buffer object such that the resolution of testing buffer will not be
restricted to window size. Testing on hight resolution can be done using frame buffer object
with cost lower than pbuffer. Additionally, we use vertex array object to place geometry
of a model on the video memory beforehand to avoid a large number of geometric data

transferring between CPU and GPU. In the experiments, two timing statistics are recorded.

39

4.1 Performance analysis in simple environment

40

The first is the average collision detection time, defined as

>, CD_time;
n

Average_C'D_time =

where n is the number of frames performed and C'D _time; is the collision detection time

in ¢ th frame. The second is the maximum collision detection time
Mazimum_CD_time = max {C' D_time; }.
(A

If the maximum collision detection time is too large, that means the algorithm will not
detect collisions efficiently when there are many intersections, and we can not calculate the

cost of detecting collision in prediction.

4.1 Performance analysis in simple environment

Environment 1 is a scene of lower geometry and-depth complexity, consisting of 50 torii
and 2 planes. Each torus consists of 800 triangles, .and each plane consists of 1800 triangles.
All the torii move with gravity but two planes-are fixed:

We perform physics simulation at'500-1200-frame buffer resolutions. We repeatedly
simulate 10 times for each frame buffer resolution.over a period of time, and some of the
simulating process are shown in Figure 4.1l Timing statistics of simulation results are
shown in Table and Figure 4.2. It is shown that the average collision detection time is
around 4-6 milliseconds and the maximum collision detection time is lower than 30 mil-
liseconds in our approach. In CULLIDE-w/o-BVH and CULLIDE with BVH, the average
collision detection time is around 9-12 and 7-10 millisecond and the maximum collision
detection time is around 34-45 and 29-33 milliseconds, respectively. Our approach is about
two times faster then CULLIDE-w/o-BVH.

Figure [4.3] depicts the collision detection time of the simulation over a short period of
time. Figure [4.4] shows that the number of collision independent set corresponding to the

same time period in Figure

4.1 Performance analysis in simple environment

41

(e) ®

Figure 4.1: Figures (a)-(f) show the simulating process in environment 1.

4.1 Performance analysis in simple environment

42

13 T T T T T
-3 CULLIDE
,\--EL CULLIDE + BvH
121 g N == Our method H
- - "\, a T,
- N, ’ S
B - -y
123 s, s (c1]
1 ; N\, . 4
v N2
Q.) o
Z10F s 1
c . R4
£ o
(4]
£ oL !
=
°
il
3 8 .
(4]
[=)]
o
"/‘-‘-""'-‘-u.‘_“\
6F . .]
K ’ \’\ ,"‘si"‘h.,
’,I ‘N "r‘ - L
' ’\‘ Py -
Sk - o |
‘I\\I‘ "l
T
4 | | | | | |
500 600 700 800 9S00 1000 1100 1200
Frane buffer resolution (n x n)
(a) Average collision time.
50 T T T T I
-3 CULLIDE
CULLIDE + BvH
== Qur method
45+ H -
0 PR
\, : Y
* -Elf, k
— . - \)
a0l N\ - s a .
£ '\\ ;"‘ p3 /‘/ .-"-Jh“h.
L f N B ~
£ N o N g
5 i "\ X
B35 b', .
IS
Q
£
3
E
F30F s
=
PN
N . "",o ,\'
AN ,o“" 2
5L N »7 KN .
N, - \
\'\ -~ . ~
‘\,_‘_ IIIII - P \,\ ‘‘‘‘‘‘‘‘‘‘‘ - """-n..,__‘_“..‘
20 | | | | | |
500 600 700 800 900 1000 1100 1200

Frane buffer resolution (n x n)

(b) Maximum collision time.

Figure 4.2: Performance comparison between our approach and CULLIDE in environment

1.

4.1 Performance analysis in simple environment

43

T
>
0
I +
ww
O0g
ij
R R |
HO OO
z - i
1
o+
: ;
E =
___________ =0
Clﬁ c
o v
C | -
L0 C
|
L] Fp]
=)

(SW ur) sw uoIsIioD

Figure 4.3: Performance comparison with CULLIDE, CULLIDE with hierarcical bounding

volume, and our approach in environment 1 at frame buffer resolution 800 800.

