
 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

碩 士 論 文 
 
 
 
 
 

k 子 棋 的 複 雜 度 和 公 平 性 之 探 討 

 
On the Complexity and Fairness of the Generalized 

k-in-a-row Games 
 
 
 
 
 

研 究 生：余謝銘 

指導教授：蔡錫鈞  教授 

 

 

 
 
 

中 華 民 國  九 十 五  年 六 月 



k 子棋的複雜度和公平性之探討 

On the Complexity and Fairness of the Generalized k-in-a-row Games 
 
 
 
 

研 究 生：余謝銘          Student：Ming Yu-Hsieh 

指導教授：蔡錫鈞          Advisor：Shi-Chun Tsai 

 
 
 

國 立 交 通 大 學 
資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 
 
 

A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 
Computer Science 

 
June 2006 

 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國九十五年六月 



On the Complexity and Fairness of

the Generalized k-in-a-row Games

Ming Yu-Hsieh

June 23, 2006



2



Abstract

Recently, Wu and Huang[15] introduced a new game called Connect6, where

two players, Black and White, alternately place two stones of their own color,

black and white respectively, on an empty Go-like board, except for that

Black (the first player) places one stone only for the first move. The one who

gets six consecutive (horizontally, vertically or diagonally) stones of his color

first wins the game. Unlike Go-Moku, Connect6 appears to be fairer and

has been adopted as an official competition event in Computer Olympiad

2006.

Connect(m, n, k, p, q) is a generalized family of k-in-a-row games, where

two players place p stones on an m×n board alternatively, except Black places

q stones in the first move. The one who first gets his stones k-consecutive in

a line (horizontally, vertically or diagonally) wins. Connect6 is simply the

game of Connect(m, n, 6, 2, 1). In this paper, we study two interesting issues

of Connect(m, n, k, p, q): fairness and complexity. First, we prove that no

one has a winning strategy in Connect(m, n, k, p, q) starting from an empty

board when k ≥ 4p + 7 and p ≥ q. Second, we prove that, for any fixed

constants k, p such that k−p ≥ max{3, p} and a given Connect(m, n, k, p, q)

position, it is PSPACE-complete to determine whether the first player has a

winning strategy. Consequently, this implies that the Connect6 played on

an m × n board (i.e., Connect(m, n, 6, 2, 1)) is PSPACE-complete.
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Chapter 1

Introduction and preliminaries

The game family k-in-a-row, or (m, n, k)-Games, is well-known and has

been studied for a while. It is a two-player game played on an m× n board.

Two players P1 and P2 alternatively place one black and one white stone,

respectively, on an unoccupied square on the board and the one who first gets

his stones k-consecutive in a line (horizontally, vertically or diagonally) wins.

Some of the special (m, n, k)-games, such as TicTacToe ((3, 3, 3)-game) and

Go-Moku ((19, 19, 5)-game), are very popular worldwide. Moreover, there

are many other modified versions, such as Maker-Breaker version, Inverse

version, Periodic version, Higher dimensions version, Multi-Player version

and so on[6, 10, 16]. Maker-Breaker is an asymmetric version of the extended

(m, n, k)-Game, where in each move, Maker(P1) or Breaker(P2) can place t ≥

1 stones, and Maker wins by getting his stones k-consecutive in a line, while

Breaker wins by preventing Maker from winning. The winning condition of

Inverse k-in-a-row game is opposite to that of k-in-a-row game: The one who

gets his stones k-in-a-row first loses the game. This version is obviously more

complex, since the goal of each player is to avoid his stones k-in-a-row and it

is hard to force opponent’s stones k-in-a-row. The board of Periodic k-in-a-

row game has some modifications: the left connects with the right, and the

top connects with the bottom. It seems fairer with such modification, since

all the first moves are equivalent. As for the Higher dimensions version and

11



12 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Multi-Player version, it just extends the board into three or more dimensions

and extend two players to three or more players, respectively. Such modified

versions are interesting and generally studied in theoretical computer science

and combinatorial game theory.

In this paper, we study a new family of generalized k-in-a-row games:

Connect(m, n, k, p, q), which was introduced by Wu and Huang [15]. In

Connect(m, n, k, p, q), two players place p stones on an m × n board al-

ternatively, except Black places q stones in the first step. The one who first

gets his stones k-consecutive in a line (horizontally, vertically or diagonally)

wins. For example, TicTacToe is a Connect(3, 3, 3, 1, 1) game, Go-Moku is a

Connect(19, 19, 5, 1, 1) game and Connect6 is simply a Connect(∞,∞, 6, 2, 1)

game. For convenience, Connect(∞,∞, k, p, q) is denoted as Connect(k, p, q)[15].

