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ABSTRACT 
  In this thesis, we develop a method to apply formal verification of Temporal Logic onto an 

autonomous robot system controlled by Rodney Brooks’ Augmented Finite State Machine 

model. 

  This method uses some approaches to reduce the complexity of an AFSM-based reactive 

robot control system (RRCS), so that verification of AFSM-based RRCS can become 

applicable. These approaches applied onto verification include ： (1) State Space 

Discretization──It is not feasible to verify a system on continuous space-time domain. 

Therefore, before constructing an AFSM-based RRCS we must transform the system and 

environment from continuous space domain to discrete space domain. (2) External 

function──By exporting internal states and kinematic computation of the robot from the 

model checker using the external function provided by OMocha temporal logic model checker. 

(3) Elimination of some checking cases──Based on the properties we want to check, we can 

eliminate some unnecessary checking cases which will never violate the properties. 

  After using above-mentioned approaches, the results show that the number of all reachable 

states checked by OMocha and checking time improve greatly.  

  In this thesis, we reach some accomplishments listed below： 

(1) Check the Behaviors of the AFSM-based RRCS by Model Checker──After constructing 

the AFSM-based RRCS, we describe the “No Collision” property by Temporal Logic, and 

prove that the robot controlled by the RRCS will never collide with obstacles in 
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two-dimensional environment.    

(2) Improve the Performance of Checking Procedure──After reducing the checking time by 

the three approaches, the best results show that the checking procedure can be completed in 

reasonable time. 

According to the accomplishments, we can prove that it’s applicable to apply verification 

onto an AFSM-based RRCS. 
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以 AFSM 為基礎的感測/驅動控制混合程式驗証 

 

學生：龔哲正                             指導教授：邵家健 

 

國立交通大學資訊科學與工程研究所 碩士班 

 

摘 要 

  在這篇論文中，我們發展一個方式將時序邏輯正規驗證法，應用在由 Rodney Brooks

所提出的增強化有限態機器(AFSM)所控制的自主性機器人上。 

  在這個方式中，我們使用了一些方法去簡化以 AFSM 為基礎的感應式機器控制系統

(RRCS)的複雜度，讓以 AFSM 為基礎的 RRCS 之驗證能夠有可行性。這些被應用在驗證上

的方法包括有：(1)狀態空間離散化──驗證一個在連續定義域上的系統是不可行的。

因此，在建構一個以 AFSM 為基礎的 RRCS 之前，我們必須將系統及環境從連續定義域轉

換到分散定義域。(2)外部函數──藉由 OMocha 所提供的外部函數，將系統中的內部狀

態及運動學上的計算從驗證器中輸出至外部函數。(3) 去除掉不必要的檢驗部分──根

據我們所要檢驗的行為特性，我們能夠將必定不會違背此特性的一些檢驗部分去除掉。 

  在運用了上述的這些方法後，結果中顯示，被 OMocha 檢驗的全部可到達狀態數目及

檢驗時間都改善了很多。 

  在這篇論文中，我們將達成的一些成果列在下面： 

(1)用檢驗器檢驗以AFSM為基礎的RRCS之行為特性──在建構起以AFSM為基礎的RRCS

後，我們用時序邏輯來描述＂No_Collision＂這個特性，並且證明了被此 RRCS 控制的

機器人在二維空間中將永遠不會碰到障礙物。 

(2)改善檢驗程序的效率──在藉由三個方法來縮短檢驗時間後，最佳的結果中顯示檢

驗程序能夠在合理的時間內被完成。 
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  根據這些成果，我們能夠證明將正規驗證應用在以 AFSM 為基礎的 RRCS 是可行的。 
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Chapter 1  
Introduction 
1.1 Project Objective 

  How to write modular reusable programs has always been a major challenge to the 

developers of autonomous robots. Rodney Brooks of MIT proposed a new approach, called 

Augmented Finite State Machines (AFSM) [1], to program reactive robot control systems 

(RRCS). The AFSM approach allowed robot programmers to create program modules that 

control robot behaviors and develop complex robot behaviors by the composition of these 

AFSM modules. 

  The purpose of this work is to explore the possibility of using formal verification technique  

to verify certain properties of the behaviors of AFSM controlled robots. Such a verification 

technique will enable robot programmers to test or “debug” their programs before using them 

to actually control the robots. The difficulty of this attempt of formal verification lies with the 

fact that robot motions are carried out continuously on space and time whereas formal 

verification can only be applied onto systems with limited number of discrete states. 

Therefore, the challenge is to properly discretize and reduce the number of states of a robot 

system so that formal verification can become applicable.  

1.2 Project Approach 

  We explore ways to apply formal verification onto AFSM programs by experimenting with 

following approaches/methods. 

(A) State Space Discretization 

  To verify a system on continuous domain is not applicable. Therefore, before constructing 

an AFSM-based RRCS we must transform the system and environment from continuous 

domain to discrete domain. In discretization procedure, there are two parts. (1) Time 
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Discretization, and (2) Space Discretization. After discretization, the number of states of the 

system will reduce from infinite to finite so that formal verification can become more 

applicable.  

(B) Using external function to reduce number of states checked by model checker 

  External functions are written by high-level language(e.g. C language). For following 

reasons, we can use external function to reduce number of states checked by model checker. 

(1) During verification procedure, there are some system variables which are irrelevant to 

behavior verification. Therefore, we can export these variables through external function in 

order to reduce the number of states checked by model checker, so that the unnecessary 

loading for model checker will reduce. (2) In a system, some complex computation can’t be 

handled by model checker, because the purpose of model checker is for verification but not 

suitable for handling complex computation. Therefore, we must export these complex 

computations through external function.  

(C) Eliminate unnecessary checking cases 

  Based on the properties we want to check, we can eliminate some unnecessary checking 

cases, because this part of verification procedure will never violate the properties. The 

overhead of this approach is that we must analyze the behaviors of the system in advance, 

otherwise, we can’t decide which part of verification procedure can be eliminated. 

  After applying above-mentioned approaches, we hope that formal verification will become 

applicable for a system on continuous domain originally.  

1.3   Outline of Thesis 

  The rest of this thesis is organized as follows. In Chapter 2, we explain the AFSM-based 

RRCS and Roving Robot Collision Avoidance Experiment. In Chapter 3, we introduce the 

concepts of model checking for AFSM-based RRCS. In Chapter 4, we propose the approaches 
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of model checking for AFSM-based RRCS. In Chapter 5, the implementation of roving robot 

collision avoidance experiment is described in detail. In Chapter 6, we show the results of 

properties checking of the experiment, and analysis the results. The conclusion and future 

work are in Chapter 7. 
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Chapter 2 
AFSM-based RRCS and Roving Robot 
Collision Avoidance Experiment 
2.1 Augmented Finite State Machine (AFSM) 

  The chart of a modularized AFSM module is shown as Fig. 2-1. There are some states and 

variables in a module. State transitions are determined according to transition functions 

between states. These transition functions don’t only take current state and inputs as 

parameters, but internal variables. The inputs come from other modularized AFSM modules; 

The outputs of state transition are sent to other modularized AFSM modules. Transition 

function of AFSM module is illustrated with Fig. 2-2. 

STATE1

STATE4

STATE3

STATE2

Internal variables

Inputs Outputs

 
       Fig. 2-1  Modularized AFSM module 

 
Fig. 2-2  Transition function of AFSM module 

2.1.1 Why AFSM? 

2.1.1.1 Simple Procedure for Decomposing and Combining 

  Rodney Brooks thinks that control mechanism of robot resembles animals: A RRCS can be 

decomposed into some independent components which has independent abilities. These 
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independent components composed of modularized AFSM modules interact with each other, 

and therefore make up complete abilities for the RRCS. We’ll call these independent 

components AFSM component . 

Take human beings for example, the brain, hands, legs, and body are independent 

components. Each component is composed of some parts. For instance, a hand is composed of 

the skin, muscle, and bones. If we want to construct a human being by the concept of 

AFSM-based RRCS, the hand will be counted in an AFSM component, and the skin, muscle, 

and bones will be counted in modularized AFSM modules. 

         Because each AFSM module is a simple FSM, it can be handled by human being’s 

capability. The simple procedure for decomposing and combining is one of the reasons why 

we construct a RRCS with AFSM modules. After constructing some modularized AFSM 

modules, these AFSM modules could connect with each other, and then they will become an 

independent AFSM component. Finally, a complete RRCS is constructed with some AFSM 

components. The structure of AFSM component is illustrated with Fig. 2-3. 

 
              Fig. 2-3  Independent AFSM component 

2.1.1.2 Time Discretization  

We had explained the purpose of discretization in 1.2, the first step of discretization 

procedure is Time Discretization. In AFSM, time interval between current state and next state 

is a time unit (T). Therefore, the time of a system is discretized to 1T, 2T, 3T….nT. The event 
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which occurs at continuous time will be shifted to the closest discrete time point. 

2.2 Roving Robot Collision Avoidance Experiment  
  After explaining the concept of AFSM, we will introduce the AFSM-based roving robot 
collision avoidance experiment [1] in detail.  

The experiment had been simulated in [1]. In this work, we want to rebuild it, and check 

the properties of the behaviors of the AFSM-based RRCS. The implementation of the 

experiment will be discussed later in Chapter 5. 

