B R R R 3 R B S 2

Energy-Efficient Algerithms for Dispatching Mobile Sensors

in a Wireless Sensor Network

EARPIRERY Fd R R Bt RY 2

Energy-Efficient Algorithms for Dispatching Mobile Sensors in a Wireless Sensor Network

Boyo2 LRAR Student : Min-Hsien Chang
hERRIER Advisor : Wen-Chih Peng

—

IR i - B A R

AL Sk

A Thesis
Submitted to Institute of Computer. Seience and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

AR PR TER PR

ST N

B = =i = %‘f?;‘%ﬁiﬁf B3 1 AT Y PTAR LTI
5 2
- R AN mAR RS BEGRRIE L MRE B
i ﬁv},@,«?]‘\,ﬁ?‘;?' HE 1R RGN T AT o TER P F A4
é‘bm#;imf“'r”% s hriP RO RGBTSR IR R R = E G -
B PRIEL AT o PR R RIE - § iRl
I ffﬁ&f’)ﬁ‘;—a%?g‘}i.*‘g L T FERR ,;}&,ﬂﬂ?v 1 f’rg\;}yg%—’\ o BT
g_r }i,?%?llfé LTI AL = SE”I'-—"};"{,’f\if:rﬁv}é,E'j%?\
/fw’ﬁ«z) I 2 ;ﬁ’***-“’i e,ﬁ'xi‘é_i?ﬁv FERENETEF LG TR R
il AN EEF S R AR BRE R L - RS R R AR

(max1mum matchlng problem) -
PRFEELEREN _ﬂ}ﬁ&-f‘?ﬁv}f&,ﬁ B fie 3
RE2 AL B E B N
A THR N Z R E ﬁ‘b ya } Pt &
(system lifetime) e

PR 2 e

‘rﬁ'?},i,/ﬁlpp‘w J‘: l‘"";.

< AT R PR i E pF o A
SEBRAED SRR

WEZ R RS EEN
& i P

Energy-Efficient Algorithms for Dispatching Mobile Sensors in a Wireless
Sensor Network

Student : Min-Hsien Chang Advisor : Dr. Wen-Chih Peng

Institute of Computer Science
National Chiao Tung University

ABSTRACT

A hybrid sensor network consists of both static and mobile sensors, where the
former is used to detect events whiletherlatter can move to event locations for
conducting more advanced analysis. By exploring the load balance of mobile
sensors, we propose an algorithm CentralSD to efficiently dispatch mobile
sensors. Our algorithm is general in which the numbers of mobile sensors and
events are arbitrary. When the number of events is no larger than that of mobile
sensors, we transform the dispatch problem to a maximum matching problem in
a weighted bipartite graph. When there are only few mobile sensors to be
dispatched to a large number of event locations, we propose an efficient
clustering scheme to group event locations so that the maximum matching
approach can be applied. To reduce messages incurred, we also develop a
distributed algorithm GridSD. Extensive simulation results are presented to
verify the effectiveness of our proposed algorithms.

II

W i

BE LR BRAHIPRNAES &R SO L G B
BATEATENRELD FAL 0 F % 5 A R IE IR S wRASTR A R R
PRI RIHEEEITIGLE
5 Htich A & LA F 70 4 S Ae -

FOAR R E R AR LRI A A E D] A2

P 52 AeREPARLEARIENZEZR AR ThKY D

PeomiR L TS R S

A
)
s
(N
™
=
[<ali'y
i
P
*
>/
Jia
LN
=1

IR AR S 4 etk A - B Mk ehd

34

W EP L2 LT ik ik

A=
)
/|

v s M Ve . 2 . ’ - 22, 72 > _\v 2
FHREDOEGREPFP CEX RPN E R 050 R A VgL

Bafe Al %m0 vt o Az AR Acdr e chp
FOBALANGT TR DTEREET R FHRFT L S B
ALRBLANE B LR

Lt AR A R A > ARTH R R AR s A A L
e A F 0 S Y R B FREA XX A

B o i HAEP ARG R R T o B W]

I

B =

v o2 ;f% PP I
B2 dE R e I
TEIE e I
B A eeeeeeeeseeeeteeieiieieeeeseeieiaeteiieteeieeaeteeetaete e aaaaataas IV
2 \V
1~ INtroducCtion.oviii e 1
2~ The Sensor Dispatching Problem................................. 8
3~ Algorithms for Dispatching Mobile Sensors.................. 11
3.1 Algorithm CentralSD : A Centralized Dispatch Method... 11
301 Case of [S| = L] eveniii 11

3.1.2 Case of [S| < |L| cvvviiiie e 17

3.2 Algorithm GridSD : A Distributed Dispatch Method 20

4 ~ Experimental Results _.ppssmeeoeeeeiiiiiiiiiniiniiinnn. 25
4.1 Effectiveness of CentralSD and GridSD 25

4.2 The Impact of Load-Balance " &...oe.ooovoieiiiinns. 26

4.3 The Impact of Clustering ..io. .. 0., 29

4.4 Sensitivity Analysis on the'Coefficient 6........................ 29

4.5 Effect of Grid Sizeovand Search Length B..................... 31

5» (07073161 1D IS o) 4 S e 33
Bibliography 34

v

P 4

Figure 1.1: Comparison of different dispatch methods. 3
Figure 3.1: An example to show how PairMatching works. 16
Figure 3.2: An example to cluster event locations.ccoevviiiinnn.nn. 19
Figure 3.3: An example to show how GridSD works. 24
Figure 4.1: Comparison on system lifetime.cooveiiiiiiiiinnnn.. 27
Figure 4.2: Comparisons on energy CONSUmMption.eeeveeenneeennnn.. 28
Figure 4.3: Comparison on number of packet delivery. 29
Figure 4.4: The effect of clustering on energy consumption. 30

Figure 4.5: The effect of ‘coefficient © on-redundant iterations and energy

CONSUMPEIONttt e et et e e ettt e et e e et e e e e eiaeeenans 30

Figure 4.6: The effects of grid size a and search length /5 on the number of

packet delivery and the discover ratio.............cooviiiiiiiiiiii i, 32

Chapter 1

Introduction

Recent advances in micro-sensing MEMS and wireless communication technologies have promoted
the development of wireless sensor networks (WSN). A WSN has many attractive characteristics
including context-aware capability and fast-ad-hoc networking configuration, so that it can be widely
used in various applications such as border detection, environment monitoring, smart home, and
surveillance. However, sensor nodesin a WSN are usually assumed to be simple and prone to
error [1]. They may provide rough descriptions of events and even false information when sensors
are broken. For example, in a military application, sensors that can detect the change of pressure
may be deployed along the borders to determine if an enemy passes. However, these sensors can
only report something passing but cannot describe what passes through them. Moreover, failure
sensors or incorrect sensing reports will generate false alarms. In this case, we may prefer using
more powerful but expensive sensors like cameras to recognize the passing object or to determine
whether this is a false alarm. However, it is impossible to mount a camera on each sensor node due
to their large number. An alternative and better way is to mount the expensive sensors on few mobile
platforms [6, 11, 16], and then dispatch these mobile sensors to visit event locations when necessary.

