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Using Pipeline Method to Improve Asynchronous

8051 Processor Performance

Student : Ruei-Fu Tsai Advisor : Dr.Chang-Jiu Chen

Abstract

8051 is the most popular CICS ISA Microprocessor, because of its different instruction
length, the regulation of instruction is little. Its design is hard to implement in pipeline. The
throughput of pipelined processor is higher than that of nonpipelined processor. The objective
of this processor is to develop a pipelined asynchronous 8051 processor, called PA8051.

We divide PA8051 into five stages, that is Instruction Fetch (IF), Instruction Decode (1D),
Operand Fetch (OF), Execution(EXE) and Write. Back (WB). The most important problem to
be resolved in pipelined design is hazard, including data hazard, structural hazard, control
hazard. Thus, we analyze where the:hazards happen‘and find the solution to solve the hazards.

Finally, we successfully passed the behavior simulation and synthesized the design with

Xilinx Synthesize tool.
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Chapter 1. Introduction

The objective of this thesis is to design and implement a pipelined asynchronous 8051
microprocessor. 8051 is a CISC ISA, thus the instruction set is complicated. To design a
pipelined 8051, we analyzed the instruction sets, found its regulation, and proposed a new
architecture for 8051 microprocessor. The remainder of this chapter is briefly introducing the

asynchronous design, and the Balsa tool.
1.1 Motivations

A digital system is designed as a collection of subsystems, and each it performs a
different computation and communication with its peers to exchange information. When
communication transactions take place, the whole systems need to be synchronized in order to

guarantee the validity of data exchanged.

The dominant synchronization technique is global clock. The clock period defined the
time when communication transition can‘take place; therefore the clock period must longer
then the execution time of every=systems, and. the: clock distribution is becoming an

increasingly cost issue.

Thus, a different type of design- asynchronous circuit design is attracted more and more
research interest. Furthermore, several asynchronous circuits design methodologies have been
proposed[13]. A number of asynchronous processors have been developed including
Asynchronous ARM RISC processor (AMULET1, AMULET2e, AMULET3)[8][11][12] in

University of Manchester and Lutonium processor in CalTech [9].

It is widely known that the 8051 is the most popular microprocessor. Therefore, we
implemented it with the pipeline method and asynchronous design to increase its

performance.

1.2 Asynchronous Design

Synchronous circuit design is the major method in circuit design because it is widely
used and full of design experiences. However, asynchronous circuit has some advantages over
synchronous circuit. First, asynchronous circuit is average case performance, because it does
not the clock to trigger the action and every component can work at its speed. Second,
asynchronous circuit has no clock signal, therefore no power consumption needed for the

clock. It can also almost attain zero power consumption in its idle state because almost all
1



components are idle. Third, asynchronous circuit is easy to modular design. Every component
can be connected by the same communication protocol. Fourth, asynchronous circuit can
avoid the clock skew problem. Fifth, without the clock distribution, asynchronous design is

low EMI (Electromagnetic Influence) problem.

But, asynchronous circuit still has some problems over synchronous circuit. First,
without the clock control, asynchronous circuit needs more control signals, resulting in
increasing in area. Second, there are few CAD tools to support asynchronous design and test,
and this make it harder and longer to design the asynchronous circuit. That is a big challenge.

The advantage and disadvantage of asynchronous design is shown in Table 1.

Advantage Disadvantage
Average cast performance Overhead(Area)
Low Power Few CAD tools

Modular Design

No Clock Skew Problem

Low EMI

Table 1. The advantage and Disadvantage of Asynchronous Design

The majority of modern asynchreneus circuit design techniques are based on the use of
handshaking to communicate between units. Handshaking means the communication protocol
between two connected components. There are two types of handshake protocol, two-phase
and four-phase. The two-phase handshake protocol is shown in Figure 1. The falling and
rising edge of request and acknowledge are active signals. The periods between a request and
its acknowledgement forming the handshake itself, and the period between an
acknowledgement and the next request, forming the idle phase. The data transition must obey

the setup time and hold time constraint.

Another type of handshake is four-phase. In this protocol, only the rising edge is the
valid active transition. Four-phase handshake is easier in CMOS design because only the
rising edge of signal can be the handshake phase, and the falling edge to reset the handshake
signal. There are three type of four-phase handshake protocols distinguished by the data

transition period, ie, broad, early, and late as shown in Figure 2.
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ACK t———————f
paTA | R ]

Setup time Hold time

Figure 1. The Two-phase handshake protocol

| |
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ACK

DATA
broad

DATA
early

DATA
late

Figure 2. The Four-Phase handshake protocol

1.3 Balsa Synthesis Tool

Balsa is an asynchronous hardware deseription language developed by the Manchester
University. It can be directly compiled into several Handshake Components. We can use the
Balsa HDL to describe the behavior model of our circuit, and then compiled it into the most
popular hardware description language such as Verilog or VHDL. The overview of balsa

design flow is shown in Figure 3.



Balsa description Define refinement

A

(.balsa file)
A
g ‘balsa-¢’ . ,
2 2 breeze2ps
g = ‘breeze-cost’
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Breeze description
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‘balsa-netlist’ simulation
sy:item .
» Behaviour
h 4
Gate-level netlist Gate-level Simulation > Functional
Commercial
SI
or FPGA P&R
v
Layout /bitstream Layout simulation » Timing / Power

Figure 3. The Balsa Design Flow

Balsa description of a circuit is compited-using balsa-c to an intermediate breeze
description. The breeze description is.a syntax-directed fashion with language constructs
being mapped into networks of parameterized instances of “handshake components”. Each of

“handshake components” has a concrete gate level implementation

A number of tools are available to process the breeze handshake files. The balsa-netlist
automatically generates CAD native netlist files, which can be fed into the commercial CAD
tools that further synthesize the netlist to the fabricable layout. Balsa support three
commercial CAD systems: Compass Design Automation tools from Avant, Xilinx FPGA

design tools and Cadence Design Framework I1.

