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摘 要 

 

 

減少耗電已經成為一種趨勢。分支目標暫存器是一個相當耗電的

裝置，提供管線化處理器動態的預測分支目標位址。這篇論文提出一

個以指令快取為基準的分支目標暫存器，能夠共享指令快取的 Tag 計

憶體。因此，以指令快取為基準的分支目標暫存器其靜態與動態耗能

均低於傳統的分支目標暫存器，並且，提出可分享使用分支目標暫存

器項目的設計來加強分支預測準確率。研究結果顯示，以指令快取為

基準的分支目標暫存器能夠節省 24%的靜態耗能，42%的動態耗能，

亦即 33%的整體系統耗能。 
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ABSTRACT 
 
 

Reducing power consumption has gained much attention recently. BTB is a 

power-hungry device that supports dynamic branch prediction for pipelined processor. 

This thesis proposes and instruction cache based BTB architecture called ICBTB. It 

shares the tag memory with L1 instruction cache. Therefore, both static and dynamic 

power consumption of ICBTB are lower than that of a typical BTB. Moreover, a BTB 

entry sharing policy is proposed to reinforce the branch prediction accuracy. 

Simulation results show that ICBTB yields 24% static energy savings, 42% dynamic 

energy savings that is 33% total energy savings. 
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Chapter 1. INTRODUCTION 

 

1.1 Importance of Low Power Design 

As the progress of technique, more and more products pay much attention to its 

limit life time of battery-powered equipments and heat releasing problems. The 

battery-powered equipments, as like MP3 player, PDA and etc. , would prefer more 

and more life time to work. The heat would affect the stability of system and the bad 

heat releasing policy may cause more power consumption on releasing heat and 

decrease the life time of battery-powered equipments. Low power design would be 

helpful to increase the life time of battery-powered equipments and reduce the heat 

producing. 

 

1.2 Power Components of CMOS Circuit 

Today, CMOS technology is the dominant semiconductor technology for 

microprocessors, memories and application specific integrated circuits (ASICs). In 

CMOS circuit, its power components can be divided into twp kinds – dynamic power 

and static power. Dynamic power is composed of switching power and short-circuit 

power. Switching power is dissipated by charging and discharging the gate output 

capacitance. Short-circuit power is, during logic gate operation, caused by VDD and 

VSS may be inter mittently shorted. There are three major components to static 

power.1> Sub-threshold leakage from Source to Drain. 2> Gate leakage. 3> Reverse 

bias junction leakage. Sub-threshold leakage is the most dominant component to static 

power consumption. It should also be noted that static power is generally a product of 

silicon area. 
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In most cases, switching dominates the dynamic power. Thus, many related 

researches which are for reducing dynamic power are focus on reducing switching 

power. However, the static power begins to dominate the total power consumption as 

process technology moves below 0.1 um as showed in fig[1].(Reference - 9) 

Therefore, how to reduce both dynamic and static power simultaneously becomes an 

important research issue. 

 

 
Fig. 1 Power Trend 

 

1.3 Importance of Low Power Design on Dynamic Branch 

Prediction  

As the increasing demand on processor performance, more and more processor 

implement the deeper pipelines to increase the frequency. However, the deeper 

pipelines would result the larger branch penalty to affect the performance more 

critical. Today, dynamic branch prediction is implemented in most processors to 
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predict branch direction and next instruction address of each branch instruction 

dynamically. Moreover, dynamic branch prediction performs well branch prediction 

accuracy from 90% to 98%.  

Dynamic branch prediction is typically performed at the first pipeline stage to 

eliminate pipeline stalls due to branches. A drawback arises here: since the fetched 

instruction can not be identified as a branch or not at this stage, the dynamic branch 

predictor is always exercised, Worse yet, the branch target buffer(BTB) which 

supports dynamic branch prediction is a large storage with both tag and data 

memories. Thus, dynamic branch prediction is a power-hungry technique in both 

dynamic and static power while it is still very attractive to processors for power-miser 

application due to its success in performance designs. 

 

1.4 Introduction of I-Cache 

In today processor design, instruction cache (I-Cache) is a indispensable 

structure to provide instructions every cycle which dominates dynamic and static 

power consumption of total system.  

I-Cache is composed of valid bit, tag array and data array as showed in fig[2]. 