W.L.O.G., we can assume that max{m, n} ≥ k > p, q > 0. Recently,

Connect6 has become an official competition event in the 11th Computer

Olympiad in 2006 because of its fairness and state-space complexity. For fur-

ther fairness and state-space complexity discussion of Connect6, we refer to

Wu and Huang’s paper[15].

Talking about (the generalized) k-in-a-row games, fairness is considered

to be the most interesting issue. Herik et al.[14] gave a definition of fairness

as follows.

Definition 1 [14] A game is fair if (1) this game has a draw for two perfect

players and (2) both players have a roughly equal probability on making a

mistake.

However, it is hard to prove that whether both players have a roughly

equal probability on making a mistake in general. Wu and Huang[15] gave

some empirical results for small cases with k ≤ 9 and k − p ≤ 3. For

convenience, this paper focus on the first part of fairness defined above, i.e.,

for two perfect players, whether Connect(m, n, k, p, q) has a draw or who

can win? There are some partial results for this question. For example,

the strategy-stealing argument shows that P2 has no winning strategy when
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q ≥ p : Suppose P2 has a winning strategy, then P1 can make the first

move randomly, act as the second player and win by stealing P2’s strategy,

which leads to a contradiction. Moreover, for p = q = 1, Herik et al.[14]

listed resolved cases for k ≤ 5, while Zetters [17] proved that P2 can tie

the game when k ≥ 8 and as a consequence on any finite board. The cases

when k = 6, 7 are still unknown. As for the results of the generalized k-in-

a-row games, Wu and Huang[15] showed that P1 can win Connect(k, p, q)

when p < ⌊ q

δ2 ⌋(4δ + 4) + min(q mod δ2, ⌊8q

δ2 ⌋), where δ = k − p. Pluhár[10]

showed that P2 can tie Connect(k, p, q) when k ≥ p + 80 log
2
p + 160 and

q = p ≥ 1000, and as a consequence that no one has a winning strategy in

Connect(m, n, k, p, q) for any m, n when k ≥ p + 80 log
2
p + 160 and p ≥ q.

However, this bound can be large even for smaller p. In chapter 2, we give a

better result for small p. Indeed, we prove that no one has a winning strategy

in Connect(m, n, k, p, q) for any m, n when k ≥ 4p+7 and p ≥ q. As a result,

our bound is better than Pluhár’s bound for smaller p(≤ 265), although their

result is asymptotically better.

Another important issue, for mathematical games, is complexity. The

hardness of many popular “small” games is not as easy as we think. Further-

more, two-player games are often more complicated than one-player games.

For example, it is shown to be PSPACE-complete for Go-moku[11] and

Othello[2], EXPTIME-complete for Checkers[12], which is also PSPACE-

hard[1], while NP-complete for Minesweeper[4]. For further readings, we

refer to Nowakowski’s books[7, 8]. In chapter 3, we study the complexity of

Connect(m, n, k, p, q).

Definition 2 [5, 9, 13] A problem is said to be PSPACE-complete if it

can be solved within polynomial space and every problem solvable in polyno-

mial space can be reduced to it in polynomial time. (Note that polynomial

space/time mentioned here is with respect to the input size.)

Definition 3 For any fixed constants k, p and given an arbitrary Connect(m, n, k, p, q)

game position, the decision Connect(m, n, k, p, q) problem is to determine

whether P1 has a winning strategy.
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We will prove that the decision Connect(m, n, k, p, q) problem is PSPACE-

complete for k − p ≥ max{3, p} by reducing the generalized geography game

played on a planar bipartite graphs of maximum degree 3 to it. The gen-

eralized geography game is a two-player game (∃-player and ∀-player) on a

directed graph. The ∃-player starts from a specific marked starting vertex,

and both players alternatively mark any unmarked vertex to which there is

an arc from the last marked vertex. The one who cannot mark vertex any-

more loses the game. Sipser[13] showed that the generalized geography game

is PSPACE-complete.

Theorem 1 [5, 9, 13] Generalized geography played on a planar bipartite

graph of maximum degree 3 is PSPACE-complete.

A key idea of the reduction is to “embed” a graph into the connect game

board, and thus two players will be forced to play the geography game in ef-

fect. To ensure the embedding can be done in polynomial time, the following

theorem is useful.

