Chapter 1

Introduction

Recent advances in communication technology and Micro-Electro-Mechanical systems (MEMS)
have enabled the development of low-cost, low-power and multifunctional sensor nodes that
are small in size and communicate untethered in short distances. These sensors and special
devices, sinks, can form a sensor nétwork. Sensors aré capable of sensing, processing and
transmitting. In general, sensors hai/_e limited power, memory and processing ability. On the
other hand, a sink is usually used to éubmit queries and collect data from sensors. Through
the communication interface, sensors are able to transmit data to the sink and communicate
with nearby sensors. Due to the characteristics of wireless sensor networks, wireless sensor
networks are usually deployed in a non-easily accessible or harsh environment. Since sensors
are low-cost devices and usually deployed in harsh environments, sensors are prone to failure
and these faulty sensors are likely to report arbitrary readings very different from the true
environmental phenomenon. In addition, sensors sometimes could report noise readings due
to environmental interferences [1][9]. Both arbitrary and noise readings are viewed as faulty
readings in this paper. With the presence of faulty readings, query results are biased. Since
sensor networks are deployed for data gathering, data accuracy is very critical in sensor ap-
plications. As mentioned above, faulty readings of sensors are very common. Thus, it is an

important issue to identify and filter out faulty readings so as to improve the accuracy of
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Figure 1.1: The impact of faulty readings.

query results.

Consider an illustrative example in Figure 1.1, where three sensors are deployed to mon-
itor the temperature. Assume that and sensor s; is out of order and reports an arbitrary
reading (i.e., 101 °C), while other two sensors s, and s3 are normal with their temperature
readings being 25 °C and 27 °C, respecti.vely. Notesthat the real temperature behavior of this
monitored region is marked on isot_herms in Figure 1.1 When an aggregate query for the
average temperature is submitted, the reéul’f is-51°C (W = 51). However, the real
average result is 26.67°C (W = 26..6.7), showing that the query result is greatly affected
by the faulty reading. Since sensor networks are deployed for data gathering, data accuracy
is very critical in sensor applications. As mentioned above, faulty readings of sensors are very
common. Thus, it is an important issue to identify and filter out faulty readings so as to
improve the accuracy of aggregate query results.

In this paper, we target at the problem of identifying the faulty readings in sensor networks.
One naive approach for filtering out faulty readings is to filter out those readings significantly
different from the majority of other readings. However, these unusual readings could be
caused by an interesting event (i.e., fire). Note that this approach requires sensors to send

their readings to the sink and the sink exploits statistic analysis to determine which readings

are outlier among collected readings. In fact, this approach is a centralized method and



sensors are likely to exhaust their energy since readings are sent to the sink all the time.
Furthermore, simply filtering out unusual reading may result in the loss of some interesting
events, thereby obtaining inaccurate aggregate results as well. Thus, the problem of detecting
faulty readings in wireless sensor networks is not trivial at all. When it comes to designing
efficient mechanisms to judiciously detect faulty readings, one should design a distributed
algorithm to efficiently faulty readings without wasting a lot of energy and losing interesting
events.

Generally speaking, data readings of nearby sensors are very similar, which refers to the
feature of spatial correlation [17]. As such, if a sensor obtains an unusual reading, the sensor
could transmit the reading to nearby sensors (referred to as the witness set) to determine
whether the reading is faulty or not. In order to accurately determine whether the unusual
reading was generated by faulty sensors or by the occurrence of an interesting event, one can
utilize the classical majority voting.- In the majority véting, each sensor (e.g., sensor s;) in
the witness set makes a judgment b_y comparing-its own reading with the unusual reading
sent by the suspected sensor(e.g., seﬁsor- 85)«Af the difference between these two readings
exceeds a predefined threshold, s; considers s; as a faulty sensor and gives a negative vote to
s;. Otherwise, s; claims that s; is normal and gives a positive vote to s;. After collecting
all the votes from the nearby sensors, s; could evaluate whether the reading is faulty or not.
If the number of negative votes is smaller than that of positive votes, the unusual reading
reported by s; will be identified as a faulty reading. Otherwise, the unusual reading will be
viewed as an interesting event. However, when the number of faulty sensors increases, the
majority voting does not work well. To address the problem, two weighted voting methods
are proposed in [16][23]. Explicitly, these weighted voting methods are motivated by the
assumption that the smaller distance of sensors has, the more sensors resemble. Thus, when a
suspected sensor requires voting from the nearby sensors, the nearest sensor has more weight

for voting. However, the distance between two sensors does not fully reflect the similarity of



Figure 1.2: An illustrative topology of a wireless sensor network.

these two sensors. Furthermore, if the nearest sensor is a faulty sensor, the voting result will
be dominated by this faulty sensor. This problem is identified as a dominated problem in
our paper. In Figure 1.2, assume that the weights of sensors ss, s3 and s4 are 0.3, 0.4 and
0.9, respectively and sensor s, is a faulty sensor.» Obviously, sensor s; is identified as a faulty
sensor when the weighted voting method;is performed.

