

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

複雜環境之影像式碰撞濾除運算

A Practical Collision Filtering for Complex Environments

Using Image-based Techniques

研 究 生：陳勇誠

指導教授：莊榮宏 教授

中 華 民 國 九 十 五 年 九 月

複雜環境之影像式碰撞濾除運算

A Practical Collision Filtering for Complex Environments Using
Image-based Techniques

研 究 生：陳勇誠 Student：Yong-Cheng Chen

指導教授：莊榮宏 Advisor：Jung-Hong Chuang

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年九月

複雜環境之影像式碰撞濾除運算

學生： 陳勇誠 指導教授: 莊榮宏 博士

國立交通大學資訊工程學系

摘要

我們設計一個可快速且有效率的對複雜場景進行碰撞偵測的演算法，我們將

針對影像式的碰撞濾除加以改進並將潛在碰撞集合(potentially colliding set,

PCS)分割成數個子集合。在方法中我們延續 CULLIDE 的演算法[13]，在線性時間

將那些屬於完全可見的物體從潛在碰撞集合內移除，並且我們在兩次的繪圖流程

都給定一個從遠到近的順序，這將大幅度的降低因物體投影重疊而影響方法的效

率；儘管有些無發生碰撞的物體被其他的物體給遮蓋著，在我們方法中大多情況

下仍能有效濾除。另外，在執行能見度分析也同時計算是否存在分割曲面於潛在

碰撞集合中，分割曲面可將潛在碰撞集合分割成數個小的集合，可減少配對碰撞

偵測的次數。最後，我們利用 50~200 個由 800 個三角形構成的圓環測試執行效

能，平均所花費的碰撞偵測時間約為 0.85~7 秒，實驗結果，證實我們的方法能

有效率地應用於物理模擬或即時系統之中

A Practical Collision Filtering for Complex Environments
using Image-based Techniques

Student: Yong-Cheng Chen Advisor: Dr. Jung-Hong Chuang

Department of Computer Science and Information Engineering

National Chiao Tung University

ABSTRACT

We present an algorithm for efficient and exact collision detection between complex geo-

metric models in large environments using graphics hardware. The purpose of our algo-

rithm is to improve image-based collision culling and partition the potentially colliding set

(PCS) into subsets. Our algorithm eliminates objects which are fully visible in PCS using

occlusion query in linear time. It is based on CULLIDE and decides an order of rendering

to supply a more efficient culling performance. We can conspicuously reduce the extent of

culling to rely on the depth complexity of the scene along the view direction. Despite there

are some collision-free objects are occluded by other objects, they may be pruned in our al-

gorithm. Furthermore, our algorithm determines whether separating surfaces exist between

the subsets of the PCS. The computation of collision pairs would be beneficial to divide the

PCS into multiple sets during the collision culling. Finally, we measured the performance

of our algorithm using 50-200 torii with 800 triangles. The average collision detection time

is around 0.85-7 milliseconds. In the experiments, our approach had shown to be efficient

for collision detection in physics simulation and applied to real-time applications.

i

Contents

List of Figures iv

List of Algorithms vii

List of Tables viii

1 Introduction 1

1.1 Collision Detection . 1

1.2 Collision Detection Algorithms . 2

1.3 Motivation . 4

1.4 Organization . 5

2 Related Work 6

2.1 Ray Casting . 6

2.2 Counting Boundary Crossings . 8

2.3 Layered Depth Images . 11

2.4 Collision Culling . 14

3 Image-based Collision Filtering 16

3.1 Overview . 16

3.2 Collision filtering with depth order . 18

3.3 Collision Independent Sets Construction Using Separating Surfaces 20

3.3.1 First Pass in Collision Culling . 27

3.3.2 Second Pass in Collision Culling 28

3.3.3 A detailed process of collision independent sets construction 28

3.4 Collision filtering in hierarchical structure 29

ii

3.4.1 Bounding Volume Hierarchy Construction 29

3.4.1.1 Bounding Volume Hierarchy Optimization 36

3.4.2 Sorting and collision independent sets construction 37

4 Results 39

4.1 Performance analysis in simple environment 40

4.2 Performance comparison for environments of high geometry complexity

and low depth complexity . 45

4.3 Performance comparison for environments of high depth complexity and

low geometry complexity . 48

5 Conclusion 57

5.1 Summary . 57

5.2 Future work . 58

Bibliography 59

iii

List of Figures

2.1 Passible Z-interval cases[BWS99] . 7

2.2 Passible Z-interval cases[BWS99] . 9

2.3 Semi-infinite rays from a point in a closed mesh[KP03] 9

2.4 Update the depth buffer[KP03] . 10

2.5 Increases the stencil buffer when rendering ”front-facing” polygons[KP03]. 10

2.6 Decreases the stencil buffer when rendering ”back-facing” polygons[KP03]. 11

2.7 (a) VoI for A and B; (b) Extended VoI to obtain an outside face for A[HTG03]. 12

2.8 LDI for two pixels, unsorted and sorted with respect to depth values[HTG03]. 13

2.9 Intersection volume for Knot and Dragon[HTG03] 14

3.1 The flowchart of the proposed collision detection system. 17

3.2 The worst case of CULLIDE: (a) It shows that there are no intersections

in the environment; (b) All the projections of objects overlap with each

other; (C) We only can prune the object C using visibility-based pruning in

CULLIDE. 19

3.3 Projection and sorting. 20

3.4 The result of our collision culling: (a) It shows that there are no intersec-

tions in the environment; (b) All the projections of objects overlap with

each other; (c),(d) There are no occlusion in two passes. 22

3.5 If S1 and S2 do not collide with each other, we can find a separating surface

among them. 23

3.6 (a) Collision independent set; (b) The projection of green objects overlap

with the collision independent set, and the projection of yellow objects dose

not overlap with the set. 24

iv

3.7 An example for collision independent sets construction. 26

3.8 An example, a scene consists of O1, O2, O3, O4, O5, O6, O7, and O8. 30

3.9 Traverse projection elements of e5, e9, and e3. The global probing surface

PSg is updated to b3. 30

3.10 Traverse projection elements of b5 and b8, collision independent set CIS1

is constructed at O8. 31

3.11 Traverse projection elements of e4 and b3, and the expansion of CIS1 is

finish at b3. 31

3.12 Traverse projection elements of e2 and b4, collision independent set CIS2

is constructed at O4. 32

3.13 Traverse projection elements of e1, e6 and b2, and the expansion of CIS2

is finish at b2. 32

3.14 Traverse projection elements of e7 and b6, collision independent set CIS3

is constructed at O6. 33

3.15 After the first pass, three independent colliding sets, PCS1 = {O8}, PCS2 =

{O4}, and PCS3 = {O6, O7}, and three separating surfaces, SS1, SS2,

SS3, are found. 33

3.16 After the second pass, the three collision independent sets will be finalized

as CIS1 = {O5, O8}, CIS2 = {O3, O4}, and CIS3 = {O2, O6, O7}, and

there are two separating surfaces found. 34

3.17 Bounding volume hierarchy with a 8-ary tree. 36

3.18 Bounding volume hierarchy construction using (a) three eigenvectors of the

covariance matrix; (b) optimizing principal components 37

4.1 Figures (a)-(f) show the simulating process in environment 1. 41

4.2 Performance comparison between our approach and CULLIDE in environ-

ment 1. 42

4.3 Performance comparison with CULLIDE, CULLIDE with hierarcical bound-

ing volume, and our approach in environment 1 at frame buffer resolution

800×800. 43

4.4 The number of collision independent sets constructed for environment 1 at

frame buffer resolution 800×800. 44

4.5 Figures (a)-(f) show the simulating process in environment 2. 46

v

4.6 Performance comparison between our approach and CULLIDE in environ-

ment 2. 47

4.7 Performance comparison with CULLIDE, CULLIDE with hierarcical bound-

ing volume, and our approach in environment 2 at frame buffer resolution

800×800. 49

4.8 Performance comparison between CULLIDE with hierarcical bounding

volume and our approach in environment 2 at frame buffer resolution 800×800. 50

4.9 The number of collision independent constructed for in environment 2 at

frame buffer resolution 800×800. 51

4.10 Figure shows the simulating process in environment 3. 52

4.11 Performance comparison between our approach and CULLIDE in environ-

ment 3. 53

4.12 Performance comparison with CULLIDE, CULLIDE with hierarcical bound-

ing volume, and our approach in environment 3 for 200 torii at frame buffer

resolution 800×800. 55

4.13 The number of collision independent sets constructed for environment 3

for 200 torii at frame buffer resolution 800×800. 56

vi

List of Algorithms

2.1 The logical flow of RECODE . 8

2.2 The algorithm of collision culling . 15

3.1 Our collision culling algorithm . 21

3.2 The algorithm of collision independent sets construction 35

vii

List of Tables

3.1 Parameters of collision independent sets construction 27

4.1 Timing statistics for environment 1. 45

4.2 Timing statistics for environment 2. 48

4.3 Timing statistics for environment 3. 52

viii

Acknowledgments

I would like to thank my advisors, Professor Jung-Hong Chuang, for his guidance, in-

spirations, and encouragement. I am grateful to Tan-Chi Ho for his comments and advices.