Theorem 2 [3] There is a linear time algorithm to draw any planar graph of

maximum degree 3 on a ⌊V
2
⌋×⌊V

2
⌋ grid orthogonally, where V is the number

of vertices. Moreover, each edge has at most 1 bend.

Once the instance of geography game is drawn orthogonally on a grid,

we can transform it into a connect game board efficiently. We will show

the details of reduction in chapter 3 and introduce the framework of the

algorithm in appendix A. We also need the following definition of threat in

a game.

Definition 4 [15] In a Connect(m, n, k, p, q) game, a player is said to have

t threats, if and only if his opponent needs to place t stones to prevent him

from winning in his next move.

There are other interesting implementation issues, such as game strat-

egy, search technique and so on, which are typically addressed in artificial
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intelligence. Wu and Huang’s paper[15] shows some related results and use-

ful references. In this paper, we focus on the theoretical foundation of the

games.
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Chapter 2

Fairness

Since we have shown that P2 has no winning strategy when q ≥ p, by the

strategy-stealing argument, we focus on the cases when q ≤ p in this chapter.

The following is our first result.

Theorem 3 No one has a winning strategy in Connect(m, n, k, p, q) for any

m, n with max{m, n} ≥ k when q ≤ p and k ≥ 4p + 7.

To prove Theorem 3, we define a new game modified from the Maker-

Breaker game, denoted as mMB(n, p) for short, which is a two-player game

played on an n × n board. In move 2i − 1, i ∈ N , P1 can choose an integer

t, 1 ≤ t ≤ p, and then P1 and P2 are required to place exactly t black stones

and t white stones in move 2i − 1 and move 2i, respectively, until there is

a winner or no more empty square. If there exist n black stones in a line

(horizontally or vertically, but not diagonally), then P1 wins, else P2 wins.

Since it can be easily verified that P1 wins when n ≤ p + 1 (trivial case), we

can assume n ≥ p + 2. In the following, we will focus on the mMB(n, p)

game, and our goal is to prove that P2 has a winning strategy, i.e., preventing

P1 from winning. For convenience, we define environment variables ri for the

i-th row, 1 ≤ i ≤ n. The value of ri is equal to −1 if there exists a white

stone in the i-th row; otherwise, ri indicates the number of black stones in

the i-th row. The environment variables cj for the j-th column, 1 ≤ j ≤ n,

17



18 CHAPTER 2. FAIRNESS

are defined similarly, and we let R = {ri|1 ≤ i ≤ n} and C = {ci|1 ≤ i ≤ n}.

Moreover, we use (x, y) = B and W to denote that square (x, y) has a black

stone and a white stone respectively, and E for empty. We will use a “loop

invariant” as shown in Lemma 1 to prove that P1 cannot win, where a “loop”

consists of one move of P1 and the countermove of P2.

Lemma 1 In an mMB(p+2, p) game position, assume there is at most one

positive variable in C ∪ R with value 1. Then P2 has a strategy such that,

after one move of P1 and one move of P2, (1) P1 cannot win. (2) Before the

game terminates, there is at most one positive variable in C ∪ R with value

1.

Proof. Since at most one variable is positive, say ci = 1, there are at most

p + 1 black stones in a line after P1’s move (Note that P1 wins if and only if

there are p+2 black stones in a column or row). We prove the rest by induc-

tion on the integer t that P1 chooses. P2’s strategy is given in the induction

step below.

Basis: (t = 1) By assumption, there is at most one positive variable ci with

value 1. Assume P1 places one black stone at (a, b). First, we consider the

case when b 6= i and thus ra ≤ 1, cb ≤ 1, ci ≤ 1, since there may be white

stone(s) in row a or column b. If (a, i) = W or (a, i) = E and hence P2

can place a white stone at (a, i), then we have ra ≤ 0, cb ≤ 1, ci ≤ 0 and

the lemma holds. Suppose (a, i) = B, then ra ≤ 0 by the assumption that

there is at most one positive variable. Hence if there is already one white

stone in the i-th column or P2 places a white stone at any empty square in

the i-th column, then we are done with at most one variable cb > 0 and

cb = 1. The latter case can happen, because P1 has not won yet (that is,

the i-th column has an empty square or a white stone in it). Next, we con-

sider the case when b = i and then we have ra ≤ 1 and ci ≤ 2. Since there

must be an empty square in column i, P2 can place a white stone in the i-th

column, and then this lemma holds with at most one positive variable ra = 1.
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Induction: Assume it is true for all t up to w < p. Consider the case

t = w + 1. By the hypothesis, P2 has a strategy Sw using w white stones

against the first w black stones P1 placed by ignoring the existence of the

(w + 1)-st black stone. Assume P1 placed the (w+1)-st black stone at (a, b).

