
國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

以管線方法改進非同步 8051 處理器之效能

Using Pipeline Method to Improve Asynchronous 8051 Processor

Performance

研 究 生：蔡瑞夫

指導教授：陳昌居 教授

中 華 民 國 九 十 五 年 六 月

以管線方法改進非同步 8051 處理器之效能

Using Pipeline Method to Improve Asynchronous 8051 Processor Performance

研 究 生：蔡瑞夫 Student：Ruei-Fu Tsai

指導教授：陳昌居 Advisor：Chang-Jiu Chen

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

 i

以管線方式改進非同步 8051 微控器之效能

研究生：蔡瑞夫 指導教授：陳昌居教授

國立交通大學資訊工程學系碩士班

摘要

 8051 是用途最廣的 CISC 處理器，因為指令長度不同，規則度也低，所以以往的實

現方法都較少使用管線。管線設計的處理器，由於能夠平行處理，能夠提高整體產出。

本論文之目的就是設計能在增加最少面積下，能提昇效能，以管線執行的 8051 處理器，

稱為 PA8051。

 我們會將指令處理的步驟，分成 Instruction Fetch (IF)，Instruction Decode

(ID)，Operand Fetch (OF)，Execution(EXE)，Write Back (WB)這五個階段。管線執

行的第一個重點是要能避免所有管線危障的情況，包括資料危障、結構危障、控制危障，

本文中探討各種指令平行處裡可能發生的問題。第二重點在探討資料相依時，所要解決

的方法。

最後的結果在行為模型下正確的通過了驗証，並以 Xilinx 合成器轉成電路。

 ii

Using Pipeline Method to Improve Asynchronous

8051 Processor Performance

Student：Ruei-Fu Tsai Advisor：Dr.Chang-Jiu Chen

Abstract

8051 is the most popular CICS ISA Microprocessor, because of its different instruction

length, the regulation of instruction is little. Its design is hard to implement in pipeline. The

throughput of pipelined processor is higher than that of nonpipelined processor. The objective

of this processor is to develop a pipelined asynchronous 8051 processor, called PA8051.

We divide PA8051 into five stages, that is Instruction Fetch (IF), Instruction Decode (ID),

Operand Fetch (OF), Execution(EXE) and Write Back (WB). The most important problem to

be resolved in pipelined design is hazard, including data hazard, structural hazard, control

hazard. Thus, we analyze where the hazards happen and find the solution to solve the hazards.

Finally, we successfully passed the behavior simulation and synthesized the design with

Xilinx Synthesize tool.

 iii

Acknowledgment

I am so very appreciative of:
Dr. Chang-Jiu Chen – the prime advisor on research and this thesis. And lab members：
Wei-min Cheng, TC Wang their encouragement and help.
Especially I would like to thank my family support.

 iv

Contents

Contents .. iv

List of Figures.. v

List of Tables .. vi

Chapter 1. Introduction.. 1

1.1 Motivations .. 1

1.2 Asynchronous Design .. 1

1.3 Balsa Synthesis Tool.. 3

1-4 Organization of this thesis .. 5

Chapter 2. Related Work ... 6

2.1 Overview of 8051 ... 6

2.2 Overview of Pipeline Architecture... 8

2.3 Balsa back-End.. 9

2-3-1 Basic Elements .. 9

2-3-2 Handshake Components .. 11

2-4 Concluding Remarks .. 13

Chapter 3. Design of PA8051 ... 14

3.1 The architecture of PA8051.. 14

3.2 The IF stage.. 16

3.3 The ID stage ... 16

3.4 The OF stage .. 17

3.5 The EXE stage ... 19

3.6 The WB stage ... 21

3.7 The Memory and Register Interface.. 23

3.8 The instruction execution stage.. 25

3.9 The Hazard control and data forwarding ... 25

3.9.1 Data Hazard .. 26

3.9.2 Control Hazard ... 30

Chapter 4. Implementation and Verification ... 31

4.1 The VLSI and FPGA design flow of asynchronous circuit using balsa.. 31

4.2 Implementation Issues .. 34

4.3 Verification... 34

Chapter 5. Result ... 37

5.1 Simulation Result .. 37

5.2 Area Cost.. 37

Chapter 6. Conclusion and future work ... 39

References.. 40

 v

List of Figures
Figure 1. The Two-phase handshake protocol ... 3

Figure 2. The Four-Phase handshake protocol .. 3

Figure 3. The Balsa Design Flow ... 4

Figure 4. The Synchronous 8051 Architecture... 7

Figure 5. Synchronous Pipeline V.S Asynchronous Pipeline .. 8

Figure 6: The Muller C-element, (a) symbol (b) true table (c) gate-level implementation............................. 9

Figure 7: The NC2P-element (a) symbol (b) true table (c) gate-level implementation................................. 10

Figure 8: The S-element (a) symbol (b) gate-level implementation (c) handshaking protocol 10

Figure 9: The Fetch Component (a) handshake component (b) gate level implementation 11

Figure 10: The Sequence Component (a) handshake component (b) gate level implementation 12

Figure 11: The Concurrent Component (a) handshake component (b) gate level implementation 12

Figure 12: The Variable Component (a) handshake component (b) gate level implementation 13

Figure 13. Pipelined 8051 Top Level ... 15

Figure 14. The IF stage... 16

Figure 15. The ID stage .. 17

Figure 16. The OF stage ... 18

Figure 17. The EXE stage... 20

Figure 18. The WB stage .. 23

Figure 19. The Memory interface.. 24

Figure 20. The hazard situation... 26

Figure 21. The FPGA design flow of balsa ... 32

Figure 22. The VLSI design flow of balsa... 33

Figure 23: SA8051 behavior simulation environment ... 35

Figure 24. The ROM model ... 36

 vi

List of Tables

Table 1. The advantage and Disadvantage of Asynchronous Design... 2

Table 2: Instruction execution scheme.. 7

Table 3. The Read Control Signal ... 19

Table 4. The Opcode control signal... 21

Table 5. The Write Back control signal .. 22

Table 6. The instruction Execution Stage ... 25

Table 7. The performance of executing GCD program... 37

Table 8. The Cost of Every Part of 8051... 38

Table 9. The Cost for asynchronous 8051 and synchronous 8051.. 38

 1

Chapter 1. Introduction
 The objective of this thesis is to design and implement a pipelined asynchronous 8051

microprocessor. 8051 is a CISC ISA, thus the instruction set is complicated. To design a

pipelined 8051, we analyzed the instruction sets, found its regulation, and proposed a new

architecture for 8051 microprocessor. The remainder of this chapter is briefly introducing the

asynchronous design, and the Balsa tool.

