Chapter 4

Faulty Detection Algorithm based on

SensorRank

4.1 Overview of TrustVoting"

As mentioned before, given a correlation netwo_rlg, we are able to assign SensorRank to each
sensor. Sensors with higher SensorRahk will have more confidence in voting process. In light
of SensorRank, we propose a faulty reading filtering algorithm (referred to as TrustVoting) to
detect and filter out the faulty readings so as to increase data accuracy.

Algorithm TrustVoting consists of two phases: self-diagnosis phase and neighbors diagnosis
phase. In self-diagnosis phase, each sensor verifies whether the current reading of a sensor is
unusual or not. Once the reading of a sensor goes through the self-diagnosis phase, this sensor
can directly report the reading. Otherwise, the sensor has to consult with the neighbors to
further verify whether the current reading is faulty or caused by an interesting event. If the
readings are determined as faulty readings, these faulty readings will be filtered out. Those
sensor generated faulty readings will not get involved in voting since these sensors are likely to
bias the voting for other sensors. Note that algorithm TrustVoting is executed in a distributed

manner. The execution order of algorithm TrustVoting will have an influence on faulty reading

19

detection. We will describe this phenomenon later. When a region of sensors are queried, each
sensor in the region queried should first broadcast its SensorRank to its neighbors. According
to SensorRank received from its neighbors, sensor s; should determine when to perform self-
diagnosis and neighbor diagnosis in algorithm TrustVoting. When receiving SensorRank of
neighbors, sensor s; will set the timer to execute self-diagnosis and neighbor diagnosis. With
a higher SensorRank, sensor s; will have more priority to first execute self-diagnosis and
neighboring diagnosis due to that this sensor has more similar neighbors to consult with
for verifying whether the reading is faulty or not. If the fault reading is determined, the
corresponding sensor will have no chance to participate the voting for other sensors. As such,
the dominated problem will be solved accordingly. The detailed descriptions of two phases

and the order of executing TrustVoting are described in the following chapters.

Algorithm TrustVoting

Input: a sensor s;, its SensorRank rank; and time interval ¢
Output: justify whether the reading is faulty or not (i.e., faulty = true or not)

1: set faulty = false

2: broadcast rank; to the nelghbors
receive {rank;|s; € nei (i)} from the nelghbors

/*set timer aceording to the priority sorted by SensorRank*/

sort SensorRank values received
x = rank;’s order in the sorted SensorRank values
n = neighbors of sensor s;

timer = x - (;57)

@

/*t is the time interval given*/
while time == timer do
faulty = Procedure Self-Diagnosis
10: if faulty == true then
11: faulty = Procedure Neighbor-Diagnosis
12: return faulty

4.2 Self-diagnosis Phase

When a region of sensors are queried, each sensor performs procedure self-diagnosis to judge
the current reading behavior. Once the reading behavior of a sensor is determined as normal,

the sensor will not be in the neighbor diagnosis phase. To execute procedure self-diagnosis,

20

Figure 4.1: The reading behavior of sesnors s; and s;.

each sensor s; only maintains two reading behaviors: one is the current reading behavior at
the current time t (denoted as b; (t)) and the other is the previous correct reading behavior
at a previous time ¢, (expressed by b; (t,)). b;(t,) records a series of readings occurred in
the previous time and is used for checking whetheér the current reading behavior is faulty
or not. If these two reading behaviers are not similar,. b; (t) is viewed as an unusual read-
ing behavior. Once a sensor is detgcted ‘an unpsual reading behavior, this sensor will go
through neighbor-diagnosis phase to furthér justify whether the unusual reading behavior is
faulty or is caused by an interesting event. Note that when b; () is identified as a normal
behavior through the neighbor diagnosis, b; (t,) is updated so as to reflect the current envi-
ronmental status. For example shown in Figure 4.1, the previous reading behavior b; (¢,) is
{21,22,22,23}, and the current reading behavior b; (¢) is {32,37,47,55}. If ¢.4nq = 0.5 and
o = 0.7, sim(b; (t),b; (t,)) = 0.3 < 0. Assume that b; (¢) is identified as a normal reading

behavior in the neighbor diagnosis phase, b; (t,) will be updated as {32, 37,47, 55}.