Balsa supports three back-end protocols for use with each technology: bundle-data
scheme using a four-phase-broad/reduced-broad signaling protocol, a delay-insensitive
dual-rail encoding and a delay-insensitive one-of-four encoding. The bundled-data back-end
should be faster and smaller, but needs more careful post-layout timing validation. The two
delay-insensitive schemes are larger and slower but should be more robust to layout

variations.



1-4 Organization of this thesis

In this thesis, we will illustrate the related work in chapter 2 including the overview of
the synchronous 8051, and the basic cells in Balsa synthesis system. In chapter 3 we will
illustrate the design of PA8051 modeled by Balsa. In chapter 4 we will illustrate the
implementation and verification of PA8051. In chapter 5 we will illustrate the results of

simulation. Finally, a brief conclusion and future work are discussed in chapter 6.



Chapter 2. Related Work
2.1 Overview of 8051

The architecture of the original synchronous 8051 has three buses: IB, PB, PARB bus.
IB-bus acts as the communication channel between any two registers. PB-bus acts the
communication channel among PAR (Program Address Register), Buffer, PC Incrementer, PC
and DPTR. PAR sent out program address on PAR-bus. The width of the IB bus is 1 byte
while the PARB and PB are 2 bytes. The internal memory consists of on-chip ROM and
on-chip data RAM. The on-chip RAM contains a rich arrangement of general-purpose storage,
bit-addressable storage, register banks, and special function registers (SFR). The registers and
input/output ports are memory mapped and accessible like any other memory location and the
stack resides within the internal RAM rather than in external RAM. SFRs take care of the
communication between CPU and peripherals. There are four bidirectional ports (PO — P3) for
communication to and from the outside world. The architecture of synchronous 8051 is shown

in Figure 4.

The 8051 also includes bit operations, which only affect single bit in a given registers.
Only some locations of the internal RAM are bit-accessible including address from 20H to
2FH and some SFRs. Internally, the bit operations are-performed by reading the whole byte
from internal memory, modifying the single bit,and then writing the value back in the same

operation cycle.

Table 2 is the instruction scheme of the synchronous 8051. Each instruction is executed
in one, two or four machine cycles. A machine cycle consists of a sequence of 6 states,
numbered S1 through S6. Each state time lasts for two oscillator periods. A machine cycle is
totally 12 oscillator periods. Therefore, with an internal clock frequency of 12 MHz the
performance will be below 1 MIPS. In each state of the execution scheme a specific action
takes place. The one-cycle instructions execute the first machine cycle C1, while the
two-cycle instructions execute C1 and C2 consecutively. The scheme results in many
redundant cycles during execution because not all actions are required in one machine cycle.
For example, two program fetches are generated during each machine cycle, even if the

instruction being executed does not require it.



S1 S2 S3 S4 S5 S6
C1 Access ACC ->T2 | Access Access OP->T1or T2 | ALU->dest.
ROM RAM ROM
S1 S2 S3 S4 S5 S6
C2 Access Calculate jump address | PC incr. OP->T1lor T2 | ALU->dest.
ROM
Table 2: Instruction execution scheme
Port 0 Port 2
Drivers Drivers
ljF C a0
RAM Port 0 Port 2
QZ;ZEY RAM Latch Latch ROM
T T
ic it
Acc SP
T2 Tl —
PAR @
ALY | Butter |
3
PHIP Timin SFR Space PC Iner M é’
P PSW
<l & PC (=
— Contro ‘ ‘
| L 9
N N
R C:>| jE jE DPTR w_
Oscillator Port 1 Port 3
Latch Latch
Port 1 Port 3
Latch Latch

I

I

Figure 4. The Synchronous 8051 Architecture




2.2 Overview of Pipeline Architecture

The pipeline architecture is a most commonly used method in microprocessor designs. It
can increase the throughput due to the parallel processing of instructions. In asynchronous
circuit design, the utility of pipeline can further be increased because of every stage of the

pipeline can proceed in its own speed, not the synchronous pipeline worst case performance.

In Figure 5, the two graphs express the difference between synchronous and
asynchronous pipeline. We may assume that the pipelined system is divided into four stage;
they are IF, ID, EXE, and WB. In synchronous pipeline, every stage must be controlled by the
global clock which is set to the slowest pipelined stage. However, in asynchronous circuit,
every stage can be proceeded with its own speed. Some instruction may not need all five
stages to complete, such as instruction 3 and 4 in Figure 5. The instruction 3 does not need
WB stage and the instruction 4 doesn’t need EXE stage. In synchronous pipeline, even the
instruction needn’t execution in one stage, but it still need to wait a complete cycle to the next

stage. But in the asynchronous pipeline, the_instruction can be proceeded quickly to next

stage.
T1 T2 T3 T4 T5 T6 T7
| | | | \ |
1 IF \ ID \ EXE \ WB }
2 IF \ ID‘ EXE \ WB \
3 IF \ ID \ EXE \
4 IF \ ID \ WB
1 IF 1D 1 EXE WB
WB
2 IF D EXE 4 WB i
3 IF ID KIEXE
4 IF D WB
}
EXE

Figure 5. Synchronous Pipeline V.S Asynchronous Pipeline



2.3 Balsa back-End

The Balsa back-end generates gate level netlist to import into target CAD systems in
order to produce circuit implementations. In this section we will describe some basic cells for
Xilinx technology generated by Balsa such as Muller C element and S element. We also

describe some handshake components in Balsa synthesis system.
2-3-1 Basic Elements

The gate level netlist generated by Balsa for Xilinx technology only uses some basic
cells including AND, OR, NOR, XOR, NADN, BUF, XNOR, INV, FD (D-type flip-flop),
FDC(D-type flip-flop with asynchronous clear) and FDCE(D Flip-Flop with Clock Enable

and Asynchronous Clear). Every bigger component is composed with these basic cells.