The organization of I-Cache is divided into three kinds: direct-map, set-associative 

and fully-associative. I-Cache is low-way set associative organization in common and 

the address space is program counter. The cache line size mostly is 8 to 16 

instructions. 
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Fig. 2 Introduction of I-Cache 

It is usually included read and write operation in I-Cache(fig[3]). Take the five 

stages pipelines in MIPS for example. Instruction fetcher would read I-Cache in If 

stage by index part of program counter to index the corresponding cache line. Then, 

compare the tag part of program counter to tag field of I-Cache and rely on the valid 

bit to identify hit or not. The write operation is executed when occur the instruction 

read miss. It would read instruction from other instruction memory and write it into 

the I-Cache line decided by replacement policy of I-Cache. 
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Fig. 3 Structure of 4-way I-Cache 

 

 

1.5 Introduction of Branch Target Buffer 

Using branch target buffer (BTB) to predict the next instruction address of 

branch is one kind of the popular dynamic branch prediction policy (ex. Pentium 4, 

Alpha 21264, X-scale). BTB is a small cache memory which save the branch target 

address of executed branch instruction. Each instruction would lookup BTB and 

which may return predicted branch target address to reduce the performance loss 

caused by branch penalty. The organization of BTB is divided into three kinds: 

direct-map, set-associative and fully-associative. 

The BTB structure is as showed in fig[4] which is composed of tag field, status 

field and branch target address field. The status field is composed of valid bit and 

predictor bits. Moreover, the high order bits of BTB tag array is equal to the high 

order bits of I-Cache tag array. The fig[5] is a direct-map BTB. 
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Fig. 4 Introduction of BTB 

 

It is usually included read and write operation in BTB. In MIPS five stage 

pipelines, each instruction would lookup BTB in IF stage by index part of program 

counter to index the corresponding BTB entry. Then, compare the tag part of program 

counter to tag field of BTB. The write operation is executed for BTB update in EXE 

stage. There would be two situation to update BTB. One is a branch is executed and 

its branch information is not in BTB. Another is a branch is executed and its branch 

target address is not the same with that in BTB. It would compare the correct branch 

target address to the predict branch target address to decide update BTB or not. The 

information of valid bit, tag and branch target address would be updated into BTB. 

The replacement policy of BTB would decide a BTB entry to replace.  
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Fig. 5 Structure of direct-map BTB 

 

It constantly has Least Recently Used (LRU)、First-In-First-Out (FIFO) 、

Random and etc. replacement policies in I-Cache and BTB. LRU is replace the entry 

least recently used. FIFO is replace the entry put in first. Random is replace the entry 

randomly. 

 

1.6 Similar Features of I-Cache and BTB 

We could see several similar features of I-Cache and BTB from above 

introduction: 

1> Each instruction has to access I-Cache and BTB in the first stage of pipeline. 

2> Both of them have tag array and the high order bits are the same 

3> BTB is a cache memory in nature 

 

If it could make use of above similar features to share tag array of I-Cache with 



 8

BTB, it would be helpful to simplify the operation of BTB access. BTB would save 

the area and power consumption because of sharing tag array of I-Cache. 

 

1.7 Our Design 

We observe the percentage on each component of BTB power consumption. We 

could see that tag array occupy a critical ratio (36%). Above all, we proposed a 

architecture that BTB could share tag array of I-Cache. In this architecture, the cache 

lines in the same index could use N BTB entries. Moreover, under priority 

consideration, the cache lines in different index could sharing use the BTB entries 

belong to each cache lines. For the branch instructions that still have no empty BTB 

entry using, we provide K BTB entries to them in additional. 

In BTB operation, we discuss it in three parts - identification、placement and 

replacement. Identification – how is a entry found if the information is in the BTB. 

Placement – possible places to place. Replacement – when BTB miss occurred, which 

BTB entry is replaced ?  

Simulation results show that we could reduce as much as 42% percent in 

dynamic power consumption and 24% in static power consumption with compared to 

independent BTB of ARM-A8.  

 

1.8 Thesis Organization 

The rest of this thesis is organized as follows: Section 2 introduces related work 

of I-Cache based BTB. Section 3 proposed our design included Mapping method 

between cache lines and BTB entries and BTB Management. Section 4 discusses our 

experimental methodology, environment and results. Section 5 are the conclusion of 

our works and possible future work. 
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Chapter 2. BACKGROUND & RELATED WORK 

 

2.1 Related Work on Low Power BTB 

There are many researches focus on reducing BTB power consumption and they 

could be separated into four parts roughly： 

1. In reducing dynamic power consumption of BTB, it saves the number of lookup 

BTB which is unnecessary because it is every cycle to lookup BTB originally. 