2.2.1 Experiment Overview 

   

   Fig. 2-4  The chart of the experiment 

  In the experiment, the robot is placed on a two-dimensional environment. The robot has 

some sonar sensors for detecting the environment, and has a motor for generating force to 

change its velocity. The motor can generate a force which has 8 kinds of directions, and make 

the robot move towards 8 kinds of directions which are {U,D,L,R,LU,LD,RU,RD}. The robot 

is controlled by AFSM-based RRCS, the RRCS monitors the information detected by sonar 

sensors and then decides to issue what command to motor for changing the robot’s velocity.            

  Whenever the location of robot changes, sonar sensors will detect the environment. If there 

are some obstacles within detection range of sonar sensors, the RRCS will decide new 

acceleration, velocity and then change the robot’s location to avoid collision with the 
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obstacles; if there is no obstacle within detection range, the RRCS will let the robot wander 

aimlessly around in the environment. 

  After constructing the AFSM-based RRCS for controlling the robot, we check some 

properties of the behavior of the robot by OMocha. 

2.2.2 Hardware Structure of the Robot 

 

Fig. 2-5 Hardware structure of the robot 

2.2.2.1 Sonar Sensors 

  A sonar sensor has a detection range within a fixed radius. The information detected by 

sonar sensors will be periodically sent to the AFSM-based RRCS, and then the AFSM-based 

RRCS can decide whether it issues a command to ask motor to generate a force for avoiding 

collision with obstacles or not. 

2.2.2.2 Motor 

  The motor of robot continuously wait for a command sent by the AFSM-based RRCS. 

There are two kinds of commands sent by the AFSM-based RRCS. The first kind of command 

is “random force” command, the “random force” command asks the motor to generate a force 

which has random degree and direction, and then the force will generate an acceleration 

which makes the velocity of the robot to be changed. The second kind of command is 

“assigned force” command, the “assigned force” command asks the motor to generate a force 

which has assigned degree and direction. Finally, the “assigned force” command will change 

the velocity of the robot as well as the “random force” command. 

  The degree of force generated by motor has a range from 0 to Max_Force_Degree, so the 
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acceleration of robot has a range from 0 to Max_Force_Degree/M ; moreover, the degree of 

robot’s velocity has a range from 0 to Max_Velocity_Degree. Therefore, if the degree of 

robot’s velocity has reached Max_Veloctiy_Degree and then the motor will ignore the 

“random force” or “assigned force” command which has the same direction as current 

velocity. 

2.2.3 Environment 

   

    Fig. 2-6 Environment of the experiment 

  The environment of the experiment is a two-dimensional space. Its shape is rectangle, and 

has walls on four sides, and has some obstacles on four corners. 

2.2.4 Expected Behaviors of the AFSM-based RRCS 
  The robot which is placed on a two-dimensional environment has two main abilities. The 

two abilities are sensing obstacles by sonar sensor and moving around by motor. Based on the 

two abilities provided by robot, the AFSM-based RRCS wants to make the robot achieve two 

main behaviors： 

A. Wander aimlessly keeping to Newton’s first and second laws of motion. 

B. Make the robot avoid collision with obstacles in environment. 

 How to achieve the two behaviors  

  The first behavior can be achieved more easily. The AFSM-based RRCS can periodically 

issue a command to ask motor to generate a directional force, and the direction and degree of 

force are generated randomly. According to Newton’s second laws of motion, the relationship 
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between force and acceleration is “A=F/M1”. Therefore, the force will generate acceleration 

for the robot, and then the velocity of the robot will be changed. Finally, the robot will move 

to a new location according to latest velocity. 

  If the motor generates a force whose degree equals to 0, the robot will keep its original 

velocity keeping to Newton’s first laws of motion.  

  After achieving the first behavior, the robot can wander aimlessly, but it can’t avoid 

collision with obstacles in environment. In order to achieve the second behavior—“avoid 

collision with obstacles”, the AFSM-based RRCS must monitor the information of the 

environment detected by sonar sensors. If there is an obstacle in detection range of sonar 

sensors, the AFSM-based RRCS will pass a command to ask motor to generate a force which 

has a reverse direction of the obstacle, ant then the force will generate a reverse acceleration, 

finally the robot will gradually keep away from the obstacle. Therefore, the approach can 

keep the robot to avoid collision with obstacles in environment, and can achieve the second 

behavior. 

2.2.5 Properties To Be Verified 
  The property we want to check by OMocha is： 

   Whether the robot will collide with obstacles or walls?         

  The robot has the two above-mentioned behaviors can wander aimlessly around the 

environment and try to avoid collision with obstacles. However, the strategy determined by 

the RRCS for avoiding collision doesn’t guarantee the robot doesn’t collide with obstacles. In 

the strategy for avoiding collision, the relationship between “Distance away from the 

obstacles” and “Reverse acceleration” is the most important part. 

  In order to make sure the behavior of the strategy is the same as our expected behavior, we 

must describe the property with Temporal Logic and check whether the strategy really makes 

the robot not to collide with obstacles. The checking procedure is completed by OMocha. 

                                                 
1  “M” is the mass of the robot. “F” is the force generated by motor, “A” is the acceleration 
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Chapter 3  
Model Checking for AFSM-based RRCS,  
Concepts 
  After introducing AFSM and roving robot collision avoidance experiment, we’ll explain 

how to verify an AFSM-based RRCS by model checker. In this section, we will explain the 

principle of model checking by the verification procedure of model checker, OMocha [4]. The 

introduction for OMocha is in Section 3.2.  

In Section 3.1.1, we will give two examples for explaining the verification procedure. In 

the two examples, we will use the formal input language for OMocha. The formal input 

language for OMocha is explained in detail in Section 3.3.    

3.1 Verification Procedure 

  The concept of verification procedure is step by step to explore all reachable states from 

initial state, and then check whether all explored reachable states which represent the 

behaviors of programs satisfy the properties. 

3.1.1 Two Examples of Verification Procedure 

3.1.1.1 Simple Example  

  Take a simple AFSM-based system shown in Fig. 3-1 as an example. The AFSM-based 

system is composed of two AFSM modules. The property we want to check is “AG 

((STATE_A=A2 && A_B=false)||(STATE_A=A1 && A_B=true))”. It means 

whether “((STATE_A=A2 && A_B=false)||(STATE_A=A1 && A_B=true))” is 

always true from initial state to all reachable states.  

The definition of initial state is the combination of all variables’ initial values of a system. 

The initial state of the AFSM-based system is { STATE_A=A1 , A_B=false , STATE_B=B1 }. 

According to the transition functions(update commands) of the AFSM-based system 
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described in programs, the sequential state transition of the AFSM-based system is listed as 

Table 3-1. The next state of the initial state, which is also the 2nd state of the AFSM system is 

{STATE_A=A2 , A_B=false , STATE_B=B1 }. Then the next state of the 2nd state, which is 

also the 3rd state of the AFSM system is { STATE_A=A1 , A_B=true , STATE_B=B1 }. 

OMocha will keep on exploring the next state of every state. Finally, OMocha will find out 

that the 2nd to the 5th states are all possible reachable states from the initial state. Then the 6th 

to the 9th states repeat the value of the 2th to the 5th state, and so on. The all possible states of 

the system include the initial state and all possible reachable states from the initial state. 

During the procedure of exploring all possible states of the system, OMocha detects the 

behaviors of the programs violate the properties at initial state. Therefore, the behaviors of the 

programs don’t satisfy the properties. 

 

3.1.1.2 Advanced Example  

After understanding the simple example of AFSM-based system, let us consider another 

advanced example. In the advanced example, transition functions (update commands) are 

allowed to include non-deterministic choices. As shown in Fig. 3-2, module A has a 

non-deterministic choice as follow: 

[]STATE_A = A2 -> STATE_A’:=A1; A_B’:= true 

[]STATE_A = A2 -> STATE_A’:=A2; A_B’:= true 

  If the variables’ values of module A are { STATE_A=A2 , A_B=Don’t Care } in current 

state, the variables’ values of module A may be { STATE_A=A1,A_B=true } or 

{ STATE_A=A2,A_B=true } in next state. The sequential state transition of the advanced 

AFSM example is listed as Table 3-2. The non-deterministic choices are provided to system 

designer for simulating the random situation. In order to make the concept more clearly, we 

illustrate the trace-tree of verification procedure for the advanced example with Fig. 3-3.  

In Fig. 2-8, the node which has dotted circle is the state which will determine its next states 



 

 12

according to the non-deterministic choices. Therefore, the trace-tree of verification procedure 

for the advanced example is a multi-branch tree. However, the trace-tree of verification 

procedure for the simple AFSM example is a single-branch tree as shown in Fig. 3-4. 

 
           Fig. 3-1. Simple example of AFSM-based system 

variable 
state 

STATE_A A_B STATE_B 

    1 A1 False B1 
    2 A2 False B1 
    3 A1 True B1 
    4 A2 False B2 
    5 A1 True B2 
    6 A2 False B1 

... 

... 

... 

... 

