17,1

S AR

'] DHT(Distributed Hashing Table) &4 Bl #EHY] FfE
IS 2 dg e (B MR LSRRI e 35y
Scalable Algorithms for Global Trust and Reputation
Management in DHT-based Peer-to-Peer Networks

T N g A

TR S N

2 S Jed T8

&1 DHT(Distributed Hashing Table) : A# il et @ 2% 2
BT R L e R
Scalable Algorithms for Global Trust and Reputation Management in
DHT-based Peer-to-Peer Networks

R o Student : Shih-Shou Wu
dn F R PR Advisor : John Kar-kin Zao

—

R i I AN R

i

LR

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
August 2006

Hsinchu, Taiwan, Republic of China

;J_;‘:J’__i:a\‘]g],i‘__L;r_{;E,\H

B 1L 32 E N 2
W %2 Ay A8 12 TR
MO ETEGTELESE

AR ERHEZHIE B R AT 2 EE E
P & 3w 3L

Scalable Algorithms for Global Trust and Reputation

Management in DHT-based Peer-to-Peer Networks

ENRERERAKE S FEAZ A EFERT -

Avtk TAM

)

T

i

v 2 R R AL+E £ AN A+XB

Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
Hsinchu, Taiwan, R.O.C.

As members of the Final Examination Committee, we certify that

we have read the thesis prepared by Shih-Shou Wu

entitled Scalable Algorithms for Global Trust and Reputation

Management in DHT-based Peer-to-Peer Networks

and recommend that it be accepted as fulfilling the thesis

requirement for the Degree of Master of Science.

Committee Members:

e 0
Thesis Advisor: @D

g (U
Director: (/jk—‘ GW/ 7‘//

A

Date: 2006-8-16

!

PRI 1 Z5ME L T DHT (Distributed Hashing Table) #5351
P [Fl fai pL Wﬂﬁﬂﬁﬁﬁ FTHIRE = U 1B AL 7 W= A T
%ﬂﬂfufﬁ%lhi‘%ﬁﬁf.w (ERRACL S i R B il L e R
AT ISR OSSR PR e PSS T T PR R

T OB AR RV~ ORI S L TR R
o SR - TSR - 7S IR LR s e

T B IHEE RO R ZIR LR - SR R EEFR F
G LN YT (R G I ORI f
2 el st . };ﬁ%‘ylﬁﬁjrﬁ"iﬁﬁﬁiﬂ[ll{ygFTP“FY*IE@TE fhe™ R
FRIIEIZS (PP oy s SRS P E - 8 o > =5 LT Pk ol | v
F e i PR O - ‘

Abstract

In this thesis, we discuss the problem of the selection of resource providers in the
DHT-based peer-to-peer networks. Users always hope to choose the most appropriate
provider to get the wanted resources from lots of peers providing the resources.
However, the dynamic and anonymous nature of the networks limits the information
users can get. So we present a mechanism based on reputation management and trust
relations. In such mechanism, users can get the opinions from other peers, and they
aggregate and evaluate these opinions to make proper decisions. In out works, we
adjust the storage and gathering of reputation scores to let users get more information
by less cost. We also estimate the trustworthiness. of the reputations collected and
weight these reputation scores by their trustworthiness to improve the precision of the
decisions of users. Then we verify ‘the amount of-reputations users can get in our
algorithm to prove that our mechanismachieves the goal. Finally, we describe the

conclusion and future works of our research.

-

A

Ate
i3

T
3

F AR R MU R e g R Y e EHATE > B R

w

P EHEAEFLY A EARE DR A R B 3 2y
PEHPFRER N FELL FLFT P e o S X g el BLL S
e o X EF IR o

TR RE R SR EN DR TR R HB R DR TR E RN
RN R I et A I il B s A
VEE B R pRiE o DG - LA AR A SRR B PR
ARG 2R S P E i > BB A A o AR PR B) A 0 B P A AE R
- BRREap 3 o AR GE AR AE T R ko B

Bois o AR ER B R Ll PAFs e 2 R > A GRS T R 0 2
WY K B B AR R R B A e o B AR o

AT AR s R gggm P& s

’E_“;/\LL}&’Q‘TIT ﬁﬁéi\m&llﬁ B) 'é"’ﬁ’?\/(°

Contents

ADSTTACT ...ttt i
D OSSOSO iii
(000] 01 (<] 11 ST OSSO PPRURURPRPPON iv
LISE OF FIQUIES .ttt ettt e enreente e e e sneesneeneenneas Vi
LIS OF TADIES....eceeee bbb vii
Chapterl ReSarch OVEIVIEWccceiviiieiieiiece et 1
1.1 Problem STatEMENT......c.coiiiiiiiiire e 1

I (o< ot N o] (o - T SRS 2

1.3 OULHNE OF TRESIS....ciuiiieiiiti e 3
Chapter2 Background KNOWIEAQE..........ccviieiieiiiie e 4
2.1 Peer-t0-Peer NEIWOIKScc.oiviiiiiiiisiieieie e 4
2.1.1 The Unstructured Peer-to-Peer Networks..........ccccovvveveneniienincnenn 4

2.1.2 The Structured Peer-tQ-Peer NetWOrkScccovvvviienenenise s 6

20 IR T O 0o o PO S o TSSOSO 7

2.2 Trust-based Reputation-Management i .ot eereee e eeeseese e 9
2.2.1 Reputation SYSEEM ... i cteiieare i et eesee e seeseeseeseeeesseesreeneeeneesnas 9

2.2.2 Trust relation and-Global TruStian... i e 10

2.3 RelAted WOTK........oiueiee i eistieah ettt 12
A TN T 1= Ol I (1 e RSSO 12

Chapter 3 Concepts 0f RESEAICHcccciviiiieceee e 15
3.1 Principles and ODJECLIVEccveieiieieee e 15

3.2 Maintenance of RepUtation SCOIEScecvveiierieieeieeie s e se e 16
3.2.1 Storage of Reputation SCOIES.......c.cccueiverieiieieeeseese e 17

3.2.1.1 Search Tree of Chordccevviiieiiniiese s 17

3.2.1.2 Recursive Storage of Reputation SCOres...........ccccevvvereriverirannnn. 19

3.2.1.3 Complementary NOES...........ceverieriereiie e 20

3.2.1.4 Determination of Complementary NOGES...........cccevvevvrrvrrrrannenn. 21

3.2.1.5 Usage of Complementary NOdEScccovevveveiieieerieseeseeeenn 23

3.2.2 Handling of Received Reputation SCOIeSccccvvevverieiiveseerieseennens 24

3.2.2.1 Aggregation of Reputation SCOIeSccccevveveiieeieerieseeseenenns 25

3.2.2.2 Improvement of Aggregation FUNCHION...........ccccvvvveieiiecieeee, 25

3.2.3 Gathering of Reputation SCOES.........cccvevueiieereeriesiesrerieseese e see e 26

3.2.3.1 SEArCH AQENTS.....cviiieceiee e 26

3.2.3.2 Collecting Reputation SCOIES..........cccuerueriereerieseeieerieseeseeneenns 27

3.2.3.3 Use Complementary Nodes in Reputation Collection................ 29

3.3 Verification of Collected INfOrmation...........ccoovveiinininieiee s 30
3.3.1 Properties of Chord Search tre€ccccvevvveevveieiieie e 30

3.3.2 Verification SChEMEccccviiiiicee s 31

3.4 Other Improvement of The Mechanism............cccccevieieiienin e 33
3.4.1 Temporal ChanQec.cocveiuiiieiiee e 33

Chapter 4 ReSearch RESUIL..........ccviiiiiicecc e 35
4.1 The Influences of SKip DiStanCecccevvieeieeiiiie e 35

4.2 The Relations between Search Trees and Pascal Triangle...........ccccccevenennee. 36

4.3 The Number of Nodes Which An Aggregated Score Represents................... 37

4.4 The Information Can Be Collected in the Reputation Collection.................. 39
Chapter 5 Conclusion and FULUIre WOIKScccueviiieiieeie e 44
5.1 CONCIUSIONS.....c.uiiiiiiiiieiieie ettt bbbttt bbbt eneas 44

