
 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

碩 士 論 文 
 

 

 

 

在以 DHT(Distributed Hashing Table)為基礎的同儕網路
中對於全域性信任及評比管理的有效演算法 

 
Scalable Algorithms for Global Trust and Reputation 
Management in DHT-based Peer-to-Peer Networks 

 

 

研 究 生：吳事修 

指導教授：邵家健  副教授 

 

 

 

 

中 華 民 國  九 十 五  年 七 月 

 



在以 DHT(Distributed Hashing Table)為基礎的同儕網路中對於全

域性信任及評比管理的有效演算法 

Scalable Algorithms for Global Trust and Reputation Management in 
DHT-based Peer-to-Peer Networks 

 
 

研 究 生：吳事修          Student：Shih-Shou Wu 

指導教授：邵家健          Advisor：John Kar-kin Zao 

 
 
 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 

 
 

A Thesis 
Submitted to Institute of Computer Science and Engineering 

College of Computer Science 
National Chiao Tung University 

in partial Fulfillment of the Requirements 
for the Degree of  

Master 
in 
 

Computer Science 
 

August 2006 
 

Hsinchu, Taiwan, Republic of China 
 
 

中華民國九十五年八月





 



摘要 

     

    在這篇論文中，我們首先探討了在以 DHT (Distributed Hashing Table) 為基

礎的同儕網路中，關於資源提供者選擇的問題。使用者總是希望能在眾多提供所

需資源的端點中選擇最適合的一個以獲得此資源。但同儕網路本身開放及匿名的

本質，卻限制了使用者做選擇時的資料依據。因此我們提出了以評比管理及信任

關係為主軸的機制，讓使用者能獲取他人的意見並對這些意見進行整合及評估，

最後做出適當的選擇。在這樣的機制中，我們調整了關於評比資料的儲存與收集

方式，讓使用者能以更快的收集到更多的資訊。我們也評估收集到資訊的可信

度，並以資訊本身的可信度來決定此資訊在決定過程中所佔的比重，希望能提高

使用者做決定的準確性。接著我們對於演算法中收集評比資料的數量做了驗證，

證明我們所提出的機制的確能達到我們的目標。最後，我們提出研究的結論以及

未來值得研究的問題。

 i



Abstract 

 

    In this thesis, we discuss the problem of the selection of resource providers in the 

DHT-based peer-to-peer networks. Users always hope to choose the most appropriate 

provider to get the wanted resources from lots of peers providing the resources. 

However, the dynamic and anonymous nature of the networks limits the information 

users can get. So we present a mechanism based on reputation management and trust 

relations. In such mechanism, users can get the opinions from other peers, and they 

aggregate and evaluate these opinions to make proper decisions. In out works, we 

adjust the storage and gathering of reputation scores to let users get more information 

by less cost. We also estimate the trustworthiness of the reputations collected and 

weight these reputation scores by their trustworthiness to improve the precision of the 

decisions of users. Then we verify the amount of reputations users can get in our 

algorithm to prove that our mechanism achieves the goal. Finally, we describe the 

conclusion and future works of our research.

 ii



致謝 

     

    首先我要感謝邵家健教授。在這兩年中，他帶領我進入這塊領域，並教導我

如何對問題進行思考、研究，讓我慢慢的成長。在研究的最後階段，他也不吝惜

的對問題提出指導與意見，導正研究的方向。今天能有這樣的結果，還是要歸功

於他。老師謝謝你。 

    另外還要感謝曾經幫助過我的李官陵教授。感謝她親切的笑容與招待，讓我

即使身處人生地不熟的地方，仍有如沐春風的感覺。 

    在我沮喪與無助的時候，身邊總有一些好朋友能夠適時的給我支持，他們總

是相信我能夠撐到最後，鼓勵我往前進。我真的感謝這些朋友，他們陪我走過最

後一段黑暗的日子，我只能說，你們永遠是我的好朋友，謝謝。 

    最後，我必須感謝我的家人，他們對我的付出與關心，我永遠也說不完。之

前研究陷入困境，他們比我還擔心；而這篇論文最後能完成，他們比我還開心。

我只想說：我做到了，不會讓你們失望的。 

 

謹於此感謝所有幫助我的人以及我最親愛的家人。 

     

 iii



Contents 

摘要.................................................................................................................................i 
Abstract ..........................................................................................................................ii 
致謝.............................................................................................................................. iii 
Contents ........................................................................................................................iv 
List of Figures ...............................................................................................................vi 
List of Tables................................................................................................................vii 
Chapter1   Research Overview ...................................................................................1 

1.1 Problem Statement ...........................................................................................1 
1.2 Project Approach..............................................................................................2 
1.3 Outline of Thesis..............................................................................................3 

Chapter2   Background Knowledge............................................................................4 
2.1 Peer-to-Peer Networks .....................................................................................4 

2.1.1 The Unstructured Peer-to-Peer Networks ..............................................4 
2.1.2 The Structured Peer-to-Peer Networks ..................................................6 
2.1.3 Chord......................................................................................................7 

2.2 Trust-based Reputation Management ..............................................................9 
2.2.1 Reputation System .................................................................................9 
2.2.2 Trust relation and Global Trust ............................................................10 

2.3 Related Work..................................................................................................12 
2.3.1 EigenTrust ............................................................................................12 

Chapter 3   Concepts of Research .............................................................................15 
3.1 Principles and Objective ................................................................................15 
3.2 Maintenance of Reputation Scores ................................................................16 

3.2.1 Storage of Reputation Scores...............................................................17 
3.2.1.1 Search Tree of Chord ..................................................................17 
3.2.1.2 Recursive Storage of Reputation Scores.....................................19 
3.2.1.3 Complementary Nodes................................................................20 
3.2.1.4 Determination of Complementary Nodes ...................................21 
3.2.1.5 Usage of Complementary Nodes ................................................23 

3.2.2 Handling of Received Reputation Scores ............................................24 
3.2.2.1 Aggregation of Reputation Scores ..............................................25 
3.2.2.2 Improvement of Aggregation Function.......................................25 

3.2.3 Gathering of Reputation Scores ...........................................................26 
3.2.3.1 Search Agents..............................................................................26 
3.2.3.2 Collecting Reputation Scores......................................................27 

 iv



3.2.3.3 Use Complementary Nodes in Reputation Collection................29 
3.3 Verification of Collected Information............................................................30 

3.3.1 Properties of Chord Search tree ...........................................................30 
3.3.2 Verification Scheme .............................................................................31 

3.4 Other Improvement of The Mechanism.........................................................33 
3.4.1 Temporal Change .................................................................................33 

Chapter 4   Research Result ......................................................................................35 
4.1 The Influences of Skip Distance ....................................................................35 
4.2 The Relations between Search Trees and Pascal Triangle .............................36 
4.3 The Number of Nodes Which An Aggregated Score Represents ..................37 
4.4 The Information Can Be Collected in the Reputation Collection..................39 

Chapter 5   Conclusion and Future Works ................................................................44 
5.1 Conclusions....................................................................................................44 
5.2 Future Works..................................................................................................44 

Reference .....................................................................................................................46 

 v



List of Figures 

Fig.1  The architecture of unstructured networks …………………………………. 5 
Fig.2  Large number of packages caused by request flooding …………………….. 5 
Fig.3  An example of successor peers in the Chord ring ………………………….. 7 
Fig.4  The finger tables stored in each node in the Chord network ……………….. 8 
Fig.5  An example of trust transitivity …………………………………………….. 11 
Fig.6  An example of parallel trust combination ………………………………….. 12 
Fig.7  Overview of the whole mechanism ………………………………………… 16 
Fig.8  The search tree of 32-node Chord network ………………………………… 18 
Fig.9  The search tree of 32-node Chord network with n = 12 …………………….19 
Fig.10  The pairs of complementary nodes and their searching paths ……………. 21 
Fig.11  One of the pairs of complementary nodes ……………………………….... 22 
Fig.12  All the pairs in the searching tree …………………………………………. 23 
Fig.13  The demonstration of the storage of the reputation of peer(15) about 

peer(12) ...………………………………………………………………… 24 
Fig.14  The scheme of recursive storage of reputation scores with s = 2 ………… 28 
Fig.15  Requests to the complementary node for additional information ………… 29 
Fig.16  The recursive structure of the search tree in Chord …………….………… 31 
Fig.17  The nodes in the search paths of peer(15) and peer(26) …………………. 32 
Fig.18  The aggregation of the scores in different time interval ………………….. 34 
Fig.19  Pascal triangle …………………………………………………………….. 36 
Fig.20  The number of nodes in each layer of the search tree …………………….. 37 
Fig.21  The ratio of the reputations stored in the root of a tree to the total number of 

nodes in the tree ………………………………………………………….. 38 
Fig.22  The search tree of a 32-node Chord network …………………………...… 40 
Fig.23  The ratio of the collected information along the longest path to the total 

number of nodes in the network ………………………………………….. 42 
 

 vi



List of Tables 

 
Table.1  The number of nodes in each layer of the search tree …………………… 37 
Table.2  The result of computation under different values of m and s ……………. 38 
Table.3  The ratio of the collected information along the longest path to the total 

number of nodes in the network ………………………………………….. 41 
 

 vii



Chapter1   Research Overview 

 

    In the recent years, the peer-to-peer networks are widely applied in many 

services, and the number of data shared through peer-to-peer networks increases 

continuously. Besides the convenience of services, users pay more and more attention 

to the security and quality of resources they receive. In this chapter, we will give a 

problem statement. Then, we introduce the outline of this thesis after a brief 

description of the approaches we use.  .  