In this paper, we consider a hybrid WSN consisting of static and mobile sensors. The static sen-
sors are deployed to detect events, while the mobile sensors equipped with more resources such as

sensing capability and computation power are dispatched to these event locations to conduct more

advanced analysis. Since mobile sensors use small batteries for their operations without any addi-
tional power source, one important issue of mobile sensors is to conserve their energies. In general,
for a mobile sensor, the energy consumption of movement is larger than that of other operations
such as sensing, computing and communication. The moving energy cost will be the dominated
factor of the energy consumption of a mobile sensor. Therefore, in this paper, we investigate how
to efficiently dispatch mobile sensors to visit event locations with the purpose of maximizing the
system lifetime, which is defined as the time duration until there are some event locations that cannot
be reached by any mobile sensor due to lack of energy.

As mentioned above, the problem we shall deal with is to dispatch mobile sensors in an energy-
efficient manner so as to prolong the system lifetime. However, simply optimizing the solution
in each one-round dispatch cannot guarantee to maximize the system lifetime. Specifically, we
schedule each mobile sensor to visit certaih of event locations in a way such that the total moving
energy is minimized. Such procedure’is_repeated in each round until we cannot find any mobile
sensor with enough energy to reach some eventlocations. Unfortunately, this iteratively-optimized
method may cause some mobile sensors early to.exhaust their energies, thereby reducing the system
lifetime. Consider an illustrative example in Fig. 1.1, where there are two mobile sensors m; and
my at locations a and b, respectively. Both mobile sensors have an initial energy of 500 units. We
consider only the energy consumption due to movement. Assume that two events occur at locations
c and d (resp., a and b) during each odd (resp., even) round. Fig. 1.1(b) shows the execution of the
above iteratively-optimized method. To minimize the total moving energy, m; and my are assigned
to move between the pair of locations (a, c) and (b, d), respectively, which results in a minimum
cost of 95 units in each round. However, after seven rounds, ms almost runs out of its energy and
has to stay at location d. As a result, m; should visit both event locations a and b and thus remains
20 units of energy in the eighth round. Finally, in the ninth round, no mobile sensor has enough
energy to reach the event location ¢ so that the system lifetime is eight rounds. In fact, when it

comes to dispatching mobile sensors, we should not only attempt to reduce the total moving energy

500|@-—©) cstl a | b | c|d
VAN a | 0 [240] 30 | 50
I\ b |240] 0 [50 [65

m |/ @ [T30]50] 0 |240
500 @ """" d |50 |65|240| 0

(a) the shortest paths and energy costs to reach event locations
h h

500|@< 2@ @<2© 350 @ Q
/

—pp- (240 M2 i 504fail) T2
iz @‘6/5,@ @] 45 m 7 @) 45
500 ® 20 @
Sgnds 1 ~7 round 8 round 9

(b) minimizing the total moving energy in each round

1151 mi

500(@ (@ 0@ ©

50 0 after 10 rounds
ma @ m: @
500((®) 0|®

(c) balancing the loads of m, and m, in each round

Figure 1.1: Comparison of different dispatch methods.

but also balance the loads of mobile sensors. Fig. 1.1(c) illustrates the above method, where m;
and ms are assigned to move between the pair of locations (a, d) and (b, ¢), respectively, resulting
in a slightly higher cost (i.e., 100 units) in each round. Although spending more energy compared
with the iteratively-optimized method in each round, the above method indeed extends the system
lifetime (i.e., ten rounds). From Fig. 1.1, we can observe that simply optimizing the solution in each
one-round dispatch could shorten the system lifetime because the early-exhausted mobile sensors
will burden other still alive ones, which in turn early exhausts energy of alive mobile sensors. As
the number of early-exhausted mobile sensors increases, the system lifetime will be shortened.
Consequently, in this paper, by balancing the loads of mobile sensors, we propose an algo-

rithm CentralSD (standing for Centralized Sensor Dispatching) to dispatch mobile sensors with the

purpose of maximizing the system lifetime. Assume that one central server is available to collect
location of mobile sensors and events. In CentralSD, during each round of dispatching, we will
determine which mobile sensors should visit which event locations with the objective of minimizing
the moving distance (or maximizing the remaining energy) of mobile sensors. However, instead of
simply optimizing the objective of dispatching, we exploit the load balance of mobile sensors, in
terms of moving distance or remaining energy, during each round. Furthermore, balancing the loads
of moving distance also implies that mobile sensors have similar energy costs and moving time to
visit event locations, while balancing the loads of remaining energy can avoid a mobile sensor with
less energy being dispatched to a long-distance event location. In CentralSD, a more general solu-
tion to the sensor dispatch problem is proposed in which the numbers of mobile sensors and event
locations are arbitrary. In particular, two cases are considered in CentralSD. Explicitly, when the
number of event locations is no larger than'that of mobile sensors, we transform the dispatch prob-
lem to a maximum matching problem in a weighted bipattite-graph, where the vertex set contains all
mobile sensors and all event locations and the’edge-set contains the edge from each mobile sensor
to each event location. However, instead of finding the matching with a minimum edge weight [12],
we use a preference list and a bound to select the matching. Specifically, the preference list helps
assign an event location with a suitable mobile sensor, while the bound is to avoid selecting edges
with extreme weights so that the load-balance can be achieved. When the number of event locations
is larger than that of mobile sensors, we propose an efficient clustering scheme to group event lo-
cations into clusters, where the number of clusters will be the same as that of mobile sensors. In
this way, we can adopt the aforementioned matching approach to dispatch each mobile sensor to
a cluster of event locations. Then the mobile sensor can use the traveling-salesman approximation
algorithm [3] to reach all event locations in that cluster. However, as mentioned above, CentralSD
requires a central server to collect information of mobile sensors and events, which incurs a con-
siderable amount of message transmissions. To reduce messages incurred, we develop an algorithm

GridSD (standing for Grid-based architecture for Sensor Dispatching) to dispatch mobile sensors in

a distributed manner. A comprehensive performance study is conducted and simulation results show
that by exploring the load balancing of mobile sensors, our proposed algorithms can have more alive
mobile sensors, thereby prolonging the system lifetime.

