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基於人類視覺特性之視訊編碼 

 

摘要 

 

本論文主旨在於利用人類視覺特性設計視訊編碼中的位元配置方式，以期達

到較佳的視覺品質。論文中提出的方法著重於人類視覺中的早期視覺處理，並由

於低階視域的運作行為較為一般性，所以依低階視域特性設計預測失真的公式。

在視訊編碼中，通常視訊複雜度分析是設計位元配置的核心考量。在本論文中，

視訊複雜度進一步分解為視覺複雜度與編碼複雜度。視覺複雜度直接影響流量控

制機制，在視覺重要性較高的地方分配較多的位元，在可以承受較大失真的地方

配置較少的位元。論文中並利用SSIM作為以感覺為基礎的客觀失真測量方式來評

量所提出的基於視覺系統設計之流量控制機制。在H.264 JM7.6上的實驗結果顯

示，論文中提出的方法與JM7.6中的參考流量控制機制比較之下，提案方法在所

有測試案例中皆有較好的表現，能夠達到較佳的視覺品質並降低所使用的位元

數。 
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Human Visual System-Based  
Bit Allocation for Video Coding 

 
 

Abstract 
 

This paper proposes a video bit allocation scheme based on perceptual model of 

human visual systems for better visual quality. The proposed algorithm focuses on 

human early vision processes and formulates a distortion measure based on low-level 

vision behavior because of its generality. Generally speaking, video complexity 

analysis is the core component of the bit-allocation decision of a video encoder. In 

this thesis, video complexity is further decomposed into visual complexity and coding 

complexity. The visual complexity analysis directs the rate control model to assign 

more bits to the regions with visual importance, and assign fewer bits to the regions 

that could tolerate larger distortion. The proposed visual-based rate control algorithm 

is evaluated using a perceptual-based object distortion measurement called structural 

similarity index (SSIM) which approximates the perceived image distortion. 

Experiments based on H.264 JM7.6 shows that in comparison with the reference rate 

control in JM7.6, The proposed method has better performance with higher SSIM 

numbers and lower bitrate in all test cases. 
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1. Introduction 

 Video compression is an important topic in multimedia applications nowadays. 

Since the data volume of digitalized video is large for most storage and transmission 

systems, compression is essential for video applications. For the past decade, the 

technology of video compression has created many new multimedia applications, 

such as DVD movies, digital television, and video conferencing. Popular video coding 

standards adopt a lossy approach where some data from the video source are 

discarded during compression due to limited bandwidth or storage constraints. The 

process that determines which part of the source data should be discarded is called 

rate control. 

A rate control algorithm allocates target bits for each coding unit and adjusts 

coding parameters to achieve the target bitrate. Rate control schemes can be 

categorized into two groups, which are variable-bit-rate (VBR) control and 

constant-bit-rate (CBR) control. The VBR rate control scheme attempts to maintain 

constant video quality by allocating different amount of bits to different segment of 

video data based on their entropy. As a result, the compressed bitstream data rate 

varies across time. On the other hand, the CBR rate control tries to minimize the 

variations of compressed bitstream data rate in order to fulfill the bandwidth 

constraints from video delivery channel, or the playback device capability constraints 

(i.e. the processing speed in bits-per-second). A side effect of this rate control 

approach is that the resulting video quality may vary across time. In practice, the rate 

control algorithm selects a proper quantization parameter in order to produce a 

bitstream that fulfills the application constraints. 

 

 10



In existing encoding models, most of them analyze video data complexity for bit 

allocation and rate control. The complexity (or loosely speaking, entropy) is 

computed either by the mean absolute difference (MAD) measure of the residual data 

for inter-predicted frame or by the standard deviation for intra-predicted frames. 

Although MAD can reasonably represent the coding complexity of a region of video 

data, it does not sufficiently capture the perceptual importance of the data. Since in 

most video compression applications, human eyes are the final judgment of quality, 

perceptual models of human vision systems must be considered for better bit 

allocation. 

Although human perceptual models have been successfully used for audio 

coding [28], it has not been popular for either still image coding or video coding. You 

probably do not need a complicated model for still image coding since the data 

amount is small. However, for motion picture coding, perceptual models are not used 

mainly because the behavior of human vision systems is very difficult to put into 

equations. Some coding schemes are proposed for content-based video compression 

since conceptually, human high-level visions work on objects instead of pixels 

[29][31] . A general method alone this line of thinking is to decompose a video 

sequence into foreground and background representations, and reduce the coding 

bitrate of the background data. However, we do not agree with this approach since the 

regions which attract human attention are most likely related personal experiences and 

are different from person to person. Therefore, our proposed algorithm focuses on 

human early vision processes [7] and tries to formulate a distortion measure based on 

low-level vision behavior because of its generality. 

In this thesis, a rate control algorithm based on human visual system properties is 

proposed. The proposed rate control model of visual complexity is composed of 
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visual texture complexity and temporal complexity. A modified contrast sensitivity 

function is proposed to estimate the visual texture complexity. The visual texture 

complexity map represents visual distortion sensitivity of each macroblock and is 

incorporated into the proposed rate control model. 

One critical issue in developing a perceptual model-based rate control algorithm 

is about how to judge the quality of a coded bitstream. The most common objective 

quality measurement for lossy compressed video is the peak signal-to-noise ratio 

(PSNR) measure. Nevertheless, researches show that the value of PSNR does not 

completely agree with the perceptual quality evaluated by human eyes [30]. That is 

the reason why International Standardization Organizations (ISO) Motion Picture 

Expert Group (MPEG) only uses subjective viewing tests for the evaluation of the 

performance of proposals for various new technology call-for-proposals (CfPs) and 

for final verification tests of a new prospective standard. Unfortunately, subjective 

viewing tests are difficult to conduct and are subject to bias if the tests are no done 

properly. In this thesis, we investigate an objective distortion measurement called 

structural similarity index (SSIM) which approximates the perceived image distortion. 

From our experiments, SSIM is clearly more consistent with perceptual quality than 

PSNR is. The proposed visual-based rate control algorithm is evaluated using the 

SSIM measure. 

The organization of the thesis is as follows. Chapter 2 introduces some previous 

work of rate control schemes, including non-visual model-based and visual model 

based ones. Some theories and models of human visual systems are also presented in 

this chapter. Chapter 3 introduces mathematical for the theoretical foundations of the 

proposed solutions. The detail of the proposed algorithm is derived and presented in 

Chapter 4. The experimental results are shown in Chapter 5. Finally, some discussions 
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and conclusions are given in Chapter 6. 
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2. Related Work 

 As mentioned in chapter one, rate control algorithm of a video encoder throws 

away less important data that cannot fit into rate constraint of the target applications. 

All rate control algorithms are based on some Rate-Distortion (R-D) Models. An R-D 

model describes the tradeoff between quality (or distortion) and bitrate of a video 

codec. Ideally, a distortion measure that conforms to human visual behavior should be 

used to determine which part of the video source is more important than the others. 

However, human visual behavior is very difficult to model mathematically. Therefore, 

most published video rate control algorithms use some artificial distortion measures 

such as mean-square-error (MSE) or mean-absolute-error (MAE) instead. 

The organization of this chapter is as follows. In section 2.1, we will first list 

some conventional video rate control algorithms which do not take into account 

human perceptual model. Section 2.2 investigates some published studies on human 

visual behaviors. In particular, we will focus on the contrast sensitivity function and 

the luminance masking effect since these features will be used in our proposed 

method. In section 2.3 we will take a look at several approaches, including, 

macroblock classification using edge detection information [4], the foveated approach 

by Lee et al.[20] and the visual distortion sensitivity index (VDSI) approach by C.W. 

Tang et al. [6]. 

2.1. Rate Control Algorithms without Perceptual Models 

Different video codecs and video sequences have different Rate-Distortion (R-D) 

characteristics called R-D functions. At the core of any rate control algorithm is a 

parameterized R-D model that can be used to approximate the R-D function of the 
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target sequence by solving model parameters. Rate control algorithm describes the 

tradeoff between video quality and bit rate constraint. Different bit allocation 

algorithms are designed based on different R-D models. The distortion resulting from 

a lossy encoding process is related to the quantization parameter (QP) used during the 

quantization stage. In fact, the main purpose of establishing the R-D model and 

solving for the R-D function is to find the proper QP for each coding unit so that the 

smallest distortion given a rate constraint can be achieved. For example, the R-D 

model in MPEG-2 TM5 [16] is a simple linear function of rate and QP while in 

MPEG-4 Annex L [18], a more accurate second-order R-D model is proposed [17] . 

