This article was downloaded by：［National Chiao Tung University 國立交通大學］
On： 25 April 2014，At：06：44
Publisher：Taylor \＆Francis
Informa Ltd Registered in England and Wales Registered Number： 1072954 Registered office：Mortimer House， 37－41 Mortimer Street，London W1T 3J H，UK

Mechanics of Advanced Materials and Structures

Publication details，including instructions for authors and subscription information： http：／／www．tandfonline．com／loi／umcm20

Geometrically Induced Stress Singularities of a Thick FGM Plate Based on the Third－Order Shear Deformation Theory
C．S．Huang ${ }^{a} \& M$ ．J．Chang ${ }^{\text {a }}$
${ }^{\text {a }}$ National Chiao Tung University，Hsinchu，Taiwan Published online： 09 Feb 2009.

To cite this article：C．S．Huang \＆M．J．Chang（2009）Geometrically Induced Stress Singularities of a Thick FGM Plate Based on the Third－Order Shear Deformation Theory，Mechanics of Advanced Materials and Structures，16：2，83－97，DOI： 10．1080／15376490802543634
To link to this article：http：／／dx．doi．org／10．1080／15376490802543634

PLEASE SCROLL DOWN FOR ARTICLE

Taylor \＆Francis makes every effort to ensure the accuracy of all the information（the＂Content＂）contained in the publications on our platform．However，Taylor \＆Francis，our agents，and our licensors make no representations or warranties whatsoever as to the accuracy，completeness，or suitability for any purpose of the Content．Any opinions and views expressed in this publication are the opinions and views of the authors，and are not the views of or endorsed by Taylor \＆Francis．The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information．Taylor and Francis shall not be liable for any losses，actions，claims，proceedings，demands，costs，expenses，damages，and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with，in relation to or arising out of the use of the Content．

This article may be used for research，teaching，and private study purposes．Any substantial or systematic reproduction，redistribution，reselling，loan，sub－licensing，systematic supply，or distribution in any form to anyone is expressly forbidden．Terms \＆Conditions of access and use can be found at http：／／ www．tandfonline．com／page／terms－and－conditions

Geometrically Induced Stress Singularities of a Thick FGM Plate Based on the Third-Order Shear Deformation Theory

C. S. Huang and M. J. Chang
National Chiao Tung University, Hsinchu, Taiwan

Abstract

Asymptotic solutions for a functionally graded material (FGM) plate are developed to elucidate stress singularities at a plate corner, using a third-order shear deformation theory. The characteristic equations are given explicitly for determining the order of stress singularity at the vertex of a corner with two radial edges having various boundary conditions. The non-homogeneous elasticity properties are present only in the characteristic equations for a corner with one of its two edges simply supported. The effects of material non-homogeneity on the stress singularities are extensively examined. The present results are very useful for developing accurate numerical solutions for an FGM plate under static or dynamic loading when the plate involves stress singularities, such as a V-notch or crack.

Keywords FGM plates, third-order shear deformation theory, stress singularities, asymptotic solutions, eigenfunction expansion

1. INTRODUCTION

In functionally graded materials (FGMs), the volume fractions of two or more materials vary continuously as a function of position in a particular dimension(s) to achieve a required functionality. FGMs were first developed in the mid-1980s [1]. Continuous changes in the microstructure of FGMs give mechanical properties better than those of traditional laminated composite materials, which are prone to debonding along layer interfaces because of abrupt changes in material properties across an interface. Gradual changes of material properties in FGMs can be designed for various applications and work environments. Consequently, over the last two decades, FGMs have been extensively explored in various fields including those of electron, chemistry, optics, biomedicine, aeronautical engineering, and mechanical engineering.

Plates in various geometric forms are commonly employed in practical engineering. Since solutions to plate problems based

[^0]on plate theories are much simpler than those based on threedimensional elasticity theory, various plate theories have been adopted to study the static or dynamic behaviors of FGM plates [2-8]. Numerous plates of various shapes have re-entrant corners. Stress singularities are typically present at the re-entrant corners, and stress singularity behaviors must be considered for accurate numerical analyses. Corner functions appropriately describing the stress singularity behaviors are used in various famous numerical approaches, such as the Ritz method [9, 10], the traditional finite element method [11, 12] and the mesh-free method [13, 14], for homogenous plates with stress singularities.

Geometrically induced stress singularities are those associated with irregular geometry, such as a notch or an abrupt change in a cross section. Such stress singularities have been comprehensively investigated for homogeneous plates. Williams [15] initially derived characteristic equations for determining singular orders of stress in an isotropic sector plate under bending using classical thin plate theory, while Burton and Sinclair [16], Huang [17-19] and McGee et al. [20] examined stress singularities using various thick plate theories. Different plate theories generally yield different stress singularity behaviors. Based on plane elasticity, Williams [21] pioneered the examination of the stress singularity of an isotropic plate under extension. The eigenfunction expansion technique was applied in these studies [15-21]. Baz̀ant and Estenssoro [22], Keer and Parihar [23], Schmitz et al. [24] and Glushkov et al. [25] employed different numerical solution techniques to elucidate geometrically induced stress singularities at a three-dimensional vertex of a body.

Some analytical studies addressed stress singularities at the interface corner of a plate made of multiple materials. The plates considered in these studies are made of different materials in different regions, each of which is homogenous. For instance, Hein and Erdogan [26], Bogy and Wang [27], Rao [28] and Dempsey and Sinclair [29] utilized different approaches to investigate stress singularities based on plane elasticity theory, while Huang $[30,31]$ studied thick plates under bending.

These cited studies reveal the need to study geometrically induced stress singularities in FGM plates. Recently, the authors of this study [32] investigated for the first time stress singularities
of a thin FGM plate using classical thin plate theory. Classical thin plate theory generally yields accurate solutions for plates with thicknesses less than $1 / 20$ of the smallest in-plane dimension. Stress singularities of a thick FGM plate are important and are investigated herein. This work employs eigenfunction expansion to establish asymptotic solutions of the equilibrium equations in terms of displacement functions based on Reddy's plate theory [33], which is a third-order shear deformation theory. Characteristic equations are explicitly presented to determine the stress singularity order at the vertex of a corner with two radial edges having various boundary conditions. Moreover, asymptotic solutions are also explicitly shown for a corner with identical boundary conditions along its two radial edges. The effects of material non-homogeneity on stress singularities are thoroughly examined. This publication is the first to present such results.

2. THEORETICAL FORMULATION

The first-order shear deformation plate theory (FSDT), also known as Reissner-Mindlin's plate theory [34, 35], is the simplest plate theory considering shear deformation effect. Since the transverse shear strain is assumed constant through plate thickness, a shear correction coefficient is required. FSDT is considered accurate for analyzing moderately thick plates. The third-order shear deformation plate theory, developed by Reddy [33], is adopted herein to eliminate the need to choose an appropriate shear correction coefficient for FGM plates. Moreover, the displacement field and equilibrium equations for the third-order shear deformation theory are easily converted to those for FSDT, which is shown below. Reddy's plate theory contains a parabolic variation of transverse shear strains through plate thickness and satisfies free transverse shear stress on the top and bottom plate surfaces.

2.1. Displacement Field and Strains

The displacement field in Reddy's third-order shear deformation plate theory is assumed to be, in cylindrical coordinates as shown in Figure 1,

$$
\begin{align*}
\bar{u}(r, \theta, z)= & u_{0}(r, \theta)+z\left[\psi_{r}(r, \theta)-C_{1} z^{2}\left(\psi_{r}(r, \theta)\right.\right. \\
& \left.\left.+w_{, r}(r, \theta)\right)\right] \tag{1a}
\end{align*}
$$

FIG. 1. Coordinate system and positive displacement components for a wedge.

$$
\begin{align*}
\bar{v}(r, \theta, z)= & v_{0}(r, \theta)+z\left[\psi_{\theta}(r, \theta)-C_{1} z^{2}\left(\psi_{\theta}(r, \theta)\right.\right. \\
& \left.\left.+\frac{1}{r} w_{, \theta}(r, \theta)\right)\right] \tag{1b}\\
\bar{w}= & w(r, \theta) \tag{1c}
\end{align*}
$$

where \bar{u}, \bar{v} and \bar{w} are displacement components in the r, θ, and z directions, respectively; u_{0}, v_{0} and w are corresponding displacements on the mid-plane; ψ_{r} and ψ_{θ} are rotations of the mid-plane normal in the radial and circumferential directions, respectively; subscript , β refers to partial differentials with respect to the independent variable β, and $C_{1}=4 / 3 h^{2}$. When C_{1} is set to zero, the displacement field given by Eqs. (1a)-(1c) is identical to that for FSDT.

Linear strain components are expressed in terms of displacement functions as

$$
\begin{align*}
& \left\{\begin{array}{c}
\varepsilon_{r r} \\
\varepsilon_{\theta \theta} \\
\gamma_{r \theta}
\end{array}\right\}=\left\{\begin{array}{c}
\varepsilon_{r r}^{(0)} \\
\varepsilon_{\theta \theta}^{(0)} \\
\gamma_{r \theta}^{0)}
\end{array}\right\}+z\left\{\begin{array}{c}
\varepsilon_{r r}^{(1)} \\
\varepsilon_{\theta \theta}^{(1)} \\
\gamma_{r \theta}^{(1)}
\end{array}\right\}+z^{3}\left\{\begin{array}{c}
\varepsilon_{r r}^{(3)} \\
\varepsilon_{\theta \theta}^{(3)} \\
\gamma_{r \theta}^{(3)}
\end{array}\right\} \tag{2}\\
& \left\{\begin{array}{c}
\gamma_{r z} \\
\gamma_{r \theta}
\end{array}\right\}=\left\{\begin{array}{c}
\gamma_{r z}^{(0)} \\
\gamma_{\theta z}^{(0)}
\end{array}\right\}+z^{2}\left\{\begin{array}{c}
\gamma_{r z}^{(2)} \\
\gamma_{\theta z}^{(2)}
\end{array}\right\}
\end{align*}
$$

where
$\varepsilon_{r r}^{(0)}=u_{0, r}, \varepsilon_{r r}^{(1)}=\psi_{r, r}, \varepsilon_{r r}^{(3)}=-C_{1}\left(\psi_{r, r}+w_{, r r}\right)$,
$\varepsilon_{\theta \theta}^{(0)}=\frac{1}{r}\left(u_{0}+v_{0, \theta}\right), \varepsilon_{\theta \theta}^{(1)}=\frac{1}{r}\left(\psi_{r}+\psi_{\theta, \theta}\right)$,
$\varepsilon_{\theta \theta}^{(3)}=-C_{1} \frac{1}{r}\left(\psi_{\theta, \theta}+\frac{1}{r} w_{, \theta \theta}+\psi_{r}+w_{, r}\right)$,
$\gamma_{r \theta}^{(0)}=v_{0, r}-\frac{1}{r} v_{0}+\frac{1}{r} u_{0, \theta}, \gamma_{r \theta}^{(1)}=\psi_{\theta, r}+\frac{1}{r} \psi_{r, \theta}-\frac{1}{r} \psi_{\theta}$,
$\gamma_{r \theta}^{(3)}=-C_{1} \frac{1}{r}\left[-\psi_{\theta}-\frac{2}{r} w_{, \theta}+\psi_{r, \theta}+2 w_{, r \theta}+r \psi_{\theta, r}\right]$,
$\gamma_{r z}^{(0)}=\psi_{r}+w_{, r}, \gamma_{r z}^{(2)}=-C_{2}\left(\psi_{r}+w_{, r}\right), \gamma_{\theta z}^{(0)}=\psi_{\theta}+\frac{1}{r} w_{, \theta}$,
$\gamma_{\theta z}^{(2)}=-C_{2}\left(\psi_{\theta}+\frac{1}{r} w_{, \theta}\right), C_{2}=3 C_{1}$.

2.2. Constitutive Relations

This study considers a thick wedge (or sector plate) (Figure 1), which is made of FGM with material properties varying through the thickness (z direction in Figure 1) only. Poisson's ratio (v) is assumed constant, and elasticity moduli vary according to

$$
\begin{equation*}
P(z)=P_{b}+V(\mathrm{z}) \Delta P \tag{4}
\end{equation*}
$$

where $V(z)=(z / h+1 / 2)^{m} ; P$ denotes a material property such as Young's modulus (E) or shear modulus (G); P_{b} denotes E or G at the bottom plate face; ΔP is the difference between
P_{b} and the corresponding property at the top plate face; h is plate thickness; m is the parameter that governs the material variation profile through the thickness; m or $\Delta P=0$ represents a homogenous plate.

The linear constitutive relations between stresses and strains are

$$
\left\{\begin{array}{c}
\sigma_{r r} \tag{5}\\
\sigma_{\theta \theta} \\
\sigma_{r \theta} \\
\sigma_{r z} \\
\sigma_{\theta z}
\end{array}\right\}=\left[\begin{array}{ccccc}
\frac{E}{1-v^{2}} & \frac{v E}{1-v^{2}} & 0 & 0 & 0 \\
\frac{v E}{1-v^{2}} & \frac{E}{1-v^{2}} & 0 & 0 & 0 \\
0 & 0 & G & 0 & 0 \\
0 & 0 & 0 & G & 0 \\
0 & 0 & 0 & 0 & G
\end{array}\right]\left\{\begin{array}{c}
\varepsilon_{r r} \\
\varepsilon_{\theta \theta} \\
\gamma_{r \theta} \\
\gamma_{r z} \\
\gamma_{\theta z}
\end{array}\right\}
$$

The transverse normal stress $\sigma_{z z}$ is assumed zero.