Thanks to my colleagues in CGGM lab.: Yi-Chun Lin, Chao-Wei Juan, Roger Hong, Chen-

Li Hao, Yu-Shuo Lio, Chia-Lin Ko, Yung-Cheng Chen, Zhi-Wen Zhang, and Ya-Jing Qiu.

for their assistances and discussions. Lastly, I would like to thank my parents and my girl

friend Si-Ning Li for their love, encouragement, and support.

ix

C H A P T E R 1

Introduction

In recent years, with the growth of the developments in games, virtual reality, physics

simulation, surgery simulators, and robotics, the realistic an efficient physical simulation

appears more and more important. Collision detection aiming to determine when and where

objects colliding each other, plays an important role on the physical simulation system.

Collision detection in general is a computationally expensive problem due to its O(n2) time

complexity.

1.1 Collision Detection

The interference among objects is usually detected by using the special data structure and

geometric computation, and is often categorized two phases:

• Broad phase: For broad phase, we regard an object or a group of objects as a base

unit. We determine whether base unit collide with each other.The ultimate goal is to

avoid testing O(n2) times for all potential pairs, where n is the number of base units.

The outcome of the broad phase is a set of paired objects or base units that potentially

collide each other.

• Narrow phase: For narrow phase, we perform collision detection between the prim-

itives of objects, such as polygons. The goal is to greatly reduce the number of test

for potential paired primitives. In narrow phase, in addition to accurately computing

1

1.2 Collision Detection Algorithms 2

the collisions among objects, one should capture other information, such as collision

position, collision time, and penetrating depth etc.

Collision detection is a fundamental problem in interactive applications. Real-time

performance is the ultimate goal for all collision detection algorithm. To this end, several

coherence properties are generally applied, which can be classified into three categories as

follow:

• Spatial coherence: The problem of collision detection is how to find the geometric

overlapping information in 3D space. The spatial coherence depicts the relations

among objects in the space. We can assume that an object usually spans only a

relatively small portion of the space, and its collisions to the other are fairly rare,

only when there are close to each other.

• Temporal coherence: In the dynamic environments, the location of objects will be

changed with time. Under the assumption that the motion of objects is small among

continues timestamps, if an interference occurs at a timestamp then it may occur at

next timestamp.

• Image coherence: The problem of collision detection can be transferred from 3D

to 2D image. The dimensional reducing will decrease the complexity of geometric

computation. The intersection could be detected by using graphics hardware. For

example, if an object is fully visible with respect to others then it does not collide.

1.2 Collision Detection Algorithms

The problem of collision detection has been extensively studied in recent years. We refer

the readers to these recent surveys [JTT01, LG98]. The collision detection algorithms can

be classified into two categories: object-space collision detection and image-based collision

detection.

Most of the object-space approaches are proposed to accelerate collision detection

by using hierarchical data structure and spatial partition. For narrow phase, hierarchi-

cal bounding volume is commonly used to speed up the interferences detection of paired

objects. The representation of hierarchical bounding volume is a tree structure formed

by some simple shapes, such as spheres, axis-aligned bounding boxes, oriented bounding

1.2 Collision Detection Algorithms 3

boxes, discrete orientation polytopes, quantized orientation slabs with primary orientations,

spherical shells, etc. [GLM96, He99, Hub93, Hub95, Hub96, HDLM96, JTT01, KHM+98,

KPLM98, PG95, Qui94, Zac95]. That hierarchical representations are frequently used for

collision detection and based on data structures that can be more or less pre-computed.

These representations are used to cull away portions of each object that are not in close

proximity. However, the hierarchical bounding volumes are hardly used for deformable

objects, because they must be rebuilded or updated when the shape of objects changes.

Some extensions of hierarchical representation are proposed for handling deformable ob-

jects [JP04, KZ05, LAM01, van97], focusing on how to update hierarchy and bounding

volumes efficiently.

Spatial partition is usually used in either narrow phase or broad phase. Common spa-

tial decomposition techniques are BSP trees, octrees, k-d trees, or voxel grid [CLMP95,

GASF94, HKM95, MW88, NAT90, TN87, YT93].

Recently, the image-based technique supplies new avenues for collision detection. The

conceptions of ray tracing are exploited for detecting the interference of two convex ob-

jects [BWS99, MOK95]. The relation among a ray with two convex objects is categorized

into several situations. The interferences are found by checking whether the intervals over-

lap along the ray. However, these algorithms are limited by the depth complexity and

only applicable to simple shape or convex objects. An algorithm is proposed for han-

dling multi-body environments by exploiting the shadow volume technique [KP03]. This

algorithm is very efficient for deformable and non-convex objects. Layered depth image

technique is introduced for efficient collision detection of arbitrarily shaped, water-tight

objects [HTG03, HTG04]. Layered depth images are used to approximate the volume of

an objects. In this way, the volumetric intersection of objects will be detected. A reliable

image-based collision culling algorithm is presented in [GRLM03, GLM04]. It computes

a potentially colliding set using hardware occlusion queries. The techniques are based on

CULLIDE for handling self-intersection [BM04, GLM05b, GLM05a]. The image-based

collision detection is also applied to some specific applications, including cloth animation

and virtual surgery [GLM05b, GLM05a, LCN99, VSC01]. In chapter 2, we will give a

more detailed introduction to image-based techniques for collision detection.

1.3 Motivation 4

1.3 Motivation

With the growth of the graphics hardware, many image-based techniques for collision de-

tection have been proposed, and have attempted to maximally utilize the functionality of

graphics hardware. Hardware-based techniques usually do not require the complex data

structure and reduce the load of CPU by using graphics hardware. These techniques rely

on rasterizing the objects of a collision query into color, depth, or stencil buffer, and are

approximate collision detection method. However, frame buffer readbacks will become the

bottleneck of these approaches.

An image-based approach, called CULLIDE, dose not perform frame buffer readbacks

but readbacks a few bytes per object. It computes the potentially colliding set by using

graphics hardware, and intersections will be determined on CPU. Since CULLIDE prunes

some objects which do not collide using visibility analysis, it will produce many factors

which affect the performance of collision detection seriously. There are four limitations

described as follows:

(1) Depth complexity: The First limitation is the depth complexity of the scene. CUL-

LIDE reduces the space from three dimensions to two dimensions by using rasteri-

zation of graphics hardware. Despite an object dose not collide with any one, but it

may be occluded by others. When the number of overlapping between orthographic

projections of objects along view direction is frequent, it is able to decrease the per-

formance of collision culling.

(2) The coarseness of single PCS: The second limitation in CULLIDE is that the PCS

is too coarse. CULLIDE proposed a method to efficiently return the PCS. However,

it is a pity that it can not partition PCS into subsets during collision culling. The

computation of collision pairs will be simpler if a colliding set is divided into several

subsets.

(3) Non-volumetric intersections: The third limitation is that it is not able to detect

volumetric intersections, penetrating depths and distances between objects. It is only

to determine whether overlapping triangles exist between different objects.

(4) Precision issue: The last limitation is that the accuracy of collision detection is extent

of the frame buffer resolution and the depth buffer precision. In fact, collisions will

1.4 Organization 5

be missed or too conservative during rasterization due to the frame buffer is not used

appropriately.

Therefore, the final purpose of this paper is to accelerate collision detection for real-

time system. Our algorithm uses two-pass structure in CULLIDE and efficiently detects

collision among rigid or deformable objects. We will discuss the first two limitations de-

scribed above and propose some methods to improve CULLIDE, and expect to improve

the culling efficiency by using sorted order. It can decrease the impact on collision culling

from depth complexity of a scene along view direction. In our approach, we can efficiently

prune an object which does not collide with others and is occluded or not. We also can

partition the PCS into multiple collision independent sets in linear time such that the cost

of exact collision computations will be reduced. Finally, we construct bounding volume

hierarchy for each object, and the proposed algorithm will be applied to hierarchical struc-

ture. Hierarchical bounding volume and collision independent sets construction can reduce

influence of geometry complexity and depth complexity, respectively.

1.4 Organization

The rest of the thesis is organized as follows. In Chapter 2, we give a survey of image-based

collision detection techniques, including ray casting, counting boundary crossing, layered

depth images, and collision culling. In Chapter 3, we give an overview of our framework

and present our approach to determine multiple collision independent sets by using sepa-

rating surfaces. In Chapter 4, we highlight the performance on different benchmarks, and

make a comparison with CULLIDE and Quick-CULLIDE by physical simulation. Finally,

in Chapter 5, we give the conclusion.

C H A P T E R 2

Related Work

With the growth of the graphics hardware, many statistics show that the computational

power of the graphics processing units (GPUs) exceed that of the central processing units

(CPUs) in some specific applications. Although there are a lot of restrictions on the ma-

nipulation of GPUs, and the frequencies of GPUs are usually lower than the frequencies of

CPUs of the same period; However, GPUs have the parallel computation ability and sup-

port programable vertex and pixel processors. Such developments have greatly contributed

to the techniques of rendering. Besides, there are many application, which are transferred

to GPU. Therefore, the researches and discussions on GPU are more and more important in

recent years. In this chapter, we will give a review of prior work on image-based techniques

for collision detection.

2.1 Ray Casting

The basis of the ray casting is based on the conception of the ray tracing. It determines

the relations among a ray with two objects, and categorizes the intersection of them into

several situations. However, the graphics hardware dose not use the ray tracing to render

the image but the ray casting. Therefore, in this section, we will describe how to achieve

the intersection of the ray with two objects using the ray casting technique.

The intersection of a ray with two convex objects could be categorized into eight sit-

uations [BWS99, MOK95], as shown in Figure 2.1. Case 0 means that the ray dose not

6

2.1 Ray Casting 7

Figure 2.1: Passible Z-interval cases[BWS99]

overlap with any object. In case 1, the ray passes through A, but no face of B overlaps the

ray. In both case 2 and 7, the range on the depth covered by A and B, but [Bmin, Bmax]

dose not overlap the interval [Amin, Amax]. Hence, in cases 0, 1, 2, and 7, we can decide

that A and B do not overlap.

