

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

在 晶 片 多 處 理 器 系 統 下 以 減 少 快 取

衝 突 為 目 的 之 動 態 工 作 排 程 方 法

A Dynamic Task Scheduling Method for Less Cache

Contention on Chip Multiprocessor Systems

研 究 生：廖哲瑩

指導教授：陳 正 教授

中 華 民 國 九 十 五 年 六 月

在晶片多處理器系統下以減少快取衝突為目的之動態工作排程方法

A Dynamic Task Scheduling Method for Less Cache Contention on
Chip Multiprocessor Systems

研 究 生: 廖哲瑩 Student: Che-yin Liao

指導教授: 陳 正 Advisor: Cheng Chen

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年六月

在晶片多處理器系統下以減少快取衝突為目的之

動態工作排程方法

研究生: 廖哲瑩 指導教授: 陳正 教授

國立交通大學資訊科學與工程研究所碩士班

摘要

積體電路製程的進步使得需要大量電晶體來實作的微處理器設計得以被

付諸實行，晶片多處理器 (chip multiprocessor) 是這些新世代設計的其中一員。

一個晶片多處理器有多個處理器核心，在晶片多處理器上的 L2 快取記憶體會

由這些處理器核心共用，因此處理器核心間可能會發生快取衝突。快取衝突會

為晶片多處理器的效能帶來負面影響，為了減少快取衝突我們提出了一個稱為

Hint-aided Cache Contention Avoidance (HCCA) 的動態工作排程方法。 HCCA

首先預測工作執行時可能使用的快取記憶體區段，並將會使用到相同快取記憶

體區段的工作分開排程以減低快取衝突。在 HCCA 中包含三個階段，第一階

段我們會由工作的程式碼中萃取出可以協助排班的資訊。接著，在第二階段我

們會利用在第一階段萃取得來的資訊做出快取記憶體使用區段的預測。我們的

預測是基於工作的程式碼所萃取得來的資訊，而工作的程式碼將會直接影響工

作存取快取記憶體的模式，因此我們預期所做出的預測可以比其他的方法有較

好準確率。最後，在第三階段我們根據於前一階段所做出的快取記憶體使用區

段的預測結果做出工作排班。我們以模擬的方式評估 HCCA 的效能，模擬結

果顯示 HCCA 可以使得晶片多處理器系統有較低的快取誤失率，並藉此可以

改善整體效能。

i

A Dynamic Task Scheduling Method for Less
Cache Contention on Chip Multiprocessor

Systems

Student: Che-yin Liao Advisor: Prof. Cheng Chen
Institute of Computer Science and Engineering

Nation Chiao Tung University

Abstract

The chip multiprocessor is an emerging microprocessor architecture which

attempts to utilize the integration increased by the advances of integrated circuit

technologies. A chip multiprocessor contains multiple execution cores which share

the on-chip L2 cache. Therefore, the cache contentions may occur among cores. In

order to reduce cache contentions which cause negative impacts on performance, we

propose a task scheduling technique named Hint-aided Cache Contention Avoidance

(HCCA). HCCA attempts to avoid cache contentions by separately scheduling tasks

predicted to use the same cache sets. HCCA contains three phases. The first phase

analyzes binary images and extracts information used to support the predictions of

cache set usages. Then, the second phase makes the cache set usage predictions

according to the information extracts by the previous phase. The predictions are

made according to the information extracted from binary images which directly

affect how tasks accessing cache sets. Therefore, the predictions are expected to be

more accurate than those made by previous methods. Finally, the scheduling

decisions are made in the third phase according to the cache set usages predictions

made in previous phase. We have constructed a simulator to evaluate the

performance of HCCA. The simulation results show that HCCA has lower L2 cache

miss rate than that of others and also have some improvement on overall IPC

compared with other methods.

ii

Acknowledgments

I would like to express my sincere thanks to my advisor, Prof. Cheng Chen, for

his supervision and advice. Without his guidance and encouragement, I could not

finish this thesis. I also thank Prof. Jyj-Jiun Shann and Prof. Kuan-Chou Lai for their

valuable suggestions.

There are many others whom I wish to thank. I thanks to Yi-Hsuan Lee for her

kindly advice suggestion. Ming-Hsien Tsai is delightful follow, I felt happy and

relaxed because of your presence.

Finally, I am grateful to my dearest family for their encouragement.