2.3. Equilibrium Equations

Using the principle of stationary potential energy and the displacement field given by Eqs. (1a)-(1c), one can obtain the equilibrium equations and boundary conditions. The equilibrium equations without external loading are

$$
\begin{align*}
N_{r, r} & +N_{r \theta, \theta} / r+\left(N_{r}-N_{\theta}\right) / r=0, \tag{6a}\\
N_{r \theta, r} & +N_{\theta, \theta} / r+2 N_{r \theta} / r=0, \tag{6b}\\
C_{1}\left(P_{r, r r}\right. & \left.+\frac{2}{r} P_{r, r}+\frac{1}{r^{2}} P_{\theta, \theta \theta}-\frac{1}{r} P_{\theta, r}+\frac{2}{r} P_{r \theta, r \theta}+\frac{2}{r^{2}} P_{r \theta, \theta}\right) \\
& +\frac{\bar{Q}_{r}}{r}+\bar{Q}_{r, r}+\frac{1}{r} \bar{Q}_{\theta, \theta}=0, \tag{6c}\\
\bar{M}_{r, r} & +\frac{\bar{M}_{r}}{r}-\frac{\bar{M}_{\theta}}{r}+\frac{1}{r} \bar{M}_{r \theta, \theta}-\bar{Q}_{r}=0, \tag{6d}\\
\frac{1}{r} \bar{M}_{\theta, \theta} & +\bar{M}_{r \theta, r}+\frac{2 \bar{M}_{r \theta}}{r}-\bar{Q}_{\theta}=0, \tag{6e}
\end{align*}
$$

where

$$
\begin{align*}
\bar{M}_{r \theta}= & M_{r \theta}-C_{1} P_{r \theta}, \bar{M}_{\beta}=M_{\beta}-C_{1} P_{\beta}, \\
& \bar{Q}_{\beta}=Q_{\beta}-C_{2} R_{\beta}, \tag{7a}\\
\left\{\begin{array}{c}
Q_{\beta} \\
R_{\beta}
\end{array}\right\}= & \int_{-h / 2}^{h / 2} \sigma_{\beta z}\left\{\begin{array}{l}
1 \\
z
\end{array}\right\} d z, \tag{7b}\\
\left\{\begin{array}{c}
N_{\beta} \\
M_{\beta} \\
P_{\beta}
\end{array}\right\}= & \int_{-h / 2}^{h / 2} \sigma_{\beta \beta}\left\{\begin{array}{c}
1 \\
z \\
z^{3}
\end{array}\right\} d z, \tag{7c}\\
\left\{\begin{array}{c}
N_{r \theta} \\
M_{r \theta} \\
P_{r \theta}
\end{array}\right\}= & \int_{-h / 2}^{h / 2} \sigma_{r \theta}\left\{\begin{array}{c}
1 \\
z \\
z^{3}
\end{array}\right\} d z, \tag{7d}
\end{align*}
$$

and subscript β denotes r or $\theta ; N_{r}, N_{\theta}$ and $N_{r \theta}$ are in-plane force resultants; Q_{r} and Q_{θ} are shear force resultants; M_{r}, M_{θ} and $M_{r \theta}$ are moment resultants; $P_{r}, P_{\theta}, P_{r \theta}, R_{r}$, and R_{θ} are the higher-order stress resultants. Notably, Eqs. (6a)-(7a) convert
to the equilibrium equations for FSDT if C_{1} and C_{2} are set equal to zero. The boundary conditions should be specified as along $\theta=\alpha$,
u_{0} or $N_{r \theta}, v_{0}$ or $N_{\theta}, \psi_{\theta}$ or $\bar{M}_{\theta}, \psi_{r}$ or $\bar{M}_{r \theta}$,
w or $\bar{Q}_{\theta}+C_{1}\left(\frac{2}{r} P_{r \theta}+2 P_{r \theta, r}+\frac{1}{r} P_{\theta, \theta}\right)$, and $\frac{w_{, \theta}}{r}$ or $P_{\theta} ;$
and at $r=R$,
u_{0} or N_{r}, v_{0} or $N_{r \theta}, \psi_{\theta}$ or $\bar{M}_{r \theta}, \psi_{r}$ or \bar{M}_{r},
w or $\bar{Q}_{r}+C_{1}\left(\frac{P_{r}}{r}+P_{r, r}+\frac{2}{r} P_{r \theta, \theta}-\frac{P_{\theta}}{r}\right)$, and $w_{, r}$ or P_{r}.
Using Eqs. (2), (3), (5) and (7) yields the relationships (Appendix A) between stress resultants and displacement functions. Substituting those relationships into Eqs. (6a)-(6e) yields the equilibrium equations in terms of displacement functions

$$
\begin{align*}
& \bar{E}_{0}\left(-\frac{u_{0}}{r^{2}}+\frac{u_{0, r}}{r}+u_{0, r r}+\frac{1-v}{2 r^{2}} u_{0, \theta \theta}-\frac{3-v}{2 r^{2}} v_{0, \theta}\right. \\
&\left.+\frac{1+v}{2 r} v_{0, r \theta}\right)+C_{1} \bar{E}_{3}\left(\frac{w_{, r}}{r^{2}}-\frac{w_{, r r}}{r}-w_{, r r r}+\frac{3+v}{2 r^{3}} w_{, \theta \theta}\right. \\
&\left.-\frac{w_{, r \theta \theta}}{r^{2}}\right)+\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right)\left(\frac{\psi_{r}}{r^{2}}+\frac{\psi_{r, r}}{r}+\psi_{r, r r}\right. \\
&\left.+\frac{1-v}{2 r^{2}} \psi_{r, \theta \theta}-\frac{3-v}{2 r^{2}} \psi_{\theta, \theta}+\frac{1+v}{2 r} \psi_{\theta, r \theta}\right)=0, \tag{9a}\\
& \bar{E}_{0}\left(\frac{3-v}{2 r^{2}} u_{0, \theta}+\frac{1+v}{2 r} u_{0, r \theta}-\frac{1-v}{2 r^{2}} v_{0}+\frac{1-v}{2 r} v_{0, r}\right. \\
&\left.+\frac{1-v}{2} v_{0, r r}+\frac{v_{0, \theta \theta}}{r^{2}}\right)+C_{1} \bar{E}_{3}\left(-\frac{w_{, r \theta}}{r^{2}}-\frac{1+v}{2 r} w_{, r r \theta}\right. \\
&\left.-\frac{w_{, \theta \theta \theta}}{r^{3}}\right)+\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right)\left(\frac{3-v}{2 r^{2}} \psi_{r, \theta}+\frac{1+v}{2 r} \psi_{r, r \theta}\right. \\
&\left.-\frac{1-v}{2 r^{2}} \psi_{\theta}+\frac{1-v}{2 r} \psi_{\theta, r}+\frac{1-v}{2} \psi_{\theta, r r}+\frac{\psi_{\theta, \theta \theta}}{r^{2}}\right)=0, \\
& C_{1} \bar{E}_{3}\left(\frac{u_{0}+v_{0, \theta}}{r^{3}}-\frac{u_{0, r}+v_{0, r \theta}}{r^{2}}+\frac{2 u_{0, r r}+v_{0, r r \theta}}{r}+u_{0, r r r}\right. \tag{9b}\\
&\left.+\frac{u_{0, \theta \theta}+v_{0, \theta \theta \theta}}{r^{3}}+\frac{u_{0, r \theta \theta}}{r^{2}}\right)+C_{1}^{2} \bar{E}_{6}\left(-\frac{w_{, r}}{r^{3}}+\frac{w_{, r r}}{r^{2}}\right. \\
&-\frac{4 w_{, \theta \theta}}{r^{4}}+\frac{2 w_{, r \theta \theta}}{r^{3}}-\frac{2 w_{, r r r}}{r}-\frac{w_{, \theta \theta \theta \theta}}{r^{4}}-\frac{2 w_{, r r \theta \theta}}{r^{2}} \\
&\left.-w_{, r r r r}\right)+\frac{1-v}{2}\left(\bar{E}_{0}-2 C_{2} \bar{E}_{2}+C_{2}^{2} \bar{E}_{4}\right)\left(\frac{w_{, r}}{r}+w_{, r r}\right. \\
&\left.+\frac{\psi_{r}}{r}+\psi_{r, r}+\frac{\psi_{\theta, \theta}}{r}\right)+\left(C_{1} \bar{E}_{4}-C_{1}^{2} \bar{E}_{6}\right)\left(\frac{\psi_{r}+\psi_{\theta, \theta}}{r^{3}}\right. \\
&\left.-\frac{\psi_{r, r}+\psi_{\theta, r \theta}}{r^{2}}+\frac{\psi_{r, \theta \theta}+\psi_{\theta, \theta \theta \theta}}{r^{3}}+\frac{2 \psi_{r, r r}+\psi_{\theta, r r \theta}}{r}+\psi_{r, r r r}\right)=0, \\
&(9 \mathrm{c}) \tag{9c}
\end{align*}
$$

$$
\begin{align*}
&\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right)\left(-\frac{u_{0}}{r^{2}}+\frac{u_{0, r}}{r}+u_{0, r r}+\frac{1-v}{2 r^{2}} u_{0, \theta \theta}\right. \\
&\left.-\frac{3-v}{2 r^{2}} v_{0, \theta}+\frac{1+v}{2 r} v_{0, r \theta}\right)+\left(C_{1} \bar{E}_{4}-C_{1}^{2} \bar{E}_{6}\right) \\
& \times\left(\frac{w_{, r}}{r^{2}}-\frac{w_{, r r}}{r}+\frac{2 w_{, \theta \theta}}{r^{3}}-w_{, r r r}-\frac{w_{, r \theta \theta}}{r^{2}}\right)-\frac{1-v}{2} \\
& \quad \times\left(\bar{E}_{0}-2 C_{2} \bar{E}_{2}+C_{2}^{2} \bar{E}_{4}\right)\left(w_{, r}+\psi_{r}\right)+\left(\bar{E}_{2}-2 C_{1} \bar{E}_{4}\right. \\
&\left.+C_{1}^{2} \bar{E}_{6}\right)\left(-\frac{\psi_{r}}{r^{2}}+\frac{\psi_{r, r}}{r}+\frac{1-v}{2 r^{2}} \psi_{r, \theta \theta}+\psi_{r, r r}\right. \\
&\left.-\frac{3-v}{2 r^{2}} \psi_{\theta, \theta}+\frac{1+v}{2 r} \psi_{\theta, r \theta}\right)=0, \tag{9d}\\
&\left(\bar{E}_{1}\right.\left.-C_{1} \bar{E}_{3}\right)\left(\frac{3-v}{2 r^{2}} u_{0, \theta}+\frac{1+v}{2 r} u_{0, r \theta}-\frac{1-v}{2}\right. \\
&\left.\quad \times\left(\frac{v_{0}}{r^{2}}-\frac{v_{0, r}}{r}-v_{0, r r}\right)+\frac{v_{0, \theta \theta}}{r^{2}}\right)-\left(C_{1} \bar{E}_{4}-C_{1}^{2} \bar{E}_{6}\right) \\
& \times\left(\frac{w_{, r \theta}}{r^{2}}+\frac{w_{, \theta \theta \theta}}{r^{3}}+\frac{w_{, r r \theta}}{r}\right)-\frac{1-v}{2}\left(\bar{E}_{0}-2 C_{2} \bar{E}_{2}\right. \\
&\left.+C_{2}^{2} \bar{E}_{4}\right)\left(\frac{w_{, \theta}}{r}+\psi_{\theta}\right)+\left(\bar{E}_{2}-2 C_{1} \bar{E}_{4}+C_{1}^{2} \bar{E}_{6}\right) \\
& \times\left(\frac{3-v}{2 r^{2}} \psi_{r, \theta}+\frac{1+v}{2 r} \psi_{r, r \theta}-\frac{1-v}{2 r^{2}} \psi_{\theta}\right. \\
&\left.\quad+\frac{1-v}{2 r} \psi_{\theta, r}+\frac{\psi_{\theta, \theta \theta}}{r^{2}}+\frac{1-v}{2} \psi_{\theta, r r}\right)=0 . \tag{9e}
\end{align*}
$$

Because this study assumes a constant Poisson's ratio, the following relations are used in deriving Eqs. (9a)-(9e)

$$
\begin{equation*}
\bar{D}_{i}=v \bar{E}_{i} \text { and } \bar{G}_{i}=\frac{(1-v)}{2} \bar{E}_{i} \tag{10}
\end{equation*}
$$

where \bar{D}_{i}, \bar{E}_{i} and \bar{G}_{i} are defined in Appendix A.

3. ASYMPTOTIC SOLUTIONS

The eigenfunction expansion method is adopted to solve Eqs. (9a)-(9e). Displacement components are assumed as in the following series:

$$
\begin{align*}
& u_{0}(r, \theta)=\sum_{n=0,1,2}^{\infty} r^{\lambda+n} U_{n}(\theta, \lambda), v_{0}(r, \theta)=\sum_{n=0,1,2}^{\infty} r^{\lambda+n} V_{n}(\theta, \lambda), \\
& w(r, \theta)=\sum_{n=0,1,2}^{\infty} r^{\lambda+n+1} W_{n}(\theta, \lambda) \\
& \psi_{r}(r, \theta)=\sum_{n=0,1,2}^{\infty} r^{\lambda+n} \Psi_{n}(\theta, \lambda), \psi_{\theta}(r, \theta)=\sum_{n=0,1,2}^{\infty} r^{\lambda+n} \Phi_{n}(\theta, \lambda), \tag{11}
\end{align*}
$$

where the characteristic value λ is typically a complex number. The real part of λ must exceed zero to satisfy regularity conditions at the sector plate vertex. The regularity conditions require that $u_{0}, v_{0}, \psi_{\theta}, \psi_{r}, w$ and $w_{, r}$ are finite as r approaches zero.