In RECODE, it reduce the collision detection problem to a one-dimensional interval

test along the z-axis. As show in Figure 2.1, first it determines MOR(A,B), which is the

minimum overlapping region of the projection of the volume occupied by the overlapping

bounding boxes of objects A and B. Then it sets the rendering viewport, which is the frame

buffer viewport allocated for rendering object A, to correspond only to the region covered

by the MOR(A,B). The maximum Z-values of object A are stored in the depth buffer by

the function RenderSetZ(A, ≥). This map is then used as reference in the first rendering

pass in order to establish a class of the possible cases of B overlapping A along the Z-axis.

Then it tests against eight independent cases, as illustrated in Figure 2.2. First the stencil

buffer is initialized to zero. If there are no objects at pixel (x, y) then the corresponding

stencil value remains zero. If at least one object overlaps pixel (x, y) then the corresponding

stencil value is incremented to one. In cases 0, 1, 2, and 7, there is no intersection between

A and B that described above. In cases 3 and 4 the interval occupied by B overlaps [Zmin,

Amax]. That is, only one face of B crosses over Amax. Hence, the stencil value at (x, y) is

2.2 Counting Boundary Crossings 8

Algorithm 2.1: The logical flow of RECODE
RECORDA, B ≡ RenderingArea←MOR(A, B);

RenderSetZ(A, ≥);

RenderTestZ(B, ≤);

if zIntervalOverlap(A, B) = TRUE then
return collision = TRUE;

end

if secondRendering = TRUE then
RenderSetZ(B, ≥);

RenderTestZ(A, ≤);

if zIntervalOverlap(A,B) = TRUE then
return collision = TRUE;

end

end

incremented to two. If stencil values equal to two, then the interferences of A and B are

detected in the first pass. However, cases 5 and 6 will be missed because the stencil values

equal to three. In order to detect cases 5 and 6, it stores the maximum Z-values of B in the

depth buffer first and then render object A in the second pass. The cases 5 and 6 will be

captured by checking whether the stencil values equals to two in the second pass.

RECORD presented an image-based technique for collision detection. It determines

whether the interferences between two convex object occur by reading the stencil buffer.

However, it can not compute some collision responds, such as the positions and the nor-

mals. It only can handle convex objects and does not attend to self-intersections. The

stencil buffer readbacks are the main bottlenecks in RECORD.

2.2 Counting Boundary Crossings

An approach exploit the shadow volume technique, a polygonal mesh is created that repre-

sents the volume of space that lies in the shadow cast by an object. Determining whether

or not a point lies in shadow involves casting a ray from the viewer toward the point. This

approach is called CInDeR [KP03]. Its collision detection algorithm is predicated on the

following property: Two polyhedral objects are interfering with each other if and only if an

2.2 Counting Boundary Crossings 9

Figure 2.2: Passible Z-interval cases[BWS99]

Figure 2.3: Semi-infinite rays from a point in a closed mesh[KP03]

edge of one object intersects the volume occupied by the other.

Counting boundary crossings technique is to observe a point relative to a closed mesh

by casting a semi-infinite ray from the point. The number of the object’s boundary that the

ray passes through are counted. It is commonly used to solve the point-in-polygon problem.

For a semi-infinite ray from the point, it can specify whether or not an intersection of the ray

with a solid corresponds to the ray entering or leaving the solids volume. A semi-infinite

ray cast from the interior of a solid will leave the solid one more time than it enters the

solid, as shown in Figure 2.3.

Collision detection is performed by sampling the boundaries of objects and looking

for object edges that are interior to other volumes. This is done using the rasterization

of graphics hardware. Rays are cast through the pixels of the viewport toward objects of

2.2 Counting Boundary Crossings 10

Figure 2.4: Update the depth buffer[KP03]

Figure 2.5: Increases the stencil buffer when rendering ”front-facing” polygons[KP03].

interest. Rays that strike those objects edges are of particular interest.

First, it clears the depth buffer and sets the stencil buffer to zero. In the first rendering

pass, it renders all of the edges of objects, and updates the depth buffer with their depth

values, as shown in Figure 2.4. This ensures that all rays cast through pixels will be targeted

at polygon edges.

In the second rendering pass, it draws only those polygons whose normals face toward

the ray’s origin, as shown in Figure 2.5. That is, all polygons will be rejected for which the

dot product of the normal with the ray direction is positive. In the graphics hardware this

corresponds to a back-face cull. If the pixel passes the depth test then increases the stencil

value.

In the third rendering pass, it draws only those polygons whose normals face away the

ray’s origin, as shown in Figure 2.6. That is, all polygons will be rejected for which the

dot product of the normal with the ray direction is negative. In the graphics hardware this

2.3 Layered Depth Images 11

Figure 2.6: Decreases the stencil buffer when rendering ”back-facing” polygons[KP03].

corresponds to a front-face cull. If the pixel passes the depth test then decreases the stencil

value. After the third pass, the stencil buffer value at each pixel gives the results of the

collision detection. Finally, it check interferences by scanning the values in the stencil

buffer.

This approach is linear in both the number of objects and the number of polygons

comprising those objects. It performs broad phase collision detection and narrow phase

collision detection at the same time. The additional collision information, such as collision

positions and identifications of objects, can be obtained using the depth buffer and the color

buffer. However, It is seriously restricted by viewport resolution and is not robust in case

of occluded edges.

2.3 Layered Depth Images

A Layered Depth Image (LDI) are used for the computation of volumetric intersections of

complex polygonal meshes [HTG03]. LDIs have been introduced as an efficient image-

based rendering technique. The depth values of a pixel are stored in multiple depth images.

Such approach can conserve the occluded surfaces of the complex object.

First, it computes the axis-aligned bounding box (AABB) for a pair of objects. If the

bounding boxes of the two objects do not collide then there is no intersection between

2.3 Layered Depth Images 12

(a) (b)

Figure 2.7: (a) VoI for A and B; (b) Extended VoI to obtain an outside face for A[HTG03].

them. If it is not, the LDIs computation is applied to the AABB intersection volume, called

Volume-of-Interest (VoI). The VoI is bounded by pairs of their faces. Figure 2.7(a) shows a

VoI with corresponding outside faces in two dimensions. In some cases, for instance when

one box is entirely within another box, appropriate outside faces for both objects cannot

be found. This problem is solved by extending the VoI. If the outside face of one object

is fixed, the opposite face of the VoI can be scaled to touch the bounding box of the other

object, as shown in Figure 2.7(b).

In order to generate an LDI, the object is rendered multiple times. The viewing pa-

rameters for the rendering process are determined by the selected outside faces of the VoI

defining the near planes, and their opposite faces defining the far planes. Orthographic pro-

jection is used for rendering. Objects are rendered nmax times for LDI generation, where

nmax denotes the depth complexity of the relevant part of the object within the VoI.

The first rendering pass generates a single LDI and computes nmax. First, depth testing

and face culling are disabled. Only the stencil test is employed to discard fragments. The

stencil test configuration allows the first fragment per pixel to pass, while the corresponding

stencil value is incremented. Subsequent fragments are discarded by the stencil test, but

still increment the stencil buffer. Hence, after the first rendering pass the depth buffer

contains the first object layer per pixel and the stencil buffer contains a map representing

the depth complexity per pixel. Thus, nmax is found by searching the maximum stencil

value of the stencil buffer. If nmax > 1, additional rendering passes 2 to nmax generate the

2.3 Layered Depth Images 13

Figure 2.8: LDI for two pixels, unsorted and sorted with respect to depth values[HTG03].

remaining layers. The rendering setup is similar to the first pass. However, during the n-th

rendering pass, the first n fragments per pixel pass the stencil test and, as a consequence, the

resulting depth buffer contains the n-th LDI layer. During these passes, the stencil buffer is

not incremented, if the stencil test fails.

It generates unsorted LDIs due to fragemnts are rendered in an arbitrary order. There-

fore, the LDIs are sorted per pixel for further processing. Only the first np layers per pixel

are considered, where np is the depth complexity of this pixel. np is taken from the stencil

buffer as computed in the first rendering pass. If np is smaller than nmax, layers np+1 to

nmax do not contain valid LDI values for this pixel and are discarded, as shown in Figure

2.8.

The computed LDIs can be used to process a variety of collision queries. Two LDIs can

be combined to compute an intersection volume, as shown in Figure 2.9. The LDIs for two

colliding objects are discretized with the same resolution on corresponding sampling grids,

but with opposite viewing directions. Hence, pixels in both LDIs represent corresponding

volume spans. The intersection volumes can be computed by a pixelwise intersection along

depth direction. Besides, it can performs another collision query for checking the vertex-

in-volume, whether the vertex allocates between a closed interval in a fragment. This

approach can handle deformable and non-convex objects. It use multiple depth image to

store the different depths of a mesh. The depth complexity is the major restriction due to

the approach heavily relies on the frame buffer readbacks. The LDIs technique is improved

for detecting the self-intersection in [HTG04].