In both the TM5 and the MPEG-4 Annex L methods, QP is considered a linear 

function of distortion. Although this simplifies the problem, it is nevertheless not 

accurate. In [19], Z. He and S. Mitra propose a linear model based on the percentage 

of zero coefficients in the quantized video data. They proposed the rate distortion 

function in ρ domain instead of the traditional quantization-step-size domain. It is 

shown that it is a linear relationship between coding bitrate and the percentage of 

zeros among the quantized DCT transform coefficients, denoted by ρ. The relation 

between quantization step size and ρ is a one-to-one mapping, and the mapping can be 

computed from the distribution of the transform coefficient. Therefore, as long as ρ is 

determined by the rate-ρ function, quantization parameter is designed by table look-up 

and bi-linear interpolation. Experiments show that this method is more accurate in 

matching the target bitrate. However, it does not take into account visual quality.  

 

2.2. Properties of Human Visual Systems 

Since in most applications of video compression, human eyes are the final judge 
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of video quality, a video codec should take into account perceptual characteristics of 

the video data like audio codecs do [28]. Notice that Human Visual System (HVS) 

has many resolution limits, so one of the main objectives in design compression 

scheme is to represent the information that HVS can detect. Many experiments have 

been conducted to help understanding of HVS [1][7][34] , but it is very hard to 

develop a complete computational model for HVS due to its complexity. However, 

through the experiments, researchers analyzed many properties of HVS, such as the 

visibility threshold, and try to derive a generalized computational model for it. The 

visibility threshold, which is defined as the magnitude of the stimulus when it 

becomes just visible or just invisible, is an important feature for video coding. 

2.2.1. Contrast Sensitivity Function 

Contrast Sensitivity function (CSF) is an important issue of HVS-modeling. One 

of the many limits of eyes is that the visual system can not recognize the stimuli 

pattern when the frequency of stimuli is too high. This is due to the limited number of 

photoreceptors in human eyes [8]. The sensitivity of the eyes depends on the spatial 

frequency of luminance variations. This phenomenon can be characterized by the CSF. 

Many researchers proposed various forms of CSF [1][2][23]. Because CSF is a 

bandpass filter, many of the proposed function are composed of a high-frequency lobe 

minus a low-frequency lobe [9]. 

Mannos and Sakrison [1] proposed a computational CSF model and took the lead 

to introduce it as a distortion measure for image. Many later perceptual based coding 

researches adopt and modify this model [3][10] . The Mannos-Sakrison CSF model 

can be constructed through the following steps. First, it normalizes all luminance 

value by L/Lm, where Lm is the mean luminance, and considers the nonlinearity in 

perception by taking the cubic root of the normalized luminance. This step is used to 
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model the property that eyes are more sensitive to small variation in dark background 

than in light ones. Second, frequency domain image f(u,v) is computed by Fourier 

transform of the result image in first step. Third, (u,v) is the direction in the frequency 

domain and expressed in terms of cycles/degree based on the viewing distance of 36 

inch, which is applied empirically for establishing Mannos-Sakrison CSF model as 

follows: 

22),(: vuvurfrequencySpatial +=  

MS_CSF(r)= 2.6*[0.0192+0.144r]exp[-(0.144r)1.1] 

(1)  

 

The Mannos-Sakrison CSF described above is a single channel model. Some 

researchers propose more complex model with multiple spatial frequency channel [2]. 

The multiple channel model compute channel output based on spatial frequency, 

spatial position, and orientation. These models are computationally very complex.  

2.2.2. Luminance masking 

The visual threshold of HVS has a strong dependence on the neighboring 

background luminance. The sensitivity which depends on the local mean luminance is 

called “light adaptation” or “luminance masking”. It is related to the well-known HVS 

property, Weber’s law. According to Weber’s law, the ratio of just visible luminance 

difference (∆L) to surrounding luminance (LB) is approximately constant from 

medium to high luminance value [10][11] . This property describes that the visual 

perception is more sensitive to the contrast luminance then the absolute luminance. 

However, the Weber fraction (∆L/ LB) starts to increase nonlinearly with decreasing 

LB in low luminance. In practical description, the noise in very dark area tends to be 
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less visible then that in medium luminance region.  

Many studies have proposed perceptual model based on luminance masking. In 

[13], Safranek and Johnston performed some experiments and found the curve of 

sensitivity for varying background grey levels. CH Chou and YC Li [14] proposed a 

formula to fit the experimental results in [13]. The relationship corresponds to high 

luminance is modeled by linear function. This linear model matches the experimental 

results that the Weber fraction is constant from medium to high luminance value. Low 

background luminance (below 128) is modeled by root equation, which matches the 

experimental results that the Weber fraction starts to increase nonlinearly in low 

luminance.  

2.3. Perceptual Based Bit Allocation for Video Coding 

The bit allocation algorithm is used to arrange the distribution of target bits to 

minimize the distortion. In general bit allocation algorithms, quantization level of 

coding unit is computed based on the coding complexity [17], which is often 

approximated by mean absolute different (MAD). Several perceptual bit allocation 

models for video coding have been proposed in the literature. In [4], Tao presents a 

macroblock-level bit allocation algorithm based on the theoretical rate-distortion 

function for a Gaussian random variable with squared error distortion. A region 

classification scheme is included in the algorithm, which classify each macroblock 

into a perceptual class. Each class characterized by human visual perception has 

different visual importance. The classification classifies a macroblock into one of six 

perceptual classes, in descending order of noise sensitivity: (1) edge; (2) uniform with 

moderate; (3) uniform with either high or low intensity; (4) moderately busy; (5) busy; 

and (6) very busy. They classify a macroblock (MB) by performing Sobel edge 
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detection and computing the average of the variances of the four blocks in the MB. 

    The human retina possesses a non-uniform spatial distribution of 

photoreceptors, hence the detectable local visual frequency bandwidth falls away 

from fovea. For this reason, Lee et al. [20] proposed the rate control algorithm for 

foveated video compression. Foveated image is created based on fixation point, which 

intersects the visual axis. The position of fixation point is determined in real-time by 

eye tracker. Foveated image is estimated the image formed on the human eye, and it is 

created by removing the undetectable high visual frequency based on the distance to 

the foveated point. In creating foveated image, the original image is transformed to 

curvilinear domain, where the size of the partial image is in inverse ratio with the 

distance to foveated point. The bit allocation algorithm is preformed in curvilinear 

coordinate. The number of target bits can be equally allocated into each unit region in 

the transformed image. Thus, the target bits are nonuniformly allocated in the 

foveated image in Cartesian coordinate. 

In [5][6], Visual Distortion Sensitivity (VDS) is evaluated for bit-allocation. The 

proposed psychovisual model combines the motion attention model and the 

texture-structure model based on two types of edge detectors. The presented technique 

allocates fewer bits to regions allowing higher perceptual distortion. 

2.4. Shortcomings of Current Work 

The video coding techniques making use of human attention is designed based 

on the assumption that people often pay more attention to some specific visual object 

when viewing a video sequence. However, the areas which will attract one’s attention 

depend on personal experiences and differ from person to person. Therefore, it is not 

reasonable to artificially divide the video data into “foreground” and “background.” 
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As for foveated video compression, it is only suitable for real-time encoding and has 

to rely on extra instrument to track the position of visual fixation. Furthermore, most 

existing HVS-based video coding methods only apply very general concept of HVS 

properties without vast psychovisual experiments to back up the design. 

Although, outside video coding domain, there are a lot of visual models derived 

from experiments in well-controlled conditions. These visual models are not 

specifically tuned for video coding applications. They have to be slightly modified in 

order to work for video coding. 
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3. Study and Analysis of Rate Control Theories 

 

The goal of this thesis is to design a video rate control model based on visual 

behavior. Rate control algorithm allocates target bits for each coding unit and adjusts 

coding parameters to achieve the target bitrate and minimize the overall distortion of 

the entire sequence. First of all, before we design a perceptual model-based rate 

control algorithm, we must study the theory behind rate control algorithms. Existing 

rate control models are mostly derived from various R-D functions in information 

theory [36]. Secondly, to design a visual based coding system, it is important to 

understand the human visual system properties. Finally, since the goal of a rate 

control algorithm is to achieve better visual quality, it is essential to find a measure for 

quality assessment that is consistent with human perception. 