5.2 FULUIE WOTKS ...ttt 44
RETEIBICE ...t bbbttt b bbb e ene s 46

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13

Fig.14
Fig.15
Fig.16
Fig.17
Fig.18
Fig.19
Fig.20
Fig.21

Fig.22
Fig.23

List of Figures

The architecture of unstructured NEIWOrKSc.ooveiiiiii i 5
Large number of packages caused by request flooding 5
An example of successor peers inthe Chord ringcccoevviveinnenn 7
The finger tables stored in each node in the Chord network 8
An example of trust tranSitivityoooee i 11
An example of parallel trust combinationcoeiivennl 12
Overview of the whole mechanism ..o 16
The search tree of 32-node Chord networkcocovviiivienn. ... 18
The search tree of 32-node Chord network withn =12o.eee. 19
The pairs of complementary nodes and their searching paths 21
One of the pairs of complementary Nodesccoovvviieiie e, 22
All the pairs in the searching treecooovviiiiiiiii e, 23
The demonstration of the storage of the reputation of peer(15) about
PEEI(12) i R e e e 24
The scheme of recursive.storage.of reputation scores withs=2 28
Requests to the complementary node for.additional information 29
The recursive structure of the search tree in Chordcooeeent i, 31
The nodes in the search-paths of peer(15) and peer(26) 32
The aggregation of the scores in different:time interval 34
Pascal triangleoeeie i 36
The number of nodes in each layer of the searchtree 37
The ratio of the reputations stored in the root of a tree to the total number of
NOAES INTNE LI ... ettt e e e 38
The search tree of a 32-node Chord networkccovcveeveiiivinenn... 40
The ratio of the collected information along the longest path to the total
number of nodes inthe NEtWOrkcooo i, 42

Vi

List of Tables

Table.1 The number of nodes in each layer of the search tree 37

Table.2 The result of computation under different values of mands 38

Table.3 The ratio of the collected information along the longest path to the total
number of nodes inthe NetwWorkc.oo i, 41

Vi

Chapterl Research Overview

In the recent years, the peer-to-peer networks are widely applied in many
services, and the number of data shared through peer-to-peer networks increases
continuously. Besides the convenience of services, users pay more and more attention
to the security and quality of resources they receive. In this chapter, we will give a
problem statement. Then, we introduce the outline of this thesis after a brief

description of the approaches we use.

1.1 Problem Statement

In a peer-to-peer network, “when a user needs some resources, the most
convenient way is to search for peers which provide the wanted resources in the
network and get the resources from one of these found peers. The main problem is
how to select the best provider of wanted resources in a DHT-based peer-to-peer
network [1].

Because there are no central servers in the DHT-based peer-to-peer networks and
peers always join and leave dynamically, it is difficult for users to have information of
all the peers. Without enough information of the found peers, users have to ask for
other peers’ recommendations to make appropriate decisions. But in a DHT-based
environment, because each user maintains information of less other peers and the
length of the searching path of each peer is limited, the number of peers which each
peer may know or contact is obviously also restricted. Thus the first question to be

solved is how to let users collect recommendations as many and efficient as possible.

After gathering recommendations from other peers, the next work is to combine
and evaluate the reputations contained in these recommendations. By aggregating
these reputation scores, users can realize the previous experiences of other peers and
make their own decisions more precisely. When handling these recommendations
from different peers, it is necessary to take the trustworthiness of the peers providing
the recommendations into account. The trustworthiness of a peer is determined by the
correctness of the previous recommendations it provided. Peers may trust the same
peer in different degrees. So the second question to be solved is how to derive a fair

and precise result from the collected recommendations.

1.2 Project Approach

In this thesis, we develop a decentralized mechanism to solve the problem
mentioned above in DHT-based peer-to-peer networks. To resolve the first question,
we let each user record and update the reputations assigned to other peers after
interacting with them, such as receiving resources from them. To save the time for
collecting the recommendations, peers store and gather the reputation scores stored
along their own searching paths. And we also apply some scheme to improve the total
algorithm.

To solve the second question, we propose an aggregation scheme to aggregate
the reputations received. The reputation scores will be weighted by the number of
nodes which they represent and then combined to compute a value which can really
reflect the experiences of other peers in the network with one certain peer. Moreover,
the weight of each score will be adjusted any time according to the difference between
it and other scores or the average values. So the false reputation scores will have less

weight than the true reputations and thus have less influence on the derived values.

1.3 Outline of Thesis

The remaining of this thesis is organized as follows. Chapter 2 describes the
background techniques we use in our research and the related work of trust
management, EigenTrust. In chapter 3, we introduce the algorithm and mechanism of
our works. And chapter 4 verifies the results of our works. Finally, chapter 5 is the

conclusion and future works.

Chapter2 Background Knowledge

In this chapter, we will shortly introduce the background technologies we use in
our work, including peer-to-peer networks in section 2.1 and trust-based reputation
management in section 2.2. Then we will introduce EigenTrust, the related work of

our research, briefly in section 2.3.

2.1 Peer-to-Peer Networks

In the beginning, data communication on the computer networks is under
client-server architecture. Clients communicate with servers by authenticated
protocols and ports. And servers have to take responsibility for managing the
resources and the power of the other peer nodes. Over the Internet today, the network
environments are more complex. For.the-convenience of data exchange, peer-to-peer
architecture is invented. Instead of building new physical networks, peer-to-peer
networks just modify the communication paths between users over the original
physical networks. Contrary to the client-server architecture, there are no central
servers in the peer-to-peer networks. All data communication is completed through
the direct or indirect transmission between peer nodes in the network.

We will describe the unstructured and the structured peer-to-peer networks in the

following sections.

2.1.1 The Unstructured Peer-to-Peer Networks

The architecture of the unstructured peer-to-peer networks is based on the

concept of neighbor nodes. Every peer node will find its neighbors when joining the

4

network. And when peer nodes need some wanted resources, they will send requests
for the resources to all their neighbors. After receiving requests, the neighbor nodes
will check the requests and help to forward the requests to their own neighbors. If a
peer node receiving requests has the wanted resources, he will return the searching

result to the original node so that the original node can get the resources from him.

(Fig.1)

A e
‘Ay\> f O O original node
/O‘/O O O resource node
O l r’ _ : requests forwarding
O

Fig.1: The architecture of unstructured networks

An example of such architectures is Gnutella. Because it is a distributed network
environment, the whole system-will-not-easily be-paralyzed when some nodes are
broken. But in such architecture, we can'not'make sure of the length of the searching
paths. And the number of request packages will be larger and larger as requests are

continuously forwarded. (Fig.2)

\

o— "0

A

O—0O

\ 20
O/vo

—0

ONONONONONONG)

/

ONONONONONONONG

Fig.2: Large number of packages caused by request flooding

2.1.2 The Structured Peer-to-Peer Networks

The structured peer-to-peer networks always use Distributed Hashing Table
(DHT) to help to organize the peer nodes in the network. DHT assigns every peer
node and resource an identifier by hash functions to reduce the number of
unnecessary packages. Instead of using flooding when forwarding request packages, it
selects the target of request packages and effectively controls the number of request
packages sent and the length of searching time.

When a peer joins the network, its identifier is chosen by hashing some of the
peer’s information, such as IP address, port, etc. According to the identifier, the peer
determines its neighbor nodes which may receive the requests it sends. Additionally,
identifiers of resources are produced by hashing some attributes of the resources, such
as name, size, etc. The identifiers.of resources will be mapped to the peer nodes
existing in the network and the meta data-of the-resources will be stored in the
mapped nodes. When searching reseurces, users.have to use the identifiers to find the
meta data and get the actual location of the resources.

To search or communicate with a peer node with given identifier, users have to
select the node which is the closest to the target node from all their neighbor nodes
and send requests to it. Then this selected neighbor node will help to forward the
requests by the same way. Instead of broadcasting the requests to all neighbors, every
node in the searching path only sends requests to one of its neighbor nodes. Thus this
mechanism solves the problem of package flooding in the second generation of
peer-to-peer networks, and it also effective reduces the length if searching path.

There are many implementations of the structured peer-to-peer networks. Next

we introduce one of the DHT-based peer-to-peer networks, Chord.