Procedure Self-Diagnosis

Input: a sensor s;, its previous reading behavior b; (t,), its current reading behavior b; (t),
and a threshold o.
Output: the variable faulty.
if sim (b; (t,),b; (t)) > o then
return false
else
return true

21

4.3 Neighbor diagnosis Phase

As mentioned above, if a sensor s; sends b; (t) to a neighbor s;, s; will compare b; (t) with its
own current reading behavior b; (t) and then give its judgment for b; (£). When s; receives all
the judgments from the neighbors, s; has to determine whether b; (¢) is faulty or not according
to the judgments. However, some of the judgments are more authoritative and some are
not, which depends on SensorRank values of these neighbors. A sensor with higher value of
SensorRank has more similar neighbors to consult with. Therefore, the judgments from the
neighbors with higher values of SensorRank are more authoritative, whereas the judgments
from the neighbors with lower values of SensorRank are less authoritative. Consider the above
example in Figure 3.1, s; senses unusual readings and asks its neighbors. Assume some of
the neighbors think that s; generates faulty readings, and the other sensors claim that s; has
correct readings. Now, s; should make a decision among these judgments. Since s; has the
highest SensorRank (1.543) and has the most similar behavior (tr15 = 0.7) with s;, s5 will
have more authority than other neighbors.. On the other hand, s, has the lowest SensorRank
(0.243) and is not similar to sy (tris = 03) Thus, s2 has fewer influence on the judgment.
When sensor s; sends b; (¢) to all its neighbors for the neighbors’ diagnosis, each neighbor
should determine whether b; (¢) is faulty or not. A vote is returned to show the judgment.
If a neighbor s; considers b; () is not faulty by comparing the similarity of the two reading
behaviors (i.e., sim (b; (t),b; (i)) > o), s; will send a positive vote, denoted vote; (i), to s;.
Otherwise, the vote will be negative. In addition, the vote from s; will be weighted by its

SensorRank.

rank;, sim(b;(t),b;(t)) > o

vote; (i) = ; (4.1)

—rank;, otherwise.
After collecting all the votes from the neighbors, s; has two classes of votes: one is positive
class (consider b; (t) as normal) and the other is negative class (consider b; (t) as faulty). If
the weight of the former is larger than the weight of the later, the most neighbors will view

22

Procedure Neighbor-Diagnosis

Input: a sensor s;, its current reading behavior b; (¢), and a threshold o.
Output: the variable faulty.
set dec; = 0
. broadcast b; (t) to the neighbors
: for all s; € nei (i) do
if sim (b; (t),b; (t)) > o then
vote; (i) = rank;
else
vote; (i) = —rank;
dec; = dec; + tr;; - vote; (i)
if dec; > 0 then
return false
. else
return {rue

WP g Wy

e
T

b; (t) as normal. Note that the weight of a vote represents how much authority the judgment
has. It is possible that a neighbor s; of s; has higher SensorRank with a low trust relation. In
this case, these two sensors sense different environments by nature, and thus these two sensors
cannot provide good judgments to each.other. Therefore, each vote (i.e., vote; (7)) has to be
multiplied by the corresponding tru.st relation, #7; ;. This, we have the following formula to

justify whether the reading is faulty or not.

dec; = Z try; - vote; (1)

sjenei(i)

If the weight of the positive votes are more than the weight of the negative votes, dec; will
be positive which means that s;’s reading behavior is normal and the current reading can be
aggregated. Otherwise, dec; is negative, implying that the current reading of s; is a faulty
reading. For example in Figure 4.2, a region of sensors is queried (s;, S, s3, sS4 and s5) and
four faulty sensors (gray nodes) exist. SensorRanks of sensors are shown in square brackets in
nodes and the values of trust relations between sensors are shown on edges. To facilitate the
presentation of this example, the plus sign (minus sign) shows that two sensors have the similar
(dissimilar) current reading behaviors, and they are going to give the positive (negative) votes

to each other when executing the neighbors’ diagnosis. Consider sensor s; as an example,

23

Figure 4.2: An example of casting votes.

where sensor s5 will receive the votes from its neighbors (i.e., s1, S4, Sg, S7 and sg). It can be
verified that decs = (—1.08)-0.441.05-0.7+(—0.81)-0.5+(—0.99)-0.24+(—0.97)-0.4 = —0.688.

Therefore, the reading reported by sensor s; is a faulty reading and will be filtered out.

