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以管線方式改進非同步 8051 微控器之效能 
 
研究生：蔡瑞夫           指導教授：陳昌居教授 
 

國立交通大學資訊工程學系碩士班 

 
摘要 

 
 8051 是用途最廣的 CISC 處理器，因為指令長度不同，規則度也低，所以以往的實

現方法都較少使用管線。管線設計的處理器，由於能夠平行處理，能夠提高整體產出。

本論文之目的就是設計能在增加最少面積下，能提昇效能，以管線執行的 8051 處理器，

稱為 PA8051。 

 我們會將指令處理的步驟，分成 Instruction Fetch (IF)，Instruction Decode 

(ID)，Operand Fetch (OF)，Execution(EXE)，Write Back (WB)這五個階段。管線執

行的第一個重點是要能避免所有管線危障的情況，包括資料危障、結構危障、控制危障，

本文中探討各種指令平行處裡可能發生的問題。第二重點在探討資料相依時，所要解決

的方法。 

最後的結果在行為模型下正確的通過了驗証，並以 Xilinx 合成器轉成電路。
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Using Pipeline Method to Improve Asynchronous 

8051 Processor Performance 

 
Student：Ruei-Fu Tsai      Advisor：Dr.Chang-Jiu Chen 

 

Abstract 

 
8051 is the most popular CICS ISA Microprocessor, because of its different instruction 

length, the regulation of instruction is little. Its design is hard to implement in pipeline. The 

throughput of pipelined processor is higher than that of nonpipelined processor. The objective 

of this processor is to develop a pipelined asynchronous 8051 processor, called PA8051. 

We divide PA8051 into five stages, that is Instruction Fetch (IF), Instruction Decode (ID), 

Operand Fetch (OF), Execution(EXE) and Write Back (WB). The most important problem to 

be resolved in pipelined design is hazard, including data hazard, structural hazard, control 

hazard. Thus, we analyze where the hazards happen and find the solution to solve the hazards. 

Finally, we successfully passed the behavior simulation and synthesized the design with 

Xilinx Synthesize tool. 
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Chapter 1. Introduction 
 The objective of this thesis is to design and implement a pipelined asynchronous 8051 

microprocessor. 8051 is a CISC ISA, thus the instruction set is complicated. To design a 

pipelined 8051, we analyzed the instruction sets, found its regulation, and proposed a new 

architecture for 8051 microprocessor. The remainder of this chapter is briefly introducing the 

asynchronous design, and the Balsa tool. 

1.1 Motivations 

 A digital system is designed as a collection of subsystems, and each it performs a 

different computation and communication with its peers to exchange information. When 

communication transactions take place, the whole systems need to be synchronized in order to 

guarantee the validity of data exchanged. 

 The dominant synchronization technique is global clock. The clock period defined the 

time when communication transition can take place; therefore the clock period must longer 

then the execution time of every systems, and the clock distribution is becoming an 

increasingly cost issue. 

  Thus, a different type of design- asynchronous circuit design is attracted more and more 

research interest. Furthermore, several asynchronous circuits design methodologies have been 

proposed[13]. A number of asynchronous processors have been developed including 

Asynchronous ARM RISC processor (AMULET1, AMULET2e, AMULET3)[8][11][12] in 

University of Manchester and Lutonium processor in CalTech [9]. 

 It is widely known that the 8051 is the most popular microprocessor. Therefore, we 

implemented it with the pipeline method and asynchronous design to increase its 

performance.  

1.2 Asynchronous Design 

 Synchronous circuit design is the major method in circuit design because it is widely 

used and full of design experiences. However, asynchronous circuit has some advantages over 

synchronous circuit. First, asynchronous circuit is average case performance, because it does 

not the clock to trigger the action and every component can work at its speed. Second, 

asynchronous circuit has no clock signal, therefore no power consumption needed for the 

clock. It can also almost attain zero power consumption in its idle state because almost all 
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components are idle. Third, asynchronous circuit is easy to modular design. Every component 

can be connected by the same communication protocol. Fourth, asynchronous circuit can 

avoid the clock skew problem. Fifth, without the clock distribution, asynchronous design is 

low EMI (Electromagnetic Influence) problem. 

 But, asynchronous circuit still has some problems over synchronous circuit. First, 

without the clock control, asynchronous circuit needs more control signals, resulting in 

increasing in area. Second, there are few CAD tools to support asynchronous design and test, 

and this make it harder and longer to design the asynchronous circuit. That is a big challenge. 

The advantage and disadvantage of asynchronous design is shown in Table 1. 

 
Advantage Disadvantage 
Average cast performance Overhead(Area) 
Low Power Few CAD tools 
Modular Design  
No Clock Skew Problem  
Low EMI  

Table 1. The advantage and Disadvantage of Asynchronous Design

The majority of modern asynchronous circuit design techniques are based on the use of 

handshaking to communicate between units. Handshaking means the communication protocol 

between two connected components. There are two types of handshake protocol, two-phase 

and four-phase. The two-phase handshake protocol is shown in Figure 1. The falling and 

rising edge of request and acknowledge are active signals. The periods between a request and 

its acknowledgement forming the handshake itself, and the period between an 

acknowledgement and the next request, forming the idle phase. The data transition must obey 

the setup time and hold time constraint. 

Another type of handshake is four-phase. In this protocol, only the rising edge is the 

valid active transition. Four-phase handshake is easier in CMOS design because only the 

rising edge of signal can be the handshake phase, and the falling edge to reset the handshake 

signal. There are three type of four-phase handshake protocols distinguished by the data 

transition period, ie, broad, early, and late as shown in Figure 2. 