Table. 3-1. Sequential state transition of simple AFSM-based system 

initial state 

all reachable states 
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Fig. 3-2. Advanced example of AFSM-based system 

variable 
state 

STATE_A A_B STATE_B 

    1 A1 False B1 
    2 A2 False B1 
    3 A1 True B1 
    4 A2 False B2 
    5 A1 True B2 
    6 A2 False B1 

7 A2 True B1 
8 A1 True B2 
9 A2 False B1 

…
 

…
 

…
 

…
 

Table. 3-2. Sequential state transitions of advanced AFSM-based system   

initial state 

all reachable states 
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                 Fig. 3-3                 Fig. 3-4 

Fig. 3-3.  The trace-tree of verification procedure of advanced example. The node 
which has dotted circle is the state which will determine its next state 
according to non-deterministic choices.     

Fig. 3-4.  The trace-tree of verification procedure of simple example  

3.2 Model Checker：OMocha 

The model checker chosen for our research is OMocha [4]. The formal input language for 

OMocha includes two parts: The first part is programs described by UNITY-based 

specification language [2], and the second part is properties described by Temporal Logic [5]. 

After the formal input language is fed into OMocha, OMocha will check whether the 

behaviors of the programs satisfy the properties. If the behaviors of the programs violate the 

properties, OMocha will show one counterexample. Otherwise, it’ll show the behaviors of the 

programs satisfy the properties.  

. In Section 3.3, we’ll introduce the formal input language for OMocha. 

3.3 Formal Input Language for OMocha  

3.3.1 Programs Described by UNITY-based Specification Language 

(A) Introduction  
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In OMocha, the programs are described by UNITY-based specification language. There are 

two main reasons about why it uses UNITY to describe the programs as follows：  

(1) UNITY could represent the relationship between current state and next state, what is 

called transition function. Therefore, we could describe an AFSM-based RRCS by 

UNITY.    

(2) In order to operation in coordination with OMocha. In OMocha, the only data types can 

be defined are cyclic integer and boolean, and the syntax and semantics of UNITY can 

provide cyclic integer ( e.g., “A: bit[5]”, the range of cyclic integer A is from 0 to 

31).  

 

(B) Syntax and Semantics 

  There are two parts in programs: 

(1)Module Description 

In the first part of programs, we describe all AFSM modules in module description. For 

describing a module, it includes two necessary parts: variables definition and atoms 

definition.  

 
  Fig. 3-5. Module description  
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 Variables Definition   

In variables definition, there are three kinds of variables can be defined: external, interface, 

and private.  

External variables--------The input ports of AFSM module, they receive data from other 

AFSM modules’ interface variables.  

Interface variables--------The output ports of AFSM module, they send data to other AFSM 

modules’ external variables. 

Private variables--------The local variables of AFSM module, they don’t connect with other 

AFSM modules.   

Three kinds of data types which can be defined for above three kinds of variables are 

“cyclic integer”, “boolean” and “enum”. 

  

 Atoms Definition  

  In atoms definition, we describe the init action executed during initial round, and the 

update action executed during each update round. The initial and update action are specified 

by the keywords init and update. There are some init commands in initial action, and 

there are some update commands in update action. An example for atoms definition is shown 

as Fig. 3-6. 

 
  Fig. 3-6.  Example for atoms definition 

In each update round, every variable x has two values. The value of x at the beginning of 

the round is called the latched value, and the value of x at the end of the round is called the 
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updated value. We use unprimed symbols, such as x, to refer to latched values, and primed 

symbols, such as x’, to refer to the corresponding updated values.  

The updated value of (N-1)th round is equal to the latched value of Nth round. The latched 

value of x is also the current state of x, and the updated value of x is also the next state of x. 

The relationship between latched value (current state) and updated value (next state) during 

neighbor update rounds is shown as Fig. 3-7. 

    
Fig. 3-7. The relationship between latched value and updated value during neighbor 

update rounds.  
             

Let us look the example shown in Fig. 3-6, the updated value of STATE and A are init and 1 

at initial round. According to the update command in update action, if the latched value of 

STATE and A are init and 1, the updated value of them will be set to start and 2. Therefore, 

the updated values of STATE and A are start and 2 at 1st update round. Update commands 

which determine the relationship between latched values and updated values, can regard as 

transition functions which determine relationship between current state and next state. 

   

(2) Module Connection  

After all AFSM modules are described in module description, we need to describe the 

connection relationship between these AFSM modules. An interface variable can connect with 

some external variables of other AFSM modules which have the same name as the interface 

variable. An external variable can only connect with an interface variable of another AFSM 

module which has the same name as the external variable. 
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3.3.2 Properties Described by Temporal Logic 

(A) Introduction 

  In OMocha, the method chosen to describe the properties of an AFSM-based RRCS is 

Temporal Logic. 

Temporal Logic is used to represent the properties of state transitions of a system over time 

domain. For instance, we want to check whether variable A is always less than 10 during all 

possible states. In this case, the representation of Temporal Logic is “AG A<10”, the meaning 

of ”AG” is “always true” during all possible states from initial state. After describing the 

programs of an AFSM-based RRCS by UNITY, we can describe the properties of the 

AFSM-based RRCS by Temporal Logic, and the properties are what we want to check by 

OMocha. When OMocha receives the formal input language including programs and 

properties, it can check whether the behaviors of the programs satisfy the properties. 

 

(B) Syntax and Semantics 

  Every property of a system is described by Temporal Logic. A Temporal Logic formula 

consists of the propositional logic formula and temporal connectives： The propositional 

logic formulas are expressions which consist of logical operators and the variables of the 

system. The temporal connectives are expressions to indicate the subset of future states of the 

system. 

 

The temporal connectives are pairs of symbols： 

The first member of the pair is one of 

  A - meaning on all paths from the “current” state, read as “inevitably” 

  E - meaning on at least one path from the ”current” state, read as “possibly” 

The second member of the pair is one of 

  X - meaning the next state 
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  G - meaning all future states, read as “globally” 

  F - meaning some future state 

  U - meaning until 

             

              Take “mutual exclusion” as example. Suppose we are talking about two processes P1, P2 

that share data. The protocol allows only one process to be in its critical section at any time.  

If we want to describe the “mutual exclusion” property by Temporal Logic, the Temporal 

Logic formula will be described as follow：    

AG !( Critical[P1] & Critical[P2] )   

The propositional logic formula !( Critical[P1] & Critical[P2]) 

The temporal connectives AG 

This Temporal Logic formula is true iff Critical[P1] and Critical[P2] won’t be 

true in the meantime for all states on all paths into the future from current state.   
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Chapter 4 
Model Checking for AFSM-based RRCS, 
Approaches 

In this Chapter, we present three approaches to lower the difficulty of formal verification 

for the experiment. After using the three approaches to reduce the number of states of the 

RRCS and environment, formal verification can become applicable for the experiment.  

 

4.1 State Space Discretization 

A system described on the continuous domain can’t be verified by OMocha, because the 

number of all possible states is infinite. Before constructing an AFSM-based RRCS we must 

transform the system and environment from continuous domain to discrete domain. Otherwise,  

OMocha can’t handle it.  

In discretization procedure, there are two parts. (1) Time Discretization, and (2) Space 

Discretization. Time Discretization has been explained in Section 2.1.1.2, therefore we will 

only explain Space Discretization in this section. We will give two examples to illustrate the 

relationship between continuous space and discrete space below.  

Take a simple MAP as first example, the continuous MAP whose size is 2*2 m2 is 

transformed into a discrete MAP. In x-axis and y-axis, the continuous domain is partitioned 

into 21 points separately (x-axis:0.1.2….20, y-axis:0.1.2….20). Therefore, the distance 

between two neighbor points is 0.1m, and the size of the discrete MAP is 21*21. The 

relationship between continuous and discrete MAP is shown as Fig. 4-1. 
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         Fig. 4-1.  (a) continuous MAP            (b) discrete MAP 

  Then, we give another example. In Section 2.2.5, we have mentioned that in the strategy for 

avoiding collision, the relationship between “Distance away from the obstacles” and “Reverse 

acceleration” is the most important part. In Fig. 4-2, we illustrate the relationship between 

continuous domain and discrete domain in this example.   

 
        Fig. 4-2 (a) continuous domain           (b) discrete domain 

  In Fig. 4-2, “Reverse acceleration” is approximately linear inverse proportion to “Distance 

away from the obstacles” on continuous domain, the curve presents the relationship between 

the two parameters. The number of all possible mapping relations of them is infinite, the 

mapping set includes { (0, 5)..(0.5,4.5)..(3.5,1.5)..(5,0) }. After transformation, the mapping 

set has only fix points on discrete domain, they are { (0,5) . (1,4) . (2,3) . (3,2) . (4,1) . (5,0) }. 

After discretization procedure, the complexity of a system will be simplified to the degree 

can be handled by OMocha.   
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4.2 External Function for Computation/State Hiding 

In order to improve the capabilities which the UNITY-based programs can support, and 

reduce the number of states of a system. OMocha provides the external function for system 

designer. The two main advantages are listed below：  

4.2.1 Computation Hiding 

The semantics and syntax of UNITY are very basic and aren’t as powerful as high-level 

language. For this reason, it’ll be very hard to build complicated programs of a system by 

UNITY.   

In order to improve the capabilities which the UNITY-based programs can support, 

OMocha provides the external function for system designer. The external function is 

described by C language. The UNITY which includes external function is called advanced 

UNITY. 

