
國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

藉由無線感測器網路建立一室內 3D 環境下的緊

急逃生系統

Implementation of an Emergency Guiding System in Indoor 3D

Environment by Wireless Sensor Networks

研 究 生：蔡佳宏

指導教授：曾煜棋 教授

中 華 民 國 九 十 五 年 七 月

Implementation of an Emergency Guiding System

in Indoor 3D Environment by Wireless Sensor

Networks

Student: Chia-Hung Tsai

Advisor: Prof. Yu-Chee Tseng

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2006

Hsinchu, Taiwan

���������	
��
3DÆ���������
������ ���	�
��
Æ��������������� (���)��

!"#$%&'()*+,-./0123456789�:3&;/<=>?4&�AB�CDE 3DFGHIJKL��M&?JKNOP�Q&R�STAUVWI-L�X;�A�M/YQZ[\℄FGI^R&;?_*`JKNOP�Q&Rab
def,-gh&%ijFG\℄Iklm&nRopdqrstuvw&xyzVWd�STA{|tuvw&}VWIL�-~LUs�X��/�AI��4&��� 3D��IJKL�����X}��I�Ǒk���s&�AI���/JKNOP�Q&R�������I��&opd�`VWI-~L�X������VW&�S&'� /I¡�&'(��&'()*+,-X

1

Implementation of an Emergency Guiding System in

Indoor 3D Environments by Wireless Sensor Networks

Student: Chia-Hung Tsai Advisor: Prof.Yu-Chee Tseng

Department of Computer Science

National Chiao-Tung University

ABSTRACT

Recently, wireless sensor networks have been widely discussed in many applica-

tions. In this paper, we design a novel 3D emergency service that aims to guide

people to safe places when emergencies happen. At normal time, the network is

responsible for monitoring the environment. When emergency events are detected,

the network can adaptively modify its topology to ensure transportation reliability,

quickly identify hazardous regions that should be avoided, and find safe navigation

paths that can lead people to exits. In particular, the structures of 3D buildings

are taken into account in our design. Prototyping and simulation results show that

our protocols can react to emergencies quickly at low message cost and can find safe

paths to exits.

Keywords: home security, navigation, pervasive computing, wireless communi-

cation, wireless sensor network.

2

��¢����<£$&¤���	¥��§A¨©�`ª1«¬I­®�¯r&°�`±��I���
²&³4´<µ¶·�IT¸¹C)º&'(,-»w¼½6¾&ª¿À�RÁ��Â�D&°ÄÅ�I<=9>R¶Æµ0ÇÈXÉÊ&ËÌ)Í�Z
��ÎÏ��ÑÒ�I�	Î��§ÎÓ�¥ÔÕI�TX

3

Contents

�� 1

Abstract 2�� 3

Contents 4

List of Figures 6

1 Introduction 1

2 Related Works 3

3 Guidance Initialization 5

4 Emergency Guiding Schemes 8

5 Prototyping Results 14

6 Performance Evaluation 21

6.1 Experimented Results . 21

6.2 Simulation Results . 23

7 Conclusions and Future Work 29

A Tree Maintenance Procedure 30

B Component Graph 32

B.1 System Overview . 32

B.2 Tree Maintenance . 33

B.3 Symmetric Link Detection . 35

4

B.4 Guidance Service . 37

Bibliography 41

5

List of Figures

1.1 System architecture of our indoor 3D sensor network 2

2.1 Some guidance scenarios when the hazardous region is defined as two

hops from the emergency site. 4

2.2 Two guiding scenarios that in 3D buildings. 4

3.1 (a) Communication graph Gc and (b) guidance graph Gg. 6

4.1 The weight adjustments of local minimal stair sensors in step 3(b). . 12

5.1 Protocol stacks for (a) sink node and (b) sensor node. 14

5.2 Our JAVA graphical user interface. 16

5.3 Our LED guidance panel (where “D” = downstairs and “U”= upstairs). 16

5.4 Format of the EMG packet. 16

5.5 Format of the weight subfield in the EMG packet. 17

5.6 The flow chart of our guidance service. 18

5.7 The subfield of the neighbor table. 19

5.8 The flow chart of symmetric link detection. 19

5.9 (a) The format of HELLO/Ack packets. (b) Definitions of the type

subfield. 19

6.1 A virtual 2-store building. 22

6.2 Some guiding results in a 2-store building. 22

6.3 Some guiding results in a 3-store building. 23

6.4 Some guidance results in 4-store buildings. 24

6.5 Some guidance results in 4-store buildings of various shapes of archi-

tecture. 26

6.6 Comparison of escaping paths, convergence times, and message over-

heads against [18]. 27

6

A.1 The flow chart of tree maintenance. 30

7

Chapter 1

Introduction

The recent progress of wireless communication and embedded micro-sensing MEMS

technologies has made wireless sensor networks (WSN) more attractive. A lot of

research works have been dedicated to WSN, including energy-efficient MAC proto-

cols [11, 27], routing and transport protocols [8, 12], self-organizing schemes [17, 24],

sensor deployment and coverage issues [13, 20], and localization schemes [4, 9, 21].

In the application side, habitat monitoring is explored in [2], the FireBug project

aims to monitor wildfires [1], mobile object tracking is addressed in [5, 19, 25], and

navigation applications are explored in [6, 10, 16, 18, 23, 26].

In this paper, we design a wireless sensor network in a 3D indoor environment

for emergency guiding and monitoring service. Using wireless sensors to construct

such a system has following benefits:

• Wireless sensors can be easily deployed.

• Wireless sensors can support surveillance applications at normal time.

• Wireless sensor can rapidly react to emergency events and report to a control

host.

• Wireless sensors can locally exchange information to facilitate computing safer

escaping paths.

Fig. 1.1 shows the system architecture. Sensor nodes are deployed floor by floor

and are connected together by those at stairs. These sensors form a multi-hop ad

hoc network. One node serves as the sink of the network, and it is connected to the

control host, which can issue commands and config the network. To support guiding

services, sensors are classified as normal sensors, exit sensors, and stair sensors. We

1

Controller

Sink
Control host

3F

room

room

room

room

2F

room

room

room

room

1F

room room

4F

room

room

room

room

exit sensor

stair sensor

normal sensor

guidance direction

room room

to rooftop

to rooftop

B

AC

C

A

A

A

A

A

D

D

A: floor gateway

B: stair gateway

C: floor/stair gateway

D: floor/roof gateway
(0, 0) (0, 1)

(1, 0)

(0, 0)

(0, 2)(0, 0) (0, 1)

(0, 1)(0, 1)

(0, 2) (0, 3) (0, 2) (0, 1)

(0, 2)(0, 1)(0, 2)

(1, 1)

(1, 0)

(1, 2)(1, 2) (1, 3)

(1, 1)(1, 1)

(1, 2) (1, 3) (1, 2) (1, 1)

(1, 2)(1, 3)(1, 2)

(2, 1)

(2, 0)

(2, 2)(2, 2) (2, 1)

(2, 1)(2, 1)

(2, 2) (2, 3) (2, 2) (2, 1)

(2, 2)(2, 3)(2, 2)

(2, 0)

(3, 1)

(3, 0)

(3, 2)(3, 1) (3, 2)

(3, 1)(3, 1)

(3, 2) (3, 2) (3, 1) (3, 1)

(3, 1)(3, 0)(3, 1)

(3, 0)

(lemg, -(l
I
y+1))

(lemg, -(l
I
y+1))

Figure 1.1: System architecture of our indoor 3D sensor network

will discuss how to design emergency guiding and monitoring services. The former

addresses how to find escape paths leading to exits, in the event of emergencies,

while the later addresses how to quickly report the status in the sensing field to the

outside world.