2. In reducing dynamic power consumption of BTB, it could reduce the access 

power components of every BTB access. 

3. In reducing static power consumption of BTB, it could configure the entry 

number of BTB to save static power directly but it is possible to affect the 

branch prediction accuracy. 

4. In reducing both dynamic and static power consumption of BTB, the branch 

prediction accuracy of BTB will affect the dynamic and static power 

consumption of total system because it affects the performance of system.  

Our low power I-Cache-based BTB will involve 2,3,4 parts. 

 

2.2 Related Work on I-Cache Based BTB 

Johnson[2] proposed a structure that BTB could share with tag array of I-Cache. 

The structure is showed as Fig[6]. Each cache line maps to one BTB entry and the 

structure of I-Cache has no different. Each BTB entry is composed of instruction 

number, BTB status and branch target address. The function of instruction number is 

as like the line offset part of program counter to identify the branch information is 

belong to which one instruction of the cache line 
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Fig. 6 Johnson's BTB 

 

 

Johnson’s BTB structure has advantages and disadvantages. The advantage is it 

reduced the tag array to related small instruction number array of BTB. The one 

disadvantage is that each cache line only maps to one BTB entry, hence there could 

have contention for the single BTB entry while closely spaced branches. Another 

disadvantage is that there would be contention between instruction fetching and 

branch updating. But this disadvantage could be solved by adding a I-Tag buffer to 

save the previous N executed instruction tag. 

 

Flynn[3] made a research on performance comparison between Johnson’s BTB 

and independent BTB. The important result shows that a infinite Johnson’s BTB with 

cache line size of eight instructions could perform about as well as a independent 

BTB structure which has 64 entries (direct map). The result shows that the utilization 

of BTB is poor and make the branch prediction accuracy of Johnson’s BTB not as 

well as that of separate BTB. This will affect the performance of total system and 

result in more power consumption on total system. 
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2.3 Energy Consumption Analysis of BTB  
 
E = access_count × access_energy + static_power × execution_time 

(AC)         (AE)           (SP)         (ET) 

 

The energy equation of typical BTB is showed as equation.  AC is the access 

count of BTB. AE is once access energy of BTB and it is composed of index decoding, 

tag comparison and branch target address access. SP is static power of BTB and it is 

composed of status array, tag array and branch target address array. ET is the 

execution time of total system. 

We observe the percentage on each components of AE and SP. We take BTB of 

ARM-A8 for example and use the Wattch[8] power library. The BTB is 512 entries 

and 2 way set associative. We could see that tag array is 32% in AE and 40% in ST. 

This is the possible saving in our BTB sharing with I-Cache tag array architecture. 

 

 

Fig. 7 Power components 

 

Moreover, we compare the energy consumption of Johnson’s BTB and 

independent BTB. We could see that 

 Power components of 

static power 

 Power components of 

access energy 
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a> Because Johnson’s BTB share I-Cache tag array, the AE and SP of 

Johnson’s BTB is less than that of independent BTB. 

b> Because the branch prediction accuracy of Johnson’s BTB is not as well 

as that of independent BTB, the AC and ET of Johnson’s BTB is larger 

than that of independent BTB. 

From above mentioned, we could see that there would be benefit to save power 

consumption of BTB by reducing AE and SP only under no influence of AC and ET. 

 

Thus, our research objective is proposed a low power I-Cache-based BTB by 

improving the branch prediction accuracy of architecture-- I-Cache tag array sharing 

for BTB. We not only maintain the access count and execution time of low power 

I-Cache-based BTB about the same with that of independent BTB but also reduce the 

access energy and static power to save both dynamic and static power of BTB. 
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Chapter 3. DESIGN 

 

In section 3.1, we would discuss how to maintain the branch prediction accuracy 

of low power I-Cache-based BTB about the same as that of independent BTB. We 

provide three policies to improve branch prediction accuracy – Group Mapping, 

Sharing Policy and Global BTB. 

Group Mapping –the cache lines in the same index could use N BTB entries 

Sharing policy –under priority consideration, the cache lines in different index 

could sharing use the BTB entries belong to each cache lines.  

Global BTB –For the branch instructions that still have no empty BTB entry 

using, we provide K BTB entries to them in additional. 