2.1.3 Chord

Chord [2] is one method of DHT-based peer-to-peer networks. It assigns every
peer node and data key an m-bit identifier by hash functions. A peer’s identifier is
chosen by hashing the peer’s IP address, while a key identifier is produced by hashing
the data key. Peer nodes are ordered on an identifier circle with size of 2™. The
identifier circle is termed as Chord ring. To store the data keys to the mapped peers
according to their identifiers, Chord uses the mechanism of “successor”. For a key
with identifier n, its successor peer is the first peer clockwise from n in the Chord ring,
and the successor peer will be denoted by successor(n) in the following description.
For example, in a Chord network with m = 3, there exist three peers: node(0), node(1),
and node(3). Fig.3 shows how to.store three data.keys: key(1), key(2), and key(6) to
the network. The successor of identifier 1 1s.node(1), so key(1) is stored in node(1).
Similarly, the successor of identifier:2-is-node(3) and the successor of identifier 6 is

node(0). So key(2) would be located at-node(3), and key(6) at node(0).

sueeessor(l)=1
successor{2)=3

successor{o)=0

Fig.3: An example of successor peers in the Chord ring
As m is the number of bits in the identifier space, each peer n maintains a routing
table with up to m entries, called the finger table. The i entry in the table at peer n
contains the information of the peer successor(n + 2'*), where 1 < I <m. Fig.4 shows

a Chord network with m = 3, and there exists three peers whose identifiers are 0, 1

and 3 respectively. The finger table at every peer n records three entries: the successor

7

peers of (n+1), (n+2), and (n+4). For example, the finger table at node(0) will record
the data of successor(1), successor(2), and successor(4), which are node(1), node(3),
node(0). Finger tables have two properties: the first, peers store information about
only a small number of other peers in the finger tables, and know more about peers
closely following them on the Chord ring than other peers. Second, the finger table
does not contain enough in formation to directly determine the successor of an
arbitrary key. For example, node(3) cannot determine successor(1), as successor(1)

(node(1)) is not present in the finger table at node(3).

n+2! SUCCESE0F
n+1 1 1 n+2! SUCCESSOr
n+2 2 3 n+l 2 3
n+4 4] n+l 3 3
n+4 5 0
L]
7 1
[} 2
i1 R
< 3 n+l SUCCESSOT
4 ntl 4 0
n+2 5 0
n+d T 0

Fig.4: The finger tables storedrineach node in the Chord network

When a node n does not know the successor of a key k, it can find a node whose
identifier is closer than its own to k. Because of the first property of finger tables
mentioned above, that node will know more about the Chord ring in the region of k
than n does. Thus n searches its finger table for the node j whose identifier most
immediately precedes k, and asks j for the node it knows whose identifier is closer to
k. by repeating this process, n learns about nodes with identifiers closer and closer to k.
Taking Fig.4 as example, node(3) wants to find successor(1). Since 1 belongs to the
circular interval [7 , 3), node(3) checks the successor(7) in the finger table, which is
node(0). Because 0 precedes 1, node(3) will ask node(0) to find successor(1). In turn,
node(0) will infer from its finger table that successor(1) is node(1) itself, and return

node(1) to node(3).

By the mechanism of finger tables, the number of nodes that must be contacted
to find a successor in an N-node Chord network is O(logzN).

2.2 Trust-based Reputation Management

In many network services, users face each other with a form of pseudonym, such
as ID, nickname, etc. The real status of a user is often hidden behind his pseudonym.
Under this condition, some users start to cheat or attack the normal users maliciously.
For example, in the network auction, both seller and buyer don’t know each other
before. Without perfect protection schemes, there will be always disputes happened if
someone want to cheat other users. But if users can know the credit or performance of
the other side in advance and then select their targets of transactions, the rate of
successful transactions will be improved. To do this, we can use reputation systems to
record the usual performance of .users and .use the- idea of trust to strengthen the
functions of the reputation systems [3].-\We-will describe the ideas of reputation and

trust respectively in the following sectiens.

2.2.1 Reputation System

Reputation systems [4] let users score and record the performances of other users
which they have interacted with. eBay [5] is a simple example. In eBay, both seller
and buyer give each other a reputation after the transactions, and the reputation may
be positive (+1), negative (-1), or neutral (0). The total score of a seller or a buyer is
the sum of all his reputations received. Generally speaking, a user with higher total
scores always has more satisfied traditions than unsatisfied ones. Users can select who
to trade with by examining the total scores of other users.

Reputation systems record the subjective opinions of users, so we can not make

sure that all users assign the reputations fairly. And that will cause some problems.
For example, user A gives other users negative reputations on purpose to reduce the
total scores of other users and to get the chances of transactions. In another situation,
user A can collude with some other users and get positive reputations from them. So
the total score of A increases and thus A can get the chances of transactions.

Additionally, the combination and evaluation of reputation scores are also
important. For example, there is a reputation system which only records the sum of
positive and negative reputations but doesn’t keep track of the real condition of
transactions. Malicious users may be honest in the traditions with lower value to
accumulate positive reputations and wait for chances to cheat in the traditions with
high value. In such reputation system, the total scores can’t completely represent the
actual performance of a user.

In a word, in a private and..dynamic.peer-to-peer network, a well-designed
reputation system will effectively protect.the-peer/nodes from malicious cheats and

attacks [6][7].

2.2.2 Trust relation and Global Trust

Because of peer-to-peer networks and E-Commerce, the idea of trust is applied in
the field of computer networks gradually [8]. Trust relations are composed of five
main components: trust origin, trust purpose, trust target, measures, and time. The first
three components describe the main concept of trust relations, and measures represent
the magnitude of trust relations. There are several forms to express the measures of
trust relations, such as binary (trust or not), discrete (strong trust, weak trust, weak
distrust, strong distrust), continuous (probability), etc. Moreover, the content or the

strength of trust relations always change as time goes by. The time component of trust

10

relations is used to distinguish the trust relations at different time slots.

Trust relations originally indicate that one peer trusts the other peer. Trust
transitivity and parallel trust combination are the extension of the trust relations for
usage among more than two peers. Transitivity of trust relations always occurs with
recommendation. For example, C has helped B to repair his car, so B trusts C to be a
good car mechanic. This is the trust relation between B and C. Now A needs a car
mechanic and asks B who can help him. Based on B’s own experiences and the trust
in C, B commends C to A. And A also trusts B’s recommendation. Fig.5 shows the

condition:

— : trust

A B C ----» : recommendation

Fig.5: An example of trust transitivity

In the trust relation in Fig.5, we define-the trust relation between B and C as
direct trust, and the trust relation between A-and B is defined as indirect trust. The
direct trust is based on the experience while the indirect trust is the trust in others’
recommendations. Trust transitivity is composed of a chain of indirect and direct trust.
But actually, trust is not implicitly transitive, because trust is weakened or diluted
through transitivity. Take Fig.5 as example, the trust between A and C will not be
stronger than the one between A and B or between B and C. The trustworthiness will
be lower and lower after several hops of recommendation.

While trust transitivity is the series connection of trust relations, parallel trust
combination is the parallel connection of trust relations. It is caused by several
commendations with the same target (as Fig.6). Unlike the weakened trust relations
caused by trust transitivity, the parallel combination of positive (or negative) trust

relations has the effect of strengthening the derived trust.

11

> trust

A D ----» : recommendation
»
\\) O

Fig.6: An example of parallel trust combination

By trust transitivity and parallel trust combination, trust relations are expanded
and applied in the peer-to-peer networks. In the peer-to-peer networks, every peer
node assigns its trust values in other peers. Because trust relations are also subjective
judgment, every peer always has different trust value in the same target. To consider
the trustworthiness of a peer node, someone presented the idea of global trust.
Compared to the local trust values assigned. by peers, global trust is to integrate the
local trust values of the peer nodes in themnetwork and compute a value to reflect the
experiences of all peers in the network with-one certain peer. We can estimate the real
trustworthiness of one peer by examining its-global trust value. There have been many
great researches on trust management ‘in‘the:peer-to-peer networks [9], and EigenTrust

is one of the works about global trust. We will describe it in Section 2.3 later.

2.3 Related Work

In this section, we will describe one of the related works of the background
knowledge mentioned above, EigenTrust [10]. EigenTrust focuses on the trust

management and implements the idea of global trust.

2.3.1 EigenTrust

Peer-to-peer file sharing networks have many benefits over standard client-server

12

approaches to data distribution, including convenience and efficiency. However, the
open and anonymous nature of these networks leads to a lack of accountability for the
content a peer puts on the network and opens the door to abuses of these networks by
malicious peers. Therefore, it is important to ensure that peers obtain reliable
information on the quality of resources they are receiving.

