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Geometrically Induced Stress Singularities of a Thick FGM
Plate Based on the Third-Order Shear Deformation Theory

C. S. Huang and M. J. Chang
National Chiao Tung University, Hsinchu, Taiwan

Asymptotic solutions for a functionally graded material (FGM)
plate are developed to elucidate stress singularities at a plate cor-
ner, using a third-order shear deformation theory. The character-
istic equations are given explicitly for determining the order of
stress singularity at the vertex of a corner with two radial edges
having various boundary conditions. The non-homogeneous elas-
ticity properties are present only in the characteristic equations for
a corner with one of its two edges simply supported. The effects
of material non-homogeneity on the stress singularities are exten-
sively examined. The present results are very useful for developing
accurate numerical solutions for an FGM plate under static or dy-
namic loading when the plate involves stress singularities, such as
a V-notch or crack.

Keywords FGM plates, third-order shear deformation theory, stress
singularities, asymptotic solutions, eigenfunction expan-
sion

1. INTRODUCTION
In functionally graded materials (FGMs), the volume frac-

tions of two or more materials vary continuously as a function of
position in a particular dimension(s) to achieve a required func-
tionality. FGMs were first developed in the mid-1980s [1]. Con-
tinuous changes in the microstructure of FGMs give mechanical
properties better than those of traditional laminated composite
materials, which are prone to debonding along layer interfaces
because of abrupt changes in material properties across an in-
terface. Gradual changes of material properties in FGMs can
be designed for various applications and work environments.
Consequently, over the last two decades, FGMs have been ex-
tensively explored in various fields including those of electron,
chemistry, optics, biomedicine, aeronautical engineering, and
mechanical engineering.

Plates in various geometric forms are commonly employed
in practical engineering. Since solutions to plate problems based
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on plate theories are much simpler than those based on three-
dimensional elasticity theory, various plate theories have been
adopted to study the static or dynamic behaviors of FGM plates
[2–8]. Numerous plates of various shapes have re-entrant cor-
ners. Stress singularities are typically present at the re-entrant
corners, and stress singularity behaviors must be considered
for accurate numerical analyses. Corner functions appropri-
ately describing the stress singularity behaviors are used in var-
ious famous numerical approaches, such as the Ritz method
[9, 10], the traditional finite element method [11, 12] and the
mesh-free method [13, 14], for homogenous plates with stress
singularities.

Geometrically induced stress singularities are those associ-
ated with irregular geometry, such as a notch or an abrupt change
in a cross section. Such stress singularities have been compre-
hensively investigated for homogeneous plates. Williams [15]
initially derived characteristic equations for determining singu-
lar orders of stress in an isotropic sector plate under bending
using classical thin plate theory, while Burton and Sinclair [16],
Huang [17–19] and McGee et al. [20] examined stress singu-
larities using various thick plate theories. Different plate theo-
ries generally yield different stress singularity behaviors. Based
on plane elasticity, Williams [21] pioneered the examination
of the stress singularity of an isotropic plate under extension.
The eigenfunction expansion technique was applied in these
studies [15–21]. Baz̀ant and Estenssoro [22], Keer and Parihar
[23], Schmitz et al. [24] and Glushkov et al. [25] employed dif-
ferent numerical solution techniques to elucidate geometrically
induced stress singularities at a three-dimensional vertex of a
body.

Some analytical studies addressed stress singularities at the
interface corner of a plate made of multiple materials. The plates
considered in these studies are made of different materials in
different regions, each of which is homogenous. For instance,
Hein and Erdogan [26], Bogy and Wang [27], Rao [28] and
Dempsey and Sinclair [29] utilized different approaches to in-
vestigate stress singularities based on plane elasticity theory,
while Huang [30, 31] studied thick plates under bending.

These cited studies reveal the need to study geometrically in-
duced stress singularities in FGM plates. Recently, the authors of
this study [32] investigated for the first time stress singularities
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84 C. S. HUANG AND M. J. CHANG

of a thin FGM plate using classical thin plate theory. Classical
thin plate theory generally yields accurate solutions for plates
with thicknesses less than 1/20 of the smallest in-plane dimen-
sion. Stress singularities of a thick FGM plate are important
and are investigated herein. This work employs eigenfunction
expansion to establish asymptotic solutions of the equilibrium
equations in terms of displacement functions based on Reddy’s
plate theory [33], which is a third-order shear deformation the-
ory. Characteristic equations are explicitly presented to deter-
mine the stress singularity order at the vertex of a corner with
two radial edges having various boundary conditions. Moreover,
asymptotic solutions are also explicitly shown for a corner with
identical boundary conditions along its two radial edges. The
effects of material non-homogeneity on stress singularities are
thoroughly examined. This publication is the first to present such
results.

2. THEORETICAL FORMULATION
The first-order shear deformation plate theory (FSDT), also

known as Reissner-Mindlin’s plate theory [34, 35], is the sim-
plest plate theory considering shear deformation effect. Since
the transverse shear strain is assumed constant through plate
thickness, a shear correction coefficient is required. FSDT is
considered accurate for analyzing moderately thick plates. The
third-order shear deformation plate theory, developed by Reddy
[33], is adopted herein to eliminate the need to choose an appro-
priate shear correction coefficient for FGM plates. Moreover, the
displacement field and equilibrium equations for the third-order
shear deformation theory are easily converted to those for FSDT,
which is shown below. Reddy’s plate theory contains a parabolic
variation of transverse shear strains through plate thickness and
satisfies free transverse shear stress on the top and bottom plate
surfaces.

2.1. Displacement Field and Strains
The displacement field in Reddy’s third-order shear defor-

mation plate theory is assumed to be, in cylindrical coordinates
as shown in Figure 1,

ū(r, θ, z) = u0(r, θ) + z[ψr (r, θ) − C1z2(ψr (r, θ)

+ w,r (r, θ))], (1a)

FIG. 1. Coordinate system and positive displacement components for a
wedge.

v̄(r, θ, z) = v0(r, θ) + z
[
ψθ(r, θ) − C1z2

(
ψθ(r, θ)

+1

r
w,θ(r, θ)

)]
, (1b)

w̄ = w(r, θ), (1c)

where ū, v̄ and w̄ are displacement components in the r , θ, and
z directions, respectively; u0, v0 and w are corresponding dis-
placements on the mid-plane; ψr and ψθ are rotations of the
mid-plane normal in the radial and circumferential directions,
respectively; subscript ,β refers to partial differentials with re-
spect to the independent variable β, and C1 = 4/3h2. When C1

is set to zero, the displacement field given by Eqs. (1a)–(1c) is
identical to that for FSDT.

Linear strain components are expressed in terms of displace-
ment functions as




εrr

εθθ

γrθ


 =




ε(0)
rr

ε
(0)
θθ

γ
0)
rθ


 + z




ε(1)
rr

ε
(1)
θθ

γ
(1)
rθ


 + z3




ε(3)
rr

ε
(3)
θθ

γ
(3)
rθ




{
γr z

γrθ

}
=

{
γ(0)

r z

γ
(0)
θz

}
+ z2

{
γ(2)

r z

γ
(2)
θz

} (2)

where

ε(0)
rr = u0,r , ε(1)

rr = ψr,r , ε(3)
rr = −C1 (ψr,r + w,rr ),

ε
(0)
θθ = 1

r
(u0 + v0,θ), ε(1)

θθ = 1

r
(ψr + ψθ,θ),

ε
(3)
θθ = −C1

1

r

(
ψθ,θ + 1

r
w,θθ + ψr + w,r

)
,

γ
(0)
rθ = v0,r − 1

r
v0 + 1

r
u0,θ, γ

(1)
rθ = ψθ,r + 1

r
ψr,θ − 1

r
ψθ,

γ
(3)
rθ = −C1

1

r

[
− ψθ − 2

r
w,θ + ψr,θ + 2 w,rθ + r ψθ,r

]
,

γ(0)
r z = ψr + w,r , γ(2)

r z = −C2 (ψr + w,r), γ
(0)
θ z = ψθ + 1

r
w,θ,

γ
(2)
θ z = −C2

(
ψθ + 1

r
w,θ

)
, C2 = 3C1. (3)

2.2. Constitutive Relations
This study considers a thick wedge (or sector plate)

(Figure 1), which is made of FGM with material properties
varying through the thickness (z direction in Figure 1) only.
Poisson’s ratio (υ) is assumed constant, and elasticity moduli
vary according to

P(z) = Pb + V (z)�P (4)

where V (z) = (z/h + 1/2)m ; P denotes a material property
such as Young’s modulus (E) or shear modulus (G); Pb denotes
E or G at the bottom plate face; �P is the difference between
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GEOMETRICALLY INDUCED STRESS SINGULARITIES 85

Pb and the corresponding property at the top plate face; h is
plate thickness; m is the parameter that governs the material
variation profile through the thickness; m or �P=0 represents
a homogenous plate.