 



 
Figure 1. The Two-phase handshake protocol 

 
 Figure 2. The Four-Phase handshake protocol 

1.3 Balsa Synthesis Tool 

 Balsa is an asynchronous hardware description language developed by the Manchester 

University. It can be directly compiled into several Handshake Components. We can use the 

Balsa HDL to describe the behavior model of our circuit, and then compiled it into the most 

popular hardware description language such as Verilog or VHDL. The overview of balsa 

design flow is shown in Figure 3. 
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 Figure 3. The Balsa Design Flow 

Balsa description of a circuit is compiled using balsa-c to an intermediate breeze 

description. The breeze description is a syntax-directed fashion with language constructs 

being mapped into networks of parameterized instances of “handshake components”. Each of 

“handshake components” has a concrete gate level implementation  

 A number of tools are available to process the breeze handshake files. The balsa-netlist 

automatically generates CAD native netlist files, which can be fed into the commercial CAD 

tools that further synthesize the netlist to the fabricable layout. Balsa support three 

commercial CAD systems: Compass Design Automation tools from Avant, Xilinx FPGA 

design tools and Cadence Design Framework II. 

 Balsa supports three back-end protocols for use with each technology: bundle-data 

scheme using a four-phase-broad/reduced-broad signaling protocol, a delay-insensitive 

dual-rail encoding and a delay-insensitive one-of-four encoding. The bundled-data back-end 

should be faster and smaller, but needs more careful post-layout timing validation. The two 

delay-insensitive schemes are larger and slower but should be more robust to layout 

variations.  

 4
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1-4 Organization of this thesis 

In this thesis, we will illustrate the related work in chapter 2 including the overview of 

the synchronous 8051, and the basic cells in Balsa synthesis system. In chapter 3 we will 

illustrate the design of PA8051 modeled by Balsa. In chapter 4 we will illustrate the 

implementation and verification of PA8051. In chapter 5 we will illustrate the results of 

simulation. Finally, a brief conclusion and future work are discussed in chapter 6. 
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Chapter 2. Related Work 
2.1 Overview of 8051  

 The architecture of the original synchronous 8051 has three buses: IB, PB, PARB bus. 

IB-bus acts as the communication channel between any two registers. PB-bus acts the 

communication channel among PAR (Program Address Register), Buffer, PC Incrementer, PC 

and DPTR. PAR sent out program address on PAR-bus. The width of the IB bus is 1 byte 

while the PARB and PB are 2 bytes. The internal memory consists of on-chip ROM and 

on-chip data RAM. The on-chip RAM contains a rich arrangement of general-purpose storage, 

bit-addressable storage, register banks, and special function registers (SFR). The registers and 

input/output ports are memory mapped and accessible like any other memory location and the 

stack resides within the internal RAM rather than in external RAM. SFRs take care of the 

communication between CPU and peripherals. There are four bidirectional ports (P0 – P3) for 

communication to and from the outside world. The architecture of synchronous 8051 is shown 

in Figure 4. 

 The 8051 also includes bit operations, which only affect single bit in a given registers. 

Only some locations of the internal RAM are bit-accessible including address from 20H to 

2FH and some SFRs. Internally, the bit operations are performed by reading the whole byte 

from internal memory, modifying the single bit, and then writing the value back in the same 

operation cycle. 

 Table 2 is the instruction scheme of the synchronous 8051. Each instruction is executed 

in one, two or four machine cycles. A machine cycle consists of a sequence of 6 states, 

numbered S1 through S6. Each state time lasts for two oscillator periods. A machine cycle is 

totally 12 oscillator periods. Therefore, with an internal clock frequency of 12 MHz the 

performance will be below 1 MIPS. In each state of the execution scheme a specific action 

takes place. The one-cycle instructions execute the first machine cycle C1, while the 

two-cycle instructions execute C1 and C2 consecutively. The scheme results in many 

redundant cycles during execution because not all actions are required in one machine cycle. 

For example, two program fetches are generated during each machine cycle, even if the 

instruction being executed does not require it. 

 

 



 S1 S2 S3 S4 S5 S6 
C1 Access 

ROM 
ACC -> T2 Access 

RAM 
Access 
ROM 

OP->T1 or T2 ALU->dest.

 

 S1 S2 S3 S4 S5 S6 
C2 Access 

ROM 
Calculate jump address PC incr. OP->T1 or T2 ALU->dest.

Table 2: Instruction execution scheme 

 
Figure 4. The Synchronous 8051 Architecture 
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2.2 Overview of Pipeline Architecture 

 The pipeline architecture is a most commonly used method in microprocessor designs. It 

can increase the throughput due to the parallel processing of instructions. In asynchronous 

circuit design, the utility of pipeline can further be increased because of every stage of the 

pipeline can proceed in its own speed, not the synchronous pipeline worst case performance. 

In Figure 5, the two graphs express the difference between synchronous and 

asynchronous pipeline. We may assume that the pipelined system is divided into four stage; 

they are IF, ID, EXE, and WB. In synchronous pipeline, every stage must be controlled by the 

global clock which is set to the slowest pipelined stage. However, in asynchronous circuit, 

every stage can be proceeded with its own speed. Some instruction may not need all five 

stages to complete, such as instruction 3 and 4 in Figure 5. The instruction 3 does not need 

WB stage and the instruction 4 doesn’t need EXE stage. In synchronous pipeline, even the 

instruction needn’t execution in one stage, but it still need to wait a complete cycle to the next 

stage. But in the asynchronous pipeline, the instruction can be proceeded quickly to next 

stage. 