  In original UNITY, the semantics and syntax can only provide basic capabilities, these 

basic capabilities include：  

              Value assignment 

              Basic logic operations: and/or/not/invert                

              Basic arithmetic operations: addition/subtraction 

              Basic comparison operators: > <  

              Non-nested if-then-else structure 

              ……etc 

             In advanced UNITY, we can pass variables into external functions, and then receive the 

return value of external function by variables which defined in UNITY. 

             There are two examples for explaining computation hiding through external function. The 

two example are listed below：  
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 Example 1  

 
A part of programs described with original UNITY 

 
The same part described with advanced UNITY 

 Example 2  

 
A part of programs described with original UNITY 

 

The same part described with advanced UNITY 
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4.2.2 State Hiding：Reducing the Number of All Reachable States of a 

       System 
  How complicated a system can be verified by OMocha depends on the number of all 

reachable states. Once the number of all reachable states of a system is greater than the 

limitation of OMocha’s capability, the “out of memory” problem will occur during checking 

procedure. Therefore, we have to carefully control the complexity of a system so that the 

resource (memory, CPU speed...etc) of OMocha can handle the checking procedure.  

The number of all reachable states of a system depends on the all possible combination of 

all variables which are defined in UNITY-based programs. If we can move out some variables 

which are defined in UNITY-based programs, and encapsulate them into external function, 

the number of all reachable states will reduce. 

  But, what kinds of variables can be encapsulated into external function？  During  

verification procedure, there are some system variables which are irrelevant to behavior 

verification. For example, in the experiment explained in Chapter 2, OMocha only needs to 

know the velocity and location of the robot whereas it doesn’t need to know the computation 

of detecting environment, and determining the degree of acceleration. The variables for 

detecting environment and determining the degree of acceleration can be exported to external 

function.  

  An example of the encapsulation procedure of external function is shown as Fig. 4-3. In Fig. 

4-3, the system is composed of four AFSM modules. There is one interface variable in each 

module, so the total number of the variables in the system is four. According to encapsulation 

principle, if a module doesn’t include some nondeterministic update commands, it can be 

encapsulated into a external module. Take the system as a example, the module B, module C 

and module D can be encapsulated into a external module which invokes a external function 

to handle all update commands of them, the encapsulation procedure shown as Fig 4-3(c). The 

module A can not be encapsulated into the same external module, because it includes one 
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nondeterministic update command. After encapsulation procedure, the system reduces the 

number of modules from 4 to 2, and reduces the number of variables from 4 to 2. The two 

interface variables Bout,Cout are encapsulated into the external function “Ext_fun”, so model 

checker doesn’t need to consider them. In some cases, reducing the number of variables by 

encapsulation procedure can obviously lower the number of all reachable states of the system 

and lower the running time of checking procedure, especially in a complicated system.         
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Fig. 4-3. Encapsulation procedure 
(a) A system is composed of four AFSM modules  
(b) The module B, module C and module D can be encapsulated into a external 

module 
(c) The three modules will be integrated into one external module, the 

UNITY-based programs of the external module and C code of external function 
Ext_fun() are shown in the figure. 

 

4.3 Elimination of Unnecessary Checking Cases 

  The concept of verification procedure is step by step to explore all reachable states from 

initial state. Therefore this is a kind of method of exhaustion. However, according to the 

properties we want to check by OMocha, we can eliminate some unnecessary checking cases, 

because this part of checking cases will never violate the properties. Take the experiment 

explained in Chapter 2 as example. The robot will never collide with obstacles while it 

wanders aimlessly in the range which has no obstacles. Therefore, OMocha can eliminate the 

part of checking cases.  
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Chapter 5 
Implementation of Roving Robot Collision 
Avoidance Experiment  
  In this Chapter, we will present how to construct the AFSM-based RRCS and environment 

in the experiment with UNITY, and explain the AFSM-based RRCS in detail.   

  We have explained the chart of an AFSM module in Section 2.1, and explained how to 

describe the programs of an AFSM module has explained in Section 3.3.1. These two sections 

are the most important foundations for this section.  

In Section 5.1, we will show the full structure of the experiment, and then briefly introduce 

these AFSM modules in the experiment. In Section 5.2, we introduce every AFSM module in 

detail, and how these AFMS modules connect with other modules and work in coordination. 

In Section 5.3, we explain the “No_Collision” property described by Temporal Logic. The 

checking results of the experiment are explained in Chapter 6.  

5.1 Full Structure of the Experiment 

   

Fig. 5-1  Full structure of the experiment 

 The full structure of the experiment is shown as Fig. 5-1, the AFSM-based RRCS is 
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composed of 6 AFSM modules, and environment is composed of 1 AFSM module. These 

modules are listed in Table 5-1：  

Module name Module figure Functionality 

MAP 

 

 Set the position of obstacles and walls into 

MAP_walls and MAP_obstacles at initial round.

 Provide the map of environment to other modules 

through interface variable 

SONAR 

 In each round, SONAR reads Location_updated

from MOTOR module, and then SONAR detects the 

environment and produces the robot centered map of 

obstacles and walls 

 Provide the robot centered map stored in 

SMAP_obstacle to FORCE_ACCELERATION 

and RANDOM_ACCELERATION modules. 

FORCE_ 

ACCELERATION 

 In each round, FORCE_ACCELERATION awaits 

robot centered map of obstacles from SONAR 

module, and then compute 

Force_Acceleration for 

RESULT_ACCELERATION module 

RANDOM_ 

ACCELERATION 

 In each round, If there is no any obstacle in detection 

range(the updated value of SMAP_obstacle is 

{(0,0),LU} ), RANDOM_ACCELERATION module 

produces a random Random_Acceleration for 

RESULT_ACCELERATION module. 
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RESULT_ 

ACCELERATION 

 In each round, RESULT_ACCELERATION awaits 

Force_Acceleration and 

Random_Acceleration, and determine which 

one to output as Result_Acceleration for 

VELOCITY module 

VELOCITY 

 In each round, VELOCITY awaits 

Result_Acceleration from 

RESULT_ACCELERATION, and then update 

Velocity. 

MOTOR 

 In each round, MOTOR awaits Velocity from 

VELOCITY, and then update Location. 

 Set Location_updated to true while updated 

value of Location isn’t equal to latched value of 

Location 

Table 5-1 Brief introduction for 7 AFSM modules 

 

5.2 Introduction for each AFSM Module in detail 

1. MAP： 

                       

                  Fig. 5-2 MAP module              

   As shown in Table 5-1,  MAP module has two functionalities： 
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 Set the position of obstacles and walls into MAP_walls and 
MAP_obstacles at initial round. 

 Provide the map of environment to other modules through 
interface variable 

  The MAP module is for simulating the environment. In MAP module, we set the position of 

obstacles and walls in environment map at initial round. The representation of obstacle or wall 

is { position , direction }. The position is represented by (position of X-axis ,position of 

Y-axis), and the direction includes four kinds of directions, which are 

{LU(left-up),LD(left-down),RU(right-up),RD(right-down)}. In Fig. 5-3, we list some examples to 

illustrate the usage of the representation. 

Example  

of wall 

 

Representation { (8,0),LU/LD } { (34,0),RU/RD } { (0,8),LD/RD } { (0,34),LU/RU } 

 

Example  

of obstacle 

  
Representation { (12,30) , LU } { (12,12) , LD } { (30,12) , RD } { (30,30) , RU } 

   Fig. 5-3 Some examples for the representation of MAP_obstacle/MAP_wall 

Take the MAP1.0 shown in Fig. 5-4 as example of environment. The position of walls are 

{ (8,0)} , LU } , { (38,0), RU } , { (0,8) , LD } , { (0,38) , RU }, and the position of obstacles 

are { (12,12) ,LD },{ (34,12) , RD },{ (12,34) , LU },{ (34,34) , RU }. According to the 

representation, we can set the values of MAP_obstacles and MAP_walls. The interface 

variables MAP_obstacles and MAP_walls will be sent to SONAR module.      

The introduction for all variables in MAP module is shown as Table 5-2, the interface 
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variables MAP_obstacle1-4 and MAP_wall1-4 will connect to SONAR module for 

informing the map of environment.  

The figure and features of MAP1.0 is shown as Fig 5-4. The MAP 1.0 is very simple. It is a 

two-dimensional square whose size is 30*30, and the obstacles can only expand from 4 

corners. Because there is only “unsigned ranged integer” data type in OMocha, we reserve the 

boundary buffer area around the environment. The reason is in order to avoid the appearance 

of negative integer in intermediate results during operations.  

Interface Send to Functionality 
MAP_wall1~4 SONAR The position of the walls  

MAP_obstacle1~4 SONAR The position of the obstacles 

Private  Functionality 
MAP_state  Store current state of MAP 

Table 5-2  All variables in MAP module  

MAP 1.0 Features of MAP1.0 

 

 Map size: 30 x 30 

( from (8,8) to (38,38) ) 

 Width of boundary buffer area: 8 

 The obstacles can only expand from 4 

corners 

Fig. 5-4   MAP 1.0 

Comment for UNITY fragment of MAP 

 
Fig. 5-5 UNITY fragment of MAP： Set position of walls and obstacles at initial round 
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  In the UNITY fragment of MAP shown as Fig. 5-5, we set position of walls and obstacles 

into MAP_obstacles and MAP_walls.  