1.1 Motivations

 A digital system is designed as a collection of subsystems, and each it performs a

different computation and communication with its peers to exchange information. When

communication transactions take place, the whole systems need to be synchronized in order to

guarantee the validity of data exchanged.

 The dominant synchronization technique is global clock. The clock period defined the

time when communication transition can take place; therefore the clock period must longer

then the execution time of every systems, and the clock distribution is becoming an

increasingly cost issue.

 Thus, a different type of design- asynchronous circuit design is attracted more and more

research interest. Furthermore, several asynchronous circuits design methodologies have been

proposed[13]. A number of asynchronous processors have been developed including

Asynchronous ARM RISC processor (AMULET1, AMULET2e, AMULET3)[8][11][12] in

University of Manchester and Lutonium processor in CalTech [9].

 It is widely known that the 8051 is the most popular microprocessor. Therefore, we

implemented it with the pipeline method and asynchronous design to increase its

performance.

1.2 Asynchronous Design

 Synchronous circuit design is the major method in circuit design because it is widely

used and full of design experiences. However, asynchronous circuit has some advantages over

synchronous circuit. First, asynchronous circuit is average case performance, because it does

not the clock to trigger the action and every component can work at its speed. Second,

asynchronous circuit has no clock signal, therefore no power consumption needed for the

clock. It can also almost attain zero power consumption in its idle state because almost all

 2

components are idle. Third, asynchronous circuit is easy to modular design. Every component

can be connected by the same communication protocol. Fourth, asynchronous circuit can

avoid the clock skew problem. Fifth, without the clock distribution, asynchronous design is

low EMI (Electromagnetic Influence) problem.

 But, asynchronous circuit still has some problems over synchronous circuit. First,

without the clock control, asynchronous circuit needs more control signals, resulting in

increasing in area. Second, there are few CAD tools to support asynchronous design and test,

and this make it harder and longer to design the asynchronous circuit. That is a big challenge.

The advantage and disadvantage of asynchronous design is shown in Table 1.

Advantage Disadvantage
Average cast performance Overhead(Area)
Low Power Few CAD tools
Modular Design
No Clock Skew Problem
Low EMI

Table 1. The advantage and Disadvantage of Asynchronous Design

The majority of modern asynchronous circuit design techniques are based on the use of

handshaking to communicate between units. Handshaking means the communication protocol

between two connected components. There are two types of handshake protocol, two-phase

and four-phase. The two-phase handshake protocol is shown in Figure 1. The falling and

rising edge of request and acknowledge are active signals. The periods between a request and

its acknowledgement forming the handshake itself, and the period between an

acknowledgement and the next request, forming the idle phase. The data transition must obey

the setup time and hold time constraint.

Another type of handshake is four-phase. In this protocol, only the rising edge is the

valid active transition. Four-phase handshake is easier in CMOS design because only the

rising edge of signal can be the handshake phase, and the falling edge to reset the handshake

signal. There are three type of four-phase handshake protocols distinguished by the data

transition period, ie, broad, early, and late as shown in Figure 2.

Figure 1. The Two-phase handshake protocol

 Figure 2. The Four-Phase handshake protocol

1.3 Balsa Synthesis Tool

 Balsa is an asynchronous hardware description language developed by the Manchester

University. It can be directly compiled into several Handshake Components. We can use the

Balsa HDL to describe the behavior model of our circuit, and then compiled it into the most

popular hardware description language such as Verilog or VHDL. The overview of balsa

design flow is shown in Figure 3.

 3

 Figure 3. The Balsa Design Flow

Balsa description of a circuit is compiled using balsa-c to an intermediate breeze

description. The breeze description is a syntax-directed fashion with language constructs

being mapped into networks of parameterized instances of “handshake components”. Each of

“handshake components” has a concrete gate level implementation

 A number of tools are available to process the breeze handshake files. The balsa-netlist

automatically generates CAD native netlist files, which can be fed into the commercial CAD

tools that further synthesize the netlist to the fabricable layout. Balsa support three

commercial CAD systems: Compass Design Automation tools from Avant, Xilinx FPGA

design tools and Cadence Design Framework II.

 Balsa supports three back-end protocols for use with each technology: bundle-data

scheme using a four-phase-broad/reduced-broad signaling protocol, a delay-insensitive

dual-rail encoding and a delay-insensitive one-of-four encoding. The bundled-data back-end

should be faster and smaller, but needs more careful post-layout timing validation. The two

delay-insensitive schemes are larger and slower but should be more robust to layout

variations.

 4

 5

1-4 Organization of this thesis

In this thesis, we will illustrate the related work in chapter 2 including the overview of

the synchronous 8051, and the basic cells in Balsa synthesis system. In chapter 3 we will

illustrate the design of PA8051 modeled by Balsa. In chapter 4 we will illustrate the

implementation and verification of PA8051. In chapter 5 we will illustrate the results of

simulation. Finally, a brief conclusion and future work are discussed in chapter 6.

 6

Chapter 2. Related Work
2.1 Overview of 8051

 The architecture of the original synchronous 8051 has three buses: IB, PB, PARB bus.

IB-bus acts as the communication channel between any two registers. PB-bus acts the

communication channel among PAR (Program Address Register), Buffer, PC Incrementer, PC

and DPTR. PAR sent out program address on PAR-bus. The width of the IB bus is 1 byte

while the PARB and PB are 2 bytes. The internal memory consists of on-chip ROM and

on-chip data RAM. The on-chip RAM contains a rich arrangement of general-purpose storage,

bit-addressable storage, register banks, and special function registers (SFR). The registers and

input/output ports are memory mapped and accessible like any other memory location and the

stack resides within the internal RAM rather than in external RAM. SFRs take care of the

communication between CPU and peripherals. There are four bidirectional ports (P0 – P3) for

communication to and from the outside world. The architecture of synchronous 8051 is shown

in Figure 4.