The linear constitutive relations between stresses and strains
are




σrr

σθθ

σrθ

σr z

σθz




=




E

1 − υ2

υE

1 − υ2
0 0 0

υE

1 − υ2

E

1 − υ2
0 0 0

0 0 G 0 0

0 0 0 G 0

0 0 0 0 G







εrr

εθθ

γrθ

γr z

γθz




(5)

The transverse normal stress σzz is assumed zero.

2.3. Equilibrium Equations
Using the principle of stationary potential energy and the

displacement field given by Eqs. (1a)–(1c), one can obtain the
equilibrium equations and boundary conditions. The equilibrium
equations without external loading are

Nr,r + Nrθ,θ/r + (Nr − Nθ)/r = 0, (6a)

Nrθ,r + Nθ,θ/r + 2Nrθ/r = 0, (6b)

C1

(
Pr,rr + 2

r
Pr,r + 1

r2
Pθ,θθ − 1

r
Pθ,r + 2

r
Prθ,rθ + 2

r2
Prθ,θ

)

+ Q̄r

r
+ Q̄r,r + 1

r
Q̄θ,θ = 0, (6c)

M̄r,r + M̄r

r
− M̄θ

r
+ 1

r
M̄rθ,θ − Q̄r = 0, (6d)

1

r
M̄θ,θ + M̄rθ,r + 2M̄rθ

r
− Q̄θ = 0, (6e)

where

M̄rθ = Mrθ − C1 Prθ, M̄β = Mβ − C1 Pβ,

Q̄β = Qβ − C2 Rβ, (7a){
Qβ

Rβ

}
=

∫ h/2

−h/2
σβz

{
1

z

}
dz, (7b)




Nβ

Mβ

Pβ


 =

∫ h/2

−h/2
σββ




1

z

z3


 dz, (7c)




Nrθ

Mrθ

Prθ


 =

∫ h/2

−h/2
σrθ




1

z

z3


 dz, (7d)

and subscript βdenotes ror θ; Nr , Nθ and Nrθ are in-plane force
resultants; Qr and Qθ are shear force resultants; Mr , Mθ and
Mrθ are moment resultants; Pr , Pθ, Prθ, Rr , and Rθ are the
higher-order stress resultants. Notably, Eqs. (6a)–(7a) convert

to the equilibrium equations for FSDT if C1 and C2 are set equal
to zero. The boundary conditions should be specified as
along θ = α,

u0 or Nrθ, v0 or Nθ, ψθ or M̄θ, ψr or M̄rθ,

w or Q̄θ + C1

(
2

r
Prθ + 2Prθ,r + 1

r
Pθ,θ

)
, and

w,θ

r
or Pθ; (8a)

and at r=R,

u0 or Nr , v0 or Nrθ, ψθ or M̄rθ, ψr or M̄r ,

w or Q̄r + C1

(
Pr

r
+ Pr,r + 2

r
Prθ,θ − Pθ

r

)
, and w,r or Pr . (8b)

Using Eqs. (2), (3), (5) and (7) yields the relationships (Ap-
pendix A) between stress resultants and displacement functions.
Substituting those relationships into Eqs. (6a)–(6e) yields the
equilibrium equations in terms of displacement functions

Ē0

(
− u0

r2
+ u0,r

r
+ u0,rr + 1 − υ

2r2
u0,θθ − 3 − υ

2r2
v0,θ

+ 1 + υ

2r
v0,rθ

)
+ C1 Ē3

(
w,r

r2
− w,rr

r
− w,rrr + 3 + υ

2r3
w,θθ

− w,rθθ

r2

)
+ (Ē1 − C1 Ē3)

(
ψr

r2
+ ψr,r

r
+ ψr,rr

+ 1 − υ

2r2
ψr,θθ − 3 − υ

2r2
ψθ,θ + 1 + υ

2r
ψθ,rθ

)
= 0, (9a)

Ē0

(
3 − υ

2r2
u0,θ + 1 + υ

2r
u0,rθ − 1 − υ

2r2
v0 + 1 − υ

2r
v0,r

+ 1 − υ

2
v0,rr + v0,θθ

r2

)
+ C1 Ē3

(
− w,rθ

r2
− 1 + υ

2r
w,rrθ

− w,θθθ

r3

)
+ (Ē1 − C1 Ē3)

(
3 − υ

2r2
ψr,θ + 1 + υ

2r
ψr,rθ

− 1 − υ

2r2
ψθ + 1 − υ

2r
ψθ,r + 1 − υ

2
ψθ,rr + ψθ,θθ

r2

)
= 0,

(9b)

C1 Ē3

(
u0 + v0,θ

r3
− u0,r + v0,rθ

r2
+ 2u0,rr + v0,rrθ

r
+ u0,rrr

+ u0,θθ + v0,θθθ

r3
+ u0,rθθ

r2

)
+ C2

1 Ē6

(
− w,r

r3
+ w,rr

r2

− 4w,θθ

r4
+ 2w,rθθ

r3
− 2w,rrr

r
− w,θθθθ

r4
− 2w,rrθθ

r2

− w,rrrr

)
+ 1 − υ

2

(
Ē0 − 2C2 Ē2 + C2

2 Ē4
)(w,r

r
+ w,rr

+ ψr

r
+ ψr,r + ψθ,θ

r

)
+ (

C1 Ē4 − C2
1 Ē6

)(ψr + ψθ,θ

r3

− ψr,r + ψθ,rθ

r2
+ ψr,θθ + ψθ,θθθ

r3
+ 2ψr,rr + ψθ,rrθ

r

+ ψr,rθθ

r2
+ ψr,rrr

)
= 0, (9c)
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86 C. S. HUANG AND M. J. CHANG

(Ē1 − C1 Ē3)

(
− u0

r2
+ u0,r

r
+ u0,rr + 1 − υ

2r2
u0,θθ

− 3 − υ

2r2
v0,θ + 1 + υ

2r
v0,rθ

)
+ (

C1 Ē4 − C2
1 Ē6

)
×

(
w,r

r2
− w,rr

r
+ 2w,θθ

r3
− w,rrr − w,rθθ

r2

)
− 1 − υ

2

× (
Ē0 − 2C2 Ē2 + C2

2 Ē4
)
(w,r + ψr ) + (

Ē2 − 2C1 Ē4

+ C2
1 Ē6

)( − ψr

r2
+ ψr,r

r
+ 1 − υ

2r2
ψr,θθ + ψr,rr

− 3 − υ

2r2
ψθ,θ + 1 + υ

2r
ψθ,rθ

)
= 0, (9d)

(Ē1 − C1 Ē3)

(
3 − υ

2r2
u0,θ + 1 + υ

2r
u0,rθ − 1 − υ

2

×
(

v0

r2
− v0,r

r
− v0,rr

)
+ v0,θθ

r2

)
− (

C1 Ē4 − C2
1 Ē6

)
×

(
w,rθ

r2
+ w,θθθ

r3
+ w,rrθ

r

)
− 1 − υ

2

(
Ē0 − 2C2 Ē2

+ C2
2 Ē4

)(w,θ

r
+ ψθ

)
+ (

Ē2 − 2C1 Ē4 + C2
1 Ē6

)
×

(
3 − υ

2r2
ψr,θ + 1 + υ

2r
ψr,rθ − 1 − υ

2r2
ψθ

+ 1 − υ

2r
ψθ,r + ψθ,θθ

r2
+ 1 − υ

2
ψθ,rr

)
= 0. (9e)

Because this study assumes a constant Poisson’s ratio, the
following relations are used in deriving Eqs. (9a)–(9e)

D̄i = υ Ē i and Ḡi = (1 − υ)

2
Ē i , (10)

where D̄i , Ē i and Ḡi are defined in Appendix A.

3. ASYMPTOTIC SOLUTIONS
The eigenfunction expansion method is adopted to solve Eqs.

(9a)–(9e). Displacement components are assumed as in the fol-
lowing series:

u0(r, θ) =
∞∑

n=0,1,2

rλ+nUn(θ, λ), v0(r, θ) =
∞∑

n=0,1,2

rλ+n Vn(θ, λ),

w(r, θ) =
∞∑

n=0,1,2

rλ+n+1Wn(θ, λ),

ψr (r, θ) =
∞∑

n=0,1,2

rλ+n�n(θ, λ), ψθ(r, θ) =
∞∑

n=0,1,2

rλ+n�n(θ, λ),

(11)

where the characteristic value λ is typically a complex number.
The real part of λ must exceed zero to satisfy regularity condi-
tions at the sector plate vertex. The regularity conditions require
that u0, v0, ψθ, ψr , w and w,r are finite as r approaches zero.