4.1 Performance analysis in simple environment

l-lllH-l'H.E'."'"'

]

400

I '-I-I-I-I-I-I-I-I-I-_ B 8
'|-|—|-'-I-I-I-I-I-Il o«
!
‘-l-l-l-l-l-l-l-l-l-_
r- B
i |-|-I=I=:=::.:.::::- 13
-l-l-l-l-l-l-l-l-l-l M

+-|-|-I—I-I-|—|—|—|-

I v e
-mFI.Iu-_':u-_.-.-.-...

370

360

Ll ot 1 =

"""I=I|=I|:

o
-m'.'—'.-._._._.-u-.-

-
-mml_-lu-lu-ll--—
.—.—u-u:-_u-_uEH.I'!h--

Environment 1
[
350
Frame number

T

340

1
-1.;.;:|-|—|-|—|-|—|-|—|-|—|
s e T P

] o
1 1 1 I-I-I-I-I-I-I-I-I-I— |
_-I-I.'=:=l=:=|:::|-|-|-|-|-|-|-|- 8
|-|-I.
- I-::::%hﬂ—-
-hﬂlﬂl’.'-u'—-.:::l- LR L T
B _-Il-ll- -Iu-—'.-—'.'E-'.'I-'m-: 8
!]
I'-I-I-I-I-'-'-l-|-||
-|-|-|-|-|-|-|-|-|-
1 =
- i le
T e 58]
|-.-|—|—||-||-|---|I'Irri|'F-"'l
|
o e T T e
Il-\-\-'l-'l=|-l-|-I-|-I-I-|-I-|-|- o
| I-I-|q D
o N Nk ™ -

S}os Juspuadapul UOISI|0 JO Jaguinu sy

Figure 4.4: The number of collision independent sets constructed for environment 1 at

frame buffer resolution 800 x 800.

4.2 Performance comparison for environments of high geometry complexity and low

depth complexity 45
Resolution 500 600 700 800 900 1000 1100 1200
CULLIDE 10.4387 | 9.4688 | 11.2566 | 11.9801 | 12.3607 | 10.4257 | 12.1255 | 11.2271

CULLIDE + BVH | 8.2661 | 7.7312 | 8.8909 9.5789 | 10.0679 | 8.2891 9.6388 8.927
Our approach 4.984 4.3461 5.258 6.4132 6.1873 4.8549 5.7734 5.186
(a)The average collision time (in ms).
Resolution 500 600 700 800 900 1000 1100 1200
CULLIDE 43.6992 | 35.9532 | 39.3979 | 41.0256 | 45.1085 | 34.0662 | 39.4205 | 37.6131
CULLIDE + BVH | 32.9125 | 29.1949 | 29.6336 | 32.4783 | 34.6623 | 27.8242 | 31.967 | 28.9488
Our approach 27.8145 | 21.5791 | 21.9499 | 25.8569 | 28.2488 | 21.3527 | 22.5531 | 21.0549

(b)The maximum collision time (in ms).

Table 4.1: Timing statistics for environment 1.

4.2 Performance comparison for environments of high ge-
ometry complexity andlow depth complexity

Environment 2 is a scene of high.geometry ¢complexity-that consists of 12 dragons and two
planes. Each dragon and plane are composed of 47794 and 1800 triangles, respectively.
Environment setting is the same as-environment 1, all‘the dragons are affected with gravity,
and two planes are fixed. Collision responses between dragons and between dragons and
the fixed planes are decided by the physics engine. Some of simulation process is shown in
Figure 4.5. Table[d.2]shows the timing statistics of simulation at frame buffer resolutions of
500-1200. From Figure 4.6, we can see that there is a large difference on collision detection
time between CULLIDE-w/0-BVH and CULLIDE with BVH. The maximum collision
time of our approach is slower than CULLIDE with BVH at some resolutions, because the
number of collision independent set is 1 and the construction of collision independent set
brings additional overhead. However, the average performance of our approach is faster
than CULLIDE with BVH.