A significant amount of research [2, 8, 19, 20, 21] has elaborated on the issue of using mobile
sensors to enhance the sensing coverage or the network connectivity in a WSN. We mention in
passing that the authors in [5] considers how to move more sensors close to the locations of events
predicted, while still maintaining complete coverage of the sensing field. However, the concept of
sensor dispatch is still not addressed. The authors in [14] exploit the use of mobile sensors to track
a moving object with mobile sensors. It is assumed that the object’s trajectory can be predicted and
the work discusses how to maneuver the mobile sensors to optimally acquire data from the object
in real-time. However, the energy consumption of mobile sensors is not considered in [14]. Several
research efforts [17, 18] have addressed how to select and.move mobile sensors in a hybrid WSN. In
[17], static sensors that detect events will invite and navigate-nearby mobile sensors to move to their
locations. The mobile sensor that have shorter moving distance and more energy, and whose leaving
does not cause a large coverage hole, will'be invited'by the static sensors. In [18], static sensors
estimate the coverage holes close to them and use the hole size to compete for mobile sensors. The
mobile sensor then selects the largest one and moves to fill that coverage hole. To the best of our
knowledge, the attention of prior works was mainly paid to the use of mobile sensors for coverage
holes and object tracking, but not to the general dispatch problem explored in this paper.

In this work, we consider how to efficiently dispatch mobile sensors so that the system lifetime
can be extended. In particular, during each one-round dispatch, we will schedule mobile sensors
to visit event locations so that the moving distance or the remaining energy of mobile sensors can
be minimized or maximized, respectively. However, instead of simply optimizing the solution, we
consider to balance the loads of mobile sensors, in terms of moving distance or remaining energy,
during each round. By balancing the loads can make each mobile sensor live longer, and thus can

help prolong the system lifetime. In addition, balancing the loads of moving distance can make

mobile sensors have similar energy costs and moving time to visit event locations, while balancing
the loads of remaining energy can avoid a mobile sensor with less energy being dispatched to a long-
distance event location. In this work, we consider a more general solution to the sensor dispatch
problem in which we do not restrict the numbers of mobile sensors and event locations. When
the number of event locations is no larger than that of mobile sensors, we translate the dispatch
problem to the problem of finding a maximum matching in a weighted bipartite graph, where the
vertex set contains both the sets of mobile sensors and event locations, and the edge weights can
be either the moving distance or the remaining energy, depending on the objective function being
used. However, instead of finding the matching with a maximum or minimum edge weight [12],
we use a preference list and a bound to select the matching. Specifically, the preference list can
help each mobile sensor select a suitable event location so that it can have a shorter moving distance
or remain more energy after movement, while the bound is to avoid selecting edges with extreme
weights so that the load-balance can belachieved. When the nhumber of event locations is larger than
that of mobile sensors, we propose an efficient Clustering mechanism to group event locations into
clusters, where the number of clusters will be the same as that of mobile sensors. In this way, we
can adopt the aforementioned solution to dispatch mobile sensors to the clusters of event locations.
After we assign a mobile sensor to visit a cluster, it can use the traveling-salesman approximation
algorithm [3] to reach all event locations in that cluster. Finally, we have also developed a distributed
method based on the aforementioned dispatch solution to avoid the need of a centralized server when

dispatching mobile sensors. In summary, our work has the following contributions:

1. We have addressed the importance of load-balance when dispatching mobile sensors and then
propose a novel dispatch solution to prolong the system lifetime by balancing the loads of

mobile sensors in terms of moving distance and remaining energy.

2. We have proposed an efficient clustering mechanism to group event locations so that our dis-

patch solution can be also suitably applied to the case when there are few mobile sensors that

have to be dispatched to a large number of event locations.

3. We have proposed a distributed version of our dispatch solution so that there is no need of a

centralized server to execute our dispatch solution.

It is worth mentioning that we not only explore load-balancing in dispatching mobile sensors,
but also develop one clustering mechanism to deal with the case that the number of event locations
is larger than that of mobile sensors. These features distinguish this paper from others.

The rest of this paper is organized as follows. In Chapter 2, we formally define the sensor
dispatch problem. Chapter 3 proposes our solutions to this problem. Simulation results are presented

in Chapter 4. Chapter 5 concludes this paper.

Chapter 2

Sensor Dispatch Problem

We consider a hybrid WSN comprised of both static and mobile sensors. Static sensors can form
a connected network and fully cover the area of interest to continuously monitor the environment.
When events are detected by static sensorsthere is a sét of n mobile sensors S = {s1,59,..., 8.},
which are randomly distributed over the sensing region and can be dispatched to the event locations
(as reported by static sensors) to provide higher quality of sensing results. To achieve this goal,
we assume that sensors know their own locations, which can be achieved by the global positioning
system (GPS) [9] or other localization techniques [4, 10].

The sensor dispatch problem is modeled as follows. We assume that there is a set of event loca-
tions L = {ly,1ls,...,l}, each to be visited by a mobile sensor. We allow an arbitrary relationship
between the values of m and n. The goal is to compute a dispatch schedule SC H, for each mobile
sensor s; such that each location in L is visited exactly once by one mobile sensor. Each schedule
SCH,, is denoted by a sequence of event locations, and the jth location to be visited is written as
SCH,,[j]. Let e; be the current energy of s; and ¢(SC Hj,) be the energy required to complete s;’s
visit schedule,

c(SCHy,) =Apmove x (d(si, SCH,[1])+

ISCH,,; |1

Z d(SCHy[j], SCH,[j + 1)),

where A, is the energy required to move a sensor one-unit distance, d(s;, SCHy,[1]) is the
Euclidean distance from s;’s current location to SC'H,[1], and d(SCHy,[j], SCH,,[j + 1]) is the
Euclidean distance between SCHy,[j| and SCH,,[j + 1]. Clearly, the schedule must satisfy e; >
c¢(SCH,).

For performance reason, we define two objective functions for the sensor dispatch problem. The

first one is to minimize the total energy consumption to move sensors, i.¢.,

min) ¢(SCH,,). 2.1)

S$; €S

The second one is to maximize the total remaining energy of mobile sensors after movement, i.e.,

max Y (e; — ¢(SCH,,)). (2.2)

$; €S

To balance the energy consumption of mobile sensors, we will also measure the standard deviations
of sensors’ energy consumption and remaining energies. When we assign the dispatching schedules
of mobile sensors in each round. However, as mentioned in"‘Chapter 1, we should also balance the
loads of mobile sensors. In this work,“weuse the-standard deviation to measure how balance a
dispatching method can achieve. In particular, the 'standard deviation of the energy consumption

among mobile sensors is

(% Z(CCLUQ - C(SCHSZ))2>) (23)

s; €S

and the standard derivation of the remaining energy among mobile sensors is

n
$; €S

(l Z(eavg - (682' - C(SCHSJ))2> ’ (24)

where c,,,, and e, are the average of the total energy consumption and the total remaining energy
of mobile sensors, respectively. To balance the loads of mobile sensors, we should also minimize
either Eq. (2.3) or Eq. (2.4) when assigning their dispatching schedules, depending on the objective
function Eq. (2.1) or Eq. (2.2) that we adopt in each round, respectively.