IF ID EXE WB

IF ID EXE WB

IF ID3

2

1

T1 T5T4T3T2 T6

4

T7

EXE

IF ID WB
 

 

 
Figure 5. Synchronous Pipeline V.S Asynchronous Pipeline 
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2.3 Balsa back-End 

 
The Balsa back-end generates gate level netlist to import into target CAD systems in 

order to produce circuit implementations. In this section we will describe some basic cells for 

Xilinx technology generated by Balsa such as Muller C element and S element. We also 

describe some handshake components in Balsa synthesis system. 

2-3-1 Basic Elements 

The gate level netlist generated by Balsa for Xilinx technology only uses some basic 

cells including AND, OR, NOR, XOR, NADN, BUF, XNOR, INV, FD (D-type flip-flop), 

FDC(D-type flip-flop with asynchronous clear) and FDCE(D Flip-Flop with Clock Enable 

and Asynchronous Clear). Every bigger component is composed with these basic cells. 

 
Figure 6: The Muller C-element, (a) symbol (b) true table (c) gate-level implementation 

Figure 6 shows the Muller C-element. It is the most common used element in 

asynchronous circuit. It is a state-holding element like an asynchronous set-reset latch. When 

both inputs are 0, the output is set to 0. When both inputs are 1 the output is set to 1. For other 

input combinations the output does not change. A Muller C-element is a fundamental 
 9



component that is extensively used in asynchronous circuits. 

NC2P
i0

i1
q

i0

i0

i1 q

i0 i1

1
0

            no change

q

0     X
1      1
1      0

(a)

(b)

(c)
 

Figure 7: The NC2P-element (a) symbol (b) true table (c) gate-level implementation 

Figure 7 shows the NC2P element. When i0 is equal to 0, the output is 0. When i0 and i1 

are equal to 1, the output is 1. For other input combinations the output does not change. It is 

much like inverter of C-element except that when i0 is equal to 0 and i1 is equal to 1, the 

output is 1. 

Ar
Ba

Aa

Br

SAr

Aa

Br

Ba

Ar

Aa

Br

Ba

(a)

(b)

(c)

NC2P

 
 Figure 8: The S-element (a) symbol (b) gate-level implementation (c) handshaking 

protocol 

 Figure 8 shows the S-element which is a circuit element commonly found in the 

implementation of handshake components. An S-element has 4 pins including 2 
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request/acknowledge handshake pairs – ‘Ar’/’Aa’ and ‘Br’/’Ba’. In Balsa system it replaces 

the “inverter of C-element” with “nc2p”. Hence, it can reduce the number of gates because 

“inverter of C-element” uses 3 AND gates, 1 OR gate and 1 Inverter but “nc2p” uses 2 AND 

gates, 1 NOR gate and 1 Inverter. 

 

2-3-2 Handshake Components 

 Balsa has about 40 components that use handshake signaling for communication. Each 

of “handshake components” has a concrete gate level implementation. In the following 

section we illustrate some handshake components [2] .  

 
Figure 9: The Fetch Component (a) handshake component (b) gate level implementation 

 Figure 9 is the Fetch component. This component is the most common way of 

controlling a datapath from a control tree. Transferrers are used to implement assignment, 

input and output channel operations in Balsa by transferring a data value from a pull datapath 

and pushing it towards a push datapath [2].  

 Figure 10 and 11 are sequence and concurrent component respectively. They form a large 

part of handshake circuit control trees [2]. They are used to activate a number of commands 

under the control of activate handshake. 
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activate_0r
activateOut_0r

activateOut_1r

(a)

(b)

activateOut_1a

activateOut_0r

Activate_0r

activateOut_1r

Activate_0a

A
r

A
a

B
r

B
aactivateOut_0a

 
 Figure 10: The Sequence Component (a) handshake component (b) gate level 

implementation 

  

 

(a)

(b)

activateOut_1r, activateOut_0r

Activate_0r
Activate_0a

S
Ar Aa

BrBa
activateOut_0a, activateOut_1a

C2
i1

Qi0

activate_0r

||

activateOut_0r

activateOut_1r

 
Figure 11: The Concurrent Component (a) handshake component (b) gate level 

implementation 
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Figure 12: The Variable Component (a) handshake component (b) gate level 

implementation 

Figure 12 is the variable component. It uses D-type flip-flop to store data. The source of 

clock is the signal write_0r. When a piece of data is needed to be stored, the signal write_0r is 

set and then the signal is reset. When a piece of data is needed to be read, the signal read_0r 

or read_1r is set. It is natural to achieve the effect of gating clock. 

2-4 Concluding Remarks 

In this chapter we introduce the synchronous 8051 architecture. 8051 is a complex 

instruction set computer. It has variable-length instructions from one to three bytes. Each state 

of a machine cycle uses the bus. We then introduce the concepts of asynchronous pipeline. 

Finally we illustrate the Balsa back-end. Balsa synthesis system is composed of about 40 

components. Each can be translated into gate level netlist. They use handshaking protocol for 

communication. 
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Chapter 3. Design of PA8051 
 This chapter describes the design of PA8051. This PA8051 consists of six main part, ie, 

IF, ID, OF, EXE, WB, and MEM, this six parts work parallel with the communication channel 

connected between them. But MEM is not part of the pipeline, it is a shared component in the 

architecture. This chapter introduces the top view of PA8051 in the first, and then describes 

the six main components of the processor. 

3.1 The architecture of PA8051 

 The architecture view of PA8051 is described in figure 13. All of the operations can be 

completed in the five execution stage and memory unit. The IF(instruction fetch) stage is the 

fetch unit to get instruction from the program ROM. The ID(instruction decode) stage is the 

decode stage, responsible for decoding instructions to several control signals. The 

OF(operand fetch) stage is the fetch unit to get data from data memory and register, and 

providing the data for the next execution stage. The EXE(execution) stage is the main stage of 

execution, containing one Multiplier, one Divider, and one general ALU. The WB(write back) 

stage collects the result from EXE stage, and writes back to destination memory address and 

register. The MEM(memory) unit contains three part. RAM_READ_ARBITOR arbitrates the 

two read port from ID and OF. MEM_INTERFACE is responsible for the communication 

with memory data. MEM is the memory data, which contains a 128-byte memory and special 

function register (SFR). 