If Sw doesn’t place a white stone at (a, b), then it reduces to the case t = 1.

If Sw chooses (a, b), we know that there are at most three variables with

positive values (i.e. ra > 0, cb > 0, ci ≤ 1), and P2 still has two white stones

to play (i.e., the one placed at (a, b) is withdrawn). Then P2 can place the

two white stones in the a-th row and the b-th column, and we are done with

ci ≤ 1. 2

Lemma 2 P2 has a winning strategy in mMB(p + 2, p).

Proof. Since all variables in C ∪ R are zero in the beginning, by Lemma 1,

we know that P2 has a winning strategy. 2

Then we have the following obvious consequence.

Corollary 1 P2 can win mMB(n, p), when n ≥ p + 2.

Lemma 3 P2 can tie Connect(k, p, q) when q ≤ p and k ≥ 4p + 7.

Proof. The strategy for P2 is by divide-and-conquer:

1. Tile the game board with infinite many (p + 2)× (p + 2) tiles as shown

in Figure 2.2 (an example of p + 2 = 4). There are three types of tiles:

A, B and C as shown in Figure 2.1. Tile B and C are just “twisted”

from tile A.

2. In each tile where P1 placed black stones, P2 responds with the same

number of white stones in it. This is possible since q ≤ p. If q < p, P2

has extra p − q white stones to play in the following move.

3. Play mMB(p + 2, p) game in each tile, where P2 has enough white

stones to play. Note that when playing in a twisted tile P1 tries to
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A B C

Figure 2.1: Three types of tiles of size (p + 2) × (p + 2), for p = 2.

get (p + 2) black stones horizontally or diagonally. By Lemma 2, we

know that P2 has a strategy such that there are at most p + 1 black

stones in a line in each tile A(horizontally or vertically), at most p + 1

black stones in a line in each tile B(horizontally or diagonally down),

and at most p + 1 black stones in a line in each tile C(horizontally or

diagonally up).

B1

C1

A1

B2

C2

A2

B3

Figure 2.2: The game board is divided into infinite many 4 × 4 tiles.

In the whole game board (refer to Figure 2.2), since there are at most

(p+1)-consecutive black stones in a vertical line in section {Ai} and at most

(p+2)-consecutive black stones in a vertical line in section {Bi,Ci}, we obtain



21

that there are at most (4p+6)-consecutive black stones in a vertical line,

i.e., (p+1) in A1, (p+2) in B2, (p+2) in C2, and (p+1) in A2. Similarly,

there are also at most (4p+6)-consecutive black stones in a diagonal line

(diagonally up and diagonally down). As for the horizontal line, since there

are at most (p+1) black stones in section {Ai, Bi, Ci}, there are at most

(2p+2)-consecutive black stones in a horizontal line. We show the longest

possible black lines with the shaded cells in Figure 2.2. From the above, we

get the desired result: there are at most (4p+6)-consecutive black stones in

a line (horizontally, vertically and diagonally). 2

Corollary 2 P2 can tie Connect(m, n, k, p, q) for any m, n when q ≤ p and

k ≥ 4p + 7.

Proof. It is obvious that the strategy for P2 shown in the proof of Lemma

3 can be applied to any finite board. 2

Proof of Theorem 3. This is true since P1 can adopt the strategy for P2,

shown in Lemma 3 as well. 2
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Chapter 3

PSPACE-completeness

In this chapter, we investigate the computational complexity of the decision

Connect(m, n, k, p, q) problem. We will show that the decision Connect(m, n, k, p, q)

problem is PSPACE-complete when k−p ≥ max{3, p}. Recall that the deci-

sion Connect(m, n, k, p, q) problem is to determine whether P1 has a winning

strategy when given an arbitrary non-empty Connect(m, n, k, p, q) position,

where k and p are fixed constants. Note that this result does not mean to

determine which player has a winning strategy when the play starts with an

empty board as stated in [5]. Since the given game position in the decision

Connect(m, n, k, p, q) problem is not an empty board, q is negligible.

3.1 Global idea

Lemma 4 The decision Connect(m, n, k, p, q) problem is in PSPACE.

Proof. Since this game must end in O(mn) steps, this problem can be com-

puted by an alternating Turing machince in polynomial time. We know that

ATIME(poly) = PSPACE [13]. Hence, this problem is in PSPACE. 2

The next step is to show the PSPACE-hardness of the decision Connect(m, n, k, p, q)

problem. It is already known for the case p = 1.