Note that the above modeling is only concerned about one round of sensors’ dispatch schedules.
In general, multiple rounds of dispatch schedules need to be determined, where each round contains

9

those events being detected over a fixed amount of time, and the goal is to extend mobile sensors’
lifetimes to the maximum number of rounds. The length of a round depends on users’ real-time
constraint. Since event locations are unexpected, we will only focus on the optimization of one

round in our work.

10

Chapter 3

Algorithms for Dispatching Mobile Sensors

We first propose a centralized solution, where there is a central server which will collect the sets L

and S and compute sensors’ schedules. Then, a distributed solution will be developed.

3.1 Algorithm CentralSD: A Centralized Dispatch Method

When |S| > |L|, we will transform the dispatch problem to a maximum matching problem in a
weighted bipartite graph. When |S| < |L|, we partition L into |S| clusters such that each mobile
sensor only needs to visit one cluster of event locations. Then a maximum matching approach will

be applied again.

3.1.1 Caseof |S| > |L|

For each mobile sensor s; € S, we first determine the energy cost c(s;, ;) to move s; to each event
location /; € L. We define a cost function ¢(s;, ;) = Apope X d(S;, ;). We then construct a weighted
complete bipartite graph G = (S U L, S x L) such that the vertex set contains all mobile sensors
and all event locations and the edge set contains the edge (s;, ;) from each s; € S to each [; € L.

The weight of (s;, ;) is defined as

w(sq, lj) = c(sq, 1),

11

if Eq. (2.1) is the objective function, or as

Cmaz — (€5, — (81, 15)), ifes, > e(si, 1)
w(si, ;) = :
0, otherwise
if Eq. (2.2) is the objective function, where e,,,, is a large value no less than max;,cs{es, }. For
simplicity, we can set €,,,, = max, cs{€es, }. It is not hard to see that the objective functions Egs.
(2.1) and (2.2) can both be reduced to the same goal of minimizing the total weight of a matching.
Therefore, with GG, our goal is to find a matching P such that (1) the number of matches in P is the
largest, (2) the total edge weight of P is minimized, and (3) the standard deviation of edge weights
of P is minimized.
To find P, we first associate a preference list Plist(s;) to each s;, which ranks each event location
l; € L by its weight w(s;, [;) in an increasing order. When edge weights are equal, events’ IDs are
used to break the tie. Similarly, for each’l;, we.associate’it with a preference list Plist(l;), which
ranks each s; € S by its weight w(s;, [;) i an increasing order.
To reduce the standard deviation of'the matching-P, we'introduce a bound B, for each [; € L
to restrict the candidate mobile sensors with which{; can match. Specifically, /; can only consider a
mobile sensor s; such that w(s;,[;) < By,.
To find P, we set the initial value of each By, to the average of the minimum of the weights of

all edges incident to each event location, i.e.,

Z;‘nzl min(si,lj)GSXL{w(Siu l])}

Bllz--~:Bl = m

m

Then, for each [; € L, we try to find a match s; € Plist(l;) with [; such that w(s;, [;) is minimized
and w(s;,l;) < By,. If we cannot find such s;, we will continue extending B;, with an increasing
level Ap until /; can find available mobile sensors. Note that the value of Ap should be carefully
designed so that the weight of each pair will not increase sharply while the number of extending
the bound operations for the next available mobile sensor can be reduced. In view of the above

design guide, for each event, we should derive the distance interval of the farthest mobile sensor

12

and the nearest mobile sensor. Those mobile sensors staying in the distance interval should be taken
into consideration for dispatching. Furthermore, when more mobile sensors are given, an event can
easily find a mobile sensor in its neighborhood. Otherwise, one should use larger increasing level to
increase the possibility of finding available mobile sensors. Therefore, the increasing level, denoted

as Ap, is formulated as follows:

= — Z)l -
mnx Z(S7max {w(si, 1;)}

.min {w(si,15)}), (3.1)

where ¢ is an adjustable coefficient Ap.

As an unmatched event location [; expands its bound By, more candidates will be included in
its Plist(l;). If the first unvisited candidate s; in Plist(l;) is also unmatched, the pair (s;,[;) is
added into P. Otherwise, s; must be matchéd with another event location (e.g., [,). From the bounds
By, and B;,, we can determine which.gvent location. s; should be matched. This is referred to as
a competition between [; and [,. In particular;,.s;is-matched to /; if one of the following cases is

satisfied.

1. B;, > B,,. Since enlarging the bound will increase the risk of including an edge with an
extreme weight into P, we will prefer matching s; with /; to avoid expanding the larger bound

By..

J

2. By, = By, and l; is prior to [, in s;’s preference list. As s; prefers [; to [,, we thus match s;

with /; to reduce the total weight of P.

3. B, = By, and s, is the last candidate in Plist(l;) but not in Plist(l,). Since [; cannot have

]

another candidate to pick in Plist(l;), s; should be matched with /.

Once s; is matched with [, the pair (s;,[,) should be replaced by the new pair (s;,[;) in P, and
[, should search for another mobile sensor to match with. It is possible that /, will compete with
other event locations for mobile sensors.

13

Procedure 1 PairMatching(L, S)

Input: sets of event locations L and mobile sensors S

Output: maximum matching P between L and S

1: construct a weighted bipartite graph G = (SU L, S x L);

2: generate a preference list Plist(k) for each k € {S U L};

3: assign an initial value for each bound B;,;

4: for each [; € L that is not matched do

5:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20

while Plist(l;) contains no unvisited candidate do
By, = By, + Ap;
end while
let s; € S be the first unvisited candidate’in' Plist (L,);
if s; is unmatched then
add the pair (s;,[;) to P;
else
let [, € L be the location originally matched with s;;
if B;, > B, then
replace (s;, l,) by (s;,1;) in P;
else if B;, = B, then
if /; is prior to [, in Plist(s;) then
replace (s;, l,) by (si,1;);
else if s; is the last candidate in Plist(l;) but not
in Plist(l,) then

replace (s;,l,) by (s;, ;) in P;

: end for

14

Consider an illustrative example in Fig. 3.1, where § is set to 2. The initial bound is 124492 —

_ (2134234+229)—(101+77+92)

3 X 2 = 67.7. We start with the event

90 and the increasing level Ag
location /;. Since there is no available mobile sensor in Plist(l;) with the initial bound, B;, will be
expanded by Ap. Accordingly, B, is updated to 90+67.7=157.7. As a result, we will have three
candidates (i.e., s1, s2, and s3). Since [; finds that the first unvisited candidate s; is unmatched,
we add (s1,/;) to the matching P. Following the same operation, the pair (s3,[3) is determined,
as shown in Fig. 3.1(b). However, after expanding B;,, I3 finds that the first candidate s; has been
matched with [;. Therefore, I3 will compete with /; for s;. It can be verified that case 2 is satisfied
(i.e., B, = By, = 157.7 and I3 is prior to I, in Plist(s;)). Consequently, (s1,(1) is replaced by
(s1,13) in Fig. 3.1(c). Following the same procedure, /; will obtain s3 from [, and then /5 has to find
an unmatched mobile sensor s, to pair with. Fig. 3.1(e) shows the final result.