In the concept of EigenTrust, attempting to identify malicious peers that provide
inauthentic files is superior to attempting to identify these files themselves because
malicious users can easily generate a virtually unlimited number of inauthentic files if
they are not banned from joining the network. EigenTrust assigns each peer a unique
global trust value that reflects the experiences of all peers in the network with it.
According to the global trust values, users can identify malicious peers more easily.
Following description is about .the computation of global trust values in the
EigenTrust.

First, peers record the satisfaction-with-each other after exchanging files. The
simplest method is like the reputation-system-of ‘€Bay: each peer i stores the number
of satisfactory transactions it has had with peer j, sat(i , j) and the number of
unsatisfactory transactions it has had with peer j, unsat(i , j). Then we define s;; as the
local trust value of peer i with peer j:

sij = sat(i , j) — unsat(i , j) D

Having the local trust values between peers, we can compute the global trust
values by aggregating the local trust values assigned to one peer by other peers. To
aggregate local trust values, it is necessary to normalize them. So c;; is defined as
normalized local trust value:

max(s;;, 0)

Cy = Zmax(sij,O) @

In EigenTrust, the way to aggregate the normalized local trust values is for peer i

13

to ask its acquaintances about their opinions about other peers and weight these

opinions by the local trust values peer i places in them:
by = Zcijcjk (3)
J
where t* represents the trust that peer i places in peer k based on asking his friends.

We can write the formula (3) in matrix notation: we define C to be the matrix [cj]

and t, to be vector containing the values ti, then:

ti, Cy Cy Coi || Cit
) i2
t.|=lc, Cp . C | ,thatis t =C'c, (4)
tin _Cln C2n Cnn__Cin_

The trust values derived from, formula (4),still reflect only the experiences of

peer i and his acquaintances. To:get a wider view, peer i may ask his friends’ friends
and get t =(C")’c,. Continuing in this“manner, peer i will get t =(C")"c, and
have a complete view of the network when n.is large enough. With the increasing of n,

the trust vector t, will converge to the same vector for every peer i. Namely, it will

converge to the left principal eigenvector of C. In other words, t is a global trust
vector in this model. Its elements, tj, quantify how much trust the system places peer j

as a whole.

14

Chapter 3 Concepts of Research

3.1 Principles and Objective

The design of the algorithm in our research is mainly based on the following

objectives and principles:

1.

Users record their opinions about the performance of other users as the
local reputation scores ordinarily. For the convenience of reputation
collection, we let users additionally store their local reputation scores to
other peers in the network.

Users can get the informationrof the resource providers when they search
for the wanted resources. To dao this, we appoint some peers to be the
search agents to collect the-reputations when they are free.

The lengths of the search ‘paths of ‘the nodes in DHT-based peer-to-peer
networks are different. To average the unbalanced condition, we design the
scheme of “complementary nodes” in the storage and collection of
reputation scores.

Because the environment is dynamic, we have to male sure of the time

validity of the information users can get.

Fig.7 shows the overview of our approaches.

15

Each user stores its
reputation scores for
others after
interaction with them

h

Search agents collect
and aggregate
reputation scores

Y
Users search for
wanted resources and
get the information of
providers

Perform the
verification
scheme

Trust the information
supplied by search agents?

Make selection of
providers and get
wanted resources

A

Fig.7: Overview of the whole mechanism

Therefore, we will introduce our algorithm in the following sections. In section
3.2, we describe the maintenance of reputation scores, including the storage and the
gathering. Then we will describe the verification of collected information in section

3.3 and discuss some other improvements we do in section 3.4.

3.2 Maintenance of Reputation Scores

From the principles listed in section 3.1, we can know that the maintenance of
reputation scores is important to the convenience of reputation collection. How to get
the most information by lowest cost is the question which we want to solve. Thus we

divide it into two parts and then solve them:

16

1. To reduce the cost of gathering reputations, we let users collect reputations
along their own search paths for the target.

2. To make the whole mechanism scalable, we adjust the storage and
gathering of reputation scores.

Next, we will describe the storage and gathering of reputation scores

respectively.

3.2.1 Storage of Reputation Scores

Originally, every peer stores the reputation scores it assigns to other peers in
itself. And in a DHT-based peer-to-peer network, the length of the search paths from
peers to a certain destination peer woilld be‘egual to or less than [log;N |, where N
represents the total number of peers in the network. When a user wants to collect
reputation scores along its own‘searchpath; it will contact at most [log,N | other peers
and thus collect at most [log,N | feputation scores."When N becomes larger, the value
of [1ogoN | will be much smaller than the one of N. To make the mechanism scalable,
we adjust the arrangement of the storage of reputation scores and let peers
additionally store their reputations in other peers along the search path to improve the
number of reputation scores which users can collect along their search path.

Our approach is applicable to DHT-based peer-to-peer architecture in general, so
we will take Chord as example to introduce the approaches of our work in the

following sections.

3.2.1.1 Search Tree of Chord

In Chord, if we aggregate the search paths for a certain peer of all other peers, we

17

can build a tree whose root node is the destination peer of these search path. The

figure below (Fig.8) shows the search tree of a 32-node Chord network. The root node

of this search tree is peer(n), where nis a variable (n =0, 1, 2, , 31).
n
\ 2 ~ Q Q
] Q O
n-1) ONE -4 O
n-8 n-16
- 16 4
2 -4 8 - .16
o -8 16 16
O O
R 5 R Q O o & O 20 O 24
n-3 n ng M7 L6 n-10| n-18 n-12| ™ n-
-4 16 -8 \16 16 " 16 |46 -16
y O
@ O O 0O O O O Oz
n-7 n-11 n-19 n-13 n-21 n-25 n-14 n-22 n-28
16 -16 16 -16
o O O O O

n-15 n-23 n-27
n-29 n-30

16
n-31

Fig.8: The search tree of 32-node Chord network

These numbers marked in the search tree in Fig.8, such as (n-27), (n-12), etc,
actually represent the value of these number modulo 32. The notation of (mod32) is
omitted to be convenient to be showed in the figure. For example, suppose n=12, then

(n-4) represents 8, and (n-29) represents 15. Fig.9 shows the search tree with n=12:

18

12

11) (10 8 O O
4 28
-16 4
2 4 8 - 16
o 8 16 16
® D 0 o o 00 PO
9 3 27 6 2 26 24 20
-16 a 16
-4 -8 16 16 s 16 | 16
° O
5 O O O O O O O OOy 16
1 25 31 23 19 30 22
8 16 16 16 16
Q O O O O
29 21 17
15 14

- 16
13

Fig.9: The search tree of 32-node Chord network with n =12

3.2.1.2 Recursive Storage of Reputation Scores

Form Fig.9, we can found that the structure of the search tree in Chord has a
recursive property. The tree structure can be divided into two subtrees with equal size
by the edge marked (-1). We can also say that the search tree of 32-node Chord
network is generated by combining two 16-node search trees with an edge. Similarly,
we can also generate a 64-node search tree by combining two 32-node search trees.
Therefore, to make the scheme of reputation collection scalable, the scheme of
reputation storage has to adapt to the recursive property.

In the recursive storage of reputation scores, each peer uploads its own
reputation score about one certain provider to the upper nodes along its search path
for the provider. We design a variable called “skip distance” which determines which

nodes a peer has to upload its reputation. We will use s to denote skip distance in the

19

following description. For a provider, each peer uploads its reputation about this
provider to the nodes which are s, 2s, ... layers higher than it along the search path for
the provider. For example, s=1 means that each peer uploads its reputation to all the
nodes along its search path for the provider. The influence of s will be described in

Chapter 4 later.

3.2.1.3 Complementary Nodes

Each peer uploads its reputations to the upper nodes along its search path. So the
nodes with shorter search paths will upload reputations to fewer nodes. That means
that there will be fewer copies of the reputations assigned by the nodes with shorter
search paths in the networks. To average the:unbalance condition, we design the
scheme of “complementary nodes”.