From the simulation result, we observe that hierarchical bounding volumes can actually
improve the performance. Figures and 4.8 show the performance of our method and
CULLIDE with BVH, we can see that the difference of performance is reduced. It suggests
that hierarchical bounding volume is advantageous to the scene of high geometry complex-
ity since the times of visibility queries will be reduced substantially by using the bounding

volume hierarchy. In Figure we observe that only a few collision independent sets are

4.2 Performance comparison for environments of high geometry complexity and low
depth complexity 46

(e) ®

Figure 4.5: Figures (a)-(f) show the simulating process in environment 2.

4.2 Performance comparison for environments of high geometry complexity and low

depth complexity 47
120 . | | ‘ I
Q. -8 CULLIDE
N CULLIDE + BVH
"\,\B == Qur method
\-|-\-|-\-.G._ _______ I . -‘-'_‘.E‘-'-""'I\-u ._w-l-\-""E‘-'-‘- ‘‘‘‘‘ n
100|- G 4 L
© g0l .
=
(4]
£
5
S 60 .
B
Q
QL
[=)]
a
2 40 §
20 .
0 ----- |- -\I-I-\-I-\-I-\-I‘-\-I-\- ------- I— ----- -I-\-I-\I-I-\-I-\-I-\-I‘-\-I-\- ------- I— -------------
500 600 700 800 800 1000 1100 1200
Frane buffer resolution (n x n)
(a) Avetage-collision time.
350 | ‘ | | ‘ |
R - S 3, -3 CULLIDE
A3 g o, CULLIDE +BvH 1
Pl o == Our method
- ‘~, i
300 Bmrmmm” .
z
£250+ J
=
(4]
£
5
‘w200 -
B
Q
£
3
£
3150 .
=
1004, _ .
50 | | | | | |
500 600 700 800 900 1000 1100 1200

Figure 4.6: Performance comparison between our approach and CULLIDE in environment

2.

Frane buffer resolution (n x n)

(b) Maximum collision time.

4.3 Performance comparison for environments of high depth complexity and low

geometry complexity 48
Resolution 500 600 700 800 900 1000 1100 1200
CULLIDE 116.4508 | 104.0282 | 103.0554 | 103.5537 | 102.5925 | 101.2312 | 102.8491 | 102.5063

CULLIDE + BVH 9.8627 8.6619 8.5765 8.5069 8.4425 8.3264 8.5565 8.5093
Our approach 3.8625 3.3018 3.2927 3.2294 3.3413 3.3237 3.4301 3472
(a)The average collision time (in ms).

Resolution 500 600 700 800 900 1000 1100 1200
CULLIDE 308.8009 | 330.4723 | 340.8981 | 328.2975 | 338.5292 | 301.5541 | 296.7655 | 330.0577
CULLIDE + BVH | 99.2663 82.9217 77.5231 77.2811 75.631 74.0776 74.105 76.3502
Our approach 96.4205 87.6988 79.9788 75.535 78.8733 76.117 73.2332 74.6011

(b)The maximum collision time (in ms).

Table 4.2: Timing statistics for environment 2.

found since there are fewer objects in the scene.

4.3 Performance comparison for environments of high depth

complexity and low geometry ¢omplexity

Environment 3 consists of varying number of torii; each of them has 800 triangles. We
record the time of collision detection performed at frame buffer resolution 800x800. Each
torus moves randomly in a cube with an initial velocity, but without gravity, as shown
in Figure 4.10] This scene has higher depth complexity than previous two environments.
Table shows the timing statistics of simulation results for 50-200 torii. Our approach
is 3.5-5.6 times faster than CULLIDE-w/o-BVH at the average collision detection time, as
shown in Figure 4.11.