23
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Lemma 5 [11] The decision Connect(m, n, k, p, q) problem is PSPACE-hard

when k ≥ 5 and p = 1.

We focus on the case p ≥ 2 as follows. We show a polynomial time re-

duction from the generalized geography game played on a planar bipartite

graph of maximum degree 3 to the decision Connect(m, n, k, p, q) problem.

For an arbitrary generalized geography game, we will construct a correspond-

ing Connect(m, n, k, p, q) game position, where m, n are polynomial in terms

of the input size and q is negligible, such that the ∃-player has a winning

strategy in the generalized geography game if and only if P1 has a winning

strategy from the constructed game position.

winning
zone

b

b

b

b

simulation zone

auxiliary zone 1

auxiliary zone p − 1

Figure 3.1: The global view of the constructed connect game position.

The main difference between Go-Moku and Connect(m, n, k, p, q) is that

each player can place more than one stone in a move in Connect(m, n, k, p, q)

game. In order to deal with this difference, we construct the connect game

position with one simulation zone, one winning zone and p − 1 auxiliary

zones, as shown in Figure 3.1. The key idea behind the construction is to

force each player to place exactly one stone in each of the p − 1 auxiliary
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zones and the simulation zone until the play in the simulation zone termi-

nates, which means no more stone will be placed in the simulation zone. The

constructed position in the simulation zone, in effect, forces P1 and P2 to

play the generalized geography game. The winner in the simulation zone,

can then place stones in the winning zone and will win. Next, we show the

constructed position of each zone in details.

3.2 Construction of winning zone and auxil-

iary zones

The constructed position in the winning zone is shown in Figure 3.2 and

the constructed position in an auxiliary zone is shown in Figure 3.3. Note

that the constructed positions of the p − 1 auxiliary zones are the same and

the number of the repeated patterns will be determined later. In Figure 3.2

and 3.3, we find that no one has threat in the winning zone (there are only

k−p−1 black and white stones, respectively), and P2 has exactly one threat

in each auxiliary zone (the (k − p)-consecutive white stones on the left-hand

side), hence p − 1 threats in total, while P1 has no threat in any of the aux-

iliary zones yet.

x x x b b b x

a

k-p-1

h h h b b b h

k-p-1

Figure 3.2: The constructed position in the winning zone.



26 CHAPTER 3. PSPACE-COMPLETENESS

h
h

h

h

x

a1

a2

b

b

b

ap

h

b

b

b

k-
p

x
x

x

b

b

b

w
x

k-p-1 h
h

h

b

b

b

h
x

k-
p-
1 x

x

x

b

b

b

y
x

k-p-1 h
h

h

b

b

b

h
z

k-
p-
1

b b b b

Figure 3.3: The constructed position in an auxiliary zone.

3.3 Construction of simulation zone

We construct the simulation zone from an instance of the geography game.

The purpose is to force two players to play the generalized geography game in

the simulation zone. For a planar bipartite geography graph with maximum

degree 3, we will first apply Theorem 2 to draw it orthogonally on a grid, and

then construct a corresponding game position in the simulation zone. Next,

we give the corresponding constructed positions of the vertices and arcs,

which are viewed as gadgets and from which the desired connect position

is constructed. Since the vertices and arcs are viewed as gadgets, we can

use copies of their mirror images or rotate them 90o, 180o or 270o whenever

necessary .

In the construction, each vertex has one or more entry points and exit

points, respectively, and each arc has a head point and a tail point. More

specifically, for an arc (u, v), the head point of its corresponding gadget will

connect (overlap) the exit point of u’s gadget, and its gadget tail point will

connect (overlap) the entry point of v’s gadget. We show the constructions

of gadgets as follows.
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3.3.1 Gadgets for vertices

Since the Connect(m, n, k, p, q) game is a two-player game and the general-

ized geography game is played on a bipartite graph, we can divide all vertices

into two groups, Black and White. Moreover, the starting vertex belongs to

Black group, and w.l.o.g., we will illustrate the constructed positions of the

vertices in Black group as in the following examples. The constructed po-

sitions of the vertices in the White group can be obtained by exchanging

the colors. According to [5, 9], there are only three types of vertices in the

generalized geography game played on a bipartite graph with maximum de-

gree 3, i.e., (1) in-degree 1 and out-degree 1, (2) in-degree 2 and out-degree

1, (3) in-degree 1 and out-degree 2, and for each we construct two kinds of

positions as shown in Figure 3.4. The constructed positions of the six kinds

of vertices are shown in Figures 3.5 to 3.10. In Figure 3.5 and 3.6, the entry

point is at a and the exit point is at h. In Figure 3.7 and 3.8, the two entry

points are at a and e, and the exit point is at z. In Figure 3.9 and 3.10, the

entry point is at a and the two exit points are at u and z.
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e
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e
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e
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(3b)