 



 
 

Figure 13. Pipelined 8051 Top Level  

Following code is the top level process of PA8051. Every component is connected 

between internal channels. 

procedure SA8051_IFIDOF( 
   output p0,p1,p2,p3 : byte 
) is 
 
channel IF_2_ID_data : byte 
channel IF_2_mem_addr : Address 
channel ID_2_IF_addr : Address 
……. 
 
BalsaMemory_interface(IF_2_mem_addr,read,…)|| 
IF(mem_2_IF_data,ID_2_IF_addr,…) || 
ID_top(IF_2_ID_data,jmp,ID_data,…)|| 
SA8051_OF(ReadS, WriteSin, MEM_OF,…)|| 
RAM(maddr,wr,mem_in,mem_out,p0,p1,p2,p3)|| 
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MEM_INTERFACE(MemIn,….)|| 
SA8051_EXE(src1, src2, src3,…)|| 
SA8051_WB(EXE_WB, …)|| 
Ram_Read_Arbitor(MEM_data,valid_face_2_arbitor, …)|| 
 end 
end 
 

3.2 The IF stage 

IF stage contains the one ROM interface, two buffers, and one fetch controller. The 

ROM interface is the interface between program ROM and the processor. It sends the 

program counter to ROM and fetches the instruction from ROM. These two buffers have 32 

bytes storage space performing as a instruction cache to the program memory. When one 

buffer have been read the at least byte, the fetch control will read the next instruction from 

another buffer. If both buffers miss, these two buffers will fetch 64 bytes data from the current 

PC. 

PC

ID

Instruction

ROM
INTERFACE

buffer1

buffer2

Fetcher ctrl

data

Address

data

Address

data

Address

data

Address

data

Address

RnW

RnW

 
 Figure 14. The IF stage 

3.3 The ID stage 

The ID stage is the decode stage of instructions. It decodes every instruction to three 

control signal used in the next stage. 
 16



Opcode：The control signal, used in EXE stage, controls the type of computation. 

Read：The control signal, used in OF stage, controls the read signal to SFR, memory and 

register. 

Write：The control signal, used in WB stage, controls the write back signal to SFR, 

memory and register. 

The first part of ID stage is ID1, it decides the instruction type of every instruction. If the 

instruction length is longer than one byte, the data in second or third byte are memory address 

or immediate data. Therefore we can collect it from ID1 without any operation in the ID2 

stage. The jmp signal comes from WB stage, and it is the branch taken signal. If jmp is 1, it 

means a jump occur. If jmp is 0, it means no jump occur. 

 
 

 
 

Figure 15. The ID stage 

3.4 The OF stage 

The OF stage is the stage providing the source data to EXE stage. There are five main 

sources, ACC, register, register indirect, memory, and immediate data. Many instructions 

require the data from two of these five types of sources. Some instructions may need to 

calculate the write back address in this stage, such as some register address and register 

indirect address. Therefore there are many different operations in this stage controlled by the 

ReadIn signal. 
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Figure 16. The OF stage 

ReadIn is the data and ctrl bundle used in OF stage, including control, register address, 

memory address and immediate data. The following OF_Read type is the data type of ReadIn 

signal. And table 3 is the ReadCtrl signal. 

 
type OF_Read is record 
 maddr:byte; 
 raddr:3 bits; 
 immed:byte; 
 ctrl:ReadCtrl 
end  

 
Type Operation Example 
ACC Read ACC SWAP A 
REG Read Register MOV A,Rn 
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REGI Read Register indirect MOV A,@Ri 
ACC_REG Read ACC and Register ADD A,Rn 
ACC_REGI Read ACC and Register indirect ADD A,@Ri 
ACC_MEM Read ACC and Memory data ADD A,dir 
MEMB Read Memory bit address data JBC bit,rel 
REG_MEM Read Register and Memory data MOV @Ri,dir 
SP_SPI Read SP and SP indirect POP dir 
SP_MEM Read SP and Memory data PUSH dir 
XCH_R Read ACC and Register XCH A,Rn 
XCH_RI Read ACC and Register indirect XCHD A,@Ri 
XCH_M Read ACC and Memory data XCH A,dir 
DPTR_ACC Read ACC and DPTR MOVX @DPTR, A 
ACC_IMM Read ACC and immediate data ADD A,#data 
MEM Read Memory data MOV dir,dir 
MEM_IMM Read Memory and immediate data ORL dir,#data 
REG_IMM Read Register and immediate data CJNE Rn, #data ,rel 
REGI_IMM Read Register indirect and immediate data CJNE @Ri ,#data ,rel 
DPTRI Read DPTR indirect MOVX A, @DPTR 
ACC_REGB Read ACC and Register address MOV Rn,A 
FETCH_REG Read Register address MOV Rn,#data 
IMM_REGB Read Register and immediate data MOV @Ri,#data 
REG_WB Read Register data DJNZ Rn,rel 
MEM_WB Read Memory data DJNZ dir,rel 
IMM Read immediate data MOV dir,#data 
DPTR Read DPTR INC DPTR 
IMM16 Read immediate 16 bit data MOV DPTR,# data 16 
NO  CPL C 

Table 3. The Read Control Signal 

 

3.5 The EXE stage 

 The EXE stage processes the data from OF stage. It contains two register PSW and 

one-bit color bit. Register PSW provides the carry and auxiliary carry data in this stage and 

color bit is used to manipulate the control hazard. 