0 il |q
0 —
. € q 0 0 |0
I 0 1 L|nochange
(a) 1 0 Hno change
1 1 1
(b)

10— >
] q
] j

(©)

Figure 6: The Muller C-element, (a) symbol (b) true table (c) gate-level implementation

Figure 6 shows the Muller C-element. It is the most common used element in
asynchronous circuit. It is a state-holding element like an asynchronous set-reset latch. When
both inputs are 0, the output is set to 0. When both inputs are 1 the output is set to 1. For other

input combinations the output does not change. A Muller C-element is a fundamental
9



component that is extensively used in asynchronous circuits.

. o i1 [(
10— : _
q NC2P q 0 X 1

1 1 |0

@)

(©

Figure 7: The NC2P-element (a) symbol (b) true table (c) gate-level implementation

Figure 7 shows the NC2P element.<When i0is.equal to 0, the output is 0. When i0 and il
are equal to 1, the output is 1. For ather input combinations the output does not change. It is

much like inverter of C-element except that when 10 is-equal to 0 and il is equal to 1, the

output is 1.
Ar
Ar ——— Br Ba @QI\
S

Aa — Kk Ba ) Aa

@

(b)

Ar

Aa

Br

Ba

©

Figure 8: The S-element (a) symbol (b) gate-level implementation (c) handshaking
protocol

Figure 8 shows the S-element which is a circuit element commonly found in the
implementation of handshake components. An S-element has 4 pins including 2
10



request/acknowledge handshake pairs — “Ar’/’Aa’ and ‘Br’/’Ba’. In Balsa system it replaces
the “inverter of C-element” with “nc2p”. Hence, it can reduce the number of gates because
“inverter of C-element” uses 3 AND gates, 1 OR gate and 1 Inverter but “nc2p” uses 2 AND
gates, 1 NOR gate and 1 Inverter.

2-3-2 Handshake Components

Balsa has about 40 components that use handshake signaling for communication. Each
of “handshake components” has a concrete gate level implementation. In the following

section we illustrate some handshake components [2] .

activate

[Caclivate_Or inp_0r>
BUF
[inp_Oa out_Or>
mnp %» out BUF
[ out_Da activate_0a>
BUF
[Gnp_0di31.07y l\l.—/\/ out_0dGE1.0y
BUF

@

Figure 9: The Fetch Component (2) handshake compenent (b) gate level implementation

Figure 9 is the Fetch component. This component is the most common way of
controlling a datapath from a control tree. Transferrers are used to implement assignment,
input and output channel operations in Balsa by transferring a data value from a pull datapath

and pushing it towards a push datapath [2].

Figure 10 and 11 are sequence and concurrent component respectively. They form a large
part of handshake circuit control trees [2]. They are used to activate a number of commands

under the control of activate handshake.

11



activateOut_Or
activate_Or

activateOut_1r

()
activateOut_la
>
activateOut_1r
AR =
Activate Or S
C>—
. B B activateOut_Or
activateOut_Oa a ; —
Activate 0Oa
>
(b)

Figure 10: The Sequence Component (a) handshake component (b) gate level
implementation

activateOut_Or
activate_Or

activateOut_1r

(@)

0 o Activate_Oa
i ! —-1"
Adivate Or I a P o
activateOut_0a, activateOut_la [ i1

| — Ba Br

activateOut_1r, activateOut_Or
——>

®

Figure 11: The Concurrent Component (a) handshake component (b) gate level
implementation
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write
Read [0] (a)

Write Or Write 0a
> FD >

Y
%

D Q Read 0d
Write 0d

——
Read Or Read 0Oa
— > —

(b)

Figure 12: The Variable Component (a) handshake component (b) gate level
implementation

Figure 12 is the variable component. It uses D-type flip-flop to store data. The source of
clock is the signal write_Or. When a piece of data‘is needed to be stored, the signal write_Or is
set and then the signal is reset. When a piece of data is needed to be read, the signal read_Or

or read_1r is set. It is natural to achieve the effect of gating clock.
2-4 Concluding Remarks

In this chapter we introduce the synchronous 8051 architecture. 8051 is a complex
instruction set computer. It has variable-length instructions from one to three bytes. Each state
of a machine cycle uses the bus. We then introduce the concepts of asynchronous pipeline.
Finally we illustrate the Balsa back-end. Balsa synthesis system is composed of about 40
components. Each can be translated into gate level netlist. They use handshaking protocol for

communication.

13



Chapter 3. Design of PA8051

This chapter describes the design of PA8051. This PA8051 consists of six main part, ie,
IF, ID, OF, EXE, WB, and MEM, this six parts work parallel with the communication channel
connected between them. But MEM is not part of the pipeline, it is a shared component in the
architecture. This chapter introduces the top view of PA8051 in the first, and then describes

the six main components of the processor.

3.1 The architecture of PA8051

The architecture view of PA8051 is described in figure 13. All of the operations can be
completed in the five execution stage and memory unit. The IF(instruction fetch) stage is the
fetch unit to get instruction from the program ROM. The ID(instruction decode) stage is the
decode stage, responsible for decoding instructions to several control signals. The
OF(operand fetch) stage is the fetch unit to get data from data memory and register, and
providing the data for the next execution stage: T-he EXE(execution) stage is the main stage of
execution, containing one Multiplier,.one Divider,.and‘one general ALU. The WB(write back)
stage collects the result from EXE stage, and writes back to destination memory address and
register. The MEM(memory) unit contains three part. RAM_READ_ARBITOR arbitrates the
two read port from ID and OF. MEM_INTERFACE is responsible for the communication
with memory data. MEM is the memory data, which contains a 128-byte memory and special

function register (SFR).