Our approach relies on finding spanning trees rooted at the sink (to report data)

and at exits (to guide people in the field). In particular, we will distinguish routing

paths (for packets) from escape paths (for human). In this system, emergency

events trigger the guiding service. Our protocol is distributed, and allows multiple

emergency events and multiple exits coexisting in the sensing field. A concept called

hazardous region, which people should avoid, is introduced.

The rest of this paper is organized as follows. Chapter 2 gives some related works

about 2D navigation algorithms and network topology maintain mechanisms. Chap-

ter 3 presents Guidance initialization procedures. Our emergency guiding algorithm

is presented in Chapter 4. Chapter 5 reports our prototyping results. Chapter 6

presents some performance evaluation results. Chapter 7 concludes this paper.

2

Chapter 2

Related Works

This section reviews existing navigation. For navigation proposes, [6] shows how

to guide a robot to a goal using sensors as signposts. Each sensor determines the

direction to which the robot should move by computing a probability value for each

neighbor. A higher probability means a shorter distance to the target.

Reference [18] has the same goal as our work. It is assumed that there are

multiple emergency points (called obstacles) and one exit in the environment. The

goal is to find a navigation path from each sensor to the exit without passing any

obstacle. The concept of artificial potential is used. The exit will generate an

attractive potential, which pulls sensors to the exit, and each obstacle will generate

a repulsive potential, which pushes sensors away from it. Each sensor will calculate

its potential value and tries to find a navigation path with the least total potential

value. This result is also applied to robot navigation and distributed search and

rescue in [10, 16, 23]. Although the algorithm in [18] is shown to be able to find a

shorter and safer path from each sensor to the exit, it has the following drawbacks.

First, it may incur high message overheads. Since the construction is rippled from

the exit to other sensors, a minor change of potential nearby the exit may cause many

sensors to recompute their potentials, thus causing a lot of message exchanges and

even delays in making the navigation decision. Second, the algorithm has no concept

of hazardous regions. With shortest-path routing, this algorithm may determine a

path that is very close to the emergency location. Consider Fig. 2.1(a), where there

are two exits, A and B. When an emergency is detected in C, according to [18],

some users may be directed to B, which is undesirable because they will pass the

hazardous region. Guiding users as in Fig. 2.1(b) will be more desirable because

only users inside the hazardous region are directed to exit B.

Although these drawbacks are conquered in [26], both [18] and [26] deal with only

3

Navigation path

Hazardous region

(a) (b)

C C

Exit

Emergency location

A A

BB

Figure 2.1: Some guidance scenarios when the hazardous region is defined as two

hops from the emergency site.

exit sensor

stair sensor

room

room

room

room

room room

room

room

room

room

room

room room

roomroom

To

rooftop

(a) (b)

?

hazardous

region
A

B

C

D

Figure 2.2: Two guiding scenarios that in 3D buildings.

2D sensing fields; they can not directly apply to 3D environments. Fig. 2.2 shows

two scenarios. In Fig. 2.2(a), an emergency occurs on the ground floor. Sensors on

the second floor do not know where the emergency is. Some sensors on the second

floor may guide people to go through stair sensor A, which has a shorter escape

way to exit B. However, going through stair sensors C and D would be safer. In

Fig. 2.2(b), there is a stair connected to the roof. Again, when an emergency occurs

near the stair on the ground floor, stair sensors on the second floor can not decide

which way (to upstair or downstair) is more appropriate. The goal of this work

is to consider 3D sensing fields, especially those inside a building, and address the

emergency guiding applications in such environments.

4

Chapter 3

Guidance Initialization

We are given a set of sensors deployed in a building. Sensors’ roles are designated

at the deployment stage. Sensors located at the exits of the building are called exit

sensors, and those located at stairs are called stair sensors. Otherwise, they are

called normal sensors. One sensor is designated as the sink, which is connected to

the control host.

From the network, we will construct a communication graph Gc = (V, Ec) and a

guidance graph Gg = (V, Eg), where V is the set of sensors. Each edge (u, v) ∈ Ec

represents a communication link between u and v ∈ V , while each edge (u, v) ∈ Eg

represents a walking path between u and v. Note that a walking path is a physical

route that human can pass. So Eg has to be constructed manually based on the

floor plane of the building. Fig. 3.1 shows this concept. And for the purpose of

monitoring, we will construct a minimum spanning tree at the beginning. This

scheme will be started by the control host flooding an INIT N packet. A node that

receives an INIT N selects a set of neighbors with the smallest hop count to the

sink and then chooses a neighbor with the best signal quality as its parent. Then

this node will rebroadcast the INIT N if it changes its parent. Furthermore, in our

design, sensors also report their neighbor information. As a result, the control host

can know the Gc.

In the following, the guidance initialization procedure is presented.

The purpose of guidance initialization is to find escape paths leading to exits

at normal times on the graph Gg. Guidance is not purely based on shortest-path

routing. Instead, it gives higher precedence to stair sensors. We give three definitions

here. On each non-ground floor, a sensor is called a floor gateway of that floor if

it is a stair sensor and is connected to a downstairs sensor; on the ground floor, a

sensor is a floor gateway if it is an exit sensor. Stairs are normally extended along

5

room room

room room

(a) Communication graph Gc
(b) Guidance graph Gg

room room

room room

Figure 3.1: (a) Communication graph Gc and (b) guidance graph Gg.

several floors. For such continuous stairs, the stair sensor closest to the ground level

is designated as the stair gateway and the stair connecting to roof is designated as

the roof gateway. For example, in Fig. 1.1, type A, B, C, and D sensors are floor

gateways, stair gateways, floor/stair gateways,and floor/roof gateways respectively.

The configuration of sensors’ status is done manually through the control host.

After planning Gg, we will compute for each sensor x a weight wx = (lx, altx),

where level lx is the number of floors from x’s current floor to the ground level and

altitude altx is the hop distance from x to the nearest floor gateway on the same

floor. When computing its guiding direction, a normal sensor can ignore the first

tuple since it can only direct to neighbors on the same floor. But, the first tuple is

important for stair sensors and is used to control stair sensors’ guidance directions.

Hence, we define the relationship between two weights as: a normal sensor considers

wx > wy if altx > alty and a stair sensor considers wx > wy if (lx > ly) or (lx = ly

and altx > alty). Guidance initialization starts by issuing INIT G packets with

weight (0, 0) from exit sensors. When a sensor x receives an INIT G packet with

a smaller weight w = (l, alt) than its current weight from its guidance neighbor, x

executes the following steps:

1. If x is a stair sensor:

(a) If the sender is a stair sensor or exit sensor:

i. If x is a floor gateway, x records its weight as (l + 1, 0).

ii. Otherwise, x records its weight as (l + 1, alt + 1).