 The 8051 also includes bit operations, which only affect single bit in a given registers.

Only some locations of the internal RAM are bit-accessible including address from 20H to

2FH and some SFRs. Internally, the bit operations are performed by reading the whole byte

from internal memory, modifying the single bit, and then writing the value back in the same

operation cycle.

 Table 2 is the instruction scheme of the synchronous 8051. Each instruction is executed

in one, two or four machine cycles. A machine cycle consists of a sequence of 6 states,

numbered S1 through S6. Each state time lasts for two oscillator periods. A machine cycle is

totally 12 oscillator periods. Therefore, with an internal clock frequency of 12 MHz the

performance will be below 1 MIPS. In each state of the execution scheme a specific action

takes place. The one-cycle instructions execute the first machine cycle C1, while the

two-cycle instructions execute C1 and C2 consecutively. The scheme results in many

redundant cycles during execution because not all actions are required in one machine cycle.

For example, two program fetches are generated during each machine cycle, even if the

instruction being executed does not require it.

 S1 S2 S3 S4 S5 S6
C1 Access

ROM
ACC -> T2 Access

RAM
Access
ROM

OP->T1 or T2 ALU->dest.

 S1 S2 S3 S4 S5 S6
C2 Access

ROM
Calculate jump address PC incr. OP->T1 or T2 ALU->dest.

Table 2: Instruction execution scheme

Figure 4. The Synchronous 8051 Architecture

 7

2.2 Overview of Pipeline Architecture

 The pipeline architecture is a most commonly used method in microprocessor designs. It

can increase the throughput due to the parallel processing of instructions. In asynchronous

circuit design, the utility of pipeline can further be increased because of every stage of the

pipeline can proceed in its own speed, not the synchronous pipeline worst case performance.

In Figure 5, the two graphs express the difference between synchronous and

asynchronous pipeline. We may assume that the pipelined system is divided into four stage;

they are IF, ID, EXE, and WB. In synchronous pipeline, every stage must be controlled by the

global clock which is set to the slowest pipelined stage. However, in asynchronous circuit,

every stage can be proceeded with its own speed. Some instruction may not need all five

stages to complete, such as instruction 3 and 4 in Figure 5. The instruction 3 does not need

WB stage and the instruction 4 doesn’t need EXE stage. In synchronous pipeline, even the

instruction needn’t execution in one stage, but it still need to wait a complete cycle to the next

stage. But in the asynchronous pipeline, the instruction can be proceeded quickly to next

stage.

IF ID EXE WB

IF ID EXE WB

IF ID3

2

1

T1 T5T4T3T2 T6

4

T7

EXE

IF ID WB

Figure 5. Synchronous Pipeline V.S Asynchronous Pipeline

 8

2.3 Balsa back-End

The Balsa back-end generates gate level netlist to import into target CAD systems in

order to produce circuit implementations. In this section we will describe some basic cells for

Xilinx technology generated by Balsa such as Muller C element and S element. We also

describe some handshake components in Balsa synthesis system.

2-3-1 Basic Elements

The gate level netlist generated by Balsa for Xilinx technology only uses some basic

cells including AND, OR, NOR, XOR, NADN, BUF, XNOR, INV, FD (D-type flip-flop),

FDC(D-type flip-flop with asynchronous clear) and FDCE(D Flip-Flop with Clock Enable

and Asynchronous Clear). Every bigger component is composed with these basic cells.

Figure 6: The Muller C-element, (a) symbol (b) true table (c) gate-level implementation

Figure 6 shows the Muller C-element. It is the most common used element in

asynchronous circuit. It is a state-holding element like an asynchronous set-reset latch. When

both inputs are 0, the output is set to 0. When both inputs are 1 the output is set to 1. For other

input combinations the output does not change. A Muller C-element is a fundamental
 9

component that is extensively used in asynchronous circuits.

NC2P
i0

i1
q

i0

i0

i1 q

i0 i1

1
0

 no change

q

0 X
1 1
1 0

(a)

(b)

(c)

Figure 7: The NC2P-element (a) symbol (b) true table (c) gate-level implementation

Figure 7 shows the NC2P element. When i0 is equal to 0, the output is 0. When i0 and i1

are equal to 1, the output is 1. For other input combinations the output does not change. It is

much like inverter of C-element except that when i0 is equal to 0 and i1 is equal to 1, the

output is 1.

Ar
Ba

Aa

Br

SAr

Aa

Br

Ba

Ar

Aa

Br

Ba

(a)

(b)

(c)

NC2P

 Figure 8: The S-element (a) symbol (b) gate-level implementation (c) handshaking

protocol

 Figure 8 shows the S-element which is a circuit element commonly found in the

implementation of handshake components. An S-element has 4 pins including 2

 10

request/acknowledge handshake pairs – ‘Ar’/’Aa’ and ‘Br’/’Ba’. In Balsa system it replaces

the “inverter of C-element” with “nc2p”. Hence, it can reduce the number of gates because

“inverter of C-element” uses 3 AND gates, 1 OR gate and 1 Inverter but “nc2p” uses 2 AND

gates, 1 NOR gate and 1 Inverter.

2-3-2 Handshake Components

 Balsa has about 40 components that use handshake signaling for communication. Each

of “handshake components” has a concrete gate level implementation. In the following

section we illustrate some handshake components [2] .

Figure 9: The Fetch Component (a) handshake component (b) gate level implementation

 Figure 9 is the Fetch component. This component is the most common way of

controlling a datapath from a control tree. Transferrers are used to implement assignment,

input and output channel operations in Balsa by transferring a data value from a pull datapath

and pushing it towards a push datapath [2].

 Figure 10 and 11 are sequence and concurrent component respectively. They form a large

part of handshake circuit control trees [2]. They are used to activate a number of commands

under the control of activate handshake.