From the simulation result, we observe that depth sorting and collision independent sets
construction are the major sources of performance improvement when the depth complex-
ity of the scene is high. Figure[d.12]depicts the simulation over a period of time, and Figure
shows that the number of collision independent set corresponding to the same time pe-
riod in Figure #.12] The restriction of the depth complexity will be conspicuously reduced
by our collision independent set approach, which will decrease the cost of exact collision
detection and times of occlusion queries and rendering. From the experiments, we can ob-
serve that hierarchical bounding volume have better performance on dealing with scenes

having high geometry complexity, and sorting and collision independent set construction

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity

49

|h|===:=:=|—|—|—..r

= >
& b
. 1
H T + ‘-I_,_.-' 8
S ww { 2
ds 9 9 I-I-I—I-I-I-l-l’
g \-
5 55 1—1"-
= R R L I 1
Neoo I-I;'.='ul—. | g
Nt i S)
P+ O .;
i i ————— :
. .
S 1o
L S - %
'-,I:-_._._._.-.-.—..r :
“l— :
L. 8
i e]
::::Ihl 19
ﬂ_.l-.'-ﬂn
I-I-‘I-I-I-I
e

R I el Ratis Tl Lttt

1—'-'~'-|

Environment 2

qwm
L

ﬂ-l-l-l-l-l-l-l-l-l—
r

350
Frame number

-'-I-|-|-I-|-I-
oy
-
,..-u-n-n-l-""

4 -
-y
"-I‘
Rt
.

.-
‘“-"-l'-u..‘

-
*

.-..-..-.-.._._....-._._..._’

“"'-u...*
B f‘r\ w
/

.
*
-
g

i S -

b Y

o
-
I-I-'-l-lﬁl_l-l‘l

G-
| | | | | | [Mt |
«© o <+ o — «© o < o™
~ ~ ~ - o = = = =
o o o o o o o o

—

39S UI) aWIj UoISI|joD

Figure 4.7: Performance comparison with CULLIDE, CULLIDE with hierarcical bounding

volume, and our approach in environment 2 at frame buffer resolution 800 x 800.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity

|
I
=
om 5
_'8 + [
< w K
T O
i
=]
= 3
153 R i B
o
I I iy r~
(37}
=,
I :
Eﬂ'* T T '—E
o e e e o
i ©
sl ' ©
N == o
—
: O
g 7 2
— e (R T e T b o= = C
8 E.......u.-.n.-.'.-l-'ul'n'—'-'u'-'-'u='.'—'-'.'-'.'.‘_'.'.'_'.'.:',_—.-'u_—.-ln:""“"" -.:-._? Q ©
5 By E
=
: &
s -
o
- -u—l_.i'nrr"’"—'—l g
'..'.._..........EL,
e bl
oty
=y | s %
— —m v ' n
il i Y
I Eﬁﬂr-‘-'-'-"-.._-...--l-.-- S o (o s
| ' l l l
© 8 3 8 S
© 3 o - 2
o o = o ©

(

&)

95 Ul) aWy UOISIIOD

Figure 4.8: Performance comparison between CULLIDE with hierarcical bounding volume

and our approach in environment 2 at frame buffer resolution 800 x 800.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity

400

I
i
1
!
1
!
1
!
1
!
!
L
!
!
!
t
!
1
1
390

T T T R R

I
1
I
]
380

370

‘-I-l-l-|-I-|-I-l-|-|-|-|-|-I-|-I-|-I-i-|

360

||||||||||||||||| - w1l
e T T T T | 1 1 ot

Environment 2
350
Frame number

ml-ll-l-l-l-l-l-l-l
r|-|-|-|-|-|-|-I|:Il:I|=I|=I|=I|='|-\-\-I-I-|- |

340

330

I
|
320

f

!

I

!

!

i
310

300

-— o
5)2s luepuedepU! UQISI||02 JO lagquinu ay

Figure 4.9: The number of collision independent constructed for in environment 2 at frame

buffer resolution 800 x 800.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity

52

Number of objects 50 75 100 125 150 175 200

CULLIDE 3.0452 | 6.0724 | 8.5626 | 13.8683 | 20.8768 | 30.1283 | 39.0184

CULLIDE + BVH | 2.8114 | 5.3933 | 7.5438 | 12.0604 | 18.0058 | 25.6932 | 31.4438

Our approach 0.8566 | 1.3087 | 2.1369 | 2.8623 4.1652 5.4974 6.9615

(a)The average collision time (in ms).