 

 
Fig. 8 System Overview 

In section 3.2, under consideration of performance and power, we would discuss 

the operations of low power I-Cache-based BTB in three sites – identification, 

placement and replacement. 
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3.1 Mapping method between Cache line and BTB entry 

   At first, we dynamically observe average number of branch instruction per cache 

line in benchmark of Mibench[6]. We could see that 65% of each cache line is zero 

number of branch instruction, 18% of each cache line is one branch instruction and 

16% of each cache line is more than two branch instructions. The number of branch 

instruction in each cache line is fairly unbalanced during total execution time. This is 

the key point how to utilize BTB entry effectively in this section. 

 

 
Fig. 9 Number of branch instruction per cache line 
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3.1.1 Group Mapping 

The function of group mapping is that the branch instructions in M number of 

cache lines could use N number of BTB entries. That is the branch instructions in a 

cache line group could us a BTB entry group (mapped BTB entry group). A cache line 

group is composed of M number of cache lines. A BTB entry group is composed of N 

number of BTB entries. In this policy, each branch instruction of each cache line 

could use N number of mapped BTB entries that is each BTB entry could be used by 

the branch instruction of M number of mapped cache lines. 

 

Fig. 10 Group Mapping 

 

The principle that how we choose the dedicated cache lines to be a cache line 

group is based on the theory of temporal and spatial locality. We choose the cache 

lines in the most far distance of address space to be a cache line group that is compose 

the cache lines  which reference time are the most long to be a cache line group. 

Then, the cache lines in a cache line group would have less probability to happen 

contention of using BTB entry at any time point. 

However, there are different methods to compose a cache line group in different 

I-Cache organization. It has Set-based method and Way-based method. Set-based 

method is compose the cache lines in the same set to be a cache line group first. 
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Way-based method is compose the cache lines in the same way to be a cache line 

group first. 

In set-associative I-Cache, the cache lines in the same set would have less 

probability to be referenced at any time point. Thus, it has higher priority to adopt 

set-based method in set-associative I-Cache (Fig[12]). In direct-map I-Cache, 

way-based method is the only and suited group method. Because we adopt the cache 

lines in the distance of (I-Cache line number)/(cache line number of a cache line 

group) to be cache line group, the cache lines in a cache line group would be the most 

fat distance . Thus, it has higher priority to adopt way-based method in direct-map 

I-Cache (Fig[13]). 

group line cache ofnumber  line Cache

line CacheI ofNumber 
Direct_map

anceGroup_Dist

 wayCacheI ofNumber 
ativeSet_associ

anceGroup_Dist

−
=•

−<•

 

Fig. 11 Group Distance 

 

 
Fig. 12 Logic diagram of group mapping – set-based 
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Fig. 13  Logic diagram of group mapping – way-based 

 

 

The key point of following is how to use the least to achieve the function of 

group mapping. Under the feature of I-Cache tag array share for BTB, the structure of 

low power I-Cache-based BTB is showed as fig[12]. There is no difference in cache 

structure while in BTB each BTB entry is composed of valid bit, line offset, cache 

line indicator and branch target address. We reduce the tag array and add a line offset 

array and a cache line indicator array. The function of cache line indicator is identify 

each BTB entry is used by which cache line of mapped cache entry group and the size 

of cache line indicator is log(size of cache line group). 

The content of cache line indicator is different in set-based method and 

way-based method. In set-based method, it have priority to identify each entry is used 

by which cache line of the mapped set index. Thus, in set-based method, the content 

of cache line indicator is way-number in priority. In way-based method, the content of 
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cache line indicator is set-number in priority. The source of set-number is part of 

program counter and the source of way-number is the result that tag comparison of 

each way in I-Cache.  

The operation of cache access is parallel to the operation of BTB access. The 

operation of cache access is no different. The operation of BTB access is showed as 

following. First, we get the cache index by the index part of program counter decoded 

from index decoder of I-Cache. We could find out the corresponding BTB entry group 

through the mapping circuit and cache index (Fig[14] ). The input of mapping circuit 

re enable lines of decoded cache index. The output are the enable lines of mapped 

BTB entry group. The function of mapping circuit is mapping the cache index to the 

mapped BTB entry group. Second, when the tag comparison operation in I-Cache, the 

line offset of program counter and way-number are simultaneously compared to the 

line offset array and cache line indicator of BTB. Thus, it could identify if hit in BTB 

or not. Last, when it choose the instruction by the result of tag comparison in I-Cache, 

it also choose the branch target address by the result of line offset and cache line 

indicator comparison in BTB. 