In the searching tree of Chord netwaorks, the length of the longest searching path
is [1ogoN | where N is the total number of peers in.the network while the length of the
shortest one is 1. However, we still can find something interesting in such unbalanced
tree structure. In the searching tree in Fig.10, we can divide the searching tree into
two subtrees with the same size by the red dotted line. And we can find that: if we
connect the searching paths of the two leaf nodes which are symmetrical to the dotted
line, the number of internal nodes between the two nodes along the connected path
will be [log,N |. For example, we connect the searching tree of the first leaf node in
the left of the line (peer(27)) and the one of the first leaf node in the right of the line
(peer(14)), which are the two red curves in Fig.10 . Then there are [log,32] = 5
internal nodes between the two nodes: peer(11), peer(12), peer(10), peer(6), and
peer(30). Similarly, there are also 5 internal nodes: peer(1), peer(9), peer(11),

peer(12), and peer(8), between the sixth nodes in the left and the right of the dotted

20

line (peer(17) and peer(24)), which are the two blue curves in Fig.10.

! 12
QL.

O
O OOy 16

29 21 17

13

Fig.10: The pairs of complementary nodes and their searching paths.

By the observation above, we ‘can-know.that: for every leaf node, there exists one
another leaf node so that there would be [log,N | internal nodes between the two nodes
along their connected searching path. We call that “complementary nodes”. That is,

both the nodes are the complementary node of each other.

3.2.1.4 Determination of Complementary Nodes

We introduce the scheme of complementary nodes in the previous section and
describe that we divide the searching tree into two parts to determine the
complementary nodes. But actually we need a faster way to let a leaf node know
which node is its complementary node. And leaf nodes have to determine the

complementary nodes by the information they have had instead of determining that

21

after constructing the whole searching tree.

When two leaf nodes are complementary nodes of each other, the sum of the
length of their searching paths must be fixed. And there is also something interesting
about the components of their searching paths. Taking the peer(15) and peer(26) in
Fig.11 as example, the searching path of peer(15) consists of four edges: (-16), (-8),
(-4), and (-1). And the searching path of peer(26) consists of two edges: (-16) and (-2).
Totally, the two searching paths have two (-16) edges and one (-8), (-4), (-2) and (-1)

edges. There are the same conditions in other pairs of complementary nodes.

12
11 (O (O\10 Qs O O
4 28
-16 f
2 8 J 16
8 8 16 16
e A0 S0 0.0 00 PO O
9 3 L 2 26 24 20
16 16
4 . 16 16 2 16 16
5 O O O O O O O OO0k
1 25 31 23 19 30 22
-8
16 16 16 16
Q O O O O
29| 22 17
15 14
-16
O

Fig.11: One of the pairs of complementary nodes.

Thus we can conclude that: when two nodes are complementary nodes, the sum
of the distance between the two nodes and the root node mustbe - (16 *2+8 + 4 + 2
+ 1) =-47. If a leaf node wants to determine its complementary node, it only need to
compute the distance from it to the root node first. Then it can know the distance from

its complementary node to the root and know the identifier of its complementary node.

22

For example, peer(16) wants to determine the complementary node when the
destination is peer(12). It computes the distance to the root to be (-28) and get the
distance from its complementary node to the root to be (-47) — (-28) = (-19). So it can
know that its complementary node is peer(25).

Because each internal node in the search tree is connected with a unique leaf
node by an edge marked (-16), we can easily pair all the leaf nodes and the internal
nodes (as Fig.12). Therefore, the complementary node of an internal node can be

determined by the lead node which is in the same pair as it.

n
-2 — - o
2 @ O
n-1,0) OX -4 O
16 n-8 n-16
-2 -4 8 =3 <16
. -8 16 16
® 5 Q Q) O () O o O 0 O 24
n-3 n- L el n-10| n-18 n-12| M- n-
-16 . - 16
-4 -4 \16 16 5 | 16 | 46
° O
® QO O O O O O O Onae
- u - n-28
n-7 Nl g9 pag "2 s O MA[22
-8 16 |-16 16 -16
O O O O O
n-15 n-23 n-27
n-29 n-30

- 16

. n-31
Fig.12: All the pairs in the searching tree.

3.2.1.5 Usage of Complementary Nodes

When a user uploads reputation scores, on one hand it uploads its reputation to
the upper nodes along its own searching path, and on the other hand it can send the
reputation to its complementary node and ask the complementary node to upload the

reputation score to the nodes along the searching path of the complementary node. We

23

take Fig.11 as example: suppose skip distance s =1, peer(15) uploads the reputation
scores about peer(12) to the upper nodes along its own searching path: peer(31),
peer(7), peer(11), and peer(12). And it also sends the reputation scores to its
complementary node, peer(26). So peer(26) helps to upload the reputation score the
nodes along the searching path: peer(10) and peer(12). Totally, there will be 7 nodes
storing the reputations about peer(12) of peer(15): peer(15), peer(31), peer(7),
peer(11), peer(12), peer(10), and peer(26). Fig.13 shows where peer(15) uploads its

reputation Scores.

12

O
1
R 28
2 a4
O 7
9
4 -16
8
5 O O O
1 25 A
8 16 16
O O O
29 21 17

- 16

13
Fig.13: The demonstration of the storage of the reputation of peer(15) about peer(12)

3.2.2 Handling of Received Reputation Scores

After receiving the reputations uploaded by the lower nodes in the search tree,
how to maintain these reputations is the next question to solve. We can store all the

received scores separately. But when the size of the network gets larger and larger, the

24

amount of reputations a peer stores may be very great. For example, when skip
distance s=1, the root node of the search tree will store the reputations uploaded by all
the lower nodes in the network. The storage of these received reputations will cause a
heavy load. So we let peers aggregate received scores and only store the aggregated

Scores.

3.2.2.1 Aggregation of Reputation Scores

Each peer stores an aggregated score about a provider. When it receives the
reputation scores uploaded from other peers, he combines the received scores with the
value which he originally stores to generate a new aggregated score.

When combining the received scores and the stored value, the weights of these
values depend on the number of nodes:represented by these values. For example,
suppose there are two scores to:be combined. One represents the aggregated scores of
four nodes and the other represents.the aggregated scores of eight nodes. The more
nodes a score represents, the more weight we assign to it. So the weight of the score
representing eight nodes will be twice as heavy as the one of the score representing
four nodes.

Suppose a peer i stores the aggregated scores of n nodes, 7. When it receives
the reputation score uploaded from another peer j, rj, it will aggregate the reputation

with its stored value and get the new aggregated value, T':
_ F*(n-1)+r,
n
3.2.2.2 Improvement of Aggregation Function
The original aggregation scheme operates aggregation when each score is

25

received. But if a malicious user continuously uploads reputation score to a peer, it
will cause a great computation load to the receiving peer. And the aggregated score
stored in this peer will be influenced by the redundantly uploaded scores.

To improve this condition, we set a time interval (ex: 1 hour) for receiving
reputations. Peers receive and buffer the reputations received in the same time interval.
In the end of this time interval, peers aggregate all the scores buffered with the
originally stored value to generate the new aggregated score. For example, in the time
interval t, peer i totally receives k reputations: rji, rjz, ..., I'x. In the end of interval t,

peer i aggregates the K reputation scores with the previously stored value T, :

T, *(n=k)+ Myttt

T=
! n

If the scores uploaded from some peets are much different from the scores of
other peers or the average scores, we canalsoreduce the weight of these scores in the

aggregation function. For example,

3.2.3 Gathering of Reputation Scores

In DHT-based peer-to-peer networks, users search for the wanted resources to get
the information about resource providers. To avoid additional cost, we hope to let
users get the information necessary for selection making when they search for the
resources. So we design the scheme of “search agent” to perform the collection of

reputation scores to reduce the cost of the original users.

3.2.3.1 Search Agents

In the DHT-based networks like Chord, the identifier of the resource is generated

by hashing the key of the resource. Then the meta data of the resource will be stored

26

in the peer which the resource identifier maps to. Because the peer whose identifier is
equal to the one of the resource manages the meta data of the resource, we call this
peer “resource manager” of the resource. Ordinarily, resource managers own the
information of the providers of the resources, such as the IDs and the IP addresses of
the resource providers. If a user needs the resources, he has to search for the resource
manager to get the information and know which peers provide the resources.

Since all the peers which need the resources have to contact the resource
managers, we appoint the resource managers to be the search agents. Search agents
are responsible for collecting reputation scores about all the providers of the resources
when they are free. After collecting the reputations, search agents combine the
gathered scores to generate aggregated values and announce these values in the meta
data stored in the resource managers. When users search for the wanted resources and
reach the resource manager, they.can get the information of the resource providers
and also get the aggregated scores of the-resource providers. Then users can make

selection of resource providers according.to.these-aggregated scores.