14



ffffffff » cifl ———» data  e——- Data & ctrl PO_out ~ P3_out

s

MEM

A datai A
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C MEM_INTERFACE >< Write_Back
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|

Y OFIMEM |
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~writein»
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Figure<13. Pipelined 8051 Top Level

Following code is the top level process of PA8051. Every component is connected

between internal channels.

procedure SA8051 IFIDOF(
output p0,p1,p2,p3 : byte
)is

channel IF_2_ID_data : byte
channel IF_2 _mem_addr : Address
channel ID_2_IF _addr : Address

BalsaMemory_interface(IF_2_mem_addr,read,...)||
IF(mem_2_IF data,ID_2_IF addr,...) ||
ID_top(IF_2_ID_data,jmp,ID_data,...)||
SA8051_OF(ReadS, WriteSin, MEM_OF,...)||
RAM(maddr,wr,mem_in,mem_out,p0,p1,p2,p3)||

15



MEM_INTERFACE(Memlin,....)||

SA8051 EXE(srcl, src2, src3,...)||

SA8051 WB(EXE_WB, ..)||

Ram_Read_Arbitor(MEM_data,valid_face_2_arbitor, ...)||
end

end

3.2 The IF stage

IF stage contains the one ROM interface, two buffers, and one fetch controller. The
ROM interface is the interface between program ROM and the processor. It sends the
program counter to ROM and fetches the instruction from ROM. These two buffers have 32
bytes storage space performing as a instruction cache to the program memory. When one
buffer have been read the at least byte, the fetch control will read the next instruction from
another buffer. If both buffers miss, these two buffers will fetch 64 bytes data from the current
PC.

PC Instruction

A
1 A
data data
—— ——
bufferl < RnW--+ data
~Address- Address —
ROM
INTEREACE Fetcher ctrl ID
data data
—— ——»
buffer2 N
- RnW-—
<Address- L Address - Address

Figure 14. The IF stage

3.3 The ID stage

The ID stage is the decode stage of instructions. It decodes every instruction to three

control signal used in the next stage.
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Opcode : The control signal, used in EXE stage, controls the type of computation.

Read : The control signal, used in OF stage, controls the read signal to SFR, memory and

register.

Write : The control signal, used in WB stage, controls the write back signal to SFR,

memory and register.

The first part of ID stage is ID1, it decides the instruction type of every instruction. If the
instruction length is longer than one byte, the data in second or third byte are memory address
or immediate data. Therefore we can collect it from ID1 without any operation in the 1D2
stage. The jmp signal comes from WB stage, and it is the branch taken signal. If jmp is 1, it

means a jump occur. If jmp is 0, it means no jump occur.

Actionctrl Opcodeln
data g —
—>
ReadOut
L
Readln
IF ID1 1ID2 OF
> Writeln
D WriteOut —
addr
OpcodeOut -
Jjmp

Figure 15. The ID stage

3.4 The OF stage

The OF stage is the stage providing the source data to EXE stage. There are five main
sources, ACC, register, register indirect, memory, and immediate data. Many instructions
require the data from two of these five types of sources. Some instructions may need to
calculate the write back address in this stage, such as some register address and register
indirect address. Therefore there are many different operations in this stage controlled by the

Readln signal.
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RAM READ ARBITOR

lock OF2MEM MEM2OF forward From RAM_INTERFACE

Lo |
| \ A ‘ |
Readln | |
™| CTRL |
i —n:~—> srcl
D | | EXE
i - MUX _/}\_> src2
i ,,,,,,, ri ****** » Forward
i —ri\—p src3
woror —— TP NS [ > colorout
Weiel ;L 777777777777777777777777777777777777777777777777777 % 77777 »  Writeout
Opcode S L Al . S » opcodeout

Figure 16. The OF stage

ReadlIn is the data and ctrl bundle used in OF stage, including control, register address,
memory address and immediate data. The following OF_Read type is the data type of ReadlIn
signal. And table 3 is the ReadCtrl signal.

type OF_Read is record
maddr:byte;
raddr:3 bits;

immed:byte;
ctrl:ReadCtrl
end
Type Operation Example
ACC Read ACC SWAP A
REG Read Register MOV A,Rn
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REGI Read Register indirect MOV A,@Ri
ACC_REG Read ACC and Register ADD A,Rn
ACC_REGI Read ACC and Register indirect ADD A @RI
ACC_MEM Read ACC and Memory data ADD A dir

MEMB Read Memory bit address data JBC bit,rel
REG_MEM Read Register and Memory data MOV @Ri,dir
SP_SPI Read SP and SP indirect POP dir

SP_MEM Read SP and Memory data PUSH dir

XCH_R Read ACC and Register XCH A,Rn
XCH_RI Read ACC and Register indirect XCHD A @RI
XCH_M Read ACC and Memory data XCH A, dir
DPTR_ACC Read ACC and DPTR MOVX @DPTR, A
ACC_IMM Read ACC and immediate data ADD A #data
MEM Read Memory data MOV dir,dir
MEM_IMM Read Memory and immediate data ORL dir #data
REG_IMM Read Register and immediate data CJINE Rn, #data ,rel
REGI_IMM Read Register inditect'and immediate data CINE @Ri #data rel
DPTRI Read DPTR indirect MOVX A, @DPTR
ACC_REGB Read ACC and-Register address MOV Rn,A
FETCH_REG Read Register address MOV Rn #data
IMM_REGB Read Register and.immediate data MOV @Ri #data
REG_WB Read Register data DINZ Rn,rel
MEM_WB Read Memory data DJINZ dir,rel

IMM Read immediate data MOV dir #data
DPTR Read DPTR INC DPTR

IMM16 Read immediate 16 bit data MOV DPTR,# data 16
NO CPLC

Table 3. The Read Control Signal

3.5 The EXE stage

The EXE stage processes the data from OF stage. It contains two register PSW and
one-bit color bit. Register PSW provides the carry and auxiliary carry data in this stage and

color bit is used to manipulate the control hazard.
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Figure 17. The EXE stage

The opcode is the control signal-used in EXE stage, table 4 shows the opcode number

and its example.