In section 3.1, the prevalent block-based hybrid motion compensation/transform 

video encoding model is first introduced. In section 3.2, the concept of rate distortion 

theory and the application of the theory in source coding are described. Section 3.3 

presents the reference implementation of  rate control for H.264/AVC. In section 3.4, 

Contrast Sensitivity Function, which is a crucial HVS property, is analyzed. Finally, a 

perceptual model-based objective video quality measure is investigated in section 3.5. 

 

3.1. Hybrid Motion compensation/DCT Video Coding Model 

An important feature of a video sequence is that neighboring regions across 

successive frames tend to be highly correlated. Similarly, neighboring pixels within a 

video frame are highly correlated too. Each frame of a video sequence can be encoded 
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individually by using an image encoder (similar to a JPEG encoder), and it is called 

intra frame coding. However, video compression can achieve better performance if 

spatio-temporal redundancy in a video sequence is first eliminated. A general 

framework for hybrid motion compensation/DCT video coding scheme is shown in 

Figure 1 

+ DCT Entropy

 

Figure 1.  Encoding process 

The first step is motion-compensated prediction. A current encoding block is 

compared with surrounding region of the previous reconstructed frame. The goal of 

this process is to find the best match region that most similar to the current block. 

Then the residual data is computed by subtracting the matching block, witch is also 

called reference block, from the current block. Accordingly, this process achieves 

exploiting the temporal redundancy. 

The transform coding transforms the (residual) image from spatial domain into 

another domain in order to be more adaptable to compression. After performing DCT 

transform, the energy of image is concentrated into few critical coefficients, and other 

Motion 
Estimation 

Current block 

Motion 
Compensation 

Quantization 
- Transform Coding

Bitstream 

Reference Frames 

 22



coefficients with small value may be discarded without losing much accuracy. The 

transform stage does not achieve compression, but it separates the input data into 

different level in importance. Quantization is the step reducing the precision of 

coefficients in order to remove the less important transformed data and retain the 

important information. The DCT coefficient divides by quantization step size in 

implementation. The quantization step size is nearly the main parameter to control the 

compression ratio and quality in video codec. Entropy coding is a lossless 

compression scheme based on statistical properties of information to be encoded. The 

concept of entropy coding is to encode the most frequently occurring patterns with the 

least number of bits. 

In video coding standard, there are three main types of encoding frame: I-frames, 

P-frame, and B-frame. I-frame is intra-coded without any motion compensated 

prediction. P-frame is inter-coded using previous frames as a reference for motion 

compensated prediction. B-frame is inter-coded using motion compensated prediction 

from two reference frames which temporally located before and after the current 

frame. Only I-frame and P-frame can be used as reference frames. I-frame is useful in 

re-synchronization, since it can be decoded independently without any reference. 

P-frame and B-frame provide better compression efficiency due to motion 

compensated prediction. 

 

3.2. Rate Distortion Theory 

The key mathematical formulation of lossy data compression is the rate 

distortion theory, which finds its root in information theory. Simply put, “rate” is the 

number of bits used to represent the input data, and “distortion” is the differences 
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between the input data and coded output signal. The problem is often formulated 

using a general communication system model, in which the source encoded by the 

source encoder and the channel encoder is transmitted through the channel to the 

receiver. The transmitted data is then decoded by the channel decoder and the source 

decoder, and reconstructed at the receiver. For a specific source, the Rate-Distortion 

(R-D) theory addresses the theoretical minimum bitrate R for a given distortion D.  

 

3.2.1. Rate Distortion Function  

The concept of rate distortion theory was first published by Shannon in 1948 

[36], but until 1959 Shannon fully developed the fundamental theory for the rate 

distortion function of a source with fidelity criterion. In Shannon’s theory, the source 

symbols are given by the random sequence U with distribution {P(u), u∈U}, and the 

reconstructed symbols are given by the random sequence V with distribution {P(v), 

v∈V}. Shannon average mutual information expressed via entropy： 

)|()();( UVEVEUVI −=  

dxxpxpxE )(log)()(
∞

=
(2) 

2∫ ∞−
 

 

where E(x) is the entropy of signal x. The conditional entropy E(U|V) represents 

the amount of missing information in the reconstructed signal. The mutual 

information between event V and U denoted by I(V;U) is the information provided 

about the event V by the occurrence of event U. For example, if the process of 

communication does not bring in any distortion and the reconstructed data is identical 

to the original data, then E(V|U) = 0, which means that V is ascertained giving input 

data U, and I(V;U) = E(V) = E(U).  
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The rate distortion function R(D) specifies the lower bound of the transmission 

bitrate for a given distortion D. The minimization is conducted for all possible 

mapping Q that satisfies the distortion constraint.  

{ })(min)(
)(:

QIDR
DQDistortionQ ≤

= . (3)  

The mutual information is considered as the rate in the rate distortion function. As the 

equation suggests, the mapping Q include the input sequence U and the reconstructed 

sequence V, and the computation of this function requires PDF P(U) of the input 

signal and the conditional PDF P(U|V) that minimizes rate for the given distortion D. 

Because the exact solution of this minimization problem is difficult to compute, there 

are many upper and lower bounds of this function based on different constraints [37], 

including the well-known “Shannon Lower Bound”, which is derived for a source U 

and the difference distortion measure d(u, v). 

)),(()()()( VUdEUEDRDR LB −=≥  (4)  

By using the basic form with different distortion measures, it is easy to obtain two 

spatial cases. The first case uses the square error function as the distortion criterion, as 

follows. 

D(u, v) = (u – v)2 

)2(log
2

)()()( 2 eDUEDRDR LB π−=≥
1

(5) 
 

 

The second case uses the absolute error (i.e. the magnitude of errors) as the distortion 

criterion as follows. 
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D(u, v) = |u – v| 

)2(log)()()( 2 eDUEDRDR LB −=≥
(6) 

 

 

 

3.2.2. Rate Distortion Function for Gaussian Source 

As mentioned in section 2.1, R-D functions depend on both the codec and the 

video source, therefore, we must define a source model before we a discuss the R-D 

model for a video codec. The most well-known and commonly used source model is 

the memoryless Gaussian source. Memoryless source means that the signal is 

uncorrelated and independent. Assuming the source model is Gaussian distribution 

with variance σ2 and arbitrary mean µ, and the square error distortion measure is used 

the probability density function is 

22 2/)(

22
1)( σµ

πσ
−−= xexP . (7)  

The entropy of the source signal with Gaussian distribution is 

2
2 2log

2
1)( σπepE = . (8)  

From (7) and (8) [32], we have 
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In order to make sure that the rate R is nonnegative, the equation can be written as 

⎪⎩

⎪
⎨
⎧

≥

≤≤=

=

2

2
2

2

2

2

,0

0,log
2
1

)0,log
2
1max()(

σ

σσ

σ

D

D
D

D
DRLB

. (10)  

 

In this section, we introduced the general R-D function based on the square error 

distortion measure. The R-D model can be extended by the framework with different 

distortion measures or by content probability density function. 

 

3.3. Rate control in H.264 

Rate control algorithm allocates target bits for each coding unit and adjusts 

coding parameters to achieve the target bitrate. Block-based video coding schemes 

such as MPEG and H.26x controls the fineness of the encoded data and degree of 

entropy reduction by quantization step. The quantization parameter (QP) regulates 

how detailed the data is to be encoded. For a specific coding unit, when QP is small, 

the detail of this region is retained and the amount of used bits is large. As QP 

becomes large, the encoded data loss its precision and the amount of used bits is 

decreased. The rate control schemes depend on QP adjustment to satisfy the available 

bandwidth provided by the channel. A different way of describing the rate control 

process is called the bit allocation process since the finer the quantization step size is, 

the more bits will be allocated to the coding unit. In H.264, the bit allocation process 

consists of three different levels. That is, the group of picture (GOP) level, the picture 

level, and the optional basis unit level. 
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3.3.1. GOP Level Rate Control 

In GOP level, rate control computes the total number of remaining bits for the 

rest of the picture in this GOP and determines the initial QP of the first stored picture 

(I-frame or P-frame). 