 



 
Figure 17. The EXE stage 

 The opcode is the control signal used in EXE stage, table 4 shows the opcode number 

and its example. 

OPCODE Example 
MUL MUL AB 
DIV DIV AB 
NOP RET 
MOV MOV A,@A+PC 
ADD ADD A,#data 
ADDC ADDC A,#data 
SUB SUBB A,#data 
NOT CPL A 
AND ANL A,#data 
XOR XRL A,#data 
OR ORL A,#data 
RL RL A 
RLC RLC A 
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RR RR A 
RRC RRC A 
SWAP SWAP A 
XCH XCH A,Rn 
XCHD XCHD A,@Ri 
INC INC dir 
DEC DEC dir 
DA DA A 
DJNZ DJNZ Rn,rel 
CJNE CJNE A, #data, rel 
CMPZ JZ rel 
CMPNZ JNZ rel 
INC16 INC DPTR 
BCMPZ JB bit,rel 
BCMPNZ JNB bit,rel 
BCMPNZC JBC bit,rel 
CLRA CLR A 
JC JC rel 
JNC JNC rel 
CPLB CPL bit 
CLRB CLR bit 
SETB SETB bit 
MOVB MOV bit,C 
CPLC CPL C 
CLRC CLR C 
SETC SET C 
ORC ORL C,bit 
ANLC ANL C,bit 
ORLNC ORL C,/bit 
ANLNC ANL C,/bit 
MOVC MOV C,bit 

Table 4. The Opcode control signal 

3.6 The WB stage 

 The WB back stage collects the write back data, and sends it to the memory interface. 
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The control signal WriteCtrl is the control signal used in WB stage. Table 5 shows the signal 

and its operation. The following MemWrite type is the write back data and control to 

Memory. 

type MemWrite is record 
        sfr:byte;               --data 
        mem: byte;              --data 
        maddr:byte;             --address 
        ac:bit; 
        cy:bit; 
        ov:bit; 
        ctrl:MemWCtrl           --ctrl 
end 
 

Type Operation Example 

ACC Write ACC ADD A,#data 
MEM Write Memory INC dir 
MEM_WB Write Memory ORL dir,#data 
MEMWB Write Memory bit CPL bit 
SP_MEM Write Memory and SFR PUSH dir 
ACC_MEM Write ACC and Memory XCH A,dir 
DPTR Write DPTR MOV DPTR,# data 16 
NO  NOP 
JMP Jump JMP @A+DPTR 
CJMP Jump CJNE A, #data, rel 
JMP_MEM Jump and write memory DJNZ dir,rel 
JMP_MEMWB Jump and write memory bit JBC bit,rel 
CY Write carry CPL C 

Table 5. The Write Back control signal 



 
Figure 18. The WB stage 

 

3.7 The Memory and Register Interface 

 The Memory and Register Interface is the control unit between ID and OF and Memory. 

Because both of the two stage ID and OF can read memory data, a RAM_READ_ARBITOR 

is used to arbitrate the data read from ID or OF stage. The MEM_INTERFACE arbitrate the 

read or write signal from RAM_READ_ARBITOR and WB, and then fetch data from 

Memory or write data into memory. Two register ACC and PSW are located in 

MEM_INTERFACE because these two registers are frequently fetched. In order to reduce the 

fetch time, they are not in the MEM unit. The lock signal comes from OF stage, and it tells 

MEM_INTERFACE what the memory address or SFR needs to be locked. This mechanism 

prevents the data hazard. If the data is locked, then the valid will be 0. When the valid bit is 0, 

RAM_READ_ARBITOR sends the control signal back to MEM_INTERFACE, until it gets 

the correct data, that is, valid is 1. The following code segment describes the mechanism in 

the RAM_READ_ARBITOR unit. 
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loop 
   MemRead <- read_ctrl || data -> dataT||lock<-lockT||valid->validT 
   while(validT /=1) 
end; 
 

 
Figure 19. The Memory interface 
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3.8 The instruction execution stage 

 All the instruction are executed in the order IF, ID, OF, EXE, and WB. However, 

not all the instructions need to completely use the five execution stages. Table 6 shows the 

operation stages of all the 256 instructions. Only 21 instructions execute with IF and ID stage, 

because these instructions are unconditional jump and need no ALU operations. They can be 

completed in first two stages. Other instructions need all the five stages to complete execution. 

Although some instructions such as MOV are no operation in EXE stage, we can just connect 

the OF output to WB stage, we didn’t do so. With this design, the WB stage can receive the 

data both from OF and EXE. If the OF stage output data is faster then that of EXE stage, there 

will be an out-of-order completion situation in the design, therefore we need more control to 

handle the problem.  

As a result, we set all the instruction in the execution order of IF-ID-OF-EXE-WB. If 
one instruction doesn’t need one execution stage, a bypass signal will be sent into next stage. 
The following code is part of the code in the EXE stage to deal with MOV. 

 
  |NOP..MOV then dest1:=src1 || dest2:=src2. 

dest_1 <- dest1 || dest_2 <- dest2 
 

Execution stage Number of instructions Example 
IF-ID 21 NOP, AJMP 
IF-ID-OF-EXE-WB 235 CPL bit, ADD, MOV….. 