Figure 3.4: (1a) and (1b) are two kinds of vertices with in-degree and out-

degree 1. (2a) and (2b) are two kinds of vertices with in-degree 2 and out-

degree 1. (3a) and (3b) are two kinds of vertices with in-degree 1 and out-

degree 2. The other possibilities can be obtained by flipping or rotating the

above.
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Figure 3.5: A vertex with in-degree 1 and out-degree 1 corresponds to Figure

3.4(1a), where node a indicates the entry point and node h the exit point.
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3.4(1b), where node a indicates the entry point and node h the exit point.
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Figure 3.7: A vertex with in-degree 2 and out-degree 1 corresponds to Figure

3.4(2a), where nodes a and e indicates the entry points and z for the exit

point.
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3.3.2 Gadgets for arcs

There are two types of arcs: (1) from a vertex in Black group to a vertex

in White group, and (2) from White group to Black group. W.L.O.G., we

show the construction of type-1 arcs, and type-2 arcs can be obtained by

exchanging the colors of the stones. By Theorem 2, we can assume that

each arc is horizontal, vertical, or composed of a horizontal segment and a

vertical segment. The constructed position of the bend of an arc is shown

in Figure 3.11(c). Since the usage of a bend is to connect a vertical segment

and a horizontal segment, we can view it as a special vertex with the entry

point at a and exit point at i. Furthermore, each straight arc and straight

segment may consist of several unit components as shown in Figure 3.11(a),

and we define the distance between a and c as a unit for convenience (that

is, each unit equals to 2(k − p) in the game board and suppose each side of

the cell in the game board has length 1). Thus each arc gadget is of integer

unit of length. Moreover, the head point of the arc shown in Figure 3.11(b)

is at a and the tail point is at e.
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Figure 3.11: (a) A unit component. (b) An arc with 2 unit of length. (c)

Gadget for a bend.
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3.4 Put it together

To obtain the desired connect position in the simulation zone, we need to

deal with: (1) the starting vertex and (2) embedding the geography graph

into the game board correctly. First the construction of the starting vertex is

easy. Since there are only six kinds of vertices, we have six kinds of starting

vertices. The constructed position of a starting vertex with in-degree 1 and

out-degree 1, as shown in Figure 3.12, is modified from Figure 3.5. The

location a is replaced with a black stone and location b with a white stone.

The constructed positions of the starting vertex of the other five kinds can

be obtained similarly as follows. In Figure 3.6, replace a with a black stone

and b with a white stone. In Figure 3.7 and 3.8, replace a, e with black stones

and b, f with white stones. In Figure 3.9 and 3.10, replace a with a black

stone and b with a white stone. Note that, in the simulation zone, P2 has

exactly one threat in the starting vertex (refer to Figure 3.12 for example)

while P1 has no threat.
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Figure 3.12: A starting vertex with in-degree 1 and out-degree 1 corresponds

to Figure 3.5.

Second, we need to embed the geography graph into the game board. By

Theorem 2, we can assume the geography graph is drawn orthogonally on

a ⌊V
2
⌋ × ⌊V

2
⌋ grid, where V is the number of the vertices in the geography

graph. Next, we map (i, j) in the grid to (t×L× i+3×L, t×L× j +3×L)

in the game board, where L = 2(k − p) and t is a large enough constant (for
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instance, 5 is enough). The reason why we add 3×L is to reserve spaces for

the boundaries.

The constructed position of each vertex has a center point, and we will

put the center point at the corresponding coordinate of the vertex. Note

that the bend of an arc is viewed as a special vertex. Both of the center

points in Figure 3.5,3.6 (Figure 3.7,3.8 and Figure 3.9,3.10) are at e (i and

e respectively). The center point of a bend as in Figure 3.11(c) is at e. In

Figure 3.5 and 3.6, the distance between the center point and the entry (exit)

point has 3

2
units of length. Moreover, the entry (exit) point and the center

point is either in the same vertical or horizontal line. The same properties

also hold in Figure 3.7 to Figure 3.10 and Figure 3.11(c).

