Chapter 3

Design of SensorRank

In Chapter 3.1, the formulation of SensorRank is presented. The analysis of SensorRank is

conducted in Chapter 3.2.

3.1 Formulate SensorRank

Given a correlation network G = (V4 E) derived above, we should assign each sensor an
appropriate SensorRank to reflect the iﬁportance of sensor. The value of SensorRank for
each sensor is the degree to measure how many and how similar neighboring sensors the
sensor has. SensorRank should consider not only one-hop neighbors but also k-hop neighbors
when determining SensorRank value. Clearly, if one sensor and its many neighboring sensors
are similar, this sensor will have higher SensorRank. On the other hand, if this sensor only
has a few similar neighboring sensors, this sensor will have lower SensorRank. In a correlation
network, the similarity of one-hop neighbors has already been defined on the edges. In fact, the
similarity of k-hop neighbors is also shown in the correlation network indirectly. For example,
s; and s, are an one-hop neighbor and a two-hop neighbor of s; respectively, and s; and s;, are
one-hop neighbors. Assume that s; and s; as well as s; and s, are very similar. The similarity

of s; and s, are also similar as well. Therefore, if a sensor has higher SensorRank, this sensor

12

Figure 3.1: An example of SensorRank

should have many similar neighbors and neighbors’ neighbors. In order to measure the value
of SensorRank, we could imagine the random walks on the correlation network. Intuitively,
one could randomly select a sensor. Since this sensor has some edges that link to other sensors,
one should follow the edge with a higher value of similarity. As such, we could formulate the
correlation network as a Markov chain, where each sensor s; is viewed as the state i, and the

transition probability of from state i (i.e., sensor_s;) to state j (i.e., sensor s;) is defined as

tri,j

Srenn SensorRank of s; is‘denoted asrank;which is referred the probability that
Enei(d 1y v

Dij =

one randomly walks to s;. Thus, SensorRank of s; is calculated as follows:

rank; = Z rank; - pj;. (3.1)

sjenei(i)

Due to the characteristic of random walks, SensorRank is a probability distribution to
represent the likelihood that a person could randomly follow the links to any particular sen-
sor. The computation of SensorRank requires several iterations to determine the steady state
probability for each sensor. Specifically, rankgk) is the value of SensorRank at the k-th iter-
ations. In the beginning, the initial mnki(o) is set to 1. Note that mnk:z(o) can be set to any
constant a, and the results will be a times the value generated when the initial SensorRank
is set to 1. In the first round, each sensor s; updates its SensorRank as mnk:i(l) using the
initial SensorRanks of its neighbors (referred to as the first level neighbors). Now each sensor
has considered the first level neighbors to calculate its SensorRank. In the second round,

each sensor can obtain some information from the second level neighbors (the neighbors of

13

the first level neighbors) through its first level neighbors since its first level neighbors have
explored their first level neighbors as well. Therefore, after the k-th round, sensor s; has
explored the k-th level neighbors and updated SensorRank as rcmki(k). Consider an example
in Figure 3.1. In the first round, s3 has some similarity information from its first level neigh-
bors {s2, 4, So, S10, 511 }. Similarly, both s, and s4 could exchange some information with their
neighbors. In the second round, s3 can obtain similarity information from the second level
neighbors {s1, s5} since its first level neighbors s, and s4 have explored s; and s; during the
first round. If k is larger, SensorRanks will be more accurate since every sensor can explore
more neighbors. In sensor networks, the computation cost will be larger when the number of

iterations is larger. Therefore, we can limit k to the upper bound §.

Algorithm Sensor Rank

Input: a sensor s;, and a threshold .
Output: rank; for s;.