In the above example, we follow the sequence of 13,15, and /3 to decide the matching. Note that
due to the competition of event locations, the PaitMatching procedure can generate the same result
no matter what processing sequence we use.iThis-will-be proved in Theorem 1. Theorem 2 analyzes

the time complexity of PairMatching.

Theorem 1. The result of PairMatching is irrelevant to the processing sequence of event locations.

Proof. Suppose that PairMatching generates two different matchings P and P’ when different process-
ing sequences are used. Then there must be an event location [, € L matched with different
mobile sensors s, and s, in P and P’, respectively. Without loss of generality, we assume that
w(ly, sp) < w(ly,84), so s, will be prior to s, in Plist(l,). In the matching P, since [, has
been matched with s,, s, must be matched with another event location (e.g., /). Thus, we have
{(l3,54), (ly, sp) } C P. Recall the three cases that [, can win the competition to get s;,. Then exactly

one of the following two conditions must be satisfied:

1. [, has the advantage over [, because either B;, > By, (i.e., case 1) or s, is the last candidate

with By, (i.e., case 3).

15

cost| 8. |8, |8, |8 . Plist(s)=4l, 1., L}
] 1011 1522 1331 2143 Plist(l,) = {s, 53, 85, 5,} Plist(sl) = {13, ll, 12}
1 Plist(l,) = {s3, 54, 5, 8,} Plis t(sz) = { ll 13 12}
12 1421234 | 67 | 101 Plist(l3) = {Sv Sy Sy S3} Ph'st(SS) _ {lza lla 13}
I, | 92 [175]229|179 4 23

(D P={(s3, 1), (5, L)}

(a) energy costs and preference lists

L m——

~— -

L ———

N—— -

(©) P ={(s3, 1), (55, 1), (5,)}

Figure 3.1: An example to show how PairMatching works.

16

2. 1, is prior to [, in Plist(s,) (i.e., case 2).

However, in the matching P’, since s; is matched with [, [, will be matched with another mobile
sensor (e.g., sc). As such, we have {(l,,ss), (ly,s.)} € P’. In this case, if the first condition is
satisfied, a contradiction will be occurred because /,, must be also matched with s. in the matching P.
If the second condition is satisfied, we have B;, = B;,. However, since [, is prior to [, in Plist(sp),
s, must be matched with [, rather than with [, in P’, which also causes a contradiction. Therefore,
the result of PairMatching is unique, no matter what processing sequence of event locations we

use. [
Theorem 2. The time complexity of PairMatching is O(mnlg mn).

Proof. In PairMatching, we first construct the graph GG, which takes O(mn) time since we have to
assign the weight of each edge. Then generating the preference lists for all elements in S U L needs
O(mnlgn + nmlgm) time since we haye to sort the elements in S and L. The worst case for an
event location to find its matched mobile sensor-is-G(n) since it has to go through its preference
list. Thus, the time to compute the maximum matehing P will be O(mn). Therefore, the total time

complexity of PairMatching is O(mn + mnlgn + nmlgm + mn) = O(mnlgmn). O

3.1.2 Caseof |S| < |L|

When the number of event locations is larger than that of mobile sensors, we can group those event
locations whose distance are close to each other into a cluster. This can be achieved by using K-
means [7]. Consequently, in light of PairMatching, each mobile sensor is dispatched to one cluster
and then travels the event locations within the assigned cluster. To facilitate the presentation of
this paper, we briefly describe how K-means works. In K-means, event locations are randomly
partitioned into n non-empty clusters. Then for each cluster, we determine the mean from the event
locations assigned to the same cluster. Then, each event location should join the cluster whose mean

is the closest one to it. After all event locations decide their corresponding clusters, we should re-

17

calculate the mean for each cluster. The above procedure is repeated until no event relocation is
needed.

To evaluate the energy cost of the clustering result, the cost ¢(¢;) of each cluster ¢, is formulated
as the total edge weight of the minimum spanning tree in that cluster, where the weight of an edge
(1;,1;) is the Euclidean distance of the two event locations /; and /;. For example, in Fig. 3.2(a),
®(A) = 50, ¢(B) = 12, ¢(C) = 15, and ¢(D) = 68. Unfortunately, K -means cannot guarantee
to minimize the total cost of the clusters derived, especially when some “sparse” event locations are
far away from others. In this case, K-means will group these sparse event locations into the same
cluster, thereby increasing the total cost of clusters. Consider an example in Fig. 3.2(a), where four
clusters are determined by K -means. Since both clusters A and D consist of sparse event locations
(i.e., [and l4p), the total cost of clusters is thus increased. By properly splitting and merging some
clusters, we could adjust the result of K -mean so as to reduce the total cost of clusters. Intuitively,
those clusters containing sparse event.locations should be split. However, in order not to change
the number of clusters, we have to merge two clusters-when splitting a large one. In particular, let
max_intra_cost be the maximum edge weight among €dges in all clusters and min_inter cost be the
minimum distance of two clusters, where the distance between two clusters ¢, and ¢ is the Euclidean
distance of the two closest event locations /; and [;, where [; € ¢, and [; € ¢,. If max_intra_cost is
larger than min_inter cost, we can split the cluster with the edge whose weight is max_intra_cost (by
removing that edge) and then merge two clusters whose distance is min_inter cost (by connecting
them with the shortest edge). We can repeat the above procedure until max_intra_cost is not larger
than min_inter cost. In this way, we can avoid some clusters having too large costs and thus reduce
the total cost of clusters. Fig. 3.2 illustrates an example. In Fig. 3.2(a), max_intra cost is 50 (in
cluster D) and min_inter cost is 15 (between clusters A and B). We thus split cluster D into two
clusters Dy and D,, and then merge clusters A and B into the same one, as shown in Fig. 3.2(b).
Similarly, we can further split cluster A and then merge clusters C' and D; to reduce the total cost of

clusters. The final result will be shown in Fig. 3.2(c).

18

Py cluster A

cluster D,

cluster D, cluster C
cluster C " cluster A,
(b) total cost: 110 (c) total cost: 90
Figure 3.2: Anexamplé to cluster event locations.
After grouping event locations into'n clusterS C'=H{ ¢ ¢, . . ., ¢, }, we can use PairMatching to

dispatch mobile sensors to these clusters. To assign edge weights of the graph G = (S U C,8xC)s

the energy cost function should be re-formulated as follows:
(51, ¢5) = Amove X (d(s53,1;) + (é1)),Vs; € Sand & € C,

where [; € ¢y, 1s the closest event location to s;. Specifically, the total energy energy consumption
for s; to visit ¢; includes the energy to move to the closest event location /; in ¢, and the energy
to reach all event locations in ¢,. Once the graph G is constructed, we can adopt PairMatching to
decide which mobile sensor should be dispatched which cluster. When s; is dispatched to a cluster
C, 1t first moves to the closest event location /; in ¢;, and then exploits the solution of the fraveling

salesman problem (TSP) [3] to reach other event locations with a minimum cost.