Eq. (11) calculates the bits for the pictures after the jth picture (including No. j) 

in the ith GOP. The computation depends on instant available bit rate R, predefined 

frame rate f, the occupancy BV of the virtual buffer and the actual bits b used in the 

previously encoded picture. 
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The occupancy of the virtual buffer is update after encoding one picture as 

shown in Eq. (12). 
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For the first picture (j = 1) in a GOP, it first computes the approximate available 

bits by multiplication of the number of pictures Ni in the ith GOP and the average 

number of bits per frame, and then minus the occupancy BV of the virtual buffer to 

prevent buffer overflow. For the other pictures, it uses previously computed result of 

total target bits minus the actual bits used for the previously coded picture, and if the 

available bitrate varies, the function adjusts the average number of bits per frame. 
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The initial QP of the first GOP is predefined by the users. The I-frame and the 

first P-frame of first GOP are coded by a predefined quantization parameter QPinitial. 

QPinitial should be selected based on the available channel bandwidth and frame rate. 

The computation of initial QP of other GOPs must follow the constraint that the 

difference of first two quantization parameters of two consecutive GOPs is limited as 

in Eq. (13), 
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where SumQPi-1 is the sum of average quantization parameters of the stored pictures 

in the previous GOP, and NStoredi-1 is the total number of stored picture in the 

previous GOP. It computes the overall average quantization parameter of previous 

GOP in order to adjust current QP. 

3.3.2. Picture Level Rate Control 

In picture level (or called frame level) rate control, its contain three steps, which 

are determining target bits for each frame, computing the corresponding quantization 

parameter before encoding, and update parameters of rate distortion model after 

encoding one picture. 

The first step is to determine the target bits for each picture. It has to dominate 

the buffer usage by target buffer level and the occupancy of the virtual buffer. If the 

scheme only supports the stored picture, the value of target buffer level is set by Eq. 

(14): 
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The quantization parameter of the first frame in the GOP is determined by the GOP 

level rate control process, and the initial target buffer level BT(i,2) is set to the actual 

buffer occupancy after encoding first frame in the ith GOP. This value of target buffer 

level BT will be compared with the occupancy BV of the virtual buffer in the target 

bits computation. 

)),(),((),(),( jiBVjiBT
f

jiRjiT −×+= γ . (15)  

If the actual buffer occupancy is higher than the target buffer level, it may cause 

buffer overflow, then this function will reduce the target bits to match channel 

bandwidth. On the contrast, if the actual buffer occupancy is lower than the target 

buffer level, it may cause buffer underflow, and the solution is to increase the target 

bits. γ in (15) is constant and its typical value is 0.5. 

The second Step is to compute the quantization parameter and perform the rate 

distortion model. The quantization step corresponding to the target bits is by 

computing the scalable quadratic distortion model proposed in [17]. The quadratic 

function is derived from the theoretical rate distortion model for Laplacian distributed 

source with the magnitude error distortion measure. 

A source with Laplacian distribution can be modeled by: 
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The magnitude error distortion measure is defined as d(u,v) = |u-v|. Eq. (16) can be 

used to derive a closed form solution of the R-D model: 
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When Eq. (17) is expanded into a Taylor series, we have: 
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(19) 

 

Based oh the above derivation, a quadratic rate distortion model is formulated as Eq. 

(19): 

),(),(),( 2
2

1
1 jiQajiQajiT −− ×+×= .  

In order to allow the R-D model scale with the video contents, the video coding 

complexity such as mean absolute error (MAD) is introduced. The R-D model is used 

to estimate the relation between quantization step and target bits for texture 

information, so the target bits for R-D model computation should not include the bit 

count used for coding the overhead of a frame. 
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where 

T(i,j) 

H(i,j) 

MAD(i,j) 

 

Q(i,j) 

a1, a2 

total number of bits used for coding current picture j in ith GOP; 

number of bits used for coding the overhead of current frame; 

mean absolute error, computed using motion-compensated residual for 

the luminance component; 

quantization level; 

first-order and second-order coefficients. 

For a1 and a2, let Xn×2 = [1, 1/Q(k)] and Yn×1 = [Q(k) × T(k)], where k = 1, 2, …, K, 

and K is the number of selected data samples. After encoding a picture, a1 and a2 are 

updated by Eq. (21): 
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1 . (21)  

    In rate control Eq. (20), the model parameter a1, a2, MAD, and the target bits for 

texture information are given before estimating the quantization stepsize. The actual 

MAD is computed after motion compensation and mode selection. However, to select 

the best mode for a macroblock, the quantization parameter should be determined 

before the rate distortion optimization model performed for mode selection. In this 

condition, H.264 adopts a single-pass rate control algorithm that MAD is predicted by 

a linear model using the actual MAD of the previous stored frame, as follows: 

21 )1,(),( cjiMADcjiMADestimate +−×= . (22)  

This function assumes that successive frames has similar amount of residual. 
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However, this assumption fails at a scene change point. The initial value of c1, c2 are 

set to 1 and 0 respectively. They are updated by a linear regression method after 

encoding each basic unit. 

    The corresponding quantization parameter is determined by the mapping 

between quantization stepsize and quantization parameter. To take quality smoothness 

into consideration, the QP is tuned by Eq. (23): 

)}},(,2)1,(max{,2)1,(min{),( jiQPjiQPjiQPjiQP −−+−= . (23)  

The valid range of QP is 0 to 51. The tuning function restricts that the difference of 

QP of two successive frames has to be less than 2. 

3.3.3. Basic Unit Level Rate Control 

A basic unit is defined to be a group of continuous macroblocks, and the number 

of MBs in a basic unit is assigned by user. If the number of MBs in a basic unit is 

equal to 1, than it becomes a macroblock level rate control. In the H.264 rate control 

scheme, I-frame and B-frame is coded by one QP for entire frame, so the basic level 

rate control is only applied for P-frames. The block diagram of the basic unit level 

rate control is as follows: 
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Figure 2. Rate control flow chart 

Step one allocates target bits to each macroblock according to the coding 

complexity. Tr(i, j) denote the number of remaining bits for the current encoding 

frame, and its initial value is T0(i, j). The bit allocation for the current basic unit is 

computed by Eq. (24). 
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where NBasicU is the number of basic unit in a frame. 
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Step two computes quantization step by the quadratic rate distortion model in Eq. 

(20). Again, there are some constraints for ∆QP in order to ensure the smoothness of 

the visual quality. If it uses up target bits for current frame before it finishes encoding 

all macroblocks, the QP increases for encoding remain MBs. 

 

3.4. Contrast Sensitivity Function Analysis 

The HVS model tries to characterize the low-level processing functions of the 

visual systems, such as the optics, retina and striate cortex. These visual processes 

impose some limit on human visual capabilities. The Contrast Sensitivity Function 

(CSF) describes how sensitive the visual system is to the various frequencies of visual 

stimuli. For example, if the frequency of visual stimuli is too high, human will not be 

able to recognize the stimuli pattern any more. Many researchers proposed different 

forms of contrast sensitivity function [1][2][3][23], which will be investigated in this 

section. 

In Ahumada CSF[23],the images are first converted to contrast images by 

subtracting and then dividing by the mean luminance of the background image. The 

method proposed by Mannos and Sakrison [1] has similar initial step that normalize 

all luminance values by the mean luminance. In HVS, visual sensitivity and 

perception of lightness are nonlinear functions of luminance. The amplitude of 

sensitivity is formulated as a nonlinear function of luminance level. In [1] [23], each 

pixel has global effect in the normalization step by using the mean luminance of the 

image. In Daly’s model[2], each pixel is transformed into a nonlinear-retinal-response 

value by Eq. (25) as follows: 

 35



63.0),(6.12),(
),(),(

jiLjiL
jiLjiLr +

=  (25)  

In the normalization step of Mannos-Sakrison CSF [1], the aspect of the visual 

system’s nonlinearity is characterized by cube root. This is a logical step since the 

eyes are known to be more sensitive to small variation in dark surroundings than in 

light ones. The normalization step in Mannos and Sakrison’s method is defined as 

follows: 
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    Each CSF model has slightly different features to model the sensitivity of human 

eyes to visual inputs of different spatial frequencies. Because the CSF is like a 

bandpass filter, many of the proposed function are composed of a high frequency lobe 

minus a low frequency lobe. Although it is known that the human visual system is not 

isotropic, most methods are simplified for easy implementation by minimizing the 

number of parameters. For this reason, the Mannos-Sakrison CSF and the Ahumada 

CSF are isotropic in frequency domain. Eq. (27) defines the transform from a 

Cartesian coordinate domain to an isotropic coordinate domain: 

22),(),( vurrCSFvuCSF +== . (27) 

(28) 

 

Now, the Mannos-Sakrison CSF is defined in Eq. (28): 

( ) ))144.0(exp(144.00192.06.2)( 1.1rrrCSFMS −+= .  