(b) If the sender is a normal sensor:

i. If x is a floor gateway, x records its weight as (l, 0).

ii. Otherwise, x records its weight as (l, alt + 1).

2. Otherwise, x records its weight as (l, alt + 1).

3. Then x rebroadcasts the INIT G packet with its ID and weight.

6

For example, Fig. 1.1 shows the initialization result of the given deployment.

After the guidance initialization, each sensor will keep a guidance neighbor table,

in which each entry records a neighbor’s ID, role, weight, and location. One special

rule is that for a roof gateway y, we will connect it an virtual sensor as its neighbor

with weight (lemg, −(lIy + 1)) if the gateway has a stair leading to the roof. The

weight of virtual sensor is static and the details will be discussed in Section 4.

7

Chapter 4

Emergency Guiding Schemes

In the following, we present our distributed emergency guiding protocol. Our goal is

to guide people in a building to escape safely when emergency happens. When a sen-

sor detects an emergency event, this sensor and the sensors surrounding it will form

a hazardous region by raising their weights. Sensors will locally choose their guiding

directions according to their roles. However, when a sensor has a local minimum

weight, partial link reversal is used to solve this problem. Our design focuses on

quick convergence and can avoid guiding people through hazardous regions. After

leading people to stairs, floor gateways will direct people to go downstairs if there

is no hazards downstairs. Otherwise, floor gateways will force people to go to other

stairs. If there is no suitable ways to go downstairs, our protocol will guide people

to the rooftop to wait for help. Below, we first introduce some notations:

• D: a constant such that a sensor is considered within a hazardous region if its

hop count to any emergency location in Gg is less than or equal to this value.

• wemg: the weight (lemg, altemg) to be assigned to a sensor that detects an

emergency event, where lemg and altemg are large constants.

• wI
i : the weight (lIi , altIi) of sensor i after the guidance initialization.

• ei,j: the hop count from an emergency sensor i to a sensor j in Gg.

• EMG packet: the emergency notification packet, which has five fields: (1)

event sequence number, (2) ID of the sensor which finds the emergency event,

(3) sender’s ID, (4) weight of the sender, and (5) hop count from the sender

to the emergency sensor.

8

Intuitively, the altitude tuple in a weight reflects the dangerous degree of the cor-

responding sensor, while the level tuple is to determine whether the corresponding

stairs are proper escaping paths. In this paper, we will assign level lemg − 1 to

sensors that are located in hazardous regions. So an upstair sensor which finds its

downstair sensor with a level larger than lemg − 1 will avoid guiding people to the

latter if possible. However, if the upstair sensor can not find a proper escaping path,

it will keep raising its weight until a neighbor with a smaller weight is found.

Suppose that a sensor x detects an emergency. It will set its weight to wemg

and immediately broadcast an EMG(seq, x, x, wemg, 0) packet. The packet will be

flooded in the network Gg for sensors to re-compute their guiding directions. When

a sensor y in Gg receives from a sensor z an EMG(seq, x, z, wz, h) packet originated

from x, y first updates z’s weight as wz in its neighbor table. Then y performs the

following steps.

1. y judges if this is a new emergency by checking the tuple (seq, x), and updates

ex,y as follows.

(a) If this is a new emergency event to y, y records this event and sets ex,y

to h + 1.

(b) Otherwise, y checks if h + 1 < ex,y. If so, y changes ex,y to h + 1.

If y is a normal sensor and z is a stair sensor, y will set ly = lz to prevent y

and z from directing to each other in step 5 when y has a larger altitude but

a smaller level than z.

2. This step is for sensors located in hazardous regions, where a sensor y is said

to be located in the hazardous region formed by x if ex,y ≤ D. However, if y

a stair sensor, we consider it as in a hazardous region if its downstair sensor

is in a hazardous region.

(a) For a normal sensor y, if ex,y ≤ D, y sets ly = lemg − 1 and sets

alty = max{alty, altemg ×
1

e2
x,y

+ altIy}. (4.1)

In our design, the altitude of a sensor inside a hazardous region is in-

creased by an amount inversely proportionate to the square of its dis-

tance to the emergency location. The value altIy is included so as to

reflect y’s distance to its nearest exit. The max function is to take into

9

account that y may be located within multiple hazardous regions and

thus receive multiple EMG packets from different sources, in which case

the largest altitude is adopted.

(b) For a stair sensor y, y adjusts its weight by the following rules:

i. If lIz > lIy and ex,y ≤ D, y considers itself as in a hazardous region

and sets its ly = lemg − 1 and its alty according to Eq. (4.1).

ii. If lIz = lIy and ex,y ≤ D, y adjusts its altitude according to Eq. (4.1).

However, y further resets ly = lemg to prevent upstair sensors from

directing to itself.

iii. If lIz < lIy and ex,y−1 ≤ D, y considers that it is located in a hazardous

region because its downstair sensor is located in a hazardous region.

Then y sets ex,y = h, ly = (lemg − 1), and alty = altz.

3. Then y checks if it becomes local minimum. A normal sensor y is a local

minimum if for each neighbor x of y, altx > alty; a stair sensor y is a local

minimum if for each neighbor x of y, wx > wy.

(a) If a normal sensor y is a local minimum, it adjusts its altitude by

alty = STA(alt(ny)) ×
1

|ny|
+ min{altny

} + δ, (4.2)

where ny is the set of neighbors of y, STA(alt(ny)) is the standard de-

viation of the altitudes of sensors in ny, and δ is a small constant. The

basic idea of using standard deviation is for quick response to emergen-

cies. When altitudes of sensors in ny vary significantly, it is likely that

y is near a hazardous region. Then it should increase its altitude more

quickly to avoid becoming a local minimum again. The constant δ is to

guarantee convergency. Its value should be carefully chosen because a

large δ may easily guide sensors to cross hazardous regions. On the other

hand, a small δ may incur high message cost although it may help find

safer paths. The reciprocal of |ny| is to reflect y’s potential choices to

select escape directions. A sensor that has less choices will increase its

altitude faster to get away from local minimum situation. These designs

will speed up the convergence speed.

(b) If a stair sensor y is a local minimum, it adjusts its weight based on its

current ly. Specifically, a stair sensor can guide people to go upstairs,

10

downstairs, or go through other floor gateways on the same floor. In our

design, a stair sensor will set its initial direction to downstairs. If there

is no proper way in its downstairs, it will try other floor gateways on the

same floor or stair sensors to upstairs. Roof gateways are only used when

there are no proper ways to go downstairs. Stair sensors that are not

connected to the roof will reverse their guidance directions to downstairs,

in which case people will be led to hazardous regions, which is sometimes

inevitable. To achieve these goals, the following steps are taken.

i. If ly = lIy, y sets ly = lemg − 1 and alty by Eq. (4.2). In this case, y

can direct to upstair or to the neighbors on the same floor since y’s

downstair sensor is potentially surrounded by hazards.

ii. If ly = lemg − 1, y sets ly = lemg and judges if it is a roof gateway or

it has an upstair sensor with level smaller than lemg.