1: rankgo) =1

2: for k=1 to d do

3: for all s; € nei(s;) do

4: = e ——
Pij Zsk enei(i) tTik
k-1
send mnkﬁ) “pij to s
)

o

- p;; from every s;'€ mez (i)

(k1)
rank;” " - pji

6: receive all mnkﬁk_l

mnk‘gk) =5

=

sjenei(i)

Given a correlation network shown in Figure 3.1, we now demonstrate how to calculate
SensorRank. Initially, sensor s; sets its SensorRank mnki(o) to 1. For sensor s;, s; calculates
the transition probability p; ; to the corresponding neighbor s; and sends mnkgo) - pij to s;.
For example, s3 sends mnkéo) ~p31 = 1- % = 0.147 to sy, 0.118 to sy, 0.088 to s4, and

etc. At the same time, s3 receives SensorRanks from its neighbors. For example, s3 receives

0.4

mnk’éo) P32 =1- 03104

= 0.571 from s,. Upon receiving all the proportion of SensorRank

14

‘ ‘ 51 ‘ 52 ‘ 53 ‘ S4 ‘ S5 ‘ S6 ‘ St ‘ S8 ‘ S9 ‘ 510 ‘ S11 ‘
k=01 1 1 1 1 1 1 1 1 1 1

k=1]155]024|234]042|199|0.671]0.94|0.51|0.55]|1.27]0.51
k=21125]047|15210.79|1.5410.9 0.890.75]092 | 1.1 0.87

Table 3.1: SensorRank values for sensors in Figure 2.

from the neighbors, s3 can update its SensorRank to mnkgl).

mnkél) = Z mnki(o) “Dji
i€{1,2,4,9,10,11}

= 1-p13g+1-pp3s+1-pg3s+1-piosz+1-pugs

05 N 0.4 N 0.3 N 0.7 N 0.8 N 0.7
24 07 12 15 23 14

= 234

After the first round, {mnkf”ﬁ = 1,2,3,4} =.{1.55,0.24,2.34,0.42}. In the second round,
sensors calculate the values of SensgrRankywith the updated values of SensorRank in the
first round. For example, s; now sends rangl) P13 = _1.552 . % = 0.323 to s3. Similarly,
when s3 receives all the values from its ne‘ighbdfé, sg ¢an update its SensorRank to mnkéQ).
Assume that § = 2, s; will stop updating its SensorRank, and {rank§2)|i = 1,2,3,4} =
{1.25,0.47,1.52,0.79}. As expected, s3 has the highest SensorRank 1.521, since s3 has many
similar neighbors. Because s; has fewer similar neighbors than s3, s; has fewer SensorRank
than s3. Note that s, has the fewest SensorRank than other sensors since it has few neighbors
and those neighbors are not similar to it. The values of SensorRank after the 3rd iteration are
listed in Table 3.1. From Table 3.1, both s3 and s; have higher SensorRank values since these
two sensors have more similar neighbors than other sensors. This agrees with our requirement
that the important sensors are those sensors who have more similar neighbors.

In the most situations, SensorRank of every sensor will be stable in a few iterations. That
is, SensorRank will come to a steady state. But in some situations, it will not be stable.

For example shown in Figure 3.2, s; links to s; and s, links to s3. In this case, we can find

15

@ 0.8 @ 03 @

Figure 3.2: In this case, SensorRank of each sensor will not be converge.

that {rank§k>|z' - 1,2,3} — {0.727,2,0.273} and {mnk:?’f“)u _ 1,2,3} — {1.455,1,0.545}
for kK = 1,2,.... Therefore, s;’s SensorRank sometimes is larger than ss’s but sometimes
smaller than s;’s SensorRank. In order to solve this problem, a simple way is that an extra
edge linked from a sensor to itself is added for every sensor. The transition probability p;;

of such link for each sensor s; is assigned a very small value ¢, and the transition probability

€
nei(s)

pi,; to every neighbor s; will minus . In this way, the calculation of SensorRank will be
affected slightly and the above problem can be solved easily. The proof will be discussed in

the following chapter.