OPCODE Example
MUL MUL AB

pIv DIV AB

NOP RET

MOV MOV A @A+PC
ADD ADD A #data
ADDC ADDC A #data
SUB SUBB A #data
NOT CPL A

ARD ANL A #data
XOR XRL A #data

OR ORL A #data

RL RL A

RLC RLC A
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RR RR A
RRC RRC A
SWAP SWAP A
XCH XCH A,Rn
XCHD XCHD A,@Ri
INC INC dir
DEC DEC dir
DA DA A
DINZ DJINZ Rn,rel
CINE CJINE A, #data, rel
CMPZ JZ rel
CMPNZ JNZ rel
INC16 INC DPTR
BCMPZ JB bit,rel
BCMPNZ JNB bit,rel
BCMPNZC JBC bit,rel
CLRA CLRA
JC JC rel
JNC JNC rel
CPLB CPL bit
CLRB CLRbit
SETB SETB bit
MOVB MOV bhit,C
CPLC CPLC
CLRC CLRC
SETC SET C
ORC ORL C,bit
ANLC ANL C,bit
ORLNC ORL C,/hit
ANLNC ANL C /bit
MOVC MOV C,bit
Table 4. The Opcode control signal
3.6 The WB stage

The WB back stage collects the write back data, and sends it to the memory interface.
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The control signal WriteCtrl is the control signal used in WB stage. Table 5 shows the signal

and its operation. The following MemWrite type is the write back data and control to

Memory.

type MemWrite is record

sfr:byte; --data

mem: byte; --data

maddr:byte; --address

ac:bit;

cy:bit;

ov:bit;

ctrl:MemWCitrl --ctrl

end

Type Operation Example
ACC Write ACC ADD A #data
MEM Write Memory INC dir
MEM_WB Write Memory ORL dir #data
MEMWB Write Memory bit CPL bit
SP_MEM Write Memory-and-SFR PUSH dir
ACC_MEM Write ACC and Memory XCH A dir
DPTR Write DPTR MOV DPTR# data 16
NO NOP
JMP Jump JMP @A+DPTR
CIMP Jump CINE A, #data, rel
JMP_MEM Jump and write memory DJINZ dir,rel
JMP_MEMWB Jump and write memory bit JBC bit,rel
CY Write carry CPLC

Table 5. The Write Back control signal
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MEM_INTERFACE

WB2ZMEM

Out— ]

EXE CTRL

IMP

ID

Figure, 18:The WB stage

3.7 The Memory and Register Interface

The Memory and Register Interface is the control unit between ID and OF and Memory.
Because both of the two stage ID and OF can read memory data, a RAM_READ_ARBITOR
is used to arbitrate the data read from ID or OF stage. The MEM_INTERFACE arbitrate the
read or write signal from RAM_READ_ARBITOR and WB, and then fetch data from
Memory or write data into memory. Two register ACC and PSW are located in
MEM_INTERFACE because these two registers are frequently fetched. In order to reduce the
fetch time, they are not in the MEM unit. The lock signal comes from OF stage, and it tells
MEM_INTERFACE what the memory address or SFR needs to be locked. This mechanism
prevents the data hazard. If the data is locked, then the valid will be 0. When the valid bit is 0,
RAM_READ_ARBITOR sends the control signal back to MEM_INTERFACE, until it gets
the correct data, that is, valid is 1. The following code segment describes the mechanism in

the RAM_READ_ARBITOR unit.
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loop
MemRead <- read_ctrl || data -> dataT]||lock<-lockT||valid->validT
while(validT /=1)

end;

MEM

addr wr In data out data

MEM INTERFACE [ WB
— WB2MEM

ACC | PSW

A
|
|
MemRead lock data valid
|
|

L

RAM_ READ ARBITOR

A
|
|
|
Y | \/
MemRead data MemRead lock data
ID OF

Figure 19. The Memory interface
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3.8 The instruction execution stage

All the instruction are executed in the order IF, ID, OF, EXE, and WB. However,
not all the instructions need to completely use the five execution stages. Table 6 shows the
operation stages of all the 256 instructions. Only 21 instructions execute with IF and 1D stage,
because these instructions are unconditional jump and need no ALU operations. They can be
completed in first two stages. Other instructions need all the five stages to complete execution.
Although some instructions such as MOV are no operation in EXE stage, we can just connect
the OF output to WB stage, we didn’t do so. With this design, the WB stage can receive the
data both from OF and EXE. If the OF stage output data is faster then that of EXE stage, there
will be an out-of-order completion situation in the design, therefore we need more control to

handle the problem.

As a result, we set all the instruction in the execution order of IF-ID-OF-EXE-WB. If
one instruction doesn’t need one execution stage, a bypass signal will be sent into next stage.
The following code is part of the code in the EXE stage to deal with MOV.

INOP..MQY then destl:=src1|| dest2:=src2.
dest 1 <-destl || dest 2 <= dest2

Execution stage Number:of instructions Example
[F-ID 21 NOP, AIMP
[F-ID-OF-EXE-WB 235 CPL bit, ADD, MOV......