 

1.1 Problem Statement 

 

    In a peer-to-peer network, when a user needs some resources, the most 

convenient way is to search for peers which provide the wanted resources in the 

network and get the resources from one of these found peers. The main problem is 

how to select the best provider of wanted resources in a DHT-based peer-to-peer 

network [1].  

    Because there are no central servers in the DHT-based peer-to-peer networks and 

peers always join and leave dynamically, it is difficult for users to have information of 

all the peers. Without enough information of the found peers, users have to ask for 

other peers’ recommendations to make appropriate decisions. But in a DHT-based 

environment, because each user maintains information of less other peers and the 

length of the searching path of each peer is limited, the number of peers which each 

peer may know or contact is obviously also restricted. Thus the first question to be 

solved is how to let users collect recommendations as many and efficient as possible. 

 1



    After gathering recommendations from other peers, the next work is to combine 

and evaluate the reputations contained in these recommendations. By aggregating 

these reputation scores, users can realize the previous experiences of other peers and 

make their own decisions more precisely. When handling these recommendations 

from different peers, it is necessary to take the trustworthiness of the peers providing 

the recommendations into account. The trustworthiness of a peer is determined by the 

correctness of the previous recommendations it provided. Peers may trust the same 

peer in different degrees. So the second question to be solved is how to derive a fair 

and precise result from the collected recommendations. 

 

1.2 Project Approach 
 

    In this thesis, we develop a decentralized mechanism to solve the problem 

mentioned above in DHT-based peer-to-peer networks. To resolve the first question, 

we let each user record and update the reputations assigned to other peers after 

interacting with them, such as receiving resources from them. To save the time for 

collecting the recommendations, peers store and gather the reputation scores stored 

along their own searching paths. And we also apply some scheme to improve the total 

algorithm. 

    To solve the second question, we propose an aggregation scheme to aggregate 

the reputations received. The reputation scores will be weighted by the number of 

nodes which they represent and then combined to compute a value which can really 

reflect the experiences of other peers in the network with one certain peer. Moreover, 

the weight of each score will be adjusted any time according to the difference between 

it and other scores or the average values. So the false reputation scores will have less 

weight than the true reputations and thus have less influence on the derived values.   

 2



 
 

1.3 Outline of Thesis 

     

    The remaining of this thesis is organized as follows. Chapter 2 describes the 

background techniques we use in our research and the related work of trust 

management, EigenTrust. In chapter 3, we introduce the algorithm and mechanism of 

our works. And chapter 4 verifies the results of our works. Finally, chapter 5 is the 

conclusion and future works.  

 3



Chapter2   Background Knowledge 

    In this chapter, we will shortly introduce the background technologies we use in 

our work, including peer-to-peer networks in section 2.1 and trust-based reputation 

management in section 2.2. Then we will introduce EigenTrust, the related work of 

our research, briefly in section 2.3.  

 

2.1 Peer-to-Peer Networks 

     

    In the beginning, data communication on the computer networks is under 

client-server architecture. Clients communicate with servers by authenticated 

protocols and ports. And servers have to take responsibility for managing the 

resources and the power of the other peer nodes. Over the Internet today, the network 

environments are more complex. For the convenience of data exchange, peer-to-peer 

architecture is invented. Instead of building new physical networks, peer-to-peer 

networks just modify the communication paths between users over the original 

physical networks. Contrary to the client-server architecture, there are no central 

servers in the peer-to-peer networks. All data communication is completed through 

the direct or indirect transmission between peer nodes in the network.   

    We will describe the unstructured and the structured peer-to-peer networks in the 

following sections.  

 

2.1.1 The Unstructured Peer-to-Peer Networks 

     

    The architecture of the unstructured peer-to-peer networks is based on the 

concept of neighbor nodes. Every peer node will find its neighbors when joining the 

 4



network. And when peer nodes need some wanted resources, they will send requests 

for the resources to all their neighbors. After receiving requests, the neighbor nodes 

will check the requests and help to forward the requests to their own neighbors. If a 

peer node receiving requests has the wanted resources, he will return the searching 

result to the original node so that the original node can get the resources from him. 

(Fig.1) 

 
 
 

：original node  
：resource node  
：requests forwarding  

 

Fig.1: The architecture of unstructured networks 

 

    An example of such architectures is Gnutella. Because it is a distributed network 

environment, the whole system will not easily be paralyzed when some nodes are 

broken. But in such architecture, we can not make sure of the length of the searching 

paths. And the number of request packages will be larger and larger as requests are 

continuously forwarded. (Fig.2) 

 
 
 
 
 
 
 
 
 

Fig.2: Large number of packages caused by request flooding 

 

 5



2.1.2 The Structured Peer-to-Peer Networks 

     

    The structured peer-to-peer networks always use Distributed Hashing Table 

(DHT) to help to organize the peer nodes in the network. DHT assigns every peer 

node and resource an identifier by hash functions to reduce the number of 

unnecessary packages. Instead of using flooding when forwarding request packages, it 

selects the target of request packages and effectively controls the number of request 

packages sent and the length of searching time. 

    When a peer joins the network, its identifier is chosen by hashing some of the 

peer’s information, such as IP address, port, etc. According to the identifier, the peer 

determines its neighbor nodes which may receive the requests it sends. Additionally, 

identifiers of resources are produced by hashing some attributes of the resources, such 

as name, size, etc. The identifiers of resources will be mapped to the peer nodes 

existing in the network and the meta data of the resources will be stored in the 

mapped nodes. When searching resources, users have to use the identifiers to find the 

meta data and get the actual location of the resources.  

    To search or communicate with a peer node with given identifier, users have to 

select the node which is the closest to the target node from all their neighbor nodes 

and send requests to it. Then this selected neighbor node will help to forward the 

requests by the same way. Instead of broadcasting the requests to all neighbors, every 

node in the searching path only sends requests to one of its neighbor nodes. Thus this 

mechanism solves the problem of package flooding in the second generation of 

peer-to-peer networks, and it also effective reduces the length if searching path.  

    There are many implementations of the structured peer-to-peer networks. Next 

we introduce one of the DHT-based peer-to-peer networks, Chord.  

 

 6



2.1.3 Chord 

 

    Chord [2] is one method of DHT-based peer-to-peer networks. It assigns every 

peer node and data key an m-bit identifier by hash functions. A peer’s identifier is 

chosen by hashing the peer’s IP address, while a key identifier is produced by hashing 

the data key. Peer nodes are ordered on an identifier circle with size of 2m. The 

identifier circle is termed as Chord ring. To store the data keys to the mapped peers 

according to their identifiers, Chord uses the mechanism of “successor”. For a key 

with identifier n, its successor peer is the first peer clockwise from n in the Chord ring, 

and the successor peer will be denoted by successor(n) in the following description. 

For example, in a Chord network with m = 3, there exist three peers: node(0), node(1), 

and node(3). Fig.3 shows how to store three data keys: key(1), key(2), and key(6) to 

the network. The successor of identifier 1 is node(1), so key(1) is stored in node(1). 

Similarly, the successor of identifier 2 is node(3) and the successor of identifier 6 is 

node(0). So key(2) would be located at node(3), and key(6) at node(0).  

 

 
Fig.3: An example of successor peers in the Chord ring 

 

    As m is the number of bits in the identifier space, each peer n maintains a routing 

table with up to m entries, called the finger table. The ith entry in the table at peer n 

contains the information of the peer successor( n + 2i-1 ), where 1 ≤ I ≤ m. Fig.4 shows 

a Chord network with m = 3, and there exists three peers whose identifiers are 0, 1 

and 3 respectively. The finger table at every peer n records three entries: the successor 

 7



peers of (n+1), (n+2), and (n+4). For example, the finger table at node(0) will record 

the data of successor(1), successor(2), and successor(4), which are node(1), node(3), 

node(0). Finger tables have two properties: the first, peers store information about 

only a small number of other peers in the finger tables, and know more about peers 

closely following them on the Chord ring than other peers. Second, the finger table 

does not contain enough in formation to directly determine the successor of an 

arbitrary key. For example, node(3) cannot determine successor(1), as successor(1) 

( node(1) ) is not present in the finger table at node(3). 

