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ABSTRACT

In this thesis, we develop a method to apply formal verification of Temporal Logic onto an
autonomous robot system controlled by Rodney Brooks’ Augmented Finite State Machine

model.

This method uses some approaches:to reduce the complexity of an AFSM-based reactive
robot control system (RRCS), sa that verification. of AFSM-based RRCS can become
applicable. These approaches Zapplied onto verification include : (1) State Space
Discretization——It is not feasible to wverify. a system on continuous space-time domain.
Therefore, before constructing an AFSM=based - RRCS we must transform the system and
environment from continuous space domain to discrete space domain. (2) External
function——BY exporting internal states and kinematic computation of the robot from the
model checker using the external function provided by OMocha temporal logic model checker.
(3) Elimination of some checking cases——Based on the properties we want to check, we can
eliminate some unnecessary checking cases which will never violate the properties.

After using above-mentioned approaches, the results show that the number of all reachable
states checked by OMocha and checking time improve greatly.

In this thesis, we reach some accomplishments listed below :

(1) Check the Behaviors of the AFSM-based RRCS by Model Checker——After constructing

the AFSM-based RRCS, we describe the “No Collision” property by Temporal Logic, and

prove that the robot controlled by the RRCS will never collide with obstacles in



two-dimensional environment.
(2) Improve the Performance of Checking Procedure——After reducing the checking time by
the three approaches, the best results show that the checking procedure can be completed in

reasonable time.

According to the accomplishments, we can prove that it’s applicable to apply verification

onto an AFSM-based RRCS.
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Chapter 1
Introduction

1.1 Project Objective

How to write modular reusable programs has always been a major challenge to the
developers of autonomous robots. Rodney Brooks of MIT proposed a new approach, called
Augmented Finite State Machines (AFSM) [1], to program reactive robot control systems
(RRCS). The AFSM approach allowed robot programmers to create program modules that
control robot behaviors and develop complex robot behaviors by the composition of these
AFSM modules.

The purpose of this work is to explore the possibility of using formal verification technique
to verify certain properties of the behaviors of AFSM controlled robots. Such a verification
technique will enable robot programmers to test or-“debug” their programs before using them
to actually control the robots. The difficulty of this attempt of formal verification lies with the
fact that robot motions are carried“out continuously.on space and time whereas formal
verification can only be applied onto systems with limited number of discrete states.
Therefore, the challenge is to properly discretize and reduce the number of states of a robot

system so that formal verification can become applicable.

1.2 Project Approach

We explore ways to apply formal verification onto AFSM programs by experimenting with
following approaches/methods.
(A) State Space Discretization

To verify a system on continuous domain is not applicable. Therefore, before constructing
an AFSM-based RRCS we must transform the system and environment from continuous

domain to discrete domain. In discretization procedure, there are two parts. (1) Time



Discretization, and (2) Space Discretization. After discretization, the number of states of the
system will reduce from infinite to finite so that formal verification can become more
applicable.
(B) Using external function to reduce number of states checked by model checker

External functions are written by high-level language(e.g. C language). For following
reasons, we can use external function to reduce number of states checked by model checker.
(1) During verification procedure, there are some system variables which are irrelevant to
behavior verification. Therefore, we can export these variables through external function in
order to reduce the number of states checked by model checker, so that the unnecessary
loading for model checker will reduce. (2) In a system, some complex computation can’t be
handled by model checker, because the purpose of model checker is for verification but not
suitable for handling complex computation. Therefore, we must export these complex
computations through external funetion.
(C) Eliminate unnecessary checking cases

Based on the properties we want t0 check, we can eliminate some unnecessary checking
cases, because this part of verification procedure will never violate the properties. The
overhead of this approach is that we must analyze the behaviors of the system in advance,
otherwise, we can’t decide which part of verification procedure can be eliminated.

After applying above-mentioned approaches, we hope that formal verification will become

applicable for a system on continuous domain originally.
1.3 Outline of Thesis

The rest of this thesis is organized as follows. In Chapter 2, we explain the AFSM-based
RRCS and Roving Robot Collision Avoidance Experiment. In Chapter 3, we introduce the

concepts of model checking for AFSM-based RRCS. In Chapter 4, we propose the approaches



of model checking for AFSM-based RRCS. In Chapter 5, the implementation of roving robot
collision avoidance experiment is described in detail. In Chapter 6, we show the results of
properties checking of the experiment, and analysis the results. The conclusion and future

work are in Chapter 7.



Chapter 2
AFSM-based RRCS and Roving Robot
Collision Avoidance Experiment

2.1 Augmented Finite State Machine (AFSM)

The chart of a modularized AFSM module is shown as Fig. 2-1. There are some states and
variables in a module. State transitions are determined according to transition functions
between states. These transition functions don’t only take current state and inputs as
parameters, but internal variables. The inputs come from other modularized AFSM modules;
The outputs of state transition are sent to other modularized AFSM modules. Transition

function of AFSM module is illustrated with'Fig. 2=2.

Inputs @"‘@ Outputs

[ Internal variables
Fig. 2-1 Modularized AFSM module
Outputs

Internal inputs
variables

Fig. 2-2 Transition function of AFSM module
2.1.1 Why AFSM?

2.1.1.1  Simple Procedure for Decomposing and Combining
Rodney Brooks thinks that control mechanism of robot resembles animals: A RRCS can be

decomposed into some independent components which has independent abilities. These



independent components composed of modularized AFSM modules interact with each other,
and therefore make up complete abilities for the RRCS. We’ll call these independent
components AFSM component .

Take human beings for example, the brain, hands, legs, and body are independent
components. Each component is composed of some parts. For instance, a hand is composed of
the skin, muscle, and bones. If we want to construct a human being by the concept of
AFSM-based RRCS, the hand will be counted in an AFSM component, and the skin, muscle,
and bones will be counted in modularized AFSM modules.

Because each AFSM module is a simple FSM, it can be handled by human being’s
capability. The simple procedure for decomposing and combining is one of the reasons why
we construct a RRCS with AFSM modules. After constructing some modularized AFSM
modules, these AFSM modules could.connect with.each other, and then they will become an
independent AFSM component. Finally, a complete RRCS is constructed with some AFSM

components. The structure of AFSM component s ilustrated with Fig. 2-3.

modulized
AFSM module
modulized

AFSM module
Inputs Outputs
L modulized
AFSM module
modulized
AFSM module

Fig. 2-3 Independent AFSM component

2.1.1.2  Time Discretization
We had explained the purpose of discretization in 1.2, the first step of discretization
procedure is Time Discretization. In AFSM, time interval between current state and next state

is a time unit (T). Therefore, the time of a system is discretized to 1T, 2T, 3T....nT. The event



which occurs at continuous time will be shifted to the closest discrete time point.

2.2 Roving Robot Collision Avoidance Experiment

After explaining the concept of AFSM, we will introduce the AFSM-based roving robot
collision avoidance experiment [1] in detail.

The experiment had been simulated in [1]. In this work, we want to rebuild it, and check
the properties of the behaviors of the AFSM-based RRCS. The implementation of the

experiment will be discussed later in Chapter 5.

2.2.1 Experiment Overview

Fig. 2-4 The chart of the experiment

In the experiment, the robot is placed on a two-dimensional environment. The robot has
some sonar sensors for detecting the environment, and has a motor for generating force to
change its velocity. The motor can generate a force which has 8 kinds of directions, and make
the robot move towards 8 kinds of directions which are {U,D,L,R,LU,LD,RU,RD}. The robot
is controlled by AFSM-based RRCS, the RRCS monitors the information detected by sonar
sensors and then decides to issue what command to motor for changing the robot’s velocity.

Whenever the location of robot changes, sonar sensors will detect the environment. If there
are some obstacles within detection range of sonar sensors, the RRCS will decide new
acceleration, velocity and then change the robot’s location to avoid collision with the

6



obstacles; if there is no obstacle within detection range, the RRCS will let the robot wander
aimlessly around in the environment.
After constructing the AFSM-based RRCS for controlling the robot, we check some

properties of the behavior of the robot by OMocha.
2.2.2 Hardware Structure of the Robot

Fig. 2-5 Hardware structure of the robot
2.2.2.1  Sonar Sensors

A sonar sensor has a detection-range within.a fixed radius. The information detected by
sonar sensors will be periodically sent to the AFSM-=based RRCS, and then the AFSM-based
RRCS can decide whether it issues a command.to-ask motor to generate a force for avoiding

collision with obstacles or not.
2.2.2.2 Motor

The motor of robot continuously wait for a command sent by the AFSM-based RRCS.
There are two kinds of commands sent by the AFSM-based RRCS. The first kind of command
is “random force” command, the “random force” command asks the motor to generate a force
which has random degree and direction, and then the force will generate an acceleration
which makes the velocity of the robot to be changed. The second kind of command is
“assigned force” command, the “assigned force” command asks the motor to generate a force
which has assigned degree and direction. Finally, the “assigned force” command will change
the velocity of the robot as well as the “random force” command.

The degree of force generated by motor has a range from 0 to Max_Force_Degree, so the

7



acceleration of robot has a range from 0 to Max_Force_Degree/M ; moreover, the degree of
robot’s velocity has a range from 0 to Max_\elocity Degree. Therefore, if the degree of
robot’s velocity has reached Max_Veloctiy Degree and then the motor will ignore the
“random force” or “assigned force” command which has the same direction as current

velocity.

2.2.3 Environment

Fig. 2-6 Environment of the experiment
The environment of the experiment is a two-dimensional space. Its shape is rectangle, and

has walls on four sides, and has some obstaeles.on-four corners.

2.2.4 Expected Behaviors of the AFSM-based RRCS

The robot which is placed on a two-dimensional environment has two main abilities. The
two abilities are sensing obstacles by sonar sensor and moving around by motor. Based on the
two abilities provided by robot, the AFSM-based RRCS wants to make the robot achieve two
main behaviors :

A. Wander aimlessly keeping to Newton’s first and second laws of motion.
B. Make the robot avoid collision with obstacles in environment.
® How to achieve the two behaviors

The first behavior can be achieved more easily. The AFSM-based RRCS can periodically
issue a command to ask motor to generate a directional force, and the direction and degree of
force are generated randomly. According to Newton’s second laws of motion, the relationship

8



between force and acceleration is “A=F/M"". Therefore, the force will generate acceleration
for the robot, and then the velocity of the robot will be changed. Finally, the robot will move
to a new location according to latest velocity.

If the motor generates a force whose degree equals to 0, the robot will keep its original
velocity keeping to Newton’s first laws of motion.

After achieving the first behavior, the robot can wander aimlessly, but it can’t avoid
collision with obstacles in environment. In order to achieve the second behavior—*“avoid
collision with obstacles”, the AFSM-based RRCS must monitor the information of the
environment detected by sonar sensors. If there is an obstacle in detection range of sonar
sensors, the AFSM-based RRCS will pass a command to ask motor to generate a force which
has a reverse direction of the obstacle, ant then the force will generate a reverse acceleration,
finally the robot will gradually keep.away from the ebstacle. Therefore, the approach can
keep the robot to avoid collision with.obstacles in-environment, and can achieve the second

behavior.

2.2.5 Properties To Be Verified
The property we want to check by OMocha'is

| Whether the robot will collide with obstacles or walls? |

The robot has the two above-mentioned behaviors can wander aimlessly around the
environment and try to avoid collision with obstacles. However, the strategy determined by
the RRCS for avoiding collision doesn’t guarantee the robot doesn’t collide with obstacles. In
the strategy for avoiding collision, the relationship between *Distance away from the
obstacles’ and ““Reverse acceleration” is the most important part.