2.4 Collision Culling 14

Figure 2.9: Intersection volume for Knot and Dragon[HTG03]

2.4 Collision Culling

Govindaraju et al. proposed CULLIDE which eliminated some objects that did not collide

with any object, and returned a set, called potentially colliding set (PCS) [GRLM03]. Given

a set O that composed of n objects, O1, O2, . . . , On. For each Oi, we divide O into two

corresponding sets S<i = {O1, . . . , Oi−1} and S>i = {Oi+1, . . . , On}. If Oi is a colliding

free object, then we can ensure that Oi will not collide with S<i and S>i. Therefore, there is

a trivial solution that we can determine whether Oi is colliding free. We render S<i and S>i

to depth buffer and then perform visibility test for Oi using occlusion query. If Oi is fully

visible with S<i and S>i, then we can present that Oi dose not collide with others. By this

way, we can conservatively prune some objects which are fully visible with corresponding

sets. It is completed in O(n2), where n is the number of objects. An approach to PCS

computation in O(n) is presented in CULLIDE. It uses a two-pass rendering algorithm to

perform linear time PCS pruning. In the first pass, the depth buffer is cleared to z-far and

the objects are rendered in the order O1, . . .,On along with occlusion queries. In other

words, for each object in O1, . . .,On, it renders the object and tests if it is fully visible with

respect to the objects rendered prior to it. In the second pass, it clears the depth buffer and

renders the objects in the opposite order along with occlusion queries. Then it perform the

same operations as in the first pass while rendering each object. At the end of each pass,

it tests if an object is fully visible or not. An object classified as fully-visible in both the

passes does not belong to the PCS. The algorithm is shown in Figure 2.2. Finally, the exact

2.4 Collision Culling 15

triangle-triangle intersection tests are performed on the CPU.

Algorithm 2.2: The algorithm of collision culling
//1st pass;

ClearBuffer(DEPTH);

foreach object Oi, i=1,. . .,n do
//performs visibility test;

DepthMask(FALSE);

DepthFunc(GEQUAL);

RerderUsingOcclusionQuery(Oi);

//updates to depth buffer;

DepthMask(TRUE);

DepthFunc(LESS);

Rerder(Oi);

end

foreach object Oi do
GetQuery(Oi);

end

//2nd pass;

//Same as First pass, except that the two ”For each object” loops are run with

i=n,. . .,1;

In CULLIDE, spatial relationships among objects are builded using occlusion queries,

which are supported on graphics hardware. CULLIDE is suitable for complex environ-

ments and large objects in real-time application due to it can determine PCS rapidly in

linear time. The PCS is computed using occlusion queries widely available on commodity

graphics hardware. Occlusion queries involve very low bandwidth requirements in com-

parison to frame buffer readbacks. Quick-CULLIDE presents an extension to CULLIDE to

perform inter- and intra-object collisions between complex models [HTG04]. It performs

a visibility-based classification scheme to determine potentially colliding set and separate

two collision-free subset from PCS, which considerably improves the performance of the

collision culling.

C H A P T E R 3

Image-based Collision
Filtering

3.1 Overview

In this chapter, we present a framework for the proposed collision filtering system. The

framework consists of construction of the bounding volume hierarchies, projection and

depth sorting, visibility pruning collision filtering with depth sorting, and collision inde-

pendent sets construction using the hierarchical structure, as shown in Figure 3.1.

In preprocessing, we construct a bounding volume hierarchy in a top-down manner for

each object using oriented bounding boxes. This bounding volume hierarchy describes an

object at various levels of detail. During runtime, we perform hierarchy traversal for col-

lision filtering. The bounding volumes of objects are projected on the view direction, and

sorted in a near-to-far order. Such sorted order is used in visibility pruning and enhances

the performance of CULLIDE in the cause of collision filtering. During hierarchical prun-

ing, we can select different view direction at each level for collision filtering and construct

multiple collision independent sets which will greatly reduce the pairwise computation and

the times of occlusion query and rendering. Finally, the exact intersection test among po-

tentially colliding triangles are performed on the CPU.

As stated before, the performance of CULLIDE is restricted by the extent of projection

overlapping along the view, and the resulting single potentially colliding set implies a po-

16

3.1 Overview 17

Figure 3.1: The flowchart of the proposed collision detection system.

3.2 Collision filtering with depth order 18

tential large number of collision detections. For simplicity reson, in this chapter, we first

introduce the collision filtering based on depth order, then incorporate collision indepen-

dent sets construction into the collision filtering process. Finally, the hierarchical traversal

for collision filtering is presented.

3.2 Collision filtering with depth order

The visibility-based collision filtering in CULLIDE analyses the projection of objects from

3D to 2D image using rasterization of graphics hardware. It is quite often that objects are

disjoint in 3D space, but can not be claimed disjoint by CULLIDE, due to the projections

could overlap with each other. As shown in Figure 3.2, all five objects are disjoint, but only

object C can be excluded from the resulting potentially colliding set.

In order to amend the performance of visibility pruning in CULLIDE, we render objects

in an order sorted by depth. The axis-aligned bounding box of each object is projected onto

the view direction. Two extreme, Maxi and Mini, of the projection of object Oi, for all

objects, are sorted. In general, a sort would take O(n · log n), where n is the number

of objects. However, under the assumption of slow motion, temporal coherence can be

applied. In addition to sorting, we need to keep track of the changes in overlap status of

interval pairs. By doing so, the time complexity of the sorting will be reduced to O(n + ε),

where ε is the number of exchanges in the list [CLMP95]. Figure 3.3 is a result of projection

and sorting.

Using hardware supported, occlusion queries, we can obtain how many pixels are ren-

dered on the frame buffer [GRLM03]. and judge whether an object is fully visible with re-

spect to the previously rendered objects. As in CULLIDE, fully visible objects are pruned

in two passes from potentially colliding set. We decide a rendering order as O
′
1, O

′
2, . . .,

O
′
n, and let Mini > Minj , where i < j. To avoid the problem described in Figure 3.2,

objects are rendered from far to near far-to-near in the first pass.

In the second pass, if objects are rendered in a near-to-far order, farer objects might

be occluded by nearer ones. Instead, we move the view from z-near to z-far and render

objects in a far-to-near order. In addition, we offset a tolerance distance to depth value in

two passes, to make sure that the depth values of all pixels in the first pass are closer than

depth values in the second pass. The depth buffer clearing is only performed once during

collision pruning. Our algorithm is shown in Algorithm 3.1. Figure 3.4 shows a result of

3.2 Collision filtering with depth order 19

(a) (b)

(c)

Figure 3.2: The worst case of CULLIDE: (a) It shows that there are no intersections in the

environment; (b) All the projections of objects overlap with each other; (C) We only can

prune the object C using visibility-based pruning in CULLIDE.

3.3 Collision Independent Sets Construction Using Separating Surfaces 20

Figure 3.3: Projection and sorting.

our collision filtering with depth order.

3.3 Collision Independent Sets Construction Using Sepa-

rating Surfaces

CULLIDE prunes away objects that do not collide with any object in the final PCS. Concep-

tually, for each pruned object, there is a separating surface between it and the PCS. Such a

concept can be extended to partition the PCS into several collision independent sets, which

are sets of objects satisfying the property that any pair of objects from two different sets

will not collide. A separating surface partitions a set of objects into two nonempty subsets,

placed at opposite side of the surface, as shown in Figure 3.5.

If a set S is a collision independent set, then it will not collide with any other objects, as

shown in Figure 3.6(a). To determine whether S is a collision independent set, we perform

the visibility test for the objects that are not in S. When all of these objects are fully visible

with respect to S, we can conclude that objects in S do not collide with these objects, and

hence S is a collision independent set. In the following, two lemmas are given. Lemma

1 implies that the visibility test is not required when S and O do not overlap along the

3.3 Collision Independent Sets Construction Using Separating Surfaces 21

Algorithm 3.1: Our collision culling algorithm
//1st pass;

ClearBuffer(DEPTH);

DepthOffset(-ε);

foreach object Oi in a far-to-near order do
DepthMask(FALSE);

DepthFunc(GEQUAL);

RerderUsingOcclusionQuery(Oi);

DepthMask(TRUE);

DepthFunc(LESS);

Rerder(Oi);

end

foreach object Oi do
GetQuery(Oi);

end

//2nd pass;

DepthOffset(+ε);

foreach object Oi in a near-to-far order do

if IsV isibleIn1st(Oi) == true then
DepthMask(FALSE);

DepthFunc(LEQUAL);

RerderUsingOcclusionQuery(Oi);

end

if IsInvisibleIn1st(Oi) == true then
DepthMask(TRUE);

DepthFunc(GREATER);

Rerder(Oi);

end

end

foreach object Oi do
GetQuery(Oi);

if IsV isibleInTwoPasses(Oi) == true then
RemoveFromPCS(Oi);

end

end

3.3 Collision Independent Sets Construction Using Separating Surfaces 22

(a) (b)

(c) (d)

Figure 3.4: The result of our collision culling: (a) It shows that there are no intersections

in the environment; (b) All the projections of objects overlap with each other; (c),(d) There

are no occlusion in two passes.

3.3 Collision Independent Sets Construction Using Separating Surfaces 23

Figure 3.5: If S1 and S2 do not collide with each other, we can find a separating surface

among them.

viewing direction.

Lemma 1. If a set of objects S and an object O do not overlap along the viewing direction,

then there exists a separating surface between S and O.

Proof: By separating axis theorem, if projections of two objects do not overlap along a

direction, then two objects do not collide with each other. Besides this, we can find a

surface which separates these two objects. By the same way, if projections of a set of

objects S and an object O do not overlap along the viewing direction, then any object in S

and O do not collide with each other. Therefore, we can find a surface separating S and O.

Lemma 2. If a set of objects S and an object O overlap along a direction, but O is fully

visible with respect to S, then there exists a separating surface between S and O.

Proof: It have been proven in [GRLM03] that there are no intersections between an object

O and a set S, if Oi is fully visible with respect to S. Though the projections of O and S

overlap along a direction, we will still find a separating surface between them.