No attempt is made to solve completely Eqs. (9a)-(9e) for all values of r. Instead, this work concentrates on the asymptotic solutions as r approaches zero, which specify the singular behaviors of stress resultants when stress singularities are present. Accordingly, inserting Eq. (11) into the equilibrium equations and considering only those terms with the lowest order of r yield,

$$
\begin{align*}
& \bar{E}_{0} {[-1+\lambda+\lambda(\lambda-1)] U_{0}+\frac{1-v}{2} \bar{E}_{0} U_{0, \theta \theta} } \\
&+\left(-\frac{3-v}{2}+\frac{1+v}{2} \lambda\right) \bar{E}_{0} V_{0, \theta}+C_{1} \bar{E}_{3}[\lambda+1-\lambda(\lambda+1) \\
&-(\lambda+1) \lambda(\lambda-1)] W_{0}+C_{1} \bar{E}_{3}[2-(\lambda+1)] W_{0, \theta \theta} \\
&+\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right)[\lambda-1+\lambda(\lambda-1)] \Psi_{0} \\
&+\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right) \frac{1-v}{2} \Psi_{0, \theta \theta}+\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right) \\
& \times\left(-\frac{3-v}{2}+\frac{1+v}{2} \lambda\right) \Phi_{0, \theta}=0, \tag{12a}\\
& \bar{E}_{0}\left(\frac{3-v}{2}+\frac{1+v}{2} \lambda\right) U_{0, \theta}+\bar{E}_{0} \frac{1-v}{2}[\lambda-1 \\
&\quad+\lambda(\lambda-1)] V_{0}+\bar{E}_{0} V_{0, \theta \theta}+C_{1} \bar{E}_{3}[-(\lambda+1) \\
&\quad-\lambda(\lambda+1)] W_{0, \theta}-C_{1} \bar{E}_{3} W_{0, \theta \theta \theta}+\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right) \\
& \quad \times\left(\frac{3-v}{2}+\frac{1+v}{2} \lambda\right) \Psi_{0, \theta}+\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right) \\
& \quad \times \frac{1-v}{2}[\lambda-1+\lambda(\lambda-1)] \Phi_{0}+\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right) \Phi_{0, \theta \theta}=0, \tag{12b}
\end{align*}
$$

$$
\begin{align*}
& C_{1} \bar{E}_{3}(\lambda-1)^{2}(\lambda+1) U_{0}+C_{1} \bar{E}_{3}(\lambda+1) U_{0, \theta \theta} \\
&-C_{1}^{2} \bar{E}_{6}(\lambda+1)^{2}(\lambda-1)^{2} W_{0}+C_{1}^{2} \bar{E}_{6}[-4+2(\lambda+1) \\
&-2 \lambda(\lambda+1)] W_{0, \theta \theta}-C_{1}^{2} \bar{E}_{6} W_{0, \theta \theta \theta \theta} \\
&+\left(C_{1} \bar{E}_{4}-C_{1}^{2} \bar{E}_{6}\right)(\lambda-1)^{2}(\lambda+1) \Psi_{0} \\
&+\left(C_{1} \bar{E}_{4}-C_{1}^{2} \bar{E}_{6}\right)(\lambda+1) \Psi_{0, \theta \theta}+\left(C_{1} \bar{E}_{4}-C_{1}^{2} \bar{E}_{6}\right) \\
& \times(\lambda-1)^{2} \Phi_{0, \theta}+\left(C_{1} \bar{E}_{4}-C_{1}^{2} \bar{E}_{6}\right) \Phi_{0, \theta \theta \theta}=0, \\
&\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right)(\lambda-1)(\lambda+1) U_{0}+\frac{1-v}{2}\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right) U_{0, \theta \theta} \\
&+\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right)\left(-\frac{3-v}{2}+\frac{1+v}{2} \lambda\right) V_{0, \theta}-\left(C_{1} \bar{E}_{4}\right. \\
&\left.-C_{1}^{2} \bar{E}_{6}\right)(\lambda+1)^{2}(\lambda-1) W_{0}+\left(C_{1} \bar{E}_{4}-C_{1}^{2} \bar{E}_{6}\right)(1-\lambda) \\
& \quad \times W_{0, \theta \theta}+\left(\bar{E}_{2}-2 C_{1} \bar{E}_{4}+C_{1}^{2} \bar{E}_{6}\right)(\lambda+1)(\lambda-1) \Psi_{0} \\
& \quad+\left(\bar{E}_{2}-2 C_{1} \bar{E}_{4}+C_{1}^{2} \bar{E}_{6}\right)\left[\frac{1-v}{2} \Psi_{0, \theta \theta}+\right. \\
&\left.\quad \times\left(-\frac{3-v}{2}+\frac{1+v}{2} \lambda\right) \Phi_{0, \theta}\right]=0, \tag{12~d}\\
&\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right)\left(\frac{3-v}{2}+\frac{1+v}{2} \lambda\right) U_{0, \theta} \\
& \quad+\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right) \frac{1-v}{2}(\lambda+1)(\lambda-1) V_{0} \\
& \quad+\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right) V_{0, \theta \theta}-\left(C_{1} \bar{E}_{4}-C_{1}^{2} \bar{E}_{6}\right)(\lambda+1)^{2} W_{0, \theta}
\end{align*}
$$

$$
\begin{align*}
& -\left(C_{1} \bar{E}_{4}-C_{1}^{2} \bar{E}_{6}\right) W_{0, \theta \theta \theta} \\
& +\left(\bar{E}_{2}-2 C_{1} \bar{E}_{4}+C_{1}^{2} \bar{E}_{6}\right)\left(\frac{3-v}{2}+\frac{1+v}{2} \lambda\right) \Psi_{0, \theta} \\
& +\left(\bar{E}_{2}-2 C_{1} \bar{E}_{4}+C_{1}^{2} \bar{E}_{6}\right)\left[\left(-\frac{1-v}{2}+\frac{1-v}{2} \lambda^{2}\right) \Phi_{0}\right. \\
& \left.+\Phi_{0, \theta \theta}\right]=0 \tag{12e}
\end{align*}
$$

Equations (12a)-(12e) are a set of linear differential equations with constant coefficients. The general solutions are easily obtained as

$$
\begin{align*}
U_{0}(\theta, \lambda)= & A_{1} \cos (\lambda+1) \theta+A_{2} \sin (\lambda+1) \theta \\
& +A_{3} \cos (\lambda-1) \theta+A_{4} \sin (\lambda-1) \theta \tag{13a}\\
V_{0}(\theta, \lambda)= & A_{2} \cos (\lambda+1) \theta-A_{1} \sin (\lambda+1) \theta \\
& +\left(\kappa_{1} A_{4}-\kappa_{2} B_{4}\right) \cos (\lambda-1) \theta \\
& +\left(-\kappa_{1} A_{3}+\kappa_{2} B_{3}\right) \sin (\lambda-1) \theta \tag{13b}\\
W_{0}(\theta, \lambda)= & B_{1} \cos (\lambda+1) \theta+B_{2} \sin (\lambda+1) \theta+B_{3} \cos (\lambda-1) \theta \\
& +B_{4} \sin (\lambda-1) \theta \tag{13c}\\
\Psi_{0}(\theta, \lambda)= & D_{1} \cos (\lambda+1) \theta+D_{2} \sin (\lambda+1) \theta \\
& +D_{3} \cos (\lambda-1) \theta+D_{4} \sin (\lambda-1) \theta \tag{13d}\\
\Phi_{0}(\theta, \lambda)= & D_{2} \cos (\lambda+1) \theta-D_{1} \sin (\lambda+1) \theta \\
& +\left(\kappa_{1} D_{4}-\kappa_{3} B_{4}\right) \cos (\lambda-1) \theta \\
& +\left(-\kappa_{1} D_{3}+\kappa_{3} B_{3}\right) \sin (\lambda-1) \theta, \tag{13e}
\end{align*}
$$

where A_{i}, B_{i} and $D_{i}(i=1,2,3$ and 4$)$ are arbitrary constants, $\kappa_{1}=\frac{3+\lambda-v+\lambda v}{-3+\lambda+v+\lambda v}$,

$$
\kappa_{2}=-\frac{\frac{8 C_{1} \lambda\left(\bar{E}_{2} \bar{E}_{3}-C_{1} \bar{E}_{3} \bar{E}_{4}+\bar{E}_{1}\left(-\bar{E}_{4}+C_{1} \bar{E}_{6}\right)\right)}{\bar{E}_{1}^{2}-2 C_{1} \bar{E}_{1} \bar{E}_{3}+C_{1}^{2} \bar{E}_{3}^{2}-\bar{E}_{0}\left(\bar{E}_{2}-2 C_{1} \bar{E}_{4}+C_{1}^{2} \bar{E}_{6}\right)}}{-3+\lambda+v+\lambda v}
$$

and

$$
\kappa_{3}=\frac{\frac{8 C_{1} \lambda\left(\bar{E}_{1} \bar{E}_{3}-C_{1} \bar{E}_{3}^{2}+\bar{E}_{0}\left(-\bar{E}_{4}+C_{1} \bar{E}_{6}\right)\right)}{\bar{E}_{1}^{2}-2 C_{1} \bar{E}_{1} \bar{E}_{3}+C_{1}^{2} \bar{E}_{3}^{2}-\bar{E}_{0}\left(\bar{E}_{2}-2 C_{1} \bar{E}_{4}+C_{1}^{2} \bar{E}_{6}\right)}}{-3+\lambda+v+\lambda v}
$$

The relationships among A_{i}, B_{i} and $D_{i}(i=1,2,3$ and 4) and the characteristic value λ are determined from boundary conditions along radial edges.

Asymptotic solutions are expressed simply as

$$
\begin{align*}
u_{0}^{(a)}(r, \theta) & =r^{\lambda} U_{0}(\theta, \lambda), v_{0}^{(a)}(r, \theta)=r^{\lambda} V_{0}(\theta, \lambda), \\
\psi_{\theta}^{(a)}(r, \theta) & =r^{\lambda} \Phi_{0}(\theta, \lambda), \psi_{r}^{(a)}(r, \theta)=r^{\lambda} \Psi_{0}(\theta, \lambda) \\
\text { and } w_{0}^{(a)}(r, \theta) & =r^{\lambda+1} W_{0}(\theta, \lambda), \tag{14}
\end{align*}
$$

where $u_{0}^{(a)}, v_{0}^{(a)}, \psi_{\theta}^{(a)}, \psi_{r}^{(a)}$ and $w_{0}^{(a)}$ denote asymptotic solutions for $u_{0}, v_{0}, \psi_{\theta}, \psi_{r}$ and w, respectively. These asymptotic solutions are also called corner functions and can be added to regular
admissible functions in an energy method to enhance dramatically the accuracy of numerical solutions to dynamic or static problems with stress singularities.

4. CHARACTERISTIC EQUATIONS AND CORNER FUNCTIONS

The singularities of stress resultants at $r=0$ are determined from the real part of λ in an asymptotic solution given by Eq. (14). The real part of λ less than one leads to singularities of N_{r}, $N_{\theta}, N_{r \theta}, M_{r}, M_{\theta}, M_{r \theta}, P_{r}, P_{\theta}$ and $P_{r \theta}$; no singularity for shear forces (Q_{r} and Q_{θ}), R_{r} and R_{θ} is produced.

The characteristic value λ is affected by boundary conditions along two edges forming a corner. Four types of homogeneous boundary conditions along a radial edge, say $\theta=\alpha$, are considered:
clamped:

$$
\begin{equation*}
u_{0}=v_{0}=w=\psi_{r}=\psi_{\theta}=\frac{w_{, \theta}}{r}=0 \tag{15a}
\end{equation*}
$$

free:

$$
\begin{align*}
N_{r \theta}= & N_{\theta}=\bar{M}_{\theta}=\bar{M}_{r \theta}=\bar{Q}_{\theta} \\
& +C_{1}\left(\frac{2}{r} P_{r \theta}+2 P_{r \theta, r}+\frac{1}{r} P_{\theta, \theta}\right)=P_{\theta}=0, \tag{15b}
\end{align*}
$$

type I simply supported:

$$
\begin{equation*}
u_{0}=v_{0}=w=\psi_{r}=\bar{M}_{\theta}=P_{\theta}=0 \tag{15c}
\end{equation*}
$$

type II simply supported:

$$
\begin{equation*}
u_{0}=v_{0}=w=\bar{M}_{\theta}=\bar{M}_{r \theta}=P_{\theta}=0 \tag{15d}
\end{equation*}
$$

For simplicity, C and F refer to clamped and free boundary conditions, respectively, while $S(\mathrm{I})$ and S (II) denote type I and type II simply supported boundary conditions.

The procedure for deriving the characteristic equation for λ and the associated corner function is demonstrated for the case in which both radial edges at $\theta= \pm \alpha / 2$ have S (I). Problem symmetry is exploited to divide the asymptotic solutions given by Eq. (14) into symmetric and anti-symmetric parts.