In order to make sure the behavior of the strategy is the same as our expected behavior, we
must describe the property with Temporal Logic and check whether the strategy really makes

the robot not to collide with obstacles. The checking procedure is completed by OMocha.

1 “M” is the mass of the robot. “F” is the force generated by motor, “A” is the acceleration

9



Chapter 3
Model Checking for AFSM-based RRCS,
Concepts

After introducing AFSM and roving robot collision avoidance experiment, we’ll explain
how to verify an AFSM-based RRCS by model checker. In this section, we will explain the
principle of model checking by the verification procedure of model checker, OMocha [4]. The
introduction for OMocha is in Section 3.2.

In Section 3.1.1, we will give two examples for explaining the verification procedure. In
the two examples, we will use the formal input language for OMocha. The formal input

language for OMocha is explained in detail in Section 3.3.

3.1 Verification Procedure

The concept of verification procedure is step by step to_explore all reachable states from
initial state, and then check whether all-explored reachable states which represent the
behaviors of programs satisfy the properties.

3.1.1 Two Examples of Verification Procedure
3.1.1.1  Simple Example

Take a simple AFSM-based system shown in Fig. 3-1 as an example. The AFSM-based
system is composed of two AFSM modules. The property we want to check is “AG
((STATE_A=A2 && A B=false)]||(STATE_A=Al && A B=true))”. It means
whether “((STATE_A=A2 && A_B=false) || (STATE_A=A1l && A B=true))” is
always true from initial state to all reachable states.

The definition of initial state is the combination of all variables’ initial values of a system.
The initial state of the AFSM-based system is { STATE_A=A1, A B=false , STATE B=B1}.

According to the transition functions(update commands) of the AFSM-based system

10



described in programs, the sequential state transition of the AFSM-based system is listed as
Table 3-1. The next state of the initial state, which is also the 2™ state of the AFSM system is
{STATE_A=A2 , A_B=false , STATE_B=B1 }. Then the next state of the 2" state, which is
also the 3" state of the AFSM system is { STATE_A=Al , A B=true , STATE_B=B1 }.
OMocha will keep on exploring the next state of every state. Finally, OMocha will find out
that the 2" to the 5" states are all possible reachable states from the initial state. Then the 6"
to the 9" states repeat the value of the 2" to the 5" state, and so on. The all possible states of
the system include the initial state and all possible reachable states from the initial state.
During the procedure of exploring all possible states of the system, OMocha detects the
behaviors of the programs violate the properties at initial state. Therefore, the behaviors of the

programs don’t satisfy the properties.

3.1.1.2  Advanced Example

After understanding the simple‘example of AFSM-based system, let us consider another
advanced example. In the advanced example, transition functions (update commands) are
allowed to include non-deterministic choices. As shown in Fig. 3-2, module A has a

non-deterministic choice as follow:

[ISTATE_A = A2 -> STATE_A’:=Al; A B’:
[ISTATE_A = A2 -> STATE_A’:=A2; A B’:

true

true

If the variables’ values of module A are { STATE_A=A2 , A_B=Don’t Care } in current
state, the variables’ values of module A may be { STATE_A=AlA B=true } or
{ STATE_A=A2,A B=true } in next state. The sequential state transition of the advanced
AFSM example is listed as Table 3-2. The non-deterministic choices are provided to system
designer for simulating the random situation. In order to make the concept more clearly, we
illustrate the trace-tree of verification procedure for the advanced example with Fig. 3-3.

In Fig. 2-8, the node which has dotted circle is the state which will determine its next states
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according to the non-deterministic choices. Therefore, the trace-tree of verification procedure
for the advanced example is a multi-branch tree. However, the trace-tree of verification

procedure for the simple AFSM example is a single-branch tree as shown in Fig. 3-4.

Module A Module B
STATE_A STATE B
PROGRAMS
type StateAType={Al1,A2} type StateBType={B1,B2}
module A module B
internal A B : bool external A B : bool
private ST_ATE_A : StateAType private STATE B : StateBType
atom TransitionA atom TransitionB
init it
[] true -> STATE A:=Al; [] true -> STATE_B:=Bl:
A B:=false update
updatc []STATE_B =Bl & A_B = true -=
[ISTATE A=Al ->STATE A’ =A2; _ STATE B' :=B2
A B = false [ISTATE B=B2 & A B=true->
[ISTATE_B = A2 ->STATE B’ :=Al; STATE B =Bl
A B =true
PROPERTIES
AG ((STATE _A=A2 && A B=false) || (STATE A=Al && A_B=true))

Fig. 3-1. Simple example of AFSM-based system

variable | STATE A A B STATE B

Lo state
initial state 1 AL False a1
A2 False B1
_ Al True Bl
all reachable sfates A2 False B2
Al True B2
6 A2 False B1

Table. 3-1. Sequential state transition of simple AFSM-based system

12



Module A Module B

STATE A STATE B

PROGRAMS

type StateBType={B1,B2}

type StateAType={A1,A2}

module A
internal A_B : bool module B
private STATE_A : StateAType external A_B : bool

private STATE B : StateBType
atom TransitionA

init atom TransitionB
[] true -= STATE A:=Al; it
A B:=false [] true -=> STATE B:=Bl;
update - update
[ISTATE A=Al ->STATE A" =A2; [ISTATE B=BIl & A_B=true ->
- A B = false STATE B’ :=B2
[JSTATE A =A2->STATE A’ :=Al; [ISTATE B=B2 & A_B = true->
A B =true STATE_B" =Bl
[ISTATE A=A2->STATE A’ :=A2;
A B =true
PROPERTIES

AG ((STATE_A=A2 && A B=falsc) || (STATE_ A=Al && A_B=truc))

Fig. 3-2. Advanced exarﬁp'le of AFS'I\/_I—based system

variable | STATE/A | A B STATE B
o state
initial stafe 1 AL ol -
@ Fals Bl
/ Al True Bl
all reachable states n2 | Fals B2
Al True B2
6 % False Bl
\@ 2 True Bl
8 Al True B2
9 @ False Bl

Table. 3-2. Sequential state transitions of advanced AFSM-based system
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STATE_A=Al
[ A_B=false ]
_ STATE _B=BI
" STATE_A=Al !
| A_B=false ] —
“._ STATE_B=Bl ./ STATE_A=A2
~— A_B-false )
‘. STATE B=B1_/
4} — -
\|-\|| A=A2 - v -
A B=fals¢
STATE B=BI T STATE A=A
\ A_Betrue
‘_ STATE B=B1 _/
STATE A=Al ™, STATE A=A2 [}
A_B=true A_B=true T
“_ STATE B=BI STATE B=B1 STATE_A=A2™,
— \ A_B=f
- ‘_ STATE B=B2 /
STATE_A=A2 STATE A=Al STATE_A ¥
A _Befalse A_Betrue A_Betrue T
STATE_B=B2 STATE B=B2 / STATE B=B STATE A=Al ™,
\ A_B=true
T ) \_ STATE B-B2 /
~ STATE_A=A1 STATE_A=A2" /" STATE_A=AZ™ /" STATE_A=AIT, STATE_A=A2 R
| A Beiue ) A_B=truc | A_B=false [ A Betrue ) \_Be=true - =
STATE B=B2 ./ STATE B-B2  SraE Bt A\ STATE B-B1/ STATE_B=BI -“\T;‘;",II*‘ A2
) } I T \_ STATE B=B1_/
Fig. 3-3 Fig. 3-4

Fig. 3-3. The trace-tree of verification procedure of advanced example. The node
which has dotted circle is‘the state which will determine its next state
according to non-deterministie.choices.

Fig. 3-4. The trace-tree of verification‘procedure of simple example

3.2 Model Checker : OMocha

The model checker chosen for our‘research is OMacha [4]. The formal input language for
OMocha includes two parts: The first part is programs described by UNITY-based
specification language [2], and the second part is properties described by Temporal Logic [5].
After the formal input language is fed into OMocha, OMocha will check whether the
behaviors of the programs satisfy the properties. If the behaviors of the programs violate the
properties, OMocha will show one counterexample. Otherwise, it’ll show the behaviors of the
programs satisfy the properties.

. In Section 3.3, we’ll introduce the formal input language for OMocha.

3.3 Formal Input Language for OMocha

3.3.1 Programs Described by UNITY-based Specification Language

(A) Introduction

14



In OMocha, the programs are described by UNITY-based specification language. There are

two main reasons about why it uses UNITY to describe the programs as follows :

(1) UNITY could represent the relationship between current state and next state, what is
called transition function. Therefore, we could describe an AFSM-based RRCS by
UNITY.

(2) In order to operation in coordination with OMocha. In OMocha, the only data types can
be defined are cyclic integer and boolean, and the syntax and semantics of UNITY can
provide cyclic integer (e.g., ““Az bit[5]”, the range of cyclic integer A is from 0 to

31).

(B) Syntax and Semantics
There are two parts in programs:
(1)Module Description
In the first part of programs, we describe all AFSM modules in module description. For
describing a module, it includes two. necessary parts: variables definition and atoms

definition.

Module FXAWPLE _ _ _ _ _
| “external A,B: bit[2] |
| interface C,D: bit[2] I
| private STATE variables definition

[ atom TEST atoms definition !
| controls STATE,C,D [
| reads A |
| awaits B I
| init |
| [] true = STATE := init; C := 1; D :=1 |
| update I
: [] STATE = init -> STATE' = start: :
| I

Fig. 3-5. Module description
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| Variables Definition |

In variables definition, there are three kinds of variables can be defined: external, interface,
and private.
External variables-------- The input ports of AFSM module, they receive data from other
AFSM modules’ interface variables.
Interface variables-------- The output ports of AFSM module, they send data to other AFSM
modules’ external variables.
Private variables-------- The local variables of AFSM module, they don’t connect with other
AFSM modules.

Three kinds of data types which can be defined for above three kinds of variables are

“cyclic integer”, “boolean” and “enum”.

| Atoms Definition |

In atoms definition, we describe the init action executed during initial round, and the
update action executed during each update round. The initial and update action are specified
by the keywords 1nit and update. There are some init commands in initial action, and
there are some update commands in update action. An example for atoms definition is shown

as Fig. 3-6.

atom EXAMPLE
control STATE, A initial action

up date action

e T

Fig. 3-6. Example for atoms definition
In each update round, every variable x has two values. The value of x at the beginning of

the round is called the latched value, and the value of x at the end of the round is called the
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updated value. We use unprimed symbols, such as X, to refer to latched values, and primed
symbols, such as X, to refer to the corresponding updated values.

The updated value of (N-1)th round is equal to the latched value of Nth round. The latched
value of x is also the current state of x, and the updated value of x is also the next state of x.
The relationship between latched value (current state) and updated value (next state) during

neighbor update rounds is shown as Fig. 3-7.

Initial round 1st update round | 2nd update round
updated value latched value |updated value | latched value |updated value | latched value
(next state) (current state) | (next state) [(current state) | (next state) | (current state)

Fig. 3-7. The relationship between latched value and updated value during neighbor
update rounds.