 11

activate_0r
activateOut_0r

activateOut_1r

(a)

(b)

activateOut_1a

activateOut_0r

Activate_0r

activateOut_1r

Activate_0a

A
r

A
a

B
r

B
aactivateOut_0a

 Figure 10: The Sequence Component (a) handshake component (b) gate level

implementation

(a)

(b)

activateOut_1r, activateOut_0r

Activate_0r
Activate_0a

S
Ar Aa

BrBa
activateOut_0a, activateOut_1a

C2
i1

Qi0

activate_0r

||

activateOut_0r

activateOut_1r

Figure 11: The Concurrent Component (a) handshake component (b) gate level

implementation

 12

Figure 12: The Variable Component (a) handshake component (b) gate level

implementation

Figure 12 is the variable component. It uses D-type flip-flop to store data. The source of

clock is the signal write_0r. When a piece of data is needed to be stored, the signal write_0r is

set and then the signal is reset. When a piece of data is needed to be read, the signal read_0r

or read_1r is set. It is natural to achieve the effect of gating clock.

2-4 Concluding Remarks

In this chapter we introduce the synchronous 8051 architecture. 8051 is a complex

instruction set computer. It has variable-length instructions from one to three bytes. Each state

of a machine cycle uses the bus. We then introduce the concepts of asynchronous pipeline.

Finally we illustrate the Balsa back-end. Balsa synthesis system is composed of about 40

components. Each can be translated into gate level netlist. They use handshaking protocol for

communication.

 13

 14

Chapter 3. Design of PA8051
 This chapter describes the design of PA8051. This PA8051 consists of six main part, ie,

IF, ID, OF, EXE, WB, and MEM, this six parts work parallel with the communication channel

connected between them. But MEM is not part of the pipeline, it is a shared component in the

architecture. This chapter introduces the top view of PA8051 in the first, and then describes

the six main components of the processor.

3.1 The architecture of PA8051

 The architecture view of PA8051 is described in figure 13. All of the operations can be

completed in the five execution stage and memory unit. The IF(instruction fetch) stage is the

fetch unit to get instruction from the program ROM. The ID(instruction decode) stage is the

decode stage, responsible for decoding instructions to several control signals. The

OF(operand fetch) stage is the fetch unit to get data from data memory and register, and

providing the data for the next execution stage. The EXE(execution) stage is the main stage of

execution, containing one Multiplier, one Divider, and one general ALU. The WB(write back)

stage collects the result from EXE stage, and writes back to destination memory address and

register. The MEM(memory) unit contains three part. RAM_READ_ARBITOR arbitrates the

two read port from ID and OF. MEM_INTERFACE is responsible for the communication

with memory data. MEM is the memory data, which contains a 128-byte memory and special

function register (SFR).

Figure 13. Pipelined 8051 Top Level

Following code is the top level process of PA8051. Every component is connected

between internal channels.

procedure SA8051_IFIDOF(
 output p0,p1,p2,p3 : byte
) is

channel IF_2_ID_data : byte
channel IF_2_mem_addr : Address
channel ID_2_IF_addr : Address
…….

BalsaMemory_interface(IF_2_mem_addr,read,…)||
IF(mem_2_IF_data,ID_2_IF_addr,…) ||
ID_top(IF_2_ID_data,jmp,ID_data,…)||
SA8051_OF(ReadS, WriteSin, MEM_OF,…)||
RAM(maddr,wr,mem_in,mem_out,p0,p1,p2,p3)||

 15

MEM_INTERFACE(MemIn,….)||
SA8051_EXE(src1, src2, src3,…)||
SA8051_WB(EXE_WB, …)||
Ram_Read_Arbitor(MEM_data,valid_face_2_arbitor, …)||
 end
end

3.2 The IF stage

IF stage contains the one ROM interface, two buffers, and one fetch controller. The

ROM interface is the interface between program ROM and the processor. It sends the

program counter to ROM and fetches the instruction from ROM. These two buffers have 32

bytes storage space performing as a instruction cache to the program memory. When one

buffer have been read the at least byte, the fetch control will read the next instruction from

another buffer. If both buffers miss, these two buffers will fetch 64 bytes data from the current

PC.

PC

ID

Instruction

ROM
INTERFACE

buffer1

buffer2

Fetcher ctrl

data

Address

data

Address

data

Address

data

Address

data

Address

RnW

RnW

 Figure 14. The IF stage

3.3 The ID stage

The ID stage is the decode stage of instructions. It decodes every instruction to three

control signal used in the next stage.
 16

Opcode：The control signal, used in EXE stage, controls the type of computation.

Read：The control signal, used in OF stage, controls the read signal to SFR, memory and

register.

Write：The control signal, used in WB stage, controls the write back signal to SFR,

memory and register.

The first part of ID stage is ID1, it decides the instruction type of every instruction. If the

instruction length is longer than one byte, the data in second or third byte are memory address

or immediate data. Therefore we can collect it from ID1 without any operation in the ID2

stage. The jmp signal comes from WB stage, and it is the branch taken signal. If jmp is 1, it

means a jump occur. If jmp is 0, it means no jump occur.

Figure 15. The ID stage

3.4 The OF stage

The OF stage is the stage providing the source data to EXE stage. There are five main

sources, ACC, register, register indirect, memory, and immediate data. Many instructions

require the data from two of these five types of sources. Some instructions may need to

calculate the write back address in this stage, such as some register address and register

indirect address. Therefore there are many different operations in this stage controlled by the

ReadIn signal.

 17

Figure 16. The OF stage

ReadIn is the data and ctrl bundle used in OF stage, including control, register address,

memory address and immediate data. The following OF_Read type is the data type of ReadIn

signal. And table 3 is the ReadCtrl signal.

type OF_Read is record
 maddr:byte;
 raddr:3 bits;
 immed:byte;
 ctrl:ReadCtrl
end