 
Fig.4: The finger tables stored in each node in the Chord network 

 

    When a node n does not know the successor of a key k, it can find a node whose 

identifier is closer than its own to k. Because of the first property of finger tables 

mentioned above, that node will know more about the Chord ring in the region of k 

than n does. Thus n searches its finger table for the node j whose identifier most 

immediately precedes k, and asks j for the node it knows whose identifier is closer to 

k. by repeating this process, n learns about nodes with identifiers closer and closer to k. 

Taking Fig.4 as example, node(3) wants to find successor(1). Since 1 belongs to the 

circular interval [7 , 3), node(3) checks the successor(7) in the finger table, which is 

node(0). Because 0 precedes 1, node(3) will ask node(0) to find successor(1). In turn, 

node(0) will infer from its finger table that successor(1) is node(1) itself, and return 

node(1) to node(3). 

 8



    By the mechanism of finger tables, the number of nodes that must be contacted 
to find a successor in an N-node Chord network is O(log2N).  

 

2.2 Trust-based Reputation Management 
     
    In many network services, users face each other with a form of pseudonym, such 

as ID, nickname, etc. The real status of a user is often hidden behind his pseudonym. 

Under this condition, some users start to cheat or attack the normal users maliciously. 

For example, in the network auction, both seller and buyer don’t know each other 

before. Without perfect protection schemes, there will be always disputes happened if 

someone want to cheat other users. But if users can know the credit or performance of 

the other side in advance and then select their targets of transactions, the rate of 

successful transactions will be improved. To do this, we can use reputation systems to 

record the usual performance of users and use the idea of trust to strengthen the 

functions of the reputation systems [3]. We will describe the ideas of reputation and 

trust respectively in the following sections.  

 

2.2.1 Reputation System 
 

    Reputation systems [4] let users score and record the performances of other users 

which they have interacted with. eBay [5] is a simple example. In eBay, both seller 

and buyer give each other a reputation after the transactions, and the reputation may 

be positive (+1), negative (-1), or neutral (0). The total score of a seller or a buyer is 

the sum of all his reputations received. Generally speaking, a user with higher total 

scores always has more satisfied traditions than unsatisfied ones. Users can select who 

to trade with by examining the total scores of other users.  

    Reputation systems record the subjective opinions of users, so we can not make 

 9



sure that all users assign the reputations fairly. And that will cause some problems. 

For example, user A gives other users negative reputations on purpose to reduce the 

total scores of other users and to get the chances of transactions. In another situation, 

user A can collude with some other users and get positive reputations from them. So 

the total score of A increases and thus A can get the chances of transactions.  

    Additionally, the combination and evaluation of reputation scores are also 

important. For example, there is a reputation system which only records the sum of 

positive and negative reputations but doesn’t keep track of the real condition of 

transactions. Malicious users may be honest in the traditions with lower value to 

accumulate positive reputations and wait for chances to cheat in the traditions with 

high value. In such reputation system, the total scores can’t completely represent the 

actual performance of a user. 

    In a word, in a private and dynamic peer-to-peer network, a well-designed 

reputation system will effectively protect the peer nodes from malicious cheats and 

attacks [6][7].  

 

2.2.2 Trust relation and Global Trust 
 

    Because of peer-to-peer networks and E-Commerce, the idea of trust is applied in 

the field of computer networks gradually [8]. Trust relations are composed of five 

main components: trust origin, trust purpose, trust target, measures, and time. The first 

three components describe the main concept of trust relations, and measures represent 

the magnitude of trust relations. There are several forms to express the measures of 

trust relations, such as binary (trust or not), discrete (strong trust, weak trust, weak 

distrust, strong distrust), continuous (probability), etc. Moreover, the content or the 

strength of trust relations always change as time goes by. The time component of trust 

 10



relations is used to distinguish the trust relations at different time slots. 

    Trust relations originally indicate that one peer trusts the other peer. Trust 

transitivity and parallel trust combination are the extension of the trust relations for 

usage among more than two peers. Transitivity of trust relations always occurs with 

recommendation. For example, C has helped B to repair his car, so B trusts C to be a 

good car mechanic. This is the trust relation between B and C. Now A needs a car 

mechanic and asks B who can help him. Based on B’s own experiences and the trust 

in C, B commends C to A. And A also trusts B’s recommendation. Fig.5 shows the 

condition:  

 
      ：trust 

     ：recommendation  A B C
 

Fig.5: An example of trust transitivity 
 

    In the trust relation in Fig.5, we define the trust relation between B and C as 

direct trust, and the trust relation between A and B is defined as indirect trust. The 

direct trust is based on the experience while the indirect trust is the trust in others’ 

recommendations. Trust transitivity is composed of a chain of indirect and direct trust. 

But actually, trust is not implicitly transitive, because trust is weakened or diluted 

through transitivity. Take Fig.5 as example, the trust between A and C will not be 

stronger than the one between A and B or between B and C. The trustworthiness will 

be lower and lower after several hops of recommendation.  

    While trust transitivity is the series connection of trust relations, parallel trust 

combination is the parallel connection of trust relations. It is caused by several 

commendations with the same target (as Fig.6). Unlike the weakened trust relations 

caused by trust transitivity, the parallel combination of positive (or negative) trust 

relations has the effect of strengthening the derived trust.  

 11



 

 
B 

 

 

Fig.6: An example of parallel trust combination 

 

    By trust transitivity and parallel trust combination, trust relations are expanded 

and applied in the peer-to-peer networks. In the peer-to-peer networks, every peer 

node assigns its trust values in other peers. Because trust relations are also subjective 

judgment, every peer always has different trust value in the same target. To consider 

the trustworthiness of a peer node, someone presented the idea of global trust. 

Compared to the local trust values assigned by peers, global trust is to integrate the 

local trust values of the peer nodes in the network and compute a value to reflect the 

experiences of all peers in the network with one certain peer. We can estimate the real 

trustworthiness of one peer by examining its global trust value. There have been many 

great researches on trust management in the peer-to-peer networks [9], and EigenTrust 

is one of the works about global trust. We will describe it in Section 2.3 later.  

 

2.3 Related Work  
     

    In this section, we will describe one of the related works of the background 

knowledge mentioned above, EigenTrust [10]. EigenTrust focuses on the trust 

management and implements the idea of global trust.  

 

2.3.1 EigenTrust 
 

    Peer-to-peer file sharing networks have many benefits over standard client-server 

A 

C 

     ：trust 
     ：recommendation D

 12



approaches to data distribution, including convenience and efficiency. However, the 

open and anonymous nature of these networks leads to a lack of accountability for the 

content a peer puts on the network and opens the door to abuses of these networks by 

malicious peers. Therefore, it is important to ensure that peers obtain reliable 

information on the quality of resources they are receiving.  

    In the concept of EigenTrust, attempting to identify malicious peers that provide 

inauthentic files is superior to attempting to identify these files themselves because 

malicious users can easily generate a virtually unlimited number of inauthentic files if 

they are not banned from joining the network. EigenTrust assigns each peer a unique 

global trust value that reflects the experiences of all peers in the network with it. 

According to the global trust values, users can identify malicious peers more easily. 

Following description is about the computation of global trust values in the 

EigenTrust. 

    First, peers record the satisfaction with each other after exchanging files. The 

simplest method is like the reputation system of eBay: each peer i stores the number 

of satisfactory transactions it has had with peer j, sat(i , j) and the number of 

unsatisfactory transactions it has had with peer j, unsat(i , j). Then we define sij as the 

local trust value of peer i with peer j:  

                        sij = sat(i , j) − unsat(i , j)                      (1) 

    Having the local trust values between peers, we can compute the global trust 

values by aggregating the local trust values assigned to one peer by other peers. To 

aggregate local trust values, it is necessary to normalize them. So cij is defined as 

normalized local trust value:  

                          
max( ,0)

max( ,0)
ij

ij
ij

j

s
c

s
=
∑

                        (2) 

    In EigenTrust, the way to aggregate the normalized local trust values is for peer i 

 13



to ask its acquaintances about their opinions about other peers and weight these 

opinions by the local trust values peer i places in them:  

                              ik ij jk
j

t c= c∑                            (3) 

where tik represents the trust that peer i places in peer k based on asking his friends. 