No attempt is made to solve completely Eqs. (9a)–(9e) for all
values of r . Instead, this work concentrates on the asymptotic
solutions as r approaches zero, which specify the singular be-
haviors of stress resultants when stress singularities are present.
Accordingly, inserting Eq. (11) into the equilibrium equations
and considering only those terms with the lowest order of r yield,

Ē0[−1 + λ + λ(λ − 1)] U0 + 1 − υ

2
Ē0U0,θθ

+
(

− 3 − υ

2
+ 1 + υ

2
λ

)
Ē0V0,θ + C1 Ē3[λ + 1 − λ(λ + 1)

−(λ + 1)λ(λ − 1)] W0 + C1 Ē3[2 − (λ + 1)] W0,θθ

+ (Ē1 − C1 Ē3) [λ − 1 + λ(λ − 1)] �0

+ (Ē1 − C1 Ē3)
1 − υ

2
�0,θθ + (Ē1 − C1 Ē3)

×
(

− 3 − υ

2
+ 1 + υ

2
λ

)
�0,θ = 0, (12a)

Ē0

(
3 − υ

2
+ 1 + υ

2
λ

)
U0,θ + Ē0

1 − υ

2
[λ − 1

+ λ(λ − 1)] V0 + Ē0V0,θθ + C1 Ē3[−(λ + 1)

− λ(λ + 1)] W0,θ − C1 Ē3W0,θθθ + (Ē1 − C1 Ē3)

×
(

3 − υ

2
+ 1 + υ

2
λ

)
�0,θ + (Ē1 − C1 Ē3)

× 1 − υ

2
[λ − 1 + λ(λ− 1)] �0 + (Ē1 − C1 Ē3) �0,θθ = 0,

(12b)

C1 Ē3(λ − 1)2 (λ + 1)U0 + C1 Ē3 (λ + 1) U0,θθ

− C2
1 Ē6(λ + 1)2 (λ − 1)2W0 + C2

1 Ē6[−4 + 2 (λ + 1)

− 2λ (λ + 1)] W0,θθ − C2
1 Ē6W0,θθθθ

+ (
C1 Ē4 − C2

1 Ē6
)

(λ − 1)2 (λ + 1)�0

+ (
C1 Ē4 − C2

1 Ē6
)

(λ + 1) �0,θθ + (
C1 Ē4 − C2

1 Ē6
)

× (λ − 1)2�0,θ + (
C1 Ē4 − C2

1 Ē6
)

�0,θθθ = 0, (12c)

(Ē1 − C1 Ē3) (λ − 1)(λ + 1)U0 + 1 − υ

2
(Ē1 − C1 Ē3) U0,θθ

+ (Ē1 − C1 Ē3)

(
−3 − υ

2
+ 1 + υ

2
λ

)
V0,θ − (

C1 Ē4

− C2
1 Ē6

)
(λ + 1)2(λ − 1)W0 + (

C1 Ē4 − C2
1 Ē6

)
(1 − λ)

× W0,θθ + (
Ē2 − 2C1 Ē4 + C2

1 Ē6
)

(λ + 1)(λ − 1)�0

+ (
Ē2 − 2C1 Ē4 + C2

1 Ē6
) [

1 − υ

2
�0,θθ +

×
(

−3 − υ

2
+ 1 + υ

2
λ

)
�0,θ

]
= 0, (12d)

(Ē1 − C1 Ē3)

(
3 − υ

2
+ 1 + υ

2
λ

)
U0,θ

+ (Ē1 − C1 Ē3)
1 − υ

2
(λ + 1)( λ − 1)V0

+ (Ē1 − C1 Ē3) V0,θθ − (
C1 Ē4 − C2

1 Ē6
)

(λ + 1)2W0,θ
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GEOMETRICALLY INDUCED STRESS SINGULARITIES 87

− (
C1 Ē4 − C2

1 Ē6
)

W0,θθθ

+ (
Ē2 − 2C1 Ē4 + C2

1 Ē6
) (

3 − υ

2
+ 1 + υ

2
λ

)
�0,θ

+ (
Ē2 − 2C1 Ē4 + C2

1 Ē6
) [(

− 1 − υ

2
+ 1 − υ

2
λ2

)
�0

+ �0,θθ

]
= 0. (12e)

Equations (12a)–(12e) are a set of linear differential equa-
tions with constant coefficients. The general solutions are easily
obtained as

U0(θ, λ) = A1 cos(λ + 1)θ + A2 sin(λ + 1)θ

+ A3 cos(λ − 1)θ + A4 sin(λ − 1)θ, (13a)

V0(θ, λ) = A2 cos(λ + 1)θ − A1 sin(λ + 1)θ

+ (κ1 A4 − κ2 B4) cos(λ − 1)θ

+ (−κ1 A3 + κ2 B3) sin(λ − 1)θ, (13b)

W0(θ, λ) = B1 cos(λ + 1)θ + B2 sin(λ + 1)θ + B3 cos(λ − 1)θ

+ B4 sin(λ − 1)θ, (13c)

�0(θ, λ) = D1 cos(λ + 1)θ + D2 sin(λ + 1)θ

+ D3 cos(λ − 1)θ + D4 sin(λ − 1)θ, (13d)

�0(θ, λ) = D2 cos(λ + 1)θ − D1 sin(λ + 1)θ

+ (κ1 D4 − κ3 B4) cos(λ − 1)θ

+ (−κ1 D3 + κ3 B3) sin(λ − 1)θ, (13e)

where Ai , Bi and Di (i = 1, 2, 3 and 4) are arbitrary constants,
κ1 = 3+λ−υ+λυ

−3+λ+υ+λυ
,

κ2 = −
8C1λ(Ē2 Ē3−C1 Ē3 Ē4+Ē1(−Ē4+C1 Ē6))

Ē2
1−2C1 Ē1 Ē3+C2

1 Ē2
3−Ē0

(
Ē2−2C1 Ē4+C2

1 Ē6

)
−3 + λ + υ + λυ

and

κ3 =
8C1λ

(
Ē1 Ē3−C1 Ē2

3+Ē0(−Ē4+C1 Ē6)
)

Ē2
1−2C1 Ē1 Ē3+C2

1 Ē2
3−Ē0

(
Ē2−2C1 Ē4+C2

1 Ē6

)
−3 + λ + υ + λυ

.

The relationships among Ai , Bi and Di (i =1, 2, 3 and 4)
and the characteristic value λ are determined from boundary
conditions along radial edges.

Asymptotic solutions are expressed simply as

u(a)
0 (r, θ) = rλU0(θ, λ), v

(a)
0 (r, θ) = rλV0(θ, λ),

ψ
(a)
θ (r, θ) = rλ�0(θ, λ), ψ(a)

r (r, θ) = rλ�0(θ, λ)

and w
(a)
0 (r, θ) = rλ+1W0(θ, λ), (14)

where u(a)
0 , v

(a)
0 , ψ

(a)
θ , ψ(a)

r and w
(a)
0 denote asymptotic solutions

for u0, v0, ψθ, ψr and w, respectively. These asymptotic solu-
tions are also called corner functions and can be added to regular

admissible functions in an energy method to enhance dramati-
cally the accuracy of numerical solutions to dynamic or static
problems with stress singularities.

4. CHARACTERISTIC EQUATIONS AND CORNER
FUNCTIONS

The singularities of stress resultants at r = 0 are determined
from the real part of λ in an asymptotic solution given by Eq.
(14). The real part of λ less than one leads to singularities of Nr ,
Nθ, Nrθ, Mr , Mθ, Mrθ, Pr , Pθ and Prθ; no singularity for shear
forces (Qr and Qθ), Rr and Rθ is produced.

The characteristic value λ is affected by boundary condi-
tions along two edges forming a corner. Four types of homoge-
neous boundary conditions along a radial edge, say θ = α, are
considered:
clamped:

u0 = v0 = w = ψr = ψθ = w,θ

r
= 0, (15a)

free:

Nrθ = Nθ = M̄θ = M̄rθ = Q̄θ

+ C1

(
2

r
Prθ + 2Prθ,r + 1

r
Pθ,θ

)
= Pθ = 0, (15b)

type I simply supported:

u0 = v0 = w = ψr = M̄θ = Pθ = 0, (15c)

type II simply supported:

u0 = v0 = w = M̄θ = M̄rθ = Pθ = 0. (15d)

For simplicity, C and F refer to clamped and free boundary
conditions, respectively, while S(I) and S(II) denote type I and
type II simply supported boundary conditions.