Let us look the example shown in-Fig; 3-6, the up;lated value of STATE and A are initand 1
at initial round. According to the:update command In upd_ate action, if the latched value of
STATE and A are init and 1, the updated value of them will be set to start and 2. Therefore,
the updated values of STATE and A are start.and 2 at 1% update round. Update commands
which determine the relationship between latched values and updated values, can regard as

transition functions which determine relationship between current state and next state.

(2) Module Connection

After all AFSM modules are described in module description, we need to describe the
connection relationship between these AFSM modules. An interface variable can connect with
some external variables of other AFSM modules which have the same name as the interface
variable. An external variable can only connect with an interface variable of another AFSM

module which has the same name as the external variable.
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3.3.2 Properties Described by Temporal Logic
(A) Introduction

In OMocha, the method chosen to describe the properties of an AFSM-based RRCS is
Temporal Logic.

Temporal Logic is used to represent the properties of state transitions of a system over time
domain. For instance, we want to check whether variable A is always less than 10 during all
possible states. In this case, the representation of Temporal Logic is “AG A<10”’, the meaning
of ”AG” is “always true” during all possible states from initial state. After describing the
programs of an AFSM-based RRCS by UNITY, we can describe the properties of the
AFSM-based RRCS by Temporal Logic, and the properties are what we want to check by
OMocha. When OMocha receives the formal input language including programs and

properties, it can check whether the behaviors of the programs satisfy the properties.

(B) Syntax and Semantics

Every property of a system is described by Temporal Logic. A Temporal Logic formula
consists of the propositional logic formula and temporal connectives : The propositional
logic formulas are expressions which consist of logical operators and the variables of the
system. The temporal connectives are expressions to indicate the subset of future states of the

system.

The temporal connectives are pairs of symbols:
The first member of the pair is one of

A - meaning on all paths from the “current” state, read as “inevitably”

E - meaning on at least one path from the “current” state, read as “possibly”
The second member of the pair is one of

X - meaning the next state

18



G - meaning all future states, read as “globally”

F - meaning some future state

U - meaning until

Take “mutual exclusion” as example. Suppose we are talking about two processes P1, P2
that share data. The protocol allows only one process to be in its critical section at any time.
If we want to describe the “mutual exclusion” property by Temporal Logic, the Temporal

Logic formula will be described as follow :

AG 1( Critical[P1] & Critical[P2] )

The propositional logic formula

I( Critical[P1] & Ciritical[P2])

The temporal connectives

AG

This Temporal Logic formula is true iff Ccatical[P1] and Critical [P2] won’t be

true in the meantime for all states on all paths into the future from current state.
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Chapter 4
Model Checking for AFSM-based RRCS,
Approaches

In this Chapter, we present three approaches to lower the difficulty of formal verification
for the experiment. After using the three approaches to reduce the number of states of the

RRCS and environment, formal verification can become applicable for the experiment.

4.1 State Space Discretization

A system described on the continuous domain can’t be verified by OMocha, because the
number of all possible states is infinite. Before constructing an AFSM-based RRCS we must
transform the system and environment from,continuous demain to discrete domain. Otherwise,
OMocha can’t handle it.

In discretization procedure, there are two parts. (1). Time Discretization, and (2) Space
Discretization. Time Discretization has been.explained in Section 2.1.1.2, therefore we will
only explain Space Discretization in this section. We will give two examples to illustrate the
relationship between continuous space and discrete space below.

Take a simple MAP as first example, the continuous MAP whose size is 2*2 m? is
transformed into a discrete MAP. In x-axis and y-axis, the continuous domain is partitioned
into 21 points separately (x-axis:0.1.2....20, y-axis:0.1.2....20). Therefore, the distance
between two neighbor points is 0.1m, and the size of the discrete MAP is 21*21. The

relationship between continuous and discrete MAP is shown as Fig. 4-1.
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(a) 2m

(b) (0,20)7 (20,20)

2m

(0,0) 20,0)

Fig. 4-1. (a) continuous MAP (b) discrete MAP

Then, we give another example. In Section 2.2.5, we have mentioned that in the strategy for
avoiding collision, the relationship between “Distance away from the obstacles” and “Reverse
acceleration” is the most important part. In Fig. 4-2, we illustrate the relationship between

continuous domain and discrete domain in.this example.

(a) (b)

& g : g

E 5 E 5 ".., ........

: : ]

2 4 .; 4 ... L A T .

i = : :

] 5 5 5

(E 3 E R [e [ T ,,,,,,,,

5 3 P

% 2 % 2 B G0 B aa et B0 08000Y [ Joo00500 ........

8 8 : :

§ 5 5 :

t; 1 -t; 1 R . .......

S S : :

P 2 R R S

S0 I 2 3 4 5 =0 12 3 4 35
Reverse acceleration Reverse acceleration

Fig. 4-2 (a) continuous domain (b) discrete domain

In Fig. 4-2, “Reverse acceleration” is approximately linear inverse proportion to “Distance
away from the obstacles” on continuous domain, the curve presents the relationship between
the two parameters. The number of all possible mapping relations of them is infinite, the
mapping set includes { (0, 5)..(0.5,4.5)..(3.5,1.5)..(5,0) }. After transformation, the mapping
set has only fix points on discrete domain, they are { (0,5) . (1,4) . (2,3).(3,2) . (4,1) . (5,0) }.

After discretization procedure, the complexity of a system will be simplified to the degree

can be handled by OMocha.
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4.2 External Function for Computation/State Hiding

In order to improve the capabilities which the UNITY-based programs can support, and
reduce the number of states of a system. OMocha provides the external function for system
designer. The two main advantages are listed below :

4.2.1 Computation Hiding

The semantics and syntax of UNITY are very basic and aren’t as powerful as high-level
language. For this reason, it’ll be very hard to build complicated programs of a system by
UNITY.

In order to improve the capabilities which the UNITY-based programs can support,
OMocha provides the external function for system designer. The external function is
described by C language. The UNITY which includes external function is called advanced
UNITY.

In original UNITY, the semantics and syntax can only provide basic capabilities, these
basic capabilities include :

Value assignment

Basic logic operations: and/or/not/invert

Basic arithmetic operations: addition/subtraction
Basic comparison operators: > <

Non-nested if-then-else structure

In advanced UNITY, we can pass variables into external functions, and then receive the
return value of external function by variables which defined in UNITY.
There are two examples for explaining computation hiding through external function. The

two example are listed below :
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update
[1 true -> I’ := (A%B)/C
there is not multiplication and division in

original UNTTY

A part of programs described with original UNITY

UNITY

update
] true —> D'

= pperation{A , B, C)

External function

void operation{int A, int B, int C)
[

int D;

D= (A#B}/C;

(mocha_return_1(D};

The same part described Wifh,advancei_i UNITY -

- .
Example 2 - P \ =,

update
[] true -» B' := square root of A
there 15 not sqrti) in original UNITY

A part of programs described with original UNITY

UNITY

update
] true —> B

:= square_root (A)

External function

void square_root(int A)

[
int B;
B= sqrt{A);
(mocha_return_1(B) ;

The same part described with advanced UNITY
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4.2.2  State Hiding : Reducing the Number of All Reachable States of a
System

How complicated a system can be verified by OMocha depends on the number of all
reachable states. Once the number of all reachable states of a system is greater than the
limitation of OMocha’s capability, the “out of memory” problem will occur during checking
procedure. Therefore, we have to carefully control the complexity of a system so that the
resource (memory, CPU speed...etc) of OMocha can handle the checking procedure.

The number of all reachable states of a system depends on the all possible combination of
all variables which are defined in UNITY-based programs. If we can move out some variables
which are defined in UNITY-based programs, and encapsulate them into external function,
the number of all reachable states will reduce.

But, what kinds of variables canibe encapsulated into external function ? During
verification procedure, there are some system. variables.which are irrelevant to behavior
verification. For example, in the experiment.explained in Chapter 2, OMocha only needs to
know the velocity and location of the robot whereas it deesn’t need to know the computation
of detecting environment, and determining ‘the"degree of acceleration. The variables for
detecting environment and determining the degree of acceleration can be exported to external
function.

An example of the encapsulation procedure of external function is shown as Fig. 4-3. In Fig.
4-3, the system is composed of four AFSM modules. There is one interface variable in each
module, so the total number of the variables in the system is four. According to encapsulation
principle, if a module doesn’t include some nondeterministic update commands, it can be
encapsulated into a external module. Take the system as a example, the module B, module C
and module D can be encapsulated into a external module which invokes a external function
to handle all update commands of them, the encapsulation procedure shown as Fig 4-3(c). The

module A can not be encapsulated into the same external module, because it includes one
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nondeterministic update command. After encapsulation procedure, the system reduces the
number of modules from 4 to 2, and reduces the number of variables from 4 to 2. The two
interface variables Bout,Cout are encapsulated into the external function “Ext_fun”, so model
checker doesn’t need to consider them. In some cases, reducing the number of variables by
encapsulation procedure can obviously lower the number of all reachable states of the system

and lower the running time of checking procedure, especially in a complicated system.

(a)

Module A 22Ut Module B [B2Ulsl Module C [€°Uts| Module D [Dout

Q Q | Q

Module A Module B Module C Module D
int Aout:{0,1} ext Aout: {01} ext Bout: {0,1} ext Cout: {0,1}
int Bout: {0,1} int Cout:{0,1} int Dout: {0,1}
init
[Jtrue=> Aout=0 init init init
update [1true—> Bout=0 [1true=>Cout=0 [Jtrue=>Dout=0
[I-Aout>Aout” =1 update update update
[JAout=>Aout’ =0 [lAout” —=>Bout :=1 [IBout” —>Cout’ =0 [1Cout —>Dout’ :=1
[JAout=>Aout’ =1 [I-Aout” —=>Bout' :=0 []-Bout” —=>Cout’ :=1 [[-Cout’ —=>Dout’ =0

(b)

Module External

Module A [22u% NModule B B2~ Module C €Ul ol Module D Dout,

| X o X

Module A Module B Module C Module D
int Aout: {0,1} ext Aout:{0,1} ext Bout:{0,1} ext Cout: {0,1}
int Bout: {0,1} int Cout: {0,1} int Dout: {0,1}
init
[Jtrue—> Aout=0 init init init
update [1true—> Bout=0 [1true—=> Cout=0 [Jtrue—=> Dout=0
[l~Aout=>Aout’ =1 update update update
[1JAocut=>Aocut’ =0 [JAout” —>Bout :=1 [1Bout’ —=>Cout’ =0 [1Cout’ —>Dout’ =1
[JAout=>Aout’ =1 [I~Aout” —=>Bout’ :=0 []-Bout” —=>Cout’ :=1 [I~Cout’ =>Dout’ :=0

(©)

Module External

Module A [2out Module B B2t Module C €U, Module D | {Pout,.

Module A - 0
int Aout: {0,1} 1{nt Ext_fun(int Aout)
int Bout,Cout,Dout;

init
El::;e_)Am“:U Module External ifltAout==1) Bout=1:
[jprout—)Aour' - ext Aout:{0.1} clse Bout=0;
Aout=>Aout’ ':'() int Dout: {0,1} .
> S if(Bout==1) Cout=0;
e o B init clse Cout=1;
[Ttrue—=>Dout=0
update if{Cout==1) Dout=1;
[I(Dout’ Y=Ext_fur(Aout ) e LE T

Omocha_return_1{Dout);
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Fig. 4-3. Encapsulation procedure
(@) A system is composed of four AFSM modules
(b) The module B, module C and module D can be encapsulated into a external
module
(c) The three modules will be integrated into one external module, the
UNITY-based programs of the external module and C code of external function
Ext_fun() are shown in the figure.