    We can write the formula (3) in matrix notation: we define C to be the matrix [cij] 

and  to be vector containing the values tit ik, then:  

            , that is 

1 11 21 1

2

1 2

1 2

i n

i

ik k k nk

in n n nn in

t c c c c
c

t c c c

t c c c c

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1i

i
T

it C c=           (4) 

    The trust values derived from formula (4) still reflect only the experiences of 

peer i and his acquaintances. To get a wider view, peer i may ask his friends’ friends 

and get . Continuing in this manner, peer i will get  and 

have a complete view of the network when n is large enough. With the increasing of n, 

the trust vector  will converge to the same vector for every peer i. Namely, it will 

converge to the left principal eigenvector of C. In other words, 

2( )T
it C c= i ( )T n

i it C c=

it

t  is a global trust 

vector in this model. Its elements, tj, quantify how much trust the system places peer j 

as a whole. 

 14



Chapter 3   Concepts of Research  

 

3.1 Principles and Objective 

     

    The design of the algorithm in our research is mainly based on the following 

objectives and principles:  

1. Users record their opinions about the performance of other users as the 

local reputation scores ordinarily. For the convenience of reputation 

collection, we let users additionally store their local reputation scores to 

other peers in the network. 

2. Users can get the information of the resource providers when they search 

for the wanted resources. To do this, we appoint some peers to be the 

search agents to collect the reputations when they are free.  

3. The lengths of the search paths of the nodes in DHT-based peer-to-peer 

networks are different. To average the unbalanced condition, we design the 

scheme of “complementary nodes” in the storage and collection of 

reputation scores. 

4. Because the environment is dynamic, we have to male sure of the time 

validity of the information users can get.  

    Fig.7 shows the overview of our approaches. 

 15



 

Fig.7: Overview of the whole mechanism 

 

    Therefore, we will introduce our algorithm in the following sections. In section 

3.2, we describe the maintenance of reputation scores, including the storage and the 

gathering. Then we will describe the verification of collected information in section 

3.3 and discuss some other improvements we do in section 3.4. 

 

3.2 Maintenance of Reputation Scores 
 
    From the principles listed in section 3.1, we can know that the maintenance of 

reputation scores is important to the convenience of reputation collection. How to get 

the most information by lowest cost is the question which we want to solve. Thus we 

divide it into two parts and then solve them: 

 16



1. To reduce the cost of gathering reputations, we let users collect reputations 

along their own search paths for the target.  

2. To make the whole mechanism scalable, we adjust the storage and 

gathering of reputation scores. 

    Next, we will describe the storage and gathering of reputation scores 

respectively.  

 

3.2.1 Storage of Reputation Scores 
 

    Originally, every peer stores the reputation scores it assigns to other peers in 

itself. And in a DHT-based peer-to-peer network, the length of the search paths from 

peers to a certain destination peer would be equal to or less than ⎡log2N⎤, where N 

represents the total number of peers in the network. When a user wants to collect 

reputation scores along its own search path, it will contact at most ⎡log2N⎤ other peers 

and thus collect at most ⎡log2N⎤ reputation scores. When N becomes larger, the value 

of ⎡log2N⎤ will be much smaller than the one of N. To make the mechanism scalable, 

we adjust the arrangement of the storage of reputation scores and let peers 

additionally store their reputations in other peers along the search path to improve the 

number of reputation scores which users can collect along their search path.  

    Our approach is applicable to DHT-based peer-to-peer architecture in general, so 

we will take Chord as example to introduce the approaches of our work in the 

following sections.  

 

3.2.1.1 Search Tree of Chord 
 

    In Chord, if we aggregate the search paths for a certain peer of all other peers, we 

 17



can build a tree whose root node is the destination peer of these search path. The 

figure below (Fig.8) shows the search tree of a 32-node Chord network. The root node 

of this search tree is peer(n), where n is a variable (n = 0, 1, 2, ……, 31).  

n

- 1 - 2 - 4 - 16 - 8 

n-2

 

Fig.8: The search tree of 32-node Chord network  

 

    These numbers marked in the search tree in Fig.8, such as (n-27), (n-12), etc, 

actually represent the value of these number modulo 32. The notation of (mod32) is 

omitted to be convenient to be showed in the figure. For example, suppose n=12, then 

(n-4) represents 8, and (n-29) represents 15. Fig.9 shows the search tree with n=12: 

n-4 
n-8 n-16

n-6 n-10 n-18 n-20 n-24 

n-14

n-1 

n-22
n-26

n-28 

n-30

- 4

- 8

- 8

- 16 - 16 - 8- 16

- 16 
- 16- 16

- 16

n-12n-17n-9

n-25

n-3 

n-7 

n-5 

n-21
n-13 

n-29 

n-31 

n-19 n-11 

n-27n-23 n-15 

- 2 - 4 - 8 
- 16

- 16- 4 - 8 - 16 - 16
- 8 

- 16 - 16 - 16 

- 16 

 18



12

- 1 - 2 - 4 - 16 - 8 

10 8 11 
4 28

 

Fig.9: The search tree of 32-node Chord network with n = 12 

 

3.2.1.2 Recursive Storage of Reputation Scores 
     

    Form Fig.9, we can found that the structure of the search tree in Chord has a 

recursive property. The tree structure can be divided into two subtrees with equal size 

by the edge marked (-1). We can also say that the search tree of 32-node Chord 

network is generated by combining two 16-node search trees with an edge. Similarly, 

we can also generate a 64-node search tree by combining two 32-node search trees. 

Therefore, to make the scheme of reputation collection scalable, the scheme of 

reputation storage has to adapt to the recursive property. 

    In the recursive storage of reputation scores, each peer uploads its own 

reputation score about one certain provider to the upper nodes along its search path 

for the provider. We design a variable called “skip distance” which determines which 

nodes a peer has to upload its reputation. We will use s to denote skip distance in the 

6 2 26 24 20 

30 22
18 16

14

- 4

- 8

- 8

- 16 - 16 - 8- 16

- 16 
- 16- 16

- 16

0
273

19

9 

5 

7 

2331 

15 

13 

251 

17 21 29 

- 2 - 4 - 8 
- 16

- 16- 4 - 8 - 16 - 16
- 8 

- 8 - 16 - 16 - 16 

- 16 

 19



following description. For a provider, each peer uploads its reputation about this 

provider to the nodes which are s, 2s, … layers higher than it along the search path for 

the provider. For example, s=1 means that each peer uploads its reputation to all the 

nodes along its search path for the provider. The influence of s will be described in 

Chapter 4 later. 

 

3.2.1.3 Complementary Nodes 
 
    Each peer uploads its reputations to the upper nodes along its search path. So the 

nodes with shorter search paths will upload reputations to fewer nodes. That means 

that there will be fewer copies of the reputations assigned by the nodes with shorter 

search paths in the networks. To average the unbalance condition, we design the 

scheme of “complementary nodes”.  

    In the searching tree of Chord networks, the length of the longest searching path 

is ⎡log2N⎤ where N is the total number of peers in the network while the length of the 

shortest one is 1. However, we still can find something interesting in such unbalanced 

tree structure. In the searching tree in Fig.10, we can divide the searching tree into 

two subtrees with the same size by the red dotted line. And we can find that: if we 

connect the searching paths of the two leaf nodes which are symmetrical to the dotted 

line, the number of internal nodes between the two nodes along the connected path 

will be ⎡log2N⎤. For example, we connect the searching tree of the first leaf node in 

the left of the line (peer(27)) and the one of the first leaf node in the right of the line 

(peer(14)), which are the two red curves in Fig.10 . Then there are ⎡log232⎤ = 5 

internal nodes between the two nodes: peer(11), peer(12), peer(10), peer(6), and 

peer(30). Similarly, there are also 5 internal nodes: peer(1), peer(9), peer(11), 

peer(12), and peer(8), between the sixth nodes in the left and the right of the dotted 

 20



line (peer(17) and peer(24)), which are the two blue curves in Fig.10. 

12

 

Fig.10: The pairs of complementary nodes and their searching paths. 

 

    By the observation above, we can know that: for every leaf node, there exists one 

another leaf node so that there would be ⎡log2N⎤ internal nodes between the two nodes 

along their connected searching path. We call that “complementary nodes”. That is, 

both the nodes are the complementary node of each other. 

 

3.2.1.4 Determination of Complementary Nodes 
 

    We introduce the scheme of complementary nodes in the previous section and 

describe that we divide the searching tree into two parts to determine the 

complementary nodes. But actually we need a faster way to let a leaf node know 

which node is its complementary node. And leaf nodes have to determine the 

complementary nodes by the information they have had instead of determining that 

10 8 
4 28

6 2 26 24 20 

30

11 

07 
9 273

18 165 
22231 25 31 19

21 17 
1415 

13 

29 

 21



after constructing the whole searching tree. 