In the symmetric case, A_{i}, B_{i} and $D_{i}(i=2$ and 4$)$ in Eqs. (13a)-(13e) are zero. Satisfying the boundary conditions yields

$$
\begin{align*}
& A_{1} \cos (\lambda+1) \frac{\alpha}{2}+A_{3} \cos (\lambda-1) \frac{\alpha}{2}=0 \tag{16a}\\
& -A_{1} \sin (\lambda+1) \frac{\alpha}{2}+\left(-\kappa_{1} A_{3}+\kappa_{2} B_{3}\right) \sin (\lambda-1) \frac{\alpha}{2}=0 \\
& B_{1} \cos (\lambda+1) \frac{\alpha}{2}+B_{3} \cos (\lambda-1) \frac{\alpha}{2}=0 \tag{16b}\\
& D_{1} \cos (\lambda+1) \frac{\alpha}{2}+D_{3} \cos (\lambda-1) \frac{\alpha}{2}=0 \tag{16d}
\end{align*}
$$

$$
\begin{align*}
& (\lambda+1)\left\{-A_{1} \bar{E}_{1}+D_{1}\left(-\bar{E}_{2}+C_{1} \bar{E}_{4}\right)+B_{1} C_{1} \bar{E}_{4}(\lambda+1)\right\} \\
& \quad \times \cos (\lambda+1) \frac{\alpha}{2}+(\lambda-1)\left\{-A_{3} \kappa_{1} \bar{E}_{1}+\kappa_{1}\left(-\bar{E}_{2}+C_{1} \bar{E}_{4}\right)\right. \\
& \left.\quad \times D_{3}+\left(\kappa_{2} \bar{E}_{1}+\kappa_{3} \bar{E}_{2}-C_{1} \bar{E}_{4}\left(1+\kappa_{3}-\lambda\right)\right) B_{3}\right\} \\
& \quad \times \cos (\lambda-1) \frac{\alpha}{2}=0 \tag{16e}\\
& (\lambda+1)\left\{-A_{1} \bar{E}_{3}+D_{1}\left(-\bar{E}_{4}+C_{1} \bar{E}_{6}\right)+B_{1} C_{1} \bar{E}_{6}(\lambda+1)\right\} \\
& \quad \times \cos (\lambda+1) \frac{\alpha}{2}+(\lambda-1)\left\{-A_{3} \kappa_{1} \bar{E}_{1}+\kappa_{1}\left(-\bar{E}_{4}\right.\right. \\
& \left.\left.\quad+C_{1} \bar{E}_{6}\right) D_{3}+\left(\kappa_{2} \bar{E}_{3}+\kappa_{3} \bar{E}_{4}-C_{1} \bar{E}_{6}\left(1+\kappa_{3}-\lambda\right)\right) B_{3}\right\} \\
& \quad \times \cos (\lambda-1) \frac{\alpha}{2}=0
\end{align*}
$$

For a nontrivial solution, the determinant of the coefficients of Eqs. (16a)-(16f) must vanish, leading to

$$
\begin{equation*}
\left(\cos (\lambda+1) \frac{\alpha}{2}\right)\left(\cos (\lambda-1) \frac{\alpha}{2}\right)=0 \tag{17a}
\end{equation*}
$$

or

$$
\begin{equation*}
\bar{\gamma}_{1} \lambda \sin \alpha+\sin \lambda \alpha=0, \tag{17b}
\end{equation*}
$$

where $\bar{\gamma}_{1}=\frac{\bar{\kappa}_{1}}{\bar{\kappa}_{2}}$ and the long expressions of $\bar{\kappa}_{1}$ and $\bar{\kappa}_{2}$ are elucidated in Appendix B.

When λ satisfies $\cos (\lambda+1) \frac{\alpha}{2}=0$ and $\cos (\lambda-1) \frac{\alpha}{2} \neq 0$, A_{1}, A_{3}, B_{3} and B_{4} are zero according to Eqs. (16a)-(16f), and $u_{0}^{(a)}$ and $v_{0}^{(a)}$ are eliminated from Eq. (14). Hence, the corresponding corner functions are

$$
\begin{gather*}
w_{0}^{(a)}=B_{1} r^{\lambda+1} \cos (\lambda+1) \theta, \quad \psi_{r}^{(a)}=D_{1} r^{\lambda} \cos (\lambda+1) \theta \\
\quad \text { and } \quad \psi_{\theta}^{(a)}=-D_{1} r^{\lambda} \sin (\lambda+1) \theta \tag{18}
\end{gather*}
$$

The asymptotic solutions for u_{0} and v_{0} are such that the order of r exceeds λ and do not produce stress singularities. Similarly, one can find the corner functions corresponding to characteristic equations $\cos (\lambda-1) \frac{\alpha}{2}=0$ and $\cos (\lambda+1) \frac{\alpha}{2} \neq 0$, $\cos (\lambda+1) \frac{\alpha}{2}=0$ and $\cos (\lambda-1) \frac{\alpha}{2}=0$, or $\bar{\gamma}_{1} \lambda \sin \alpha+\sin \lambda \alpha=$ 0 (Table 1). Notably, $\cos (\lambda-1) \frac{\alpha}{2}=0$ and $\cos (\lambda+1) \frac{\alpha}{2} \neq 0$ yield $A_{1}=0$ and $-\kappa_{1} A_{3}+\kappa_{2} B_{3}=0$, and $v_{0}^{(a)}$ in Eq. (14) vanishes. Hence, $v_{0}^{(a)}$ is not included in Table 1 because no stress singularity results from the asymptotic solution of v_{0}.

Similarly, in the anti-symmetric case, when coefficients A_{i}, B_{i} and $D_{i}(i=1$ and 3) in Eqs. (13a)-(13e) are set to zero, the characteristic equation for λ is

$$
\begin{equation*}
(\sin (\lambda+1) \alpha / 2)(\sin (\lambda-1) \alpha / 2)=0, \tag{19a}
\end{equation*}
$$

or

$$
\begin{equation*}
\sin \lambda \alpha-\bar{\gamma}_{1} \lambda \sin \alpha=0 \tag{19b}
\end{equation*}
$$

The corresponding corner functions are also given in Table 1. Notably, $(\sin (\lambda+1) \alpha / 2)=0$ and $(\sin (\lambda-1) \alpha / 2) \neq 0$ cause $u_{0}^{(a)}$ and $v_{0}^{(a)}$ in Eq. (14) to vanish, while $(\sin (\lambda-1) \alpha / 2)=0$ and $(\sin (\lambda+1) \alpha / 2) \neq 0$ cause $v_{0}^{(a)}$ in Eq. (14) to vanish.

Imposing the sets of boundary conditions given by Eqs. (15a)-(15d) and following the procedure described above, characteristic equations for λ and the corresponding corner functions can be established for different boundary conditions along the radial edges. Table 2 summarizes the characteristic equations for λ corresponding to eight different combinations of boundary conditions. The corner functions that correspond to $\mathrm{S}(\mathrm{I})_{-} \mathrm{S}(\mathrm{I})$, S(II)_S(II), C_C and F-F can be expressed in a rather compact form, as in Table 1, by taking advantage of the problem symmetry. The corner functions for other boundary conditions can be derived by solving 12 linear equations simultaneously, and their expressions are too lengthy and complex to be included in Table 1.

Notably, Table 2 does not list the characteristic equations for $S(I) _F$ and $S(I I) _F$ boundary conditions because they are much more complex and lengthy than those given in Table 2. The characteristic values of λ for these boundary conditions can be determined directly by finding the zeros of the 12thorder determinant that is obtained by imposing S(I)_F or S(II)_F boundary conditions.

The characteristic equations for boundary conditions involving S(I) or S(II) may depend on material non-homogeneity along the plate thickness (Table 2). The characteristic equations for boundary conditions not including $\mathrm{S}(\mathrm{I})$ or S (II) are identical to those for homogenous plates under extension and bending. For example, the characteristic equation for the symmetrical asymptotic solution with the F-F boundary condition is

$$
\begin{equation*}
\lambda(-1+v) \sin \alpha+(3+v) \sin \lambda \alpha=0 \tag{20a}
\end{equation*}
$$

or

$$
\begin{equation*}
\lambda \sin \alpha+\sin \lambda \alpha=0 \tag{20b}
\end{equation*}
$$

Equations (20a) and (20b) were also found by Huang [17] in studying a homogenous plate under bending, while Eq. (20b) was also developed by Williams [21] in investigating a homogenous thin plate under extension. Nevertheless, most corner functions depend on material non-homogeneity as shown in Table 1.

5. DEPENDENCE OF STRESS SINGULARITIES ON MATERIAL NON-HOMOGENEITY

Based on the asymptotic solutions in Eq. (14) and the relationships between stress resultants and displacement functions in Appendix A, $N_{r}, N_{\theta}, N_{r \theta}, M_{r}, M_{\theta}, M_{r \theta}, P_{r}, P_{\theta}$ and $P_{r \theta}$ should have an $r^{\lambda-1}$ type singularity when $0<\operatorname{Re}[\lambda]$ (real part of $\lambda)<1$. When $S(I)$ or $S(I I)$ boundary condition does not apply along one of the two radial edges forming a corner, the value of λ does not depend on material non-homogeneity, but rather on the corner angle, as presented in Williams [21] and Huang [17]. This section demonstrates the effects of material non-homogeneity on λ for boundary conditions involving S(I) or S(II). The following numerical results were obtained by setting the Poisson's ratio to 0.3.

TABLE 1
Corner functions corresponding to different boundary conditions

Corner Functions

(1) Symmetric case

S(I)-S(I) $\left(-\frac{\alpha}{2} \leq \theta \leq \frac{\alpha}{2}\right)$

S(II)-S(II) $\left(-\frac{\alpha}{2} \leq \theta \leq \frac{\alpha}{2}\right)$
(2) Anti-symmetric case

When $\sin (\lambda-1) \alpha / 2=0 \& \sin (\lambda+1) \alpha / 2 \neq 0$,
$u_{0}^{(a)}=A_{4} r^{\lambda}\{\sin (\lambda-1) \theta\}, w_{0}^{(a)}=A_{4} r^{\lambda+1}\left\{\frac{\kappa_{1}}{\kappa_{2}} \sin (\lambda-1) \theta\right\}$,
$\psi_{r}^{(a)}=r^{\lambda}\left\{D_{4} \sin (\lambda-1) \theta\right\}, \psi_{\theta}^{(a)}=r^{\lambda}\left\{\left(\kappa_{1} D_{4}-\kappa_{3} A_{4} \frac{\kappa_{1}}{\kappa_{2}}\right) \cos (\lambda-1) \theta\right\}$.
When $\sin (\lambda+1) \alpha / 2=0 \& \sin (\lambda-1) \alpha / 2 \neq 0$,
$w_{0}^{(a)}=B_{2} r^{\lambda+1}\{\sin (\lambda+1) \theta\}, \psi_{r}^{(a)}=D_{2} r^{\lambda}\{\sin (\lambda+1) \theta\}$,
$\psi_{\theta}^{(a)}=D_{2} r^{\lambda}\{\cos (\lambda+1) \theta\}$.
When $\sin (\lambda-1) \alpha / 2=0 \& \sin (\lambda+1) \alpha / 2=0$,
$u_{0}^{(a)}=r^{\lambda}\left\{A_{4}\left[-\left(\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right) \kappa_{1} \sin (\lambda+1) \theta+\sin (\lambda-1) \theta\right]\right.$
$\left.+B_{4}\left[\left(\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right) \kappa_{2} \sin (\lambda+1) \theta\right]\right\}$,
$v_{0}^{(a)}=r^{\lambda}\left\{\left(\kappa_{1} A_{4}-\kappa_{2} B_{4}\right)\left[-\left(\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right) \cos (\lambda+1) \theta+\cos (\lambda-1) \theta\right]\right\}$,
$w_{0}^{(a)}=r^{\lambda+1}\left\{B_{2} \sin (\lambda+1) \theta+B_{4} \sin (\lambda-1) \theta\right\}$,
$\psi_{r}^{(a)}=r^{\lambda}\left\{D_{2} \sin (\lambda-1) \theta+D_{4} \sin (\lambda+1) \theta\right\}$,
$\psi_{\theta}^{(a)}=r^{\lambda}\left\{D_{2} \cos (\lambda+1) \theta+\left(\kappa_{1} D_{4}-\kappa_{3} B_{4}\right) \cos (\lambda-1) \theta\right\}$.
When $\sin \lambda \alpha-\bar{\gamma}_{1} \lambda \sin \alpha=0$,
$u_{0}^{(a)}=A_{4} r^{\lambda}\left\{\left(-\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta+\sin (\lambda-1) \theta\right\}$,
$v_{0}^{(a)}=A_{4} r^{\lambda}\left\{\left(-\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \cos (\lambda+1) \theta+\left(\kappa_{1}-\kappa_{2} \bar{\eta}_{3}\right) \cos (\lambda-1) \theta\right\}$,
$w_{0}^{(a)}=A_{4} r^{\lambda+1}\left\{\bar{\eta}_{3}\left[\left(-\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta+\sin (\lambda-1) \theta\right]\right\}$,
$\psi_{r}^{(a)}=A_{4} r^{\lambda}\left\{\bar{\eta}_{1}\left[\left(-\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta+\sin (\lambda-1) \theta\right]\right\}$,
$\psi_{\theta}^{(a)}=A_{4} r^{\lambda}\left\{\bar{\eta}_{1}\left(-\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \cos (\lambda+1) \theta+\left(\kappa_{1} \bar{\eta}_{1}-\kappa_{3} \bar{\eta}_{3}\right) \cos (\lambda-1) \theta\right\}$.
(1) Symmetric case

When $\cos (\lambda-1) \frac{\alpha}{2}=0$ and $\cos (\lambda+1) \frac{\alpha}{2}=0$,
the asymptotic solution is the same with that for $S(I))_{-} S(I)$.
(Continued on next page)

TABLE 1
Corner functions corresponding to different boundary conditions (Continued)

$$
\begin{aligned}
& \text { When } \bar{\gamma}_{1} \lambda \sin \alpha+\sin \lambda \alpha=0 \text { or } \lambda \sin \alpha+\sin \lambda \alpha=0, \\
& u_{0}^{(a)}=A_{3} r^{\lambda}\left\{\left(-\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right) \cos (\lambda+1) \theta+\cos (\lambda-1) \theta\right\}, \\
& v_{0}^{(a)}=A_{3} r^{\lambda}\left\{\left(\frac{\cos (\lambda-1)) / 2}{\cos (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta+\left(-\kappa_{1}+\kappa_{2} \bar{\eta}_{2}\right) \sin (\lambda-1) \theta\right\}, \\
& w_{0}^{(a)}=A_{3} r^{\lambda+1}\left\{\bar{\eta}_{2}\left[\left(-\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right) \cos (\lambda+1) \theta+\cos (\lambda-1) \theta\right]\right\}, \\
& \psi_{r}^{(a)}=A_{3} r^{\lambda}\left\{-\frac{1}{\lambda(v-1)}\left(-\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right)\left(\bar{\eta}_{4}-\left(1+\mathrm{K}_{1}-\kappa_{1} \lambda+\lambda v\right) \bar{\eta}_{5}\right)\right. \\
& \left.\cos (\lambda-1) \theta .-\bar{\eta}_{5} \cos (\lambda+1) \theta\right\}, \\
& \psi_{\theta}^{(a)}=A_{3} r^{\lambda}\left\{\frac{1}{\lambda(v-1)}\left(-\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right)\left(\bar{\eta}_{4}-\left(1+\kappa_{1}-\kappa_{1} \lambda+\lambda v\right) \bar{\eta}_{5}\right)\right. \\
& \left.\sin (\lambda+1) \theta+\left(\kappa_{1} \bar{\eta}_{5}+\mathrm{K}_{3} \bar{\eta}_{2}\right) \sin (\lambda-1) \theta\right\} .
\end{aligned}
$$