  Line 1： The initial action of atoms is specified by the keywords init. 

  Line 2-9： Set the value of MAP_obstacles and MAP_walls.   

Line 4： The position of MAP_wall3 is (0, 8), and the direction is LD.  

 

2. SONAR： 

 

Fig. 5-6  SONAR module 

As shown in Table 5-1, SONAR module has two functionalities： 

 In each round, SONAR reads Location_updated flag from MOTOR module, 

and then SONAR detects the environment and produces the robot centered map of 

obstacles and walls 

 Provide the robot centered map stored in SMAP_obstacle to 

FORCE_ACCELERATION and RANDOM_ACCELERATION modules. 

 

SONAR module is the module to simulate the behavior of sonar sensor on the robot. It 
receives the map of environment from MAP module and location of robot from MOTOR 
module. After receiving above external variables from MAP and MOTOR module, SONAR 
module will produce a robot centered map of obstacles and walls according to the detection 
range of sonar sensor. The detection range of sonar sensor is a robot centered range whose 
size is 16x16, and for every quadrant the size is 8x8. The figure of detection range is shown as 
Fig. 5-7.  
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Fig. 5-7 Detection range 

The information of the robot centered map of obstacles and walls is stored in the interface 

variable SMAP_obstacle, and the SMAP_obstacle will be sent to 

FORCE_ACCELERATION and RANDOM_ACCELERATION modules.  

The representation of SMAP_obstacle is { distance ,direction }, the distance in the 

representation are represented with the distance away from the obstacle or wall for X-axis and 

Y-axis separately. In Fig. 5-8, we list some examples to illustrate the usage of the 

representation for SMAP_obstacle.  

Example 

 

representation {(4,5),RU} {(2,3),LD} {(0,5),LD/RD} {(6,0),LU/LD} 

Fig. 5-8. Some examples for the representation of SMAP_obstacle 

 

The introduction for all variables in SONAR module is shown in Table 5-3. In each round, 

SONAR module reads MAP_obstacle1-4 and MAP_wall1-4 from MAP, and reads 

Example 

 

representation {(0,5),RU} {(6,5),LD} {(4,4),RU} {(4,5),LD} 
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Location and Location_updated from MOTOR, and then it updates the updated 

value of SMAP_obstacle and SONAR_flag. The interface SMAP_obstacle and 

SONAR_flag connect to FORCE_ACCELERATION and RANDOM_ACCELERATION 

modules for informing the robot centered map of obstacles and walls. The private variable 

SONAR_state is for storing the state of SONAR module.  

External Receive from Functionality 
MAP_wall1~4 MAP The position of the walls  

MAP_obstacle1~4 MAP The position of the obstacles 

Location SONAR Location of the robot 

Location_updated SONAR Inform whether the robot changes its location at 

last update round.  

Interface Send to Functionality 
SMAP_obstacle FORCE_ACCELERATION 

RANDOM_ACCELERATION

Inform the robot centered map of obstacles and 

walls  

SONAR_flag FORCE_ACCELERATION 

RANDOM_ACCELERATION

Inform whether SMAP_obstacle is updated at 

this update round.  

Private  Functionality 
SONAR_state  Store current state of SONAR 

Table 5-3  All variables in SONAR module 

Comment for UNITY fragment of SONAR 

 
Fig. 5-9  UNITY fragment of SONAR： Set initial value for variables 

of SONAR at initial round, and compute the updated value 
of SMAP_obstacle by external function detection() at each 
update round. 
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In the UNITY fragment of SONAR shown as Fig. 5-9, we set initial value for variables of 
SONAR at initial round, and compute the updated value of SMAP_obstacle by external 
function detection() at each update round. Because the strategy of computing 
SMAP_obstacle is too complicated to write by UNITY code, we implement the strategy 
by external function detection().  

  Line 2-3： Set initial value for SMAP_obstacle 

  Line 5： The update action of atoms is specified by the keywords update. 

  Line 6： In this update rule, if latched value of SONAR_state is SONAR_INIT, Line7-17 

will be executed. 

  Line 7： The updated value of SONAR_state is updated to SONAR_INIT 

  Line 8-17： The updated value of SMAP_obstacle is computed by external function 

detection() 

     

   Fig. 5-10  Fragment of external function detection() 

Line 1-9： detection() receives MAP_walls,MAP_obstacles and Location as 

parameters 

Line 11： Declare local variable SMAP_obstacle. 

Line 15-19： Check whether MAP_wall1 (direction:LU/RU) is in the detection range. If it’s 

true, SMAP_obstacle_Y will be set to “MAP_wall1_Y - Location_Y” 

and SMAP_obstacle_type will be set to “LU”. 

Line 24： Return the value of local variable SMAP_obstacle. The return value will be 

assigned to interface variable SMAP_obstacle in SONAR module. 
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 Example  

If ( MAP_wall1_X=0, MAP_wall1_Y=8, MAP_wall1_type=LU, 

Location_X=18, Location_Y=6) 

Then (SMAP_obstacle_X=0, SMAP_obstacle_Y=2, SMAP_obstacle_type=LU) 

3. FORCE_ACCELERATION： 

           
             Fig. 5-11  FORCE_ACCELERATION module 

As shown in Table 5-1, FORCE_ACCELERATION module has one functionality： 

 In each round, FORCE_ACCELERATION awaits robot centered map of obstacles 

from SONAR module, and compute the Force_Acceleration for 

RESULT_ACCELERATION module 

  In FORCE_ACCELERATION module, it receives SMAP_obstacle from SONAR 

module, and then produces the “reverse acceleration” according to the strategy for avoiding 

colliding with obstacles, the result of “reverse acceleration” is stored in interface variable 

Force_Acceleration. The relationship between“distance of X-axis away from the 

obstacle in SMAP_obstacle” and “X-axis component of reverse acceleration degree in 

Force_Acceleration” is shown as Table 5-4. 

Distance of X-axis away from  
the obstacle in SMAP_obstacle 

0 1 2 3 4 5 6 7 

X-axis component of reverse acceleration 
Degree in Force_Acceleration 

0 2 2 2 1 1 1 1 

Table 5-4  The relationship between “Distance of X-axis away from the obstacle in 
SMAP_obstacle” and “X-axis component of reverse acceleration degree 
in Force_Acceleration”. Take X-axis for instance, the situation of 
Y-axis is equivalent to X-axis 
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 The representation of Force_Acceleration is { A-degree ,direction }, the A-degree is 

represented by (degree of X-axis component,degree of Y-axis component), and the range of 

A-degree is from 0 to 2; the direction is reverse to the direction of SMAP_obstacle. We 

list some examples to illustrate the relationship between SMAP_obstacle and 

Force_Acceleration in Fig. 5-12.  

Example 

    
SMAP_obstacle {(4,5),RU} {(2,3),LD} {(0,5),LD/RD} {(6,0),LU/LD} 

Force_Acceleration {(1,1),LD} {(2,2),RU} {(0,1),RU/LU} {(1,0),RD/RU} 

 

Example 

    
SMAP_obstacle {(0,5),RU} {(6,5),LD} {(4,4),RU} {(4,5),LD} 

Force_Acceleration {(0,1),LD} {(1,1),RU} {(1,1),LD} {(1,1),RU} 

Fig. 5-12  Some examples of the relationship between SMAP_obstacle and 

Force_Acceleration 

  The introduction for all variables in FORCE_ACCELERATION module is shown as  

Table 5-5. FORCE_ACCELERATION awaits SMAP_obstacle from SONAR module, and 

then updates the updated value of Force_Acceleration. The interface 

Force_Acceleration and Force_Acceleration_flag connect to 

RESULT_ACCELERATION module for informing force acceleration.  

 

External Receive from Functionality 
SMAP_obstacle SONAR The robot centered map of obstacles and 

walls  

SONAR_flag SONAR Inform whether SMAP_obstacle is 
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updated at this update round 

Interface Send to Functionality 
Force_Acceleration RESULT_ACCELERATION Inform the force acceleration for 

RESULT_ACCELERATION.  

Force_Acceleration_flag RESULT_ACCELERATION

 

Inform whether the updated value of degree 

of Force_Acceleration is non-zero at 

this update round. It is set true while the 

updated value of degree of 

Force_Acceleration is not (0,0).  

Private  Functionality 
FORCE_state  Store current state of 

FORCE_ACCELERATION 

Table 5-5  All variables in FORCE_ACCLERATION module 

Comment for UNITY fragment of FORCE_ACCELERATION 

 
Fig. 5-13  UNITY fragment of FORCE_ACCELERATION：  

Set initial value for variables of FORCE_ACCELERATION at initial round, 

and compute the updated value of Force_Acceleration by external 

function SMAP_to_FORCE() at each update round. 

Line 2-3：Set initial value for FORCE_ACCELERATION 

Line 6-7：The updated value of Force_Acceleration is computed by 

external function SMAP_to_FORCE() 
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 Fig. 5-14  Fragment of external function SMAP_to_FORCE() 

Line 1： SMAP_to_FORCE() receives SONAR_flag and SMAP_obstacle as 

parameters 

Line 3： Declare local variable Force_Acceleration. 