The procedure for deriving the characteristic equation for λ

and the associated corner function is demonstrated for the case
in which both radial edges at θ = ±α/2 have S(I). Problem
symmetry is exploited to divide the asymptotic solutions given
by Eq. (14) into symmetric and anti-symmetric parts.

In the symmetric case, Ai , Bi and Di (i = 2 and 4) in Eqs.
(13a)–(13e) are zero. Satisfying the boundary conditions yields

A1 cos(λ + 1)
α

2
+ A3 cos(λ − 1)

α

2
= 0, (16a)

−A1 sin(λ + 1)
α

2
+ (–κ1 A3 + κ2 B3) sin(λ − 1)

α

2
= 0,

(16b)

B1 cos(λ + 1)
α

2
+ B3 cos(λ − 1)

α

2
= 0, (16c)

D1 cos(λ + 1)
α

2
+ D3 cos(λ − 1)

α

2
= 0, (16d)
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88 C. S. HUANG AND M. J. CHANG

(λ + 1){−A1 Ē1 + D1(−Ē2 + C1 Ē4) + B1C1 Ē4 (λ + 1)}
× cos(λ + 1)

α

2
+ (λ − 1){−A3 κ1 Ē1 + κ1(−Ē2 + C1 Ē4)

× D3 + (κ2 Ē1 + κ3 Ē2 − C1 Ē4 (1 + κ3 − λ))B3}
× cos(λ − 1)

α

2
= 0 (16e)

(λ + 1){−A1 Ē3 + D1(−Ē4 + C1 Ē6) + B1C1 Ē6 (λ + 1)}
× cos(λ + 1)

α

2
+ (λ − 1){−A3 κ1 Ē1 + κ1(−Ē4

+ C1 Ē6)D3 + (κ2 Ē3 + κ3 Ē4 − C1 Ē6 (1 + κ3 − λ))B3}
× cos(λ − 1)

α

2
= 0 (16f)

For a nontrivial solution, the determinant of the coefficients of
Eqs. (16a)–(16f) must vanish, leading to(

cos(λ + 1)
α

2

)(
cos(λ − 1)

α

2

)
= 0, (17a)

or

γ̄1 λ sin α + sin λα = 0, (17b)

where γ̄1 = κ̄1
κ̄2

and the long expressions of κ̄1 and κ̄2 are eluci-
dated in Appendix B.

When λ satisfies cos(λ + 1)α
2 = 0 and cos(λ − 1)α

2 �= 0,
A1, A3, B3 and B4 are zero according to Eqs. (16a)–(16f), and
u(a)

0 and v
(a)
0 are eliminated from Eq. (14). Hence, the correspond-

ing corner functions are

w
(a)
0 = B1rλ+1 cos(λ + 1)θ, ψ(a)

r = D1rλ cos(λ + 1)θ

and ψ
(a)
θ = −D1rλ sin(λ + 1)θ. (18)

The asymptotic solutions for u0 and v0 are such that the
order of r exceeds λ and do not produce stress singularities.
Similarly, one can find the corner functions corresponding to
characteristic equations cos(λ − 1)α

2 = 0 and cos(λ + 1)α
2 �= 0,

cos(λ + 1)α
2 = 0 and cos(λ − 1)α

2 = 0, or γ̄1 λ sin α+ sin λα =
0 (Table 1). Notably, cos(λ − 1)α

2 = 0 and cos(λ + 1)α
2 �= 0

yield A1 = 0 and −κ1 A3 + κ2 B3 = 0, and v
(a)
0 in Eq. (14) van-

ishes. Hence, v
(a)
0 is not included in Table 1 because no stress

singularity results from the asymptotic solution of v0.
Similarly, in the anti-symmetric case, when coefficients Ai ,

Bi and Di (i=1 and 3) in Eqs. (13a)–(13e) are set to zero, the
characteristic equation for λ is

(sin(λ + 1)α/2)(sin(λ − 1)α/2) = 0, (19a)

or

sin λα − γ̄1 λ sin α = 0. (19b)

The corresponding corner functions are also given in Table 1.
Notably, (sin(λ + 1)α/2) = 0 and (sin(λ − 1)α/2) �= 0 cause
u(a)

0 and v
(a)
0 in Eq. (14) to vanish, while (sin(λ − 1)α/2) = 0

and (sin(λ + 1)α/2) �= 0 cause v
(a)
0 in Eq. (14) to vanish.

Imposing the sets of boundary conditions given by Eqs.
(15a)–(15d) and following the procedure described above, char-
acteristic equations for λ and the corresponding corner functions
can be established for different boundary conditions along the
radial edges. Table 2 summarizes the characteristic equations
for λ corresponding to eight different combinations of boundary
conditions. The corner functions that correspond to S(I) S(I),
S(II) S(II), C C and F-F can be expressed in a rather compact
form, as in Table 1, by taking advantage of the problem sym-
metry. The corner functions for other boundary conditions can
be derived by solving 12 linear equations simultaneously, and
their expressions are too lengthy and complex to be included in
Table 1.

Notably, Table 2 does not list the characteristic equations
for S(I) F and S(II) F boundary conditions because they are
much more complex and lengthy than those given in Table 2.
The characteristic values of λ for these boundary conditions
can be determined directly by finding the zeros of the 12th-
order determinant that is obtained by imposing S(I) F or S(II) F
boundary conditions.

The characteristic equations for boundary conditions involv-
ing S(I) or S(II) may depend on material non-homogeneity along
the plate thickness (Table 2). The characteristic equations for
boundary conditions not including S(I) or S(II) are identical to
those for homogenous plates under extension and bending. For
example, the characteristic equation for the symmetrical asymp-
totic solution with the F-F boundary condition is

λ(−1 + υ) sin α + (3 + υ) sin λα = 0 (20a)

or

λ sin α + sin λα = 0. (20b)

Equations (20a) and (20b) were also found by Huang [17] in
studying a homogenous plate under bending, while Eq. (20b)
was also developed by Williams [21] in investigating a ho-
mogenous thin plate under extension. Nevertheless, most cor-
ner functions depend on material non-homogeneity as shown in
Table 1.

5. DEPENDENCE OF STRESS SINGULARITIES ON
MATERIAL NON-HOMOGENEITY

Based on the asymptotic solutions in Eq. (14) and the rela-
tionships between stress resultants and displacement functions
in Appendix A, Nr , Nθ, Nrθ, Mr , Mθ, Mrθ, Pr , Pθ and Prθ

should have an rλ−1 type singularity when 0 < Re[λ] (real part
of λ)<1. When S(I) or S(II) boundary condition does not apply
along one of the two radial edges forming a corner, the value of λ

does not depend on material non-homogeneity, but rather on the
corner angle, as presented in Williams [21] and Huang [17]. This
section demonstrates the effects of material non-homogeneity on
λ for boundary conditions involving S(I) or S(II). The following
numerical results were obtained by setting the Poisson’s ratio to
0.3.
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GEOMETRICALLY INDUCED STRESS SINGULARITIES 89

TABLE 1
Corner functions corresponding to different boundary conditions

Boundary Conditions Corner Functions

(1) Symmetric case
S(I)-S(I) (−α

2 ≤ θ ≤ α
2 ) When cos(λ − 1)α/2 = 0 & cos(λ + 1)α/2 �= 0,

u(a)
0 = A3rλ{cos(λ − 1)θ}, w

(a)
0 = A3rλ+1{ κ1

κ2
cos(λ − 1)θ},

ψ(a)
r = rλ{ D3 cos(λ − 1)θ}, ψ(a)

θ = rλ{(−κ1 D3 + κ3 A3
κ1
κ2

) sin(λ − 1)θ}.
When cos(λ + 1)α/2 = 0 & cos(λ − 1)α/2 �= 0,

w
(a)
0 = B1rλ+1{cos(λ + 1)θ}, ψ(a)

r = D1rλ{cos(λ + 1)θ},
ψ

(a)
θ = D1rλ{ − sin(λ + 1)θ}.

When cos(λ − 1)α/2 = 0 & cos(λ + 1)α/2 = 0,
u(a)

0 = rλ{A3[(− sin(λ−1)α/2
sin(λ+1)α/2 )κ1 cos(λ + 1)θ + cos(λ − 1)θ]

+B3[( sin(λ−1)α/2
sin(λ+1)α/2 )κ2 cos(λ + 1)θ]},

v
(a)
0 = rλ{(−κ1 A3 + κ2 B3)[(− sin(λ−1)α/2

sin(λ+1)α/2 ) sin(λ + 1)θ + sin(λ − 1)θ]},
w

(a)
0 = rλ+1{B1 cos(λ + 1)θ + B3 cos(λ − 1)θ},

ψ(a)
r = rλ{D1 cos(λ − 1)θ + D3 cos(λ + 1)θ},

ψ
(a)
θ = rλ{ −D1 sin(λ + 1)θ + (−κ1 D3 + κ3 B3) sin(λ − 1)θ}.