4.3 Elimination of Unnecessary Checking Cases

The concept of verification procedure is step by step to explore all reachable states from
initial state. Therefore this is a kind of method of exhaustion. However, according to the
properties we want to check by OMocha, we can eliminate some unnecessary checking cases,
because this part of checking cases will never violate the properties. Take the experiment
explained in Chapter 2 as example. ;The robot will never collide with obstacles while it
wanders aimlessly in the range which has no obstacles. Therefore, OMocha can eliminate the

part of checking cases.
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Chapter 5
Implementation of Roving Robot Collision
Avoidance Experiment

In this Chapter, we will present how to construct the AFSM-based RRCS and environment
in the experiment with UNITY, and explain the AFSM-based RRCS in detail.

We have explained the chart of an AFSM module in Section 2.1, and explained how to
describe the programs of an AFSM module has explained in Section 3.3.1. These two sections
are the most important foundations for this section.

In Section 5.1, we will show the full structure of the experiment, and then briefly introduce
these AFSM modules in the experiment. In Section 5.2, we introduce every AFSM module in
detail, and how these AFMS modules eonnect with 6th'er modules and work in coordination.
In Section 5.3, we explain the “No_CoIIisioné’ .prolperty described by Temporal Logic. The

checking results of the experiment-are explained in Chapter 6.

5.1 Full Structure of the Experiment

environment AFSM-based RRCS

SMAP_obstcle

SONAR_flag

FORCE_
ACCELERATION ;
orce_A

RESULT_ S y
AACCELERATION [y accetcrsiion g VELOCITY TMOTOR

1 RANDOM_
ACCELERATION

Fig. 5-1 Full structure of the experiment
The full structure of the experiment is shown as Fig. 5-1, the AFSM-based RRCS is
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composed of 6 AFSM modules, and environment is composed of 1 AFSM module. These

modules are listed in Table 5-1 :

Module name Module figure Functionality
® Set the position of obstacles and walls into
MAP_walll~4
MAP_obstaclel~4 L
MAP . MAP_walls and MAP_obstacles at initial round.
MAP
® Provide the map of environment to other modules
through interface variable
MAP walll -4 SMAP obstacil @ 1N €ach round, SONAR reads Location_updated
MAP_obstaclel~4 -
SONAR SONAR_flag from MOTOR module, and then SONAR detects the
Location
Location_updated | | SONAR state environment and produces the robot centered map of
SONAR obstacles and walls
®_Provide the robot centered map stored in
SMAP_obstacle to FORCE_ACCELERATION
and RANDOM_ACCELERATION modules.
I Foree_Aceclertion | @ |pneach round, FORCE_ACCELERATION awaits
' obstacle
— ™| rorce- _
SONAR flag | ACCELERATION | Foree_Aceleration fla - robot centered map of obstacles from SONAR
FORCE _ ™

ACCELERATION

FORCE_state

module, and then compute
Force_Acceleration for

RESULT_ACCELERATION module

RANDOM _

ACCELERATION

SMAP_obstacle RANDOM

ACCELERATION

RANDOM_state

Random_Acceleration

Random_Acceleration_{

@ [n each round, If there is no any obstacle in detection
range(the updated value of SMAP_obstacle is
{(0,0),LU} ), RANDOM_ACCELERATION module
produces a random Random_Acceleration for

RESULT_ACCELERATION module.
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Force Acceleration

Force_Acceleration_flag

Result_Acceleration

® |n each round, RESULT_ACCELERATION awaits

RESULT_
Random_Acceleration | ACCELERATION| - Force_Accelerationand
Random_Acceleration flag
RESULT_ RESULT state - . .
Random_Acceleration, and determine which
ACCELERATION
one to output as Result_Acceleration for
VELOCITY module
Result_Acceleration Velocity ® In each round, VELOCITY awaits
—] ———
Result Acceleration flag VELOCITY |velocity flag  pagy| t_Acceleration from
VELOCITY VEL_state
- RESULT_ACCELERATION, and then update
Velocity.
Velocity Location ® In each round, MOTOR awaits Velocity from
Velocity. flag MOTOR |Locationupdated | \/) OCITY, and then update Location.
y_
MOTOR MOTOR sare ®_SetlLocation_updated to true while updated

value of Location isn’t equal to latched value of

Location

Table 5-1 Brief introduction for 7 AFSM-modules

5.2 Introduction for each AFSM Module in detalil

1.

As shown in Table 5-1,

MAP:

MAP

MAP walll~4
MAP obstaclel~4

Fig. 5-2 MAP module
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MAP module has two functionalities:




®  Set the position of obstacles and walls into MAP_wal Is and
MAP_obstacles at initial round.

®  Provide the map of environment to other modules through
interface variable

The MAP module is for simulating the environment. In MAP module, we set the position of
obstacles and walls in environment map at initial round. The representation of obstacle or wall
is { position , direction }. The position is represented by (position of X-axis ,position of
Y-axis), and the direction includes four kinds of directions, which are
{LU(left-up),LD(left-down),RU(right-up),RD(right-down)}. In Fig. 5-3, we list some examples to

illustrate the usage of the representation.

Example I
of wall (v=8)
(X=8) {X=34)
Representation | {(8,0),LU/LD } { (34,0),RU/RD } ' | {(0,8),LD/RD } {(0,34),LU/RU }
Example o &
of obstacle {212 3012)
Representation | { (12,30), LU } {(1212),LD} {(30,12),RD} {(30,30), RU}

Fig. 5-3 Some examples for the representation of MAP_obstacle/MAP_wall
Take the MAP1.0 shown in Fig. 5-4 as example of environment. The position of walls are
{8,0},LU},{(38,0),RU},{(0,8),LD},{(0,38), RU }, and the position of obstacles
are { (12,12) ,LD },{ (34,12) , RD },{ (12,34) , LU }{ (34,34) , RU }. According to the
representation, we can set the values of MAP_obstacles and MAP_wal Is. The interface
variables MAP_obstacles and MAP_wal I's will be sent to SONAR module.

The introduction for all variables in MAP module is shown as Table 5-2, the interface
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variables MAP_obstaclel-4 and MAP_wall11-4 will connect to SONAR module for
informing the map of environment.

The figure and features of MAPL1.0 is shown as Fig 5-4. The MAP 1.0 is very simple. It is a
two-dimensional square whose size is 30*30, and the obstacles can only expand from 4
corners. Because there is only “unsigned ranged integer” data type in OMocha, we reserve the
boundary buffer area around the environment. The reason is in order to avoid the appearance

of negative integer in intermediate results during operations.

Interface Send to Functionality
MAP_walll~4 SONAR | The position of the walls
MAP_obstaclel~4 | SONAR | The position of the obstacles

Private Functionality
MAP_state Store current state of MAP

Table 5-2  All variables in MAP.module

MAP 1.0 . Features of MAP1.0
(0.46) (46.46)
(8,38) (38.38) -
J L ®.  Mapsize: 30 x 30
(12.34) (34.34)

(from(8,8) to (38,38) )

® \Width of boundary buffer area: 8

A_T,lz) (34,12 ® The obstacles can only expand from 4

(8.8) (38.8) corners

(0.0) (46,0)

Fig.5-4 MAP1.0

Comment for UNITY fragment of MAP

init
[] true -= MAP_walll _X:= 6'b001000; MAP_walll_Y:=6'b000000; MAP_ walll _type:=LU; -- { (8,0), LU}

MAP_wall2_X:= 6'b100110; MAP_wall2_Y:=6'b000000; MAP_wall2_type:=RU; -- { (38.0) ,RU }
MAP_wall3_X:= 6'b000000: MAP_wall3_Y:=6'b001000; MAP_wall3_type:=LD; --{ (0.8) ,LD }
MAP_wall4_X:= 6'b000000; MAP_walld_Y:=6'b100110; MAP_walld_type:=LU; --{ (0,38) , LU }
MAP_obstaclel_X:= 6'b001100; MAP_obstaclel_Y:=6'b100010; MAP_obstaclel_type:=LU; -- { (12,34), LU }

R=-- B B LV N PURY R

MAP_obstacle2:X:= 6'b100010; MAP_obstacle2_Y:=6'b100010; MAP_obstacle2_type:=RU: -- { (34,34), RU }
MAP obstacle3 X:=6'b100010; MAP_obstacle3 Y:=6'b001100; MAP obstacle3 type:=RD: -- { (34,12) ,RD |}
MAP_obstacled X:= 6'b001100; MAP_obstacled_Y:=6'b001100; MAP_obstacled_type:=LD - {(12,12), LD }

Fig. 5-5 UNITY fragment of MAP : Set position of walls and obstacles at initial round

31



In the UNITY fragment of MAP shown as Fig. 5-5, we set position of walls and obstacles
into MAP_obstacles and MAP_wal ls.

Line 1 : The initial action of atoms is specified by the keywords init.

Line 2-9 : Set the value of MAP_obstacles and MAP_walls.

Line 4 :  The position of MAP_wal 13 is (0, 8), and the direction is LD.

2. SONAR:

=

b Ll e SMAP obstacle

MAP obstaclel~4 >
- SONAR flag

Location >

>

Location_updated SONAR_state

Fig. 5-6 SONAR module
As shown in Table 51, SONAR module has two functionalities:
® In each round, SONAR reads Location._updated flag from MOTOR module,
and then SONAR detects the environment and produces the robot centered map of
obstacles and walls
® Provide the robot centered map stored in SMAP_obstacle to

FORCE_ACCELERATION and RANDOM_ACCELERATION modules.

SONAR module is the module to simulate the behavior of sonar sensor on the robot. It
receives the map of environment from MAP module and location of robot from MOTOR
module. After receiving above external variables from MAP and MOTOR module, SONAR
module will produce a robot centered map of obstacles and walls according to the detection
range of sonar sensor. The detection range of sonar sensor is a robot centered range whose
size is 16x16, and for every quadrant the size is 8x8. The figure of detection range is shown as
Fig. 5-7.
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8 X8

Fig. 5-7 Detection range

The information of the robot centered map of obstacles and walls is stored in the interface
variable SMAP_obstacle, and the SMAP_obstacle will be sent to
FORCE_ACCELERATION and RANDOM_ACCELERATION modules.

The representation of SMAP_obstacle is { distance ,direction }, the distance in the
representation are represented with the distance away from the obstacle or wall for X-axis and
Y-axis separately. In Fig. 5-8, we list.ssome’examples to illustrate the usage of the

representation for SMAP_obstacle.

Example o . o | T -

representation {(4,5),RU} {(2,3),LD} {(0,5),LD/RD} {(6,0),LU/LD}

—

5

Example o | WTreT L 2 ’
E— _EN
representation {(0,5),RU} {(6,5),LD} {(4,4),RU} {(4,5),LD}

Fig. 5-8. Some examples for the representation of SMAP_obstacle

The introduction for all variables in SONAR module is shown in Table 5-3. In each round,

SONAR module reads MAP_obstaclel-4 and MAP_wall1-4 from MAP, and reads
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Location and Location_updated from MOTOR, and then it updates the updated
value of SMAP_obstacle and SONAR_Tflag. The interface SMAP_obstacle and
SONAR_Tflag connect to FORCE_ACCELERATION and RANDOM_ACCELERATION
modules for informing the robot centered map of obstacles and walls. The private variable

SONAR_state is for storing the state of SONAR module.