A. If yes, y sets alty = −lIy . Recall that a roof gateway has a virtual

sensor with initial weight (lemg,−(I l
y + 1)). Hence, if y is a roof

gateway, it will guide people to the roof. After this adjustment, y

can direct to upstairs if it has an upstair sensor since the upstair

sensor’s level is smaller than lemg.

B. Otherwise, y sets alty by Eq. (4.2).

iii. If ly = lemg, y keeps its level unchanged and sets alty according to

Eq. (4.2) to find possible escaping paths with smaller altitudes, which

implies less dangerous.

4. y broadcasts an EMG(seq, x, y, wy, ex,y) packet if : (i) this is a new emergency

packet heard by y, or (ii) sensor y has changed wy or ex,y in the previous steps.

Also, since broadcast may suffer from loss, y will rebroadcast the same EMG

packet periodically, until it enters this step again and changes the content of

the EMG.

5. Finally, sensor y chooses its escape direction as follows. If y is a normal sensor,

y directs to the neighbor with lowest altitude. Otherwise, y (as a stair sensor),

directs to the neighbor with the lowest weight.

We remark that the above step 3.a adopts the concept of partial reversal in

[22] to adjust local minimum nodes’ altitudes. We do not adopt the full reversal

approach in our design because it may unnecessarily guide users in a non-hazardous

11

b

a

(l
I
a , alt

I
a)

(l
I
b , alt

I
b)

b

a

(lemg -1 , alt
1
a)

(lemg -1 , alt
1
b)

b

a

(lemg , alt
2
b)

(lemg , alt
2
a)

b

a

(a) (b) (c) (d)

2F

1F
c

original path after adjustment hazardous region

(lemg , alt
3
b)

(lemg , alt
3
a)

Original

weight

Original

weight

Figure 4.1: The weight adjustments of local minimal stair sensors in step 3(b).

region to pass through a hazardous region. Using partial reversal can help guide

users to route around a hazardous region. An example of weight adjustment for

local minimal stair sensors is shown in Fig. 4.1. In Fig. 4.1(a), an emergency occurs

on the ground floor and a hazardous region blocks the escape directions of sensor

a. In this case, stair sensor a will become a local minimal node. Then a executes

step 3.b.i to get rid of such situation and point to b, which has the smallest weight

among a’s neighbor. Sensor b also applies the same procedure as a and finds an

escaping path to the other floor gateway on the second floor. Assume that another

emergency occurs on the second floor as shown in Fig. 4.1(b). Sensor b will become

a local minimal again because its guiding path is blocked by a new hazardous region.

It can further direct to upstairs if its satisfies the condition in step 3.b.ii. After b’s

adjustment, a will become a local minimal and execute step 3.b.ii.B. In our design,

altitudes of the sensors on the boundary of a hazardous region is large. After the

adjustment, a’s altitude can not be higher than the altitudes of those sensors on the

boundary of the hazardous region with high probability. As a result, a will direct to

b. In case that b can not go to upstairs and the emergency area is enlarged (shown

in Fig. 4.1(c)), going through the hazardous regions on the second floor is improper.

Then b and a will apply step 3.b.iii to increase their altitudes. A path through c

can be found because c is farther from the emergency than other sensors. Finally,

Fig. 4.1(d) shows the guidance result, which may not be 100% safe but is inevitable

in this case.

We claim that each sensor can find a guidance direction in a finite number of

steps if sensors can successfully exchange EMG packets. A sensor becomes a local

minimum when it has no escape paths. Since δ is a positive constant, the protocol

has a progress property in the sense that the number of normal sensors which have

no escape paths on a floor will reduce. Local minimum stair sensors adjust weights

12

according to their levels. Stair sensors normally choose to go downstairs first. If this

fails, they will try to find other floor gateways on the same floor or go to upstairs.

However, if the roof is not reachable, the stair sensors will reverse their directions

to downstairs gradually from the roof by raising their altitudes. This guarantees

convergency of our protocol. Moreover, when emergencies occur, each sensor will

periodically broadcast EMG packets to facilitate the correctness of guidance.

13

Chapter 5

Prototyping Results

We have implemented our system using MICAz motes and MTS310 sensors on

TinyOS. Fig. 5.1 shows the protocol stacks of our system. Our system can be

divided into a “user part” and a “sensor part”. In the user part, we implement two

application-level user interfaces:

• Graphical user interface (GUI): It is to be run in a personal computer con-

nected to a MIB510 programming board. It provides a JAVA interface for

users to deploy the sensor network, to initialize the network, and to query the

statuses of sensors. Fig. 5.2 shows our user interface. Users can perform the

following operations on this GUI.

– Deployment: The system manager first plans sensors’ locations on the

”building plan panel”. According to the plan, the manager then phys-

ically deploys sensors at the corresponding locations. Then the system

Application-

level UI

Application

layer

Network

layer

Sensors part

Users part

(a)

(a)

Physical layer and Data link layer

Deployment GUINetwork

initialization

Guidance

initialization
Query

Sensor task
Guidance

service

Symmetric link
detection

Tree
maintenance

HELLO Report EMG

(b)

(b)

Physical layer and Data link layer

Sensor task
Guidance

service

Symmetric link
detection

Tree
maintenance

Guidance interface

HELLO Report EMG

Figure 5.1: Protocol stacks for (a) sink node and (b) sensor node.

14

manager can design guidance links between sensors and get a guidance

graph Gg. The system will also establish a mapping between sensors’ IDs

and their locations.

– Network initialization: The connectivity between sensors will be auto-

matically determined by HELLO packets received at each sensor. This

will generate the communication graph Gc. Network initialization is is-

sued by the “network initialization button”. After forming the reporting

tree, sensors will report their readings. In our current implementation,

sensors will report temperature and light degrees.

– Guidance initialization: Guidance initialization is issued by the “guid-

ance initialization button”. After pressing this button, the control host

will disseminate the connectivity information of the guidance graph Gg

throughout the network. Then the control host will inform exit sensors

to issue INIT G packets to compute the initial guiding direction for each

sensor.

– Query: Users can query each sensor’s status by pointing at the sensor

on the building plan panel. In response, the monitor panel will show

the sensed data, communication neighbors, guidance neighbors, guidance

direction, and current weight of the sensor.

– Commanding: In our design, the controller can also change the sensor’s

reporting rates to adapt to circumstances needs. In addition, we also

provide some other commands such as system reset.

• Guidance interface: We have implemented a LED guidance panel to display

the guidance results of sensors. The LED panel is attached to the connector

of the MTS310. When a sensor determines its guidance direction, it will send

a control signal to the panel. In our current implementation, this panel can

display up to six guidance directions as shown in Fig. 5.3.

For the sensor part, the protocol is divided into an application layer and a network

layer. The former has three components.

• Guidance service: This component is the core part of our system. The algo-

rithm in Chapter 4 is implemented. The guiding algorithm is triggered when

an emergency happens. First, this component will update the information ob-

tained from the EMG packet. According to our algorithm, sensors will judge if

15

Building

plan panel

sink

Control

panel

Monitor

panel

Current guidance direction

exit

EMGstair

stair

stair

→ 21 (in dec.)