    When two leaf nodes are complementary nodes of each other, the sum of the 

length of their searching paths must be fixed. And there is also something interesting 

about the components of their searching paths. Taking the peer(15) and peer(26) in 

Fig.11 as example, the searching path of peer(15) consists of four edges: (-16), (-8), 

(-4), and (-1). And the searching path of peer(26) consists of two edges: (-16) and (-2). 

Totally, the two searching paths have two (-16) edges and one (-8), (-4), (-2) and (-1) 

edges. There are the same conditions in other pairs of complementary nodes. 

12

- 1 - 2 - 4

 

Fig.11: One of the pairs of complementary nodes. 

 

    Thus we can conclude that: when two nodes are complementary nodes, the sum 

of the distance between the two nodes and the root node must be - ( 16 * 2 + 8 + 4 + 2 

+ 1 ) = -47. If a leaf node wants to determine its complementary node, it only need to 

compute the distance from it to the root node first. Then it can know the distance from 

its complementary node to the root and know the identifier of its complementary node. 

10 8 
4 28

6 2 26 24 20 

30 22
18 16

14

- 8 - 16 

- 4

- 8

- 8

- 16 - 16 - 8- 16

- 16 
- 16- 16

- 16

0
27

11 

3

19

9 

5 

7 

2331 

15 

13 

251 

17 21 29 

- 4 - 8 
- 16

- 16- 16- 8 - 16

- 8 

- 16 

- 2 

- 4 

- 8 
- 16 - 16

- 16 

 22



For example, peer(16) wants to determine the complementary node when the 

destination is peer(12). It computes the distance to the root to be (-28) and get the 

distance from its complementary node to the root to be (-47) – (-28) = (-19). So it can 

know that its complementary node is peer(25). 

    Because each internal node in the search tree is connected with a unique leaf 

node by an edge marked (-16), we can easily pair all the leaf nodes and the internal 

nodes (as Fig.12). Therefore, the complementary node of an internal node can be 

determined by the lead node which is in the same pair as it. 

n

- 1 - 2 - 4 - 16 - 8 

n-2

 Fig.12: All the pairs in the searching tree. 

 

3.2.1.5 Usage of Complementary Nodes 
 

    When a user uploads reputation scores, on one hand it uploads its reputation to 

the upper nodes along its own searching path, and on the other hand it can send the 

reputation to its complementary node and ask the complementary node to upload the 

reputation score to the nodes along the searching path of the complementary node. We 

n-4 
n-8 n-16

n-6 n-10 n-18 n-20 n-24 

n-14

n-1 

n-22
n-26

n-28 

n-30

- 4

- 8

- 8

- 16 - 16 - 8- 16

- 16 
- 16- 16

- 16

n-12n-17n-9

n-25

n-3 

n-7 

n-5 

n-21
n-13 

n-29 

n-31 

n-19 n-11 

n-27n-23 n-15 

- 2 - 4 - 8 
- 16

- 16- 4 - 8 - 16 - 16
- 8 

- 8 - 16 - 16 - 16 

- 16 

 23



take Fig.11 as example: suppose skip distance s =1, peer(15) uploads the reputation 

scores about peer(12) to the upper nodes along its own searching path: peer(31), 

peer(7), peer(11), and peer(12). And it also sends the reputation scores to its 

complementary node, peer(26). So peer(26) helps to upload the reputation score the 

nodes along the searching path: peer(10) and peer(12). Totally, there will be 7 nodes 

storing the reputations about peer(12) of peer(15): peer(15), peer(31), peer(7), 

peer(11), peer(12), peer(10), and peer(26). Fig.13 shows where peer(15) uploads its 

reputation scores.  

12

10 8 
4 28

6 2 26 24 20 

30 22
18 16

14

- 1
- 4 - 8 - 16 

- 4

- 8

- 8

- 16 - 16 - 8- 16

- 16 
- 16- 16

- 16

0

- 2

27

11 

3

19

9 

5 

7 

2331 

15 

13 

251 

17 21 29 

- 2 - 4 - 8 
- 16

6- 16- 8 - 16

- 8 
- 4 

- 16 - 16- 16 - 8 

- 16 

- 1

 
Fig.13: The demonstration of the storage of the reputation of peer(15) about peer(12) 

 

eceived Reputation Scores 

   After receiving the reputations uploaded by the lower nodes in the search tree, 

3.2.2 Handling of R
 

 

how to maintain these reputations is the next question to solve. We can store all the 

received scores separately. But when the size of the network gets larger and larger, the 

 24



amount of reputations a peer stores may be very great. For example, when skip 

distance s=1, the root node of the search tree will store the reputations uploaded by all 

the lower nodes in the network. The storage of these received reputations will cause a 

heavy load. So we let peers aggregate received scores and only store the aggregated 

scores. 

 

3.2.2.1 Aggregation of Reputation Scores 
 

    Each peer stores an aggregated score about a provider. When it receives the 

reputation scores uploaded from other peers, he combines the received scores with the 

value which he originally stores to generate a new aggregated score. 

    When combining the received scores and the stored value, the weights of these 

values depend on the number of nodes represented by these values. For example, 

suppose there are two scores to be combined. One represents the aggregated scores of 

four nodes and the other represents the aggregated scores of eight nodes. The more 

nodes a score represents, the more weight we assign to it. So the weight of the score 

representing eight nodes will be twice as heavy as the one of the score representing 

four nodes. 

    Suppose a peer i stores the aggregated scores of n nodes, r . When it receives 

the reputation score uploaded from another peer j, rj, it will aggregate the reputation 

with its stored value and get the new aggregated value, r′ : 

* ( 1) jr n r
r

n
− +

′ =  

 

3.2.2.2 Improvement of Aggregation Function 
 

    The original aggregation scheme operates aggregation when each score is 

 25



received. But if a malicious user continuously uploads reputation score to a peer, it 

will cause a great computation load to the receiving peer. And the aggregated score 

stored in this peer will be influenced by the redundantly uploaded scores.  

    To improve this condition, we set a time interval (ex: 1 hour) for receiving 

reputations. Peers receive and buffer the reputations received in the same time interval. 

In the end of this time interval, peers aggregate all the scores buffered with the 

originally stored value to generate the new aggregated score. For example, in the time 

interval t, peer i totally receives k reputations: rj1, rj2, …, rjk. In the end of interval t, 

peer i aggregates the k reputation scores with the previously stored value 1tr− :  

1 1 2* ( ) ...t j j
t

n k r r rr
r

n
− − + + + +

= jk  

    If the scores uploaded from some peers are much different from the scores of 

other peers or the average scores, we can also reduce the weight of these scores in the 

aggregation function. For example,  

 

3.2.3 Gathering of Reputation Scores 
 

    In DHT-based peer-to-peer networks, users search for the wanted resources to get 

the information about resource providers. To avoid additional cost, we hope to let 

users get the information necessary for selection making when they search for the 

resources. So we design the scheme of “search agent” to perform the collection of 

reputation scores to reduce the cost of the original users. 

 

3.2.3.1 Search Agents 
 

    In the DHT-based networks like Chord, the identifier of the resource is generated 

by hashing the key of the resource. Then the meta data of the resource will be stored 

 26



in the peer which the resource identifier maps to. Because the peer whose identifier is 

equal to the one of the resource manages the meta data of the resource, we call this 

peer “resource manager” of the resource. Ordinarily, resource managers own the 

information of the providers of the resources, such as the IDs and the IP addresses of 

the resource providers. If a user needs the resources, he has to search for the resource 

manager to get the information and know which peers provide the resources.  

    Since all the peers which need the resources have to contact the resource 

managers, we appoint the resource managers to be the search agents. Search agents 

are responsible for collecting reputation scores about all the providers of the resources 

when they are free. After collecting the reputations, search agents combine the 

gathered scores to generate aggregated values and announce these values in the meta 

data stored in the resource managers. When users search for the wanted resources and 

reach the resource manager, they can get the information of the resource providers 

and also get the aggregated scores of the resource providers. Then users can make 

selection of resource providers according to these aggregated scores. 

 

3.2.3.2 Collecting Reputation Scores 
 

    In our scheme of reputation storage, each peer uploads its reputation scores about 

the provider to the upper nodes along the search path for the provider. Therefore, 

when search agents collect reputation scores, we also let they gather reputation scores 

along their own search paths for the providers.  

    Because each peer uploads its own reputation to the upper nodes along the search 

path according to the skip distance s, we can know that if a score is uploaded to a peer 

n, the score must be also sent to the node which is s layers higher than peer n along 

the path. We take Fig.14 as example, suppose s =2, then the scores uploaded to 

 27



peer(9), peer(7), peer(3), and peer(27) must be also uploaded to peer(12). 