3.2.3.2 Collecting Reputation Scores

In our scheme of reputation storage, each peer uploads its reputation scores about
the provider to the upper nodes along the search path for the provider. Therefore,
when search agents collect reputation scores, we also let they gather reputation scores
along their own search paths for the providers.

Because each peer uploads its own reputation to the upper nodes along the search
path according to the skip distance s, we can know that if a score is uploaded to a peer
n, the score must be also sent to the node which is s layers higher than peer n along

the path. We take Fig.14 as example, suppose s =2, then the scores uploaded to

27

peer(9), peer(7), peer(3), and peer(27) must be also uploaded to peer(12).

\ 12
-2 — -
1 (O (10 Rs
16 4
2 8) 16 g 16
® A0 O o o O 0 pPO
9 3 27 6 2 26 24
-16 Q -16
-/ g \16 16 5 16 |16
8
5/O O O |\ O O O OO 16
1 25 23 19 30 22
-8
16 16 16 16
Q O O O O
29 21 17
15 14
-16
O

=0 p

-16

Fig.14: The scheme of recursive storage of reputation scores with s = 2

20

28

Therefore, we can get all the information contained in a search path by only

getting the scores stored in the node in the top s layers of the search tree. Taking the

search path from peer(13) to peer(12) as example, the scores uploaded to peer(9) and

peer(29) are also uploaded to peer(12) while the scores uploaded to peer(5) and

peer(13) are also uploaded to peer(11). So all the information contained in the search

path can be got in the peer(12) and peer(11).

The top nodes in the search path store the aggregated scores representing larger

amount of lower nodes, so it will cause greater damage if the top nodes are malicious

users and supply false aggregated results. So we still collect other aggregated values

along the search path to verify the scores supplied by the top nodes in the search path.

We will describe the scheme of verification in later sections.

28

3.2.3.3 Use Complementary Nodes in Reputation Collection

Now, search agents collect reputation scores along their search path for the
related providers. But the difference in the length of search path between the nodes in
the network will still cause the variance in the amount of information gathered.
Similar to the adjustment for reputation storage, we apply the scheme of
complementary nodes to the collection of reputation scores.

When a search agent collects reputation scores, he does not only collect the
aggregated scores along his search path for the provider, but he also send requests to
his complementary node and ask the complementary node to collect reputation scores
in the same manner and return the results gathered. By the scheme of complementary
nodes, even if a node has the shortest search path:for the provider, it can still get

information from its complementary node.

Q20 Qs O O
4 '28

|

- 16
o -8 16 _16=
QO O PO O |
2 26 4 20
|
16

16 |16 "
|

O
O O Oy 16 /

22

—
-

Fig.15: Requests to the complementary node for additional information

29

In Fig.15, peer(28) is the node with the shortest search path in the search tree for
peer(12). In the original scheme of reputation collection without complementary
nodes, peer(28) can only get information from peer(12). But if it sends requests to its
complementary node, peer(13), and ask for the scores stored along the search path of
peer(13), peer(12) will get the aggregated information from more node than the

original condition.

3.3 Verification of Collected Information

Users search for the resources and contact resource managers to get the
information of the resource providers. According to the aggregated scores listed in the
data stored in the resource manager, users can directly choose one of the resource
providers to get the wanted resources. But.if-the users do not trust the scores supplied
by the resource manager or want to.check for the truth of these supplied scores, we

need a verification scheme for users to verify their got information.

3.3.1 Properties of Chord Search tree

As we describe in the previous sections, the structure of the search tree in Chord
networks has the recursive property. Look at Fig.16 below. We can see that the
32-node search tree is divided into two 16-node trees by cutting the edge marked (-1).
And the 16-node subtree can also be divided into two 8-node trees by the edge
marked (-2). From these observations, we can conclude that: by cutting an edge

+
2k1

marked (-29), it will generate a subtree with (N/2“*%) nodes, where N is the total

number of nodes in the network.

30

\\ // S2 N 7 _\\\ :
h Qe N QN o O
n-1() \ U N n-4°
\ n-8 n-16
- 16 \\ A
T~2 -4 8 16
\\ // \\\ \I//\\ 8 8 16 16
\
N \ | O O O O O
Q2 \ n-5 Q v Q I Q 20 24
_ n3 " g M7/, n-10| n-18 n-12| M- n
> 16 \\ / 16
4 N 16 16 / 16
Y\ g \ / -8 -16
\ ' ; O O
Q O O /’ O O O O O “hos
- - - n-28
n-7 A1L| g [pag "2 s 4 M4 N2
/
16 |-16 ! 16 16
O O O O O
n-15 n-23 n-27
n-29 n-30

Fig.16: The recursive structure of the search tree in Chord

In our scheme of reputatign collection, each peer can get the aggregated scores
along the search paths of itself and its complementary node. The elements of the two
search paths are two edges marked (-16) and edges marked (-8), (-4), (-2), (-1)
respectively. According the conclusion we make, the nodes below the edges marked
(-16) must be the root of the subtree with (N/32) nodes. In the case of Fig.16, the
nodes are the roots of 1-node trees, which are leaf nodes. Similarly, the node below
the edge marked (-8) is the root of the subtree with (N/16) nodes, which is the root of

2-node tree.

3.3.2 Verification Scheme

In the scheme of recursive storage of reputations, the number of nodes which the

aggregated value stored in a peer represents depends on the size of the subtree with

31

root is the peer. That is, the score stored in the root of 16-node tree represents twice as
many nodes as the one stored in the root of 8-node tree.

12

1 (Lo Qs O O
4 28
16 A
2 8 - 16
. 8 16 16
e 7 D o o O P O O
9 3 27 6 2 26 24 20
) 16 a -16
4 8 16 16 5 16 | 46
8
O O
5 O O O O O O O Vs 16
1 25 31 23 19 30 22
-8
16 |-16 16 -16
O O O O
29| 21 17
15 14

Fig.17: The nodes in'the search-paths of peer(15) and peer(26)

In Fig.17, we show the search paths of peer(15) and its complementary node,
peer(26). And we mark the nodes along the two search paths by different colors. The
two red nodes are leaf nodes, and the blue node is the root of 2-node tree. The green
node is the root of 4-node tree while the yellow one is the root of 8-node tree.

After collecting the aggregated scores from these nodes, we can use the scores in
the two red nodes to verify each other because the weight of the two scores should be
the same. Then we use the two scores from red nodes to verify the score from blue
node because the sum of the weight of the two red nodes should be equal to the one of
the blue node. Because the sequence of the weight of these nodes can be treated as a

geometric sequence, we can always merge the scores with smaller weights to verify

32

the score with heavier weight.

The scheme of verification can not only be used by general users, it can also be
used by the search agents to verify the reputations they collect. Search agents collect
all the aggregated scores along their search paths and the search paths of their
complementary nodes. They can directly get information from the top s layers node in

the two paths and then use other collected scores to verify the information.

3.4 Other Improvement of The Mechanism

3.4.1 Temporal Change

The environments of DHT-based peer-to-peer networks are dynamic, and the
states of peers may change temporally. Suppose something happened to a peer so that
it had poor performance before. Then the reputation scores assigned to it would be
lower and the score about it listed in the resource-manager may be lower then other
providers. If the performance of this peer recovers suddenly, we hope that the scores
in the resource manager can reflect the current condition as soon as possible. So we
try to reduce the influence of the scores previously stored when computing the
aggregating scores.

We set a time period (Ex: one day). And when we aggregate the scores getting
from different time periods, we reduce the weight of the scores of the previous time

period. For example, suppose there are time periods: tn.1, t, (as Fig.18). In the end of
tr1, We aggregate the scores and get R™[t ,]. We use R*"[t ,] as the initial
value of the time interval t, to aggregate the scores received in t,. When generating

the aggregated scores of the time interval t,, we reduce the weight of R**'[t ,]:

33

RObV [tn] + f * Raggr [tn—l]
1+ f

R¥Tt,] R [t,]

N

tn-l n
Robv [tn]

R*t. 1= ,Where 0< f <1

Fig.18: The aggregation of the scores in different time interval.

34

Chapter 4 Research Result

In this chapter, we will prove the scalability of our mechanism. We will also

show some results of our research.