Figure 5.2: Our JAVA graphical user interface.

Figure 5.3: Our LED guidance panel (where “D” = downstairs and “U”= upstairs).

Hop count to

emergency

WeightSender
ID

EMG

Source ID

Sequence
number

83-721Bytes: 0

Hop count to

emergency

WeightSender
ID

EMG

Source ID

Sequence
number

83-721Bytes: 0

Figure 5.4: Format of the EMG packet.

16

Altitude 4-7

Level3

DescriptionBytes

Altitude 4-7

Level3

DescriptionBytes

Figure 5.5: Format of the weight subfield in the EMG packet.

they are located in hazardous regions and if they have became local minimum

onces. Finally, sensors determine whether to re-broadcast EMG packets, and

then find out proper escape directions. The EMG packet format is given in

Fig. 5.4 and Fig. 5.5. The detail flow chart of this component is shown on

Fig. 5.6.

• Sensor task: At normal time, sensors periodically sense environmental data

and report to the control host. When a sensor detects an emergency event,

this component will trigger the tree reconstruction and guidance service com-

ponents.

In our implementation, the network layer has two components:

• Symmetric link detection: When booting up, this component will be executed

first. The main goal of this component is to maintain sensors’ neighbor tables.

The neighbor table format is shown in Fig. 5.7. In our system, sensors regularly

broadcast HELLO packets. After sending out a HELLO packets, a sensor will

trigger an adjustLink procedure to maintain its communication links. Inside

the procedure, the sensor will check if it has not received any ACK packet

from any neighbor for a period of time expire t. If so, this neighbor will be

pruned. On the other hand, on receiving a HELLO packet, a sensor will check

the link quality. If the RSSI strength is over a threshold, it will reply an

ACK packet. When the HELLO sender receives an ACK, it will trigger the

maintainLink procedure. If the sender of the ACK is not in its neighbor table,

the procedure will add this node into its neighbor table. Otherwise, this sender

is an existing neighbor, and its timer expire t will be reset. Fig. 5.8 outlines

the above procedure. Packet formats of HELLO and ACK are in Fig. 5.9.

• Tree maintenance: This component maintains sensors’ parents information.

Each sensor dynamically chooses a node that has the least hop count to the

17

Receive an EMG

packet

Update environmental

information

In a hazardous

region ?

If becoming a

local minimum ?

No

Adjust weight

Yes

Need to broadcast

EMG packet ?

Adjust weight
Yes

No

Find out guiding

direction

No

Broadcast EMG packet

Yes

Start

End

Figure 5.6: The flow chart of our guidance service.

18

Expiration time of the link if no HELLO is receivedExpired_T

The sensor id of the communication neighborNeighbor ID

Description Neighbor
Table

Expiration time of the link if no HELLO is receivedExpired_T

The sensor id of the communication neighborNeighbor ID

Description Neighbor
Table

Figure 5.7: The subfield of the neighbor table.

Hello timer expire

Send HELLO

adjustLink()

Receive HELLO

If the link quality is

above a threshold ?

Reply ACK

Yes

discard
No

Receive ACK

maintainLink()

Event

Figure 5.8: The flow chart of symmetric link detection.

(a) (b)

Hop count
to sink

Sender IDType

21Bytes: 0

Hop count
to sink

Sender IDType

21Bytes: 0

ACK1

HELLO0

Description Type value

ACK1

HELLO0

Description Type value

Figure 5.9: (a) The format of HELLO/Ack packets. (b) Definitions of the type

subfield.

19

sink as its parent. If more than one neighbor satisfies the condition, the one

with the best signal strength is chosen. The reporting tree is used to control

packets transmission and packets reception. The implementation details are

in Appendix A.

20

Chapter 6

Performance Evaluation

To investigate the performance of the proposed algorithm, we have conducted real

experimental tests and simulation evaluation. The results are presented in this

section.

6.1 Experimented Results

We have implemented our guiding protocol in TinyOS using B-MAC. We use the

Micaz wireless sensor nodes with MTS310 sensor board to conduct our experiments.

A virtual 2-store building as shown in Fig. 6.1 is built. Each floor is a 4x3 grid

network. Fig. 6.2 shows some guiding results. Each normal sensor has guidance

neighbors on its east, west, north, and south sides and each stair sensor has two

addition neighbors, upstairs and downstairs. The default values of altemg, lemg, δ,

and D are set to 200, 100, 0.3 and 1, respectively. To emulate multi-hop communica-

tion, we also reduce the transmission power of sensors. This may result in unstable

communication links and loss of packets. However, we find that our algorithms can

handle these situations well.

In Fig. 6.2(a), an emergency occurs at the exit sensor on the ground floor. The

stair sensor in the upper-right corner on the second floor thus guides people to the

lower-left stair sensor and then to the ground floor. Fig. 6.2(b) shows a case with

two emergency events. Sensors on the right-hand side will guide people to route

around the boundaries of hazardous regions to the exit. In this case, since there is

only one exit, sensors on the second floor can only guide people to the only stair

sensor on the corner. Fig. 6.2(c) shows a similar case except that there is roof stair.

In this case, people on the second floor will be guided to the roof sensor.

We have also built a 27-node prototype in a virtual 3-store home. Each floor is

21

Sink

Control

host

Exit

Exit

Exit

Exit
Stair

Stair

Stair

Stair

Figure 6.1: A virtual 2-store building.

2F

1F

roof

roof roof

Stair sensor Exit sensor Emergency

Guidance pkt. count 38.2 Guidance pkt. count 494.4 Guidance pkt. count 467.6

(a) (b) (c)

Figure 6.2: Some guiding results in a 2-store building.

22

2F

1F

Stair sensor Exit sensor Emergency

Guidance pkt. count 151.8 Guidance pkt. count 237.8 Guidance pkt. count 78.8

(a) (b) (c)

3F

roof

roof

Figure 6.3: Some guiding results in a 3-store building.

a 3x3 grid network. Fig. 6.3(a) shows a case that a sensor near the stair sensor on

the third floor detects an emergency event. Since there is no way to roof, all sensors

will guide people to the exit on the ground floor. In Fig. 6.3(b), three emergencies

are detected. Since the second floor is almost all covered by emergencies, people

on the third floor will be guided to the roof. In Fig. 6.3(c), the stair sensor in the

upper-right corner on the third floor will not guide people to downstairs because its

downstairs sensor is located in a hazardous region. This stair sensor will lead people

to the other stair sensor on the third floor.

In Fig. 6.2 and Fig. 6.3 we show the packet counts of all scenarios. These counts

do not include the packets for periodical reports. Note that among all cases, the

scenarios which need to force people to the roof, such as those in Fig. 6.2(b) and

Fig. 6.2(c), have the highest costs.

6.2 Simulation Results

Different structures of buildings should be taken into consideration in measurements.

However, this is difficult to achieve by real experiments. Furthermore, large-scale

experiments are infeasible. Below, we present our simulation results to test our

algorithm under more complex scenarios. Unslotted CSMA/CA protocol following

23

(a)

roof gateway go upstairs go downstairs

1F

3F

2F

4F

No Pkt.

loss

10% pkt.

loss

Cnvg.