MAP_walll~4 MAP The position of the walls

MAP_obstaclel~4 MAP The position of the obstacles

Location SONAR Location of the robot

Location_updated SONAR Inform whether the robot changes its location at

last update round.

Interface Send to Functionality
SMAP_obstacle FORCE_ACCELERATION Inform the robot centered map of obstacles and
RANDOM_ACCELERATION: | walls
SONAR_flag FORCE_ACCELERA:FIO_N Inform whether SMAP_obstacle is updated at
RANDOM_ACCELERATION: | thisupdate round.
Private Functionality
SONAR_state - .5:_-:- ~ I Store cgrl‘elnt state of SONAR

Table 5-3 AI-'I'-Vari-_éb-itlés _i.ﬁ.'ézo:NAR"module
Comment for UNITY fragment of SONAR V

1 init

2 [] true == SMAP obstacle X:=6b000000; SMAP obstacle Y :=6'b000000;

3 SMAP_obstacle type:=LU; SONAR_state:=SONAR_INIT

4

3 update

6 [] SONAR_state = SONAR_INIT

7 -> SONAR_state"=SONAR_INIT;

8 (SMAP_obstacle X'.SMAP_obstacle_Y'.SMAP_obstacle type').=

9 detection(MAP_walll_X MAP_walll_Y MAP_walll_type,
10 MAP_wall2_X MAP_wall2_Y MAP_wall2_type,
11 MAP wall3 X,MAP wall3 Y MAP wall3_type,
12 MAP wall4 X MAP walld Y MAP walld type.
13 MAP obstaclel X MAP obstaclel Y.MAP obstaclel type,
14 MAP obstacle2 X MAP_obstacle2 Y .MAP obstacle2 type,
15 MAP_obstacle3_X,MAP_obstacle3_Y MAP_obstacle3_type,
16 MAP_obstacled X MAP _obstacled Y.MAP_obstacled_type,
17 Location_X,Location_Y')

Fig. 5-9 UNITY fragment of SONAR : Set initial value for variables
of SONAR at initial round, and compute the updated value
of SMAP_obstacle by external function detection() at each
update round.
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In the UNITY fragment of SONAR shown as Fig. 5-9, we set initial value for variables of
SONAR at initial round, and compute the updated value of SMAP_obstacle by external
function detection() at each update round. Because the strategy of computing
SMAP_obstacle is too complicated to write by UNITY code, we implement the strategy
by external function detection().

Line 2-3 : Set initial value for SMAP_obstacle

Line 5 : The update action of atoms is specified by the keywords update.

Line 6: In this update rule, if latched value of SONAR_state is SONAR_INIT, Line7-17
will be executed.

Line 7 : The updated value of SONAR_state is updated to SONAR_INIT

Line 8-17 : The updated value of SMAP_obstacle is computed by external function

detection()

1 void detection( unsigned int MAP_ walll_X.unsigned int MAP_walll_ Y, unsigned int MAP_walll_type,
2 unsigned int MAP_wall2_X,unsigned int MAP_wall2_Y unsigned int MAP_wall2_type,
3 unsigned int MAP_wall3_Xunsigned int MAP_wall3_Y unsigned int MAP_wall3_type,
4 unsigned int MAP_wall4_X,unsigned int MAP_wall4_Y,unsigned int MAP_wall4_type,
5 unsigned int MAP_obstacle]l X, unsigned int MAP_obstaclel Y, unsigned int MAP_ obstaclel type.
6 unsigned int MAP_obstacle2 X,unsigned int MAP_obstacle2 Y, unsigned int MAP_obstacle2 type,
7 unsigned int MAP_obstacle3 X, unsigned int MAP_obstacle3 Y, unsigned int MAP_obstacle3_type,
8

unsigned int MAP_obstacled_ X, unsigned int MAP_obstacled4_Y unsigned int MAP_obstacled_type,

9 unsigned int Location_X.unsigned int Location_Y)

11 unsigned int SMAP_obstacle X,SMAP_obstacle Y, SMAP_obstacle_type:

13 M detect walll */

14 fidirection: LU/RU

15 if ( MAP walll_X==0 && MAP_walll_Y>0 && (MAP_walll_type==LU || MAP_walll_type==RU) )
16 {

17 if{i MAP walll Y - Location ¥ <R )

18 { SMAP_obstacle Y= MAP_walll_Y - Location_Y; SMAP_obstacle_type=LU: }
19 H

20 else if{(------------ )

2] asees

22 e

23

24 Omocha_return_3(SMAP_obstacle X SMAP_obstacle_Y.SMAP_obstacle_type).

25 i

Fig. 5-10 Fragment of external function detection()

Line 1-9 : detection() receives MAP_wal Is,MAP_obstacles and Location as

parameters

Line 11 : Declare local variable SMAP_obstacle.

Line 15-19 : Check whether MAP_wal 11 (direction:LU/RU) is in the detection range. If it’s
true, SMAP_obstacle_Y will be set to “MAP_walll_Y - Location_Y”
and SMAP_obstacle_type will be set to “LU”.

Line 24 : Return the value of local variable SMAP_obstacle. The return value will be

assigned to interface variable SMAP_obstacle in SONAR module.
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If (MAP_wal 11_X=0, MAP_wal 11_Y=8, MAP_wall1_type=LU,
Location_X=18, Location_Y=6)

Then (SMAP_obstacle X=0, SMAP_obstacle_Y=2, SMAP_obstacle_ type=LU)

3. FORCE_ACCELERATION :

Force Acceleration

SMAP obstacle
— .
FORCE-

ACCELERATION | Force Acceleration_flag
SONAR_flag —

FORCE_state

Fig. 5-11 FORCE_ACCELERATION module
As shown in Table 5-1, FORCE_ACCELERATION module has one functionality:

® In each round, FORCE_ACCELERATION awaits robot centered map of obstacles
from SONAR module, .and  compute the- Force_Acceleration for
RESULT_ACCELERATION module
In FORCE_ACCELERATION maodule, it receives' SMAP_obstacle from SONAR
module, and then produces the “reverse acceleration” according to the strategy for avoiding
colliding with obstacles, the result of “reverse acceleration” is stored in interface variable
Force_ Acceleration. The relationship between*“distance of X-axis away from the
obstacle in SMAP_obstacle” and “X-axis component of reverse acceleration degree in

Force_ Acceleration” is shown as Table 5-4.

Distance of X-axis away from

the obstacle in SMAP_obstacle

X-axis component of reverse acceleration

Degree in Force_Acceleration

Table 5-4 The relationship between “Distance of X-axis away from the obstacle in
SMAP_obstacle” and “X-axis component of reverse acceleration degree
in Force_Acceleration”. Take X-axis for instance, the situation of
Y-axis is equivalent to X-axis

022|211 |1|1
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The representation of Force_Acceleration is { A-degree ,direction }, the A-degree is
represented by (degree of X-axis component,degree of Y-axis component), and the range of
A-degree is from 0 to 2; the direction is reverse to the direction of SMAP_obstacle. We
list some examples to illustrate the relationship between SMAP_obstacle and

Force_Acceleration in Fig. 5-12.

Example ol . . RE_BEPS
SMAP_obstacle {(4,5),RU} {(2,3),LD} {(0,5),LD/RD} {(6,0),LU/LD}
Force_Acceleration {(1,1),LD} {(2.2),RU} {(0,1),RU/LU} {(1,0),RD/RU}

L]
5! .

Example ° -9 A 1Y * .

. | TTJ
SMAP_obstacle {(0,5),RU} 2 65D} 1 {@aRU} {(4,5),LD}
Force_Acceleration {(0,1),LD} {@).RUB {(1,1),LD} {(1,1),RU}

Fig. 5-12 Some examples of the relationship between SMAP_obstacle and
Force Acceleration
The introduction for all variables in FORCE_ACCELERATION module is shown as
Table 5-5. FORCE_ACCELERATION awaits SMAP_obstacle from SONAR module, and
then updates the updated value of Force_Acceleration. The interface
Force_Acceleration and Force_Acceleration_flag connect to

RESULT_ACCELERATION module for informing force acceleration.

SMAP_obstacle SONAR The robot centered map of obstacles and
walls
SONAR_Flag SONAR Inform whether SMAP_obstacle is
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updated at this update round

Interface Send to Functionality

Force_Acceleration RESULT_ACCELERATION | Inform the force acceleration for
RESULT_ACCELERATION.

Force_Acceleration_flag | RESULT_ACCELERATION | Inform whether the updated value of degree
of Force_Acceleration is non-zero at
this update round. It is set true while the
updated value of degree of

Force_Acceleration is not (0,0).

Private Functionality

FORCE_state Store current state of
FORCE_ACCELERATION

Table 5-5 All variables in FORCE_ACCLERATION module

Comment for UNITY fragment of FORCE_ACCELERATION

it
|| true == Force_Acceleration_X:=6'b000000; Force_Acceleration_Y:=6'b000000; Force_Acceleration_flag:=false;
FORCE _state:=FORCE_INIT

update
[] FORCE state=FORCE_INIT ->

1
2
3
4
5
6
7 (Force_Acceleration_X'.Force_Acceleration_Y",Force_Acceleration_flag'):=SMAP_to FORCE(SONAR_flag',SMAP_obs tacle_X'.SMAP_obstacle Y')

Fig. 5-13 UNITY fragment of FORCE_ACCELERATION :
Set initial value for variables.of FORCE_ACCELERATION at initial round,
and compute the updated value of Force Acceleration by external
function SMAP_to_FORCE() at each update round.
Line 2-3 : Set initial value for FORCE_ACCELERATION
Line 6-7 : The updated value of Force_Acceleration is computed by

external function SMAP_to_FORCE(Q)
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1 void SMAP_to_ FORCE(unsigned int SONAR_flag.unsigned int SMAP_obstacle X unsigned int SMAP_obstacle Y)
2|
3 unsigned int Force_Acceleraton_X,Force_Acceleration_Y ,Force_Acceleration_type,Force_Acceleration_flag;
4 .........
5 .........
6 f(SONAR_flag==1)
7 {
8 switch(SMAP_obstacle_X)
9 {
10 case (1 { Force Acceleration X=0; }
11 case 1: { Force_Acceleration_X=2; }
12 case 2: { Force_Acceleration_X=2; }
13 case 3: { Force Acceleration X=2; }
14 case 4: | Force_Acceleration X=1; |
15 case 5: { Force Acceleration_X=1; }
16 case 6: { Force Acceleration_X=1; }
17 case 7: { Force_Acceleration_X=1; }
18 H
19
20 switch(SMAP_obstacle Y)
21 {
22 e
23 |
24
25 switch(SMAP_obstacle type)
26 {
27 case LU: { Force_Acceleration_type=RD; }
28 case LD: { Force_Acceleration_type=RU; }
29 case RU: { Force_Acceleration_type=LD; }
30 case RD: { Force Acceleration type=LU; |
31 }
32
33 Force_Acceleration_flag=1;
34 |
35 Omocha_return_4(Force_Acceleration_X,Force Acceleration_Y.Force Acceleration_type.Force_Acceleration_flag);
36 }

Fig. 5-14 Fragment of external function SMAP-to,_ FORCE()
Linel: SMAP_to_FORCE() receives SONAR_fIag and SMAP_obstacle as

parameters
Line 3 : Declare local variable Force_Acceleration.
Line 8-18 : If SONAR_Tlag is true, we set the value of Force_Acceleration_X
according to relationship shown in Table 5-4.