Type Operation Example
ACC Read ACC SWAP A
REG Read Register MOV A,Rn

 18

 19

REGI Read Register indirect MOV A,@Ri
ACC_REG Read ACC and Register ADD A,Rn
ACC_REGI Read ACC and Register indirect ADD A,@Ri
ACC_MEM Read ACC and Memory data ADD A,dir
MEMB Read Memory bit address data JBC bit,rel
REG_MEM Read Register and Memory data MOV @Ri,dir
SP_SPI Read SP and SP indirect POP dir
SP_MEM Read SP and Memory data PUSH dir
XCH_R Read ACC and Register XCH A,Rn
XCH_RI Read ACC and Register indirect XCHD A,@Ri
XCH_M Read ACC and Memory data XCH A,dir
DPTR_ACC Read ACC and DPTR MOVX @DPTR, A
ACC_IMM Read ACC and immediate data ADD A,#data
MEM Read Memory data MOV dir,dir
MEM_IMM Read Memory and immediate data ORL dir,#data
REG_IMM Read Register and immediate data CJNE Rn, #data ,rel
REGI_IMM Read Register indirect and immediate data CJNE @Ri ,#data ,rel
DPTRI Read DPTR indirect MOVX A, @DPTR
ACC_REGB Read ACC and Register address MOV Rn,A
FETCH_REG Read Register address MOV Rn,#data
IMM_REGB Read Register and immediate data MOV @Ri,#data
REG_WB Read Register data DJNZ Rn,rel
MEM_WB Read Memory data DJNZ dir,rel
IMM Read immediate data MOV dir,#data
DPTR Read DPTR INC DPTR
IMM16 Read immediate 16 bit data MOV DPTR,# data 16
NO CPL C

Table 3. The Read Control Signal

3.5 The EXE stage

 The EXE stage processes the data from OF stage. It contains two register PSW and

one-bit color bit. Register PSW provides the carry and auxiliary carry data in this stage and

color bit is used to manipulate the control hazard.

Figure 17. The EXE stage

 The opcode is the control signal used in EXE stage, table 4 shows the opcode number

and its example.

OPCODE Example
MUL MUL AB
DIV DIV AB
NOP RET
MOV MOV A,@A+PC
ADD ADD A,#data
ADDC ADDC A,#data
SUB SUBB A,#data
NOT CPL A
AND ANL A,#data
XOR XRL A,#data
OR ORL A,#data
RL RL A
RLC RLC A

 20

 21

RR RR A
RRC RRC A
SWAP SWAP A
XCH XCH A,Rn
XCHD XCHD A,@Ri
INC INC dir
DEC DEC dir
DA DA A
DJNZ DJNZ Rn,rel
CJNE CJNE A, #data, rel
CMPZ JZ rel
CMPNZ JNZ rel
INC16 INC DPTR
BCMPZ JB bit,rel
BCMPNZ JNB bit,rel
BCMPNZC JBC bit,rel
CLRA CLR A
JC JC rel
JNC JNC rel
CPLB CPL bit
CLRB CLR bit
SETB SETB bit
MOVB MOV bit,C
CPLC CPL C
CLRC CLR C
SETC SET C
ORC ORL C,bit
ANLC ANL C,bit
ORLNC ORL C,/bit
ANLNC ANL C,/bit
MOVC MOV C,bit

Table 4. The Opcode control signal

3.6 The WB stage

 The WB back stage collects the write back data, and sends it to the memory interface.

 22

The control signal WriteCtrl is the control signal used in WB stage. Table 5 shows the signal

and its operation. The following MemWrite type is the write back data and control to

Memory.

type MemWrite is record
 sfr:byte; --data
 mem: byte; --data
 maddr:byte; --address
 ac:bit;
 cy:bit;
 ov:bit;
 ctrl:MemWCtrl --ctrl
end

Type Operation Example

ACC Write ACC ADD A,#data
MEM Write Memory INC dir
MEM_WB Write Memory ORL dir,#data
MEMWB Write Memory bit CPL bit
SP_MEM Write Memory and SFR PUSH dir
ACC_MEM Write ACC and Memory XCH A,dir
DPTR Write DPTR MOV DPTR,# data 16
NO NOP
JMP Jump JMP @A+DPTR
CJMP Jump CJNE A, #data, rel
JMP_MEM Jump and write memory DJNZ dir,rel
JMP_MEMWB Jump and write memory bit JBC bit,rel
CY Write carry CPL C

Table 5. The Write Back control signal

Figure 18. The WB stage

3.7 The Memory and Register Interface

 The Memory and Register Interface is the control unit between ID and OF and Memory.

Because both of the two stage ID and OF can read memory data, a RAM_READ_ARBITOR

is used to arbitrate the data read from ID or OF stage. The MEM_INTERFACE arbitrate the

read or write signal from RAM_READ_ARBITOR and WB, and then fetch data from

Memory or write data into memory. Two register ACC and PSW are located in

MEM_INTERFACE because these two registers are frequently fetched. In order to reduce the

fetch time, they are not in the MEM unit. The lock signal comes from OF stage, and it tells

MEM_INTERFACE what the memory address or SFR needs to be locked. This mechanism

prevents the data hazard. If the data is locked, then the valid will be 0. When the valid bit is 0,

RAM_READ_ARBITOR sends the control signal back to MEM_INTERFACE, until it gets

the correct data, that is, valid is 1. The following code segment describes the mechanism in

the RAM_READ_ARBITOR unit.
 23

loop
 MemRead <- read_ctrl || data -> dataT||lock<-lockT||valid->validT
 while(validT /=1)
end;

Figure 19. The Memory interface

 24

 25

3.8 The instruction execution stage

 All the instruction are executed in the order IF, ID, OF, EXE, and WB. However,

not all the instructions need to completely use the five execution stages. Table 6 shows the

operation stages of all the 256 instructions. Only 21 instructions execute with IF and ID stage,

because these instructions are unconditional jump and need no ALU operations. They can be

completed in first two stages. Other instructions need all the five stages to complete execution.

Although some instructions such as MOV are no operation in EXE stage, we can just connect

the OF output to WB stage, we didn’t do so. With this design, the WB stage can receive the

data both from OF and EXE. If the OF stage output data is faster then that of EXE stage, there

will be an out-of-order completion situation in the design, therefore we need more control to

handle the problem.

As a result, we set all the instruction in the execution order of IF-ID-OF-EXE-WB. If
one instruction doesn’t need one execution stage, a bypass signal will be sent into next stage.
The following code is part of the code in the EXE stage to deal with MOV.

 |NOP..MOV then dest1:=src1 || dest2:=src2.

dest_1 <- dest1 || dest_2 <- dest2

Execution stage Number of instructions Example
IF-ID 21 NOP, AJMP
IF-ID-OF-EXE-WB 235 CPL bit, ADD, MOV…..