Line 8-18： If SONAR_flag is true, we set the value of Force_Acceleration_X 

according to relationship shown in Table 5-4.  

Line 25-31： If SONAR_flag is true, we set the value of Force_Acceleration_type 

according to relationship shown in Fig. 5-12.  

Line 35：Return the value of local variable Force_Acceleration. The return 

value will be assigned to interface variable Force_Acceleration 

in FORCE_ACCELERATION module. 
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4. RANDOM_ACCELERATION： 

 
      Fig. 5-15  RANDOM_ACCELERATION module 

As shown in Table 5-1, RANDOM_ACCELERATION module has one functionality： 

 In each round, if there is no any obstacle in detection range (the updated value of 

SMAP_obstacle is { (0,0) , LU) ), RANDOM_ACCELERATION module produces a 

random Random_Acceleration for RESULT_ACCELERATION module. 

 

In RANDOM_ACCELERATION module, it awaits SMAP_obstacle from SONAR 

module. If there is no obstacle in detection range (the updated value of 

SMAP_obstacle is {(0,0) , LU} ), RANDOM_ACCELERATION module will produce 

a random acceleration for the robot. The robot can wander aimlessly by changing its 

velocity according to the random acceleration. The random acceleration which produced 

by RANDOM_ACCELERATION is stored in interface variable 

Random_Acceleration, and then Random_Acceleration will be sent to 

RESULT_ACCELERATION module. 

The representation of Random_Acceleration is {A-degree ,direction }, the 

A-degree is represented by (degree of X-axis component, degree of Y-axis component), 

and the range of A-degree is from 0 to 2; the direction is one of { LU,LD,RU,RD }. We 

list some examples of the relationship between SMAP_obstacle and 

Random_Acceleration in Fig. 5-16. 

The introduction for all variables in RANDOM_ACCELERATION module is shown in 
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Table 5-6. In each round, RANDOM_ACCELERATION awaits SMAP_obstacle from 

SONAR module, and updates the updated value of Random_Acceleration and 

Random_Acceleration_flag. The interface Random_Acceleration and 

Random_Acceleration_flag connect to RESULT_ACCELERATION modules for 

informing the random acceleration. 

 

Example 

    

SMAP_obstacle {(0,0),LU} {(0,0),LU} {(0,0),LU} Not {(0,0),LU} 

Random_Acceleration {(2,2),RU} {(2,1),RD} {(1,2),LD} {(0,0),LU} 

Fig. 5-16  Some examples of the relationship between SMAP_obstacle and 
Random_Acceleration 

 

External Receive from Functionality 
SMAP_obstacle SONAR The robot centered map of obstacles and walls  

SMAP_obstacle_flag SONAR Inform whether SMAP_obstacle is updated 

at this update round 

Interface Send to Functionality 
Random_Acceleration RESULT_ACCELERATION Inform the random acceleration for 

RESULT_ACCELERATION  

Random_Acceleration_flag RESULT_ACCELERATION

 

Inform whether the updated value of degree of 

Random_Acceleration is non-zero at this 

update round. It is set true while the updated 

value of the degree of 

Random_Acceleration is not (0,0).  

Private  Functionality 
RANDOM_state  Store current state of 

RANDOM_ACCELERATION 

      Table 5-6. All variables in RANDOM_ACCLERATION module 
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Comment for UNITY fragment of RANDOM_ACCELERATION 

 
Fig. 5-17  UNITY fragment of RANDOM_ACCELERATION：  

Set the initial value for variables of RANDOM_ACCELERATION at initial 
round, and update the updated value of Random_Acceleration_X at each 
update round.  

Line 2： Set initial value for RANDOM_ACCELERATION 

Line 4-6 ： If (SMAP_obstacle_X,SMAP_obstacle_Y) is (0,0), the value of 

Random_Acceleration_X will randomly be set to one of {0,1,2} 

Line 7：If one of SMAP_obstacle_X and SMAP_obstacle_Y is not 0, the value of 

Random_Acceleration_X will be set to 0. 

5. RESULT_ACCELERATION： 

 

        Fig. 5-18  RESULT_ACCELERATION module 

As shown in Table 5-1, RESULT_ACCELERATION module has one functionality： 

 In each round, RESULT_ACCELERATION awaits Force_Acceleration and 

Random_Acceleration, and then determine which one to output as 

Result_Acceleration for VELOCITY module 

  In RESULT_ACCELERATION module, it awaits Force_Acceleration and 
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Random_Acceleration, and then determines which one to output as 

Result_Accleration for VELOCITY module. The strategy for making the decision is 

listed below:  

A. Force_Acceleration_flag==true&&Random_Acceleration_flag==false/ 

true  Result_Acceleration = Force_Acceleration  

B. Force_Acceleration_flag==false&&Random_Acceleration_flag==true

 Result_Acceleration = Random_Acceleration 

C. Force_Acceleration_flag==false&&Random_Acceleration_flag==false

Result_Acceleration = { (0,0) , LU }   

 

 The strategy includes three conditions：  

A. If Force_Acceleration_flag is true, Force_Acceleration will be stored in 

Result_Acceleration.  

B. If Force_Acceleration_flag is false and Random_Acceleration_flag is 

true, Random_Acceleration will be stored in Result_Acceleration.  

C. If Force_Acceleration_flag and Random_Acceleration_flag are both 

false, Result_Acceleration will be set to { (0,0) , LU }. 

  

The strategy will make the robot avoid collision while there are some obstacles in detection 

range ,and wander aimlessly while there is no obstacle in detection range.   

  The introduction for all variables in RESULT_ACCELERATION module is shown in 

Table 5-7. RESULT_ACCELERATION awaits Force_Acceleration from FORCE_- 

ACCELERATION and Random_Acceleration from RANDOM_ACCELERATION, 

and then updates the updated value of Result_Acceleration. The interface 

Result_Acceleration and Result_Acceleration_flag connect to VELOCITY 

module for informing result acceleration.  
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External Receive from Functionality 
Force_Acceleration FORCE_ACCELERATION Inform the acceleration produced by 

FORCE_ACCELERATION 

Force_Acceleration_flag FORCE_ACCELERATION Inform whether the updated value of 

degree of Force_Acceleration is 

non-zero at this update round 

Random_Acceleration RANDOM_ACCELERATION Inform the random acceleration produced 

by RANDOM_ACCELERATION 

Random_Acceleration_flag RANDOM_ACCELERATION Inform whether the updated value of 

degree of Random_Acceleration is 

non-zero at this update round 

Interface Send to Functionality 
Result_Acceleration VELOCITY Inform the result acceleration for 

VELOCITY  

Result_Acceleration_flag VELOCITY 

 

Inform whether the updated value of 

degree of Result_Acceleration is 

non-zero at this update round. It is set true 

while the updated value of degree of 

Result_Acceleration is not (0,0). 

Private  Functionality 
RESULT_state  Store current state of 

RESULT_ACCELERATION 

  Table 5-7. All variables in RESULT_ACCLERATION module 

Comment for UNITY fragment of RESULT_ACCELERATION 

 
Fig. 5-19  UNITY fragment of RESULT_ACCELERATION：  

First, set initial value for variables of RESULT_ACCELERATION at initial 
round, and determine the updated value of Result_Acceleration at each 
update round. 
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Line 2-3： Set initial value for RESULT_ACCELERATION 

Line 6-8：If the updated value of Force_Acceleration_flag is true, the updated value 

of Force_Acceleration will be stored in the updated value of 

Result_Acceleration, and the updated value of Result_- 

Acceleration_flag will be set to true. 

Line 10-12：If the updated value of Force_Acceleration_flag is false and the updated 

value of Random_Acceleration_flag is true, the updated value of 

Random_Acceleration will be stored in the updated value of 

Result_Acceleration, and the updated value of 

Result_Acceleration will be set to true.  

Line 14-16：If the updated value of Force_Acceleration_flag and the updated value 

of Random_Acceleration_flag are both false, the updated value of 

Result_Acceleration will be set to (0,0,LU), and the updated value of 

Result_Acceleration_flag will be set to false. 

 

6. VELOCITY： 

 

               Fig. 5-20  VELOCITY module 

As shown in Table 4-1, VELOCITY module has one functionality： 

 In each round, VELOCITY awaits Result_Acceleration from 

RESULT_ACCELERATION module, and then updates Velocity. 

In VELOCITY module, the interface variable Velocity stores the velocity of the robot. 
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Once receiving Result_Acceleration from RESULT_ACCELERATION, VELOCITY 

module will update Velocity by combining with Result_Acceleration. The 

representation of Velocity is { V-degree ,direction }, the V-degree is represented by 

(degree of X-axis component, degree of Y-axis component), and the range of V-degree is 

from 0 to 2; the direction is one of { LU, LD,RU,RD }. We list some examples of updating 

Velocity in Fig. 5-21. After updating Velocity, Velocity will be sent to MOTOR 

module for updating robot’s location.  

  The introduction for all variables in VELOCITY module is shown in Table 5-8. 

VELOCITY awaits Result_Acceleration from RESULT_ACCELERATION, and then 

updates the updated value of Velocity. The interface Velocity connects to MOTOR 

module for informing robot’s velocity. 