Table 6. The instruction Execution Stage 

3.9 The Hazard control and data forwarding 

 Hazards are serious problems may be happened in pipeline machine; and they need 

to be avoid or solved. Hazard has two type may be found in PA8051, data hazards and control 

hazards. Data hazards happened in the data dependency of consecutive instructions. Control 

hazards may be happened in the branch occurring during pipeline execution. We classified 

data hazard into three types. The first type data hazard can be solved with forwarding 

mechanism, but the second and third types of data hazard, only can solve with stall. Data 

hazards will only happen in two consecutive instructions to access the same memory address, 

and the hazard may also be resolved by inserting any one non-related instruction between 

these two instructions. 



 

 
Figure 20. The hazard situation 

 Figure 20 shows an example of the data hazard. It shown that the first and second 

instruction have data dependency on A. When the second instruction is in OF stage, the first 

instruction is in EXE stage, and thus the second instruction can not correctly fetch the data at 

this moment. However, the third instruction is no data hazard, because when it is in OF stage, 

the first instruction is in WB stage, there is no data hazard happened. 

 Because our design is implemented with asynchronous circuit and not all instructions, 

may be executed in the sequence like what is shown in Figure 20; and furthermore the 

execution time of every stage may be different, is there no data hazard between the first 

instruction and third instruction with different instruction execution sequence? The answer is 

yes! In our design, when the third instruction enters OF stage, the second instruction must be 

in EXE stage, and when then the second instruction enters EXE stage, the first instruction 

must in WB stage. Therefore, when the third instruction enters OF stage, the first instruction 

must be already in WB stage. As a result, the first instruction must be finishing write back 

before the third instruction begins to fetch data. 

3.9.1 Data Hazard 

 The only data hazard is read after write. If there are two consecutive instruction, the first 

instruction writing and second instruction reading the same location, the second instruction 

will read the old data. There are three types of data RAW hazard： 

Type 1：Solved with data forwarding 
 
  ADD  A, #data 
  ADD  A, Rn 
 
 To solve this type of data hazard, we use the result of first instruction which is stored in 
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the dest1 register in EXE stage and can be simply used as the input of ALU operation for the 

second instruction. The forward control generated in the MEM_INTERFACE unit. There are 

five types of forward operations, SRC121, SRC221, SRC122, SRC122, and SRC1_2. 

SRC121 means previous destination 1 forward to source 1, and SRC 221 means previous 

destination 2 forward to source 1. The following code segment shows the forward mechanism 

in EXE stage. 

 case forward of  
 SRC121  then 
  src1:= dest1 
 |SRC221  then 
  src1:= dest2 
 |SRC122  then 
  src2:= dest1 
 |SRC222  then 
  src2:= dest2 
 |SRC1_2 then 
  src1:=dest1 || src2:=dest2 
 |NO then 
  continue 
 else 
  continue 
 end; 
 
The forward signal is sent by MEM_INTERFACE unit. In OF stage, the memory address 

need to be lock are generated and sent to MEM_INTERFACE. The lock signal contains the 

lock memory address and control. In MEM_INTERFACE, four register used to control the 

lock and forward mechanism. The register RD11 and RD12 indicates the lock address of 

current instruction. The register RD21 and RD22 indicates the lock address of previous 

instruction. Whenever an instruction retrieves the correct data, then it locks the memory. The 

following is the code fragment of lock memory. The RD11 and RD12 changes to current lock 

data, and previous lock data move to RD21 and RD22. 

 shared LOCK_MEM is 
 begin 
  case lockT.ctrl of 
  ACC then 
   RD21:=RD11||RD22:=RD12; 
   RD11:=R_ACC||RD12:=255 
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  |MEM then 
   RD21:=RD11||RD22:=RD12; 
   RD11:=lockT.addr ||RD12:=255 
  …… 
In our design, only two successive instructions may have data hazard, and therefore we 

need to check RD11 and RD12. If RD11 is the address we want to fetch, just forward. The 

following code shows some code segment in MEM_INTERFACE, and three types of 

operation will occur, forwarding from destination 1 or destination 2, and fetch ACC. Note that 

lock memory is required after fetch data. 

shared RESET_LOCK is 
        begin 
                if(RD21=255) then 
                        RD11:=255||RD12:=255 
                else 
                        RD21:=255||RD22:=255 
                end 
        end 

 
case MemRead.ctrl of 
ACC then 
if(RD11=R_ACC) then 
 forward<-SRC121||NULL_OUT()||LOCK_MEM() 

 |RD12=R_ACC then 
 forward<-SRC221||NULL_OUT()||LOCK_MEM() 
else 
data<- (#ACC @ #C0_8@ #C0_8 as 24 bits)||valid<-1||LOCK_MEM()||forward<-NO 
end 
…… 
 

Type 2：Solved with stall 
In this type, the operand needs to be fetched in OF stage, but at the meantime, the 

previous instruction is in EXE stage and the new operand value is not calculated. Therefore, 

we need to stall the pipeline in this situation. 

 INC R1 
 ADD A,@R1 
 

In the previous example, the first instruction writes the register R1 but it produces the 

result in EXE stage, and in this moment, the second instruction is in OF stage and waiting to 
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read the R1 value. So we need to wait for the first instruction to complete and then to execute 

the second instruction. We solved this problem with the memory lock mechanism in 

MEM_INTERFACE and RAM_READ_ARBITOR. The following code fragment is the 

control of read register of indirect data. First we calculate the memory address in 

Extract_RegR(). If this memory is locked, we send the NOT_VALID() signal to 

RAM_READ_ARBITOR. RAM_READ_ARBITOR will continuously send signal to 

MEM_INTERFACE until it gets the correct data. The stall mechanism is easily to achieve. 

 
case MemRead.ctrl of 
|REGI then 

 Extract_RegR(); 
 If(error=1) then 
  NOT_VALID() 
 |(RD11=raddr or RD12=raddr) then 
  NOT_VALID() 
 else 
  wr <-0 || addr<-raddr ||in_data1->tmp0; 
  if(RD11=tmp0) then 
   forward<-SRC121||NULL_OUT()||LOCK_MEM() 
  |RD12=tmp0 then 
   forward<-SRC221||NULL_OUT()||LOCK_MEM() 
  else 
   FETCH_REGI(); 

TO_OF <- (#tmp1 @ #C0_8@ #tmp0 as 24 bits)||valid<-1|| 
LOCK_MEM()||forward<-NO 

  end 
 end 
 
 

Type 3：Solved with stall 
 In this situation, the first instruction changes the register select bit RS0 or RS1 in PSW, 

and then the next instruction need to read register. Because the next instruction needs to wait 

the correct RS0, therefore stall is required in this situation. The situation will happen when 

the following code execute.  