Table 6. The instruction Execution Stage

3.9 The Hazard control and data forwarding

 Hazards are serious problems may be happened in pipeline machine; and they need

to be avoid or solved. Hazard has two type may be found in PA8051, data hazards and control

hazards. Data hazards happened in the data dependency of consecutive instructions. Control

hazards may be happened in the branch occurring during pipeline execution. We classified

data hazard into three types. The first type data hazard can be solved with forwarding

mechanism, but the second and third types of data hazard, only can solve with stall. Data

hazards will only happen in two consecutive instructions to access the same memory address,

and the hazard may also be resolved by inserting any one non-related instruction between

these two instructions.

Figure 20. The hazard situation

 Figure 20 shows an example of the data hazard. It shown that the first and second

instruction have data dependency on A. When the second instruction is in OF stage, the first

instruction is in EXE stage, and thus the second instruction can not correctly fetch the data at

this moment. However, the third instruction is no data hazard, because when it is in OF stage,

the first instruction is in WB stage, there is no data hazard happened.

 Because our design is implemented with asynchronous circuit and not all instructions,

may be executed in the sequence like what is shown in Figure 20; and furthermore the

execution time of every stage may be different, is there no data hazard between the first

instruction and third instruction with different instruction execution sequence? The answer is

yes! In our design, when the third instruction enters OF stage, the second instruction must be

in EXE stage, and when then the second instruction enters EXE stage, the first instruction

must in WB stage. Therefore, when the third instruction enters OF stage, the first instruction

must be already in WB stage. As a result, the first instruction must be finishing write back

before the third instruction begins to fetch data.

3.9.1 Data Hazard

 The only data hazard is read after write. If there are two consecutive instruction, the first

instruction writing and second instruction reading the same location, the second instruction

will read the old data. There are three types of data RAW hazard：

Type 1：Solved with data forwarding

 ADD A, #data
 ADD A, Rn

 To solve this type of data hazard, we use the result of first instruction which is stored in

 26

 27

the dest1 register in EXE stage and can be simply used as the input of ALU operation for the

second instruction. The forward control generated in the MEM_INTERFACE unit. There are

five types of forward operations, SRC121, SRC221, SRC122, SRC122, and SRC1_2.

SRC121 means previous destination 1 forward to source 1, and SRC 221 means previous

destination 2 forward to source 1. The following code segment shows the forward mechanism

in EXE stage.

 case forward of
 SRC121 then
 src1:= dest1
 |SRC221 then
 src1:= dest2
 |SRC122 then
 src2:= dest1
 |SRC222 then
 src2:= dest2
 |SRC1_2 then
 src1:=dest1 || src2:=dest2
 |NO then
 continue
 else
 continue
 end;

The forward signal is sent by MEM_INTERFACE unit. In OF stage, the memory address

need to be lock are generated and sent to MEM_INTERFACE. The lock signal contains the

lock memory address and control. In MEM_INTERFACE, four register used to control the

lock and forward mechanism. The register RD11 and RD12 indicates the lock address of

current instruction. The register RD21 and RD22 indicates the lock address of previous

instruction. Whenever an instruction retrieves the correct data, then it locks the memory. The

following is the code fragment of lock memory. The RD11 and RD12 changes to current lock

data, and previous lock data move to RD21 and RD22.

 shared LOCK_MEM is
 begin
 case lockT.ctrl of
 ACC then
 RD21:=RD11||RD22:=RD12;
 RD11:=R_ACC||RD12:=255

 28

 |MEM then
 RD21:=RD11||RD22:=RD12;
 RD11:=lockT.addr ||RD12:=255
 ……
In our design, only two successive instructions may have data hazard, and therefore we

need to check RD11 and RD12. If RD11 is the address we want to fetch, just forward. The

following code shows some code segment in MEM_INTERFACE, and three types of

operation will occur, forwarding from destination 1 or destination 2, and fetch ACC. Note that

lock memory is required after fetch data.

shared RESET_LOCK is
 begin
 if(RD21=255) then
 RD11:=255||RD12:=255
 else
 RD21:=255||RD22:=255
 end
 end

case MemRead.ctrl of
ACC then
if(RD11=R_ACC) then
 forward<-SRC121||NULL_OUT()||LOCK_MEM()

 |RD12=R_ACC then
 forward<-SRC221||NULL_OUT()||LOCK_MEM()
else
data<- (#ACC @ #C0_8@ #C0_8 as 24 bits)||valid<-1||LOCK_MEM()||forward<-NO
end
……

Type 2：Solved with stall
In this type, the operand needs to be fetched in OF stage, but at the meantime, the

previous instruction is in EXE stage and the new operand value is not calculated. Therefore,

we need to stall the pipeline in this situation.

 INC R1
 ADD A,@R1

In the previous example, the first instruction writes the register R1 but it produces the

result in EXE stage, and in this moment, the second instruction is in OF stage and waiting to

 29

read the R1 value. So we need to wait for the first instruction to complete and then to execute

the second instruction. We solved this problem with the memory lock mechanism in

MEM_INTERFACE and RAM_READ_ARBITOR. The following code fragment is the

control of read register of indirect data. First we calculate the memory address in

Extract_RegR(). If this memory is locked, we send the NOT_VALID() signal to

RAM_READ_ARBITOR. RAM_READ_ARBITOR will continuously send signal to

MEM_INTERFACE until it gets the correct data. The stall mechanism is easily to achieve.

case MemRead.ctrl of
|REGI then

 Extract_RegR();
 If(error=1) then
 NOT_VALID()
 |(RD11=raddr or RD12=raddr) then
 NOT_VALID()
 else
 wr <-0 || addr<-raddr ||in_data1->tmp0;
 if(RD11=tmp0) then
 forward<-SRC121||NULL_OUT()||LOCK_MEM()
 |RD12=tmp0 then
 forward<-SRC221||NULL_OUT()||LOCK_MEM()
 else
 FETCH_REGI();

TO_OF <- (#tmp1 @ #C0_8@ #tmp0 as 24 bits)||valid<-1||
LOCK_MEM()||forward<-NO

 end
 end

Type 3：Solved with stall
 In this situation, the first instruction changes the register select bit RS0 or RS1 in PSW,

and then the next instruction need to read register. Because the next instruction needs to wait

the correct RS0, therefore stall is required in this situation. The situation will happen when

the following code execute.