19

Algorithm 2 CentralSD

Input: sets of event locations L and mobile sensors S
Output: dispatch schedules {SCH,,, SCH,,,...,SCH,, }
1:if |S| > |L| then

2: P =PairMatching(L, S);

3: while (s;,/;) € P do

4: SCH,, ={l;};

5: end while

6: else /* event locations are more than mobile sensors */

7: group locations in L into n clusters by, #{-means;
8: repeat

9: compute max_intra_cost and min,_inter_cost;
10: if max_intra_cost > min_inter costthen

11: split the cluster with max_intra cost;

12: merge the two clusters with min_inter cost;

13: wuntil max_intra_cost < min_inter cost

14: letC = {é¢1,¢s,...,¢,} be the set of clusters;

15: P= PairMatching(C’, S);

16: while (s;,¢;) € P do

17: travel all locations in ¢; by TSP and add these
locations into SC'Hj, in sequence;

18: end while

20

3.2 Algorithm GridSD: A Distributed Dispatch Method

In CentralSD, a central server is needed to collect the information of mobile sensors and events,
which results in a large amount of message transmissions. To reduce the messages incurred, we
propose a distributed algorithm GridSD that explores a grid-based architecture, in which each grid
head will collect the information of mobile sensors and events and performs CentralSD locally.
Therefore, both the computation complexity and message transmissions can be greatly reduced.

In GridSD, the sensing field is divided into grids, where each grid is an o X « square, as shown in
Fig. 3.3. For each grid, we select a grid head [13] to collect the information such as the numbers of
mobile sensors and event locations within its territory. Specifically, each mobile sensor will inform
its location and remaining energy to its corresponding grid head. When detecting events, static
sensors will report to their grid head. As pointed out earlier, once obtaining such information, a
grid head will perform CentralSD to dispatch mobile.sensors to those events occurred in its grid.
However, if no mobile sensors available“in this gtid, the grid head will search available mobile
sensors in other grids.

To reduce the number of message transmissions when a grid head searches for mobile sensors
in other grids, we propose a modified approach of the grid-quorum [20]. Specifically, each grid
head will send advertisement (ADV) messages containing the number of mobile sensors in its grid
to the same column of grids. In this way, each grid head will have the information of mobile sensors
in other grids located in the same column. When a grid head wants to search for available mobile
sensors in other grids, it will send a request (REQ) message to the grid head in the same row. Clearly,
due to the grid structure, there must be a grid head that receives both the ADV and REQ messages.
Consider Fig. 3.3 as an example, where the grid head in (0,0) sends an ADV message to inform
the grids (0,1), (0,2), and (0, 3) that a mobile sensor is available in grid (0,0). Since there is no
available mobile sensor in grid (1, 2), its grid head will send an REQ messages to the grids (0, 2),

(2,2), and (3,2) to search available mobile sensors. It can be seen that the grid head in (0, 2) will

21

receive both the ADV and REQ messages and then can reply the available mobile sensors in grid
(0,0) to the grid head of (1, 2).

To further reduce the message transmission for searching available mobile sensors, we exploit
search length to limit the number of grids to be searched. Explicitly, each REQ message is asso-
ciated with two integers 3 and M,,;4, where (3 is the search length and M, records the number
of available mobile sensors found. Due to the load-balance features, one would like to get as many
available mobile sensors as possible. That is why we use [to restrict searching length and within
the search lengths, all available mobile sensors rather than the nearest one will be considered for
dispatching. Initially, 3 > 0 and M,;,; = 0 in each REQ message. When receiving the REQ mes-
sage, a grid head will increase M, ;; by the number of mobile sensors in this column since the ADV
messages from the grid heads in the same column will publish the available mobile sensors in this
column. If 3 > 1, the grid head will decrease 5 by one and then propagate the REQ message to the
next grid in the same row. However, if:# =I1 and the value of M4 is still zero, which means that
there is no mobile sensor found yet, the-grid head-will sendthe REQ message with § = 1 to the next
grid until at least one mobile sensors are available. Fig. 3.3 illustrates an example, where 5 = 1 in
the initial REQ message. When receiving the REQ message, the grid head in (0, 2) increases Mg
by one and decreases by one. Since the value of 3 becomes zero, the REQ message will not be
propagated toward the left-hand side. When the grid head in (2, 2) gets the REQ message, it finds
that § = 1 and M4 = 0. So the grid head in (2, 2) propagates the REQ message with 5 = 1 to grid
(3,2) for searching mobile sensors. By exploring the search length, GridSD can reduce not only the
message complexity but also the competition of mobile sensors from grid heads. Once obtaining the

information of mobile sensors and events, a grid head is able to perform CentralSD locally.

22

Algorithm 3 GridSD

AT EACH GRID HEAD WITH EVENT LOCATIONS

Notations:

L4 1s the set of event locations in this grid.

Sgria 18 the set of mobile sensors found.

Procedure:

1: send REQ with 8 > 1 and M_,;; = 0 to the same row;
2: collect the information of Sg,;; from neighboring grid;
3: execute CentralSD with L ;s and Sy,i4;

4: send dispatch schedules to the mobile sensors in Sg,;q;

AT EACH GRID HEAD WITH MOBILE SENSORS

1: send ADV to the same column;

2: if receive a dispatch schedule then

3: dispatch the mobile sensor according to the schedule;
4: remove the departing mobile sensof;

AT EACH GRID HEAD

Notation:

M yrrent 1S the number of mobile sensors in the column.
Procedure:

1: If receive an REQ then

2 Mgypia < Mgrig + Meyrrent;

3: If 3=1and M,;; = 0 then

4: b+ 1;
5: else
6: [f<—0-1

7: reply the information to the REQ’s originator;

8: If3 > 0 then
23

e

propagate the REQ to the next grid;

- Q—»

(0,3) (1,3) (2,3) O (3,3)
® O |
o o
ol ®slo0 C 0o
‘Q(o,z) _1@ (1,z>“1 ° (2,2)_ o (()32)
<= o L LH
O 0 |q O O] 4
© [m]
O ©,1) (1,1) Q 2,1) 3,1)
° P O O O °
O O @
O O o
O o W o ey o 69
® O o O O
O O o
O o
O [O
L e

[m] mobile sensor

@ grid head

© eventsite

(O static sensor

== request message

Figure 3.3: An example to show how GridSD works.