SETB C.RS0 
 MOV dir, Rn 
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 The following code segment shows the register address generating procedure. If PSW is 

locked, then error=1, the NOT_VALID data will be sent to register read control. 

 
shared Extract_RegR is 
 begin 
  if(RD11=R_PSW or RD12=R_PSW) then 
   error:=1 
  else 
   raddr := (#OFtoMEM.raddr@ #psw[3..4] @ #C0_3 as byte)||error:=0 
  end 
 end 
 
3.9.2 Control Hazard 

Control hazard happens when any jump instruction appears in the program. When jump 

occurs, the coming instructions in the pipeline must be flushed. To solve this problem, we use 

the color bit method. We add a bit in every instruction named color bit. and a one bit 

register(color register) stores the current color information in the EXE stage. Every time when 

jump occurs, the color register complement it. Therefore when the coming instruction 

executed in the EXE stage, it can check the value of its color bit with color register. If the 

value is different, a jump is occurred and then this instruction needs to be flushed. The 

following code shows the operation in EXE stage. 

 
if(color=colorT) then 
 case aluop of 
 MUL … 
 |DIV  … 
else 
 send NOP 
end 
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Chapter 4. Implementation and 
Verification 

This chapter contains two parts. First, we illustrate our design flow for asynchronous 

implementation on FPGA and VLSI. Second, we illustrate the behavior simulation.  

 

4.1 The VLSI and FPGA design flow of 

asynchronous circuit using balsa 

 The PA8051 core is modeled with Balsa language, and then compiled into a collection of 

“handshake components” with the balsa-c cmpiler. Each of these components has a concrete 

gate level implementation; and then use the balsa-netlist tool can automatically generate them 

into Verilog for Xilinx or other target synthesis tools. 

 The following steps are the design flow for FPGA. The Verilog netlist generated by 

balsa-netlist is converted into a netlist of basic gates in the synthesis step of the design flow. 

The netlist may be optimized using technology-independent logic minimization algorithms. 

However, we must avoid the logic minimization for hazard free circuits and buffers generated 

by balsa-netlist. We should add the constraint “keep hierarchy” to avoid the logic 

minimization. Then the synthesized netlist is mapped to the target device using a 

technology-mapping algorithm. The placement algorithm maps logic blocks from the netlist 

to physical locations on an FPGA. On the placement has been done, the routing algorithm 

determines how to interconnect the logic blocks using the available routing. The final output 

of the design flow is the FPGA programming file, which is a bit stream determining the state 

of every programmable element inside an FPGA. The design flow is shown is figure 21. 



Balsa description

FPGA Programming 
file

Timing Simulation

Balsa-c

Breeze description

Balsa-netlist

Verilog netlist for 
Xilinx

Synthesis

MAP

Placement & Routing

Behaviour Simulation

Function Simulation

 
Figure 21. The FPGA design flow of balsa 

 The VLSI design flow of balsa has some difference on FPGA design. First, the 

balsa-netlist do not support the Synopsys technology, we only can use the “ Example” 

technology, and change some gates with the standard cells for Synopsys. Then we use the 
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Synopsys Design Compiler to synthesize the Verilog model. After synthesizing, we do the 

functional simulation with Modelsim. After functional simulation, we do the place and route 

with SOC Encounter, and export the layout GDS file. 

 
Figure 22. The VLSI design flow of balsa 
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4.2 Implementation Issues 

 Compilation from Balsa programs to Xilinx netlist proceeds in two steps. In first step, 

handshake circuits form the intermediate architectures. An important characteristic about this 

compilation is that it is transparent, which allows feedback about important performance 

characteristics such as performance, area, timing and testability to be generated at the 

handshake circuit level and to be presented to the VLSI programmer at the Balsa level. When 

the designer is satisfied with the performance of the Balsa program, the corresponding 

handshake circuit is expanded into a gate-level netlist with target technology. At this level the 

design can be translated to Verilog HDL and simulated it to obtain more accurate performance 

figures using commercial EDA tools. 

 We choose four-phase bundled data protocol to implement the handshake circuit instead 

of dual-rail encoding in order to reduce the area cost. The Balsa provided some technology 

for implementations. If we choose Xilinx ISE, the circuits are implemented only using the 

Xilinx standard cells such as AND, OR, Inverter gate and flip flop. If the target synthesize 

tools are not supported such as Synopsys Design Compiler, we can use the “Example” 

technology which translated the circuit to some basic cell, and we need to modified the basic 

cell with the standard cell in the target synthesize tool. 

 It should be noticed that the synthesis tool could do logic minimization but it must be 

avoided. The asynchronous system added some buffer or redundant circuit to ensure 

hazard-free. They can not be minimized. We can avoid this situation by adding the constraint 

“keep hierarchy” on the handshake modules.  

 RAM and ROM are not modeled by Balsa language. We can implement them using the 

block RAM on FPGA or using the standard RAM in VLSI. Until now all instructions can be 

executed except MOVX. The peripherals are not considered such as timers and UART.  