Number of objects 50 75 100 125 150 175 200
CULLIDE 13.2077 | 19.8889 | 24.4985 | 34.3188 | 46.6946 | 61.8026 | 77.8568
CULLIDE + BVH | 15.4034 | 18.5633 | 24.0479 | 32.4148 | 43.821 | 56.7133 | 63.6322
Our approach 9.262 10.3844 | 14.0316 | 18.2389 | 26.452 | 33.5028 | 34.5121

(b)The maximum collision time (in ms).

Table 4.3: Timing statistics for environment 3.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity

40 |
8- CULLIDE el
CULLIDE + BVH
35 == Qur method
-
‘/‘
K4
30+ o i
Fd
o v
4
E 25+ 7 i
= ~/
g K4
£ v
5 o
:% 20 ,‘/‘ -
3 e
Q ‘,‘
3 4
j= 3
815- x4 =
2 x.a’
."’\
10+ P |
-8
H— - _-__.---"'"-
5¢ _“,...— e |
r=|—\ ___,.-"'"_-
0--------‘-'- ‘ I
50 100 150 200
The number of objects
(a) Avetage-collision time.
80 |
-8 CULLIDE
CULLIDE + BvH
70+ == Qur method
—
\/‘
K4
60 f,l:‘l’ i
n P
£ P
S50t 7 |
(4]
£ g
5 3
K] Kd
£ LB
2 K o
£ 30| e P]
5 - -
g 2% -
= e P
20 ,.—“B’ “‘d‘ a
“ ‘|' —"‘.‘—‘_-.-
1 -
10 ;.-\-‘---w---\---—“’"— i
0 L !
S0 100 150 200

The number of objects

(b) Maximum collision time.

Figure 4.11: Performance comparison between our approach and CULLIDE in environ-

ment 3.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity

54

can reduce the impact of high depth complexity.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity

2100

CULLIDE + BvH
== Our method
T
]
3
1
FREALY
o
|
2090

43 CULLIDE
3
f
I
|
2080

|
1 i
v
v
Yoo
|
2070

Environment 3
[
]
\
| | | |
2030 2040 2050 2060
Frame number

1
|
2020

‘!
2010

| I-I-'E 1
o

w w
[+p] [+p] o™

(SW ur) swi uoIsIioD

50
45t
40
20 F
151
o0

Figure 4.12: Performance comparison with CULLIDE, CULLIDE with hierarcical bound-
ing volume, and our approach in environment 3 for 200 torii at frame buffer resolution

800x800.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity

o
T 1 =4
I -
-.'-I.'.':nl:.l:._ o™
‘-|-|-|-|-|-|—|-.-|-'-'|
1
-'mu-l._-u-u-ulu-l-l-

L ""'""”'"7'-'.'_"""-'_'-I'-'-':'-'“'”'"""'-'- | 8
-.-.-.-._.-.-.-.-.-.-.-.-._H-Im-. 8
—-|-|-|-|-I-

I
ol
—Fﬂ'n'-nll-lul—n-u-u-u—u-.-.-n-u-u-u-u-.-n-u-u-ll o
i _-|-|-|-|-|-|—|-|—|—|-| _§
1
- -
S _

B _-I-I-I-I—l-_ _I\é

|-|-I-I-I-I-I—I-I-I_’

|-|-|—|-|II'|

|-I-I-I-I-_ -
:-I-I-'_'-'-u-, | 8
T

“'.I S

29} -|-|-|—|-,_|_I- 5

= I I &

c —

£ .I.::I--l'-'u'l-h— 2

E -I-I-|-'I % E

8 pu-u—l-'-'-' g <

= e

é 4—I|:|:I|='|-l- g

- ' s

1 |-|-|-Iﬂ o
- |-|=|-|-|-|_,_I- 12
_-|-I-|-I-|-|-I-II=|I.I'-I 8

hlhun-l-u-l-_
i|-|-|-|-|-|-|-|-|-|-||

| 3
L P TR L 18
HE N 8
o
-l-'|=|=|-|-|—|-|-|-|—|‘
|-|.|-|-|||-.....-II-I"""""'-+ o
- 4—|—|-'-'-|' | S
+-|-|—I_'-'- “
ll_l_._,-,_l
LI T,
- -I-I-I-I_I-I-ll-.- o
i |.|'..'=|I:|-|-|—|-|-|-|-. 15
|.-||-II"""'h 8