And Eq. (29) defines the Ahumada CSF: 
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where ac and as are the center and surrounding amplitude parameters, and fc and fs are 

the center and surrounding cutoff frequency. In [23], they set a c =15.5, as/ac = 0.77,  

fc = 20.8, and fc/fs = 5.6. In order to compare the Ahumada CSF with the 

Mannos-Sakrison CSF, we modify the center amplitude ac to 1.176. From the 

following figure, we can conclude that these two CSFs are very similar. 
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Figure 3. The Mannos-Sakarison CSF and the Ahumada CSF 

The Daly CSF is a function of many parameters, including radial spatial 

frequency, orientation, light adaptation level, image size in visual degree, and lens 

accommodation due to distance. Daly’s function is very complicated and Rushmeier 

et al. [3] rewrote a simplified version of Daly CSF which considers the radial spatial 

frequency parameter only. 
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The simplified function is showed as the Daly CSF (limit I) in Figure 4. The Daly 

CSF (limit II) in Figure 4 presents another sensitivity function for different orientation 

in the same viewing distance as Daly CSF (limit I). The figure shows that all the 

functions are close in performing the decreasing sensitivity in high frequency. In the 

next chapter, we will use this characteristics of CSFs to derive an new model for 

video rate control. 
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Figure 4. Comparisons of four different CSFs 

3.5. Perceptual-Based Objective Video Quality Assessment 

The most common objective quality assessment method for image/video is the 

mean square error (MSE) and the peak signal-to-noise ratio (PSNR). These methods 
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are easy to compute and widely used in image/video research. However, the value of 

PSNR does not completely agree with the perceptual quality evaluated by human eyes. 

In order to develop a quality assessment that is consistent with human perception, 

many researchers proposed objective perceptual quality assessment with error 

sensitivity-based model, but most of them include complex computations. 

Z. Wang et al. [24] proposed a measurement of structural distortion called 

structural similarity index (SSIM) to approximate the perceived image distortion. This 

model is based on the observation that the main function of the human visual system 

is to extract structural information, and HVS is highly adapted for this purpose. The 

proposed algorithm evaluates luminance, contrast and structural distortion separately 

first, and then combine these three measurements. Let x and y be two input images for 

evaluation. The luminance, contrast, and structure comparison measures are defined 

as follows: 
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where µx, µy, σx
2, and σy

2 are the sample mean of x, the sample mean of y, the sample 

variance of x, and the sample variance of y, respectively. And σxy is the sample 

covariance of x and y defined as follows: 
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i
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In luminance comparison, the form of µy can be written in the ratio of the mean 

luminance of x to the mean luminance of y and Eq. (31) can be rewritten as Eq. (33). 
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If C1 is small enough, then luminance comparison only relates to the proportion of µy 

to µx . Therefore, this function is consistent with the HVS property that the influence 

of relative luminance change is more major than the absolute luminance change. 

The similarity index measure S(x, y) between x and y is defined in Eq. (34): 
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To prevent unstable results when (µx
2+µy

2) or (σx
2+σy

2) is close to zero, the SSIM is 

modified as follows: 
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C1 and C2 are constants which are set to 6.5 and 58.5, respectively. The range of SSIM 

is between 0 and 1. When input images x and y are identical, SSIM equal to 1. SSIM 

is computed for every pixel by using a sliding window. The window size is suggested 

to be 8×8. The quality of the entire image is the average SSIM of all pixels of the 

image. 

In the following experimental results, we can see the performance of image 

quality assessment using SSIM index compared to that using PSNR. In  Figure 5(b) 

the luminance of entire frame is decreased by four gray levels, and this image looks 

almost the same as the original image Figure 5 (a). The SSIM value of Figure 5(b) is 

0.9994, which means it is very similar to the original one. On the other hand, the 
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PSNR of Figure 5 (b) is only 36.09, which typically means it has noticeable 

distortions (usually, human vision sees distortions if an image has PSNR below 38).  

Figure 5(c) is composed of a JPEG compressed image on the top 1/3 of the image and 

the original image on the bottom 2/3 of the image, and  Figure 5(d) is composed of 

JPEG compressed image in the middle 1/3 and the original image on the rest of the 

image. The distortion of the ‘audience’ area is less visible than the distortion of the 

middle part of this image. It is quite obvious that  Figure 5(c) has better perceptual 

quality than  Figure 5(d). However, the PSNR of Figure 5(c) and (d) are 31.09 and 

34.90, respectively. This clearly shows that PSNR does not conform to human 

perceptual quality. On the other hand, the SSIM are 0.9713 and 0.9651 respectively. 

In this example, SSIM is more consistent with visual quality. 

Figure 6(a) is processed with global contrast suppressed distortion, and Figure 

6(b) is a JPEG compressed image with PSNR 26.12. These two images have similar 

PSNR, but have great differences in visual perception quality. The SSIM index of 

Figure 6(a) and (b) are 0.9997 and 0.8496 respectively. Obviously, SSIM can capture 

the prominent differences between these two kinds of images.  Figure 6(b), (c), (d) 

and Figure 7 (a), (b) are JPEG images with different distortion levels. In Figure 6(b) 

and (c), the distortion, like blocking artifact and ringing artifact, is quite visible and 

the quality of image is poor. But it still can clearly discriminate that (c) has better 

quality than (b). Figure 7(a) has higher PSNR than Figure 6(b), but these two pictures 

are very close to the original image by visual assessment. The results on JPEG images 

are summarized in Table 1, where the increasing magnitudes of SSIM from low 

quality to high quality shows that it is more consistent with the degree of perceptual 

quality assessment. 
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a. Original b. every pixel value minus 4 

PSNR 36.09 
 

SSIM 0.9994 
c. compress top 1/3 d.  compress middle 1/3 

PSNR 31.09 PSNR 34.90 

SSIM 0.9713 SSIM 0.9651 

Figure 5. Comparison between SSIM and PSNR on high quality images 
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a. contrast suppressed b. JPEG  10% 

PSNR 26.09 PSNR 26.12 
SSIM 0.9997 SSIM 0.8496 

c. JPEG  20% d. JPEG  50% 

PSNR 29.11 PSNR 33.28 

SSIM 0.9120 SSIM 0.9581 

Figure 6. Comparison between SSIM and PSNR on distorted images 
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a. JPEG  80% b. JPEG  95% 

PSNR 37.75 PSNR 45.56 
SSIM 0.9811 SSIM 0.9946 

Figure 7. Comparison between SSIM and PSNR on high quality JPEG images 

 

 JPEG 10% JPEG 20% JPEG 50% JPEG 80% JPEG 95% 

PSNR 26.12 29.11 33.28 37.75 45.56 
SSIM 0.8496 0.9120 0.9581 0.9811 0.9946 

difference  
 PSNR 2.990 4.170 4.470 7.810 

SSIM 0.0624 0.0461 0.023 0.0135 

 

 

Table 1. Summary of SSIM and PSNR comparisons on JPEG images 
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4. Proposed Rate Control Framework 

In order to design the perceptual rate control model, we must first design a video 

complexity measure that can capture both the “coding entropy” and the “visual 

entropy” of video data. In another words, the distortion measure of the R-D model of 

a perceptual-based bit allocation algorithm must be based on a visual distortion 

measure. In our design, the video complexity measure is composed of the visual 

complexity term and the coding complexity term. The proposed measure is 

independent to video codec methods and can be used as a drop-in replacement of the 

SAD-based complexity model for any conventional rate control algorithms. 

The organization of this chapter is as follows. First, section 4.1 describes the 

general requirement of a video complexity measure. Then, the visual complexity 

based on human visual system property is derived in section 4.2. Finally, the proposed 

perceptual model-based rate control scheme is presented in section 4.3. 

4.1. Investigation of Video Complexity Measures 

An image or a video frame is a projection of the three-dimensional (3-D) scene 

onto a two-dimensional (2-D) light-sensing surface, such as a photographic film or the 

photoreceptors of a human eye. Each pixel of the image represents the amount of light 

fell on the surface at a particular spatial position and at a particular time. When an 

object moves in the 3-D scene, the position of the object’s 2-D projection on the 

light-sensing surface changes correspondingly. 