In determining if S in Figure 3.6 is a collision independent set, by Lemma 1., O2 and

O4 are free from the visibility test. Only the green objects O1 and O3 should be tested. If

3.3 Collision Independent Sets Construction Using Separating Surfaces 24

(a) (b)

Figure 3.6: (a) Collision independent set; (b) The projection of green objects overlap with

the collision independent set, and the projection of yellow objects dose not overlap with

the set.

all of the green objects are fully visible with respect to S, then S is a collision independent

set. If any of the green objects is not fully visible, then we insert the object into S.

In the first pass, we reduce objects in far-to-near order based on the minimum depth

Mini of object Oi. If an object is fully visible, it is discarded; otherwise, it is the first

element of a newly created collision independent set. Once a collision independent set S is

constructed. We continue to render the objects that are overlapped with S along the view

direction. We discard the one that is fully visible and insert to the S the one that is not fully

visible. Note that once such an insertion occur, we need a way to indicate which objects

are overlapped with the new S. After all the objects overlapped with S are rendered, we

continue to render the remaining objects and search for the next object is not fully visible

and construct the next collision independent set. After the first pass, we guarantee there is

no overlapping among the interval of the projection of potential collision independent sets

along the view direction. Furthermore, we indicate the separating surfaces at the nearest

part of potential collision independent sets.

Collision independent sets constructed in the first pass generally are not complete.

Those objects that are fully visible with respect to the previously rendered object may

collide with objects in some collision independent sets. In the second pass, we move the

view from near to far an render those objects in far-to-near order, and insert each object

that is not fully visible to an appropriate collision independent set. Such a independent set

3.3 Collision Independent Sets Construction Using Separating Surfaces 25

can be found in constant time by using separating surface indicated in the first pass.

In order to perform the collision independent sets construction in linear time, we expect

to have one visibility test for each object in the first pass. We propose a method for updating

the overlapping region with respective to the collision independent set under construction.

We design a probing surface pointing to the minimum depth of objects that are overlapped

with the object to be rendered. Probing surface will be assigned to overlapping region once

an object becomes the first object in a newly created collision independent set or is inserted

into a collision independent set.

Since we construct collision independent sets on the 1D view direction, if two collision

independent sets overlap along the view direction then we can not distinguish them. In

section 3.4, we will apply the algorithm to a hierarchical structure, and replace single view

direction with multiple view directions to reduce this limitation.

Regard Figure 3.7 as the example. The visibility test of objects of O5, O8, O3, O4, O2,

O6, O1, and O7 are performed in the first pass. We disregard O5 due to it is fully visible.

O8 is non-fully visible, we construct a collision independent set CIS1 and insert O8 into it

set. The only overlapped object with CIS1 is O3 and O3 is fully visible, we can confirm

that CIS1 will not collide with any objects that are not yet rendered. Similarly, CIS2

containing O4 is constructed since O4 is not fully visible, and the overlapped object O2 is

fully visible. CIS2 also dose not collide with remaining objects. After CIS3 containing

O6 is constructed, we do visibility test for the overlapped objects O1 and O7. Only O7 is

not fully visible, and inserted into CIS3. Separating surfaces SS1, SS2, and SS3 point

to the minimum depth of CIS3, CIS2, and CIS1, respectively. In the second pass, we

only perform visibility test for O1, O2, O3, and O5, since these objects are fully visible

in first pass. O2, O3, and O5 are not fully visible, and inserted into CIS3, CIS2, and

CIS1, respectively. As a result of three collision independent sets PCS1 = {O5, O8},

PCS2 = {O3, O4}, and PCS3 = {O2, O6, O7} are constructed.

Some symbols are described before we introduce the proposed algorithms. Ei is a temp

for traversing all projection elements in the sorted list. In each iteration, Ei scans the list

from far to near in the first pass and then from near to far in the second pass. ActiveCIS is

used to indicate the collision independent set that is being constructed. SS is a separating

surface. It will separate the ActiveCIS from other collision independent sets. PS is a

probing surface pointing to the minimum depth of objects that are overlapped with the

3.3 Collision Independent Sets Construction Using Separating Surfaces 26

Figure 3.7: An example for collision independent sets construction.

3.3 Collision Independent Sets Construction Using Separating Surfaces 27

Table 3.1: Parameters of collision independent sets construction

Notation Description

Ei each sorted element after projection

ActiveCIS the constructing collision independent set

SS the potential separating surface

OV overlapping region corresponding to ActiveCIS

PS probing surface for updating overlapped region

object to be rendered. OV is a depth indicating the overlapping region of ActiveCIS. PS

will be assigned to OV once an object becomes the first object in a newly created collision

independent set of is inserted into ActiveCIS. The algorithm of collision independent sets

construction is shown in Algorithm 3.2.

3.3.1 First Pass in Collision Culling

PS is set to positive infinity initially. We traverse all projection elements from far to near

and construct collision independent sets. If Ei points the maximum depth of an object Oi

and PS is greater than the minimum depth of Oi, then we update PS to the minimum depth

of Oi. If Ei is a minimum value of Oi, then Oi is performed visibility test. If Oi is not fully

visible,we check whether the ActiveCIS exists. If ActiveCIS is nil, then we construct a new

collision independent set, represented by ActiveCIS; otherwise we insert Oi into ActiveCIS,

and update separating surface SS and overlapping region OV . The separating surface SS

points to the minimum value of Oi showing that there might be a separating surface pass

through it. OV points to the position of probing surface PS.

After Oi performed visibility test, if the ActiveCIS exists (ActiveCIS 6= nil) and Ei point

to a overlapping region OV , then we can make sure that there is a separating surface passing

through SS and separating ActiveCIS and other untested objects. We record the ActiveCIS

and SS into a list of collision independent set, and set ActiveCIS to nil. This means that

there is no potentially colliding set expanding.

3.3 Collision Independent Sets Construction Using Separating Surfaces 28

3.3.2 Second Pass in Collision Culling

In the second pass, we detect objects that belong to the collision independent sets con-

structed in the first pass. It is completed in linear time using the separating surfaces which

are derived in the first pass. These separating surfaces will avoid ambiguous situations and

ensure that each potentially colliding object will be inserted into correct collision indepen-

dent set. We scan projection elements from near to far. If Ei is a minimum value of Oi, then

we check whether Oi is fully visible in the first pass. If the object is not fully visible in the

first pass and Ei points to separating surface SS, then we assign the collision independent

set corresponding to SS to ActiveCIS. If the object is fully visible in the first pass, then we

perform visibility test for it, and insert it into ActiveCIS if the object is non-fully visible in

the second pass.

3.3.3 A detailed process of collision independent sets construction

An example is shown in Figure 3.8, traverse the projection elements: e5, e8, e3, b5, b8, e4,

b3, e2, b4, e1, e6, b2, e7, b6, b1, and b7, where ei and bi are the farthest and nearest part of

Oi with respect to the view direction, respectively. Objects of O5, O8, O3, O4, O2, O6, O1,

and O7 are performed visibility test in the first pass.

In Figure 3.9, we sequentially traverse projection elements of e5, e8, and e3. e5, e8, and

e3 are farthest part of objects, and probing surface PS is updated to b3, the nearest position

of O5, O8, and O3. PS records the conservative overlapping region with respect to e3.

b5 and b8 are traversed, and O5 and O8 are performed visibility test in order. Only O8

is non-fully visible, and then we construct a potentially collision independent set CIS1,

insert O8 into the set and assign CIS1 to ActiveCIS. The separating surface SS1 and

overlapping region OV1 point to b8 and PS, respectively. This means that there may exist a

separation surface between CIS1 and untested objects. The result is shown in Figure 3.10.

If all untested objects are fully visible before OV1, then CIS1 is a collision independent set

and there is a separating surface pass through b3.

e4 and b3 are traversed in order, PS is updated to b4 and O3 is performed visibility test.

O3 is fully visible and PS1 points to b3. This means all overlapped objects with respect to

CIS1 are fully visible, and CIS1 will not collide with any objects that nearer than SS1. we

record CIS1 and SS1, and assign nil to ActiveCIS, as shown in Figure 3.11.

3.4 Collision filtering in hierarchical structure 29

We traverse e2 and b4 in order, update PS to b2 and perform visibility test for O4. CIS2

is constructed and assigned to ActiveCIS due to O4 is non-fully visible and ActiveCIS

is nil. SS2 and OV2 with respect to CIS2 point to b2 and PS, respectively, as shown in

Figure 3.12. A new collision independent set is found at O4, and OV2 is indicated by PS.

e1, e6 and b2 are traversed in order, PS is updated to b1 and O2 is performed visibility

test. The expansion of CIS2 is finished due to O2 is fully visible and OV2 points to b2,

and we remove CIS2 from ActiveCIS, as shown in Figure 3.13. O2 is an only overlapped

object with CIS2, and it is fully visible. This means CIS2 dose not collide any objects that

nearer than SS2.

We traverse e7 and b6 in order, update PS to b7 and perform visibility test for O6. CIS3

is constructed and assigned to ActiveCIS due to O6 is non-fully visible and ActiveCIS

is nil. SS3 and OV3 with respect to CIS3 point to b6 and PS, respectively, as shown in

Figure 3.14. b1 and b7 are traversed, and we perform visibility test with O1 and O7 in order.

Only O7 is non-fully visible and ActiveCIS is not nil, then we insert O7 into CIS3. The

result of the example in the first pass is shown in Figure 3.15. There are three collision

independent sets PCS1 = {O8}, PCS2 = {O4}, and PCS3 = {O6, O7} found.