When γ̄1 λ sin α + sin λα = 0,
u(a)

0 = A3rλ{(− cos(λ−1)α/2
cos(λ+1)α/2 ) cos(λ + 1)θ + cos(λ − 1)θ},

v
(a)
0 = A3rλ{( cos(λ−1)α/2

cos(λ+1)α/2 ) sin(λ + 1)θ +(−κ1 + κ2η̄2) sin(λ − 1)θ},
w

(a)
0 = A3rλ+1{η̄2[(− cos(λ−1)α/2

cos(λ+1)α/2 ) cos(λ + 1)θ + cos(λ − 1)θ]},
ψ(a)

r = A3rλ{ η̄1 [(− cos(λ−1)α/2
cos(λ+1)α/2 ) cos(λ − 1)θ + cos(λ + 1)θ]},

ψ
(a)
θ = A3rλ{ η̄1( cos(λ−1)α/2

cos(λ+1)α/2 ) sin(λ + 1)θ + (−κ1η̄1 + κ3η̄2) sin(λ − 1)θ}.
(2) Anti-symmetric case

When sin(λ − 1)α/2 = 0 & sin(λ + 1)α/2 �= 0,
u(a)

0 = A4rλ{sin(λ − 1)θ}, w
(a)
0 = A4rλ+1{ κ1

κ2
sin(λ − 1)θ},

ψ(a)
r = rλ{ D4 sin(λ − 1)θ}, ψ

(a)
θ = rλ{(κ1 D4 − κ3 A4

κ1
κ2

) cos(λ − 1)θ}.
When sin(λ + 1)α/2 = 0 & sin(λ − 1)α/2 �= 0,

w
(a)
0 = B2rλ+1{sin(λ + 1)θ}, ψ(a)

r = D2rλ{sin(λ + 1)θ},
ψ

(a)
θ = D2rλ{cos(λ + 1)θ}.

When sin(λ − 1)α/2 = 0 & sin(λ + 1)α/2 = 0,
u(a)

0 = rλ{A4[−( cos(λ−1)α/2
cos(λ+1)α/2 )κ1 sin(λ + 1)θ + sin(λ − 1)θ]

+B4[( cos(λ−1)α/2
cos(λ+1)α/2 )κ2 sin(λ + 1)θ]},

v
(a)
0 = rλ{(κ1 A4 − κ2 B4)[−( cos(λ−1)α/2

cos(λ+1)α/2 ) cos(λ + 1)θ + cos(λ − 1)θ]},
w

(a)
0 = rλ+1{B2 sin(λ + 1)θ + B4 sin(λ − 1)θ},

ψ(a)
r = rλ{ D2 sin(λ − 1)θ + D4 sin(λ + 1)θ},

ψ
(a)
θ = rλ{ D2 cos(λ + 1)θ + (κ1 D4 − κ3 B4) cos(λ − 1)θ}.

When sin λα − γ̄1 λ sin α = 0,
u(a)

0 = A4rλ{(− sin(λ−1)α/2
sin(λ+1)α/2 ) sin(λ + 1)θ + sin(λ − 1)θ},

v
(a)
0 = A4rλ{(− sin(λ−1)α/2

sin(λ+1)α/2 ) cos(λ + 1)θ + (κ1 − κ2η̄3) cos(λ − 1)θ},
w

(a)
0 = A4rλ+1{η̄3[(− sin(λ−1)α/2

sin(λ+1)α/2 ) sin(λ + 1)θ + sin(λ − 1)θ]},
ψ(a)

r = A4rλ{η̄1[(− sin(λ−1)α/2
sin(λ+1)α/2 ) sin(λ + 1)θ + sin(λ − 1)θ]},

ψ
(a)
θ = A4rλ{ η̄1(− sin(λ−1)α/2

sin(λ+1)α/2 ) cos(λ + 1)θ + (κ1η̄1 − κ3η̄3) cos(λ − 1)θ}.
(1) Symmetric case

S(II)-S(II) (−α
2 ≤ θ ≤ α

2 ) When cos(λ − 1)α
2 = 0 and cos(λ + 1)α

2 = 0,
the asymptotic solution is the same with that for S(I) S(I).

(Continued on next page)
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90 C. S. HUANG AND M. J. CHANG

TABLE 1
Corner functions corresponding to different boundary conditions (Continued)

Boundary Conditions Corner Functions

When γ̄1 λ sin α + sin λα = 0 or λ sin α + sin λα = 0,
u(a)

0 = A3rλ{(− cos(λ−1)α/2
cos(λ+1)α/2 ) cos(λ + 1)θ + cos(λ − 1)θ},

v
(a)
0 = A3rλ{( cos(λ−1)α/2

cos(λ+1)α/2 ) sin(λ + 1)θ + (−κ1 + κ2η̄2) sin(λ − 1)θ},
w

(a)
0 = A3rλ+1{η̄2[(− cos(λ−1)α/2

cos(λ+1)α/2 ) cos(λ + 1)θ + cos(λ − 1)θ]},
ψ(a)

r = A3rλ{− 1
λ(υ−1) (− cos(λ−1)α/2

cos(λ+1)α/2 )(η̄4 − (1 + κ1 − κ1λ + λυ)η̄5)

cos(λ − 1)θ.−η̄5 cos(λ + 1)θ},
ψ

(a)
θ = A3rλ{ 1

λ(υ−1) (− cos(λ−1)α/2
cos(λ+1)α/2 )(η̄4 − (1 + κ1 − κ1λ + λυ)η̄5)

sin(λ + 1)θ + (κ1η̄5 + κ3η̄2) sin(λ − 1)θ}.
(2) Anti-symmetric case

S(II)-S(II) (−α
2 ≤ θ ≤ α

2 ) When sin(λ − 1)α
2 = 0 and sin(λ + 1)α

2 = 0,
the asymptotic solution is the same with that for S(I) S(I).

When λ sin α − sin λα = 0 or sin λα − γ̄1 λ sin α = 0,
u(a)

0 = A4rλ{(− sin(λ−1)α/2
sin(λ+1)α/2 ) sin(λ + 1)θ + sin(λ − 1)θ},

v
(a)
0 = A4rλ{(− sin(λ−1)α/2

sin(λ+1)α/2 ) cos(λ + 1)θ + (κ1 − κ2η̄3) cos(λ − 1)θ},
w

(a)
0 = A4rλ+1{η̄3[(− sin(λ−1)α/2

sin(λ+1)α/2 ) sin(λ + 1)θ + sin(λ − 1)θ]},
ψ(a)

r = A4rλ{− 1
λ(υ−1) (

sin(λ−1)α/2
sin(λ+1)α/2 )(η̄6 − (1 + κ1 − κ1λ + λυ)η̄7) sin(λ + 1)θ

−η̄7 sin(λ − 1)θ} ,
ψ

(a)
θ = A4rλ{− 1

λ(υ−1) (
sin(λ−1)α/2
sin(λ+1)α/2 )(η̄6 − (1 + κ1 − κ1λ + λυ)η̄7) cos(λ + 1)θ

+(−κ1η̄7 − κ3η̄3) cos(λ − 1)θ} .