另外我也必須感謝 Auron Wu 在英文寫作方面的幫忙，沒有 Auron Wu

的大力協助我沒有辦法完成這份論文。

iii

Table of Contents

摘要...i

Abstract...ii

Acknowledgments...iii

Table of Contents...iv

List of Figures..vi

Chapter 1 Introduction..1

Chapter 2 System Model and Related Work..5

2.1 System model...5

2.2 Related work...7

2.2.1 Cache partitioning approach...7

2.2.1.1 Dynamic cache partitioning for CMP/SMT systems..............7

2.2.1.2 Fair cache sharing and partitioning for CMP.........................8

2.2.2 Operating system scheduling approach..9

2.2.2.1 Active-set supported task scheduling...................................10

2.2.2.2 Inter-thread cache contention prediction..............................10

2.2.2.3 Throughput-oriented scheduling..12

Chapter 3 Hint-aided Cache Contention Avoidance Technique...................................14

3.1 Preliminary...14

3.2 Overview..15

3.3 Hint generation...17

3.3.1 Binary image dissection..18

3.3.2 Heap usage profiling...19

3.4 Hint evaluation...22

3.5 Task scheduling..29

Chapter 4 Preliminary Performance Evaluation...35

4.1 Simulation overview...35

4.2 Evaluation results...40

4.2.1 Prediction accuracy...40

4.2.2 L2 miss rate...41

iv

4.2.3 Overall performance...45

Chapter 5 Conclusions and Future Work..47

5.1 Conclusions..47

5.2 Future work..48

Bibliography...51

v

List of Figures

Figure 2.1 A schematic view of a chip multiprocessor...5

Figure 2.2 The queuing diagram representation of task scheduling..................................6

Figure 2.3 Illustration of how interleaving accesses from another task determines

whether the access will be a cache hit or cache miss, assuming a 4-way full

associative cache..11

Figure 3.1 Typical memory space layout of single task..14

Figure 3.2 Overall flow of HCCA method..15

Figure 3.3 The high level programming language processing flow................................17

Figure 3.4 An example of sibling-child binary tree representation of basic blocks........18

Figure 3.5 The algorithm of the heap usage profiling...22

Figure 3.6 An example of Hint..23

Figure 3.7 An example of the expected execution time adjustment of basic blocks.......26

Figure 3.8 The algorithm of the hint evaluation phase..27

Figure 3.9 The algorithm of the hint evaluation phase. (cont.).......................................28

Figure 3.10 An example of the first stage of gang grouping...31

Figure 3.11 An example of the second stage of gang grouping......................................32

Figure 3.12 The algorithm of the task scheduling phase...33

Figure 4.1 The trace generator and the hint generator...35

Figure 4.2 The architecture of our simulator...36

Figure 4.3 The configuration of memory simulator..37

Figure 4.4 The list of tasks used in our simulation..38

Figure 4.5 The sorted task list...39

Figure 4.6 The simulation workloads..39

Figure 4.7 The prediction accuracy...41

Figure 4.8 The simulation result of workload 1..42

Figure 4.9 The simulation result of workload 2..42

Figure 4.10 The simulation result of workload 3..43

Figure 4.11 Overall IPC under various workloads for different cache associativity......44

vi

Figure 4.12 The improved percentage of IPC over Round-Robin under various

associativity...45

vii

Chapter 1 Introduction

The advances in integrated circuit processing technologies increase the

transistor density and allow more micro-processor design options[12-3]. The chip

multiprocessing (CMP) architecture is one of the micro-processor designs that

attempt to utilize the increased integration[4, 5]. In a typical chip multiprocessor, it

consists a set of identical cores, and each core has its own execution resources such

as ALU, FPU, L1 caches, register file and control logics. The L2 cache and its lower

memory hierarchy are shared by these cores[67-8]. By taking advantage of the thread

level parallelism, chip multiprocessors can achieve better performance per watt

scalability with advances of integrated circuit technologies than single core

processors. This makes chip multiprocessors a promising microprocessor design for

emerging high-performance and power-efficiency computing. Besides, sharing the

L2 cache allows high cache utilization and avoids duplicating the cache hardware

resources. However, cache sharing may cause cache contentions among executed

tasks[9]. Because the L2 cache is sharing among all executed tasks, the data block

loaded by one task may be replaced by the data block loaded by another task. The

task which loses its data block from cache will experience a cache miss if it accesses

the evicted data again. However, this cache miss would not occur in a single core

processor environment. This extra L2 miss called cache contention, which will

cause the processor to fetch data from the lower memory hierarchy. Fetching data

from the lower memory hierarchy usually takes more time than directly fetching

from the higher memory hierarchy, hence it lengthens the task execution time[101112-

13]. Therefore, cache contentions may harm the performance of chip multiprocessor

- 1 -

systems by causing extra L2 cache misses and lengthening the execution time of

tasks.