In order to remedy the difficulty stated above, n this paper, we first construct a logical
overlay network, called correlation nétwork, on .a".sensor network. A correlation network con-
sists of vertexes and edges, where each vertex represents a sensor node and the edge stands for
the similarity relationship between sensors. It is worth mentioning that if two sensors does not
have any similarity, these two sensors will not have an edge connected. Only sensors that are
connected by edges are participated in voting so as to reduce wrong judgements contributed
by those irrelevant sensors. In order to truly reflect the similarity between two sensors, the
similarity relationship, named trust relation, considers not only the distance of two sensors but
also the reading behaviors of these two sensors. To avoid the dominated problem mentioned
above, each sensor participated in voting should first go through a self-diagnosis procedure in
which the current reading sensed should be compared to its own historical statistics. Similarly,
once the sensor inquired verifies that the current reading is very different from its historical

data, this sensor will ask nearby sensors for voting as well. Clearly, if this sensor has more



nearby sensors having similar behaviors in terms of trust relations, this sensor inquired should
have more confident in voting. The confidence of a sensor is modeled as SensorRank akin
to the reputation of a sensor. Given a set of sensors and the corresponding similarity rela-
tionship, each sensor is ranked in accordance with the similarity it has with its neighbors. A
sensor will have higher SensorRank if this sensor has more neighbors whose similarity is very
close to it. Intuitively, a sensor with higher SensorRank will have more resources (i.e., its
neighbors) to consult with when this sensor is suspected as a faulty sensor. As can be seen in
Figure 1.2, s4 has smaller SensorRank value due to that s, is not very similar to its neighbors.
In order to avoid the dominated problem, we should take SensorRank into consideration. In
our illustrative example in Figure 1.2, when s; requires voting from its neighbors (i.e., s,
s3 and s4), since s4 has lower SensorRank, the influence of s; in voting should consider not
only the similarity between s; and s, but also SensorRank of s4. Therefore, though s, is the
most similar sensor to sq, the voting issued by s, will ﬁot be dominated by s4, showing the
advantage of SensorRank. In this pdper, given-a-set-of sensors and its similarity relationships,
we first model this sensor network as a,. Markow:.¢hain to determine the value of SensorRank for
each sensor In light of SensorRank, we develop a faulty reading filtering algorithm TrustVot-
ing to judiciously identify faulty sensors and filter out these faulty sensors. Unlike the naive
method and the classical majority voting, our algorithm can greatly detect faulty sensors even
though the number of faulty sensors is large. Performance study is comparatively analyzed
and sensitivity analysis on several design parameters is conducted. It is shown by our simu-
lation results that our proposed algorithm is able to effectively filter out faulty readings so as
to improve the accuracy of data gathered.

A significant amount of research effort has been elaborated upon issues of faulty sensor
identifying [8][16][17][23]. In [17], the authors introduced the concept of spatial correlation
among sensors and proposed a distributed Bayesian algorithm for detecting faulty sensors.

By assuming that faulty measurements are either much larger or much smaller than normal



measurements, the authors in [8] uses a statistical method for filtering out the outlier mea-
surements. Some variations of the weighted voting technique for detecting faulty sensors are
later proposed in [16] and [23]. In [16], the past performances of sensors are considered to
enhance the classical majority voting, and the coverage of sensing range is considered in [23]
for its weighted voting. However all of these works do not consider comprehensive resources
of sensors and the environmental models between sensors. To the best of our knowledge, prior
works neither fully formulate the similarity of sensors nor utilize the concept of SensorRank,
let alone devising filtering algorithm based on SensorRank. These features distinguish this
paper from others.

The rest of this paper is organized as follows. In Chapter 2, our system model and the simi-
larity of sensor behaviors are described. SensorRank and algorithm TrustVoting are presented
in Chapter 4. We conduct extensive simnulation experiments to evaluate the performance of

our proposed algorithm in Chapter 5. This paper.concludes with Chapter 6.