l l I-l-|-|-|-|-||-|—|-|-|-|'-|—|—|-|—|-

[9)] =] I~ (i) uj =TI
S}os Juspuadapul UOISI|0 JO Jaguinu sy

10
2000

11

Figure 4.13: The number of collision independent sets constructed for environment 3 for

200 torii at frame buffer resolution 800 x 800.

CHAPTER S

Conclusion

In this Chapter, we give a summary of the thesis and point out some future research direc-

tions.

5.1 Summary

Collision detection is a fundamental problem in interactive application. However, no gen-
eral collision detection algorithms are presented for all kinds of environments. For this
reason, the collision detection algorithms are designed by using some coherences among
objects. The coherences for collision detection can be classified into three categories such
as spatial coherence, temporal coherence, and image coherence.

There are many image-based collision detection techniques are proposed due to the
development of graphics hardware grows up rapidly. In this thesis, we present an algo-
rithm for efficient and exact collision detection between complex geometric models in
large environments using graphics hardware. Our approach is based on CULLIDE. 1t is
constructed in several major includes construction of bounding volume hierarchies, pro-
jection and sorting, hierarchical pruning, and exact intersection test. In preprocessing,
we construct bounding volume hierarchies for each object using oriented bounding boxes.
These extra data structure will reduce the times of visibility queries substantially. In order
to amend the performance of visibility pruning technique, we decide a suitable rendering

order for collision culling. In this way, we can conspicuously reduce the extent of culling

57

5.2 Future work

58

to rely on the depth complexity of the scene along the view direction by using near-to-far
rendering order in two-pass process. Furthermore, we design two lemmas for determining
whether separating surfaces exist between the subsets of the potentially colliding set. Col-
lision independent sets construction will reduce the cost of exact intersection test and times
of occlusion queries and rendering.

The main contributions of our approach are that we propose a more efficient collision
culling algorithm and partitioning potentially colliding set during collision culling. From
simulation results, our approach is much faster than CULLIDE. It dose still not perform
frame buffer readbacks but readbacks a few bytes per object. The polygon level intersec-
tions will be detected in interactive rate. Our collision detection approach is applicable to
both high geometry complexity and depth complexity scenes. It is not restricted to closed

and watertight models.

5.2 Future work

An approach uses temporal coherence in addition to-a “sweep-and-prune” technique to
reduce the pairs of objects that need to-be considered for collision [CLMPY35]]. The hierar-
chical bounding volumes are updated Tast by-exploiting temporal coherence for deformable
models [JP04]. We could also assume that the configurations of collision independent sets
are changed very restrictedly. Collision independent sets could be constructed by using the
results of successive time step.

We would like to extend our algorithm to perform other collision queries such as self-
intersections, continuous collisions, volumetric intersection, and penetrating computation.
An approach based on CULLIDE is proposed to detect self-collisions [BMO04]. It is also re-
stricted by depth complexity. At this point, we could apply our algorithm to its framework,

and attempt to traverse nodes in hierarchy in a far-to-near order.

Bibliography

[BMO0O4] N. Boldt and J. Meyer. Self-intersections with Cullide. 23(3), 2004.

[BWS99] G. Baciu, W.S. Wong, and H. Sun. Recode: an image-based collision detection
algorithm. The Journal of Visualization and Computer Animation, 10(4):181-
192, October - December 1999.

[CLMP95] J. Cohen, M. Lin, D. Manocha,,and M. Ponamgi. I-COLLIDE: An Interactive
and Exact Collision-Detection System for Large-Scale Environments. In In

Proceedings of Symposium|onlnteractive 3D Graphics, pages 189-218, 1995.
[EriO5] C. Ericson. Real Time Collision Detéction. Morgan Kaufmann, 2005.