Time

Pkt

Count

87.4

ms
746

6.01 s 907

1F

3F

2F

4F

No Pkt.

loss

10% pkt.

loss

Cnvg.

Time

Pkt

Count

805.7

ms
2507

67.53

s
2667

1F

3F

2F

4F

No Pkt.

loss

10% pkt.

loss

Cnvg.

Time

Pkt

Count

89.8

ms
757

6.01 s 961

(b) (c) (d)

No Pkt.

loss

10% pkt.

loss

Cnvg.

Time

Pkt

Count

987.9

ms
2546

95.5 s 2756

1F

3F

2F

4F

1F

3F

2F

4F

No Pkt.

loss

10% pkt.

loss

Cnvg.

Time

Pkt

Count

980.2

ms
3838

82.0 s 4040

(e)

1F

3F

2F

4F

No Pkt.

loss

10% pkt.

loss

Cnvg.

Time

Pkt

Count

63.70

ms
345

6.02 s 615

(f)

Figure 6.4: Some guidance results in 4-store buildings.

24

the IEEE 802.15.4 [14] is used in the simulation. The PHY rate of 250 kbps is

assumed. The values altemg, lemg, and δ are the same as above experiments except

that D is set to 2.

We consider a 4-store building and each floor is a 7x7 grid network. Fig. 6.4(a)

shows a case where some emergencies occur near the center of the second floor and

how sensors on the second floor guide people to avoid hazardous regions. Fig. 6.4(b)

simulates a building with no roof stair and only one stairs. Emergency events are

detected nearby the stair on fourth floor. Since the stair sensor on fourth floor

realizes that there is no rooftop, it guides people to downstairs. Fig. 6.4(c) shows a

case where some emergencies occur near the stair sensor on the third floor. Sensors

on the forth floor will guide people to the ground floor instead of to the roof. Note

that the stair sensor on the center of the third floor will direct people to upstairs.

This is reasonable because people currently in the staircase between the third and

the forth floor should be guided to upstairs. Fig. 6.4(d) is a case with only one

stairs and has one roof top. As there are emergencies nearby the floor gateway

on the second floor, the stair sensor on the fourth floor will adjust its weight until

its weight becomes larger than the virtual sensor. As a result, the sensors on the

fourth floor will direct people to the roof top and then sensors on the third floor

will also guide people to upstairs. Fig. 6.4(e) is a case with roof stairs. As there are

emergencies nearby the two stair sensors on the third floor, stair sensors on fourth

floor will adjust their weights until their altitudes become larger than the virtual

sensor. After this adjustment, these stair sensors will direct people to roof stairs

since there is no safer path to the ground. Since the floor gateways on the third

floor are all in the hazardous regions, they will direct people to upstairs through

the middle stair gateway. Fig. 6.4(f) is a case that an exit senses an emergency

occurred. All the upstairs sensors will direct people downstairs through the floor

gateways that are not in hazardous regions.

In Fig. 6.5, we simulate our algorithm in 4-store buildings of various kinds of

shapes. Fig. 6.5(a)-(d) are similar cases but are for different shapes of buildings.

These results indicate that our guidance protocol is suitable for various kinds of

building architectures. Fig. 6.5(e) shows a case where some emergencies occur nearby

a floor gateway on the third floor. Since the left-hand side floor gateways on the

third and the fourth floors are all in hazardous regions, the sensor on these two

floors will direct people downstairs through the other floor gateways. The sensors

on the first and second floors are in the dangerous regions, so they will guide people

to exits using the shortest paths. Fig. 6.5(f) is a case similar with Fig. 6.4(f), where

25

roof gateway go upstairs go downstairs

1F

3F

2F

4F

No Pkt.

loss

10% pkt.

loss

Cnvg.

Time

Pkt

Count

65.87

ms
382

5.03 s 528

(d)

1F

3F

2F

4F

No Pkt.

loss

10% pkt.

loss

Cnvg.

Time

Pkt

Count

73.3

ms
407

5.01 s 454

(e)

1F

3F

2F

4F

No Pkt.

loss

10% pkt.

loss

Cnvg.

Time

Pkt

Count

56.95

ms
333

4.51 s 480

(f)

1F

2F

3F

4F

No Pkt.

loss

10% pkt.

loss

Cnvg.

Time

Pkt

Count

75.00

ms
414

5.51 s 545

1F

2F

3F

4F

No Pkt.

loss

10% pkt.

loss

Cnvg.

Time

Pkt

Count

77.4

ms
578

5.52 s 761

1F

2F

3F

4F

No Pkt.

loss

10% pkt.

loss

Cnvg.

Time

Pkt

Count

94.5

ms
513

4.51 s 621

(a) (b) (c)

Figure 6.5: Some guidance results in 4-store buildings of various shapes of architec-

ture.

26

(a) (b)

hazardous region

guiding path

exit sensor

emergency go upstairs

go downstairs

100.55 ms

632

Cnvg. Time

Packet Count

87.77 ms

473

Cnvg. Time

Packet Count

105.28 ms

711

Cnvg. Time

Packet Count

98.38 ms

477

Cnvg. Time

Packet Count

84.16 ms

447

Cnvg. Time

Packet Count

48.72 ms

197

Cnvg. Time

Packet Count

(c)

Ref. [18]

3F

2F

1F

Ref. [18] Ref. [18]Ours Ours Ours

Figure 6.6: Comparison of escaping paths, convergence times, and message over-

heads against [18].

there is an emergency on one of the exits. We should pay attention to the floor

gateway in the dangerous region on the first floor. Since sensors around this stair

gateway are all in the dangerous region, this stair gateway can only guide people to

upstairs.

In Fig. 6.4 and Fig. 6.5, the convergence time and packet counts are obtained

assuming two cases: no packet loss and a 10% packet loss rate. The loss of EMG

packets may lead to unstable guidance results, which will be connected by our pe-

riodical reporting scheme. Sensors will broadcast EMG packets every 0.5 seconds

when emergencies occur. The convergence time, as well as packet count, is measured

by the time the last sensor updating its guidance direction.

In Fig. 6.6, we compare our escaping paths, convergence times, and message

overheads against those obtained by [18]. In the comparison, we only simulate

the case of no packet loss. In Fig. 6.6(a), sensors near the left corner exit on the

ground floor detect an emergency. The scheme in [18] will pull some sensors on

the second and the third floors to go downstairs, which is more dangerous. This is

27

because the scheme in [18] does not implement the concept of dangerous regions.

On the contrary, ours will lead people away from such dangerous regions. Fig. 6.6(b)

illustrates another case where sensors nearby the stairs on the second floor detect

an emergency. Again, because shorter paths are preferred, the algorithm in [18] will

guide some people to pass the hazardous region. Fig. 6.6(c) shows a case where

all floor gateways are not in dangerous regions, therefore sensors on the ground

and third floors will guide people using the shortest path to the floor gateway.

Nevertheless, on the second floor, the algorithm in [18] will still guide some people

to across the hazardous region. Besides providing safer escape paths, our scheme

also outperforms [18] in packet counts and convergence time.