(1) Symmetric case
F- F (−α

2 ≤ θ ≤ α
2 ) u(a)

0 = D3rλ{( η̄10η̄8

sin(λ+1)α/2 (sin α + sin λα)) cos(λ + 1)θ − η̄8 cos(λ − 1)θ},
v

(a)
0 = D3rλ{−( η̄10η̄8

sin(λ+1)α/2 (sin α + sin λα)) sin(λ + 1)θ

+ (−κ1η̄8 − κ2
η̄9

C1(λ+1) ) sin(λ − 1)θ},
w

(a)
0 = D3rλ+1{η̄9[ η̄10

C1(λ+1) (
cos(λ−1)α/2
cos(λ+1)α/2 ) cos(λ + 1)θ − 1

C1(λ+1) cos(λ − 1)θ]},
ψ(a)

r = D3rλ{−η̄10( cos(λ−1)α/2
cos(λ+1)α/2 ) cos(λ − 1)θ + cos(λ + 1)θ},

ψ
(a)
θ = D3rλ{η̄10( cos(λ−1)α/2

cos(λ+1)α/2 ) sin(λ + 1)θ+(−κ1 − κ3
η̄9

C1(λ+1) ) sin(λ − 1)θ}.
(2) Anti-symmetric case

u(a)
0 = D4rλ{−( η̄10η̄8

sin(λ+1)α/2 (sin α − sin λα)) sin(λ + 1)θ − η̄8 sin(λ − 1)θ},
v

(a)
0 = D4rλ{−( η̄10η̄8

sin(λ+1)α/2 (sin α − sin λα)) cos(λ + 1)θ

+(−κ1η̄8 − κ2
η̄9

C1(λ+1) ) cos(λ − 1)θ},
w

(a)
0 = D4rλ+1{η̄9[ η̄10

C1(λ+1) (
sin(λ−1)α/2
sin(λ+1)α/2 ) sin(λ + 1)θ− 1

C1(λ+1) sin(λ − 1)θ]},
ψ(a)

r = D4rλ{−η̄10( sin(λ−1)α/2
sin(λ+1)α/2 ) sin(λ + 1)θ + sin(λ − 1)θ},

ψ
(a)
θ = D4rλ{−η̄10( sin(λ−1)α/2

sin(λ+1)α/2 ) cos(λ + 1)θ + (κ1 − κ3
η̄9

C1(λ+1) ) cos(λ − 1)θ}.
(1) Symmetric case

C- C (−α
2 ≤ θ ≤ α

2 ) u(a)
0 = D3rλ{ κ2

κ3
[(− cos(λ−1)α/2

cos(λ+1)α/2 ) cos(λ + 1)θ + cos(λ − 1)θ]},
v

(a)
0 = D3rλ{ κ2

κ3
[( cos(λ−1)α/2

cos(λ+1)α/2 ) sin(λ + 1)θ + (−κ1 + κ2η̄2) sin(λ − 1)θ]},
w

(a)
0 = D3rλ+1{ κ2

κ3
η̄2[(− cos(λ−1)α/2

cos(λ+1)α/2 ) cos(λ + 1)θ + cos(λ − 1)θ]},
ψ(a)

r = D3rλ{(− cos(λ−1)α/2
cos(λ+1)α/2 ) cos(λ − 1)θ + cos(λ + 1)θ},

ψ
(a)
θ = D3rλ{( cos(λ−1)α/2

cos(λ+1)α/2 ) sin(λ + 1)θ + (−κ1 + κ2η̄2) sin(λ − 1)θ}.
(Continued on next page)
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TABLE 1
Corner functions corresponding to different boundary conditions (Continued)

Boundary Conditions Corner Functions

(2) Anti-symmetric case
u(a)

0 = D4rλ{ κ2
κ3

[(− sin(λ−1)α/2
sin(λ+1)α/2 ) sin(λ + 1)θ + sin(λ − 1)θ]},

v
(a)
0 = D4rλ{ κ2

κ3
[(− sin(λ−1)α/2

sin(λ+1)α/2 ) cos(λ + 1)θ + (κ1 − κ2η̄3) cos(λ − 1)θ]},
w

(a)
0 = D4rλ+1{ κ2

κ3
η̄3[(− sin(λ−1)α/2

sin(λ+1)α/2 ) sin(λ + 1)θ + sin(λ − 1)θ]},
ψ(a)

r = D4rλ{−( sin(λ−1)α/2
sin(λ+1)α/2 ) sin(λ + 1)θ + sin(λ − 1)θ},

ψ
(a)
θ = D4rλ{( sin(λ−1)α/2

sin(λ+1)α/2 ) cos(λ + 1)θ + (κ1 − κ2η̄3) cos(λ − 1)θ}
Note: η̄1 ∼ η̄10 are given in Appendix B.

TABLE 2
Characteristic equations corresponding to various boundary conditions

Boundary
Conditions Characteristic Equations

S(I)- S(I) Symmetry:
cos α + cos λα = 0∗; γ̄1 λ sin α + sin λα = 0; where γ̄1 = κ̄1

κ̄2
.

Antisymmetry:
cos α − cos λα = 0∗; sin λα − γ̄1 λ sin α = 0.

S(II)-S(II) Symmetry:
cos α + cos λα = 0∗; λ sin α + sin λα = 0∗;
γ̄1 λ sin α + sin λα = 0.

Antisymmetry:
cos α − cos λα = 0∗; λ sin α − sin λα = 0∗;
sin λα − γ̄1 λ sin α = 0.

S(I)- S(II) (cos 2α − cos 2λα)(λ sin 2α − sin 2λα) = 0∗; . . . . . . . (T1)
γ̄2 λ2 sin2 α + sin2 λα = 0; . . . . . .(T2)
Where γ̄2 = κ̄3

κ̄4
.

F-F Symmetry:
λ(−1 + υ) sin α + (3 + υ) sin λα = 0∗; λ sin α + sin λα = 0∗,#.

Antisymmetry:
−λ(−1 + υ) sin α + (3 + υ) sin λα = 0∗; −λ sin α + sin λα = 0∗,#.

C-C Symmetry:
λ(1 + υ) sin α + (−3 + υ) sin λα = 0∗,#; λ sin α + sin λα = 0∗.

Antisymmetry:
λ(1 + υ) sin α − (−3 + υ) sin λα = 0∗,#; −λ sin α + sin λα = 0∗.

C-F 4 − λ2(1 + υ)2 sin2 α + (−3 + υ)(1 + υ) sin2 λα = 0∗,#;
4 − λ2(1 − υ)2 sin2 α + (3 + υ)(−1 + υ) sin2 λα = 0∗.

S(II)- C 4 − λ2(1 + υ)2 sin2 α + (−3 + υ)(1 + υ) sin2 λα = 0∗; . . . .. (T3)
{[2Ē1(Ē4 − C1 Ē6) κ̄6

κ̄5
]

+ Ē4[4Ē4(λ2(1 + υ)2 sin2 α − (−3 + υ)2 sin2 λα)(λ sin 2α − sin 2λα) + 2C1 Ē3
κ̄6
κ̄5

]
− Ē2[4Ē6(λ2(1 + υ)2 sin2 α − (−3 + υ)2 sin2 λα)(λ sin 2α − sin 2λα) + 2Ē3

κ̄6
κ̄5

]} = 0. . . . . . . (T4)
S(I)- C −λ(1 + υ) sin 2α + (−3 + υ) sin 2λα = 0∗; . . . .. (T5)

{[2Ē1(Ē4 − C1 Ē6) κ̄6
κ̄5

]
+ Ē4[4Ē4(λ2(1 + υ)2 sin2 α − (−3 + υ)2 sin2 λα)(λ sin 2α − sin 2λα) + 2C1 Ē3

κ̄6
κ̄5

]
− Ē2[4Ē6(λ2(1 + υ)2 sin2 α − (−3 + υ)2 sin2 λα)(λ sin 2α − sin 2λα) + 2Ē3

κ̄6
κ̄5

]} = 0 . . . . . . (T4)

Note: (1) * denotes that equation can be found for a homogeneous plate under bending [17].
(2) # denotes that equation can be found for a homogeneous plate under extension [21].
(3) κ̄1∼κ̄6 are given in Appendix B.
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92 C. S. HUANG AND M. J. CHANG

FIG. 2. Minimum Re[λ] of characteristic equations corresponding to S(I)-S(I)
boundary condition: (a)symmetric solution, (b) anti-symmetric solution.

Figure 2 plots the minimum Re[λ] versus α for various
�P/Pb (=0.02, 10 or 100) and m (=2 or 5) in Eq. (4) under
the boundary condition S(I)–S(I). Symmetric and antisymmet-
ric cases were investigated separately. The minimum Re[λ] of
each of Eqs. (17b) and (19b) does not depend significantly on

FIG. 3. Minimum Re[λ] of characteristic equations corresponding to S(I)-
S(II) boundary condition.

material non-homogeneity. The roots of Eqs. (17a) and (19a)
dominate stress singularities, and are independent of material
properties. Stress singularities are present at a corner when its
angle α exceeds 90◦, except at α=180◦. When 90o<α ≤ 270◦,
the stress singularity order at the corner is determined from the
minimum Re[λ] of Eq. (17a), while the minimum Re[λ] of Eq.
(19a) determines the singularity order for 270o ≤ α ≤ 360◦.

Considering the stress singularity under boundary condition
S(II)–S(II) reveals two additional characteristic equations not
associated with S(I)–S(I) boundary condition (see Table 2):

λ sin α ± sin λα = 0. (21)

A study of a homogenous plate based on Reddy’s plate theory
in Huang [17] indicated that the minimum Re[λ] of Eq. (21)
exceeds that of Eqs. (17a) and (19a). Consequently, the stress
singularity order at the vertex of a sector plate made of FGM and
having S(II)-S(II) radial edges is determined by the minimum
Re[λ] of Eq. (17a) and Eq. (19a) , and is independent of material
properties.