Example 

 

Result_Acceleration {(2,0),RU/RD} {(1,2),RU} {(2,2),RU} {(2,2),LD} 

Velocity before updating  

(current state) 

{(2,2),LU} {(2,1),LD} {(0,2),LD/RD} {(1,1),RU} 

Velocity after updating 

(next state) 

{(0,2),LU/RU} {(1,1),LU} {(2,0),RU/RD} {(1,1),LD} 

Fig. 5-21  Some examples of updating Velocity 

External Receive from Functionality 
Result_Acceleration RESULT_ACCELERATION Inform the acceleration determined by 

RESULT_ACCELERATION 

Result_Acceleration_flag RESULT_ACCELERATION Inform whether the updated value of degree of 

Result_Acceleration is non-zero at this 

update round 

Interface Send to Functionality 
Velocity MOTOR Inform the velocity for MOTOR  



 

 47

Private  Functionality 
VELOCITY_state  Store current state of VELOCITY 

Table 5-8. All variables in VELOCITY module 

Comment for UNITY fragment of VELOCITY 

 
Fig. 5-22  UNITY fragment of VELOCITY：  

First, set initial value for variables of VELOCITY. The updated 
value of Velocity is computed by external function 
Update_Velocity() 

 

Line 2：Set initial value for VELOCITY 

Line 4-7：The updated value of Velocity is computed by 

external function Update_Velocity() 
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  Fig. 5-23  Fragment of external function Update_Velocity() 

Line 1-3： Update_Velocity() receives Result_Acceleration and Velocity 

as parameters 

Line 6-12： If Velocity_type and Result_Acceleration_type are both LU, 

we update Velocity by combining with Result_Acceleration, 

and Velocity_type will still be LU.  

Line 14-15：Because the range of V-degree is from 0 to 2, If the degree of Velocity is 

larger than 2 after combination with Result_Acceleration,the degree of 

Velocity will be set to 2    

Line 28：Return the value of local variable Velocity. The return 

value will be assigned to interface variable Velocity 

in VELOCITY module. 
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7. MOTOR： 

 
      Fig. 5-24  MOTOR module 

As shown in Table 5-1,MOTOR module has two functionalities： 

 In each round, MOTOR awaits Velocity from VELOCITY, and then update 

Location. 

 Set Location_updated flag to true while updated value of Location isn’t equal to 

latched value of Location 

In MOTOR module, the interface variable Location stores the location 

of the robot, the initial value of Location represents the initial location of the robot. 

Location_updated will be set to true while Location is updated. Once receiving 

Velocity from VELOCITY, MOTOR module will update Location according to 

Velocity, and Location_updated will be set to true. We list some examples of 

updating Location in Fig. 5-25. 

  The introduction for all variables in MOTOR module is shown in Table 5-9. MOTOR 

awaits Velocity from VELOCITY, and then updates the updated value of Location. The 

interface Location connects to SONAR module for informing robot’s location. 

Example 

    
Velocity {(2,2),RU} {(2,2),RD} {(1,2),LU} {(2,1),LD} 

Location before updating  (18,18) (18,18) (18,18) (18,18) 

Location after updating (20,20) (20,16) (17,20) (16,17) 

Fig. 5-25 Some examples of updating Location 
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External Receive from Functionality 
Velocity VELOCITY Inform the updated value of Velocity at this 

update round. 

Interface Send to Functionality 
Location SONAR Inform the location of robot for SONAR 

Location_updated SONAR Inform whether the updated value of Location 

is updated at this update round 

Private  Functionality 
MOTOR_state  Store current state of MOTOR 

Table 5-9. All variables in MOTOR module 

 

Comment for UNITY fragment of MOTOR 

 
 Fig. 5-26  UNITY fragment of MOTOR：  

First, set initial value for variables of MOTOR at initial round, and update the 
updated value of Location and Location_updated at each update round. 
 

Line 1-2：Set initial value for MOTOR 

Line 5-8： If the updated value of Velocity isn’t (0,0), we update the updated value of 

Location according to Velocity. 

Line 11-14： If the updated value of Veloctiy is (0,0), we remain the latched value of 

Location, and set the updated value of Location_updated to false. 
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5.3 Property To Be Verified：“No_Collision” Property 

  The “No_Collision” property is shown as Fig. 5-27. We had discussed how to describe 

properties with Temporal Logic in Section 3.3.1, the two parts of Temporal Logic are “The 

propositional logic formula” and “The temporal connectives”, the two parts of 

“No_Collision” are listed in Table 5-10. If the behaviors of robot satisfy the “No_Collision” 

property, it means the robot won’t collide with walls or obstacles in the environment.    

 
     Fig. 5-27  “No_Collision” property checked by OMocha 
 
Line 1： The temporal connectives of “No_Collision” property is “AG”, it means that all 

reachable states will satisfy the propositional logic formula.   

Line 2-5： Check whether the robot will collide with walls. 

Line 6-9： Check whether the robot will collide with obstacles. 

Table 5-10  “No_Collision” property 

The propositional logic formula    (6'b001000 < Location_X)         

&& (Location_X < 6'b100110)                         

&& (6'b001000 < Location_Y) 

&& (Location_Y < 6'b100110)                              

&&(~(Location_X < 6'b001101 && 6'b100001 < Location_Y) )   

&&(~(6'b100001 < Location_X && 6'b100001 < Location_Y) )   

&&(~(Location_X < 6'b001101 && Location_Y < 6'b001101) )   

&&(~(6'b100001 < Location_X && Location_Y < 6'b001101) )   

The temporal connectives AG 
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Chapter 6  
Experiment Results and Analysis 
  In Section 6.1, we will explain the three approaches applied to the experiment, they include 

(A) state hiding, (B) Coarse Sampling of States, and (C) elimination of some checking cases. 

In Section 6.3, we will check the “No_Collision” property by OMocha, and show the 

checking results of some different cases. In Section 6.4, we will analysis the checking results. 

6.1 State Hiding Applied to the Experiment 

            Fig. 6-1  Some variables encapsulated into external function 

  According to encapsulation principle and the experiment characteristics, we can combine 

SONAR and FORCE_ACCELERATION modules into EXTERNAL1 module, and combine 

RESULT_ACCELERATION and VELOCITY modules into EXTERNAL2 module. The After 

encapsulation procedure, the full structure of the experiment is shown as Fig. 6-1. 

  After encapsulation, some variables are moved out from UNITY-based programs, these 
variables include SMAP_obstacle, SONAR_flag, Result_Acceleration and 
Result_Acceleration_flag. 
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6.2 Elimination of Some Checking Cases Applied to the 
Experiment 
 
6.2.1 Principle 

     
          Fig. 6-2  Wandering Region 
                 (a) A point where there is no obstacle in detection range. 
                 (b) The full set of points where there is no obstacle in detection range  
                    is called “wandering region” 

  In Fig. 6-2, we show a point where there is no obstacle in detection range in (a), and show the 

full set of points where there is no obstacle in detection range in (b). We call the range of the full 

set of points “wandering region”. When the location of the robot is in wandering region, there are 

some non-deterministic choices during update round. For example, when the robot is in wandering 

region and its location is (34,56), there is no obstacle in its detection range, so 

Random_Acceleration produced randomly will be stored into Result_Acceleration, 

the number of all possible combination of Random_Acceleration is 721; Therefore, the 

number of next states for the state( Location is (34,56) ) is 72. 

We can observe that the number of all reachable states greatly grow up while the robot moves 

into wandering region. In order to reduce the number of all reachable states we present an approach 

to eliminate parts of checking cases, the approach will be explained in detail below.  

                                                 
1  Random_Acceleration_X is one of {0,1,2}, Random_Acceleartion_Y is one of {0,1,2}, 

Random_Acceleration_type is one of {LU,LD,RU,RD}, Random_Acceleration_flag is one 
of {true , false}, therefore the number of all possible combination is 3*3*4*2=72 
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6.2.2 Approach for Smart Elimination 

We can assume that when the robot wanders aimlessly in wandering region it will never collide 

with obstacles. Therefore, if we can eliminate parts of checking cases during wandering in 

wandering region, we will greatly reduce the number of all reachable states. An example for full 

verification procedure is shown as Fig. 6-3. According to above-mentioned assumption, we know 

the parts of full verification procedure between states in wandering region can be eliminated. In Fig. 

6-4, the parts of full verification procedure between states in wandering region are marked with 

dotted circle, and the left parts of full verification procedure which still need to be checked are 

marked with solid circle. The parts of full verification procedure marked with solid circle are 

approximately equivalent to another partial verification procedure shown as Fig. 6-5. 

 

      Fig. 6-3  An example for full verification procedure  

 
 Fig. 6-4  The parts of full verification procedure marked with dotted circle can be eliminated, 

and the left parts of verification procedure marked with solid circle still need to be c 
checked. 
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  Fig. 6-5  The partial verification procedure is the collection of checking cases. 

 

The partial verification procedure is the collection of checking cases. Each checking case begins 

from a state in wandering region, and then traces through some states which have no obstacle in 

detection range, and terminates when reaching a state in wandering region again. 

All beginning states of these checking cases include：(1)Initial state and (2) parts of states in 

wandering region, which can make the location of next state is not in wandering region. The all 

possible velocities of a state in wandering region which can make the location of next state is not in 

wandering region is shown as Fig. 6-6.  Three examples of checking cases are shown as Fig. 6-7.  