In psychological research, it is noted that one of the most important visual cues is 

the pattern of local retinal image velocity [33]. Therefore, the understanding and 

analysis of local motion information is crucial for video processing applications such 
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as video compression. The movement of the projected position of each point can be 

estimated from the spatiotemporal pattern of image brightness. Solving optical flow 

equation is the most commonly used method to estimate the local motion vectors at 

each image point. The optical flow equation assumes that the brightness of a projected 

2-D image point remains constant over time regardless of whether the corresponding 

3-D scene point moves or not [25]. Let the image brightness at the image position   

(x, y) at time t be denoted by I(x, y, t). The brightness of a particular point is constant, 

so that 

0=
dt
dI . (36)  

By Taylor series expansion, Eq. (36) becomes: 
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where ω contains second and higher order terms. By subtracting I(x, y, t) from both 

sides and dividing by ∆t, we have: 
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Taking the limit as ∆t →0, Eq. (38) becomes: 
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dx , (39)  

where yIxI ∂∂∂∂ /,/  are spatial partial derivatives, and tI ∂∂ /  is temporal 

derivation. 
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Usually, we let 

dt
dyv

dt
dxu == , , (40)  

and (u, v) is the called the optical flow of I(x, y, t). 

By our definition, visual complexity of video data represents how easy the HVS 

can discern any distortions in the data. Since local motions in the images is an 

important visual cue, from Eq. (39), we have a conjecture that both spatial partial 

derivatives and temporal partial derivatives of the image intensity function have large 

influence on visual complexity. 

On the other hand, the coding complexity of video data characterize how well the 

prediction, transform, and quantization processes of a video codec can reduce the 

entropy of the data unit to be compressed. Conventional rate control algorithms uses 

SAD or MAD as an estimate of coding complexity. 

Rate control involves adjusting quantization parameter in order to maintain the 

target output bitrate and minimizing overall distortion of the entire sequence. A 

general rate control model for H.264 was described in chapter 3.3. A rate control 

scheme generally includes two steps: (1) allocating target bits for a data unit, (2) using 

a rate-distortion model and given parameters, such as target bits and coding 

complexity to estimate suitable quantization parameter. In the basic unit level rate 

control, the first step (Eq. (24)) is calculated based on the MAD of the residual frame 

as coding complexity. The distribution of bit budget is proportional to the square of 

MAD. In the second step, it has to solve Eq. (20) for QP. Generally specking, the 

estimated QP is in direct proportion to coding complexity (e.g.  MAD). 

Note that the residual frame after motion estimation (ME) can be regarded as the 
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first order approximation of the local temporal derivatives of the video frame alone 

the motion trajectory. In another words, after removal of the “global” motion 

information of a video frame by the ME algorithm, the residual image is equivalent to 

the temporal derivative term in the optical flow equation (Eq. (39)). Since MAD is the 

average of a block of residual pixels, it can be considered as an indication of the 

magnitude of the optical flow (local motion) of the block. However, it does not tell 

you how “random” the local motion is. 

As pointed out in [27], image pixels which can be tracked accurately by the eyes 

can have a stable projection on the retina and are visually more discernable. Therefore, 

a rate control algorithm based on MAD alone does not take into account the crucial 

visual information of local motion randomness. Furthermore, the existing rate control 

models do not consider the influence of spatial derivatives either. Spatial derivatives, 

in addition to being an important visual cue to local motion, are also related to spatial 

frequencies of the texture data. In the next section, we will present how these 

information can be used to construct a visual complexity measure. 

 

4.2. Analysis of Visual Complexity 

In the previous section, we postulate that visual complexity should be a function 

of both spatial partial derivatives and temporal partial derivatives. In this section, we 

will look deeper into spatial derivatives and its connection to the CSFs. Then, a visual 

complexity measure will be derived. 
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4.2.1. Relations between Spatial Derivatives and Filtering 

From the Taylor’s series expansion, the first order derivative of a function f can 

be defined as the forward difference: 

)()1( xfxf
x
f

−+=
∂
∂ . (41)  

The result of this derivative is zero in the flat area and nonzero along the ramp. The 

second order derivative of function f can be defined similarly:  
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The result of this second order derivative is zero in the flat area and along ramps of 

constant slope, and is nonzero at start point and end point of a ramp. Notice that 

taking the image differences enhances discontinuities, such as the edge and the noise, 

and de-emphasizes the flat area with slowly varying gray levels. 

In image processing applications, the isotropic filter (rotationally invariant filter) 

attracts much attention because the response of an isotropic filter is independent of the 

direction of the discontinuities. The simplest isotropic derivative operator is the 

Laplacian operator, which is defined as follows: 
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=∇ . (43)  

Eq. (43) is defined for function f with two parameters. The Laplacian of any order is a 

linear operator. The second order partial derivative in x-direction can be computed by: 

 49



),(2),1(),1(2

2

yxfyxfyxf
x

f
−−++=

∂
∂ . (44)  

Similarly, the second order partial derivative in y-direction is computed by: 
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Equation (43) becomes: 

),(4)1,()1,(),1(),1(2 yxfyxfyxfyxfyxff −−+++−++=∇   

Eq. (46) can be implemented by the convolutional masks in Figure 8. It also can 

incorporate the diagonal direction in the definition of Laplacian function and the mask 

(shown in Figure 8 b). 

 (a)             (b)             (c)             (d) 
Figure 8. Laplacian masks 

The resulting images after applying Laplacian kernels has edge lines and other 

discontinuity like noise point.  

It is well known that Fourier transform takes a function in the time domain into 

the frequency domain. It decomposes a function into harmonics of different 

frequencies. Therefore, there certainly exist a filter in frequency domain 

corresponding to a filter mask in spatial domain. It is generally more intuitive and 

computationally more efficient to perform the filtering in frequency domain. 
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A smoothing spatial filter mask and the filter function are shown in Figure 9. The 

corresponding filter in frequency domain is a lowpass filter. Low frequencies in the 

Fourier transform represents smooth area, while high frequencies in the Fourier 

transform rpresents derail features, such as edge and noise. The mask is the operator 

to compute the spatial derivatives. The corresponding filter in frequency domain is a 

highpess filter. A highpass-filtered image would emphasize detail areas and suppress 

the gray level variation in smooth place. The illustrations in Figure 9 indicate that the 

operations of the small filter mask in spatial domain and the corresponding filter in 

frequency domain are the same. 

 

Figure 9. Filters in different domain [38] 

4.2.2. Spatial Contrast Sensitivity 

Human visual system has different sensitivity to different spatial frequencies, and 

the operation is like a lowpass or slightly bandpass filter. The contrast sensitivity 

function describes the sensitivity of HVS to different frequencies. Based on numerous 

experiments [34], the peak frequency in a CSF is generally between 3 cycles/degree 

and 8 cycles/degree, and the sensitivity in high frequencies data decreases rapidly. 

When a CSF filter is applied to an image, a portion of high frequency information that 
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is not detectable by human visual system would be filtered out. The filtered 

information can be used to estimate the visual complexity of the video data. 

The process of how CSF can be applied to an image is presented in [1]. The first 

step is to normalize all luminance values in the image by the mean luminance. 

Because visual perception of lightness is a nonlinear function of luminance, the cube 

root of the normalized luminance is taken over the entire image. Since a CSF is easier 

to describe in frequency domain, the Fourier transform F(u, v) of the image f is 

computed first. The signals in frequency domain are then filtered by a CSF as follows: 

)),((),(),( vurCSFvuFvuG ⋅= . (47)  

The inverse Fourier transform of G(u, v) is the filtered image. 

In most applications of CSF, it is used for quality assessment by computing the 

difference between the two CSF-filtered input images. For video coding purposes, we 

are more concerned about the amount of data which is filtered out by the CSF. An area 

with lots of filtered data means that there is more visually undetectable information. 

Therefore, the amount of filtered information is estimated by computing the absolute 

difference between images before and after the filtering process. The estimation of 

visual complexity will be incorporated into the rate control of video compression. 

Since the smallest coding unit for rate control is a macroblock, the filtered 

information will be computed on a macroblock basis. MAD is computed to evaluate 

the average amount of the dropped data. The area with more data dropped is less 

important. However, the evaluated result is highly correlated to the original luminance 

and not accurate. Figure 10 illustrates this phenomenon. Figure 10(a) is the original 

frame from the Stefan sequence. Figure 10(b) is the MAD that represents the merged 

information for one macroblock. It is quite obvious that the result is similar to the 
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original mean luminance of Figure 10(a). Figure 10(c) compares the MAD and the 

mean luminance of the original frame. Both data sets are scaled to the range of [0, 1]. 