[GASF94] A. Garcia-Alonso, N. Serrano, and J. Flaquer. Solving the Collision Detection
Problem. IEEE Computer Graphics and Applications, 13(3):36—43, July 1994.

[GLM96] S. Gottschalk, M. Lin, and D. Manocha. OBBTree: A Hierarchical Structure
for Rapid Interference Detection. In Proc. of ACM Siggraph’96, pages 171—
180, 1996.

[GLMO04] N. Govindaraju, M. Lin, and D. Manocha. Fast and Reliable Collision Culling
using Graphics Hardware. In Proceedings of the ACM symposium on Virtual

reality software and technology, pages 2-9, 2004.

[GLMO5a] N. Govindaraju, M. Lin, and D. Manocha. Interactive Collision Detection
between Deformable Models using Chromatic Decomposition. 24(3):991—
999, July 2005.

[GLMO5b] N. Govindaraju, M. Lin, and D. Manocha. Quick-CULLIDE: Fast Inter- and

59

Bibliography

60

[GRLMO3]

[HDLMY96]

[He99]

[HKM95]

[HTGO3]

[HTGO4]

[Hub93]

[Hub95]

[Hub96]

Intra-Object Collision Culling Using Graphics Hardware. In IEEE Virtual
Reality Conference 2005 (VR’05), pages 59-66, 319, 2005.

N. Govindaraju, S. Redon, M. Lin, and D. Manocha. CULLIDE: Interactive
Collision Detection Between Complex Models in Large Environments using
Graphics Hardware. In Proceedings of the Eurographics/SIGGRAPH Graph-
ics Hardware Workshop, 2003.

M. Hughes, C. DiMattia, M.C. Lin, and D. Manocha. Efficient and Accurate
Interference Detection for Polynomial Deformation and Soft Object Anima-

tion. Technical Report TR96-001, 2 1996.

Taosong He. Fast Collision Detection using QuOSPO trees. In Symposium on

Interactive 3D Graphics, pages 55-62, 1999.

M. Held, J. Klosowskiy'and J. Mitehell. Evaluation of Collision Detection
Methods for Virtual Reality Fly-throughs. In In proceedings Seventh Cana-

dian Conference on:Computational Geometry, 1995.

B. Heidelberger, M. Teschner, and M..Gross. Real-Time Volumetric Intersec-
tions of Deforming Objects. In Proc. Vision, Modeling, Visualization VMV’03,
pages 461468, 2003.

B. Heidelberger, M. Teschner, and M. Gross. Detection of Collision and Self-
Collisions using Image Space Techniques. In Proc. Computer Graphics, Visu-

alization and Computer Vision WSCG’04, pages 145-152, 2004.

P.M. Hubbard. Interactive collision detection. In In Proceedings of IEEE
Symposium on Research Frontiers in Virtual Reality, number TR96-001, 2
1993.

PM. Hubbard. Collision Detection for Interactive Graphics Applications.
IEEE Transactions on Visualization and Computer Graphics, 1(3):218-230,
1995.

P.M. Hubbard. Approximating Polyhedra with Spheres for Time-Critical Col-
lision Detection. ACM Transactions on Graphics, 15(3):179-210, 1996.

Bibliography

61

[JPO4]

[JTTO1]

[KHM198]

[KPO3]

[KPLM9S]

[KZ05]

[LAMO1]

[LCN99]

[LGY8]

[MOKO95]

D. JAMES and D. PAIL. BD-Tree: Output-Sensitive Collision Detection for
Reduced Deformable Models. ACM Transactions on Graphics (SIGGRAPH
2004), 23(3), Aug. 2004.

P. Jimnez, F. Thomas, and C. Torras. 3D Collision Detection: A Survey. Com-

puters and Graphics, 25(2):269-285, apr 2001.

J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan. Ef-
ficient Collision Detection Using Bounding Volume Hierarchies of k£-DOPs.

IEEE Transactions on Visualization and Computer Graphics, 4(1):21-36,
1998.