12

10 8 
4 28

6 2 26 24 20 

30 22
18 16

14

- 1
- 4 - 8 - 16 

- 4

- 8

- 8

- 16 - 16 - 8- 16

- 16 
- 16- 16

- 16

0

- 2

27

11 

3

19

9 

5 

7 

2331 

15 

13 

251 

17 21 29 

- 2 - 4 - 8
- 16

6- 16- 8 - 16

- 8 
- 4 

- 16 - 16- 16 
- 8 

- 16 

 

- 1

 
Fig.14: The scheme of recursive storage of reputation scores with s = 2 

    Therefore, we can get all the inform

ger 

 

ation contained in a search path by only 

getting the scores stored in the node in the top s layers of the search tree. Taking the 

search path from peer(13) to peer(12) as example, the scores uploaded to peer(9) and 

peer(29) are also uploaded to peer(12) while the scores uploaded to peer(5) and 

peer(13) are also uploaded to peer(11). So all the information contained in the search 

path can be got in the peer(12) and peer(11).  

    The top nodes in the search path store the aggregated scores representing lar

amount of lower nodes, so it will cause greater damage if the top nodes are malicious 

users and supply false aggregated results. So we still collect other aggregated values 

along the search path to verify the scores supplied by the top nodes in the search path. 

We will describe the scheme of verification in later sections.   

 

 28



 

3.2.3.3 Use Complementary Nodes in Reputation Collection 

   Now, search agents collect reputation scores along their search path for the 

es not only collect the 

g.15: Requests to the complementary node for additional information 

 

 

related providers. But the difference in the length of search path between the nodes in 

the network will still cause the variance in the amount of information gathered. 

Similar to the adjustment for reputation storage, we apply the scheme of 

complementary nodes to the collection of reputation scores.  

    When a search agent collects reputation scores, he do

aggregated scores along his search path for the provider, but he also send requests to 

his complementary node and ask the complementary node to collect reputation scores 

in the same manner and return the results gathered. By the scheme of complementary 

nodes, even if a node has the shortest search path for the provider, it can still get 

information from its complementary node. 

12

10 8 
4 28

2

30
18 16

14

- 1
- 4 - 8 - 16 

- 4

- 8

- 8

- 16 - 16 - 8- 16

- 16 
- 16- 16

- 16

0

- 2

27

11 

39 

5 

7 

 
Fi

6 26 24 20 

2223 1931

13 

1 

21 29

- 2 - 4 - 8 
- 16

- 16- 16- 8 - 16

- 8 
- 4 

- 16 - 16- 16 
- 8 

- 16 

25  

17 
15 

 

 29



 

   In Fig.15, peer(28) is the node with the shortest search path in the search tree for 

.3 Verification of Collected Information 

   Users search for the resources and contact resource managers to get the 

.3.1 Properties of Chord Search tree 

   As we describe in the previous sections, the structure of the search tree in Chord 

 

peer(12). In the original scheme of reputation collection without complementary 

nodes, peer(28) can only get information from peer(12). But if it sends requests to its 

complementary node, peer(13), and ask for the scores stored along the search path of 

peer(13), peer(12) will get the aggregated information from more node than the 

original condition. 

 

3

 

 

information of the resource providers. According to the aggregated scores listed in the 

data stored in the resource manager, users can directly choose one of the resource 

providers to get the wanted resources. But if the users do not trust the scores supplied 

by the resource manager or want to check for the truth of these supplied scores, we 

need a verification scheme for users to verify their got information. 

 

3
 

 

networks has the recursive property. Look at Fig.16 below. We can see that the 

32-node search tree is divided into two 16-node trees by cutting the edge marked (-1). 

And the 16-node subtree can also be divided into two 8-node trees by the edge 

marked (-2). From these observations, we can conclude that: by cutting an edge 

marked (-2k), it will generate a subtree with (N/2k+1) nodes, where N is the total 

number of nodes in the network.   

 30



n

n-2
n-4 

n-10

n-14 n
n-26

n-3

- 1
- 4 - 8 - 16 

- 4

- 8

- 16 - 16 - 8- 16

- 16 
- 16- 16

- 16

n-12

- 2

n-17

n-1 

n-9n-3 

n-7 

 

1

 
Fig.16: The recursive structure of the search tree in Chord 

     

    In our schem  

plementary node. The elements of the two 

Scheme 

torage of reputations, the number of nodes which the 

ggregated value stored in a peer represents depends on the size of the subtree with 

e of reputation collection, each peer can get the aggregated scores

along the search paths of itself and its com

search paths are two edges marked (-16) and edges marked (-8), (-4), (-2), (-1) 

respectively. According the conclusion we make, the nodes below the edges marked 

(-16) must be the root of the subtree with (N/32) nodes. In the case of Fig.16, the 

nodes are the roots of 1-node trees, which are leaf nodes. Similarly, the node below 

the edge marked (-8) is the root of the subtree with (N/16) nodes, which is the root of 

2-node tree. 

 

3.3.2 Verification 
 

    In the scheme of recursive s

a

n-8 n-16

n-6 n-18 n-20 n-24 

-22 n-28 

0

- 8

n-5

n-2
n-25n

n-31 

n-11 

n-23 n-15 

- 2 - 4 - 8 
- 16

- 16- 16- 8 - 16

- 8 
- 4 

- 16 - 16- 16 

- 16 

n-19 -13 

n-29 
n-27

 31



root is the peer. That is, the score stored in the root of 16-node tree represents twice as 

many nodes as the one stored in the root of 8-node tree.  

12

10 8 
28

6 2 26

3
16

14

- 1
- 4 - 8 - 16 

- 4

- 8

-

6 - 16 - 8- 16

- 16
- 1- 16

- 16

- 2

27

11 

39 

5 

 

 

Fig.17: The nodes in the search paths of peer(15) and peer(26) 

 

   In Fig.17, we show the search paths of peer(15) and its complementary node, 

res in 

 

peer(26). And we mark the nodes along the two search paths by different colors. The 

two red nodes are leaf nodes, and the blue node is the root of 2-node tree. The green 

node is the root of 4-node tree while the yellow one is the root of 8-node tree.  

    After collecting the aggregated scores from these nodes, we can use the sco

the two red nodes to verify each other because the weight of the two scores should be 

the same. Then we use the two scores from red nodes to verify the score from blue 

node because the sum of the weight of the two red nodes should be equal to the one of 

the blue node. Because the sequence of the weight of these nodes can be treated as a 

geometric sequence, we can always merge the scores with smaller weights to verify 

4 

24 20 

0 22
18

 8

- 1

 
6

07

192331 

15 

1

251 

229 

- 4 - 8 
- 16

- 16- 16- 16

- 8 

- 16- 1- 16

- 8 

3 

17 1 

 6 

- 16 

 

- 4 

- 2 

- 8

 32



the score with heavier weight.  

    The scheme of verification can not only be used by general users, it can also be 

.4 Other Improvement of The Mechanism 

.4.1 Temporal Change 

   The environments of DHT-based peer-to-peer networks are dynamic, and the 

riod (Ex: one day). And when we aggregate the scores getting 

used by the search agents to verify the reputations they collect. Search agents collect 

all the aggregated scores along their search paths and the search paths of their 

complementary nodes. They can directly get information from the top s layers node in 

the two paths and then use other collected scores to verify the information. 

 

3

 

3
 

 

states of peers may change temporally. Suppose something happened to a peer so that 

it had poor performance before. Then the reputation scores assigned to it would be 

lower and the score about it listed in the resource manager may be lower then other 

providers. If the performance of this peer recovers suddenly, we hope that the scores 

in the resource manager can reflect the current condition as soon as possible. So we 

try to reduce the influence of the scores previously stored when computing the 

aggregating scores.  

    We set a time pe

from different time periods, we reduce the weight of the scores of the previous time 

period. For example, suppose there are time periods: tn-1, tn (as Fig.18). In the end of 

tn-1, we aggregate the scores and get 1[ ]aggr
nR t − . We use 1[ ]aggr

nR t −  as the initial 

value of the time interval tn to aggregate the scores received en generating 

the aggregated scores of the time interval t

 in tn . Wh

n, we reduce the weight of 1[ ]aggr
nR t − :  

 33



1[ ] * [ ][ ]
1

aggr n n
n

obv aggrR t f R tR t
f

−+
=

+
, where 0 1f≤ <  

1[ ]aggr
nR t − [aggr ]nR t

tn-1 tn
 

The aggregation of the scores in different tim

[ ]obv
nR t

Fig.18: e interval. 