In the second pass, we traverse the projection elements in near-to-far order, and perform

visibility test for objects of O1, O2, O3, and O5 which are fully visible in first pass. O2,

O3, and O5 are non-fully visible, and inserted into CIS3, CIS2, and CIS1, respectively.

There are three collision independent sets PCS1 = {O5, O8}, PCS2 = {O3, O4}, and

PCS3 = {O2, O6, O7}, and two separating surfaces are found among collision independent

sets. The result is shown in Figure 3.16.

.

3.4 Collision filtering in hierarchical structure

3.4.1 Bounding Volume Hierarchy Construction

The construction of bounding volume hierarchy can be done in either top-down, bottom-up,

or incremental fashion. In order to build a complete tree and group neighboring primitives,

we use top-down construction. Collision culling will be processed in a coarse to fine man-

ner by traversing the bounding volume hierarchy which will substantially reduce the time

required for visibility queries [BM04]. This should be handled by broad phase collision

3.4 Collision filtering in hierarchical structure 30

Figure 3.8: An example, a scene consists of O1, O2, O3, O4, O5, O6, O7, and O8.

Figure 3.9: Traverse projection elements of e5, e9, and e3. The global probing surface PSg

is updated to b3.

3.4 Collision filtering in hierarchical structure 31

Figure 3.10: Traverse projection elements of b5 and b8, collision independent set CIS1 is

constructed at O8.

Figure 3.11: Traverse projection elements of e4 and b3, and the expansion of CIS1 is finish

at b3.

3.4 Collision filtering in hierarchical structure 32

Figure 3.12: Traverse projection elements of e2 and b4, collision independent set CIS2 is

constructed at O4.

Figure 3.13: Traverse projection elements of e1, e6 and b2, and the expansion of CIS2 is

finish at b2.

3.4 Collision filtering in hierarchical structure 33

Figure 3.14: Traverse projection elements of e7 and b6, collision independent set CIS3 is

constructed at O6.

Figure 3.15: After the first pass, three independent colliding sets, PCS1 = {O8}, PCS2 =

{O4}, and PCS3 = {O6, O7}, and three separating surfaces, SS1, SS2, SS3, are found.

3.4 Collision filtering in hierarchical structure 34

Figure 3.16: After the second pass, the three collision independent sets will be finalized

as CIS1 = {O5, O8}, CIS2 = {O3, O4}, and CIS3 = {O2, O6, O7}, and there are two

separating surfaces found.

3.4 Collision filtering in hierarchical structure 35

Algorithm 3.2: The algorithm of collision independent sets construction
//1st pass;

ActiveCIS = nil, OV = nil, CISList = {}, PS =∞;

foreach element Ei in a far-to-near order do

if Ei == MAX and PS > GetMin(Ei) then
PS = GetMin(Ei);

else if Ei == MIN then
VisibilityTest(Ei);

if IsInvisible(Ei) == true then

if ActivePCS = nil then
ConstructCIS(ActiveCIS);

end

InsertIntoCIS(Oi, ActiveCIS);

SS = Ei;

OV = PS;
end

if ActivePCS 6= nil and OV = Ei then
Complete(ActiveCIS, SS, CISList);

ActivePCS = nil;
end

end

if ActivePCS 6= nil then
Complete(ActiveCIS, SS);

end

//2nd pass;

foreach element Ei in a near-to-far order do

if Ei == MIN then

if IsInvisibleIn1st(Ei) == true and SSExists(Ei) then
ActiveCIS = GetCIS(Ei, CISList);

else if IsVisibleIn1st(Ei) == true then
V isibilityTest(Ei);

if IsInvisible(Ei) == true then
InsertIntoCIS(Oi, ActiveCIS);

end

end

end

3.4 Collision filtering in hierarchical structure 36

Figure 3.17: Bounding volume hierarchy with a 8-ary tree.

detection. But bounding volume hierarchy is mainly for narrow phase collision detection.

Since a frame buffer clearing is called for each level of hierarchy, we replace the original

binary trees for bounding volume hierarchy by the 8-ary trees to decrease the height of a

tree, as shown in Figure 3.17. Moreover, we offset boundary of volumes by a small distance

to avoid collisions missing due to insufficient frame buffer resolution in collision culling.

3.4.1.1 Bounding Volume Hierarchy Optimization

In this section, we will present how to construct oriented bounding boxes. The covariance

matrix provides a measure of the correlation among the vertices in a set. The direction

and density of the vertex distribution can be described using the eigenvalues and eigenvec-

tors of the covariance matrix. The covariance matrix [Cij] of vertices of an object can be

represented by

Cjk =
n∑

i=1

Ai

12AH
(9ci

jc
i
k + pi

jp
i
k + qi

jq
i
k + ri

jr
i
k)− cH

j cH
k

Let vertices pi, qi, and ri are the three vertices of the i’th triangle. where Ai = 1
2
|(pi−qi)×

(pi − ri)| and AH =
∑n

j Aj representing the area of triangle i and the summed area of all

triangles, respectively, ci = (pi + qi + ri)/3 and cH =
P

i Ai·ci

AH representing the centroid

of triangle i and all triangles, respectively. The three eigenvectors of the covariance matrix

3.4 Collision filtering in hierarchical structure 37

(a) (b)

Figure 3.18: Bounding volume hierarchy construction using (a) three eigenvectors of the

covariance matrix; (b) optimizing principal components

can be used as the three axes of the oriented bounding box. This, however, is not optimal.

One improved approach, called optimizing principal components [Eri05], is to first align

the box along one of the eigenvectors, and then determine two remaining eigenvectors by

using the computed minimum-are bounding rectangle of the projection of vertices onto

the plane perpendicular to the first axis. This method determines the best orientation of

two remaining axes and produces the smallest volume oriented bounding box. Figure 3.18

shows the bounding volume hierarchy constructed using 3 eigenvectors of the covariance

matrix and optimizing principal components, respectively.

3.4.2 Sorting and collision independent sets construction

In subsection 3.3, we present an approach to partition potentially colliding set into multiple

subsets. We project axis-aligned bounding volumes of objects and find the separating sur-

faces along the view direction. However, if the intervals of the projections of two collision

independent sets overlap along the view direction, these sets might be unable to distinguish.

For this reason, we attempt to apply the proposed algorithm to a hierarchical structure.

During hierarchy traversal, we select the different view directions for performing col-

lision culling for each level. The axis-aligned bounding volumes of remaining objects are

rearrange along the view direction, and the projection elements are also scanned from far to

near and then from near to far. For each independent set, we maintain an additional sorted

3.4 Collision filtering in hierarchical structure 38

list for the projections of objects of the set, because we only consider the overlapping region

in the same independent set, and the subsets are computed in each collision independent

set. In this way, collision independent sets will be constructed more efficiently, we can

reduce the influence of that the projections of collision independent sets overlap on the

specific direction. Moreover, the first tested object of each collision independent set need

not carry out visibility test, and the last tested object of each collision independent set need

not update to the depth buffer.

C H A P T E R 4

Results

We have implemented the proposed algorithm in C++ and OpenGL, and compare the per-

formance of the algorithm with CULLIDE [GRLM03] on VC 7.0 with 3.0GHz Intel Pen-

tium 4 CPU, 512 MB memory, and Geforce 6800 GPU. Three different scenes of vary-

ing benchmarks are tested. The dynamic computation is supported by the physics engine

Tokama.

Since bounding volume hierarchy is part of the proposed approach and it is beneficial

to the objects of high geometry complexity, performances of CULLIDE (called CULLIDE-

w/o-BVH), CULLIDE with bounding bolume hierarchy (called CULLIDE with BVH), and

our approach are compared by collision detection time. We also implement CULLIDE-

w/o-BVH in two stages, object level and sub-object level. For each level, we choose +x-

axis, −x-axis, +y-axis, −y-axis, +z-axis, and −z-axis to regard as view direction. After

potentially colliding set computation, potentially colliding pairs are determined by using

sweep-and-prune algorithm, and exact intersections of potentially colliding pairs are com-

puted on CPU eventually. For possible optimaizations in CULLIDE, we perform off-screen

rendering by using frame buffer object such that the resolution of testing buffer will not be

restricted to window size. Testing on hight resolution can be done using frame buffer object

with cost lower than pbuffer. Additionally, we use vertex array object to place geometry

of a model on the video memory beforehand to avoid a large number of geometric data

transferring between CPU and GPU. In the experiments, two timing statistics are recorded.

39

4.1 Performance analysis in simple environment 40

The first is the average collision detection time, defined as

Average CD time =

∑n
i=1 CD timei

n

where n is the number of frames performed and CD timei is the collision detection time

in i’th frame. The second is the maximum collision detection time

Maximum CD time = max
i
{CD timei}.

If the maximum collision detection time is too large, that means the algorithm will not

detect collisions efficiently when there are many intersections, and we can not calculate the

cost of detecting collision in prediction.

4.1 Performance analysis in simple environment

Environment 1 is a scene of lower geometry and depth complexity, consisting of 50 torii

and 2 planes. Each torus consists of 800 triangles, and each plane consists of 1800 triangles.

All the torii move with gravity but two planes are fixed.