 

(a) (b) 
 

 

(c) 

Figure 10. CSF filtering of images 

Possible reasons for this phenomenon can be discusses as follows. A CSF is a 

bandpass filter that suppresses certain low and high frequency components in the 
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transform domain. The result of MAD strongly represents the effect caused by low 

frequency domain components of contrast sensitivity filter, and the suppression of 

high frequency components is comparatively vanished. For example, 

Mannos-Sarkrison CSF and Ahumada CSF are set to 0.3 at zero frequency while the 

range of sensitivity is from 0 to 1. These CSFs filter out most information of the mean 

luminance of entire image. Since low frequency components in Fourier transform 

domain is responsible for the general gray-level appearance over smooth areas, the 

attenuation of low frequency by CSF filter causes too much luminance information to 

be removed. Therefore, the difference between images obtained before and after 

applying a CSF filter highly depends on the luminance of the image before filtering.  

Additionally, the decrease in sensitivity at low frequency is slow since imagery 

of test stimuli is not stabilized on the retina [26]. Most experiments only consider 

spatial frequency higher than 1 cycle/degree. A CSF is usually designed to be an 

easily constructed model which is usually a continuous function on [0, ]. However, 

the mathematical model at zero frequency is not applicable. A different aspect of this 

phenomenon can be explained as follows. The lowest frequency in entire image 

should be one cycle per image. For example, if an image subtends a visual angle of V 

degrees, the lowest spatial frequency should be 1/V cycles/degree. This aspect also 

explains why the CSF near zero is not evident. 

∞

In previous research, most visual based video applications which apply contrast 

sensitivity model are quality assessment systems [10][15]. Both reference signal and 

distorted signal pass through CSF filtering stage and other error sensitivity model, and 

then the difference between two signals after processing are measured. Under this 

condition, the effect of CSF in low frequency described above influences two 

comparative signals, and the side effect of CSF filter could be counteract after 
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computing difference between two signals. But in our application, the filtered signal is 

compared with the original signal, so the inaccuracy of mathematical contract 

sensitivity model in low frequency influences significantly.  

 

Due to the above-mentioned analysis, the modified CSF filter would be more 

suitable for visual complexity analysis in video coding. The modified CSF is designed 

in the form of difference of Gaussians which is similar to the Ahumada CSF. Filters 

based on Gaussian function are particularly important because the forward and 

inverse Fourier transforms of Gaussian function are real Gaussian function without 

considering imaginary component. The visual characteristic that contrast sensitivity 

rapidly rolls off at high frequency is verified by nearly every experiments and 

proposed models. The modified CSF mainly adjusts the low-frequency part. The 

modified CSF is  
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The graph in Figure 11 shows a plot of the modified CSF compared with other 

contrast sensitivity functions. The function at frequency larger than 2 cycles/degree is 

similar to other CSFs. The function at low frequency near 0 cycles/degree is adjusted 

for the aforementioned reasons in our applications. 
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Figure 11. Comparisons of the proposed CSF with other CSFs 

 

So far, the proper CSF filter for video coding purposes has been established. The 

next step is to compute the merged block information using the modified CSF. We 

propose a new parameter called distortion tolerance for the rate control model. A large 

value of this parameter means that the corresponding area can tolerate large distortion. 

The amount of undetectable information is estimated by computing the absolute 

difference between images before filtering and after filtering: 
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where P is the size of the macroblock, it is normally set to 16*16, f(x, y) and g(x, y) 

are images before filtering and after filtering in spatial domain, respectively. In order 
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to enhance the difference between the important area and the unimportant area, the 

distortion tolerance would be set only in the MB where the parameter value is higher 

than average, and the parameter of other MB would be set to 0: 
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, 

 

where DT(k) is the distortion tolerance of macroblock k, Q is the number of 

macroblocks, and it is set to 22*18 for CIF sequence. The distortion parameters of one 

frame would be normalized to the range [0, 10]. The result for frame no. 1 of the 

Stefan sequence is showed in Figure 12 

 

Figure 12. result of visual complexity computation 

4.3. Proposed Rate Control Scheme 

In section 2.3, the original rate control in H.264 has been introduced. From Eq. 
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(17) to (20), the R-D function for Laplacian distributed source is expanded into a 

second order Taylor series and than the quadratic R-D formula is enhanced with more 

accuracy by introducing the complexity prediction, mean absolute error. In the 

derivation process, a second degree Taylor expansion of ln(1/αD) about 1 is used to 

approximate the original R-D function. However, the Taylor series only converges in 

a small range while ln(1/αD) is defined for all x > 0. The Taylor series for ln(1/αD) at 

1 is derived in Eq. (51). 
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To find the interval of convergence for this series, we compute Eq. (52): 
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This means that the power series converges absolutely for  
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 (53)  

Test the endpoint x = 0: 
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which is known to diverge. At the endpoint x = 2: 
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which converges. The interval of convergence is therefore (0,2], but the function 

ln(1/αD) is defined for all x > 0. The function ln(1/αD) is compared with the 

second-degree Taylor approximation in Figure 13 

 

 

Figure 13. Graphs of ln(1/αD) and its second-degree Taylor approximation 

 

In the quadratic rate control model (20), there is no limitation for the range of 

ln(1/αD). However, when the point is not in the converging interval, the 

approximation from Taylor series is meaningless, and this condition is illustrated in 

Figure 13 clearly. Therefore, the quadratic rate control model may not be accurate for 

the estimation of the quantization step size. Nevertheless, the buffer control and 
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smoothness constraints can be used to remove outliers of quantization parameters. 

In section 4.2.2, the visual complexity parameter, namely, distortion tolerance, is 

proposed. The original rate control model can be enhanced by introducing this visual 

sensitivity weighting to improve the total visual quality. The visual control is 

performed after the original rate control model. The rate control process is illustrated 

in Figure 14 

2nd-order Compute Variation 
target bits R-D model control 

remain 
Smoothness Visual 

target bits >0 
Constrain 

Increase 

control 

QP 

 

Figure 14. Block diagram of the proposed rate control model 

Because the second order rate control model can not be used alone to estimate 

quantization step size reliably, to modify the target bitrate for each area before R-D 

model stage could not obviously affect the final quantization parameter. For this 

reason, the visual control stage is added after those constraints which are used to 

avoid irrational quantization parameter. The proposed visual control model is as 

follows: 
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where QP(i, j, k) is the estimated quantization parameter after the smoothness 

constraint stage. DTcurrent_mb is the distortion tolerance for current encoding 

macroblock. In computing distortion toleration, the macroblock with high visual 

importance is set to zero, so in the visual control stage the quantization parameters for 

these macroblocks are decreased to achieve better quality. The quantization 

parameters for other macroblocks are increased according to the degree of distortion 

tolerance. 
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5. Experimental Results 

In this section, the performance of the proposed visual complexity computation and 

rate control scheme are investigated using the MPEG test sequences STEFAN, 

FUNFAIR, FOREMAN, and FOOTBALL in CIF resolution. In the following 

experiments, JM 7.6 of H.264 is used. The configuration of the encoder is as follows: 

Main profile with I and P frames is used. One reference frame and all block sizes are 

used in motion estimation. R-D optimization is on. Rate control is enabled. Number of 

macroblocks in basic unit is set to 1 in order to perform the macroblock level rate 

control. 

This chapter is organized as follows. Section 5.1 shows some experimental 

results on the proposed visual complexity measure, namely, the Distortion Tolerance 

Index (TDI). Section 5.2 presents the performance of the proposed bit allocation 

scheme. 

5.1. Results of Visual Complexity 

 Visual complexity provides the perceptual information of video contents. A 

measure called distortion tolerance index (DTI) is proposed in this thesis as an 

indication of how visually sensitive a piece of video content is. The range of DTI is 

normalized to the range 0~10. The larger the value is, the less sensitive human eyes to 

the video data will be. In another words, the quantization distortion occurred in these 

macroblocks is less detectable. The viewing condition for the experiments is a CIF 

sequence displayed in a 3.2 inch×  2.5 inch area on an TFT LCD screen. The viewing 

distance is 25 inches. Thus the video frames have a viewing angle of 7.3°. The 

example for the 1st frame in the video sequence STEFAN was shown in section 
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4.2.2.Figure 15 (b), Figure 16(b), and Figure 17(b) show the distortion tolerance map 

for the video sequence FUNFAIR, FOREMAN, and FOOTBALL respectively.. 