28

Chapter 7

Conclusions and Future Work

In this paper, we have presented an emergency guiding for indoor 3D environments

on wireless sensor networks. The proposed emergency guidance scheme can quickly

converge and find safe guidance paths to exits when emergencies occur. We also

implement our results on Micaz motes in a virtual building. Simulation results have

also been obtained on buildings of various shapes with different combinations of

hazardous regions. Comparisons have been made against [18] have demonstrated

the advantages of our scheme. In our current design, the hazardous region is defined

by the numbers of hops in Gg and the altitudes of nodes in hazardous regions are

adjusted by a static function. In fact, the definition of hazardous regions and alti-

tude adjustments can be application- or scenario-dependent. For example, sensors

detecting temperatures of 100◦C and 70◦ can both claim detecting emergencies. But

altitude adjustment functions can be designed by taking the sensed temperatures

into account.

29

Appendix A

Tree Maintenance Procedure

NetworkReceive.receive

Which route

type ?
Receive.receiveforwardUp

If destination ?

forwardDown

No

Broadcast

DownStream

UpStream

Yes

Figure A.1: The flow chart of tree maintenance.

Fig. A.1 shows the flow chart of packet transmission. When a sensor receives a

packet, it will check the route type of this packet. We implement three functions,

forwardUp(), forwardDown(), and broadcast(), to deal with upstream, downstream,

and broadcast packets, respectively. The function forwardUp() will directly forward

30

packets to its parent. For the downstream type, the receiving sensor checks if it is the

destination, so the function Receive.receive will be triggered. The Receive.recieve

function is defined by GenericCommPromiscuous interface provided by T inyOS

library. When dealing with the broadcast type packet, sensors will will directly trig-

ger the Receive.receive function, and then rebroadcast. The detail implementation

about network receive module can be available in Fig. B.2.

31

Appendix B

Component Graph

B.1 System Overview

Symmetric link detection

Tree maintenance

Guidance service

TinyOS library

32

B.2 Tree Maintenance

33

Codes of NetworkM

1. event TOS_MsgPtr NetworkReceive.receive[uint8_t id](TOS_MsgPtr pMsg) {

2. TOSPacket *packet = (TOSPacket*)pMsg->data;

3. DownStreamPacket *dsPacket = (DownStreamPacket*)packet->data;

4. if(id != AM_NAVI_ENV && id != AM_NAVI_CMD && id != AM_NAVI_REPORT &&

id != AM_READING && id !=AM_NAVI_WEIGHT && id != AM_NAVI_ACK &&

id != AM_DEBUG) {

5. return pMsg;

6. }

7. if(packet->UpStream){

8. pMsg = forwardUp(pMsg,id);

9. } else if(packet->Broadcast){

10. signal Receive.receive[id](pMsg,packet->data,packet->len);

11. } else if(packet->DownStream){

12. if(packet->dst == (uint8_t)TOS_LOCAL_ADDRESS){

13. signal Receive.receive[id](pMsg,dsPacket->data,packet->len-MAX_PATH_LENGTH);

14. } else {

15. pMsg = forwardDown(pMsg,id);

16. }

17. }

18. return pMsg;

19. }

34

B.3 Symmetric Link Detection

35

Codes of the LDPM

1. event TOS_MsgPtr ReceiveMsg.receive(TOS_MsgPtr pMsg) {

2. LDProtocol *ldp = (LDProtocol*)pMsg->data;

3. if (254-pMsg->strength + 45 > RSSI_HIGHMARK) return pMsg;

4. if(ldp->type == HELLO){

5. Ack(ldp->src);

6. } else if (ldp->type == ECHO)

7. maintainLink(ldp, 254-pMsg->strength + 45);

8. return pMsg;

9. }

10.

11. event result_t Timer.fired() {

12. if(timer_state == TIMER_INIT_BACKOFF){

13. post Hello();

14. adjustLink();

15. timer_state = TIMER_COLLECT_INFO;

16. call Timer.start(TIMER_ONE_SHOT, COLLECT_PERIOD);

17. } else if(timer_state == TIMER_COLLECT_INFO){

18. timer_state = TIMER_INIT_BACKOFF;

19. if(startup_search_count < 3){

20. startup_search_count++;

21. call Timer.start(TIMER_ONE_SHOT, STARTUP_INIT_BACKOFF);

22. } else call Timer.start(TIMER_ONE_SHOT, INIT_BACKOFF); //5

23. }

24. return SUCCESS;

25. }

36

B.4 Guidance Service

37

Codes of NaviM

1. event TOS_MsgPtr NaviReceive.receive(TOS_MsgPtr pMsg) {

2. NaviInfo *navi = (NaviInfo*)pMsg->data;

3. int navi_index = getLinkIndex(navi->src);

4. int emg_index;

5. bool new_emg = FALSE, hopChanged = FALSE, changed = FALSE;

6. uint8_t org_level = level;

7. float org_altitude = altitude;

8.

9. if(Role & ROLE_BASE)return pMsg;

10. if(navi_index == -1) return pMsg;

11. if(navi->type == EMG){

12. if ((altitude - BaseWeight) > MAX_WEIGHT * 2) return pMsg;

13. /* case 1 */

14. LinkTable[navi_index].level = navi->level;

15. LinkTable[navi_index].altitude = navi->altitude;

16. emg_index = getEmgIndex(navi->emg);

17. /* case 1.(a) */

18. if (emg_index == -1) {

19. new_emg = TRUE;

20. hopChanged = TRUE;

21. emg_index = newEmgEntry(navi->emg, (navi->hop + 1));

22. call LDPControl.parentIsEmg(navi->emg);

23. /* case 1.(b) */

24. } else {

25. if (navi->hop + 1 < EmgPool[emg_index].hop) {

26. EmgPool[emg_index].hop = navi->hop + 1;

27. hopChanged = TRUE;

28. }

29. }

30. if (Role == ROLE_SENSOR && (LinkTable[navi_index].role & ROLE_STAIR_F ||

31. LinkTable[navi_index].role & ROLE_STAIR_S)) {

32. level = navi->level;

33. }

34. /* case 2 */

35. if (hopChanged && navi->hop + 1 <= SafetyFactor) {

36. if (level < MAX_LEVEL - 1) {

37. level = MAX_LEVEL - 1;

38

38. }

39. altitude = dangerZone(EmgPool[emg_index].hop, 0);

40. if ((Role & ROLE_STAIR_F || Role & ROLE_STAIR_S) &&

LinkTable[navi_index].dir != DIR_UP &&

41. LinkTable[navi_index].dir != DIR_DOWN) {

42. level = MAX_LEVEL;

43. }

44. }

45. if (hopChanged && navi->hop <= SafetyFactor && LinkTable[navi_index].dir ==

DIR_DOWN) {

46. EmgPool[emg_index].hop = navi->hop;

47. if (level < MAX_LEVEL - 1) {

48. level = MAX_LEVEL - 1;

49. }

50. altitude = dangerZone(navi->hop, 1);

51. }

52. /* case 3: local minimum */

53. if (!(Role & ROLE_EXIT) && isLocalMinimum()) {

54. /* case 3.(a) */

55. if (Role == ROLE_SENSOR) {

56. altitude = localMinimum();

57. /* case 3.(b) */

58. } else if (Role & ROLE_STAIR_S || Role & ROLE_STAIR_F) {

59. switch(level) {

60. /* case 3.(b). */

61. case MAX_LEVEL - 1:

62. level = MAX_LEVEL;

63. altitude = -1 * initLevel;

64. if (!canUpstairs()) {

65. altitude = localMinimum();

66. }

67. break;

68. /* case 3.(b). */

69. case MAX_LEVEL:

70. altitude = localMinimum();

71. break;

72. /* case 3.(b). */

73. default:

39

74. altitude = localMinimum();

75. if (level < MAX_LEVEL - 1) {

76. level = MAX_LEVEL - 1;

77. }

78. break;

79. }

80. }

81. }

82.