Now we are going to connect the head (tail) point of an arc gadget with

the exit (entry respectively) point of the corresponding vertex gadget. Since

each arc is of integer units of length, and its corresponding entry point and

exit point lie in a line (we can view the bend as a vertex here) with distance

a multiple of unit length, we can connect the vertex gadgets and the arc

gadgets correctly.

An example with k − p = 4 (ignoring the boundaries) is shown in Figure

3.13. The starting vertex is located at (0,0). The vertices located at {(0,0),

(1,1), (0,2)} belong to Black group, and those located at {(0,1), (1,0), (1,2)}

belong to White group. The corresponding vertex gadgets in the game board

are shadowed with gray color.
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Figure 3.13: An example with k − p = 4 and the starting vertex gadget

located at (0,0).
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3.5 Correctness

We now argue that the constructed position will mimic a generalized geog-

raphy game if both of the players play “correctly”. If a player does not play

correctly, then it leads to a losing game within a few moves. Let us consider

the case that the starting vertex is of in-degree 1 and out-degree 1 as shown

in Figure 3.12. The arguments for the other five cases are similar.

Proposition 1 Consider Figure 3.3 and Figure 3.12. In the first move, if

P1 does not place stones at one of c1, c2, · · · , cp points in Figure 3.12 and one

of a1, a2, · · · , ap in Figure 3.3 in each of the auxiliary zones, then P2 can win

immediately.

Proof. Since P1 has no threat, he cannot win in the first move. W.L.O.G.,

assume that P1 does not place stone at any of a1, a2, · · · , ap in Figure 3.3,

then P2 can place p white stones at a1, a2, · · · , ap and win in the second move.

2

Proposition 2 P1 will have p threats against the second move if and only

if he places stones at c1 in Figure 3.12 and a1 in Figure 3.3 in each of the

auxiliary zones in the first move. Moreover, P2 has no threat before the second

move.

Proof. Clear. 2

Proposition 3 P2 will have p threats against the third move if and only if he

places stones at d in Figure 3.12 and w in Figure 3.3 in each of the auxiliary

zones in the second move. Moreover, P1 has no threat before the third move.

Proof. The same as for Proposition 2. 2

Proposition 4 In the first move, if P1 does not place a black stone at c1 in

Figure 3.12 or a1 in Figure 3.3 in one of the auxiliary zones, then P2 can

win in two moves.
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Proof. By Proposition 2, P1 will have less than p threats in the second move.

W.L.O.G., we can assume that P1 has no threat in the simulation zone (see

Figure 3.12). Then by Proposition 3, P2 can place p− 1 stones on w’s in the

auxiliary zones to get p − 1 threats and make P1 have no threat. Moreover,

P2 can place one white stone at a in the winning zone in Figure 3.2 to get 2

threats. Since P1 has no threat and P2 has more than p threats against the

third move, P2 can win in the fourth move. 2

Proposition 5 In the second move, if P2 does not place a white stone at d

in Figure 3.12 or w in Figure 3.3 in one of the auxiliary zones, then P1 can

win within two moves.

Proof. Similar to Proposition 4. 2

The arguments for the following moves are similar and can be verified easily.

Next, we show the cases of different situations.

Proposition 6 The constructed position in Figure 3.9 simulates a vertex of

in-degree 1 and out-degree 2 in Black group.

Proof. According to the construction, when entering such a vertex, P1 is

forced to place a black stone at a, otherwise, with a similar argument to

the proof of Proposition 1, P1 would lose. Then P2 is forced to respond a

white stone at b, P1 is forced to respond a black at c, and then P2 is forced

to respond a white stone at d. Now, P1 can respond at e or f since p > 1

(if p = 1, P1 is forced to respond at e). Actually, the choice of e and f

simulates a vertex with out-degree 2. The arguments for the following moves

are straightforward. 2

Proposition 7 The constructed position in Figure 3.10 simulates a vertex

of in-degree 1 and out-degree 2 in Black group.

Proof. Similar to Proposition 6. 2
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Proposition 8 If a player chooses to visit a visited vertex (not the starting

vertex), then it leads to a losing game.

Proof. W.L.O.G., assume P2 revisits a vertex. Then this vertex must be of

in-degree 2. Consider Figure 3.7. Assume this vertex has been visited via

the left entry point and hence there must be black stones at a, c and i, and

white stones at b and d, otherwise P1 would have lost the game earlier. Next,

according to the construction of the connect position, when reentering such

a vertex, P1 is forced to place one black stone at e, P2 is forced to respond

a white stone at f , and P1 is forced to respond a black stone at g. Now, in

the whole game board, P2 has no threat and P1 has p threats by Proposition

2. In the auxiliary zones, P2 can get p− 1 threats in the following move and

make P1 no threat there. However, in the simulation zone (Figure 3.7), P2

can only make P1 no threat but cannot create new threat at the same time,

since there is already a black stone at i. Finally, similar to the argument

in Proposition 4, P2 will lose in two moves and P1 will win. The case of

Figure 3.8 is similar. 2

Proposition 9 If P2 chooses to visit the starting vertex, then he will lose.