In order to reduce cache misses caused by cache contentions, many techniques

have been proposed in recent years[1011-12, 14, 15]. We classify these proposed

techniques into two categories: one is cache partitioning[10, 11] and the other is

operating system scheduling[12, 14, 15]. The key idea of cache partitioning

approach is to partition cache blocks into groups. Then, each group is allocated to an

executed task. During executing, the number of blocks in a group may be changed to

fit the cache need of tasks. Cache contentions can be completely avoided if all

groups are disjoint. However, groups may be overlapped to increase the flexibility.

The operating system scheduling approach attempts to avoid cache contentions by

separately scheduling tasks which may use the same cache sets. A mechanism to

predict the cache set usage is required for the operating system scheduling approach

because the task scheduling decisions have to be made before the tasks actually

executing on the cores. For cache partitioning approach, tasks may still suffer from

cache contentions if all concurrently executed tasks frequently access memory and

cause big overlap among groups. However, the operating system scheduling

approach can resolve this by separately scheduling the tasks which are predicted to

use the same cache sets.

In this thesis, we propose an effective task scheduling method, called Hint-

aided Cache Contention Avoidance (HCCA) to reduce the number of cache

contentions for chip multiprocessor systems. HCCA contains the following three

phases: hint generation, hint evaluation and task scheduling. Like previous methods,

HCCA first predict the cache set usage. Then, it attempts to minimize the cache

- 2 -

contentions among concurrently executed tasks by separately scheduling tasks using

the same cache sets. In previous task scheduling methods, they usually predict the

cache set usage of tasks according to their previous usage. However, because cache

set usages may change during the execution of tasks, making predictions according

to the previous cache set usage may not be able to predict these changes. Instead of

using the previous cache set usage, we make cache set usage predictions according

to the information extracted from the corresponding binary images of tasks. The

binary image contains an ordered set of machine instruction codes which instructs

the processor to accomplish the task. Therefore, it directly affects the behavior of a

task. However, analysis the binary image needs unacceptable long time for the task

scheduling. We resolve this by first generating an abstract of a binary image which

we call it a hint before running the task. This phase is called hint generation. While

executing the tasks, we make the cache set usage prediction according the hint. We

call this phase hint evaluation. Then, we make the scheduling decision according to

the cache set usage predictions. This phase is called task scheduling. In summary,

HCCA contains the following three phases. The hint generation phase generates

hints from binary images. The hint evaluation phase makes the cache set usage

predictions according the hints. The task scheduling phase make the scheduling

decisions according to the predicted cache set usages.

For evaluating the performance, we construct a simulator and compare our

method with previous work. We form workloads with benchmark programs and

input data sets from SPEC 2000[16]. Then these workloads are used to test the

scheduling mechanisms. From the simulation results, we can see that HCCA has

- 3 -

lower L2 cache miss rate than that of others and also have some improvement on

overall IPC (instruction per cycle) compared with other methods.

This thesis is organized as follows. Chapter 2 introduces the system model and

reviews some related work. Chapter 3 describes our HCCA technique in some detail.

Performance evaluations are presented in Chapter 4. Finally, conclusions and future

work are given in Chapter 5.

- 4 -

Chapter 2 System Model and Related Work

In this chapter, we will first introduce our system architecture and some

terminologies in section 2.1. Then, we will briefly survey some related work in

section 2.2.

2.1 System model

We make several assumptions for our chip multiprocessor system. First, we

assume that our chip multiprocessor system consists a m cores chip multiprocessor,

as shown in Figure 2.1. Each core has its own hardware context, such as register file

and L1 caches. Every processor core shares the unified L2 cache with the other

cores[6]. We assume that the L2 cache in processor package is a n-way set

associative cache. An example of chip multiprocessor is the IBM POWER4 which

contains two cores. The cores in POWER4 share an 8-way unified L2 cache[8].

Second, we assume the operating system used in our chip multiprocessor system

provides necessary communication and synchronization mechanisms for executed

tasks. A task is a unit of atomic work which is not parallelizable. Parallelized tasks

- 5 -

shared
L2 cache

core 0

core 1

core m-1

off-chip
memory

processor package

Figure 2.1 A schematic view of a chip multiprocessor.

can be implemented as several sequential tasks and maintain dependency with

synchronization mechanisms provided by operating system[17, 18].