Line 25-31 : If SONAR_Tflag is true, we set the value of Force_Acceleration_type

according to relationship shown in Fig. 5-12.
Line 35 : Return the value of local variable Force_Acceleration. The return

value will be assigned to interface variable Force_Acceleration

in FORCE_ACCELERATION module.
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RANDOM_ACCELERATION :

Random_Acceleration

. —
SMAP obstacle RANDOM
ACCELERATION |Random_ Acceleration flag
4...

RANDOM state

Fig. 5-15 RANDOM_ACCELERATION module

As shown in Table 5-1, RANDOM_ACCELERATION module has one functionality:

In each round, if there is no any obstacle in detection range (the updated value of
SMAP_obstacle is { (0,0) , LU) ), RANDOM_ACCELERATION module produces a

random Random_Acceleration for RESULT _ACCELERATION module.

In RANDOM_ACCELERATION module, it awaits SMAP_obstacle from SONAR
module. If there is no abstacle -in" detection 'range (the updated value of
SMAP_obstacle is {(0,0) , LU}); RANDOM_ACCELERATION module will produce
a random acceleration for the robot. The robot can wander aimlessly by changing its
velocity according to the random acceleration. The random acceleration which produced
by RANDOM_ACCELERATION IS stored in interface variable
Random_Acceleration, and then Random_ Acceleration will be sent to
RESULT_ACCELERATION module.

The representation of Random_Acceleration is {A-degree ,direction }, the
A-degree is represented by (degree of X-axis component, degree of Y-axis component),
and the range of A-degree is from 0 to 2; the direction is one of { LU,LD,RU,RD }. We
list some examples of the relationship between SMAP_obstacle and
Random_Acceleration in Fig. 5-16.

The introduction for all variables in RANDOM_ACCELERATION module is shown in
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Table 5-6. In each round, RANDOM_ACCELERATION awaits SMAP_obstacle from

SONAR module, and updates the updated value of Random_Acceleration and

Random_Acceleration_flag. The interface Random_Acceleration and

Random_Acceleration_flag connect to RESULT_ACCELERATION modules for

informing the random acceleration.

Example ? o . °
SMAP_obstacle {(0,0),LU} {(0,0),LU} {(0,0),LU} Not {(0,0),LU}
Random_Acceleration {(2,2),RU} {(2,1),RD} {(1,2),LD} {(0,0),LU}

Fig. 5-16  Some examples of the relationship between SMAP_obstacle and
Random_Acceleration :

External Receive from Functionality
SMAP_obstacle SONAR The robot centered map of obstacles and walls
SMAP_obstacle_flag SONAR Inform whether SMAP_obstacle is updated

at this update round

Interface Send to Functionality

Random_Acceleration

RESULT_ACCELERATION

Inform the random acceleration for
RESULT ACCELERATION

Random_Acceleration_flag

RESULT_ACCELERATION

Inform whether the updated value of degree of
Random_Acceleration is non-zero at this
update round. It is set true while the updated
value of the degree of

Random_Acceleration is not (0,0).

Private

Functionality

RANDOM_state

Store current state of
RANDOM_ACCELERATION

Table 5-6. All variables in RANDOM_ACCLERATION module
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Comment for UNITY fragment of RANDOM_ACCELERATION

1 init

2 [] true -= Random_Acceleration X:=6'b000000

3 update

4 [1(SMAP obstacle X'=0 & SMAP obstacle Y'=0) -> Random_Acceleration X":=6'b000000
5 [1(SMAP obstacle X'=0 & SMAP_obstacle Y'=0) -= Random_Acceleration_X"=6'b000001
o [] (SMAP_obstacle X'=0 & SMAP_obstacle_Y'=0) -> Random_Acceleration_X"=6'b000010
7 []~(SMAP_obstacle X'=0 & SMAP obstacle Y'=0) -> Random_Acceleration_X"=6"b000000

Fig. 5-17 UNITY fragment of RANDOM_ACCELERATION :
Set the initial value for variables of RANDOM_ACCELERATION at initial
round, and update the updated value of Random_Acceleration_X at each
update round.

Line 2 : Set initial value for RANDOM_ACCELERATION

Line 4-6 : If (SMAP_obstacle X,SMAP_obstacle_ Y) is (0,0), the value of
Random_Acceleration Xwill.randomly be set to one of {0,1,2}

Line 7 : If one of SMAP_obstacle_xX and SMAP_bbstacle_Y is not O, the value of

Random_Acceleration X will b set to 0.

5. RESULT_ACCELERATION:

Force Acceleration .
B Result_Acceleration

Force Acceleration flag —
4'
RESULT _
Random_Acceleration ACCELERATION
HEOTLAe Lﬁ- cC 0 Result Acceleration flag
Random_Acceleration flag >
e

RESULT state

Fig. 5-18 RESULT_ACCELERATION module
As shown in Table 5-1, RESULT_ACCELERATION module has one functionality:
® In each round, RESULT _ACCELERATION awaits Force Acceleration and
Random_Acceleration, and then determine which one to output as
Result_Acceleration for VELOCITY module
In RESULT_ACCELERATION module, it awaits Force_Acceleration and
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Random_Acceleration, and then determines which one to output as
Result_Accleration for VELOCITY module. The strategy for making the decision is

listed below:

A. Force_Acceleration_flag==true&&Random_Acceleration_flag==false/
true> Result_Acceleration =Force_Acceleration

B. Force_Acceleration_flag==false&&Random_Acceleration_flag==true
- Result_Acceleration =Random_Acceleration

C. Force_Acceleration_flag==false&&Random_Acceleration_flag==false

—->Result_Acceleration ={(0,0),LU}

The strategy includes three conditions :
A. If Force_Acceleration_flag isitrue, Force Acceleration will be stored in
Result_Acceleration.

B. If Force_Acceleration_flag is false and Random_Acceleration_flag IS
true, Random_Acceleration will bestored inResult Acceleration.

C. If Force_Acceleration_flag and Random_Acceleration_flag are both

false, Result_Acceleration will be setto { (0,0), LU }.

The strategy will make the robot avoid collision while there are some obstacles in detection
range ,and wander aimlessly while there is no obstacle in detection range.

The introduction for all variables in RESULT _ACCELERATION module is shown in
Table 5-7. RESULT_ACCELERATION awaits Force_Acceleration from FORCE_-
ACCELERATION and Random_Acceleration from RANDOM_ ACCELERATION,
and then updates the updated value of Result_Acceleration. The interface
Result_Acceleration and Result_Acceleration_flag connect to VELOCITY

module for informing result acceleration.
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Force_Acceleration

FORCE_ACCELERATION

Inform the acceleration produced by
FORCE_ACCELERATION

Force_Acceleration_flag

FORCE_ACCELERATION

Inform whether the updated value of
degree of Force_Accelerationis

non-zero at this update round

Random_Acceleration

RANDOM_ACCELERATION

Inform the random acceleration produced
by RANDOM_ ACCELERATION

Random_Acceleration_flag

RANDOM_ACCELERATION

Inform whether the updated value of
degree of Random_Acceleration is

non-zero at this update round

Interface Send to Functionality
Result_Acceleration VELOCITY Inform the result acceleration for
VELOCITY
Result_Acceleration_flag VELOCITY Inform whether the updated value of

degree of Result_Acceleration is

non-zero at this update round. It is set true

" _while the updated value of degree of

; '-Result_Acceleration is not (0,0).

Private

Functionality

RESULT_state

‘Store current state of

RESULT_ACCELERATION

Table 5-7. All variables in RESULT ACCLERATION module

Comment for UNITY fragment of RESULT _ACCELERATION

1 init
2 [] true -= Result_Acceleration X:=6'b000000; Result Acceleration Y :=6"b000000;
3 Result_Acceleration_type:=LU: Result_Acceleration_flag:=false;
4
5 update
6 |] Force_Acceleration_flag' ==
7 Result_Acceleration X':= Force_Acceleration_X'; Result_Acceleration_Y'":= Forece Acceleration_ Y
8 Result_Acceleration_type':= Force_Acceleration_type":Result_Acceleration_flag=true:
9
10 [](~Force Acceleration flag') & Random_Acceleration_flag' =
11 Result_Acceleration_X":=Random_Acceleration_X'; Result_Acceleration_Y":=Random_Acceleration_%";
12 Result_Acceleration_type':= Random_Acceleration_type': Result_Acceleration_flag':=true:
13
14 [1 (~Force_Acceleration_flag") & (~Random_Acceleration_flag') -=
15 Result_Acceleration_X"=6"b000000; Result_Acceleration_¥':=6'b000000;
16 Result_Acceleration_type:=Result_Acceleration_type; Result_Acceleration_flag':=false;

Fig. 5-19 UNITY fragment of RESULT_ACCELERATION :
First, set initial value for variables of RESULT_ACCELERATION at initial
round, and determine the updated value of Result_Acceleration at each

update round.
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Line 2-3 : Set initial value for RESULT_ACCELERATION

Line 6-8 : If the updated value of Force_Acceleration_flag is true, the updated value
of Force_Acceleration will be stored in the updated value of
Result_Acceleration, and the wupdated value of Result -
Acceleration_flag will be set to true.

Line 10-12: If the updated value of Force_Acceleration_flag is false and the updated
value of Random_Acceleration_flag is true, the updated value of
Random_Acceleration will be stored in the updated value of
Result_Acceleration, and the updated value of
Result_Acceleration will be set to true.

Line 14-16 : If the updated value of Force_Acceleration_flag and the updated value

of Random_Acceleration_Tlag are both false, the updated value of
Result_Acceleration willbe set to(0,0,LU), and the updated value of

Result_Acceleration_fTlag will be set to false.

6. VELOCITY :
Result Acceleration Velocity
B
VELOCITY |Velocity flag
Result Acceleration flag —
—
VEL state

Fig. 5-20 VELOCITY module
As shown in Table 4-1, VELOCITY module has one functionality:
® In each round, VELOCITY awaits Result Acceleration from
RESULT_ACCELERATION module, and then updates Velocity.

In VELOCITY module, the interface variable Ve locity stores the velocity of the robot.

45



Once receiving Result_Acceleration from RESULT_ACCELERATION, VELOCITY

module will update Velocity by combining with Result Acceleration. The

representation of Velocity is { V-degree ,direction }, the V-degree is represented by

(degree of X-axis component, degree of Y-axis component), and the range of V-degree is

from 0 to 2; the direction is one of { LU, LD,RU,RD }. We list some examples of updating

Velocity in Fig. 5-21. After updating Velocity, Velocity will be sent to MOTOR

module for updating robot’s location.

The introduction for all variables in VELOCITY module is shown in Table 5-8.

VELOCITY awaits Result_Acceleration from RESULT ACCELERATION, and then

updates the updated value of Velocity. The interface Velocity connects to MOTOR

module for informing robot’s velocity.