4.3 Verification 

The environment used to do behavior simulation for PA8051 is illustrated in figure 23.  

The ROM model is the predefined procedures in Balas as shown in figure 24. We assign the 

address width and data width to determine their size. The ROM size is 4K bytes. The contents 

of the ROM are loaded during initialization as 8-bit quantities in the hexadecimal format from 

a hexadecimal file. A hexadecimal file is translated from a C program by KEIL tool [6]. 

Whenever an addressing arrives at the ROM model from the ROM address channel, the ROM 



outputs the instruction code. When the processor wants to write data, it sets the signal rNw 

and sends out the address and the data. 

 The 8051 simulator executes the instructions in the hexadecimal file. The execution 

results are compared with the contents of the RAM. If the results are not equal, we must 

modify the code of the processor.  

SA8051 (Balsa)

ROM Model (Balsa)

8051 HEX file

8051 Object Code

Source file (C)

8051 Simulator

Execution Result

= CorrectYes

No

KEIL-oh51

KEIL-c51

KEIL-a51

KEIL-bl51

 
Figure 23: SA8051 behavior simulation environment 
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Figure 24. The ROM model 
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Chapter 5.  Result 
5.1 Simulation Result 

 We have successfully executed some GCD Codes in PA8051 using the verification 

method in Figure 23. The behavior simulation is passed. But the functional simulation was not 

yet completed. 

 The performance comparison between asynchronous 8051[14] and PA8051 was shown 

in table 7. When the SA8051 and PA8051 executing the same GCD program in balsa 

development environment, the estimated time can be calculated. The result is that the SA8051 

spend 2.74 times over PA8051. Therefore, in behavior simulation, PA8051 have better 

performance than SA8051, the speedup is about 2.74. 

 In our design, we divided the processor into five stages, theoretically there will be 5 

speedup compared to non-pipelined design. Because the five stages are not balanced, some 

stages are longer than the other stages. Furthermore, the pipelined architecture increasing the 

control signals overhead. Thus, PA8051 can’t totally benefit from the pipelined structure, but 

the 2.7 speedup is greatly better than SA8051. 

 GCD (estimated time) Speedup 

SA8051 76411420 1 

PA8051 27851320 2.74 

 Table 7. The performance of executing GCD program 

 

5.2 Area Cost 

 PA8051 was synthesized with Xilinx ISE, and the gate and path delay of every part of 

PA8051 is shown in table 8. The ID stage is the most dominant stage of all part of the design, 

spend half of the total cost PA8051.  

 Table 9 is the comparison of synchronous 8051 and asynchronous 8051[14] and PA8051, 

the asynchronous design is much bigger than the synchronous one. The area overhead mainly 

comes from the handshake circuit in each handshake component. The hazard free circuit is 

employed in order to assure the circuit validity. The circuits of the completion detection on 
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the control path which need large C element also result in the area overhead. 

Another reason is due to the CAD tool. There are no commercial CAD tools for the 

asynchronous circuits. The synchronous CAD tools can do some optimization techniques for 

the speed and area such as logic minimization and retiming. However, the asynchronous tool 

Balsa just does transparent compilation and does not do any optimization on the asynchronous 

circuits. 

The other extra area overhead of pipelined asynchronous 8051 comes from several 

aspects. First, every stage has its own control code for operation, and every stage has a big 

multiplexer to choose the action. But in non-pipelined version, the following action is 

determined after instruction decoding. This operation does not need many multiplexers. 

Second, the control code of every stage is too big. Every stage needs a control code to choose 

the correct action; however, the bigger control code, the more complicated related control 

circuit will be. For example, opcode in EXE, there are 44 types, and therefore a 1-of-44 

multiplexer must be generated. The cost is very big. 

 

 slice gate minimum path delay(ns) 

IF 1007 13987 757 

ID 5353 61973 721 

OF 564 7086 34 

EXE 1284 16938 174 

MEM_INTERFACE 1098 13217 125 

RAM_READ_ARBITOR 57 1051 28 

WB 232 2977 40 

TOTAL 9595 117229  

 Table 8. The Cost of Every Part of 8051 

 
 Slice Gate 

Synchronous 926 16688 

Asynchronous (SA8051) 2155 26942 

pipelined asynchronous (PA8051) 10226 123510 

 Table 9. The Cost for asynchronous 8051 and synchronous 8051 
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Chapter 6. Conclusion and future work 
 We designed and implemented a pipelined asynchronous 8051 microprocessor. In our 

design, except MOVX, the overall 8051 instructions can be executed correctly, but the IO and 

interrupt mechanisms were not implemented yet. 

 Our proposed pipelined 8051 PA8051, compared to SA8051, after executing GCD 

program, have 2.74 speedup. We have a preliminary result in using pipelined to increase 

performance. Although we should execute more programs to verify the performance, we 

almost can confirm that PA8051 have better performance than SA8051 and the speedup is 

above 2. 

The capabilities of FPGAs have increased to the level which makes it is possible to 

implement a complete computer system on a single FPGA chip. The main component in such 

a system is a soft-core processor. In addition, the VLSI design with balsa development 

environment still has some limitations, and the most important of all is that the supported 

EDA tools that can correctly co-worked with are not sufficient. 

 The thesis offers the following contributions: 

 The architecture of the PA8051 modeled by Balsa is described. Some design issues for 

Balsa language is also described.  

 The new defined architecture for 8051 was developed. 

Future work for our pipeline asynchronous 8051： 

 Performance evaluation on FPGA or VLSI design 

 Adding additional IO and peripherals 

 Redefine the control signal in every stage to reduce area cost 
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