4.1 The Influences of Skip Distance

In our scheme of reputation storage, every peer uploads its reputation to the
upper nodes along the search path. Peers determine which peers to upload according
to the skip distance. After receiving the scores uploaded by other peers, each peer
combines them and stores an aggregated.score. The number of nodes which the
aggregated score represents actually depends-on the. location of the peer in the search
tree. In the search tree of a 2™-node Chord network, every node is the root of a subtree
with 2% nodes, where k is between 0 and m. When k=0, this node must be a leaf node.
And if k=m, the node must be the root node‘of the search tree. A peer receives the
reputations uploaded by the nodes in the subtree whose root node is it. So the numbers
of nodes which an aggregated score represents is directly proportioned to the size of
the subtree whose root is the keeper of the score. Another factor which will influence
the number of nodes which a aggregated score represents is the skip distance. In the
trees with the same size, different skip distance will cause different storage conditions
so that the number of node from which a peer will receive reputations will also be
different. Next, we discuss the relation between the skip distance and the number of

nodes from which a peer receives reputations.

35

4.2 The Relations between Search Trees and Pascal Triangle

By analyzing the searching trees of Chord, we can observe that each layer of the
Pascal triangle corresponds to a searching tree with a specific number of layers. And
the entries in one layer of the Pascal triangle give the numbers of nodes with different
depths in the corresponding searching tree. The Fig.19 below is a part of the Pascal

triangle where P,y means the d-th entry in the I-th layer of the Pascal triangle:

d
Pe | 0 1 2 3 4 5 6.
0| 1
1] 1 1
21 2 1
'3 | 1 3 ,..8uu
4| 154 6.4 1
5 | 15 5 10701055 1
6 | of O 15k 6 1

Fig.19: Pascal triangle.

As mentioned above, the I-th layer of the Pascal triangle corresponds to the
searching tree with height = | (we define the height of a tree as the maximum distance
from root to other nodes). And the d-th entry in this layer respectively gives the
number of nodes with depth = (I - d) in this searching tree. Now we take the searching
tree with 32 nodes as example. The height of the searching tree of 32-node Chord
network is 5. Fig.20 shows such tree structure. It also shows the number of nodes and
the number of leaf nodes in each layer with different depths. We write the information
in table format (Table.1). We can see that the numbers of nodes in layers with depths
=(5,4,3,2,1,0) are (1, 5, 10, 10, 5, 1) respectively, which is the same as the layer
with | = 5 in the Pascal triangle.

36

A L e e e e e e e e e e E S E LS | node

depth=]—-——————-——f£ 3 —————————— Fr———-—EFr—-—+A3--CF- 5nodes
depth=2— - === ===E)}FAI-CF-—-£F>Fr{I--CrrA3-=-=--- 10 nodes

depth =3= = O~ €F £ €F € €3 == €F EF EF — === === = —mm - 10 nodes

depth=d={=f Ff Fmm e e e e e e e e —————- 5 nodes

depth =5m{m=)m = = e e o e - 1 node

Fig.20: The number of nodes in each layer of the search tree

depth Number of nodes
5 1

5

10

10

5

1

O | RN | W |

Table.1: The number of nodesiineach layer of the search tree.

4.3 The Number of Nodes Which An Aggregated Score Represents

When skip distance = s, each peer will receive the reputations from the nodes
which are s, 2s,... layers lower than it in the search tree. In the previous sections, we
mentioned that the number of nodes which are several layers lower than root is
relational to the Pascal triangle. Therefore, when skip distance = s, the number of
nodes from which a peer will receive reputations about a certain provider can be
computed by summing some certain elements in the Pascal triangle. For example, if a
node is the root of a 32-node Chord search tree, and suppose s = 2, we can get the

value by computing the sum of the Psg, Psp, and Ps4, which is 1 + 10 + 5 = 16. From

37

this, we can know that when s =2, the root of a 32-node search tree will receive the
reputations from totally 16 nodes.

By continuously analysis, we compute the conditions under different values of
network size and skip distance. When the size of identifiers is m, the size of the
network is 2", Table.2 lists the numbers of nodes from which the roots of trees with
different sizes m receive reputations under different value of skip distance s. And
Fig.21 shows the ratio of the number of reputations a node receives to the number of

the tree whose root is the node.

m s=2 s=3 s=4 s=5 S=6 s=7 s=8
1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1
3 4 2 1 1 1 1 1
4 8 5 2 1, 1 1 1
5 16 11 6 2 1 1 1

6 32 22 16 7 2 1 1

7 64 43 36 22 8 2 1

8 128 85 72 57 29 9 2

9 256 170 136 127 85 37 10
10 512 341 256 254 211 121 46
11 1024 683 496 474 463 331 166
12 2048 1366 992 859 926 793 496
13 4096 2731 2016 1574 1730 1717 1288
14 8192 5461 4096 3004 3095 3434 3004
15 16384 | 10922 | 8256 6008 5461 6451 6436
16 32768 | 21845 | 16512 | 12393 | 9829 | 11561 | 12872
17 65536 | 43691 | 32896 | 25773 | 18565 | 20129 | 24328
18 131072 | 87382 | 65536 | 53143 | 37130 | 34885 | 43912
19 262144 | 174763 | 130816 | 107883 | 77540 | 62017 | 76552
20 524288 | 349525 | 261632 | 215766 | 164921 | 116281 | 130816

Table.2: The result of computation under different values of m and s.

38

55.00%
50.00%
45.00%
40.00%
35.00%
30.00%
25.00%
20.00%
15.00%
10.00%

5.00%

0.00%

—— =)

—— =3
s=4
s=5

—¥—5=6

number of the nodes in the network

—— =7/

—— =8

The ratio of the information stored in the root to the total

0 5 10 15 20 25 30 35 40 45
Length of hashed identifiers in Chord

Fig.21: The ratio of the reputations stored in the root of a tree to the total number of
nodes in the tree

With the increasing of the value of m, the ratio will converge to (1/s). For
example, when s=8, the ratio conaverges to (1/8) = 12.5%. That is, the root of a tree
will get reputation from (1/8) of-the nodes-in-the.network. Therefore, the more the
value of s is, the less each node has to maintain: But the number of nodes which the
aggregated score can represent also becomes less than the conditions with smaller

value of s.

4.4 The Information Can Be Collected in the Reputation Collection

As mentioned in section 3.2.3.2, the information contained in the whole search
path can be got from the nodes in the top s layers of the search path. So the next to
discuss is how much information which a user can get in the scheme of reputation
collection.

In the section 4.3, we describe the information contained in the aggregated scores

stored in a node. So we know that the root of the whole search tree will keep the score

39

containing the aggregated value of the opinions of (N/s) nodes. Taking the longest
search path as example, the size of the subtree below a node is a half of the size of the
subtree below its parent node. In Fig.32, peer(n) is the root of the 32-node tree. while
peer(n-1), peer(n-3), peer(n-7), peer(n-15), peer(n-31) are the roots of the 16-node,

8-node, 4-node, 2-node, 1-node tree respectively.

n
-2
2 @, O
n-1() N n-4 ®
16 n-8 n-16
2 4 8 4 16
. 8 16 16
® 5 Q Q O Q) Q O 7 0 O 24
n-3 n- ng N7 .6 n-10| n-18 n-12| ™ n-
-4 8'16 -d \16 16 o] N\ | -16
O
o QO O O O 0 Q. O Onazs
- N - n-28
n-7 n-11} 19 n-13 2L o5 Reld .22
16 |-16 16 - 16
Q O O O O
n-15 n-23 n-27
n-29 n-30
-16
O
n-31

Fig.22: The search tree of a 32-node Chord network

So along the search path, the top node keeps the information from (N/s) nodes,
and the second node keeps the information from (N/2s). If we collect scores from the
nodes in the top s layers of the search path, we can compute the amount of

non-repeated information collected by:

N N N N
.+ =
s 2s 4s 2575

2N 1

ZHY1-=
()=
When the size of the network is large enough, the information which we can get

along the longest search path will converge to the aggregated opinions of (g)(l—%)
S

40

of the nodes in the networks. Table.3 shows the result of the actual computation. We