Example

‘e

>

o

-
current state current state current state current state
next state next state next state next state

Result_Acceleration {(2,0),RU/RD} {(4;2),RU} {(2,2),RU} {(2,2),LD}

Velocity before updating {(2,2),LU} {(2,1),LD} {(0,2),LD/RD} {(1,1),RU}

(current state)

Velocity after updating {(0,2),LU/RU} {(1,1),LU} {(2,0),RU/RD} {(1,1),LD}

(next state)

Fig. 5-21 Some examples of updating Velocity

External

Receive from

Functionality

Result_Acceleration

RESULT_ACCELERATION

Inform the acceleration determined by
RESULT_ACCELERATION

Result_Acceleration_flag

RESULT_ACCELERATION

Inform whether the updated value of degree of
Result_Acceleration is non-zero at this

update round

Interface

Send to

Functionality

Velocity

MOTOR

Inform the velocity for MOTOR
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Private Functionality

VELOCITY_state Store current state of VELOCITY

Table 5-8. All variables in VELOCITY module

Comment for UNITY fragment of VELOCITY

init
[1true == Velocity X:=a'b000000; Veloecity Y:=6'b000000; Velocity type:=LU
update
[1 Result Acceleration flag' -
(Velocity X' Velocity Y',Velocity type')=
fi Update Velocity{Result_Acceleration_X',Result_Acceleration_Y',Result_Acceleration_tvpe',
Velocity. X, Velocity Y. Velocity _type);

fd [ =

e

~1

Fig. 5-22 UNITY fragment of VELOCITY :
First, set initial value for variables of VELOCITY. The updated
value of Velocity is computed by external function
Update Velocity()

Line 2 : Set initial value for VELOCITY
Line 4-7 : The updated value of Velocity is;c'omputed by

external function Update Velocity()
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1 void Update_Velocity(unsigned int Result_Acceleration_X,unsigned int Result_Acceleration_Y,
2 unsigned int Result_Acceleration_type,unsigned int Velocity_X,
3 unsigned int Velocity Y ,unsigned int Velocity type 3
4 i
5 /* Velocity _type=LU */
6 ifi Velocity_type==LU)
7 i
8 if{Result Aceeleration type==LU)
9 i

10 Velocity X=Velocity X+Result_Acceleration_X;

11 Velocity_Y=Velocity Y+Result Acceleration_Y;

12 Velocity_type=LLU;

13

14 if(Velocity X = 2) Velocity X=2;

15 ifi(Velocity Y = 2) Velocity_¥=2;

16 H

17 else ifi Result_Acceleration_type—LD)

18 i

N

20 i

I BB e n

22 }

23 ¢lse ifi Velocity _type==RU}

24 i

25 L

26 H

27 ..

28 Omocha_return_3(Velocity X, Velocity Y, Velocity_type);

29 i

Fig. 5-23 Fragment of external -functi(.)"n Update Velocity()
Line 1-3 : Update_Velocity() receives Result_Accelerationand Velocity
as parameters
Line 6-12 : If Velocity_ type and Result_Acceleration_type are both LU,
we update Ve locity by combining with Result_Acceleration,
and Velocity_type will still be LU.
Line 14-15 : Because the range of V-degree is from 0 to 2, If the degree of Velocity is
larger than 2 after combination with Result_Acceleration,the degree of
Velocity will be setto 2
Line 28 : Return the value of local variable Velocity. The return
value will be assigned to interface variable Velocity
in VELOCITY module.
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7. MOTOR:

Velocity Location
4'

MOTOR Location updated
—
MOTOR_state

Fig. 5-24 MOTOR module

Velocity flag
—

As shown in Table 5-1, MOTOR module has two functionalities:

® [neach round, MOTOR awaits Velocity from VELOCITY, and then update
Location.

® SetLocation_updated flag to true while updated value of Location isn’t equal to
latched value of Location

In MOTOR module, the interface variable Location stores the location
of the robot, the initial value of Location represe.nts the initial location of the robot.
Location_updated will be set to true while Location is updated. Once receiving
Velocity from VELOCITY, MOTOR médule will “update Location according to
Velocity, and Location_updated will be set to' true. We list some examples of
updating Location in Fig. 5-25.

The introduction for all variables in MOTOR module is shown in Table 5-9. MOTOR
awaits Velocity from VELOCITY, and then updates the updated value of Location. The

interface Location connects to SONAR module for informing robot’s location.

(20,20) (17,200
Example (18.18) (18.18) (18,18) .A/.(IS.IB}
(16,17)

current state current state . (20,16) current state current state

next state next state next state next state
Velocity {(2,2),RU} {(2,2),RD} {(1.2),LU} {(2,1),LD}
Location before updating (18,18) (18,18) (18,18) (18,18)
Location after updating (20,20) (20,16) (17,20) (16,17)

Fig. 5-25 Some examples of updating Location
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Velocity VELOCITY Inform the updated value of Velocity at this
update round.
Interface Send to Functionality
Location SONAR Inform the location of robot for SONAR
Location_updated SONAR Inform whether the updated value of Location
is updated at this update round
Private Functionality
MOTOR_state Store current state of MOTOR

Table 5-9. All variables in MOTOR module

Comment for UNITY fragment of MOTOR

1 init

2 [] true - Location X:=6'b001110; Location Y:=6'b100011; Location_updated:=true
3

4  update

5 [] ~((Velocity X'=0) & (Velocity_Y'=0) ) & Velocity_type' = LU =
[ Location X"= Location X - Velocity X';

7 Location_Y":= Location_Y + Velocity ¥";

8 Location_updated':=true

29 L.

w
11 [] (Velocity X' = 0) & (Velocity Y'=0) ->
12 Location X"= Location X;
13 Location_Y":= Location_Y:
14 Location_updated":=false

Fig. 5-26 UNITY fragment of MOTOR :
First, set initial value for variables of MOTOR at initial round, and update the
updated value of Location and Location_updated at each update round.

Line 1-2 : Set initial value for MOTOR

Line 5-8 : If the updated value of Velocity isn’t (0,0), we update the updated value of
Location according to Velocity.

Line 11-14 : If the updated value of Veloctiy is (0,0), we remain the latched value of

Location, and set the updated value of Location_updated to false.
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5.3 Property To Be Verified : “No_Collision” Property

The “No_Collision property is shown as Fig. 5-27. We had discussed how to describe

properties with Temporal Logic in Section 3.3.1, the two parts of Temporal Logic are “The

propositional logic formula”

and “The temporal connectives”, the two parts of

“No_Collision” are listed in Table 5-10. If the behaviors of robot satisfy the “No_Collision”

property, it means the robot won’t collide with walls or obstacles in the environment.

1
2
3
4
5
6
7
8
9

—
L=

assert No_Collision AG |

{600 1000 < Location. X}
&& (Location X < 6'b100110)
&& (6'b001000 < Location_Y)
&& (Location_Y < 6'b100110)
&&(~(Location X < 6b001101 && 6'b100001 < Location Y} )
&&(~(6'D10000] < Location X && 6'b10000] < Location Y} )
&&(~(Location_ X < 6'b001101 && Location_ Y < 6'b001101) )
&&(~(6'b100001 < Location_ X && Location_Y < 6'b001101) )

|

Fig. 5-27 “No_Collision” property checked by ©Mocha

Line 1 : The temporal connectives of “No_CoI'Iision” property is “AG”, it means that all
reachable states will satisfy'the propositional logic formula.

Line 2-5 : Check whether the robot will collide with walls.

Line 6-9 : Check whether the robot will collide with obstacles.

The propositional logic formula

(6'b001000 < Location_X)
&& (Location_X < 6'h100110)
&& (6'n001000 < Location_Y)
&& (Location_Y < 6'h100110)
&&(~(Location_X < 6'h001101 && 6'100001 < Location_Y))
&&(~(6'0100001 < Location_X && 6'h100001 < Location_Y))
&&(~(Location_X < 6'h001101 && Location_Y <6'h001101))
&&(~(6'h100001 < Location_X && Location_Y <6'h001101))

The temporal connectives

AG

Table 5-10 “No_Collision” property
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MAP

Chapter 6
Experiment Results and Analysis

In Section 6.1, we will explain the three approaches applied to the experiment, they include
(A) state hiding, (B) Coarse Sampling of States, and (C) elimination of some checking cases.
In Section 6.3, we will check the “No_Collision” property by OMocha, and show the

checking results of some different cases. In Section 6.4, we will analysis the checking results.

6.1 State Hiding Applied to the Experiment

F -
MAP_walll~4
i -
MAP _obstaclel §4 SMAP_obstacle i
1SONAR Fefpe_Acceleration EXTERNAI 2
SONAR flag : :
Loestionvpdacd | | T FORCE_
. ACCELERATION
Location Fefee_Accelermtion_fag
Result_Acceleration Location_updated
RESULT_ . A Bvelocity
- 4 A ACCELERATION [jeii accetersiion e VELOCITY MOTOR
o Loc
N R\‘IHI‘[_ Ramdom_Accelernbion flag L y
ACCELERATION
n_Accel

Fig. 6-1 Some variables encapsulated into external function

According to encapsulation principle and the experiment characteristics, we can combine
SONAR and FORCE_ACCELERATION modules into EXTERNAL1 module, and combine
RESULT_ACCELERATION and VELOCITY modules into EXTERNAL2 module. The After

encapsulation procedure, the full structure of the experiment is shown as Fig. 6-1.

After encapsulation, some variables are moved out from UNITY-based programs, these
variables include SMAP_obstacle, SONAR_flag, Result_Acceleration and
Result_Acceleration_flag.
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6.2 Elimination of Some Checking Cases Applied to the
Experiment

6.2.1  Principle

(0,90) (90,90)
R S R R RS e i : L (0.90) : : ~ (90,90)

”51“ .....‘g?j:‘ (15.75)_ Initial Location: (20,72) (75.75)

(1971 (71,70 [19.71) ”Lhﬂ

Detection
range
L ]

| (19.19) (71,19} | {19,19) (71.19)
1 ] L]
(75.15) . (15.15) TEE T (75,15)

(15.13)

(0,0) } ] ] ] ] {90.0) (0,07 } } ] 0,0
Fig. 6-2 Wandering Region
(a) A point where there-is noobstacle in detection range.
(b) The full set of points where thereis no obstacle in detection range
is called “wandering region” '

In Fig. 6-2, we show a point where there is no obstacle in detection range in (a), and show the
full set of points where there is no obstacle in“detection range in (b). We call the range of the full
set of points “wandering region”. When the location of the robot is in wandering region, there are
some non-deterministic choices during update round. For example, when the robot is in wandering
region and its location is (34,56), there is no obstacle in its detection range, so
Random_Acceleration produced randomly will be stored into Result_Acceleration,
the number of all possible combination of Random_Acceleration is 72*; Therefore, the
number of next states for the state( Location is (34,56) ) is 72.

We can observe that the number of all reachable states greatly grow up while the robot moves
into wandering region. In order to reduce the number of all reachable states we present an approach

to eliminate parts of checking cases, the approach will be explained in detail below.

! Random_Acceleration_X is one of {0,1,2}, Random_Acceleartion_Y is one of {0,1,2},

Random_Acceleration_type is one of {LU,LD,RU,RD}, Random_Acceleration_flagisone
of {true , false}, therefore the number of all possible combination is 3*3*4*2=72
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6.2.2  Approach for Smart Elimination

We can assume that when the robot wanders aimlessly in wandering region it will never collide
with obstacles. Therefore, if we can eliminate parts of checking cases during wandering in
wandering region, we will greatly reduce the number of all reachable states. An example for full
verification procedure is shown as Fig. 6-3. According to above-mentioned assumption, we know
the parts of full verification procedure between states in wandering region can be eliminated. In Fig.
6-4, the parts of full verification procedure between states in wandering region are marked with
dotted circle, and the left parts of full verification procedure which still need to be checked are
marked with solid circle. The parts of full verification procedure marked with solid circle are

approximately equivalent to another partial verification procedure shown as Fig. 6-5.