Table 6. The instruction Execution Stage

3.9 The Hazard control and data forwarding

Hazards are serious problems may be happened in pipeline machine; and they need
to be avoid or solved. Hazard has two type may be found in PA8051, data hazards and control
hazards. Data hazards happened in the data dependency of consecutive instructions. Control
hazards may be happened in the branch occurring during pipeline execution. We classified
data hazard into three types. The first type data hazard can be solved with forwarding
mechanism, but the second and third types of data hazard, only can solve with stall. Data
hazards will only happen in two consecutive instructions to access the same memory address,
and the hazard may also be resolved by inserting any one non-related instruction between

these two instructions.
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XCH A,R1 [ IF DK oF & EXE WB |

Hazard !!! ACC
——— not write back
INC A IF D OF 4 EXE WB
’ @ @ @ @ ‘ NO Hazard !!!
R1 write back
——
INC R1 C F K K oF KExER] ws |

Figure 20. The hazard situation

Figure 20 shows an example of the data hazard. It shown that the first and second
instruction have data dependency on A. When the second instruction is in OF stage, the first
instruction is in EXE stage, and thus the second instruction can not correctly fetch the data at
this moment. However, the third instruction is no data hazard, because when it is in OF stage,

the first instruction is in WB stage, there is no data hazard happened.

Because our design is implemented with ‘@ynchronous circuit and not all instructions,
may be executed in the sequence like, whatjfissShown in Figure 20; and furthermore the
execution time of every stage may be different; is there no data hazard between the first
instruction and third instruction with different instruction execution sequence? The answer is
yes! In our design, when the third instruction enters:QF stage, the second instruction must be
in EXE stage, and when then the second instruction enters EXE stage, the first instruction
must in WB stage. Therefore, when the third instruction enters OF stage, the first instruction
must be already in WB stage. As a result, the first instruction must be finishing write back

before the third instruction begins to fetch data.

3.9.1 Data Hazard

The only data hazard is read after write. If there are two consecutive instruction, the first
instruction writing and second instruction reading the same location, the second instruction

will read the old data. There are three types of data RAW hazard :

Type 1 : Solved with data forwarding

ADD A, #data
ADD A, Rn

To solve this type of data hazard, we use the result of first instruction which is stored in
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the destl register in EXE stage and can be simply used as the input of ALU operation for the
second instruction. The forward control generated in the MEM_INTERFACE unit. There are
five types of forward operations, SRC121, SRC221, SRC122, SRC122, and SRC1_2.
SRC121 means previous destination 1 forward to source 1, and SRC 221 means previous
destination 2 forward to source 1. The following code segment shows the forward mechanism
in EXE stage.

case forward of
SRC121 then

srcl:= destl
[SRC221 then

srcl:= dest2
[SRC122 then

src2:= destl
|SRC222 then

src2:= dest2
[SRC1_2 then

srcl:=destl || src2:=dest2
INO then

continue
else

continue

end;

The forward signal is sent by MEM_INTERFACE unit. In OF stage, the memory address
need to be lock are generated and sent to MEM_INTERFACE. The lock signal contains the
lock memory address and control. In MEM_INTERFACE, four register used to control the
lock and forward mechanism. The register RD11 and RD12 indicates the lock address of
current instruction. The register RD21 and RD22 indicates the lock address of previous
instruction. Whenever an instruction retrieves the correct data, then it locks the memory. The
following is the code fragment of lock memory. The RD11 and RD12 changes to current lock

data, and previous lock data move to RD21 and RD22.

shared LOCK_MEM is
begin
case lockT.ctrl of
ACC then
RD21:=RD11||RD22:=RD12;

RD11:=R_ACC||RD12:=255
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[MEM then
RD21:=RD11||RD22:=RD12;
RD11:=lockT.addr ||RD12:=255

In our design, only two successive instructions may have data hazard, and therefore we
need to check RD11 and RD12. If RD11 is the address we want to fetch, just forward. The
following code shows some code segment in MEM_INTERFACE, and three types of
operation will occur, forwarding from destination 1 or destination 2, and fetch ACC. Note that

lock memory is required after fetch data.

shared RESET_LOCK is

begin
if(RD21=255) then
RD11:=255||RD12:=255
else
RD21:=255||RD22:=255
end
end

case MemRead.ctrl of
ACC then
if(RD11=R_ACC) then
forward<-SRC121||NULL_OUT(}LOCK-MEM()
[RD12=R_ACC then
forward<-SRC221||[NULL_OUT()||LOCK_MEM()
else
data<- (#ACC @ #CO0_8@ #CO0_8 as 24 bits)||valid<-1||LOCK_MEM()||forward<-NO
end

Type 2 : Solved with stall
In this type, the operand needs to be fetched in OF stage, but at the meantime, the

previous instruction is in EXE stage and the new operand value is not calculated. Therefore,

we need to stall the pipeline in this situation.