24

Chapter 4

Experimental Results

In this chapter, we evaluate the performances of our proposed algorithms by simulations. We set
up a sensing field as a 450m x 300m rectangle, on which there are 400 static sensors and several
mobile sensors uniformly and randomly deployed, respectively. Each mobile sensor has an initial
energy of 3960J (joule) reserved for movement and:the moving energy consumption per meter is set
to 8.27) [15]. In this chapter, the energy consumption refers to the one caused by the movements
of mobile sensors. The communication distances of static and mobile sensors are set to 150m and

80m, respectively, so that all sensors can form a connected network.

4.1 Effectiveness of CentralSD and GridSD

In the first experiment, we investigate the system lifetime under various dispatching algorithms. We
dispatch 50 mobile sensors to visit event locations round by round. During each round, there are 10
to 15 static sensors randomly selected as the event locations. Mobile sensors will then move to these
event locations according to the dispatch algorithms and stay at their last-visiting locations to wait
for the next dispatch schedule. We mainly observe the percentage of alive mobile sensors during
each round. When the number of alive mobile sensors is fewer than that of event locations, the

proposed clustering scheme is adopted to group event locations. The system lifetime is referred as

25

the round when the percentage decreases to zero (i.e., all mobile sensors exhaust their energies). We
compare our proposed CentralSD and GridSD against the iteratively-optimized algorithm mentioned
in Chapter 1.

Fig. 4.1 shows the system lifetimes when two objective functions Egs. (2.1) and (2.2) are used
(i.e., minimizing the moving cost and maximizing the remaining energy). As can be seen, when the
remaining energy of mobile sensors is considered, all the three algorithms will have a longer sys-
tem lifetime. The iteratively-optimized algorithm always has the shortest system lifetime, although
dispatching mobile sensors with the minimal energy cost during each round. This is because the
iteratively-optimized algorithm does not balance the loads of mobile sensors, which causes some
mobile sensors early to exhaust their energies. The situation becomes worse because these early-
exhausted mobile sensors will burden the remaining alive ones with heavy loads. Our proposed
algorithms have a longer system lifetime since they not only try to satisfy the objective function but
also balance the loads of mobile sensors. Note that CentralSD outperforms GridSD because it has

the global knowledge of the network.

4.2 The Impact of Load-Balance

We further evaluate these three dispatch algorithms in terms of the objective function and the load-
balance metric (i.e., the standard deviation) among mobile sensors. We use Eq. (2.1) as the objective
function and evaluate the average of energy consumption when different dispatch algorithms are
adopted. The event locations are randomly selected from 5% to 40% of static sensors. To fairly
compare the standard deviation, we set the number of mobile sensors as equal to that of event
locations, so that each mobile sensor will be dispatched to exactly one event location.

Fig. 4.2(a) illustrates the average of energy consumption. Since the iteratively-optimized algo-
rithm always finds the optimal solution in each round, it will have the smallest average of energy

consumption. By adopting the preference lists, the averages of our proposed algorithms will be

26

percentage of alive mobile sensors (%)

percentage of alive mobile sensors (%)

100

80

60

40

20

100

80

60

40

20

= = = CentralSD

iterative optimization

25 30 35 40 45 50
number of rounds

(a) consider moving cost

e m om

~

= = = CentralSD
Lo GridSD
iterative optimization

55

25 30 35 40 45 50
number of rounds

(b) consider remaining energy

Figure 4.1: Comparison on system lifetime.

27

55

—&—CentralSD O
20 1 —5—GridSD XS .
---X - - iterative optimization

average of energy consumption (J)

10 L L L
5 10 15 20 25 30 35 40
percentage of event sites (%)
(a) average of energy consumption
30 -
X - ¢
25
52 .
gé 20
sg
%E 15 r
T
£ 8
8> 10
g2 —e—CentralSD
0 C
® 5 | —B—GridsSD
---X- - - iterative optimalization

0 I I I

5 10 15 20 25 30 35 40
percentage of event sites (%)

(b) standard deviation of energy consumption

Figure 4.2: Comparisens on-energy consumption.

slightly higher than that of the optimal solution. Note that in GridSD, the use of search length will
prevent the grid heads with event locations from searching those mobile sensors far away from them,
thereby having a smaller average compared with CentralSD. Fig. 4.2(b) shows the standard devia-
tion of energy consumption. We can observe that the standard deviation of the iteratively-optimized
algorithm is twice than that of CentralSD, which indicates that the former results in seriously unbal-
ance loads among mobile sensors. Note that GridSD has a larger standard deviation compared with
CentralSD since each grid head only has partial information of mobile sensors.

Although CentralSD outperforms GridSD in terms of system lifetime and load-balance, Cen-
tralSD incurs a large amount of message transmissions. Fig. 4.3 illustrates the number of packet

delivery of CentralSD and GridSD with the number of events varied. We can observe that the num-

28

4000

3500 - _—e—CentralSD
3000 F —=— GridSD

2500
2000
1500 -

number of packet delivery

1000 -
500 r

- — - —
B,E—%* = = t=]
Il Il Il

5 10 15 20 25 30 35 40
percentage of event sites (%)

Figure 4.3: Comparison on number of packet delivery.

ber of message transmissions in CentralSD grows very fast as the event locations increase, while
that in GridSD remains constant because the loads of message exchange are distributed among grid

heads.

4.3 The Impact of Clustering

When the number of event locations is-larger than that of mobile sensors, we will group event
locations into clusters and each mobile sensor will be dispatched to one cluster. Fig. 4.4 shows
the effect of clustering scheme on the average of energy consumption. As can be seen, when the
clustering scheme is adopted, mobile sensors can have a lower energy consumption because they do

not need to travel around event locations far from each other.

4.4 Sensitivity Analysis on the Coefficient §

We finally examine the impact of the coefficient ¢ on the increasing level Ap in Eq. (3.1). The value
of ¢ affects both the computation time and result of PairMatching, as shown in Fig. 4.5. Specifically,
we use the number of redundant iterations that an event location has to repeat Eq. (3.1) to find
an available mobile sensor as the metric to measure the computation time. To evaluate the result of
PairMatching, we use the product of average and standard deviation of energy consumption. Clearly,

29

300 1

W with clustering

250 1 Owithout clustering

200

150 -
1.2 1.5 1.8 24

2.7 3.0
ratio of event sites to mobile sensors

average of energy consumption (J)

3

Figure 4.4: The effect of clustering on energy consumption.

1800 1200

@ 1600

g 11000 $
§ 1400 | 5
2 1200 | 1800 3
g 1000 %
'g i ©
5 600 ¢
3 800 7
5 600 1400 3
g | o
£ 400 | o jerations 1200 2
35 @©
€ 200 | —g— average x standard deivation

0 | I I I I I 0

05 10 15 20 25 30 35 40 45 50

coefficient of increasing lewel (5)

Figure 4.5: The effect of coefficient § on redundant iterations and energy consumption, where |L| =

15| = 50.

a smaller product means a better result since mobile sensors can have a lower energy consumption
and a more balanced load. Fig. 4.5 shows the effect of coefficient o on redundant iterations and
energy consumption. We can observe that a smaller ¢ will cause more redundant iterations while a
larger 0 will make mobile sensors consume more energy and become unbalanced. From Fig. 4.5,
we suggest the optimal value of coefficient 6 as 2.0 because both the redundant iterations and the

product can be minimized.