@
®
H 72
e ‘®
g 72 ‘.] 6]
o e @ C
5 72 ‘. Y. Y vl ‘.

States have non-deterministic choices
@® States don’ t have non-deterministic choices

Fig. 6-3 An example for full verification procedure

States have non-deterministic choices
@® States don’ t have non-deterministic choices

Fig. 6-4 The parts of full verification procedure marked with dotted circle can be eliminated,
and the left parts of verification procedure marked with solid circle still need to be ¢
checked.
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A checking case

Fig. 6-5 The partial verification procedure is the collection of checking cases.

The partial verification procedure is the collection of checking cases. Each checking case begins
from a state in wandering region, and then traces through some states which have no obstacle in
detection range, and terminates When reachlng state in wandermg region again.

All beginning states of these checklﬁg caLeE—-mclude Ql)lnltlal state and (2) parts of states in

wandering region, which can mal{e‘the lmcatien of-next state IS not in wandering region. The all

Ny T

-. - ._.'.- SN

possible velocities of a state in Wanderlng reglon Wthh can make the location of next state is not in

wandering region is shown as Fig. 6-6. Three examples of checking cases are shown as Fig. 6-7.

(0,90) (90.90)

(15,75) (75,75)

(19.71) 71,70

(19.19) (71,19

(15.15) (75,15)

(0,0) (90,0)

Fig. 6-6 Outward velocities make the robot leave the wandering region
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(90.90)

(0,90)
(15,75) -Initial Location: (20,72) (75,75)
¢
(19,19) 19
(15,15) (75,15)
(0,0) {90,0)
|,.-:' LLEE rm
Fig. 6-7 Three examplesxafnheék' ing: cases
6.2.3  Approach for PartlafEIumlrgEimm \ &
=" % ¥ _ﬁ'ﬁ.; -:
(0.90) (90,90) _;.
s
s
i *;
Siao) (75,75)
(19,71) (71,71)
(19,19) (7119
(15,15) (75.15)
(0.0) (90.,0)

Fig. 6-8 All velocities of a state in wandering region
In Section 6.2.2, we had explained the smart elimination shown as Fig. 6-6, the smart elimination

only considers the all possible velocities of a state which can make the location of next state is not
in wandering region. The overhead of smart elimination is that we have to find out the all possible
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velocities of a state in advanced. If we don’t want to pay the overhead for finding out the all
possible velocities of a state in advanced, we can directly consider all velocities of a state, but we

will check more redundant states. An example of all velocities of a state is shown as Fig. 6-8.
6.2.4 Issue : Unrealistic Cases

In Section 6.2.2, we had explained the approximately equivalent partial verification
procedure. The reason why we emphasize the keyword “approximately’ is that the size of
partial verification procedure is greater than or equal to the size of the parts of full verification
procedure marked with solid circle. Because some checking cases are not in the parts of full
verification procedure marked with solid circle, the approach for eliminating parts of full
verification procedure has to handle some overhead for these unrealistic cases. The reason
why the result still has great improvementiis that:sthe number of states saved by eliminating
parts of full verification procedure marked with _dotted ;:ircle are much more than the number

of states produced by unrealistic cases.

6.3 Coarse Sampling of States

(0.90) E o 3 (90.90)
(IR
[ .0 @ |
(15,75) k; § -:'.'/ (F?s;

(19.71) /\ M ST

(19,19) (71,19)

(4 LHE BIERRTTS:15)

(0,0) (90,0)

Fig. 6-9 Only half points of wandering region will generate random acceleration
In the experiment, it’s not necessary to generate random acceleration every round while the
robot moves into the wandering region. We can simulate the situation by only generating
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random acceleration at half points of wandering region. It will make the frequency of
generating random acceleration in wandering region reduces to 50%.

In Section 6.2.1, we had referred to that the number of all reachable states greatly grows up
while the robot moves into wandering region. Therefore, to lower the frequency of generating
random acceleration in wandering region will reduce the number of all reachable states of the

experiment.

6.4 Checking Results of the Experiment Applied Different
Approaches

In this section, we will show the checking results of the experiment applied different
approaches. We discuss four cases applying different approaches to the experiment.

All parameters of the experiment are listed as Table 6-1 :

90,9
MAP (0,90) (90,90)
(15,75).-Initial.Location: (20,72). ... + - (75.75)
19.71) (71,71)]
(19,19) (71.19),
(15.,15) (75.15)
(0,0) (90,0)
® Map size: 60 x 60
(from (15,15) to (75,75) )
® Width of boundary buffer area: 15
The obstacles can only expand from 4 corners
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Detection range

13 x 15

Max Velocity 10
Max Force Acceleration 7

Max Random_Acceleration | 2
Table 6-1 All parameters of the experiment

6.4.1 Casel : Only Apply State Hiding to the Experiment

| Description : |

In Casel, we only apply state hiding.to the-experiment by using external function. After
completing the verification procedure of checking “No_Collision” property, OMocha proves
the property “No_Collision” satisfies the behaviors of the robot. In the results, the number of

all reachable states reduces to 27307377,.and the checking time is 889 minutes.

“No_Collision” property Satisfy
Number of all reachable states |PAKIEIA
Checking time (minutes) 889

6.4.2 Case2 : Apply State Hiding and Partial Elimination of Checking Cases

| Description : |

In Case2, we apply state hiding and partial elimination of checking cases to the experiment.
In the results, the number of all reachable states is 25129982, and the checking time is 62
minutes. We can observe that to apply partial elimination of checking cases to the experiment
will not obviously reduce the number of all reachable states, but the checking time greatly

reduces to 62 minutes.
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“No_Collision” property Satisfy
Number of all reachable states  [AyWASIelYA
Checking time (minutes) 62

6.4.3 Case3 : Apply State Hiding and Smart Elimination of Checking Cases

| Description © |

In Case3, we apply state hiding and smart elimination of checking cases to the experiment.
We can expect the results will be better than Case2, because smart elimination can eliminate
more checking cases than partial elimination, and the results are consistent with our
expectation. In the results, the number of all reachable states is 12850105, and the checking

time is 35 minutes. The unrealistic casesare 89.5 % of all checking cases.

“No_Collision” property Satisfy
Number of all reachable states  gEASSIIELSS
Checking time (minutes) 35

All checking cases 177188
Checking cases in full verification procedure 158654
Unrealistic cases (%) 89.5

6.4.4 Case4 : Apply State Hiding and Coarse Sampling of States

| Description : |

In Case4, we apply state hiding and coarse sampling of states to the experiment. In the
results, the number of all reachable states is 14722810, and the checking time is 489 minutes.

The results are only better than Casel, and much more inefficient than Case2 and Case3.
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“No_Collision” property Satisfy
Number of all reachable states Y@V
Checking time (minutes) 489

6.5 Analysis

Observations -

(1) In all cases, the “No_Collision” property satisfy the behaviors of the AFSM-based RRCS
(2) The number of all reachable states reduces greatly by using smart elimination of checking
cases.

(3) By observing the relationship between the results of Casel and Case3, we can find that the
improvement of the checking time is greater than the improvement of the number of all
reachable states.

(4)In case3, the checking time of verification procedure is the best of the four cases. The
performance is still reasonable after using state hiding and smart elimination of checking

cases. It proves that formal verification'is applicable for an AFSM RRCS.

Explanation .

(1) © For observation (1)

The two approaches State hiding and eliminating some checking cases don’t change the
behaviors of the RRCS. They just reduce the number of all reachable states of the RRCS
checked by OMocha.

(2) : For observation (2)

The set of checking cases is chosen according to the behaviors of the RRCS, we can make
sure that the set includes all meaningful parts of verification procedure. Therefore, we won’t
miss any meaningful parts of verification procedure, and the percentage of redundancy is very

low.
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(3) : For observation (3)
During verification procedure of OMocha, the possibility of tracing an old state is rising

continuously. Therefore, the growing rate of tracing new states is decreasing continuously.

Summary -
‘ Approachl Approachl,2 Approachl,3 ‘Approachl,4

SIS 27307377(889) | 25129982(62) | 12850105(35) | 14722810(489)

Table 6-2 Checking results comparison
(Approachl : State hiding
Approach?2 : Partial elimination of checking cases

Approach3 : Smart elimination of checking cases
Approach4 : Coarse Sampling of States )

Number of all reachable states:
<M/ A=
Checking time{mins)
e;NI.-'A::a

¢ State Hiding

Number of all reachable states :
27307377
Checking time{mins) :
889 4

Elimination of Checking Cases
Coarse Sampling of States

Partial Elimination Smart Elimination

Number of all reachable states : Number of all reachable states : Number of all reachable states :
14722810 25129982 12850105
Checking time(mins) : Checking time(mins) Checking time(mins) 1
489 3 62 2 35

Fig. 6-10 Checking results comparison2
In casel, we can make sure the robot won’t collide with walls or obstacles through property
checking, but the performance of verification procedure is not good enough to handle more
complicated system.
After using smart elimination of checking cases in case3, the number of all reachable states

and checking time improve greatly ( 27307377(889mins)—> 12850105(35mins) ) . Therefore,
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the performance of verification procedure becomes more reasonable.
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Chapter 7
Conclusion

7.1 Accomplishment

In this thesis, we reach two accomplishments listed below :
(A) Check the Behaviors of the AFSM-based RRCS by Model Checker

After rebuilding the AFSM-based RRCS by UNITY-based specification language, we
describe the “No Collision” property by Temporal Logic, and check whether the behaviors of
the RRCS satisfy the property by model checker, OMocha. After verification procedure
completed by OMocha, we can make sure the robot will never collide with obstacles or walls
in two-dimensional environment.
(B) Improve the Performance of Verificaiton Procedure

Although we had proved the«robot will never collide with obstacles or walls, the
performance of verification procedure is not-efficient enough, and it spends (> 889) minutes
checking the “No Collision” property“for.the experiment. In order to improve the performance
of verification procedure, we present three approaches to reduce the checking time of
verification procedure. The three approaches are : (1) Using external function for state hiding,
(2) Elimination of unnecessary checking cases, and (3)Coarse sampling of states. After
reducing the checking time by the three approaches, the best results show that the verification

procedure can be completed in 35 minutes.
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7.2 Future Work

Based on the accomplishments of this thesis, there are still some objectives can be
researched in the future. They are listed below :
(A)Build a more complicated AFSM-based RRCS and Check its Behaviors

We can construct a more complicated AFSM-based RRCS. The modules of the RRCS have
more complicated functionalities written by external function. For example, we can construct
a GOAL module to guide the robot to the specific destination. After constructing the more
complicated RRCS, we check the properties of the RRCS by OMocha, and look whether the

performance of verification procedure is still reasonable and has practicability.

(B) Develop the Tools for Constructing and Checking AFSM-based RRCS

In our research, we spend much:time on construeting RRCS and revising verification
procedure manually. If we want«to.encourage RRCS 'designers to use our methods for
constructing and checking RRCS, we have to-develop the tools which can make the procedure
of constructing and checking an AESM-based RRCS more easily. RRCS designers can
combine some modules which are in library to construct an AFSM-based RRCS, and select

the properties they want to check.

(C) Design the Real Robot controlled by AFSM-based RRCS
We can implement the AFSM-based RRCS introduced in Section 5.1 on a real robot, and
look over whether the real robot can wander aimlessly around the environment without

colliding with obstacles.
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