(2) Anti-symmetric case

S(II)-S(II) $\left(-\frac{\alpha}{2} \leq \theta \leq \frac{\alpha}{2}\right)$

F- F $\left(-\frac{\alpha}{2} \leq \theta \leq \frac{\alpha}{2}\right)$

C- $\mathrm{C}\left(-\frac{\alpha}{2} \leq \theta \leq \frac{\alpha}{2}\right)$
When $\sin (\lambda-1) \frac{\alpha}{2}=0$ and $\sin (\lambda+1) \frac{\alpha}{2}=0$,
the asymptotic solution is the same with that for $\mathrm{S}(\mathrm{I})_{-} \mathrm{S}(\mathrm{I})$.
When $\lambda \sin \alpha-\sin \lambda \alpha=0$ or $\sin \lambda \alpha-\bar{\gamma}_{1} \lambda \sin \alpha=0$,

$$
\begin{aligned}
& u_{0}^{(a)}=A_{4} r^{\lambda}\left\{\left(-\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta+\sin (\lambda-1) \theta\right\}, \\
& v_{0}^{(a)}=A_{4} r^{\lambda}\left\{\left(-\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \cos (\lambda+1) \theta+\left(\kappa_{1}-\kappa_{2} \bar{\eta}_{3}\right) \cos (\lambda-1) \theta\right\}, \\
& w_{0}^{(a)}=A_{4} r^{\lambda+1}\left\{\bar{\eta}_{3}\left[\left(-\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta+\sin (\lambda-1) \theta\right]\right\}, \\
& \psi_{r}^{(a)}=A_{4} r^{\lambda}\left\{-\frac{1}{\lambda(v-1)}\left(\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right)\left(\bar{\eta}_{6}-\left(1+\kappa_{1}-\kappa_{1} \lambda+\lambda v\right) \bar{\eta}_{7}\right) \sin (\lambda+1) \theta\right. \\
&\left.\quad-\bar{\eta}_{7} \sin (\lambda-1) \theta\right\}, \\
& \psi_{\theta}^{(a)}=A_{4} r^{\lambda}\left\{-\frac{1}{\lambda(v-1)} \frac{(\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right)\left(\bar{\eta}_{6}-\left(1+\kappa_{1}-\kappa_{1} \lambda+\lambda v\right) \bar{\eta}_{7}\right) \cos (\lambda+1) \theta \\
&+\left.\left(-\kappa_{1} \bar{\eta}_{7}-\kappa_{3} \bar{\eta}_{3}\right) \cos (\lambda-1) \theta\right\} .
\end{aligned}
$$

(1) Symmetric case
$u_{0}^{(a)}=D_{3} r^{\lambda}\left\{\left(\frac{\bar{\eta}_{10} \bar{\eta}_{8}}{\sin (\lambda+1) \alpha / 2}(\sin \alpha+\sin \lambda \alpha)\right) \cos (\lambda+1) \theta-\bar{\eta}_{8} \cos (\lambda-1) \theta\right\}$,
$v_{0}^{(a)}=D_{3} r^{\lambda}\left\{-\left(\frac{\bar{\eta}_{10} \bar{\eta}_{8}}{\sin (\lambda+1) \alpha / 2}(\sin \alpha+\sin \lambda \alpha)\right) \sin (\lambda+1) \theta\right.$
$\left.+\left(-\kappa_{1} \bar{\eta}_{8}-\kappa_{2} \frac{\bar{\eta}_{9}}{C_{1}(\lambda+1)}\right) \sin (\lambda-1) \theta\right\}$,
$w_{0}^{(a)}=D_{3} r^{\lambda+1}\left\{\bar{\eta}_{9}\left[\frac{\bar{\eta}_{10}}{C_{1}(\lambda+1)}\left(\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right) \cos (\lambda+1) \theta-\frac{1}{C_{1}(\lambda+1)} \cos (\lambda-1) \theta\right]\right\}$,
$\psi_{r}^{(a)}=D_{3} r^{\lambda}\left\{-\bar{\eta}_{10}\left(\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right) \cos (\lambda-1) \theta+\cos (\lambda+1) \theta\right\}$,
$\psi_{\theta}^{(a)}=D_{3} r^{\lambda}\left\{\bar{\eta}_{10}\left(\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta+\left(-\kappa_{1}-\kappa_{3} \frac{\bar{\eta}_{9}}{C_{1}(\lambda+1)}\right) \sin (\lambda-1) \theta\right\}$.
(2) Anti-symmetric case
$u_{0}^{(a)}=D_{4} r^{\lambda}\left\{-\left(\frac{\bar{\eta}_{10} \bar{\eta}_{8}}{\sin (\lambda+1) \alpha / 2}(\sin \alpha-\sin \lambda \alpha)\right) \sin (\lambda+1) \theta-\bar{\eta}_{8} \sin (\lambda-1) \theta\right\}$,
$v_{0}^{(a)}=D_{4} r^{\lambda}\left\{-\left(\frac{\bar{\eta}_{10} \bar{\eta}_{8}}{\sin (\lambda+1) \alpha / 2}(\sin \alpha-\sin \lambda \alpha)\right) \cos (\lambda+1) \theta\right.$ $\left.+\left(-\kappa_{1} \bar{\eta}_{8}-\kappa_{2} \frac{\bar{\eta}_{9}}{C_{1}(\lambda+1)}\right) \cos (\lambda-1) \theta\right\}$,
$w_{0}^{(a)}=D_{4} r^{\lambda+1}\left\{\bar{\eta}_{9}\left[\frac{\bar{\eta}_{10}}{C_{1}(\lambda+1)}\left(\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta-\frac{1}{C_{1}(\lambda+1)} \sin (\lambda-1) \theta\right]\right\}$,
$\psi_{r}^{(a)}=D_{4} r^{\lambda}\left\{-\bar{\eta}_{10}\left(\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta+\sin (\lambda-1) \theta\right\}$,
$\psi_{\theta}^{(a)}=D_{4} r^{\lambda}\left\{-\bar{\eta}_{10}\left(\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \cos (\lambda+1) \theta+\left(\kappa_{1}-\kappa_{3} \frac{\bar{\eta}_{9}}{C_{1}(\lambda+1)}\right) \cos (\lambda-1) \theta\right\}$.
(1) Symmetric case
$u_{0}^{(a)}=D_{3} r^{\lambda}\left\{\frac{k_{2}}{k_{3}}\left[\left(-\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right) \cos (\lambda+1) \theta+\cos (\lambda-1) \theta\right]\right\}$,
$v_{0}^{(a)}=D_{3} r^{\lambda}\left\{\frac{\kappa_{2}}{\kappa_{3}}\left[\left(\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta+\left(-\kappa_{1}+\kappa_{2} \bar{\eta}_{2}\right) \sin (\lambda-1) \theta\right]\right\}$,
$w_{0}^{(a)}=D_{3} r^{\lambda+1}\left\{\frac{\kappa_{2}}{K_{3}} \bar{\eta}_{2}\left[\left(-\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right) \cos (\lambda+1) \theta+\cos (\lambda-1) \theta\right]\right\}$,
$\psi_{r}^{(a)}=D_{3} r^{\lambda}\left\{\left(-\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right) \cos (\lambda-1) \theta+\cos (\lambda+1) \theta\right\}$,
$\psi_{\theta}^{(a)}=D_{3} r^{\lambda}\left\{\left(\frac{\cos (\lambda-1) \alpha / 2}{\cos (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta+\left(-\kappa_{1}+\kappa_{2} \bar{\eta}_{2}\right) \sin (\lambda-1) \theta\right\}$.
(Continued on next page)

TABLE 1
Corner functions corresponding to different boundary conditions (Continued)

Boundary Conditions	Corner Functions
	(2) Anti-symmetric case
	$u_{0}^{(a)}=D_{4} r^{\lambda}\left\{\frac{\kappa_{2}}{\kappa_{3}}\left[\left(-\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta+\sin (\lambda-1) \theta\right]\right\}$,
$v_{0}^{(a)}=D_{4} r^{\lambda}\left\{\frac{\kappa_{2}}{\kappa_{3}}\left[\left(-\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \cos (\lambda+1) \theta+\left(\kappa_{1}-\kappa_{2} \bar{\eta}_{3}\right) \cos (\lambda-1) \theta\right]\right\}$,	
$w_{0}^{(a)}=D_{4} r^{\lambda+1}\left\{\frac{\left.\kappa_{2} \bar{\eta}_{3}\left[\left(-\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta+\sin (\lambda-1) \theta\right]\right\},}{}\right.$	
$\psi_{r}^{(a)}=D_{4} r^{\lambda}\left\{-\left(\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \sin (\lambda+1) \theta+\sin (\lambda-1) \theta\right\}$,	
$\left.\psi_{\theta}^{(a)}=D_{4} r^{\lambda}\left\{\frac{\sin (\lambda-1) \alpha / 2}{\sin (\lambda+1) \alpha / 2}\right) \cos (\lambda+1) \theta+\left(\kappa_{1}-\kappa_{2} \bar{\eta}_{3}\right) \cos (\lambda-1) \theta\right\}$	

Note: $\bar{\eta}_{1} \sim \bar{\eta}_{10}$ are given in Appendix B.
TABLE 2
Characteristic equations corresponding to various boundary conditions
Boundary
Characteristic Equations
S(I)- S(I) Symmetry:
$\cos \alpha+\cos \lambda \alpha=0^{*} ; \quad \bar{\gamma}_{1} \lambda \sin \alpha+\sin \lambda \alpha=0 ; \quad$ where $\bar{\gamma}_{1}=\frac{\bar{\kappa}_{1}}{\bar{\kappa}_{2}}$.
Antisymmetry:
$\cos \alpha-\cos \lambda \alpha=0^{*} ; \quad \sin \lambda \alpha-\bar{\gamma}_{1} \lambda \sin \alpha=0$.
S(II)-S(II)
Symmetry:
$\cos \alpha+\cos \lambda \alpha=0^{*} ; \quad \lambda \sin \alpha+\sin \lambda \alpha=0^{*} ;$
$\bar{\gamma}_{1} \lambda \sin \alpha+\sin \lambda \alpha=0$.
Antisymmetry:
$\cos \alpha-\cos \lambda \alpha=0^{*} ; \quad \lambda \sin \alpha-\sin \lambda \alpha=0^{*} ;$
$\sin \lambda \alpha-\bar{\gamma}_{1} \lambda \sin \alpha=0$.
S(I)- S(II) $\quad(\cos 2 \alpha-\cos 2 \lambda \alpha)(\lambda \sin 2 \alpha-\sin 2 \lambda \alpha)=0^{*}$;
$\bar{\gamma}_{2} \lambda^{2} \sin ^{2} \alpha+\sin ^{2} \lambda \alpha=0 ; \ldots \ldots$ (T2)
Where $\bar{\gamma}_{2}=\frac{\bar{K}_{3}}{\bar{K}_{4}}$.
F-F Symmetry:
$\lambda(-1+v) \sin \alpha+(3+v) \sin \lambda \alpha=0^{*} ; \quad \lambda \sin \alpha+\sin \lambda \alpha=0^{*, \#}$.
Antisymmetry:

$$
-\lambda(-1+v) \sin \alpha+(3+v) \sin \lambda \alpha=0^{*} ; \quad-\lambda \sin \alpha+\sin \lambda \alpha=0^{*, \#}
$$

C-C Symmetry:
$\lambda(1+v) \sin \alpha+(-3+v) \sin \lambda \alpha=0^{*, \#} ; \quad \lambda \sin \alpha+\sin \lambda \alpha=0^{*}$.
Antisymmetry:
$\lambda(1+v) \sin \alpha-(-3+v) \sin \lambda \alpha=0^{*, \#} ; \quad-\lambda \sin \alpha+\sin \lambda \alpha=0^{*}$.
C-F

$$
4-\lambda^{2}(1+v)^{2} \sin ^{2} \alpha+(-3+v)(1+v) \sin ^{2} \lambda \alpha=0^{*, \#}
$$