4.4 Execution Order of TrustVoting

Since algorithm TrustVoting is a distributed algorithm; sensors queried will perform proce-
dures of self-diagnosis and neighbor diagnosis individually. It is possible that different execu-
tion orders will have different results for fa_lﬂty deteetion. For example, consider two execution
orders {s1, s9, S3, 84, S5+ and {ss, s1, S2, 83, S4} in Figure 4.2, and assume that all the queried
sensors have to perform the neighbors’ diagnosis. In the order of {s1, s2, s3, S4, S5}, when s;
executes TrustVoting, ss, s4 and s5 will vote negative votes of —1.088, while s3 and sg will
vote positive votes of 1.17. As such, dec; will be 0.082 and s; will be identified as normal.
For s,, since decy = (—1.1)- 0.4+ (—1.36) - 0.2+ 1.04 - 0.7 = 0.016, s, is identified as normal.
In the similar way, we can find that s4 is also identified as normal. However, in the order
of {s1, $2, 83, 54, S5}, the result will be different. When s5 executes TrustVoting, it will be
identified as faulty obviously because almost all neighbors give it negative votes. Therefore,
s5 cannot vote for any other sensors. Without s;’s vote s, will be identified as faulty since
(—1.1)-0.3+0.78- 0.7+ (—1.36) - 0.2 = —0.056 . As a result, we can see that different orders

derive different results.

24

‘ Order ‘ Faulty ‘ Not Faulty ‘

S1, 52, 53,54, 55 | Sp 51, 52, 53, 54

S5, 51,52, 53,54 | 54,55 S1, 52, 83
53, S5, 51, S4, S2 | S2, 54,55 | S1,53

Table 4.1: Faulty detection results under different orders.

As such, how to determine an appropriate order to perform procedures of self-diagnosis and
neighbor diagnosis in algorithm TrustVoting will have an influence on the final result. Since
algorithm TrustVoting is executed in a distributed manner, we could explore timer to control
the execution order of procedures self-diagnosis and neighbor diagnosis. Those sensors having
smaller values of timer will perform first. By exploring SensorRank, we could allow those
sensors having higher SensorRank to perform procedures self-diagnosis and neighbor diagnosis
as soon as possible. As pointed out early, sensors with higher SensorRank are likely to have
more similar neighbors, thereby these SNSoLs could be correctly identified whether readings
are faulty or not. Once sensors reporting faulty readings are detected, these sensors have no
right to get involved in voting for other sensor nodes. Therefore, the dominated problem can
be solved under the scenario that thoée faulty sehébrs with higher weights could be determined
as early as possible. Intuitively, we could determine the order of executing procedures of self-
diagnosis and neighbor diagnosis according to SensorRank. Sensors with higher SensorRank
should have a smaller timer. However, some sensors with higher SensorRank possibly result
from those neighbors having higher SensorRank and have few neighbors. Therefore, we should
not let such sensors execute procedures due to that with few neighbor sensors, these sensors
are likely not to accurately identified as a faulty or not. One should also take the number
of neighbors into considerations. In algorithm TrustVoting, timers are set for each sensor in
accordance to SensorRank and number of neighbors. Specifically, assume that a time interval
will be given in algorithm TrustVoting. In algorithm TrustVoting, each sensor should first
broadcast SensorRank to neighbors. Once receiving SensorRank values from its neighbors,

each sensor should sort SensorRank values in a decreased order. Then, each sensor should

25

determine the order of its SensorRank in such sorted list. Furthermore, a sensor will have
information related to the number of neighbors from SensorRank values received. Therefore,
we could set timer to be z - ﬁ, where x is the order of this sensor in a sorted list, n is the
number of neighbors and ¢ is the time interval given. With a smaller value of timer, procedures
of self-diagnosis and neighbor-diagnosis will executed first. Consider an illustrative example
in 4.2. The timer value for sensor s3 should be 1 - % since sensor s3 has 6 neighbors and its
SensorRank is the highest among SensorRank values collected (i.e., 6 neighbors and sensor
s3). Following the same operation, we could have the timer values %, %, %, and % for sq,
S9, S4 and sy, respectively. Assume that each sensor does not go through self-diagnosis and
will execute procedure of neighbor diagnosis. According to the timers derived, s3 will perform
first and the reading of s3 is identified as a normal reading through neighbor diagnosis. Then,
both s; and s5 will execute neighbor diagnosis at the same time. The reading reported by
s1(respectively, s5) will be determined as a normal rea(iing (respectively, faulty). Follow the
executions of s, and s4. In particulzir, since’ ss-s-viewed as faulty, s5 could not participate in

voting process of s4. As a result, through the.execution order derived, we could accurately

detect faulty readings reported by ss, s4 and ss.

26