INC R1
ADD A,@R1

In the previous example, the first instruction writes the register R1 but it produces the

result in EXE stage, and in this moment, the second instruction is in OF stage and waiting to
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read the R1 value. So we need to wait for the first instruction to complete and then to execute
the second instruction. We solved this problem with the memory lock mechanism in
MEM_INTERFACE and RAM_READ_ARBITOR. The following code fragment is the
control of read register of indirect data. First we calculate the memory address in
Extract_RegR(). If this memory is locked, we send the NOT_VALID() signal to
RAM_READ_ARBITOR. RAM_READ_ARBITOR will continuously send signal to
MEM_INTERFACE until it gets the correct data. The stall mechanism is easily to achieve.

case MemRead.ctrl of
|REGI then
Extract_RegR();
If(error=1) then
NOT_VALID()
[(RD11=raddr or RD12=raddr) then
NOT_VALID()
else
wr <-0 || addr<-raddr |Jin_datal->tmpO;
if(RD11=tmp0) then
forward<-SRC121}|NULL_OUT()||LOCK_MEM()
[RD12=tmp0 then
forward<-SRC221{JNULL_OUT(|ILOCK_MEM()
else
FETCH_REGI();
TO_OF <- (#tmpl @ #CO_8@ #tmpO as 24 bits)||valid<-1||
LOCK_MEM()||forward<-NO
end
end

Type 3 : Solved with stall
In this situation, the first instruction changes the register select bit RSO or RS1 in PSW,

and then the next instruction need to read register. Because the next instruction needs to wait
the correct RSO, therefore stall is required in this situation. The situation will happen when

the following code execute.

SETB C.RSO
MOV dir, Rn
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The following code segment shows the register address generating procedure. If PSW is

locked, then error=1, the NOT_VALID data will be sent to register read control.

shared Extract_RegR is
begin
if(RD11=R_PSW or RD12=R_PSW) then
error:=1
else
raddr := (#OFtoMEM.raddr@ #psw[3..4] @ #CO0_3 as byte)||error:=0
end
end

3.9.2 Control Hazard

Control hazard happens when any jump instruction appears in the program. When jump
occurs, the coming instructions in the pipeline must be flushed. To solve this problem, we use
the color bit method. We add a bit in every finstruction named color bit. and a one bit
register(color register) stores the currént colorinfermation in the EXE stage. Every time when
jump occurs, the color register complement it.. Therefore when the coming instruction
executed in the EXE stage, it can Check. the“value of its color bit with color register. If the
value is different, a jump is occurred.and then this-instruction needs to be flushed. The

following code shows the operation in EXE stage.

if(color=colorT) then
case aluop of
MUL
DIV

else
send NOP

end
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Chapter 4. Implementation and
Verification

This chapter contains two parts. First, we illustrate our design flow for asynchronous

implementation on FPGA and VLSI. Second, we illustrate the behavior simulation.

4.1 The VLSI and FPGA design flow of

asynchronous circuit using balsa

The PA8051 core is modeled with Balsa language, and then compiled into a collection of
“handshake components” with the balsa-c cmpiler. Each of these components has a concrete
gate level implementation; and then use the balsa-netlist tool can automatically generate them

into Verilog for Xilinx or other target synthesis tools.

The following steps are the designsflow for. FPGA. The Verilog netlist generated by
balsa-netlist is converted into a netlist of basic¢ gates in-the synthesis step of the design flow.
The netlist may be optimized using technology-independent logic minimization algorithms.
However, we must avoid the logic minimization for hazard free circuits and buffers generated
by balsa-netlist. We should add the . constraint. “keep hierarchy” to avoid the logic
minimization. Then the synthesized netlist "is mapped to the target device using a
technology-mapping algorithm. The placement algorithm maps logic blocks from the netlist
to physical locations on an FPGA. On the placement has been done, the routing algorithm
determines how to interconnect the logic blocks using the available routing. The final output
of the design flow is the FPGA programming file, which is a bit stream determining the state

of every programmable element inside an FPGA. The design flow is shown is figure 21.
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Figure 21. The FPGA design flow of balsa

The VLSI design flow of balsa has some difference on FPGA design. First, the
balsa-netlist do not support the Synopsys technology, we only can use the “ Example”
technology, and change some gates with the standard cells for Synopsys. Then we use the
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Synopsys Design Compiler to synthesize the Verilog model. After synthesizing, we do the
functional simulation with Modelsim. After functional simulation, we do the place and route

with SOC Encounter, and export the layout GDS file.

< Balsa description >€ ——————————————————————— =

|
|
|
|
|
|
Balsa-c :
|
|
|
|
|

< Breeze description > Behaviour Simulation

Balsa development kit

Balsa-netlist

<Netlist for Synopsys>

|
Function Simulation

ModelSim

Synopsys Design |
Compiler |
|
|
|
|
< Gate level netlist > :
|
|
|
|
|
Cadence SOC encounter |
|
|
|

< Layout netlist > Timing Simulation

Figure 22. The VLSI design flow of balsa
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4.2 Implementation Issues

Compilation from Balsa programs to Xilinx netlist proceeds in two steps. In first step,
handshake circuits form the intermediate architectures. An important characteristic about this
compilation is that it is transparent, which allows feedback about important performance
characteristics such as performance, area, timing and testability to be generated at the
handshake circuit level and to be presented to the VLSI programmer at the Balsa level. When
the designer is satisfied with the performance of the Balsa program, the corresponding
handshake circuit is expanded into a gate-level netlist with target technology. At this level the
design can be translated to Verilog HDL and simulated it to obtain more accurate performance

figures using commercial EDA tools.

We choose four-phase bundled data protocol to implement the handshake circuit instead
of dual-rail encoding in order to reduce the area cost. The Balsa provided some technology
for implementations. If we choose Xilinx ISE, the circuits are implemented only using the
Xilinx standard cells such as AND, OR, Inverter gate and flip flop. If the target synthesize
tools are not supported such as Synopsys Design Compiler, we can use the “Example”
technology which translated the circuit to some:basic cell, and we need to modified the basic

cell with the standard cell in the target synthesize tool.

It should be noticed that the synthesis tool coulddo logic minimization but it must be
avoided. The asynchronous system added some buffer or redundant circuit to ensure
hazard-free. They can not be minimized. We can avoid this situation by adding the constraint

“keep hierarchy” on the handshake modules.