 34



Chapter 4   Research Result  

    In this chapter, we will prove the scalability of our mechanism. We will also 

show some results of our research. 

 

4.1 The Influences of Skip Distance 
 

    In our scheme of reputation storage, every peer uploads its reputation to the 

upper nodes along the search path. Peers determine which peers to upload according 

to the skip distance. After receiving the scores uploaded by other peers, each peer 

combines them and stores an aggregated score. The number of nodes which the 

aggregated score represents actually depends on the location of the peer in the search 

tree. In the search tree of a 2m-node Chord network, every node is the root of a subtree 

with 2k nodes, where k is between 0 and m. When k=0, this node must be a leaf node. 

And if k=m, the node must be the root node of the search tree. A peer receives the 

reputations uploaded by the nodes in the subtree whose root node is it. So the numbers 

of nodes which an aggregated score represents is directly proportioned to the size of 

the subtree whose root is the keeper of the score. Another factor which will influence 

the number of nodes which a aggregated score represents is the skip distance. In the 

trees with the same size, different skip distance will cause different storage conditions 

so that the number of node from which a peer will receive reputations will also be 

different. Next, we discuss the relation between the skip distance and the number of 

nodes from which a peer receives reputations.  

 

 

 35



4.2 The Relations between Search Trees and Pascal Triangle 
 

    By analyzing the searching trees of Chord, we can observe that each layer of the 

Pascal triangle corresponds to a searching tree with a specific number of layers. And 

the entries in one layer of the Pascal triangle give the numbers of nodes with different 

depths in the corresponding searching tree. The Fig.19 below is a part of the Pascal 

triangle where Pld means the d-th entry in the l-th layer of the Pascal triangle:  

 
                   d 
  Pld    0   1   2   3   4   5   6 …… 
   0    1 
   1    1   1 
  2    1   2   1 
   3    1   3   3   1 
   4    1   4   6   4   1 
   5    1   5  10  10   5   1 
   6    1   6  15  20  15   6   1 

......

l
...... 

 
Fig.19: Pa

 

    As mentioned above, the l-th laye

searching tree with height = l (we define 

from root to other nodes). And the d-t

number of nodes with depth = (l - d) in th

tree with 32 nodes as example. The hei

network is 5. Fig.20 shows such tree stru

the number of leaf nodes in each layer wi

in table format (Table.1). We can see tha

= (5, 4, 3, 2, 1, 0) are (1, 5, 10, 10, 5, 1)

with l = 5 in the Pascal triangle.  

 

 

scal triangle. 

r of the Pascal triangle corresponds to the 

the height of a tree as the maximum distance 

h entry in this layer respectively gives the 

is searching tree. Now we take the searching 

ght of the searching tree of 32-node Chord 

cture. It also shows the number of nodes and 

th different depths. We write the information 

t the numbers of nodes in layers with depths 

 respectively, which is the same as the layer 

36



 

Fig.20: The number of nodes in each layer of the search tree 

 
depth Number of nodes 

5 1 

4 5 

3 10 

2 10 

1 5 

0 1 

Table.1: The number of nodes in each layer of the search tree. 

 

 

4.3 The Number of Nodes Which An Aggregated Score Represents 

 

    When skip distance = s, each peer will receive the reputations from the nodes 

which are s, 2s,… layers lower than it in the search tree. In the previous sections, we 

mentioned that the number of nodes which are several layers lower than root is 

relational to the Pascal triangle. Therefore, when skip distance = s, the number of 

nodes from which a peer will receive reputations about a certain provider can be 

computed by summing some certain elements in the Pascal triangle. For example, if a 

node is the root of a 32-node Chord search tree, and suppose s = 2, we can get the 

value by computing the sum of the P50, P52, and P54, which is 1 + 10 + 5 = 16. From 

 37



this, we can know that when s =2, the root of a 32-node search tree will receive the 

reputations from totally 16 nodes. 

    By continuously analysis, we compute the conditions under different values of 

network size and skip distance. When the size of identifiers is m, the size of the 

network is 2m. Table.2 lists the numbers of nodes from which the roots of trees with 

different sizes m receive reputations under different value of skip distance s. And 

Fig.21 shows the ratio of the number of reputations a node receives to the number of 

the tree whose root is the node. 

 

m s=2 s=3 s=4 s=5 s=6 s=7 s=8 
1 1 1 1 1 1 1 1 

2 2 1 1 1 1 1 1 

3 4 2 1 1 1 1 1 

4 8 5 2 1 1 1 1 

5 16 11 6 2 1 1 1 

6 32 22 16 7 2 1 1 

7 64 43 36 22 8 2 1 

8 128 85 72 57 29 9 2 

9 256 170 136 127 85 37 10 

10 512 341 256 254 211 121 46 

11 1024 683 496 474 463 331 166 

12 2048 1366 992 859 926 793 496 

13 4096 2731 2016 1574 1730 1717 1288 

14 8192 5461 4096 3004 3095 3434 3004 

15 16384 10922 8256 6008 5461 6451 6436 

16 32768 21845 16512 12393 9829 11561 12872 

17 65536 43691 32896 25773 18565 20129 24328 

18 131072 87382 65536 53143 37130 34885 43912 

19 262144 174763 130816 107883 77540 62017 76552 

20 524288 349525 261632 215766 164921 116281 130816 

Table.2: The result of computation under different values of m and s. 

 38



0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

55.00%

0 5 10 15 20 25 30 35 40 45

Length of hashed identifiers in Chord

T
he

 r
at

io
 o

f 
th

e 
in

fo
rm

at
io

n 
st

or
ed

 i
n 

th
e 

ro
ot

 t
o 

th
e 

to
ta

l

nu
m

be
r 

of
 t

he
 n

od
es

 i
n 

th
e 

ne
tw

or
k s=2

s=3

s=4

s=5

s=6

s=7

s=8

Fig.21: The ratio of the reputations stored in the root of a tree to the total number of 
nodes in the tree 

 

    With the increasing of the value of m, the ratio will converge to (1/s). For 

example, when s=8, the ratio converges to (1/8) = 12.5%. That is, the root of a tree 

will get reputation from (1/8) of the nodes in the network. Therefore, the more the 

value of s is, the less each node has to maintain. But the number of nodes which the 

aggregated score can represent also becomes less than the conditions with smaller 

value of s.  

 

4.4 The Information Can Be Collected in the Reputation Collection 

 

    As mentioned in section 3.2.3.2, the information contained in the whole search 

path can be got from the nodes in the top s layers of the search path. So the next to 

discuss is how much information which a user can get in the scheme of reputation 

collection. 

    In the section 4.3, we describe the information contained in the aggregated scores 

stored in a node. So we know that the root of the whole search tree will keep the score 

 39



containing the aggregated value of the opinions of (N/s) nodes. Taking the longest 

search path as example, the size of the subtree below a node is a half of the size of the 

subtree below its parent node. In Fig.32, peer(n) is the root of the 32-node tree. while 

peer(n-1), peer(n-3), peer(n-7), peer(n-15), peer(n-31) are the roots of the 16-node, 

8-node, 4-node, 2-node, 1-node tree respectively. 

n

n-2
n-4 

n-8 n-16

n-6 n-10 n-18 n-20 n-24 

n-14 n-22
n-26

n-28 

n-30

- 1
- 4 - 8 - 16 

- 4

- 8

- 8

- 16 - 16 - 8- 16

- 16 
- 16- 16

- 16

n-12

- 2

n-17

n-1 

n-9

n-25

n-3 

n-7 

n-5 

n-21
n-13 

n-29 

n-31 

n-19 n-11 

n-27n-23 n-15 

- 2 - 4 - 8 
- 16

- 16- 8 - 16

- 8 
- 4 

- 16 - 16- 16 

- 16 

- 16

 
Fig.22: The search tree of a 32-node Chord network 

 

along the search path, the top node keeps the information from (N/s) nodes,     So 

and the second node keeps the information from (N/2s). If we collect scores from the 

nodes in the top s layers of the search path, we can compute the amount of 

non-repeated information collected by:  

1

2 1... ( )(1 )
2 4 2 2s s

N N N N N
s s s s s−+ + + + = −  

    When the size of the network is large enough, the information which we can get 

along the longest search path will converge to the aggregated opinions of 2 1( )(1 )
2ss

−  

 40



of the nodes in the networks. Table.3 shows the result of the actual comp  

can see that the more the value of s is, the slowest the ratio converges to 

utation. We

2 1( )(1 )
2ss

− . 