$4-\lambda^{2}(1-v)^{2} \sin ^{2} \alpha+(3+v)(-1+v) \sin ^{2} \lambda \alpha=0^{*}$.
S(II)- C
$4-\lambda^{2}(1+v)^{2} \sin ^{2} \alpha+(-3+v)(1+v) \sin ^{2} \lambda \alpha=0^{*}$;
$\left\{\left[2 \bar{E}_{1}\left(\bar{E}_{4}-C_{1} \bar{E}_{6}\right) \frac{\bar{K}_{6}}{\bar{K}_{5}}\right]\right.$
$+\bar{E}_{4}\left[4 \bar{E}_{4}\left(\lambda^{2}(1+v)^{2} \sin ^{2} \alpha-(-3+v)^{2} \sin ^{2} \lambda \alpha\right)(\lambda \sin 2 \alpha-\sin 2 \lambda \alpha)+2 C_{1} \bar{E}_{3} \frac{\bar{K}_{6}}{\bar{K}_{5}}\right]$
$\left.-\bar{E}_{2}\left[4 \bar{E}_{6}\left(\lambda^{2}(1+v)^{2} \sin ^{2} \alpha-(-3+v)^{2} \sin ^{2} \lambda \alpha\right)(\lambda \sin 2 \alpha-\sin 2 \lambda \alpha)+2 \bar{E}_{3} \frac{\bar{K}_{6}}{\bar{K}_{5}}\right]\right\}=0$
S(I)- C

$$
\begin{equation*}
-\lambda(1+v) \sin 2 \alpha+(-3+v) \sin 2 \lambda \alpha=0^{*} ; \ldots . . \text { (T5) } \tag{T4}
\end{equation*}
$$

$$
\left\{\left[2 \bar{E}_{1}\left(\bar{E}_{4}-C_{1} \bar{E}_{6}\right) \frac{\bar{K}_{6}}{\bar{K}_{5}}\right]\right.
$$

$$
+\bar{E}_{4}\left[4 \bar{E}_{4}\left(\lambda^{2}(1+v)^{2} \sin ^{2} \alpha-(-3+v)^{2} \sin ^{2} \lambda \alpha\right)(\lambda \sin 2 \alpha-\sin 2 \lambda \alpha)+2 C_{1} \bar{E}_{3} \frac{\bar{K}_{6}}{\bar{K}_{5}}\right]
$$

$$
\begin{equation*}
\left.-\bar{E}_{2}\left[4 \bar{E}_{6}\left(\lambda^{2}(1+v)^{2} \sin ^{2} \alpha-(-3+v)^{2} \sin ^{2} \lambda \alpha\right)(\lambda \sin 2 \alpha-\sin 2 \lambda \alpha)+2 \bar{E}_{3} \frac{\bar{k}_{6}}{\bar{k}_{5}}\right]\right\}=0 \tag{T4}
\end{equation*}
$$

Note: (1) * denotes that equation can be found for a homogeneous plate under bending [17].
(2) \# denotes that equation can be found for a homogeneous plate under extension [21].
(3) $\overline{\mathrm{K}}_{1} \sim \overline{\mathrm{~K}}_{6}$ are given in Appendix B.

FIG. 2. Minimum $\operatorname{Re}[\lambda]$ of characteristic equations corresponding to $\mathrm{S}(\mathrm{I})-\mathrm{S}(\mathrm{I})$ boundary condition: (a)symmetric solution, (b) anti-symmetric solution.

Figure 2 plots the minimum $\operatorname{Re}[\lambda]$ versus α for various $\Delta P / P_{b}(=0.02,10$ or 100$)$ and $m(=2$ or 5$)$ in Eq. (4) under the boundary condition $\mathrm{S}(\mathrm{I})-\mathrm{S}(\mathrm{I})$. Symmetric and antisymmetric cases were investigated separately. The minimum $\operatorname{Re}[\lambda]$ of each of Eqs. (17b) and (19b) does not depend significantly on

FIG. 3. Minimum $\operatorname{Re}[\lambda]$ of characteristic equations corresponding to $\mathrm{S}(\mathrm{I})$ S(II) boundary condition.
material non-homogeneity. The roots of Eqs. (17a) and (19a) dominate stress singularities, and are independent of material properties. Stress singularities are present at a corner when its angle α exceeds 90°, except at $\alpha=180^{\circ}$. When $90^{\circ}<\alpha \leq 270^{\circ}$, the stress singularity order at the corner is determined from the minimum $\operatorname{Re}[\lambda]$ of Eq. (17a), while the minimum $\operatorname{Re}[\lambda]$ of Eq. (19a) determines the singularity order for $270^{\circ} \leq \alpha \leq 360^{\circ}$.

Considering the stress singularity under boundary condition S(II)-S(II) reveals two additional characteristic equations not associated with $S(I)-S(I)$ boundary condition (see Table 2):

$$
\begin{equation*}
\lambda \sin \alpha \pm \sin \lambda \alpha=0 \tag{21}
\end{equation*}
$$

A study of a homogenous plate based on Reddy's plate theory in Huang [17] indicated that the minimum $\operatorname{Re}[\lambda]$ of Eq. (21) exceeds that of Eqs. (17a) and (19a). Consequently, the stress singularity order at the vertex of a sector plate made of FGM and having S(II)-S(II) radial edges is determined by the minimum $\operatorname{Re}[\lambda]$ of Eq. (17a) and Eq. (19a), and is independent of material properties.

Figure 3 displays the effects of material non-homogeneity on the minimum $\operatorname{Re}[\lambda]$ of the characteristic equations corresponding to the $\mathrm{S}(\mathrm{I})$ _S(II) boundary condition. Of the two characteristic equations (Eqs. (T1) and (T2) in Table 2), one equation does not depend on material properties, while the other does. Equation (T1) was also found by Huang [17] in studying a homogenous plate. The material non-homogeneity with $\Delta P / P_{b}=0.02,10$ or 100 and $m=2$ or 5 slightly affects the minimum $\operatorname{Re}[\lambda]$ of the characteristic equation involving material properties (Eq. (T2)).

FIG. 4. Minimum $\operatorname{Re}[\lambda]$ of characteristic equations corresponding to $\mathrm{S}(\mathrm{I})-\mathrm{C}$ and S (II)-C boundary conditions.

The stress singularity order is dominated by the minimum $\operatorname{Re}[\lambda]$ of the characteristic equation independent of material properties (Eq. (T1) in Table 2).

Figure 4 plots the minimum values of $\operatorname{Re}[\lambda]$ of the characteristic equations corresponding to $\mathrm{S}(\mathrm{I}) _\mathrm{C}$ and S (II)_C boundary conditions. Each boundary condition yields two characteristic equations: one involves material non-homogeneity and the other does not. Notably, both boundary conditions have the same characteristic equation involving material non-homogeneity (see Eq. (T4) in Table 2). The characteristic equations not involving material non-homogeneity (Eqs. (T3) and (T5) in Table 2) were also obtained for homogeneous plates under bending [17]. The material non-homogeneity with $\Delta P / P_{b}=0.02,10$ or 100 and $m=2$ or 5 does not significantly influence the stress singularity order at a corner. The stress singularity order is governed primarily by the roots of the characteristic equations that do not depend on material non-homogeneity when α is less than 180° or larger than 270°.

With reference to $\mathrm{S}(\mathrm{I}) _\mathrm{F}$ and $\mathrm{S}(\mathrm{II}) _\mathrm{F}$ boundary conditions, Figures 5 and 6 demonstrate the relative differences between the minimum values of $\operatorname{Re}[\lambda]$ for non-homogeneous and homogenous plates. The roots of λ were determined from the zeros of the 12 th-order determinant based on the boundary conditions under consideration. The relative differences are defined as
(minimum $\operatorname{Re}[\lambda(m \neq 0)]-$ minimum $\operatorname{Re}[\lambda(m=0)]) /$ minimum $\operatorname{Re}[\lambda(m=0)]$,

FIG. 5. The effects of material non-homogeneity on minimum $\operatorname{Re}[\lambda]$ of characteristic equations corresponding to $\mathrm{S}(\mathrm{I})-\mathrm{F}$ boundary condition.
where $\lambda(m=0)$ is the characteristic value for a homogeneous plate. The stress singularity order for a non-homogeneous plate with $\Delta P / P_{b}=0.02,10$ or 100 and $m=2$ or 5 differs only slightly from that for a homogeneous plate. The relative differences are less than 3%.

FIG. 6. The effects of material non-homogeneity on minimum $\operatorname{Re}[\lambda]$ of characteristic equations corresponding to $\mathrm{S}(\mathrm{II})-\mathrm{F}$ boundary condition.

6. CONCLUDING REMARKS

The work employs eigenfunction expansion to derive the characteristic equations for eight different combinations of radial edge conditions at the corner of an FGM plate, according to Reddy's plate theory. The corresponding corner functions (or asymptotic solutions) are also explicitly given for two radial edges with identical boundary conditions. When the two radial edges forming a corner do not involve $\mathrm{S}(\mathrm{I})$ or $\mathrm{S}(\mathrm{II})$ boundary condition, the characteristic equations are identical to those for a homogenous plate. The material non-homogeneity under consideration ($\Delta P / P_{b}=0.02,10$ or 100 , and $m=2$ or 5) does not substantially influence the stress singularity order at a corner that has one of its radial edges with $S(I)$ or $S(I I)$ boundary condition. Nevertheless, the asymptotic solutions differ significantly from those for homogenous plates, and most asymptotic solutions for FGM plates show coupling between the in-plane displacement components and out-of-plane displacement component at the mid-plane.

The results shown in the work are the first known in the literature. They will be very useful in obtaining accurate numerical solutions to static or dynamic problems of FGM thick plates involving stress singularities. For instance, the corner functions can be used with additional smooth functions to form admissible functions in the Ritz method to enhance accuracy in determining the natural frequencies of FGM thick plates with a V-notch. The corner functions can also be adopted in a mesh-free method or a finite element approach to determine accurately the stress intensity factors for an FGM thick plate with a V-notch.

ACKNOWLEDGEMENTS

The work reported herein was supported by the National Science Council of Taiwan through research grant no. NSC94-2211-E-009-011. The support is gratefully acknowledged.

REFERENCES

1. M. Niino and S. Maeda, Recent Development Status of Functionally Gradient Materials, ISIJ International, vol. 30, pp. 699-703, 1990.
2. Y. Obata, N. Noda, and T. Tsuji, Steady Thermal Stresses in a Functionally Gradient Material Plate, Transation JSME, vol. 58, pp. 1689-1695, 1992.
3. J. N. Reddy, C. M. Wang, and S. Kitipornchai, Axisymmetric Bending of Functionally Graded Circular and Annular Plates, European Journal of Mechanics A/Solids, vol. 18, pp. 185-199, 1999.
4. J. N. Reddy, Analyais of Functionally Graded Plates, International Journal for Numerical Methods in Engineering, vol. 47, pp. 663-684, 2000.
5. A. M. Zenkour, A Comprehensive Analysis of Functionally Graded Sandwich Plates: Part I—Deflection and Stresses, International Journal of Solids and Structures, vol. 42, pp. 5224-5242, 2005.
6. A. M. Zenkour, A Comprehensive Analysis of Functionally Graded Sandwich Plates: Part II—Buckling and Free Vibration, International Journal of Solids and Structures, vol. 42, pp. 5243-5258, 2005.
7. Z. G. Bian, W. Q. Chen, C. W. Lim, and N. Zhang, Analytical Solutions for Single- and Multi-Span Functionally Graded Plates in Cylindrical Bending, International Journal of Solids and Structures, vol. 42, pp. 6433-6456, 2005.
8. L. S. Ma and T. J. Wang, Relationships Between Axisymmetric Bending and Buckling Solutions of FGM Circular Plates Based on Third-Order Plate Theory and Classical Plate Theory, International Journal of Solids and Structures, vol. 41, pp. 85-101, 2004.
9. O. G. McGee, A. W. Leissa, and C. S. Huang, Vibrations of Cantilevered Skewed Plates with Corner Stress Singularities, International Journal for Numerical Methods in Engineering, vol. 35, pp. 409-424, 1992.
10. C. S. Huang, A. W. Leissa, and M. J. Chang, Vibrations of Skewed Cantilevered Triangular, Trapezoidal and Parallelogram Mindlin Plates with Considering Corner Stress Singularities, International Journal for Numerical Methods in Engineering, vol. 62, pp. 1789-1806, 2005.
11. N. N. Wahba, On the Use of Singular Displacement Finite Elements for Cracked Plate in Bending, International Journal of Fracture, vol. 27, pp. 330, 1985.
12. Z. Yosibash and B. Schiff, Superelement for Two-Dimensional Singular Boundary Value Problems in Linear Elasticity, International Journal of Fracture, vol. 62, pp. 325-340, 1993.
13. T. Belytschko, Y. Krongauz, M. Fleming, D. Organ, and W. K. Liu, Smoothing and Accelerated Computations in the Element Free Galerkin Method, Journal of Computational and Applied Mathematics, vol. 74, pp. 111-126, 1996.
14. M. Fleming, Y. A. Chu, B. Moran, and T. Belyschko, Enriched Element-Free Galerkin Methods for Crack Tip Fields, International Journal for Numerical Methods in Engineering, vol. 40, pp. 1483-1504, 1997.
15. M. L. Williams, Surface Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates under Bending, Proceedings of the First U.S. National Congress of Applied Mechanics, New York, pp. 325329, ASME, 1952.
16. W. S. Burton and G. B. Sinclair, On the Singularities in Reissner's Theory for the Bending of Elastic Plates, ASME Journal of Applied Mechanics, vol. 53, pp. 220-222, 1986.
17. C.S. Huang, On the Singularity Induced by Boundary Conditions in a ThirdOrder Thick Plate Theory, ASME Journal of Applied Mechanics, vol. 69, pp. 800-810, 2002.
18. C. S. Huang, Stress Singularities at Angular Corners in First-Order Shear Deformation Plate Theory, International Journal of Mechanical Sciences, vol. 45, pp. 1-20, 2003.
19. C. S. Huang, Corner Stress Singularities in a High-order Plate Theory, Computers \& Structures, vol. 82, pp. 1657-1669, 2004.
20. O. G. McGee, J. W. Kim, and A. W. Leissa, Sharp Corner Functions for Mindlin Plates, ASME Journal of Applied Mechanics, vol. 72, pp. 1-9, 2005.
21. M. L. Williams, Stress Singularities Resulting from Various Boundary Conditions in Angular Corners of Plates in Extension, ASME Journal of Applied Mechanics, vol. 19, pp. 526-528, 1952.
22. Z. P. Baz̀ant and L. F. Estenssoro, General Numerical Method for ThreeDimensional Singularities in Cracked or Notched Elastic Solids, Proceedings of the 4th International Conference on Fracture, Waterloo, Ontario, pp. 371-385, 1977.
23. L. M. Keer and K. S. Parihar, Singularity at the Vertex of Pyramidal Notches with Three Equal Angles, Quarterly Journal of Applied Mathematics, vol. 35, pp. 401-405, 1977.
24. H. Schmitz, K. Volk, and W. Wendland, Three-Dimensional Singularities of Elastic Fields near Vertices, Numerical Methods for Partial Differential Equations, vol. 9, pp. 323-337, 1993.
25. E. Glushkov, N. Glushkova, and O. Lapina, 3-D Elastic Stress Singularity at Polyhedral Corner Points, International Journal of Solids and Structures, vol. 36, pp. 1105-1128, 1999.
26. V. L. Hein and F. Erdogan, Stress Singularities in a Two-Material Wedge, International Journal of Fracture Mechanics, vol. 7, pp. 317-330, 1971.
27. D. B. Bogy and K. C. Wang, Stress Singularities at Interface Corners in Bonded Dissimilar Isotropic Elastic Materials, International Journal of Solids and Structures, vol. 7, pp. 993-1005, 1971.
28. A. K. Rao, Stress Concentrations and Singularities at Interface Corners, Zeitschrift fur Angewandte Mathematik und Mechanik, vol. 51, pp. 395406, 1971.
29. J. P. Dempsey and G. B. Sinclair, On the Singular Behavior at the Vertex of a Bi-Material Wedge, Journal of Elasticity, vol. 11, pp. 317-327, 1981.
30. C. S. Huang, Corner Singularities in Bi-material Mindlin Plates, Composite Structures, vol. 56, pp. 315-327, 2002.
31. C. S. Huang, Analysis of Stress Singularities at Bi-material Corners in Reddy's Theory of Plate Bending, Journal of Mechanics, vol. 22, pp. 6775, 2006.
32. C. S. Huang and M. J. Chang, Corner Stress Singularities in an FGM Thin Plate, International Journal of Solids and Structures, vol. 44, pp. 2802-2819, 2007.
33. J. N. Reddy, Theory and Analysis of Elastic Plates. Taylor \& Francis: Philadelphia, PA, 1999.
34. E. Reissner, The Effect of Transverse Shear Deformation on the Bending of Elastic Plates, ASME Journal of Applied Mechanics, vol. 12, pp. 69-77, 1945.
35. R. D. Mindlin, Influence of Rotatory Inertia and Shear on Flexural Motion of Isotropic, Elastic Plates, ASME Journal of Applied Mechanics, vol. 18, pp. 31-38, 1951.