SETB C.RS0
 MOV dir, Rn

 30

 The following code segment shows the register address generating procedure. If PSW is

locked, then error=1, the NOT_VALID data will be sent to register read control.

shared Extract_RegR is
 begin
 if(RD11=R_PSW or RD12=R_PSW) then
 error:=1
 else
 raddr := (#OFtoMEM.raddr@ #psw[3..4] @ #C0_3 as byte)||error:=0
 end
 end

3.9.2 Control Hazard

Control hazard happens when any jump instruction appears in the program. When jump

occurs, the coming instructions in the pipeline must be flushed. To solve this problem, we use

the color bit method. We add a bit in every instruction named color bit. and a one bit

register(color register) stores the current color information in the EXE stage. Every time when

jump occurs, the color register complement it. Therefore when the coming instruction

executed in the EXE stage, it can check the value of its color bit with color register. If the

value is different, a jump is occurred and then this instruction needs to be flushed. The

following code shows the operation in EXE stage.

if(color=colorT) then
 case aluop of
 MUL …
 |DIV …
else
 send NOP
end

 31

Chapter 4. Implementation and
Verification

This chapter contains two parts. First, we illustrate our design flow for asynchronous

implementation on FPGA and VLSI. Second, we illustrate the behavior simulation.

4.1 The VLSI and FPGA design flow of

asynchronous circuit using balsa

 The PA8051 core is modeled with Balsa language, and then compiled into a collection of

“handshake components” with the balsa-c cmpiler. Each of these components has a concrete

gate level implementation; and then use the balsa-netlist tool can automatically generate them

into Verilog for Xilinx or other target synthesis tools.

 The following steps are the design flow for FPGA. The Verilog netlist generated by

balsa-netlist is converted into a netlist of basic gates in the synthesis step of the design flow.

The netlist may be optimized using technology-independent logic minimization algorithms.

However, we must avoid the logic minimization for hazard free circuits and buffers generated

by balsa-netlist. We should add the constraint “keep hierarchy” to avoid the logic

minimization. Then the synthesized netlist is mapped to the target device using a

technology-mapping algorithm. The placement algorithm maps logic blocks from the netlist

to physical locations on an FPGA. On the placement has been done, the routing algorithm

determines how to interconnect the logic blocks using the available routing. The final output

of the design flow is the FPGA programming file, which is a bit stream determining the state

of every programmable element inside an FPGA. The design flow is shown is figure 21.

Balsa description

FPGA Programming
file

Timing Simulation

Balsa-c

Breeze description

Balsa-netlist

Verilog netlist for
Xilinx

Synthesis

MAP

Placement & Routing

Behaviour Simulation

Function Simulation

Figure 21. The FPGA design flow of balsa

 The VLSI design flow of balsa has some difference on FPGA design. First, the

balsa-netlist do not support the Synopsys technology, we only can use the “ Example”

technology, and change some gates with the standard cells for Synopsys. Then we use the

 32

Synopsys Design Compiler to synthesize the Verilog model. After synthesizing, we do the

functional simulation with Modelsim. After functional simulation, we do the place and route

with SOC Encounter, and export the layout GDS file.

Figure 22. The VLSI design flow of balsa

 33

 34

4.2 Implementation Issues

 Compilation from Balsa programs to Xilinx netlist proceeds in two steps. In first step,

handshake circuits form the intermediate architectures. An important characteristic about this

compilation is that it is transparent, which allows feedback about important performance

characteristics such as performance, area, timing and testability to be generated at the

handshake circuit level and to be presented to the VLSI programmer at the Balsa level. When

the designer is satisfied with the performance of the Balsa program, the corresponding

handshake circuit is expanded into a gate-level netlist with target technology. At this level the

design can be translated to Verilog HDL and simulated it to obtain more accurate performance

figures using commercial EDA tools.

 We choose four-phase bundled data protocol to implement the handshake circuit instead

of dual-rail encoding in order to reduce the area cost. The Balsa provided some technology

for implementations. If we choose Xilinx ISE, the circuits are implemented only using the

Xilinx standard cells such as AND, OR, Inverter gate and flip flop. If the target synthesize

tools are not supported such as Synopsys Design Compiler, we can use the “Example”

technology which translated the circuit to some basic cell, and we need to modified the basic

cell with the standard cell in the target synthesize tool.

 It should be noticed that the synthesis tool could do logic minimization but it must be

avoided. The asynchronous system added some buffer or redundant circuit to ensure

hazard-free. They can not be minimized. We can avoid this situation by adding the constraint

“keep hierarchy” on the handshake modules.

 RAM and ROM are not modeled by Balsa language. We can implement them using the

block RAM on FPGA or using the standard RAM in VLSI. Until now all instructions can be

executed except MOVX. The peripherals are not considered such as timers and UART.

4.3 Verification

The environment used to do behavior simulation for PA8051 is illustrated in figure 23.

The ROM model is the predefined procedures in Balas as shown in figure 24. We assign the

address width and data width to determine their size. The ROM size is 4K bytes. The contents

of the ROM are loaded during initialization as 8-bit quantities in the hexadecimal format from

a hexadecimal file. A hexadecimal file is translated from a C program by KEIL tool [6].

Whenever an addressing arrives at the ROM model from the ROM address channel, the ROM

outputs the instruction code. When the processor wants to write data, it sets the signal rNw

and sends out the address and the data.

 The 8051 simulator executes the instructions in the hexadecimal file. The execution

results are compared with the contents of the RAM. If the results are not equal, we must

modify the code of the processor.

SA8051 (Balsa)

ROM Model (Balsa)

8051 HEX file

8051 Object Code

Source file (C)

8051 Simulator

Execution Result

= CorrectYes

No

KEIL-oh51

KEIL-c51

KEIL-a51

KEIL-bl51

Figure 23: SA8051 behavior simulation environment

 35

 36

Figure 24. The ROM model

 37

Chapter 5. Result
5.1 Simulation Result

 We have successfully executed some GCD Codes in PA8051 using the verification

method in Figure 23. The behavior simulation is passed. But the functional simulation was not

yet completed.