 

m s=2 s=3 s=4 s=5 s=6 s=7 s=8 
1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
2 75  75.00% 75.00% 75.00% 75.00% 75.00% 75.00% .00%
3 75.00% 50.00% 50.00% 50.00% 50.00% 50.00% 50.00% 

4 75.00% 50.00% 31.25% 31.25% 31.25% 31.25% 31.25% 

5 75.00% 56.25% 31.25% 18.75% 18.75% 18.75% 18.75% 

6 75.00% 59.38% 39.06% 18.75% 10.94% 10.94% 10.94% 

7 75.00% 59.38% 46.88% 25.78% 10.94% 6.25% 6.25% 

8 75.00% 58.59% 50.78% 34.77% 16.41% 6.25% 3.52% 

9 75.00% 58.20% 50.78% 41.99% 24.61% 10.16% 3.52% 

10 75.00% 58.20% 48.83% 45.61% 32.81% 16.80% 6.15% 

11 75.00% 58.30% 46.88% 45.61% 38.96% 24.51% 11.13% 

12 75.00% 58.35% 45.90% 43.24% 42.04% 31.59% 17.65% 

13 75.00% 58.35% 45.90% 40.14% 42.04% 36.74% 24.54% 

14 75.00% 58.34% 46.39% 37.63% 39.73% 39.32% 30.60% 

15 75.00% 58.33% 46.88% 36.37% 36.27% 39.32% 34.94% 

16 75.00% 58.33% 47.12% 36.37% 32.81% 37.24% 37.11% 

17 75.00% 58.33% 47.12% 37.19% 30.22% 33.89% 37.11% 

18 75.00% 58.33% 47.00% 38.27% 28.92% 30.12% 35.29% 

19 75.00% 58.33% 46.88% 39.14% 28.92% 26.74% 32.21% 

20 75.00% 58.33% 46.81% 39.57% 29.89% 24.30% 28.53% 

21 75.00% 58.33% 46.81% 39.57% 31.35% 23.07% 24.88% 

22 75.00% 58.33% 46.84% 39.29% 32.81% 23.07% 21.77% 

23 75.00% 58.33% 46.88% 38.92% 33.91% 24.07% 19.58% 

24 75.00% 58.33% 46.89% 38.62% 34.45% 25.68% 18.48% 

25 75.00% 58.33% 46.89% 38.46% 34.45% 27.49% 18.48% 

26 75.00% 58.33% 46.88% 38.46% 34.04% 29.12% 19.42% 

27 75.00% 58.33% 46.88% 38.56% 33.43% 30.30% 21.02% 

28 75.00% 58.33% 46.87% 38.69% 32.81% 30.89% 22.96% 

29 75.00% 58.33% 46.87% 38.80% 32.35% 30.89% 24.90% 

30 75.00% 58.33% 46.87% 38.85% 32.12% 30.41% 26.56% 

Table The th te a g g t al 
number of nodes in the network 

.3:  ratio of e collec d inform tion alon  the lon est path o the tot

 41



 

able.3. We can see the convergence of the ratio under 

ifferent values of s in the figure. 

    Fig.23 shows the graph of T

d

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

110.00%

on
ge

st
 s

ea
r

w
or

k

0 5 10 15 20 25 30 35 40 45

Length of hashed identifiers in Chord

T
he

 r
at

io
 o

f 
th

e 
in

fo
rm

at
io

n 
co

ll
ec

te
d 

al
on

g 
th

e 
l

ch

pa
th

 t
o 

th
e 

to
ta

l 
nu

m
be

r 
of

 t
he

 n
od

es
 i

n 
th

e 
ne

t s=2

s=3

s=4

s=5

s=6

s=7

s=8

Fig.23: The ratio of the collected information along the longest path to the total 

number of nodes in the network 

f the longest search path is the shortest path in the 

arch tree. So the information collected in the complementary path is only the 

 

    The complementary path o

se

aggregated score stored in the root node which has been gathered in the original path. 

That means that the complementary path does not aid reputation collection. But for 

other search paths, the nodes in the top s layers of their complementary paths will help 

to increase the information collected totally because the information additionally got 

is not repeated in the original path. So we can conclude that the information each peer 

can get in our approach represents the opinions of at least 2 1( )(1 )
2ss

chanism on

en the size of the network 

−  of all the 

nodes in the network when the network is large enough.  

    The amount of information each peer can collect in our me ly depends 

on the value of s. Therefore, we can conclude that: wh

 42



doubles, the amount of information a peer can get will also double. That is, our 

algorithm is a scalable algorithm. 

 43



Chapter 5   Conclusion and Future Works 

 

    In this chapter, we will describe the conclusions of our research. Then we will 

also describe some future works of out works. 

 

5.1 Conclusions 
 

    We present an algorithm for global trust and reputation management in 

DHT-based peer-to-peer networks. It includes the maintenance of the reputation 

scores and the aggregation of collected reputations. By the algorithm, each user can 

store the reputation scores assigned to a certain peer along the searching path for this 

peer. When users need some resources, they only need to search for the resource in the 

original manner. They can get the collected and aggregated scores supplied by the 

search agent and then make selection of resource providers directly according to the 

scores. If they do not trust the scores supplied by the search agents, they can also 

perform the verification scheme to verify the scores and make proper selection.  

    In our algorithm, peers in the DHT-based networks can get reputation scores in a 

fix ratio to the number of node in the network by contacting at most ⎡log2N⎤ nodes, 

where N is the total number of peers in the networks. In fact, when the network is 

large enough, peers can get at least the opinions of 2( )(1
2
1 )s

N
s

−  nodes in the 

network, where s is the skip distance. The skip distance is a variable which can be 

determined in advance. So the mechanism in our approach is scalable. 

 

5.2 Future Works 
 

 44



    In our work, we focus on the management of reputation scores and trust relations 

in the DHT-based peer-to-peer networks. We don’t limit the using of the reputation 

system. In fact, reputation systems can be multi-scoring. That is, users assign 

reputations in several manners. The method of assigning reputation scores influences 

the evaluation of reputation scores, and it also influences the precision of the decision 

making as a matter of course. To make the selection of resource provider more 

precisely, the assignments of reputations and trustworthiness are both worth 

researching. Additionally, we can also improve the verification scheme in our work. A 

more precise verification scheme can protect users from malicious behaviors more 

significantly. 

    The storage of reputations is another issue worth researching in this work. How 

to keep the convenience of reputation storage and collection and the distributed 

property of the DHT-based peer-to-peer networks is an important issue for us to 

continuously discuss. 

 45



Reference 

[1] E.K.Lua, J.Crowcroft, M. Pias, R.Sharma and S. Lim. “A Survey and Comparison 
of Peer-to-Peer Overlay Network Scheme”, In IEEE Communications And 
Tutorial, March, 2004. 

[2] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan. “Chord: A 
Scalable Peer-to-peer Lookup Service for Internet Applications” In SIGCOMM’01, 
ACM, August 27-31, 2001. 

[3] E. Damiani, S.D.C.d. Vimercati, S. Paraboschi, P.Samarati, F. Violante. “A 
Reputation-Based Approach for Choosing Reliable Resources in Peer-to-Peer 
Networks” CCS’02, ACM, Washington, DC, USA. November 18-22, 2002. 

[4] R. Dingledine, N. Mathewson, P. Syverson. “Reputation in P2P Anonymity 
Systems”. 

[5] eBay website. www.ebay.com. 

[6] L. Xiong, L. Liu. “A Reputation-Based Trust Model for Peer-to-Peer eCommerce 
Communities”, In Proceedings of the IEEE International Conference on 
E-Commerce (CEC’03), 2003. 

[7] B.K. Alunkal, I.Veljkovic, G.v. Laszewski, K. Amin. “Reputation-Based Grid 
Resource Selection”. 

[8] A. Josang, E. Gray, M. Kinateder. “Analysing Topologies of Transitive Trust”. 

[9] M. Richardson, R. Agrawal, P. Domingos. “Trust Management for the Semantic 
Web”. 

[10] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina. “The EigenTrust Algorithm for 
Reputation Management in P2P Networks”. WWW2003, Budapest, Hungary. May 
20-24, 2003. 

 46

http://www.ebay.com/

	摘要
	Abstract
	致謝
	Contents
	List of Figures
	List of Tables
	Chapter1   Research Overview
	Chapter2   Background Knowledge
	2.1.1 The Unstructured Peer-to-Peer Networks
	2.1.2 The Structured Peer-to-Peer Networks
	2.1.3 Chord
	2.2 Trust-based Reputation Management
	2.2.1 Reputation System
	2.2.2 Trust relation and Global Trust
	2.3 Related Work
	2.3.1 EigenTrust

	Chapter 3   Concepts of Research
	3.1 Principles and Objective
	3.2 Maintenance of Reputation Scores

	Chapter 4   Research Result
	Chapter 5   Conclusion and Future Works
	Reference