30

4.5 Effect of grid size o and search length 3

In Section 3.2, there are two parameters, grid size « and search length (3, used in the GridSD scheme.
Fig. 4.6 shows the effects of these two parameters on the number of packet delivery and the discovery
ratio. Here we define the discovery ratio as % Zf\il %, where N is the number of grids, m; is the
number of event locations in a grid 7, and n; is the total number of mobile sensors found by the
head of grid ¢ with the search length /3. Intuitively, the larger the discovery ratio is, the more mobile
sensors a grid head can find. From Fig. 4.6, we can observe that both the message transmissions
and the discovery ratio increase as the grid size o and the search length 3 increase. This is because
the searching range (to find available mobile sensors) expands and thus grid heads have to exchange
more messages.

Although we can increase the number of mobile sensors found by a grid head by increasing both
the values of o and f3, grid heads have to.exchange mete messages. To obtain a reasonable discovery
ratio while not to increase too many message transmissions, we suggest to use « = 30 and § = 2
in this experiment since it has a discovery ratio slightly higher than one. In this case, the number of

found mobile sensors will approximate to the number of event locations in a grid.

31

450
400 - 5ot e
350 | o gep o

300 | :

250 *
200 -
150 -
100

50 -

number of packet delivery

10 20 30 40 50 60
grid size a (m)

(a) number of packet delivery

18 | e X X
_"><--’>-

—&—B=1
16 - —5—p=2)
14 © xop=3 .
12 | e

10 r
08 r
06 r
04 -
02 -
0.0

discovery ratio

10 20 30 40 50 60
grid size a (m)

(b) discovery ratio

Figure 4.6: The effects of grid size « and search length 5 on the number of packet delivery and the

discover ratio, where |L| = |S| = 50.

32

Chapter 5

Conclusions

In this paper, we have considered how to efficiently dispatch mobile sensors in a hybrid sensor net-
work. By exploring the load-balance of mobile sensors, we have proposed an algorithm CentralSD
to dispatch mobile sensors. When the locations are more than the mobile sensors, we developed a
clustering scheme to group event locations so that our proposed algorithm is able to apply. In order
to reduce the message transmissions, we have also proposed-a distributed algorithm GridSD. Simu-
lation results showed that our proposed algorithms can have a longer system lifetime compared with

the iteratively-optimized algorithm.

33

Bibliography

[1] L F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,”

IEEE Commun. Mag., vol. 40, no. 8, pp. 102—-114, 2002.

[2] P.Basuand J. Redi, “Movement control algorithms for realization of fault-tolerant ad hoc robot

networks,” IEEE Network, vol. 18, no. 4, pp. 36—44, 2004.

[3] M. Bliser, “A new approximation algerithm for the asymmetric TSP with triangle inequality,”

in ACM-SIAM Symp. on Discrete Algorithms,-2003, pp. 638—645.

[4] N.Bulusu, J. Heidemann, and D. Estrin, “GPS-Iess low-cost outdoor localization for very small

devices,” IEEE Personal Commun. Mag., vol. 7, no. 5, pp. 28-34, 2000.

[5] Z. Butler and D. Rus, “Event-based motion control for mobile-sensor networks,” IEEE Perva-

sive Computing, vol. 2, no. 4, pp. 3442, 2003.

[6] T. A. Dahlberg, A. Nasipuri, and C. Taylor, “Explorebots: a mobile network experimenta-
tion testbed,” in ACM SIGCOMM Workshop on Experimental Approaches to Wireless Network

Design and Analysis, 2005, pp. 76-81.

[7] J. Han and M. Kamber, Data Mining: Concepts and Techniques, D. D. Cerra, Ed. Academic

Press, 2001.

[8] N. Heo and P. K. Varshney, “Energy-efficient deployment of intelligent mobile sensor net-

works,” IEEE Trans. on Syst., Man and Cybern. A, vol. 35, no. 1, pp. 78-92, 2005.

34

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System: Theory

and Practice. 4th ed., Springer Verlag, 1997.

L. Hu and D. Evans, “Localization for mobile sensor networks,” in Int’l Conf. on Mobile Com-

puting and Networking, 2004, pp. 45-57.

D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller, R. Ricci, and J. Lepreau, “Mobile

Emulab: a robotic wireless and sensor network testbed,” in JEEE INFOCOM, 2006.

H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Research Logistics

Quarterly, vol. 2, pp. 83-97, 1955.

H. Luo, F. Ye, J. Cheng, S. Lu, and L. Zhang, “TTDD: Two-tier data dissemination in large-

scale wireless sensor networks,” Wireless Networks, vol. 11, pp. 161-175, 2005.

M. D. Naish, E. A. Croft, and B. Benhabib, ‘"Dynamic-dispatching of coordinated sensors,” in

IEEE Int’l Conf- on Systems, Man, and Cybernetics, 2000, pp. 3318-3323.

M. Rahimi, H. Shah, G. S. Sukhatme, J; Heideman, and D. Estrin, “Studying the feasibility of
energy harvesting in a mobile sensor network,” in IEEE Int’l Conf. on Robotics and Automa-

tion, 2003, pp. 19-24.

Y. C. Tseng, Y. C. Wang, and K. Y. Cheng, “An integrated mobile surveillance and wireless
sensor (iMouse) system and its detection delay analysis,” in ACM Int’l Symp. on Modeling,

Analysis and Simulation of Wireless and Mobile Systems, 2005, pp. 178—181.

A. Verma, H. Sawant, and J. Tan, “Selection and navigation of mobile sensor nodes using a
sensor network,” in IEEFE Int’l Conf- on Pervasive Computing and Communications, 2005, pp.

41-50.

G. Wang, G. Cao, and T. L. Porta, “A bidding protocol for deploying mobile sensors,” in [EEE

Int’l Conf. on Network Protocols, 2003, pp. 315-324.

35

[19] G. Wang, G. Cao, and T. L. Porta, “Movement-assisted sensor deployment,” in /[EEE INFO-

COM, 2004, pp. 2469-2479.

[20] G. Wang, G. Cao, T. L. Porta, and W. Zhang, “Sensor relocation in mobile sensor networks,”

in IEEE INFOCOM, 2005, pp. 2302-2312.

[21] Y. Zou and K. Chakrabarty, “Sensor deployment and target localization based on virtual

forces,” in [EEE INFOCOM, 2003, pp. 1293—-1303.

36

	封面.pdf
	目錄.pdf
	內文.pdf