83. if (org_level != level || org_altitude != altitude) {

84. changed = TRUE;

85. }

86. /* case 4 */

87. if (new_emg || hopChanged || changed) {

88. navi->level = level;

89. navi->altitude = altitude;

90. navi->hop = EmgPool[emg_index].hop;

91. emg_packet_count++;

92. pMsg = forward(pMsg);

93. gfNaviTimerCounter = 0;

94. }

95. /* case 5 */

96. guide_index = findGuideIndex();

97. showDirection(LinkTable[guide_index].dir);

98. if (!hasEmgNode) {

99. regularReport();

100. }

101. }

102. return pMsg;

103. }

40

Bibliography

[1] Design and construction of a wildfire instrumentation system using networked

sensors. http://firebug.sourceforge.net/.

[2] Habitat monitoring on great duck island.

http://www.greatduckisland.net/technology.php.

[3] Zigbee alliance. http://www.zigbee.org/.

[4] J. Bachrach, R. Nagpal, M. Salib, and H. Shrobe. Experimental results and

theoretical analysis of a self-organizing global coordinate system for ad hoc sen-

sor networks. Telecommunications Systems Journal Special Issue on Wireless

System Networks, 26(2-4):213–234, 2004.

[5] P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based user

location and tracking system. In Proc. of IEEE INFOCOM, pages 775–784,

2000.

[6] M. A. Batalin, G. S. Sukhatme, and M. Hattig. Mobile robot navigation using

a sensor network. In Proc. of IEEE Int’l Conf. on Robotics and Automation,

2004.

[7] A. Boukerche, R. W. N. Pazzi, and R. B. Araujo. A fast and reliable protocol

for wireless sensor networks in critical conditions monitoring applications. In

Proc. of ACM Int’l Symp. on Modeling, Analysis and Simulation of Wireless

and Mobile Systems (MSWiM), 2004.

[8] D. Braginsky and D. Estrin. Rumor routing algorithm for sensor networks. In

Proc. of ACM Int’l Workshop on Wireless Sensor Networks and Applications

(WSNA), 2002.

41

[9] S. Capkun, M. Hamdi, and J.-P. Hubaux. GPS-free positioning in mobile ad-

hoc networks. In Proc. of Hawaii Int’l Conf. on Systems Science (HICSS),

2001.

[10] P. Corke, R. Peterson, and D. Rus. Networked robots: Flying robot navigation

using a sensor net. In Proc. of Int’l Symp. Robotics Research (ISRR), 2003.

[11] T. Dam and K. Langendoen. An adaptive energy-efficient MAC protocol for

wireless sensor networks. In Proc. of ACM Int’l Conf. on Embedded Networked

Sensor Systems (SenSys), 2003.

[12] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient

communication protocols for wireless microsensor networks. In Proc. of Hawaii

Int’l Conf. on Systems Science (HICSS), 2000.

[13] C.-F. Huang, Y.-C. Tseng, and L.-C. Lo. The coverage problem in three-

dimensional wireless sensor networks. In Proc. of IEEE Global Telecommuni-

cations Conference (Globecom), 2004.

[14] IEEE standard for information technology - telecommunications and informa-

tion exchange between systems - local and metropolitan area networks specific

requirements part 15.4: wireless medium access control (MAC) and physical

layer (PHY) specifications for low-rate wireless personal area networks (LR-

WPANs), 2003.

[15] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva. Di-

rected diffusion for wireless sensor networking. IEEE/ACM Trans. Networking,

11(1):2–16, 2003.

[16] G. Kantor, S. Singh, R. Peterson, D. Rus, A. Das, V. Kumar, G. Pereira, and

J. Spletzer. Distributed search and rescue with robot and sensor teams. In

Proc. of Int’l Conf. on Field and Service Robotics, 2003.

[17] M. Kochhal, L. Schwiebert, and S. Gupta. Role-based hierarchical self organi-

zation for wireless ad hoc sensor networks. In Proc. of ACM Int’l Workshop on

Wireless Sensor Networks and Applications (WSNA), pages 98–107, 2003.

[18] Q. Li, M. DeRosa, and D. Rus. Distributed algorithm for guiding navigation

across a sensor network. In Proc. of ACM Int’l Symp. on Mobile Ad Hoc Net-

working and Computing (MobiHOC), 2003.

42

[19] C.-Y. Lin and Y.-C. Tseng. Structures for in-network moving object track-

ing in wireless sensor networks. In Proc. of Broadband Wireless Networking

Symp.(BroadNet), 2004.

[20] S. Meguerdichian, F. Koushanfar, M. Potkonjak, and M. B. Srivastava. Cover-

age problems in wireless ad-hoc sensor networks. In Proc. of IEEE INFOCOM,

pages 1380–1387, 2001.

[21] D. Niculescu and B. Nath. DV based positioning in ad hoc networks. Telecom-

munications Systems Journal, 22(1-4):267–280, 2003.

[22] V. D. Park and M. S. Corson. A highly adaptive distributed routing algorithm

for mobile wireless networks. In Proc. of IEEE INFOCOM, 1997.

[23] R. Peterson and D. Rus. Interacting with a sensor network. In Proc. of Aus-

tralasian Conf. on Robotics and Automation, 2002.

[24] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie. Protocols for self-

organization of a wireless sensor network. IEEE Personal Commun., 7(5):16–27,

October 2000.

[25] Y.-C. Tseng, S.-P. Kuo, H.-W. Lee, and C.-F. Huang. Location tracking in a

wireless sensor network by mobile agents and its data fusion strategies. In Proc.

of Int’l Symp. on Information Processing in Sensor Networks (IPSN), 2003.

[26] Y.-C. Tseng, M.-S. Pan, and Y.-Y. Tsai. Wireless sensor networks for emer-

gency navigation. In IEEE Comput., (to appear).

[27] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient MAC protocol for

wireless sensor networks. In Proc. of IEEE INFOCOM, pages 1567–1576, 2002.

43

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

藉由無線感測器網路建立一室內3D環境下的緊急逃生系統

Implementation of an Emergency Guiding System in Indoor 3D Environment by Wireless Sensor Networks

研 究 生：蔡佳宏

指導教授：曾煜棋 教授

中 華 民 國 九 十 五 年 七 月