 
Fig. 14 Mapping circuit 
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Group mapping policy has the advantages and disadvantages. The first advantage 

is promoting the mapping flexibility between cache lines and BTB entries to solve 

every kind of demands. The another advantage is there a better utilization of the BTB 

entry in group mapping than the limit mapping of one cache line map to one BTB 

entry while the BTB entry is the same. Because of the unfixed branch number of each 

cache line, the BTB entry group could be used by the all cache lines of mapped cache 

line group. It increases more possible cases for utilization than the one cache line 

maps to one BTB entry. While the disadvantage is the access power is direct 

proportion to the entry number of BTB entry group because it need to access more 

possible information. 
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3.1.2 Sharing Policy  

The mapping between cache line and BTB entry promote to a cache line group 

maps to a BTB entry group in group mapping policy. Moreover, we want to promote 

the utilization of BTB entry further. Thus, we propose the second policy – Sharing 

policy. 

Sharing policy, under the condition of priority, is each cache line group could 

sharing use the BTB entry group mapped by other cache line group (shared BTB entry 

group). Besides, the access operation of BTB would include access shared BTB entry 

group only when the information of branch instruction belong to the mapped BTB 

entry group is located in shared BTB entry group. In sharing policy, each BTB entry 

group could be used by more than one cache line group that is each cache line group 

could use more than one BTB entry group. 

 
Fig. 15 Sharing policy 

 

The consideration of priority is in order to make sure each cache line would not 

have no mapped BTB entry group using because of sharing policy. That is to maintain 

the branch prediction accuracy would not be affected by sharing policy. Thus, each 

cache line has higher priority to use the mapped BTB entry group.  
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Fig. 16 Logic diagram of sharing policy 

 

Here would introduce how to decide which cache line groups could sharing BTB 

entry group to each other. The principle is to find the cache line groups would have 

less probability to be referenced at the same time point to sharing BTB entry group. 

That has less probability to happen contention of using BTB entry. Based on the 

theory of temporal and spatial locality, the cache line groups in distance of (number of 

cache line group)/(number of sharing) is the most far distance and which have less 

probability to be referenced at the same time point. 

The key point of following is how to use the least hardware to achieve the 

function of sharing policy. It has different considerations on the sites of cache line and 

BTB entry. The consideration on the site of cache line is if it can identify there are any 

information of the instructions in the shared BTB entry group. The basic policy is to 

compare the mapped BTB entry group and shared BTB entry group every instruction 

cycle but this will result in much unnecessary dynamic power consumption. Thus, we 
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propose two methods to identify if it needs to compare with shared BTB entry in each 

instruction cycle. 

Lookup shared BTB entry group policy： 

1. Line based 

If the information with any one instruction of the cache line located in the shared 

BTB entry group, the whole accesses of the cache line have to compare with the 

shared BTB entry group. This policy has the smallest hardware overhead because 

we only need to add one bit in each cache line to identify if compare with shared 

BTB entry group. But it has the most dynamic access power because the whole 

access of the cache line need to compare with shared BTB due to one or more 

information with the instructions of cache line in shared BTB entry group and 

each access of the instruction need to compare with mapped BTB entry group. 

 
Fig. 17 Lookup policy - line based 

2. Instruction based 

Every instruction record the information is in mapped BTB entry group or in 

shared BTB entry group or all not. This policy has the most hardware overhead 



 23

because each instruction has to add the bits to record the corresponding location. 

But this has the smallest dynamic access power because it can point the location 

exactly to compare with the location or no compare. 

 
Fig. 18 Lookup policy - instruction based 

 

The consideration on the site of BTB entry is how to identify the BTB entry is 

used by which cache line group. To solve this problem we add the Be shared bits to 

identify the BTB entry is used by which cache line group and the bit number is 

log(shared number + 1) 

In order to identify each BTB entry is used by which cache line group, it has to 

add a sharing circuit (fig[19]). The input of sharing circuit is be-shared-bit and enable 

from mapped cache line or enable from shared cache line. The output of sharing 

circuit is the BTB entry belong to the cache line group or not. 
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Fig. 19 Sharing circuit 