D. Knott and D.K. Pai. CInDeR: Collision and Interference Detection in Real-
Time using Graphics Hardware. In Proc. of Graphics Interface, pages 73-80,
2003.

S. Krishnan, A. Pattekar, M!:Lin, and D. Manocha. Spherical Shells: A
Higher-Order Bounding Volume for Fast Proximity Queries. In In Proceed-

ings of WAFR 98, pages 287-296,:2.1998.

L. Kavan and J. ZARA. Fast Collision Detection for Skeletally Deformable
Models Computer Graphics Forum. In Proc. of Graphics Interface, volume 24,
pages 363-37, 2005.

T. Larsson and T. Akenine-Mller. Collision detection for continuously deform-

ing bodies. In In Eurographics 2001, pages 325-333, 2001.

J.C. Lombardo, M.P. Cani, and F. Neyret. Real-Time Collision Detection for
Virtual Surgery. In Proceedings of Computer Animation *99, pages 82—, 1999.

M.C. Lin and S. Gottschalk. Collision detection between geometric models:

a survey. In In Proc. of IMA Conference on Mathematics of Surfaces, pages

37-56, 1998.

K. Myszkowski, O.G. Okunev, and T.L. Kunii. Fast Collision Detection be-
tween Complex Solids using Rasterizing Graphics Hardware. 11(9):497-512,
1995.

Bibliography

62

[MW88]

[NAT90]

[PGI5]

[Qui%4]

[TN87]

[van97]

[VSCO1]

[YT93]

[Zac95]

M. Moore and J.P. Wilhelms. Collision Detection and Response for Computer

Animation. In Computer Graphics (SIGGRAPH 88), pages 289-298, 1988.

B. Naylor, J. Amanatides, and W. Thibault. Merging BSP Trees Yields Poly-
hedral Set Operations. In Computer Graphics (SIGGRAPH 90), pages 115-
124, 1990.

I. Palmer and R. Grimsdale. Collision Detection for Animation using Sphere-

Trees. Computer Graphics Forum, 14(2):105-116, 1995.

S. Quinlan. Efficient Distance Computation between Non-Convex Objects.
In IEEE Intern. Conf. on Robotics and Automation, pages 3324-3329. IEEE,
1994.

W.C. Thibault and B.F. Naylor. Set Operations on Polyhedra Using Binary
Space Partitioning Trees. In Computer Graphics (SIGGRAPH 87), pages 153—
162, 1987.

G. van den Bergen.; Efficient Collision Detection of Complex Deformable

Models using AABB Trees. Journal of Graphics Tools: JGT, 2(4):1-14, 1997.

T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast Cloth Animation on Walk-
ing Avatars. 20(3):260-267, Sept. 2001.

Y. Yang and N. Thalmann. An Improved Algorithm for Collision Detection
in Cloth Animation with Human Body. In Proc. First Pacific Conf. Computer

Graphics and Applications, pages 237-251, 1993.

G. Zachmann. The BoxTree: Enabling Real-Time and Exact Collision Detec-
tion of Arbitrary Polyhedra. In In Informal Proc. First Workshop on Simulation
and Interaction in Virtual Environments, SIVE 95, pages 104-112, July 1995.

	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Collision Detection
	Collision Detection Algorithms
	Motivation
	Organization

	Related Work
	Ray Casting
	Counting Boundary Crossings
	Layered Depth Images
	Collision Culling

	Image-based Collision Filtering
	Overview
	Collision filtering with depth order
	Collision Independent Sets Construction Using Separating Surfaces
	First Pass in Collision Culling
	Second Pass in Collision Culling
	A detailed process of collision independent sets construction

	Collision filtering in hierarchical structure
	Bounding Volume Hierarchy Construction
	Bounding Volume Hierarchy Optimization

	Sorting and collision independent sets construction

	Results
	Performance analysis in simple environment
	Performance comparison for environments of high geometry complexity and low depth complexity
	Performance comparison for environments of high depth complexity and low geometry complexity

	Conclusion
	Summary
	Future work

	Bibliography