We perform physics simulation at 500-1200 frame buffer resolutions. We repeatedly

simulate 10 times for each frame buffer resolution over a period of time, and some of the

simulating process are shown in Figure 4.1. Timing statistics of simulation results are

shown in Table 4.1 and Figure 4.2. It is shown that the average collision detection time is

around 4-6 milliseconds and the maximum collision detection time is lower than 30 mil-

liseconds in our approach. In CULLIDE-w/o-BVH and CULLIDE with BVH, the average

collision detection time is around 9-12 and 7-10 millisecond and the maximum collision

detection time is around 34-45 and 29-33 milliseconds, respectively. Our approach is about

two times faster then CULLIDE-w/o-BVH.

Figure 4.3 depicts the collision detection time of the simulation over a short period of

time. Figure 4.4 shows that the number of collision independent set corresponding to the

same time period in Figure 4.3.

4.1 Performance analysis in simple environment 41

(a) (b)

(c) (d)

(e) (f)

Figure 4.1: Figures (a)-(f) show the simulating process in environment 1.

4.1 Performance analysis in simple environment 42

(a) Average collision time.

(b) Maximum collision time.

Figure 4.2: Performance comparison between our approach and CULLIDE in environment

1.

4.1 Performance analysis in simple environment 43

Figure 4.3: Performance comparison with CULLIDE, CULLIDE with hierarcical bounding

volume, and our approach in environment 1 at frame buffer resolution 800×800.

4.1 Performance analysis in simple environment 44

Figure 4.4: The number of collision independent sets constructed for environment 1 at

frame buffer resolution 800×800.

4.2 Performance comparison for environments of high geometry complexity and low
depth complexity 45

Resolution 500 600 700 800 900 1000 1100 1200

CULLIDE 10.4387 9.4688 11.2566 11.9801 12.3607 10.4257 12.1255 11.2271

CULLIDE + BVH 8.2661 7.7312 8.8909 9.5789 10.0679 8.2891 9.6388 8.927

Our approach 4.984 4.3461 5.258 6.4132 6.1873 4.8549 5.7734 5.186

(a)The average collision time (in ms).

Resolution 500 600 700 800 900 1000 1100 1200

CULLIDE 43.6992 35.9532 39.3979 41.0256 45.1085 34.0662 39.4205 37.6131

CULLIDE + BVH 32.9125 29.1949 29.6336 32.4783 34.6623 27.8242 31.967 28.9488

Our approach 27.8145 21.5791 21.9499 25.8569 28.2488 21.3527 22.5531 21.0549

(b)The maximum collision time (in ms).

Table 4.1: Timing statistics for environment 1.

4.2 Performance comparison for environments of high ge-

ometry complexity and low depth complexity

Environment 2 is a scene of high geometry complexity that consists of 12 dragons and two

planes. Each dragon and plane are composed of 47794 and 1800 triangles, respectively.

Environment setting is the same as environment 1, all the dragons are affected with gravity,

and two planes are fixed. Collision responses between dragons and between dragons and

the fixed planes are decided by the physics engine. Some of simulation process is shown in

Figure 4.5. Table 4.2 shows the timing statistics of simulation at frame buffer resolutions of

500-1200. From Figure 4.6, we can see that there is a large difference on collision detection

time between CULLIDE-w/o-BVH and CULLIDE with BVH. The maximum collision

time of our approach is slower than CULLIDE with BVH at some resolutions, because the

number of collision independent set is 1 and the construction of collision independent set

brings additional overhead. However, the average performance of our approach is faster

than CULLIDE with BVH.

From the simulation result, we observe that hierarchical bounding volumes can actually

improve the performance. Figures 4.7 and 4.8 show the performance of our method and

CULLIDE with BVH, we can see that the difference of performance is reduced. It suggests

that hierarchical bounding volume is advantageous to the scene of high geometry complex-

ity since the times of visibility queries will be reduced substantially by using the bounding

volume hierarchy. In Figure 4.9, we observe that only a few collision independent sets are

4.2 Performance comparison for environments of high geometry complexity and low
depth complexity 46

(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Figures (a)-(f) show the simulating process in environment 2.

4.2 Performance comparison for environments of high geometry complexity and low
depth complexity 47

(a) Average collision time.

(b) Maximum collision time.

Figure 4.6: Performance comparison between our approach and CULLIDE in environment

2.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity 48

Resolution 500 600 700 800 900 1000 1100 1200

CULLIDE 116.4508 104.0282 103.0554 103.5537 102.5925 101.2312 102.8491 102.5063

CULLIDE + BVH 9.8627 8.6619 8.5765 8.5069 8.4425 8.3264 8.5565 8.5093

Our approach 3.8625 3.3018 3.2927 3.2294 3.3413 3.3237 3.4301 3.472

(a)The average collision time (in ms).

Resolution 500 600 700 800 900 1000 1100 1200

CULLIDE 308.8009 330.4723 340.8981 328.2975 338.5292 301.5541 296.7655 330.0577

CULLIDE + BVH 99.2663 82.9217 77.5231 77.2811 75.631 74.0776 74.105 76.3502

Our approach 96.4205 87.6988 79.9788 75.535 78.8733 76.117 73.2332 74.6011

(b)The maximum collision time (in ms).

Table 4.2: Timing statistics for environment 2.

found since there are fewer objects in the scene.

4.3 Performance comparison for environments of high depth

complexity and low geometry complexity

Environment 3 consists of varying number of torii, each of them has 800 triangles. We

record the time of collision detection performed at frame buffer resolution 800×800. Each

torus moves randomly in a cube with an initial velocity, but without gravity, as shown

in Figure 4.10. This scene has higher depth complexity than previous two environments.

Table 4.3 shows the timing statistics of simulation results for 50-200 torii. Our approach

is 3.5-5.6 times faster than CULLIDE-w/o-BVH at the average collision detection time, as

shown in Figure 4.11.

From the simulation result, we observe that depth sorting and collision independent sets

construction are the major sources of performance improvement when the depth complex-

ity of the scene is high. Figure 4.12 depicts the simulation over a period of time, and Figure

4.13 shows that the number of collision independent set corresponding to the same time pe-

riod in Figure 4.12. The restriction of the depth complexity will be conspicuously reduced

by our collision independent set approach, which will decrease the cost of exact collision

detection and times of occlusion queries and rendering. From the experiments, we can ob-

serve that hierarchical bounding volume have better performance on dealing with scenes

having high geometry complexity, and sorting and collision independent set construction

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity 49

Figure 4.7: Performance comparison with CULLIDE, CULLIDE with hierarcical bounding

volume, and our approach in environment 2 at frame buffer resolution 800×800.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity 50

Figure 4.8: Performance comparison between CULLIDE with hierarcical bounding volume

and our approach in environment 2 at frame buffer resolution 800×800.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity 51

Figure 4.9: The number of collision independent constructed for in environment 2 at frame

buffer resolution 800×800.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity 52

Figure 4.10: Figure shows the simulating process in environment 3.

Number of objects 50 75 100 125 150 175 200

CULLIDE 3.0452 6.0724 8.5626 13.8683 20.8768 30.1283 39.0184

CULLIDE + BVH 2.8114 5.3933 7.5438 12.0604 18.0058 25.6932 31.4438

Our approach 0.8566 1.3087 2.1369 2.8623 4.1652 5.4974 6.9615

(a)The average collision time (in ms).

Number of objects 50 75 100 125 150 175 200

CULLIDE 13.2077 19.8889 24.4985 34.3188 46.6946 61.8026 77.8568

CULLIDE + BVH 15.4034 18.5633 24.0479 32.4148 43.821 56.7133 63.6322

Our approach 9.262 10.3844 14.0316 18.2389 26.452 33.5028 34.5121

(b)The maximum collision time (in ms).

Table 4.3: Timing statistics for environment 3.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity 53

(a) Average collision time.

(b) Maximum collision time.

Figure 4.11: Performance comparison between our approach and CULLIDE in environ-

ment 3.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity 54

can reduce the impact of high depth complexity.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity 55

Figure 4.12: Performance comparison with CULLIDE, CULLIDE with hierarcical bound-

ing volume, and our approach in environment 3 for 200 torii at frame buffer resolution

800×800.

4.3 Performance comparison for environments of high depth complexity and low
geometry complexity 56

Figure 4.13: The number of collision independent sets constructed for environment 3 for

200 torii at frame buffer resolution 800×800.

C H A P T E R 5

Conclusion

In this Chapter, we give a summary of the thesis and point out some future research direc-

tions.

5.1 Summary

Collision detection is a fundamental problem in interactive application. However, no gen-

eral collision detection algorithms are presented for all kinds of environments. For this

reason, the collision detection algorithms are designed by using some coherences among

objects. The coherences for collision detection can be classified into three categories such

as spatial coherence, temporal coherence, and image coherence.

There are many image-based collision detection techniques are proposed due to the

development of graphics hardware grows up rapidly. In this thesis, we present an algo-

rithm for efficient and exact collision detection between complex geometric models in

large environments using graphics hardware. Our approach is based on CULLIDE. It is

constructed in several major includes construction of bounding volume hierarchies, pro-

jection and sorting, hierarchical pruning, and exact intersection test. In preprocessing,

we construct bounding volume hierarchies for each object using oriented bounding boxes.

These extra data structure will reduce the times of visibility queries substantially. In order

to amend the performance of visibility pruning technique, we decide a suitable rendering

order for collision culling. In this way, we can conspicuously reduce the extent of culling

57

5.2 Future work 58

to rely on the depth complexity of the scene along the view direction by using near-to-far

rendering order in two-pass process. Furthermore, we design two lemmas for determining

whether separating surfaces exist between the subsets of the potentially colliding set. Col-

lision independent sets construction will reduce the cost of exact intersection test and times

of occlusion queries and rendering.