However, we have some special design under the limit of access timing. It has to 

complete the comparison of BTB entry in one cycle but it has near to one cycle to 

read the lookup shared BTB entry group information and it needs one cycle to 

compare with shared BTB entry. The lookup of sharing BTB entry group would not 

be completed in one cycle. Thus, in our design, each read lookup shared BTB entry 

information is for next instruction using and each first access of each cache line has to 

compare with mapped and shared BTB entry group. 
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3.1.3 Global BTB 

Global BTB is aimed at the branch instructions still could not have empty BTB 

entry using to additional provide K number of BTB entries for them. Besides, the 

access operation of BTB would include access global BTB only when the information 

of branch instruction belong to the mapped BTB entry group is located in global BTB. 

The global BTB is as like typical BTB with fully associative and it has tag field, valid 

field and branch target address field. The entry number is less because the branch 

instructions still could not have empty BTB entry are less. 

 

Fig. 20 Global BTB 

The following is aimed at how to use the least hardware to achieve the function of 

Global BTB. We have to add a search global bit to identify each BTB access 

including global BTB or not. The methods as mentioned in sharing policy are 

Line-based and Instruction-based. 

However, for the line-based method and instruction-based method in sharing 

policy and global BTB, we have two assumption under the limit of access timing. The 

limit of access timing is that has to complete the comparison of BTB entry in one 

cycle but it has near to one cycle to read the search-share-information and it needs one 

cycle to compare with shared BTB entry. The lookup of sharing BTB entry group 
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would not be completed in one cycle. Thus, the two consumption: 

a> Each read lookup shared BTB and global BTB information is for next 

instruction using  

b> Each first access of each cache line has to compare with mapped and shared 

BTB entry group and global BTB 

 
Fig. 21 Logic diagram of Low Power I-Cache based BTB 

 

The key point of following is how to use the least hardware to achieve the two 

consumption. For the first point, we add two bit register to be the temp of the read 

search-share-bit and search-global-bit. The content would be used in next BTB access. 

For the second point, we compare the next pc and pc by the check circuit (fig[22]) to 

identify if they are the same cache index. The next pc is produced from the predicted 

direction and predicted branch target address of BTB. If they are not the same cache 

index, it is the first access of cache line. 
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Fig. 22 Check circuit 
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3.2  BTB management： 

How to manage the low power I-Cache-based BTB is another important issue. 

Different management policy would have different branch prediction accuracy and 

power consumption. We discuss this issue in three parts：Identification、Placement 、

Replacement 

 

3.2.1 Identification 

The objective of identification is how to find the corresponding BTB entry if the 

information of instruction is in BTB. First, it found the corresponding cache line by 

the index decoding with the program counter belonged to I-Cache. The next step is 

decided to lookup which BTB entry of mapped, shared BTB entry group or global 

BTB. This step is based on the two lookup methods-- line based, instruction based, to 

decided to lookup which BTB entry. While the data for comparison are different, line 

offset and cache line indicator are compared in mapped and shared BTB entry group 

and tag field is compared in global BTB. Last step is choosing the exact branch 

information by valid bit and be shared bit. 
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Fig. 23 Logic diagram of Low Power I-Cache based BTB 

 

 

 

3.2.2 Placement  

It is to determine the possible location to place branch information in placement 

policy. The sequence of possible location is based on the power consumption of 

identification to beginning place in the location with smallest power consumption. 

The degree with power consumption of identification, when global BTB entry is 

larger than BTB entry group, the first placement location is the mapped BTB entry 

group and the next is shared BTB entry group, the last is global BTB.  

Besides, to avoid the cache line group who have no mapped BTB entry using, we 

make the priority of the mapped cache line group higher than the shared cache line 

group to use the BTB entry group. All the cases are showed in Fig[24]. 
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Fig. 24 All cases of placement 

A = Mapped BTB entry group full or not 

B= Shared BTB entry group full or not 

C= Global BTB full or not 

D= Mapped BTB entry group shared using or not 

I0= Use Mapped BTB entry Group 

I1= Use Shared BTB entry Group 

I2= Use Global BTB 

I3= LRU Policy 

 

 
Fig. 25 Placement circuit 

 

A  B  C  D Output 

0 x  x  x 

1  0  x  x 

1  1  x  1 

1  1  0  0 

1  1  1  0 

I0 

I1 

I0 

I2 

I3 
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3.2.3 Replacement  

When there are no empty BTB entries to place, we have to replace one BTB entry. 