RAM and ROM are not modeled by Balsa language. We can implement them using the
block RAM on FPGA or using the standard RAM in VLSI. Until now all instructions can be

executed except MOV X. The peripherals are not considered such as timers and UART.
4.3 Verification

The environment used to do behavior simulation for PA8051 is illustrated in figure 23.

The ROM model is the predefined procedures in Balas as shown in figure 24. We assign the
address width and data width to determine their size. The ROM size is 4K bytes. The contents
of the ROM are loaded during initialization as 8-bit quantities in the hexadecimal format from
a hexadecimal file. A hexadecimal file is translated from a C program by KEIL tool [6].

Whenever an addressing arrives at the ROM model from the ROM address channel, the ROM
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outputs the instruction code. When the processor wants to write data, it sets the signal rNw

and sends out the address and the data.

The 8051 simulator executes the instructions in the hexadecimal file. The execution
results are compared with the contents of the RAM. If the results are not equal, we must

modify the code of the processor.

SAS8051 (Balsa) >

PO ~P3

Correct

ROM Model (Balsa)

F\ Rom address m
L Rom data

Execution Result

J

EX file 8051 Simulator

8051 H

:

KEIL-0h51

8051 Object Code

HEh
i

KEIL-c51
KEIL-a51

KEIL-bI51

U

Source file (C)

Figure 23: SA8051 behavior simulation environment

BalsaMemoryROM ({12, --address width
8}, --data width
<- BalsaMemoryNew(), -- direct expression to port connection
ROM_addr, ROM rNw, ROM write data, ROM read data)
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Figure 24. The ROM model
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Chapter 5. Result

5.1 Simulation Result

We have successfully executed some GCD Codes in PA8051 using the verification
method in Figure 23. The behavior simulation is passed. But the functional simulation was not

yet completed.

The performance comparison between asynchronous 8051[14] and PA8051 was shown
in table 7. When the SA8051 and PA8051 executing the same GCD program in balsa
development environment, the estimated time can be calculated. The result is that the SA8051
spend 2.74 times over PA8051. Therefore, in behavior simulation, PA8051 have better
performance than SA8051, the speedup is about 2.74.

In our design, we divided the processor into five stages, theoretically there will be 5
speedup compared to non-pipelined design. Because the five stages are not balanced, some
stages are longer than the other stages. Furthermare, the pipelined architecture increasing the
control signals overhead. Thus, PA8051 can’t totally benefit from the pipelined structure, but
the 2.7 speedup is greatly better than SA8051.

GCD(estimated time) Speedup
SA8051 76411420 1

PA8O051 27851320 2.74

Table 7. The performance of executing GCD program

5.2 Area Cost

PA8051 was synthesized with Xilinx ISE, and the gate and path delay of every part of
PA8051 is shown in table 8. The ID stage is the most dominant stage of all part of the design,
spend half of the total cost PA8051.

Table 9 is the comparison of synchronous 8051 and asynchronous 8051[14] and PA8051,
the asynchronous design is much bigger than the synchronous one. The area overhead mainly
comes from the handshake circuit in each handshake component. The hazard free circuit is

employed in order to assure the circuit validity. The circuits of the completion detection on
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the control path which need large C element also result in the area overhead.

Another reason is due to the CAD tool. There are no commercial CAD tools for the
asynchronous circuits. The synchronous CAD tools can do some optimization techniques for
the speed and area such as logic minimization and retiming. However, the asynchronous tool
Balsa just does transparent compilation and does not do any optimization on the asynchronous

circuits.

The other extra area overhead of pipelined asynchronous 8051 comes from several
aspects. First, every stage has its own control code for operation, and every stage has a big
multiplexer to choose the action. But in non-pipelined version, the following action is
determined after instruction decoding. This operation does not need many multiplexers.
Second, the control code of every stage is too big. Every stage needs a control code to choose
the correct action; however, the bigger control code, the more complicated related control
circuit will be. For example, opcode in EXE, there are 44 types, and therefore a 1-of-44

multiplexer must be generated. The cost is very big.

slice gate minimum path delay(ns)

IF 1007 13987 . 157

ID 5353 61973 121

OF 564 7086 34

EXE 1284 16938 |174
MEM_INTERFACE 1098 13217 (125
RAM_READ_ARBITOR 57 1051 28

WB 232 29717 40

TOTAL 9595 117229

Table 8. The Cost of Every Part of 8051

Slice Gate
Synchronous 926 16688
Asynchronous (SA8051) 2155 26942
pipelined asynchronous (PA8051) 10226 123510

Table 9. The Cost for asynchronous 8051 and synchronous 8051
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Chapter 6. Conclusion and future work

We designed and implemented a pipelined asynchronous 8051 microprocessor. In our
design, except MOV X, the overall 8051 instructions can be executed correctly, but the 10 and

interrupt mechanisms were not implemented yet.

Our proposed pipelined 8051 PA8051, compared to SA8051, after executing GCD
program, have 2.74 speedup. We have a preliminary result in using pipelined to increase
performance. Although we should execute more programs to verify the performance, we
almost can confirm that PA8051 have better performance than SA8051 and the speedup is

above 2.

The capabilities of FPGAs have increased to the level which makes it is possible to
implement a complete computer system on a single FPGA chip. The main component in such
a system is a soft-core processor. In addition, the VLSI design with balsa development
environment still has some limitations, and the most important of all is that the supported
EDA tools that can correctly co-worked.with-are not sufficient.

The thesis offers the following contributtons:
® The architecture of the PA8051 'modeled by Balsa is described. Some design issues for

Balsa language is also described.
® The new defined architecture for 8051 was developed.

Future work for our pipeline asynchronous 8051 :

Performance evaluation on FPGA or VLSI design
Adding additional 10 and peripherals

Redefine the control signal in every stage to reduce area cost
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