3.2 Analysis of SensorRank_

Since the correlation network is modeled ‘as a-Markov chain, in this chapter we prove that
the steady state probability of each sensor is possible, which means that SensorRank has the
convergence property. To facilitate to formulate our network, we define the following terms:

Definition 4. Let P = (s; = s;1, Si2, ..., Six = 5;) be a path from s; to s;. Extended
transition probability p; ; (P) is defined as Hf:_ll Diit1-

Definition 5. Tough path]3” from s; to s; is defined as minp {p;; (P)}.

The value of p; ;j (P) can be explained as a ranking process from s; to s;. The ranking
process can be completed by only neighbors, but SensorRank of a sensor will effect another
sensor far from it indirectly since the network is connected '. From the definition of p; ; (P),

since p; ; < 1, the effect is inversely proportional to the length of P from s; to s;. That

!The correlation network will be disconnected in the situation that some nodes with their trust relation to
be 0. However, in an enough densed sensor network, due to the correlation property, the disconnected sensors
can be recognized as faulty sensors because they are not similar to any their neighbors at all.

16

explains that the effect of ranking from nearby sensors is higher than far-away sensors. Since
there are many path from s; to s;, the tough path can be explained as a path that s; can
effect the rank of s; least among all paths.

The correlation network can be modelled as a Markov chain M with a sensor s; as a state
i and p; ; as the transition probability from state i to state j. The corresponding transition
matrix is Prg.

We first prove the properties of M:

Property 1. M is ergodic.

proof:

Given a correlation network G = (V| E) and for any s; € V', we can conclude that s; is a

neighbor of itself since tr;; = 1 and thus p;; = ZkEZ’(J) o ZkEn;(i) o Therefore, M is
aperiodic. Moreover, since M is finite and reachable’ef any two states, we can conclude that
M is ergodic.

Since ranks of sensors are relatix}e_} to all'sensors.in the whole network, it is an important
issue whether sensors’ ranks will be stéble-or notIf there are sensors with never stable ranks,
the system will become unreliable since we cannot decide how important these unstable sensors
are. Fortunately, since M is ergodic, then the M has unique stationary distribution. That is,
the ranks of all sensors will be stable. The coming question is when the ranks of sensors are
stable. The question is equivalent to bound the mixing time of M. We apply the coupling
technique for bounding the mixing time. The concept of coupling is to construct The principal
idea of coupling is to introduce another another Markov chain M’ that is stationary, being its
stationary probabilities, has the same transition matrix as M and independent of M. Clearly,
the distribution of M tends to be closed to M’. If the distribution of M and M’ is closed
to € after T, then we can estimate the rate of convergence in the limiting relation mentioned

above. Interested readers can read [19] for further information.

Let the diameter of the network is diam (G). Consider the Markov chain M%&) given

17

by the transition matrix (Ppg) ™. Suppose the mixing time of M (denote by 7 (¢)) is
smaller than T, we can know that A/4*™&) cannot converge faster than k = {WJ steps.
Then, we design a coupling where two copies of the chain both move to state j together with
probability at least m; in every step, where m; is the smallest element in the j-th column of
(PTR)diam(G) . The two chains can be made couple with probability at least ;mj;. Hence,
Pr (Not Coupled after & steps) < (1 —m)". Note that m; is the smallest element in the j
column of (PTR)dmm(G), then in one step of M%&) reaches state j with probability at least
m; from every state. Therefore, we can get m; is p; (ﬁ) where ‘ﬁ‘ = diam (G).

From above, Pr (Not coupled after k steps) < (1 — m)k < € can imply that 7(e) <
{diam (G)Ine} /In (1 — > ;Dij (ﬁ)) with ’}A" = diam (G). That represents that the con-
vergence speed is effected by the size of network and the tough path. Since tough path from

s; to s; is a merit how s; can effect the;rank of s;,"we can conclude that ranks can converge

rapidly with little proportion between faulty and normal sensors in the network.

18