We want to find out the least recently used BTB entry as the replaced entry in mapped, 

shared and global BTB . Thus, we adopt the replacement policy - LRU(Last-Recently 

Used) policy. 
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Chapter 4. EVALUATION 

 

4.1 Evaluation metrics 

We evaluate our design by comparing the power consumption of I-Cache based 

BTB to that of independent BTB. The power consumption of each is divided into 

dynamic power and static power. Each has different power components as showed in 

(Fig[26]) which will be each items when measure the power consumption. We would 

apart dynamic power from static power in the result and then discuss each proportion 

of the power components to see the power consumption in different policies.  

 
 

 

 

4.2 Evaluation environment 

We adopt the Simplesim-arm-0.2 to be our simulator is a cycle level accurate 

simplescaler with arm version. The power model adopt the power library of wattch[8]. 

Benchmark is Mibench a set of commercially representative embedded programs 

 EBTB     = Dynamic energy + Static energy 

 EICBTB = Dynamic energyn + Static energyn + Over_headn 

Fig. 26 Power metric



 33

included six parts – automotive and industrial control, consumer devices, office 

automation, network, security, telecommunications 

 

  

4.3 Evaluation methodology and result 

In order to evaluate our low power I-Cache based BTB if promote the branch 

prediction accuracy and still keep its low power feature, we compare our design to the 

ARM cortex – A8 microprocessor.  

 

In the reference[7] we could know the BTB of A8 is 512 entries, but there is no 

data about the associative. Thus, we simulate the power and energy representation in 

different size and associative to find out the case with lowest energy consumption(as 

showed in fig[29]). We could see that the BTB with 512 entries 2way has the lowest 

energy consumption. We will compare the energy consumption of ICBTB to this case 

and our evaluation result will be normalized to base line. We assume that each 

dynamic energy and static energy is 50% of total energy. 

 

 Notation:  
Name example: 4to1-s2-g4 

4 cache lines to 1 BTB entry 
sharing number = 2 BTB entry groups  
global BTB size = 4 entries 

Fig. 27 Configuration of ARM-A8 

Fig. 28 Name example 
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Fig. 29 Power Consumption of Different Configuration in A8 microprocessor 

 

 

 

First, we see the result of group mapping. The size of cache line group is 1~4 

cache lines and BTB entry group are 1~4 BTB entries. The group method is set-based. 

We could see that the best case is 4to3 (Fig[30]). Total energy consumption could 

reduce 18%. The prediction accuracy of 4to3 is 94.75 and that of base line is 94.42. 

The execution time reduced 0.3%. In this case, the entry number of 4to3 is 768 which 

is more than the base line. Because it is reduced the tag array in I-Cache-based BTB, 

the total array size is not much more than base line. The dynamic power per access of 

4to3 is still less than base line (82%).  

Above all, we could see that the best case maintain the branch prediction 

accuracy and saved 23% dynamic energy consumption, 13% static energy 

consumption of BTB. 
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Fig. 30 Total energy consumption of group mapping 

 
Fig. 31 Total items of group mapping 
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Fig. 32 Power consumption of group mapping 

Second, we want to see if sharing policy could reduce more power consumption. 

Thus, we take case 4to2 and 4to3 to compare. Because case 4to2 has less entry 

number than 4to3 and the branch prediction accuracy is worse than 4to3. If using 

sharing policy could let the case of less entry achieve the performance, it would 

possible to save more power consumption. 

After adopting sharing policy, we could see that 4to2-s2 could perform the 

branch prediction accuracy – 94.63% , about as well as that of base line as showed in 

fig[33]. Although the peak dynamic power is more than base line, but the total energy 

is much less than base line. It could reduce 28% of total energy- 38% in dynamic 

energy and 18% in static energy. Using sharing policy could promote the utilization of 

BTB entry and reduce much more power consumption. 
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Fig. 33 Total energy consumption of sharing policy 

 
Fig. 34 Total items of sharing policy 
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.  

Fig. 35 Power consumption of sharing policy 

 

 

Third, we want to see if sharing policy could reduce more power consumption. 

As mentioned above, we take case 4to2 and 4to3 to compare. 

After adopting Global, we could see that 4to2-g8 could perform the branch 

prediction accuracy – 94.89%, better than that of base line as showed in fig[36]. 