Proof. Similar to Proposition 8. 2

Since the play in the simulation zone will terminate when a player chooses

to revisit a vertex and the opponent will then win, we have shown that

the ∃-player has a winning strategy in the generalized geography game if

and only if P1 has a winning strategy from the constructed position of the

Connect(m, n, k, p, q) game. Moreover, the setting k − p ≥ p and the large

enough constant distance between any two mapped coordinates ensure the

required empty squares, e.g. c1, c2, · · · , cp in Figure 3.12, will not be affected

by any components of the constructed position. The reason why k − p ≥ 3

is trivial, i.e., in Figure 3.7, there are two consecutive black stones next to b,

and hence k − p must be greater than 2.
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Finally, we have to make sure that the reduction can be done in polyno-

mial time. We estimate the required size for each zone of the constructed

position in the following:

1. Winning zone: O(k − p) × O(k − p), see Figure 3.2.

2. Simulation zone: Since k and p are fixed constants, the size of the

simulation zone is bounded by O(V ) × O(V ), refer to Theorem 2.

3. Auxiliary zone: We now determine the number of the repeated parts

in Figure 3.3. Since we require that the play in the simulation zone

always terminates a few moves earlier than the play in the auxiliary

zones, the number of the repeated parts is related to the size of the

simulation zone. Hence, the required size is O(1) × O(V ).

Therefore, we obtain that m = O(V ) and n = O(V ). Since the construction

mentioned above can be done in polynomial time, we have the following

lemma.

Lemma 6 The decision Connect(m, n, k, p, q) problem is PSPACE-hard when

k − p ≥ max{3, p} and p ≥ 2.

Theorem 4 The decision Connect(m, n, k, p, q) problem is PSPACE-complete

when k − p ≥ max{3, p} and p ≥ 2.

Proof. Immediately from Lemma 4 and 6. 2

Corollary 3 To determine whether P1 has a winning strategy in a given

non-empty Connect6 game position is PSPACE-complete.

Proof. Immediately from Theorem 4. 2

Corollary 4 The decision Connect(m, n, k, p, q) problem is PSPACE-complete

when k − p ≥ max{3, p}.

Proof. Immediately from Lemma 5 and Theorem 4. 2



Chapter 4

Conclusion and remarks

The main results in this paper are: (1) Fairness issue: no one can win

Connect(m, n, k, p, q) for any m, n when q ≤ p and k ≥ 4p+7. (2) Complex-

ity issue: The decision Connect(m, n, k, p, q) problem is PSPACE-complete

when k − p ≥ max{3, p}.

Open problems: (1) Can we have a better bound than the first result, since

Zetters[17] showed that P2 can tie the game when k ≥ 8 and p = q = 1? (2)

Is the decision Connect(m, n, k, p, q) problem still PSPACE-complete if the

restriction, k − p ≥ max{3, p}, is removed?
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Appendix A

Drawing 3-planar graphs

orthogonally in linear time

We introduce the framework of a linear time algorithm for drawing 3-planar

graphs orthogonally (refer to Theorem 2), which is proposed by Kant[3] and

used in our reduction in chapter 3. For details, we refer to Kant’s paper[3].

Input: A 3-planar graph of n vertices.

(1) Find vertices v1, v2, vn such that v2 and vn are v1’s neighbors. This can

be done in O(n) time easily.

(2) Given v1, v2 and vn, there is a O(n) time algorithm to sort the vertices

in a special order: {v1, v2, · · · , vn}, which is called lmc-ordering.

(3.1) For any triconnected 3-planar graph, there is a O(n) time algorithm to

draw it on a grid orthogonally according to the lmc-ordering.

(3.2) For any biconnected 3-planar graph, we can decompose it into tricon-

nected components in O(n) time. Calling (3.1) as subroutines, there is

a O(n) time algorithm to draw it on a grid orthogonally.

(3.3) For an arbitrary 3-planar graph, we can decompose it into biconnected

components in O(n) time. Calling (3.2) as subroutines, there is a O(n)

time algorithm to draw it on a grid orthogonally.
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