There is a task scheduler in system, which chooses tasks for cores to execute.

As shown in Figure 2.2, the task scheduler maintains a global dispatch queue and a

gang queue. When a task comes to system, it is first placed into the global dispatch

queue. Then, tasks will be grouped into small groups called gangs. The number of

tasks in a gang is equal to the number of cores in system. Tasks in the same gang

will be concurrently scheduled on cores. We also call a set of tasks simultaneously

executed on the cores as “co-scheduled tasks” or “task mix”. When the gang is

scheduled, tasks in it will be assigned a short time interval called time slice. The task

leaves core when it is terminated, the allocated time slice is expired, or it is going to

wait for some system resource [18, 19]. If one of the executing task leaves core

before its time slice expires, other tasks will be forced to give up the remaining time

- 6 -

global dispatch queue

core

waiting queue request system
resource

wait for
synchronization

event

time slice
expired

task terminated

resource
granted

event occur

new task

waiting queue

grouped by
scheduler

gang queue selected by
scheduler

Figure 2.2 The queuing diagram representation of task scheduling.

slice and leave cores. When the scheduler is activated, it will first check the gang

queue to see if there exists any unscheduled gang. Otherwise, tasks in the global

dispatch queue will be grouped into gangs and push into the gang queue for future

scheduling. We assume that the task scheduler is executed on a dedicated system

processor. The m cores chip multiprocessor executes dispatched tasks in parallel

with the scheduler. Hence the scheduling overhead does not cause uncertainty in the

executions of the dispatched tasks [14, 15].

2.2 Related work

We classify the approaches for less cache contention on chip multi-processor

architecture into two categories: one is cache partitioning and the other is operating

system scheduling. These approaches will be described in the following sections.

2.2.1 Cache partitioning approach

The cache partitioning approach attempts to partition cache blocks into groups.

Each group is allocated to an executed task. The number of blocks in a group will be

adjusted to fit the cache demand of tasks during executing. Cache contentions can be

completely avoided if all groups are disjoint. However, groups may overlap to

increase the flexibility. We briefly survey two methods in the following.

2.2.1.1 Dynamic cache partitioning for CMP/SMT systems [10]

This technique uses an additional hardware to account numbers of cache hit

and miss in a specified time period t. The cache partition is dynamically adjusted

according to the accounting results. A task causes more cache misses will be

- 7 -

allocated more cache blocks to reduce the cache misses. A modified LRU cache

replacement policy is proposed to realize the cache partitioning.

Besides the number of cache hit and miss, the modified LRU replacement

policy also need the number of cache blocks occupied by each task. The collected

data is used to find out the over-allocated task. The over-allocated task is the task

which the number of allocated cache blocks is more than the number of accessed

blocks in a specified time period t. Considering the cache miss of task T, if T is an

over-allocated task then the victim block is chosen within cache blocks occupied by

task T with LRU policy. Otherwise, the victim block is chosen within cache blocks

occupied by other over-allocated tasks. If there does not exist any over-allocated

tasks, the standard LRU policy is used to select the victim block from all cache

blocks.

The drawback of this method is that it requires extra partitioning logic circuits.

These extra circuits will increase the miss penalty.

2.2.1.2 Fair cache sharing and partitioning for CMP [11]

Kim et al. address the unfair cache sharing problem. The conventional

operating system scheduler usually assumes the resource sharing uniformly impacts

co-scheduled tasks. However, this assumption is often unmet on chip multiprocessor

system, because the abilities of tasks to compete cache space are different. The

ability of a task to compete cache space is determined by its temporal reuse

behavior, which are usually different among tasks. If the cache block loaded by a

task is being replaced by another task frequently, the task which lost cache block

will suffer from higher cache miss rate due to the replacement. These extra cache

misses will result in negative effect on the system throughput. In order to solve this

- 8 -

problem, a metric to measure the fairness of cache sharing and a mechanism to

adjust the cache sharing are proposed.

Considering the task T, the proposed metric is shown as follows:

FairMetric T =
MISSshr

T

MISSded
T

 ..(2.1)

In this formula, MISSshr
T denotes the miss rate of task T when it shares the

cache with other tasks, and MISSded
T denotes the miss rate of task T when it runs

alone with dedicate cache. A task Ti with larger FairMetric(Ti) value indicates

relative more cache contention which is caused by sharing cache with other tasks. In

an ideal situation, all values would be the same. The same values indicate that the

increased miss rate causes equal impacts for all tasks. This metric is used in cache

sharing adjustment which is realized by modifying the cache replacement policy.