 

  
(a) (b) 

Figure 15. (a)Original 10th frame in Funfair and (b)Distortion tolerance map  

 

  
(a) (b) 

Figure 16. (a)Original 3rd frame in Foreman and (b)Distortion tolerance map  
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(a) (b) 

Figure 17. (a)Original 24th frame in Foreman and (b)Distortion tolerance 
map 

From the examples, one can tell that the distortion tolerance map is consistent 

with human visual perception. In the STEFAN sequence (Figure 12), the distortion in 

the audience region is less detectable by human eyes, and the corresponding DTIs in 

the map are high. The tennis player and the audience area are region with rich edge 

information, but different spatial frequencies of these two areas let that the proposed 

visual complexity measure discriminate the player from the audience. The spatial 

frequencies of the audience area should be very high, and the CSF in this 

high-frequency zone decreases rapidly. In the FOREMAN sequence, the most 

important area is on the man’s face, and the experimental result shows clearly that it 

has low DTI in the face area. The spatial frequencies of the FORMAN sequence is 

comparatively low compared with other sequences. The spatial frequencies of the face 

area might just locate in the most sensitivity zone of the contrast sensitivity function. 

For the FUNFAIR sequence, the bus behind the carousel contains much high 

frequency information, and the analysis of visual complexity shows that the encoder 

could save more bits in that area. Finally, for the FOOTBALL sequence, when 

encoded with low bitrate, it is notable that the distortion in the meadow area is easily 
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observed by human visual system. From these experiments, one can easily see that the 

proposed TDI is consistent with visual behavior. 

5.2. Results of Proposed Bit Allocation Scheme 

 The goal of the proposed scheme is to reach better visual quality under the 

target bitrate constraint. Here, we used SSIM as a measure to evaluate the 

performance of the proposed algorithm. Since most people are not familiar with SSIM, 

it would be helpful to take a look at some examples given in section 3.5 to get a sense 

of what the SSIM numbers mean. One can obtain a feeling about the relation between 

SSIM differences and image quality improvements from Figure 5(c) and Figure 5 (d). 

The best case is Figure 5(c) that the distortion only occur in the audience region 

which is the visually less sensitivity regions. As a contrast, Figure 5(d) is the worse 

case that the location of quality degradation centralizes in the distortion-sensitive 

regions, such as the tennis player and the fence. The SSIM numbers (when compared 

with the original image) of the two cases are 0.9713 and 0.9651, respectively. The 

difference between these two SSIM numbers is about 0.005. This means that the 

increase of SSIM by 0.005 may represent a great improvement in visual quality. 

Figure 18, Figure 19, and Figure 20 show the comparisons of compression 

performance between the original rate control and the proposed rate control for 

different video sequences. In all test cases, the proposed method has better 

performance with higher SSIM and lower bitrate. Moreover, the proposed method 

tends to improvement more visual quality for low bitrate cases, while under 

high-bitrate conditions it tents to reduce the bitrate. This characteristic is consistent 

with the human visual system property that when the visual quality increases above 

some threshold, the improvement of quality is hard to detect by human. Figure 7(a) 
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and Figure 7(b) illustrate this situation clearly. When the initial QP is equal to 22, the 

bitrate reduction is up to 7% for the FOOTBALL sequence and 5% for the STEFAN 

sequence respectively without losing any visual quality (SSIM). For low-bitrate cases, 

the video quality is usually not pleasant. Therefore, the quality improvement has 

precedence over bitrate reduction. When initial QP = 38, visual quality improvement 

is up to 0.005 SSIM for the FUNFAIR sequence and 0.004 SSIM for the STEFAN 

sequence respectively without increasing bitstream size. As mentioned before, 0.005 

increase of SSIM value is considered as very noticeable improvement in visual 

quality.  
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original RC Modified RC Improvement 
Initial 

QP Bitrate 
(kbps) PSNR SSIM Bitrate 

(kbps) PSNR SSIM Saving 
bitrate 

Quality  
(SSIM*103) 

22 3673 40.53 0.9877 3507 39.42 0.9877 5% - 

28 1442 35.05 0.9741 1420 34.51 0.9744 2% 0.3 

32 1037 33.62 0.9660 1019 33.18 0.9671 2% 1.1 

38 533 30.34 0.9363 530 30.17 0.9404 1% 4.1 
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Figure 18. SSIM performance comparison of STEFAN 
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original RC Modified RC Improvement 
Initial 

QP Bitrate 
(kbps) PSNR SSIM Bitrate 

(kbps) PSNR SSIM Saving 
bitrate 

Quality  
(SSIM*103) 

22 4281 39.12 0.9794 4174 38.81 0.9802 3% 0.8 

28 2477 35.08 0.9557 2408 34.65 0.9579 3% 2.2 

32 1434 31.47 0.9109 1415 31.22 0.9144 2% 3.5 

38 754 28.04 0.8310 750 27.86 0.8363 1% 5.3 
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Figure 19. SSIM performance comparison of FUNFAIR 
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original RC Modified RC Improvement 
Initial 

QP Bitrate 
(kbps) PSNR SSIM Bitrate 

(kbps) PSNR SSIM Saving 
bitrate 

Quality  
(SSIM*103) 

22 4108 39.38 0.9767 3828 38.90 0.9777 7% 1.0 

28 2233 35.18 0.9443 2163 34.83 0.9469 3% 2.6 

32 1400 32.26 0.8974 1377 31.95 0.9000 2% 2.6 

38 658 28.32 0.7796 646 28.01 0.7823 1% 2.7 
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Figure 20. SSIM performance comparison of FOOTBALL 
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6. Conclusion and Future Work 

 In this thesis, we proposed a video coder bit allocation scheme based on human 

visual perception model. A visual complexity measure is introduced into the proposed 

rate control algorithm. A modified contrast sensitivity function, which is suitable for 

visual complexity estimation, is designed based on the visual model research. By 

applying this proposed visual complexity measure, one can obtain a visual complexity 

map which represents the visual distortion sensitivity of each macroblock. 

Experiments show that the result of our distortion sensitivity analysis is quite 

consistent with human vision systems for all the test sequences used. 

The visual analysis directs the rate control algorithm to assign more bits to the 

regions with higher visual importance, and fewer bits to the regions that can tolerate 

larger distortion. The coding performance of the proposed method is compared with 

the H.264 JM7.6 encoder with the reference rate control algorithm. Since PSNR does 

not completely agree with the perceptual quality evaluated by human eyes, we use 

SSIM to access the quality in our experiments. The proposed method has the better 

performance with higher SSIM numbers and lower bitrate in all test cases. Moreover, 

the proposed method in low target bitrate cases tends to improvement visual quality 

more, while in high-bitrate conditions it tents to reduce the bitrate. This characteristic 

is consistent with human visual system property. 

Although the proposed bit allocation algorithm performs well, there are still 

some room for further improvements. For example, the quadratic rate-distortion 

model sometimes is not accurate in estimating the quantization step size. That is, the 

actual bitrate does not match the target bitrate by applying the estimated QP. A flaw in 

the derivation of the quadratic rate control function was pointed out in this thesis. An 
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area of future research that should be considered is to develop a more reliable 

rate-distortion function. 

In our method, contrast sensitivity function is introduced into the analysis of 

visual complexity. Contrast sensitivity is an important feature of human vision 

systems, but there are still some other visual models, such as luminance masking, that 

can be used for video content analysis. The luminance masking effects says that visual 

threshold of HVS has a strong dependence on the surrounding background luminance. 

Therefore, the sensitivity of noise of a video region should also take into account its 

surrounding luminance levels. Another important visual cue is related to the 

tractability of a moving object by human eye movement. This visual cure may be 

computed from optical flow information. An area with randomly-oriented motions 

might not be tracked easily. On the contrary, an area with consistent motions might be 

more tractable and are more sensitive to distortion. 

Even though we have used SSIM for objective visual quality assessment in this 

thesis, it might not be perfect. ITU-T Video Quality Expert Group (VQEG) has 

conducted a call-for-proposal for an objective measure that can closely resemble the 

HVS. However, none of the proposal is distinctly better than the others [35]. Simply 

put, designing a good objective visual quality is still an open problem. The analysis 

between the video content and human visual system response initiated in this thesis 

might provide some useful information to develop a more practical objective measure. 

In summary, future improvements can be expected with these efforts. 
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