The main contributions of our approach are that we propose a more efficient collision

culling algorithm and partitioning potentially colliding set during collision culling. From

simulation results, our approach is much faster than CULLIDE. It dose still not perform

frame buffer readbacks but readbacks a few bytes per object. The polygon level intersec-

tions will be detected in interactive rate. Our collision detection approach is applicable to

both high geometry complexity and depth complexity scenes. It is not restricted to closed

and watertight models.

5.2 Future work

An approach uses temporal coherence in addition to a ”sweep-and-prune” technique to

reduce the pairs of objects that need to be considered for collision [CLMP95]. The hierar-

chical bounding volumes are updated fast by exploiting temporal coherence for deformable

models [JP04]. We could also assume that the configurations of collision independent sets

are changed very restrictedly. Collision independent sets could be constructed by using the

results of successive time step.

We would like to extend our algorithm to perform other collision queries such as self-

intersections, continuous collisions, volumetric intersection, and penetrating computation.

An approach based on CULLIDE is proposed to detect self-collisions [BM04]. It is also re-

stricted by depth complexity. At this point, we could apply our algorithm to its framework,

and attempt to traverse nodes in hierarchy in a far-to-near order.

Bibliography

[BM04] N. Boldt and J. Meyer. Self-intersections with Cullide. 23(3), 2004.

[BWS99] G. Baciu, W.S. Wong, and H. Sun. Recode: an image-based collision detection

algorithm. The Journal of Visualization and Computer Animation, 10(4):181–

192, October - December 1999.

[CLMP95] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. I-COLLIDE: An Interactive

and Exact Collision Detection System for Large-Scale Environments. In In

Proceedings of Symposium on Interactive 3D Graphics, pages 189–218, 1995.

[Eri05] C. Ericson. Real Time Collision Detection. Morgan Kaufmann, 2005.

[GASF94] A. Garcia-Alonso, N. Serrano, and J. Flaquer. Solving the Collision Detection

Problem. IEEE Computer Graphics and Applications, 13(3):36–43, July 1994.

[GLM96] S. Gottschalk, M. Lin, and D. Manocha. OBBTree: A Hierarchical Structure

for Rapid Interference Detection. In Proc. of ACM Siggraph’96, pages 171–

180, 1996.

[GLM04] N. Govindaraju, M. Lin, and D. Manocha. Fast and Reliable Collision Culling

using Graphics Hardware. In Proceedings of the ACM symposium on Virtual

reality software and technology, pages 2–9, 2004.

[GLM05a] N. Govindaraju, M. Lin, and D. Manocha. Interactive Collision Detection

between Deformable Models using Chromatic Decomposition. 24(3):991–

999, July 2005.

[GLM05b] N. Govindaraju, M. Lin, and D. Manocha. Quick-CULLIDE: Fast Inter- and

59

Bibliography 60

Intra-Object Collision Culling Using Graphics Hardware. In IEEE Virtual

Reality Conference 2005 (VR’05), pages 59–66, 319, 2005.

[GRLM03] N. Govindaraju, S. Redon, M. Lin, and D. Manocha. CULLIDE: Interactive

Collision Detection Between Complex Models in Large Environments using

Graphics Hardware. In Proceedings of the Eurographics/SIGGRAPH Graph-

ics Hardware Workshop, 2003.

[HDLM96] M. Hughes, C. DiMattia, M.C. Lin, and D. Manocha. Efficient and Accurate

Interference Detection for Polynomial Deformation and Soft Object Anima-

tion. Technical Report TR96-001, 2 1996.

[He99] Taosong He. Fast Collision Detection using QuOSPO trees. In Symposium on

Interactive 3D Graphics, pages 55–62, 1999.

[HKM95] M. Held, J. Klosowski, and J. Mitchell. Evaluation of Collision Detection

Methods for Virtual Reality Fly-throughs. In In proceedings Seventh Cana-

dian Conference on Computational Geometry, 1995.

[HTG03] B. Heidelberger, M. Teschner, and M. Gross. Real-Time Volumetric Intersec-

tions of Deforming Objects. In Proc. Vision, Modeling, Visualization VMV’03,

pages 461–468, 2003.

[HTG04] B. Heidelberger, M. Teschner, and M. Gross. Detection of Collision and Self-

Collisions using Image Space Techniques. In Proc. Computer Graphics, Visu-

alization and Computer Vision WSCG’04, pages 145–152, 2004.

[Hub93] P.M. Hubbard. Interactive collision detection. In In Proceedings of IEEE

Symposium on Research Frontiers in Virtual Reality, number TR96-001, 2

1993.

[Hub95] P.M. Hubbard. Collision Detection for Interactive Graphics Applications.

IEEE Transactions on Visualization and Computer Graphics, 1(3):218–230,

1995.

[Hub96] P.M. Hubbard. Approximating Polyhedra with Spheres for Time-Critical Col-

lision Detection. ACM Transactions on Graphics, 15(3):179–210, 1996.

Bibliography 61

[JP04] D. JAMES and D. PAI. BD-Tree: Output-Sensitive Collision Detection for

Reduced Deformable Models. ACM Transactions on Graphics (SIGGRAPH

2004), 23(3), Aug. 2004.

[JTT01] P. Jimnez, F. Thomas, and C. Torras. 3D Collision Detection: A Survey. Com-

puters and Graphics, 25(2):269–285, apr 2001.

[KHM+98] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan. Ef-

ficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs.

IEEE Transactions on Visualization and Computer Graphics, 4(1):21–36,

1998.

[KP03] D. Knott and D.K. Pai. CInDeR: Collision and Interference Detection in Real-

Time using Graphics Hardware. In Proc. of Graphics Interface, pages 73–80,

2003.

[KPLM98] S. Krishnan, A. Pattekar, M. Lin, and D. Manocha. Spherical Shells: A

Higher-Order Bounding Volume for Fast Proximity Queries. In In Proceed-

ings of WAFR 98, pages 287–296, 2 1998.

[KZ05] L. Kavan and J. ZARA. Fast Collision Detection for Skeletally Deformable

Models Computer Graphics Forum. In Proc. of Graphics Interface, volume 24,

pages 363–37, 2005.

[LAM01] T. Larsson and T. Akenine-Mller. Collision detection for continuously deform-

ing bodies. In In Eurographics 2001, pages 325–333, 2001.

[LCN99] J.C. Lombardo, M.P. Cani, and F. Neyret. Real-Time Collision Detection for

Virtual Surgery. In Proceedings of Computer Animation ’99, pages 82–, 1999.

[LG98] M.C. Lin and S. Gottschalk. Collision detection between geometric models:

a survey. In In Proc. of IMA Conference on Mathematics of Surfaces, pages

37–56, 1998.

[MOK95] K. Myszkowski, O.G. Okunev, and T.L. Kunii. Fast Collision Detection be-

tween Complex Solids using Rasterizing Graphics Hardware. 11(9):497–512,

1995.

Bibliography 62

[MW88] M. Moore and J.P. Wilhelms. Collision Detection and Response for Computer

Animation. In Computer Graphics (SIGGRAPH 88), pages 289–298, 1988.

[NAT90] B. Naylor, J. Amanatides, and W. Thibault. Merging BSP Trees Yields Poly-

hedral Set Operations. In Computer Graphics (SIGGRAPH 90), pages 115–

124, 1990.

[PG95] I. Palmer and R. Grimsdale. Collision Detection for Animation using Sphere-

Trees. Computer Graphics Forum, 14(2):105–116, 1995.

[Qui94] S. Quinlan. Efficient Distance Computation between Non-Convex Objects.

In IEEE Intern. Conf. on Robotics and Automation, pages 3324–3329. IEEE,

1994.

[TN87] W.C. Thibault and B.F. Naylor. Set Operations on Polyhedra Using Binary

Space Partitioning Trees. In Computer Graphics (SIGGRAPH 87), pages 153–

162, 1987.

[van97] G. van den Bergen. Efficient Collision Detection of Complex Deformable

Models using AABB Trees. Journal of Graphics Tools: JGT, 2(4):1–14, 1997.

[VSC01] T. Vassilev, B. Spanlang, and Y. Chrysanthou. Fast Cloth Animation on Walk-

ing Avatars. 20(3):260–267, Sept. 2001.

[YT93] Y. Yang and N. Thalmann. An Improved Algorithm for Collision Detection

in Cloth Animation with Human Body. In Proc. First Pacific Conf. Computer

Graphics and Applications, pages 237–251, 1993.

[Zac95] G. Zachmann. The BoxTree: Enabling Real-Time and Exact Collision Detec-

tion of Arbitrary Polyhedra. In In Informal Proc. First Workshop on Simulation

and Interaction in Virtual Environments, SIVE 95, pages 104–112, July 1995.

	List of Figures
	List of Algorithms
	List of Tables
	Introduction
	Collision Detection
	Collision Detection Algorithms
	Motivation
	Organization

	Related Work
	Ray Casting
	Counting Boundary Crossings
	Layered Depth Images
	Collision Culling

	Image-based Collision Filtering
	Overview
	Collision filtering with depth order
	Collision Independent Sets Construction Using Separating Surfaces
	First Pass in Collision Culling
	Second Pass in Collision Culling
	A detailed process of collision independent sets construction

	Collision filtering in hierarchical structure
	Bounding Volume Hierarchy Construction
	Bounding Volume Hierarchy Optimization

	Sorting and collision independent sets construction

	Results
	Performance analysis in simple environment
	Performance comparison for environments of high geometry complexity and low depth complexity
	Performance comparison for environments of high depth complexity and low geometry complexity

	Conclusion
	Summary
	Future work

	Bibliography