Although the peak dynamic power is more than base line, but the total energy is much 

less than base line. It could reduce 27% of total energy- 35% in dynamic energy and 

19% in static energy. Using global BTB could promote the utilization of BTB entry 

and reduce much more power consumption. 
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Fig. 36 Total energy consumption of global BTB 

 
Fig. 37 Total items of global BTB 
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Fig. 38 Power consumption of global BTB 

 

Last, we want to see if sharing policy and global BTB could work together to 

reduce more power consumption. As mentioned above, we take case 4to2 and 4to3 to 

compare. 

When adopting sharing policy and global BTB together, we could see that the 

case 4to2-s1-g1 could perform the branch prediction accuracy – 94.63%, better than 

that of base line as showed in fig[39]. It could reduce 33% of total energy- 40% in 

dynamic energy and 26% in static energy. It reduced more energy consumption than 

sharing policy and global BTB alone. This is because the function of sharing policy 

and global BTB are different. If they work together, they could promote much more 

branch prediction accuracy and add less overhead. 
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Fig. 39 Total energy consumption of sharing policy + global BTB 

 

 
Fig. 40 Total items of sharing policy + global BTB 
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Fig. 41 Power consumption of sharing policy + global BTB 

 

Fig. 42 Total items of best case 4to2-s1-g2 

 

The dynamic and static power consumption of different lookup policy of sharing 

and global policy is nearly close to our expect as showed in fig[43]. The line based 

policy result in the less static power consumption while the larger dynamic power 

consumption. The instruction based policy result in the larger static power 



 43

consumption while the less dynamic power consumption. This is because of the 

different hardware overhead and functionality. 

 
Fig. 43 Power consumption of different lookup policy 

 

 

We compared different distance and number with sharing policy to observe the 

branch prediction accuracy. (Fig[44,45]) The size of each cache line group is one 

cache line and the size of each BTB entry group is one BTB entry. The result is 

closely meet with the theory of temporal and spatial locality. We can find that the 

branch prediction accuracy is direct proportion to the distance when I-Cache is direct 

map while the branch prediction accuracy is high in the same set when it is set 

associative. 
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Fig. 44 Branch prediction accuracy and different sharing distance in direct map I-Cache 

 
Fig. 45 Branch prediction accuracy and different sharing distance in set associative I-Cache 
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Chapter 5. CONCLUSION & FUTURE WORK 

 

5.1 Conclusion 

 We propose the low power I-Cache based BTB which branch prediction accuracy 

could be nearly close to the branch prediction accuracy of independent BTB. The low 

power I-Cache-based BTB reduced the dynamic and static power consumption of 

index decoder and tag array which are the power components of independent BTB. In 

the case 4to2-s1-g2 which branch prediction accuracy perform as well as that in 

independent BTB of ARM-A8 and which could save 42% in dynamic power 

consumption and 24% in static power consumption most. 

  

Sharing distance and BTB entry utilization is related to the configuration of 

I-Cache. According to the theory of temporal and spatial locality, we inference the 

optimized share distance is different with the configuration of I-Cache. 

 Direct map I-Cache: share distance = [(line number of I-Cache)/ 2] 

 Set associative I-Cache: share distance < (way number of I-Cache) 

 

 According to the theory of spatial locality, we inference the optimized share 

distance is different with the configuration of I-Cache. The optimized share distance 

of I-Cache with direct map is [I-Cache set number/2] and I-Cache of set associative is 

[1 ~ (way number -1)]. And the three kinds of lookup policies would result in 

different proportion of power consumption in dynamic and static sites. 
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5.2 Future work 

The I-Cache based BTB could easily employ the available policy which is 

designed for I-Cache to save power consumption of both I-Cache and BTB. We take 

the famous drowsy I-Cache[4] and instruction buffer[5] for example. The drowsy 

I-Cache policy could be easily employed on I-Cache based BTB because the structure 

would not affect the policy. And the drowsy effect will save static power of both 

I-Cache and BTB. Utilizing the idea of instruction buffer to fetch information of 

I-Cache based BTB into a buffer will reduce both fetch power of I-Cache and lookup 

power of BTB.  

And we have focus on the high way I-Cache which is CAM-RAM structure to 

consider the I-Cache based BTB. Because of different structure and features – 

low-way I-Cache and high-way I-Cache, there would be different considerations on 

I-Cache based BTB. 
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Appendix A. Resupplied table 

 
Fig. 46 Number of instructions per branch in Mibench 

 

 