. . 2 1
can see that the more the value of s is, the slowest the ratio converges to (—)(1—;) .
S

m s=2 s=3 s=4 s=5 s=6 s=7 s=8

1 100.00% |100.00% | 100.00% |100.00% |100.00% | 100.00% | 100.00%
2 75.00% | 75.00% | 75.00% | 75.00% | 75.00% | 75.00% | 75.00%
3 75.00% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00%
4 75.00% | 50.00% | 31.25% | 31.25% | 31.25% | 31.25% | 31.25%
5 75.00% | 56.25% | 31.25% | 18.75% | 18.75% | 18.75% | 18.75%
6 75.00% | 59.38% | 39.06% | 18.75% | 10.94% | 10.94% | 10.94%
7 75.00% | 59.38% | 46.88% | 25.78% | 10.94% | 6.25% | 6.25%
8 75.00% | 58.59% | 50.78% | 34.77% | 16.41% | 6.25% | 3.52%
9 75.00% | 58.20% | 50.78% | 41.99% | 24.61% | 10.16% | 3.52%
10 75.00% | 58.20% | 48.83% | 45.61% | 32.81% | 16.80% | 6.15%
11 75.00% | 58.30% | 46.88% | 45:61% | 38.96% | 24.51% | 11.13%
12 75.00% | 58.35%:-| 45.90% /| 43.24% | 42.04% | 31.59% | 17.65%
13 75.00% | 58.35% |(145.90% | 40.14%"| 42.04% | 36.74% | 24.54%
14 75.00% | 58.34% | 46.39% | 37.63%-| 39.73% | 39.32% | 30.60%
15 75.00% | 58.33% | 46.88% | 36.37% | 36.27% | 39.32% | 34.94%
16 75.00% | 58.33% | 47.12% | 36.37% | 32.81% | 37.24% | 37.11%
17 75.00% | 58.33% | 47.12% | 37.19% | 30.22% | 33.89% | 37.11%
18 75.00% | 58.33% | 47.00% | 38.27% | 28.92% | 30.12% | 35.29%
19 75.00% | 58.33% | 46.88% | 39.14% | 28.92% | 26.74% | 32.21%
20 75.00% | 58.33% | 46.81% | 39.57% | 29.89% | 24.30% | 28.53%
21 75.00% | 58.33% | 46.81% | 39.57% | 31.35% | 23.07% | 24.88%
22 75.00% | 58.33% | 46.84% | 39.29% | 32.81% | 23.07% | 21.77%
23 75.00% | 58.33% | 46.88% | 38.92% | 33.91% | 24.07% | 19.58%
24 75.00% | 58.33% | 46.89% | 38.62% | 34.45% | 25.68% | 18.48%
25 75.00% | 58.33% | 46.89% | 38.46% | 34.45% | 27.49% | 18.48%
26 75.00% | 58.33% | 46.88% | 38.46% | 34.04% | 29.12% | 19.42%
27 75.00% | 58.33% | 46.88% | 38.56% | 33.43% | 30.30% | 21.02%
28 75.00% | 58.33% | 46.87% | 38.69% | 32.81% | 30.89% | 22.96%
29 75.00% | 58.33% | 46.87% | 38.80% | 32.35% | 30.89% | 24.90%
30 75.00% | 58.33% | 46.87% | 38.85% | 32.12% | 30.41% | 26.56%

Table.3: The ratio of the collected information along the longest path to the total
number of nodes in the network

41

Fig.23 shows the graph of Table.3. We can see the convergence of the ratio under

different values of s in the figure.

110.00%
100.00% |
90.00% |
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00%

—— =)

—— =3

S=
s=5
—H— =6

—— =7/

—— 3=

The ratio of the information collected along the longest search
path to the total number of the nodes in the network

Length of hashed identifiers in Chord

Fig.23: The ratio of the collected information.along the longest path to the total

number of nodes in the network

The complementary path of the longest search path is the shortest path in the
search tree. So the information collected in the complementary path is only the
aggregated score stored in the root node which has been gathered in the original path.
That means that the complementary path does not aid reputation collection. But for
other search paths, the nodes in the top s layers of their complementary paths will help
to increase the information collected totally because the information additionally got

is not repeated in the original path. So we can conclude that the information each peer

can get in our approach represents the opinions of at least (%)(1—%) of all the

nodes in the network when the network is large enough.
The amount of information each peer can collect in our mechanism only depends

on the value of s. Therefore, we can conclude that: when the size of the network

42

doubles, the amount of information a peer can get will also double. That is, our

algorithm is a scalable algorithm.

43

Chapter 5 Conclusion and Future Works

In this chapter, we will describe the conclusions of our research. Then we will

also describe some future works of out works.

5.1 Conclusions

We present an algorithm for global trust and reputation management in
DHT-based peer-to-peer networks. It includes the maintenance of the reputation
scores and the aggregation of collected reputations. By the algorithm, each user can
store the reputation scores assigned.to a certain:peer along the searching path for this
peer. When users need some resources, they.only.need to search for the resource in the
original manner. They can get:the caollected and aggregated scores supplied by the
search agent and then make selection of resource providers directly according to the
scores. If they do not trust the scores supplied by the search agents, they can also
perform the verification scheme to verify the scores and make proper selection.

In our algorithm, peers in the DHT-based networks can get reputation scores in a
fix ratio to the number of node in the network by contacting at most [logoN | nodes,

where N is the total number of peers in the networks. In fact, when the network is
- 2N 1 .
large enough, peers can get at least the opinions of (—)(1—5) nodes in the
S

network, where s is the skip distance. The skip distance is a variable which can be

determined in advance. So the mechanism in our approach is scalable.

5.2 Future Works

44

In our work, we focus on the management of reputation scores and trust relations
in the DHT-based peer-to-peer networks. We don’t limit the using of the reputation
system. In fact, reputation systems can be multi-scoring. That is, users assign
reputations in several manners. The method of assigning reputation scores influences
the evaluation of reputation scores, and it also influences the precision of the decision
making as a matter of course. To make the selection of resource provider more
precisely, the assignments of reputations and trustworthiness are both worth
researching. Additionally, we can also improve the verification scheme in our work. A
more precise verification scheme can protect users from malicious behaviors more
significantly.

The storage of reputations is another issue worth researching in this work. How
to keep the convenience of reputation storage and collection and the distributed
property of the DHT-based peer-to-peer networks 4s an important issue for us to

continuously discuss.

45

Reference

[1] E.K.Lua, J.Crowcroft, M. Pias, R.Sharma and S. Lim. “A Survey and Comparison
of Peer-to-Peer Overlay Network Scheme”, In IEEE Communications And
Tutorial, March, 2004.

[2] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan. “Chord: A
Scalable Peer-to-peer Lookup Service for Internet Applications” In SIGCOMM’01,
ACM, August 27-31, 2001.

[3] E. Damiani, S.D.C.d. Vimercati, S. Paraboschi, P.Samarati, F. Violante. “A
Reputation-Based Approach for Choosing Reliable Resources in Peer-to-Peer
Networks” CCS’02, ACM, Washington, DC, USA. November 18-22, 2002.

[4] R. Dingledine, N. Mathewson, P. Syverson. “Reputation in P2P Anonymity
Systems”.

[5] eBay website. www.ebay.com.

[6] L. Xiong, L. Liu. “A Reputation:Based Trust Model for Peer-to-Peer eCommerce
Communities”, In Proceedings of the IEEE. International Conference on
E-Commerce (CEC’03), 2003.

[7] B.K. Alunkal, I.\eljkovic, Gv.:Laszewski, K. Amin. “Reputation-Based Grid
Resource Selection”.

[8] A. Josang, E. Gray, M. Kinateder. “Analysing Topologies of Transitive Trust”.

[9] M. Richardson, R. Agrawal, P. Domingos. “Trust Management for the Semantic
Web”.

[10] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina. “The EigenTrust Algorithm for
Reputation Management in P2P Networks”. WWW2003, Budapest, Hungary. May
20-24, 2003.

46

http://www.ebay.com/

	摘要
	Abstract
	致謝
	Contents
	List of Figures
	List of Tables
	Chapter1 Research Overview
	Chapter2 Background Knowledge
	2.1.1 The Unstructured Peer-to-Peer Networks
	2.1.2 The Structured Peer-to-Peer Networks
	2.1.3 Chord
	2.2 Trust-based Reputation Management
	2.2.1 Reputation System
	2.2.2 Trust relation and Global Trust
	2.3 Related Work
	2.3.1 EigenTrust

	Chapter 3 Concepts of Research
	3.1 Principles and Objective
	3.2 Maintenance of Reputation Scores

	Chapter 4 Research Result
	Chapter 5 Conclusion and Future Works
	Reference