APPENDIX A. RELATIONSHIPS BETWEEN STRESS RESULTANTS AND DISPLACEMENT FUNCTIONS

$$
\begin{align*}
& N_{r}=\frac{\bar{D}_{0}}{r} u_{0}+\bar{E}_{0} u_{0, r}+\frac{\bar{D}_{0}}{r} v_{0, \theta}-\frac{C_{1} \bar{D}_{3}}{r} w_{, r}-C_{1} \bar{E}_{3} w_{, r r}-\frac{C_{1} \bar{D}_{3}}{r^{2}} w_{, \theta \theta}+\frac{1}{r}\left(\bar{D}_{1}-C_{1} \bar{D}_{3}\right) \psi_{r}+\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right) \psi_{r, r} \\
& +\frac{1}{r}\left(\bar{D}_{1}-C_{1} \bar{D}_{3}\right) \psi_{\theta, \theta}, \tag{A.1}\\
& N_{\theta}=\frac{\bar{E}_{0}}{r} u_{0}+\bar{D}_{0} u_{0, r}+\frac{\bar{E}_{0}}{r} v_{0, \theta}-\frac{C_{1} \bar{E}_{3}}{r} w_{, r}-C_{1} \bar{D}_{3} w_{, r r}-\frac{C_{1} \bar{E}_{3}}{r^{2}} w_{, \theta \theta}+\frac{1}{r}\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right) \psi_{r}+\left(\bar{D}_{1}-C_{1} \bar{D}_{3}\right) \psi_{r, r} \\
& +\frac{1}{r}\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right) \psi_{\theta, \theta}, \tag{A.2}\\
& N_{r \theta}=\frac{\bar{G}_{0}}{r} u_{0, \theta}-\frac{\bar{G}_{0}}{r} v_{0}+\bar{G}_{0} v_{0, r}+\frac{2 C_{1} \bar{G}_{3}}{r^{2}} w_{, \theta}-\frac{2 C_{1} \bar{G}_{3}}{r} w_{, r \theta}+\left(\bar{G}_{1}-C_{1} \bar{G}_{3}\right)\left(\frac{1}{r}\left(\psi_{r, \theta}-\psi_{\theta}\right)+\psi_{\theta, r}\right) \text {, } \tag{A.3}\\
& Q_{r}=\left(\bar{G}_{0}-C_{2} \bar{G}_{2}\right)\left(\psi_{r}+w_{, r}\right), \tag{A.4}\\
& Q_{\theta}=\left(\bar{G}_{0}-C_{2} \bar{G}_{2}\right)\left(\psi_{\theta}+\frac{1}{r} w_{, \theta}\right) \text {, } \tag{A.5}\\
& R_{r}=\left(\bar{G}_{2}-C_{2} \bar{G}_{4}\right)\left(\psi_{r}+w_{, r}\right), \tag{A.6}\\
& R_{\theta}=\left(\bar{G}_{2}-C_{2} \bar{G}_{4}\right)\left(\psi_{\theta}+\frac{1}{r} w_{\theta}\right) \text {, } \tag{A.7}\\
& M_{r}=\frac{\bar{D}_{1}}{r} u_{0}+\bar{E}_{1} u_{0, r}+\frac{\bar{D}_{1}}{r} v_{0, \theta}-\frac{C_{1} \bar{D}_{4}}{r} w_{, r}-C_{1} \bar{E}_{4} w_{, r r} \frac{C_{1} \bar{D}_{4}}{r^{2}} w_{, \theta \theta}+\frac{1}{r}\left(\bar{D}_{2}-C_{1} \bar{D}_{4}\right) \psi_{r}+\left(\bar{E}_{2}-C_{1} \bar{E}_{4}\right) \psi_{r, r} \\
& +\frac{1}{r}\left(\bar{D}_{2}-C_{1} \bar{D}_{4}\right) \psi_{\theta, \theta}, \tag{A.8}\\
& M_{\theta}=\frac{\bar{E}_{1}}{r} u_{0}+\bar{D}_{1} u_{0, r}+\frac{\bar{E}_{1}}{r} v_{0, \theta}-\frac{C_{1} \bar{E}_{4}}{r} w_{, r}-C_{1} \bar{D}_{4} w_{, r r}-\frac{C_{1} \bar{E}_{4}}{r^{2}} w_{, \theta \theta}+\frac{1}{r}\left(\bar{E}_{2}-C_{1} \bar{E}_{4}\right) \psi_{r}+\left(\bar{D}_{2}-C_{1} \bar{D}_{4}\right) \psi_{r, r} \\
& +\frac{1}{r}\left(\bar{E}_{2}-C_{1} \bar{E}_{4}\right) \psi_{\theta, \theta}, \tag{A.9}\\
& M_{r \theta}=\frac{\bar{G}_{1}}{r} u_{0, \theta}-\frac{\bar{G}_{1}}{r} v_{0}+\bar{G}_{1} v_{0, r}+\frac{2 C_{1} \bar{G}_{4}}{r^{2}} w_{, \theta}-\frac{2 C_{1} \bar{G}_{4}}{r} w_{, r \theta}+\left(\bar{G}_{2}-C_{1} \bar{G}_{4}\right)\left(\frac{1}{r}\left(\psi_{r, \theta}-\psi_{\theta}\right)+\psi_{\theta, r}\right) \text {, } \tag{A.10}\\
& P_{r}=\frac{\bar{D}_{3}}{r} u_{0}+\bar{E}_{3} u_{0, r}+\frac{\bar{D}_{3}}{r} v_{0, \theta}-\frac{C_{1} \bar{D}_{6}}{r} w_{, r}-C_{1} \bar{E}_{4} w_{, r r} \frac{C_{1} \bar{D}_{6}}{r^{2}} w_{, \theta \theta}+\frac{1}{r}\left(\bar{D}_{4}-C_{1} \bar{D}_{6}\right) \psi_{r}+\left(\bar{E}_{4}-C_{1} \bar{E}_{6}\right) \psi_{r, r} \\
& +\frac{1}{r}\left(\bar{D}_{4}-C_{1} \bar{D}_{6}\right) \psi_{\theta, \theta}, \tag{A.11}\\
& P_{\theta}=\frac{\bar{E}_{3}}{r} u_{0}+\bar{D}_{3} u_{0, r}+\frac{\bar{E}_{3}}{r} v_{0, \theta}-\frac{C_{1} \bar{E}_{6}}{r} w_{, r}-C_{1} \bar{D}_{6} w_{, r r}-\frac{C_{1} \bar{E}_{6}}{r^{2}} w_{, \theta \theta}+\frac{1}{r}\left(\bar{E}_{4}-C_{1} \bar{E}_{6}\right) \psi_{r}+\left(\bar{D}_{4}-C_{1} \bar{D}_{6}\right) \psi_{r, r} \\
& +\frac{1}{r}\left(\bar{E}_{4}-C_{1} \bar{E}_{6}\right) \psi_{\theta, \theta}, \tag{A.12}\\
& P_{r \theta}=\frac{\bar{G}_{3}}{r} u_{0, \theta}-\frac{\bar{G}_{3}}{r} v_{0}+\bar{G}_{3} v_{0, r}+\frac{2 C_{1} \bar{G}_{6}}{r^{2}} w_{, \theta}-\frac{2 C_{1} \bar{G}_{6}}{r} w_{, r \theta}+\left(\bar{G}_{4}-C_{1} \bar{G}_{6}\right)\left(\frac{1}{r}\left(\psi_{r, \theta}-\psi_{\theta}\right)+\psi_{\theta, r}\right), \tag{A.13}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{G}_{i}=\int_{-h / 2}^{h / 2} G z^{i} d z, \bar{E}_{i}=\int_{-h / 2}^{h / 2} \frac{E}{1-v^{2}} z^{i} d z, \bar{D}_{i}=\int_{-h / 2}^{h / 2} \frac{v E}{1-v^{2}} z^{i} d z \tag{A.14}
\end{equation*}
$$

APPENDIX B. EXPRESSIONS OF $\bar{\eta}_{1} \sim \bar{\eta}_{10}$ AND $\bar{\kappa}_{1} \sim \bar{\kappa}_{6}$