Figure 3 displays the effects of material non-homogeneity on
the minimum Re[λ] of the characteristic equations correspond-
ing to the S(I) S(II) boundary condition. Of the two characteris-
tic equations (Eqs. (T1) and (T2) in Table 2), one equation does
not depend on material properties, while the other does. Equation
(T1) was also found by Huang [17] in studying a homogenous
plate. The material non-homogeneity with �P/Pb = 0.02, 10
or 100 and m = 2 or 5 slightly affects the minimum Re[λ] of the
characteristic equation involving material properties (Eq. (T2)).
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GEOMETRICALLY INDUCED STRESS SINGULARITIES 93

FIG. 4. Minimum Re[λ] of characteristic equations corresponding to S(I)-C
and S(II)-C boundary conditions.

The stress singularity order is dominated by the minimum Re[λ]
of the characteristic equation independent of material properties
(Eq. (T1) in Table 2).

Figure 4 plots the minimum values of Re[λ] of the charac-
teristic equations corresponding to S(I) C and S(II) C boundary
conditions. Each boundary condition yields two characteristic
equations: one involves material non-homogeneity and the other
does not. Notably, both boundary conditions have the same char-
acteristic equation involving material non-homogeneity (see Eq.
(T4) in Table 2). The characteristic equations not involving ma-
terial non-homogeneity (Eqs. (T3) and (T5) in Table 2) were
also obtained for homogeneous plates under bending [17]. The
material non-homogeneity with �P/Pb =0.02, 10 or 100 and
m = 2 or 5 does not significantly influence the stress singularity
order at a corner. The stress singularity order is governed pri-
marily by the roots of the characteristic equations that do not
depend on material non-homogeneity when α is less than 180◦

or larger than 270◦.
With reference to S(I) F and S(II) F boundary conditions,

Figures 5 and 6 demonstrate the relative differences between
the minimum values of Re[λ] for non-homogeneous and ho-
mogenous plates. The roots of λ were determined from the ze-
ros of the 12th-order determinant based on the boundary condi-
tions under consideration. The relative differences are defined
as

(minimum Re[λ(m �= 0)] − minimum Re[λ(m = 0)])/

minimum Re[λ(m = 0)],

FIG. 5. The effects of material non-homogeneity on minimum Re[λ] of char-
acteristic equations corresponding to S(I)-F boundary condition.

where λ (m = 0) is the characteristic value for a homogeneous
plate. The stress singularity order for a non-homogeneous plate
with �P/Pb = 0.02, 10 or 100 and m = 2 or 5 differs only
slightly from that for a homogeneous plate. The relative differ-
ences are less than 3%.

FIG. 6. The effects of material non-homogeneity on minimum Re[λ] of char-
acteristic equations corresponding to S(II)-F boundary condition.
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94 C. S. HUANG AND M. J. CHANG

6. CONCLUDING REMARKS
The work employs eigenfunction expansion to derive the

characteristic equations for eight different combinations of ra-
dial edge conditions at the corner of an FGM plate, according
to Reddy’s plate theory. The corresponding corner functions (or
asymptotic solutions) are also explicitly given for two radial
edges with identical boundary conditions. When the two radial
edges forming a corner do not involve S(I) or S(II) boundary
condition, the characteristic equations are identical to those for
a homogenous plate. The material non-homogeneity under con-
sideration (�P/Pb = 0.02, 10 or 100, and m = 2 or 5) does not
substantially influence the stress singularity order at a corner that
has one of its radial edges with S(I) or S(II) boundary condition.
Nevertheless, the asymptotic solutions differ significantly from
those for homogenous plates, and most asymptotic solutions for
FGM plates show coupling between the in-plane displacement
components and out-of-plane displacement component at the
mid-plane.

The results shown in the work are the first known in the liter-
ature. They will be very useful in obtaining accurate numerical
solutions to static or dynamic problems of FGM thick plates
involving stress singularities. For instance, the corner functions
can be used with additional smooth functions to form admissible
functions in the Ritz method to enhance accuracy in determin-
ing the natural frequencies of FGM thick plates with a V-notch.
The corner functions can also be adopted in a mesh-free method
or a finite element approach to determine accurately the stress
intensity factors for an FGM thick plate with a V-notch.
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Nr = D̄0

r
u0 + Ē0u0,r + D̄0

r
v0,θ − C1 D̄3

r
w,r − C1 Ē3w,rr − C1 D̄3

r2
w,θθ + 1

r
(D̄1 − C1 D̄3)ψr + (Ē1 − C1 Ē3)ψr,r

+ 1

r
(D̄1 − C1 D̄3)ψθ,θ, (A.1)

Nθ = Ē0

r
u0 + D̄0u0,r + Ē0

r
v0,θ − C1 Ē3

r
w,r − C1 D̄3w,rr − C1 Ē3

r2
w,θθ + 1

r
(Ē1 − C1 Ē3)ψr + (D̄1 − C1 D̄3)ψr,r

+ 1

r
(Ē1 − C1 Ē3)ψθ,θ, (A.2)

Nrθ = Ḡ0

r
u0,θ − Ḡ0

r
v0 + Ḡ0v0,r + 2C1Ḡ3

r2
w,θ − 2C1Ḡ3

r
w,rθ + (Ḡ1 − C1Ḡ3)

(
1

r
(ψr,θ − ψθ) + ψθ,r

)
, (A.3)

Qr = (Ḡ0 − C2Ḡ2)(ψr + w,r ), (A.4)

Qθ = (Ḡ0 − C2Ḡ2)
(
ψθ + 1

r
w,θ

)
, (A.5)

Rr = (Ḡ2 − C2Ḡ4)(ψr + w,r ), (A.6)

Rθ = (Ḡ2 − C2Ḡ4)
(
ψθ + 1

r
w,θ

)
, (A.7)

Mr = D̄1

r
u0 + Ē1u0,r + D̄1

r
v0,θ − C1 D̄4

r
w,r − C1 Ē4w,rr

C1 D̄4

r2
w,θθ + 1

r
(D̄2 − C1 D̄4)ψr + (Ē2 − C1 Ē4)ψr,r

+ 1

r
(D̄2 − C1 D̄4)ψθ,θ, (A.8)

Mθ = Ē1

r
u0 + D̄1u0,r + Ē1

r
v0,θ − C1 Ē4

r
w,r − C1 D̄4w,rr − C1 Ē4

r2
w,θθ + 1

r
(Ē2 − C1 Ē4)ψr + (D̄2 − C1 D̄4)ψr,r

+ 1

r
(Ē2 − C1 Ē4)ψθ,θ, (A.9)

Mrθ = Ḡ1

r
u0,θ − Ḡ1

r
v0 + Ḡ1v0,r + 2C1Ḡ4

r2
w,θ − 2C1Ḡ4

r
w,rθ + (Ḡ2 − C1Ḡ4)

(
1

r
(ψr,θ − ψθ) + ψθ,r

)
, (A.10)

Pr = D̄3

r
u0 + Ē3u0,r + D̄3

r
v0,θ − C1 D̄6

r
w,r − C1 Ē4w,rr

C1 D̄6

r2
w,θθ + 1

r
(D̄4 − C1 D̄6)ψr + (Ē4 − C1 Ē6)ψr,r

+ 1

r
(D̄4 − C1 D̄6)ψθ,θ, (A.11)

Pθ = Ē3

r
u0 + D̄3u0,r + Ē3

r
v0,θ − C1 Ē6

r
w,r − C1 D̄6w,rr − C1 Ē6

r2
w,θθ + 1

r
(Ē4 − C1 Ē6)ψr + (D̄4 − C1 D̄6)ψr,r

+ 1

r
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r
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r
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r
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(1

r
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)
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APPENDIX A. RELATIONSHIPS BETWEEN STRESS RESULTANTS AND DISPLACEMENT FUNCTIONS
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where

Ḡi =
∫ h/2

−h/2
Gzi dz, Ē i =

∫ h/2

−h/2

E

1 − υ2
zi dz, D̄i =

∫ h/2

−h/2

υE

1 − υ2
zi dz. (A.14)

APPENDIX B. EXPRESSIONS OF η̄1 ∼ η̄10 AND κ̄1 ∼ κ̄6

η̄1 = {[κ3(λ − 1)Ē2 + C1(κ3 − 4λ − κ3λ) Ē4] [κ1 − cot[(λ − 1)α/2] tan[(λ + 1)α/2)]]

+ κ2 Ē1[1 + λ − (λ − 1) cot[(λ − 1)α/2] tan[(λ + 1)α/2)]]}/[κ2(−1 + κ1(λ − 1) − λ)(Ē2 − C1 Ē4)], (B.1)