 

Fig. 6-6 Outward velocities make the robot leave the wandering region 
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Fig. 6-7  Three examples of checking cases 

6.2.3 Approach for Partial Elimination 

     

     Fig. 6-8 All velocities of a state in wandering region 

In Section 6.2.2, we had explained the smart elimination shown as Fig. 6-6, the smart elimination 

only considers the all possible velocities of a state which can make the location of next state is not 

in wandering region. The overhead of smart elimination is that we have to find out the all possible 
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velocities of a state in advanced. If we don’t want to pay the overhead for finding out the all 

possible velocities of a state in advanced, we can directly consider all velocities of a state, but we 

will check more redundant states. An example of all velocities of a state is shown as Fig. 6-8. 

6.2.4 Issue： Unrealistic Cases 

  In Section 6.2.2, we had explained the approximately equivalent partial verification 

procedure. The reason why we emphasize the keyword “approximately” is that the size of 

partial verification procedure is greater than or equal to the size of the parts of full verification 

procedure marked with solid circle. Because some checking cases are not in the parts of full 

verification procedure marked with solid circle, the approach for eliminating parts of full 

verification procedure has to handle some overhead for these unrealistic cases. The reason 

why the result still has great improvement is that the number of states saved by eliminating 

parts of full verification procedure marked with dotted circle are much more than the number 

of states produced by unrealistic cases.  

6.3 Coarse Sampling of States 

         
 Fig. 6-9 Only half points of wandering region will generate random acceleration 

In the experiment, it’s not necessary to generate random acceleration every round while the 

robot moves into the wandering region. We can simulate the situation by only generating 
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random acceleration at half points of wandering region. It will make the frequency of 

generating random acceleration in wandering region reduces to 50%.  

In Section 6.2.1, we had referred to that the number of all reachable states greatly grows up 

while the robot moves into wandering region. Therefore, to lower the frequency of generating 

random acceleration in wandering region will reduce the number of all reachable states of the 

experiment. 

6.4 Checking Results of the Experiment Applied Different 
Approaches   

In this section, we will show the checking results of the experiment applied different 

approaches. We discuss four cases applying different approaches to the experiment.  

All parameters of the experiment are listed as Table 6-1： 

MAP 

 Map size: 60 x 60 
( from (15,15) to (75,75) ) 

 Width of boundary buffer area: 15 

 The obstacles can only expand from 4 corners 
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Detection range 

 

Max Velocity 10 

Max Force_Acceleration  7 

Max Random_Acceleration 2 

              Table 6-1 All parameters of the experiment 

6.4.1 Case1：Only Apply State Hiding to the Experiment 

 Description：  

  In Case1, we only apply state hiding to the experiment by using external function. After 

completing the verification procedure of checking “No_Collision” property, OMocha proves 

the property “No_Collision” satisfies the behaviors of the robot. In the results, the number of 

all reachable states reduces to 27307377, and the checking time is 889 minutes.   

 Results：  
 

“No_Collision” property Satisfy 
Number of all reachable states 27307377
Checking time (minutes) 889 

 

6.4.2 Case2：Apply State Hiding and Partial Elimination of Checking Cases 

 Description：  

  In Case2, we apply state hiding and partial elimination of checking cases to the experiment. 

In the results, the number of all reachable states is 25129982, and the checking time is 62 

minutes. We can observe that to apply partial elimination of checking cases to the experiment 

will not obviously reduce the number of all reachable states, but the checking time greatly 

reduces to 62 minutes.  
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 Results：  
 

“No_Collision” property Satisfy 
Number of all reachable states 25129982
Checking time (minutes) 62 

  

6.4.3 Case3：Apply State Hiding and Smart Elimination of Checking Cases 

 Description：  

  In Case3, we apply state hiding and smart elimination of checking cases to the experiment. 

We can expect the results will be better than Case2, because smart elimination can eliminate 

more checking cases than partial elimination, and the results are consistent with our 

expectation. In the results, the number of all reachable states is 12850105, and the checking 

time is 35 minutes. The unrealistic cases are 89.5 % of all checking cases.  

 Results：  
 

“No_Collision” property Satisfy 
Number of all reachable states 12850105
Checking time (minutes) 35 

 
All checking cases  177188 
Checking cases in full verification procedure 158654 
Unrealistic cases (%) 89.5 

6.4.4 Case4：Apply State Hiding and Coarse Sampling of States 

  Description：  

  In Case4, we apply state hiding and coarse sampling of states to the experiment. In the 

results, the number of all reachable states is 14722810, and the checking time is 489 minutes. 

The results are only better than Case1, and much more inefficient than Case2 and Case3.  
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 Results：  
   

“No_Collision” property Satisfy 
Number of all reachable states 14722810
Checking time (minutes) 489 

 

6.5 Analysis 

Observations： 

(1) In all cases, the “No_Collision” property satisfy the behaviors of the AFSM-based RRCS 

(2) The number of all reachable states reduces greatly by using smart elimination of checking 

cases.  

(3) By observing the relationship between the results of Case1 and Case3, we can find that the 

improvement of the checking time is greater than the improvement of the number of all 

reachable states. 

(4)In case3, the checking time of verification procedure is the best of the four cases. The 

performance is still reasonable after using state hiding and smart elimination of checking 

cases. It proves that formal verification is applicable for an AFSM RRCS. 

Explanation： 

(1)： For observation (1) 

 The two approaches State hiding and eliminating some checking cases don’t change the 

behaviors of the RRCS. They just reduce the number of all reachable states of the RRCS 

checked by OMocha. 

(2)： For observation (2) 

  The set of checking cases is chosen according to the behaviors of the RRCS, we can make 

sure that the set includes all meaningful parts of verification procedure. Therefore, we won’t 

miss any meaningful parts of verification procedure, and the percentage of redundancy is very 

low.  
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(3)： For observation (3) 

  During verification procedure of OMocha, the possibility of tracing an old state is rising 

continuously. Therefore, the growing rate of tracing new states is decreasing continuously.     

Summary： 

  Approach1  Approach1,2 Approach1,3 Approach1,4 
Results 27307377(889) 25129982(62) 12850105(35) 14722810(489) 
Table 6-2 Checking results comparison 
    ( Approach1：State hiding 
     Approach2：Partial elimination of checking cases 
     Approach3：Smart elimination of checking cases 
     Approach4：Coarse Sampling of States          ) 

 

                   Fig. 6-10 Checking results comparison2 

In case1, we can make sure the robot won’t collide with walls or obstacles through property 

checking, but the performance of verification procedure is not good enough to handle more 

complicated system.  

After using smart elimination of checking cases in case3, the number of all reachable states 

and checking time improve greatly ( 27307377(889mins)  12850105(35mins) ) . Therefore, 
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the performance of verification procedure becomes more reasonable.  
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Chapter 7 
Conclusion 
7.1 Accomplishment 

  In this thesis, we reach two accomplishments listed below： 

(A) Check the Behaviors of the AFSM-based RRCS by Model Checker  

After rebuilding the AFSM-based RRCS by UNITY-based specification language, we 

describe the “No Collision” property by Temporal Logic, and check whether the behaviors of 

the RRCS satisfy the property by model checker, OMocha. After verification procedure 

completed by OMocha, we can make sure the robot will never collide with obstacles or walls 

in two-dimensional environment.   

(B) Improve the Performance of Verificaiton Procedure 

Although we had proved the robot will never collide with obstacles or walls, the 

performance of verification procedure is not efficient enough, and it spends (> 889) minutes 

checking the “No Collision” property for the experiment. In order to improve the performance 

of verification procedure, we present three approaches to reduce the checking time of 

verification procedure. The three approaches are：(1) Using external function for state hiding, 

(2) Elimination of unnecessary checking cases, and (3)Coarse sampling of states. After 

reducing the checking time by the three approaches, the best results show that the verification 

procedure can be completed in 35 minutes. 
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7.2 Future Work 

  Based on the accomplishments of this thesis, there are still some objectives can be 

researched in the future. They are listed below： 

(A) Build a more complicated AFSM-based RRCS and Check its Behaviors 

  We can construct a more complicated AFSM-based RRCS. The modules of the RRCS have 

more complicated functionalities written by external function. For example, we can construct 

a GOAL module to guide the robot to the specific destination. After constructing the more 

complicated RRCS, we check the properties of the RRCS by OMocha, and look whether the 

performance of verification procedure is still reasonable and has practicability.  

      

(B) Develop the Tools for Constructing and Checking AFSM-based RRCS 

In our research, we spend much time on constructing RRCS and revising verification 

procedure manually. If we want to encourage RRCS designers to use our methods for 

constructing and checking RRCS, we have to develop the tools which can make the procedure 

of constructing and checking an AFSM-based RRCS more easily. RRCS designers can 

combine some modules which are in library to construct an AFSM-based RRCS, and select 

the properties they want to check.   

 

(C) Design the Real Robot controlled by AFSM-based RRCS 

We can implement the AFSM-based RRCS introduced in Section 5.1 on a real robot, and 

look over whether the real robot can wander aimlessly around the environment without 

colliding with obstacles. 
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