 The performance comparison between asynchronous 8051[14] and PA8051 was shown

in table 7. When the SA8051 and PA8051 executing the same GCD program in balsa

development environment, the estimated time can be calculated. The result is that the SA8051

spend 2.74 times over PA8051. Therefore, in behavior simulation, PA8051 have better

performance than SA8051, the speedup is about 2.74.

 In our design, we divided the processor into five stages, theoretically there will be 5

speedup compared to non-pipelined design. Because the five stages are not balanced, some

stages are longer than the other stages. Furthermore, the pipelined architecture increasing the

control signals overhead. Thus, PA8051 can’t totally benefit from the pipelined structure, but

the 2.7 speedup is greatly better than SA8051.

 GCD (estimated time) Speedup

SA8051 76411420 1

PA8051 27851320 2.74

 Table 7. The performance of executing GCD program

5.2 Area Cost

 PA8051 was synthesized with Xilinx ISE, and the gate and path delay of every part of

PA8051 is shown in table 8. The ID stage is the most dominant stage of all part of the design,

spend half of the total cost PA8051.

 Table 9 is the comparison of synchronous 8051 and asynchronous 8051[14] and PA8051,

the asynchronous design is much bigger than the synchronous one. The area overhead mainly

comes from the handshake circuit in each handshake component. The hazard free circuit is

employed in order to assure the circuit validity. The circuits of the completion detection on

 38

the control path which need large C element also result in the area overhead.

Another reason is due to the CAD tool. There are no commercial CAD tools for the

asynchronous circuits. The synchronous CAD tools can do some optimization techniques for

the speed and area such as logic minimization and retiming. However, the asynchronous tool

Balsa just does transparent compilation and does not do any optimization on the asynchronous

circuits.

The other extra area overhead of pipelined asynchronous 8051 comes from several

aspects. First, every stage has its own control code for operation, and every stage has a big

multiplexer to choose the action. But in non-pipelined version, the following action is

determined after instruction decoding. This operation does not need many multiplexers.

Second, the control code of every stage is too big. Every stage needs a control code to choose

the correct action; however, the bigger control code, the more complicated related control

circuit will be. For example, opcode in EXE, there are 44 types, and therefore a 1-of-44

multiplexer must be generated. The cost is very big.

 slice gate minimum path delay(ns)

IF 1007 13987 757

ID 5353 61973 721

OF 564 7086 34

EXE 1284 16938 174

MEM_INTERFACE 1098 13217 125

RAM_READ_ARBITOR 57 1051 28

WB 232 2977 40

TOTAL 9595 117229

 Table 8. The Cost of Every Part of 8051

 Slice Gate

Synchronous 926 16688

Asynchronous (SA8051) 2155 26942

pipelined asynchronous (PA8051) 10226 123510

 Table 9. The Cost for asynchronous 8051 and synchronous 8051

 39

Chapter 6. Conclusion and future work
 We designed and implemented a pipelined asynchronous 8051 microprocessor. In our

design, except MOVX, the overall 8051 instructions can be executed correctly, but the IO and

interrupt mechanisms were not implemented yet.

 Our proposed pipelined 8051 PA8051, compared to SA8051, after executing GCD

program, have 2.74 speedup. We have a preliminary result in using pipelined to increase

performance. Although we should execute more programs to verify the performance, we

almost can confirm that PA8051 have better performance than SA8051 and the speedup is

above 2.

The capabilities of FPGAs have increased to the level which makes it is possible to

implement a complete computer system on a single FPGA chip. The main component in such

a system is a soft-core processor. In addition, the VLSI design with balsa development

environment still has some limitations, and the most important of all is that the supported

EDA tools that can correctly co-worked with are not sufficient.

 The thesis offers the following contributions:

 The architecture of the PA8051 modeled by Balsa is described. Some design issues for

Balsa language is also described.

 The new defined architecture for 8051 was developed.

Future work for our pipeline asynchronous 8051：

 Performance evaluation on FPGA or VLSI design

 Adding additional IO and peripherals

 Redefine the control signal in every stage to reduce area cost

 40

References

[1] A. Bardsley, D. A. Edwards, “The Balsa Asynchronous Circuit Synthesis System” 2000.

University of Manchester

[2]A. Bardsley, "Implementing Balsa Handshake Circuits," 2000. University of Manchester

[3] Doug Edwards, Andrew Bardsley, Lilian Janin & Will Toms“Balsa : A Tutorial

Guide”, 2004.

[4] Hans van Gageldonk, Kees van Berkel_, Ad Peeters “An Asynchronous Low-Power

80C51 Microcontroller”, Philips Semiconductors, 2001.

[5] I.E. Sutherland, “Micropipelines”, Communications of the ACM, Vol.32, Number 6,

June 1989, pp 720-738.

[6]I. KEIL Software, "8051 Development Tools," 2005.

[7] Je-Hoon Lee, et.al “A novel asynchronous pipeline architecture for CISC type embedded

controller, A8051”, The 2002 45th Midwest Symposium on Circuits and Systems

[8] J.V.Wood et.al “AMULET1:An Asynchronous ARM Microprocessor”, IEEE

Transactions on Computers, Volume 46, Issue 4, April 1997 Page(s):385 – 398

[9] Martin, A.J.,et.al”The Lutonium: a sub-nanojoule asynchronous 8051 microcontroller”,

Asynchronous Circuits and Systems, 2003. Proceedings. Ninth International Symposium

Page(s):14 – 23

[10]Q.Zhang & G.Theodoropoulos, “Modelling SAMIPS: A Synthesizable Asynchronous

MIPS Processor”, Proceeding of the 37th Annul Simulation Symposium.

[11] S.B.Furber et.al“AMULET2e:An Asynchronous Embedded Controller”, Proceedings

of the IEEE Volume 87, Issue 2, Feb. 1999 Page(s):243 - 256

[12] S.B.Furber et.al “AMULET3:A High-Performance Self-Timed ARM Microprocessor”,

ICCD '98. Proceedings., Page(s):247 – 252

 41

[13] Spars, J. Furber, S. “Principle of Asynchronous Circuit Design”, 2001. Kluwer

Academic Publishers.

[14] Y.T.Chang, “SA8051:An asynchronous soft-core Processor for Low-Power

System-on-Chip Applications”, 2005