η̄2 = 1

κ2
{κ1 − cot[(λ − 1)α/2] tan[(λ + 1)α/2]}, (B.2)

η̄3 = 1

κ2
{κ1 − cot[(λ + 1)α/2] tan[(λ − 1)α/2]}, (B.3)

η̄4 = −κ1(−1 + λ)Ē1

Ē2 − C1 Ē4
+ (1 + λ)Ē1

Ē2 − C1 Ē4
+ C1(1 + λ)2 Ē4η̄2

(−Ē2 + C1 Ē4)
+ η̄2

(Ē2 − C1 Ē4)
(−1 + λ)[κ2 Ē1 + κ3 Ē2

+ C1(−1 − κ3 + λ)Ē4], (B.4)

η̄5 = {(−1 + λ)(−1 + υ)(Ē1 − C1 Ē3)(Ē2 − C1 Ē4) cos [(1 + λ)α/2] sin [(−1 + λ)α/2]

+ 2κ1(−1 + λ)Ē1[Ē2 + C1(−2Ē4 + C1 Ē6)] cos [(−1 + λ)α/2] sin [(1 + λ)α/2]

− (1 + λ){C1(−1 + υ)Ē3(−Ē2 + C1 Ē4) + Ē1[(1 + υ)Ē2 + C1(−(3 + υ)Ē4 + 2C1 Ē6)]}
× cos [(−1 + λ)α/2] sin [(1 + λ)α/2] − η̄2{{−2C1(1 + λ){(−1 + υ)(Ē2 − C1 Ē4)(Ē4 − C1 Ē6)

− (1 + λ)Ē4[Ē2 + C1(−2Ē4 + C1 Ē6)]} cos [(−1 + λ)α/2] sin [(1 + λ)α/2] + (−1 + λ){(−1 + υ)(Ē2

− C1 Ē4){−κ3 Ē2 + C1[2(1 + κ3)Ē4 − C1(2 + κ3)Ē6]} cos [(1 + λ)α/2] sin [(−1 + λ)α/2] − 2[κ2 Ē1

+ κ3 Ē2 + C1(−1 + κ3 + λ)Ē4][Ē2 + C1(−2Ē4 + C1 Ē6)] cos [(−1 + λ)α/2] sin [(1 + λ)α/2]}}}}/
{(Ē2 − C1 Ē4)(Ē2 + C1(−2Ē4 + C1 Ē6))[(1 + κ1)(−1 + λ)(−1 + υ) cos [(1 + λ)α/2]

× sin [(−1 + λ)α/2] − 2(1 + κ1 − κ1λ + λυ) cos [(−1 + λ)α/2] sin [(1 + λ)α/2]]}, (B.5)

η̄6 = −κ1(−1 + λ)Ē1

Ē2 − C1 Ē4
+ (1 + λ)Ē1

Ē2 − C1 Ē4
+ C1(1 + λ)2 Ē4η̄3

(−Ē2 + C1 Ē4)
+ η̄3

(Ē2 − C1 Ē4)
(−1 + λ)[κ2 Ē1 + κ3 Ē2 + C1(−1 − κ3 + λ)Ē4],

(B.6)

η̄7 = −{−2κ1(−1 + λ)Ē1[Ē2 + C1(−2Ē4 + C1 Ē6)] cos[(1 + λ)α/2] sin[(−1 + λ)α/2] + (1 + λ)

× {C1(−1 + υ)Ē3(−Ē2 + C1 Ē4) + Ē1[(1 + υ)Ē2 + C1(−(3 + υ)Ē4 + 2C1 Ē6)]} cos[(1 + λ)α/2]

× sin[(−1 + λ)α/2] + (−1 + λ)(−1 + υ)(Ē1 − C1 Ē3)(−Ē2 + C1 Ē4) cos[(−1 + λ)α/2] sin[(1 + λ)

× α/2] − η̄3{{2(−1 + λ)[κ2 Ē1 + κ3 Ē2 + C1(−1 − κ3 + λ)Ē4][Ē2 + C1(−2Ē4 + C1 Ē6)] cos[(1 + λ)α/2]

× sin[(−1 + λ)α/2] − 2C1(1 + λ)[(−1 + υ)(Ē2 − C1 Ē4)(−Ē4 + C1 Ē6) + (1 + λ)Ē4(Ē2 + C1(−2Ē4

+ C1 Ē6))] cos[(1 + λ)α/2] sin[(−1 + λ)α/2] + (1 − λ)(−1 + υ)(Ē2 − C1 Ē4) − κ3 Ē2 + C1[2(1 + κ3)Ē4

− C1(2 + κ3)Ē6]} cos[(−1 + λ)α/2] sin[(1 + λ)α/2]}}/{(Ē2 − C1 Ē4)[Ē2 + C1(−2Ē4 + C1 Ē6)]{2(1 + κ1

− κ1λ + λυ) cos[(1 + λ)α/2] sin[(−1 + λ)α/2] − (1 + κ1)(−1 + λ)(−1 + υ) cos[(−1 + λ)α/2] sin[(1 + λ)α/2]}},
(B.7)

η̄8 = Ē2 Ē3 − C1 Ē3 Ē4 + Ē1(−Ē4 + C1 Ē6))

Ē1 Ē3 − C1 Ē2
3 + Ē0(−Ē4 + C1 Ē6))

, (B.8)

η̄9 = Ē2
1 − 2C1 Ē1 Ē3 + C2

1 Ē2
3 − Ē0(Ē2 − 2C1 Ē4 + C2

1 Ē6))

(−Ē1 Ē3 + C1 Ē2
3 + Ē0(Ē4 − C1 Ē6))

, η̄10 = (3 + λ(υ − 1) + υ)

(λ + 1)(υ − 1)
, (B.9)

κ̄1 = [C1 Ē4(−κ2 Ē3 + 2(1 + κ1)Ē4) − κ2 Ē1(Ē4 − C1 Ē6) − Ē2(κ2 Ē3 − 2C1(1 + κ1)Ē6)], (B.10)

κ̄2 = [C1 Ē4(κ2 Ē3 − 2(−1 + κ1)λĒ4) + κ2 Ē1(Ē4 − C1 Ē6) − Ē2(κ2 Ē3 − 2C1(−1 + κ1)λĒ6)], (B.11)

κ̄3 = −[
2C1 Ē1 Ē3 Ē4((3 + υ)Ē4 − 2C1 Ē6) + Ē2

2

(
2Ē2

3 − (1 + υ)Ē0 Ē6
) + Ē2

1

( − (υ − 1)Ē2
4 − 4C1 Ē4 Ē6

+ 2C2
1 Ē2

6

) + C1 Ē2
4

(
C1(1 − υ)Ē2

3 − (1 + υ)Ē0(2Ē4 − C1 Ē6)
) + Ē2

(
(1 + υ)Ē2

1 Ē6 − 2Ē1 Ē3(2Ē4 + C1(−1

+ υ)Ē6) + C1 Ē2
3(−4Ē4 + C1(1 + υ)Ē6) + (1 + υ)Ē0

(
Ē2

4 + 2C1 Ē4 Ē6 − C2
1 Ē2

6

))]2
, (B.12)
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κ̄4 = [ − 2C1 Ē1 Ē3 Ē4((−5 + υ)Ē4 + 2C1 Ē6) + Ē2
2

(
2Ē2

3 + (−3 + υ)Ē0 Ē6
) + Ē2

1

(
(υ − 1)Ē2

4 − 4C1 Ē4 Ē6

+ 2C2
1 Ē2

6

) + C1 Ē2
4

(
C1(−1 + υ)Ē2

3 + (−3 + υ)Ē0(2Ē4 − C1 Ē6)
) − Ē2

(
(−3 + υ)Ē2

1 Ē6 + C1 Ē2
3(4Ē4 + C1(−3

+ υ)Ē6) + 2Ē1 Ē3(2Ē4 − C1(−1 + υ)Ē6) + (−3 + υ)Ē0
(
Ē2

4 + 2C1 Ē4 Ē6 − C2
1 Ē2

6

))]2
, (B.13)

κ̄5 = Ē2
1 − 2C1 Ē1 Ē3 + C2

1 Ē2
3 − Ē0

(
Ē2 − 2C1 Ē4 + C2

1 Ē6
)
, (B.14)

κ̄6 = [−Ē2 Ē3 + C1 Ē3 Ē4 + Ē1(Ē4 − C1 Ē6)][λ3(1 + υ) sin 4α − 2λ sin 2α(λ2(1 + υ) + 2(−5

+ 3υ) sin2 λα) + 4(λ2(−1 + 3υ) sin2 α + (−3 + υ) sin2 λα) sin 2λα]. (B.15)
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