$$
\begin{align*}
& \bar{\eta}_{1}=\left\{\left[\kappa_{3}(\lambda-1) \bar{E}_{2}+C_{1}\left(\kappa_{3}-4 \lambda-\kappa_{3} \lambda\right) \bar{E}_{4}\right]\left[\kappa_{1}-\cot [(\lambda-1) \alpha / 2] \tan [(\lambda+1) \alpha / 2)\right]\right] \\
& \left.\left.+\kappa_{2} \bar{E}_{1}[1+\lambda-(\lambda-1) \cot [(\lambda-1) \alpha / 2] \tan [(\lambda+1) \alpha / 2)]\right]\right\} /\left[\kappa_{2}\left(-1+\kappa_{1}(\lambda-1)-\lambda\right)\left(\bar{E}_{2}-C_{1} \bar{E}_{4}\right)\right] \text {, } \tag{B.1}\\
& \bar{\eta}_{2}=\frac{1}{\kappa_{2}}\left\{\kappa_{1}-\cot [(\lambda-1) \alpha / 2] \tan [(\lambda+1) \alpha / 2]\right\}, \tag{B.2}\\
& \bar{\eta}_{3}=\frac{1}{\kappa_{2}}\left\{\kappa_{1}-\cot [(\lambda+1) \alpha / 2] \tan [(\lambda-1) \alpha / 2]\right\}, \tag{B.3}\\
& \bar{\eta}_{4}=-\frac{\kappa_{1}(-1+\lambda) \bar{E}_{1}}{\bar{E}_{2}-C_{1} \bar{E}_{4}}+\frac{(1+\lambda) \bar{E}_{1}}{\bar{E}_{2}-C_{1} \bar{E}_{4}}+\frac{C_{1}(1+\lambda)^{2} \bar{E}_{4} \bar{\eta}_{2}}{\left(-\bar{E}_{2}+C_{1} \bar{E}_{4}\right)}+\frac{\bar{\eta}_{2}}{\left(\bar{E}_{2}-C_{1} \bar{E}_{4}\right)}(-1+\lambda)\left[\kappa_{2} \bar{E}_{1}+\kappa_{3} \bar{E}_{2}\right. \\
& \left.+C_{1}\left(-1-\kappa_{3}+\lambda\right) \bar{E}_{4}\right], \tag{B.4}\\
& \bar{\eta}_{5}=\left\{(-1+\lambda)(-1+v)\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right)\left(\bar{E}_{2}-C_{1} \bar{E}_{4}\right) \cos [(1+\lambda) \alpha / 2] \sin [(-1+\lambda) \alpha / 2]\right. \\
& +2 \kappa_{1}(-1+\lambda) \bar{E}_{1}\left[\bar{E}_{2}+C_{1}\left(-2 \bar{E}_{4}+C_{1} \bar{E}_{6}\right)\right] \cos [(-1+\lambda) \alpha / 2] \sin [(1+\lambda) \alpha / 2] \\
& -(1+\lambda)\left\{C_{1}(-1+v) \bar{E}_{3}\left(-\bar{E}_{2}+C_{1} \bar{E}_{4}\right)+\bar{E}_{1}\left[(1+v) \bar{E}_{2}+C_{1}\left(-(3+v) \bar{E}_{4}+2 C_{1} \bar{E}_{6}\right)\right]\right\} \\
& \times \cos [(-1+\lambda) \alpha / 2] \sin [(1+\lambda) \alpha / 2]-\bar{\eta}_{2}\left\{\left\{-2 C_{1}(1+\lambda)\left\{(-1+v)\left(\bar{E}_{2}-C_{1} \bar{E}_{4}\right)\left(\bar{E}_{4}-C_{1} \bar{E}_{6}\right)\right.\right.\right. \\
& \left.-(1+\lambda) \bar{E}_{4}\left[\bar{E}_{2}+C_{1}\left(-2 \bar{E}_{4}+C_{1} \bar{E}_{6}\right)\right]\right\} \cos [(-1+\lambda) \alpha / 2] \sin [(1+\lambda) \alpha / 2]+(-1+\lambda)\left\{(- 1 + v) \left(\bar{E}_{2}\right.\right. \\
& \left.-C_{1} \bar{E}_{4}\right)\left\{-\kappa_{3} \bar{E}_{2}+C_{1}\left[2\left(1+\kappa_{3}\right) \bar{E}_{4}-C_{1}\left(2+\kappa_{3}\right) \bar{E}_{6}\right]\right\} \cos [(1+\lambda) \alpha / 2] \sin [(-1+\lambda) \alpha / 2]-2\left[\kappa_{2} \bar{E}_{1}\right. \\
& \left.\left.\left.\left.\left.+\kappa_{3} \bar{E}_{2}+C_{1}\left(-1+\kappa_{3}+\lambda\right) \bar{E}_{4}\right]\left[\bar{E}_{2}+C_{1}\left(-2 \bar{E}_{4}+C_{1} \bar{E}_{6}\right)\right] \cos [(-1+\lambda) \alpha / 2] \sin [(1+\lambda) \alpha / 2]\right\}\right\}\right\}\right\} / \\
& \left\{(\overline { E } _ { 2 } - C _ { 1 } \overline { E } _ { 4 }) (\overline { E } _ { 2 } + C _ { 1 } (- 2 \overline { E } _ { 4 } + C _ { 1 } \overline { E } _ { 6 })) \left[\left(1+\kappa_{1}\right)(-1+\lambda)(-1+v) \cos [(1+\lambda) \alpha / 2]\right.\right. \\
& \left.\left.\times \sin [(-1+\lambda) \alpha / 2]-2\left(1+\kappa_{1}-\kappa_{1} \lambda+\lambda v\right) \cos [(-1+\lambda) \alpha / 2] \sin [(1+\lambda) \alpha / 2]\right]\right\}, \tag{B.5}\\
& \bar{\eta}_{6}=-\frac{\kappa_{1}(-1+\lambda) \bar{E}_{1}}{\bar{E}_{2}-C_{1} \bar{E}_{4}}+\frac{(1+\lambda) \bar{E}_{1}}{\bar{E}_{2}-C_{1} \bar{E}_{4}}+\frac{C_{1}(1+\lambda)^{2} \bar{E}_{4} \bar{\eta}_{3}}{\left(-\bar{E}_{2}+C_{1} \bar{E}_{4}\right)}+\frac{\bar{\eta}_{3}}{\left(\bar{E}_{2}-C_{1} \bar{E}_{4}\right)}(-1+\lambda)\left[\kappa_{2} \bar{E}_{1}+\kappa_{3} \bar{E}_{2}+C_{1}\left(-1-\kappa_{3}+\lambda\right) \bar{E}_{4}\right], \tag{B.6}\\
& \bar{\eta}_{7}=-\left\{-2 \kappa_{1}(-1+\lambda) \bar{E}_{1}\left[\bar{E}_{2}+C_{1}\left(-2 \bar{E}_{4}+C_{1} \bar{E}_{6}\right)\right] \cos [(1+\lambda) \alpha / 2] \sin [(-1+\lambda) \alpha / 2]+(1+\lambda)\right. \\
& \times\left\{C_{1}(-1+v) \bar{E}_{3}\left(-\bar{E}_{2}+C_{1} \bar{E}_{4}\right)+\bar{E}_{1}\left[(1+v) \bar{E}_{2}+C_{1}\left(-(3+v) \bar{E}_{4}+2 C_{1} \bar{E}_{6}\right)\right]\right\} \cos [(1+\lambda) \alpha / 2] \\
& \times \sin [(-1+\lambda) \alpha / 2]+(-1+\lambda)(-1+v)\left(\bar{E}_{1}-C_{1} \bar{E}_{3}\right)\left(-\bar{E}_{2}+C_{1} \bar{E}_{4}\right) \cos [(-1+\lambda) \alpha / 2] \sin [(1+\lambda) \\
& \times \alpha / 2]-\bar{\eta}_{3}\left\{\left\{2(-1+\lambda)\left[\kappa_{2} \bar{E}_{1}+\kappa_{3} \bar{E}_{2}+C_{1}\left(-1-\kappa_{3}+\lambda\right) \bar{E}_{4}\right]\left[\bar{E}_{2}+C_{1}\left(-2 \bar{E}_{4}+C_{1} \bar{E}_{6}\right)\right] \cos [(1+\lambda) \alpha / 2]\right.\right. \\
& \times \sin [(-1+\lambda) \alpha / 2]-2 C_{1}(1+\lambda)\left[(-1+v)\left(\bar{E}_{2}-C_{1} \bar{E}_{4}\right)\left(-\bar{E}_{4}+C_{1} \bar{E}_{6}\right)+(1+\lambda) \bar{E}_{4}\left(\bar{E}_{2}+C_{1}\left(-2 \bar{E}_{4}\right.\right.\right. \\
& \left.\left.\left.+C_{1} \bar{E}_{6}\right)\right)\right] \cos [(1+\lambda) \alpha / 2] \sin [(-1+\lambda) \alpha / 2]+(1-\lambda)(-1+v)\left(\bar{E}_{2}-C_{1} \bar{E}_{4}\right)-\kappa_{3} \bar{E}_{2}+C_{1}\left[2\left(1+\kappa_{3}\right) \bar{E}_{4}\right. \\
& \left.\left.\left.\left.-C_{1}\left(2+\kappa_{3}\right) \bar{E}_{6}\right]\right\} \cos [(-1+\lambda) \alpha / 2] \sin [(1+\lambda) \alpha / 2]\right\}\right\} /\left\{(\overline { E } _ { 2 } - C _ { 1 } \overline { E } _ { 4 }) [\overline { E } _ { 2 } + C _ { 1 } (- 2 \overline { E } _ { 4 } + C _ { 1 } \overline { E } _ { 6 })] \left\{2 \left(1+\kappa_{1}\right.\right.\right. \\
& \left.\left.\left.-\kappa_{1} \lambda+\lambda v\right) \cos [(1+\lambda) \alpha / 2] \sin [(-1+\lambda) \alpha / 2]-\left(1+\kappa_{1}\right)(-1+\lambda)(-1+v) \cos [(-1+\lambda) \alpha / 2] \sin [(1+\lambda) \alpha / 2]\right\}\right\}, \tag{B.7}
\end{align*}
$$

$\bar{\eta}_{8}=\frac{\left.\bar{E}_{2} \bar{E}_{3}-C_{1} \bar{E}_{3} \bar{E}_{4}+\bar{E}_{1}\left(-\bar{E}_{4}+C_{1} \bar{E}_{6}\right)\right)}{\left.\bar{E}_{1} \bar{E}_{3}-C_{1} \bar{E}_{3}^{2}+\bar{E}_{0}\left(-\bar{E}_{4}+C_{1} \bar{E}_{6}\right)\right)}$,
$\bar{\eta}_{9}=\frac{\left.\bar{E}_{1}^{2}-2 C_{1} \bar{E}_{1} \bar{E}_{3}+C_{1}^{2} \bar{E}_{3}^{2}-\bar{E}_{0}\left(\bar{E}_{2}-2 C_{1} \bar{E}_{4}+C_{1}^{2} \bar{E}_{6}\right)\right)}{\left(-\bar{E}_{1} \bar{E}_{3}+C_{1} \bar{E}_{3}^{2}+\bar{E}_{0}\left(\bar{E}_{4}-C_{1} \bar{E}_{6}\right)\right)}, \bar{\eta}_{10}=\frac{(3+\lambda(v-1)+v)}{(\lambda+1)(v-1)}$,
$\bar{\kappa}_{1}=\left[C_{1} \bar{E}_{4}\left(-\kappa_{2} \bar{E}_{3}+2\left(1+\kappa_{1}\right) \bar{E}_{4}\right)-\kappa_{2} \bar{E}_{1}\left(\bar{E}_{4}-C_{1} \bar{E}_{6}\right)-\bar{E}_{2}\left(\kappa_{2} \bar{E}_{3}-2 C_{1}\left(1+\kappa_{1}\right) \bar{E}_{6}\right)\right]$,
$\bar{\kappa}_{2}=\left[C_{1} \bar{E}_{4}\left(\kappa_{2} \bar{E}_{3}-2\left(-1+\kappa_{1}\right) \lambda \bar{E}_{4}\right)+\kappa_{2} \bar{E}_{1}\left(\bar{E}_{4}-C_{1} \bar{E}_{6}\right)-\bar{E}_{2}\left(\kappa_{2} \bar{E}_{3}-2 C_{1}\left(-1+\kappa_{1}\right) \lambda \bar{E}_{6}\right)\right]$,
$\bar{\kappa}_{3}=-\left[2 C_{1} \bar{E}_{1} \bar{E}_{3} \bar{E}_{4}\left((3+v) \bar{E}_{4}-2 C_{1} \bar{E}_{6}\right)+\bar{E}_{2}^{2}\left(2 \bar{E}_{3}^{2}-(1+v) \bar{E}_{0} \bar{E}_{6}\right)+\bar{E}_{1}^{2}\left(-(v-1) \bar{E}_{4}^{2}-4 C_{1} \bar{E}_{4} \bar{E}_{6}\right.\right.$
$\left.+2 C_{1}^{2} \bar{E}_{6}^{2}\right)+C_{1} \bar{E}_{4}^{2}\left(C_{1}(1-v) \bar{E}_{3}^{2}-(1+v) \bar{E}_{0}\left(2 \bar{E}_{4}-C_{1} \bar{E}_{6}\right)\right)+\bar{E}_{2}\left((1+v) \bar{E}_{1}^{2} \bar{E}_{6}-2 \bar{E}_{1} \bar{E}_{3}\left(2 \bar{E}_{4}+C_{1}(-1\right.\right.$
$\left.\left.\left.+v) \bar{E}_{6}\right)+C_{1} \bar{E}_{3}^{2}\left(-4 \bar{E}_{4}+C_{1}(1+v) \bar{E}_{6}\right)+(1+v) \bar{E}_{0}\left(\bar{E}_{4}^{2}+2 C_{1} \bar{E}_{4} \bar{E}_{6}-C_{1}^{2} \bar{E}_{6}^{2}\right)\right)\right]^{2}$,

$$
\begin{align*}
\overline{\mathrm{K}}_{4}= & {\left[-2 C_{1} \bar{E}_{1} \bar{E}_{3} \bar{E}_{4}\left((-5+v) \bar{E}_{4}+2 C_{1} \bar{E}_{6}\right)+\bar{E}_{2}^{2}\left(2 \bar{E}_{3}^{2}+(-3+v) \bar{E}_{0} \bar{E}_{6}\right)+\bar{E}_{1}^{2}\left((v-1) \bar{E}_{4}^{2}-4 C_{1} \bar{E}_{4} \bar{E}_{6}\right.\right.} \\
& \left.+2 C_{1}^{2} \bar{E}_{6}^{2}\right)+C_{1} \bar{E}_{4}^{2}\left(C_{1}(-1+v) \bar{E}_{3}^{2}+(-3+v) \bar{E}_{0}\left(2 \bar{E}_{4}-C_{1} \bar{E}_{6}\right)\right)-\bar{E}_{2}\left((-3+v) \bar{E}_{1}^{2} \bar{E}_{6}+C_{1} \bar{E}_{3}^{2}\left(4 \bar{E}_{4}+C_{1}(-3\right.\right. \\
& \left.\left.\left.+v) \bar{E}_{6}\right)+2 \bar{E}_{1} \bar{E}_{3}\left(2 \bar{E}_{4}-C_{1}(-1+v) \bar{E}_{6}\right)+(-3+v) \bar{E}_{0}\left(\bar{E}_{4}^{2}+2 C_{1} \bar{E}_{4} \bar{E}_{6}-C_{1}^{2} \bar{E}_{6}^{2}\right)\right)\right]^{2}, \tag{B.13}\\
\bar{\kappa}_{5}= & \bar{E}_{1}^{2}-2 C_{1} \bar{E}_{1} \bar{E}_{3}+C_{1}^{2} \bar{E}_{3}^{2}-\bar{E}_{0}\left(\bar{E}_{2}-2 C_{1} \bar{E}_{4}+C_{1}^{2} \bar{E}_{6}\right) \tag{B.14}\\
\overline{\mathrm{K}}_{6}= & {\left[-\bar{E}_{2} \bar{E}_{3}+C_{1} \bar{E}_{3} \bar{E}_{4}+\bar{E}_{1}\left(\bar{E}_{4}-C_{1} \bar{E}_{6}\right)\right]\left[\lambda^{3}(1+v) \sin 4 \alpha-2 \lambda \sin 2 \alpha\left(\lambda^{2}(1+v)+2(-5\right.\right.} \\
& \left.\left.+3 v) \sin ^{2} \lambda \alpha\right)+4\left(\lambda^{2}(-1+3 v) \sin ^{2} \alpha+(-3+v) \sin ^{2} \lambda \alpha\right) \sin 2 \lambda \alpha\right] . \tag{B.15}
\end{align*}
$$

[^0]: Received 17 October 2007; accepted 15 May 2008.
 Address correspondence to C. S. Huang, Department of Civil Engineering, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30050, Taiwan. E-mail: cshuang @ mail.nctu.edu.tw