When a cache miss occur, the metric is evaluated for each running task. The victim

block is selected within those cache blocks allocated by the task whose value is the

smallest.

As the method proposed by Suh et al. [10], this method also need adding extra

logic circuits to the circuits of cache which will increase the miss penalty. The

performance of memory accesses may suffer by extra cache miss penalty.

2.2.2 Operating system scheduling approach

The operating system scheduler approach attempts to select co-scheduled tasks

which use different part of cache to minimize occurrences of cache contention. The

scheduling decision must be made before tasks being executed, so the scheduler

- 9 -

requires to predict the memory behavior of tasks. We introduce three methods

briefly in the following.

2.2.2.1 Active-set supported task scheduling [14]

T. Sherwood et al.[20] have shown that the task behavior is typically periodic

and predictable, and so is the cache access behavior. Hence, [14] attempts to use this

property to predict the cache access behavior. The future cache usage is predicted by

the past cache usage. Then the tasks which might use different cache regions are co-

scheduled. Thus, it reduces the possibility of co-scheduled tasks using the same

cache regions. Settle et al. propose a monitoring hardware to record the number of

cache accesses for cache sets. The task scheduling decisions are made based on the

recorded results. The cache set are considered as frequently access cache region if it

has the number of accesses larger than a preset threshold. Tasks with different

frequently access cache regions are simultaneously scheduled.

This method assumes that the future memory behavior can be perfectly

predicted by using past memory behavior. However, tasks may change its behavior

during their execution, and so do their cache access patterns. The prediction policy

may not be able to react these changes instantly. Therefore, the change of task

behavior may result in false prediction and lead to an inferior scheduling decision.

2.2.2.2 Inter-thread cache contention prediction [12]

Chandra et al. propose a method called Prob to predict the number of cache

contentions in a given task mix. Tasks running on a chip multiprocessor must share

memory hierarchy. Therefore, memory accesses from co-scheduled tasks will be

interleaved. Figure 2.3 shows two cases of interleaving accesses. Both cases

- 10 -

interleave accesses from task T1 with task T2. The access trace of T1 is denoted by

T1
R, and the access trace of T2 is denoted by T2

R. The uppercase letters in access

trace denote the memory addresses. Assuming a 4-way full associative cache, the

second access to A is a cache hit in case 1, but a cache miss in case 2. The difference

is that case 2 interleaved more accesses which load new blocks into cache. These

interleaved accesses make the data block which loaded by first access to A been

evicted.

Prob uses a probabilistic approach to predict miss rate of a task mix. It needs

the cache access traces for all tasks in the task mix. All possible interleaved access

traces are exhaustively listed. The probability of an individual cache hit which

becomes a cache miss is computed. Then, by multiplying the number of cache hits in

access traces and the computed possibility, we can get the expect value of overall

miss rate. The prediction can be used as one of the scheduling criteria of task

scheduler to reduce the cache contentions.

The disadvantage of Prob is that it exhaustively evaluates all possible

interleaved access traces. This evaluation would be very expansive while the number

of tasks increases.

- 11 -

T1
R: A B A

T2
R: U V V W

case 1: A U B V V A W case 2: A U B V V W A

Hit Miss

Figure 2.3 Illustration of how interleaving accesses from another task determines
whether the access will be a cache hit or cache miss, assuming a 4-way
full associative cache.

2.2.2.3 Throughput-oriented scheduling [15]

Fedorova et al. propose a modified balance-set[21] scheduling algorithm to

decrease the shared L2 cache miss on chip multi-threading system. It first estimates

miss rate of all possible task mixes by adapting the StatCache[22] probabilistic

model. The StatCache model used in this approach is developed by Berg and

Hagersten. It is used to predict the miss rate of single task with previously recorded

reuse distance information[23]. Fedorova et al. proposed a merging method called

AVG to combine individual miss rate predictions into the miss rate prediction of co-

scheduled tasks. AVG adjusts StatCache by assuming the numbers of cache blocks

accessed by all tasks are equal. The overall miss rate for co-scheduled tasks is the

average miss rate of all tasks.

After predicting the miss rate of task mix, tasks are divided into groups

according to the estimated results. Then, Fedorova et al. use a mechanism integrated

with balance-set[21] and StatCache[22] to schedule tasks. When the scheduling

decision is made, it first generates all possible task mixes from the global dispatch

queue. Second, it predicts miss rate for all possible task mixes with StatCache and

AVG. Then, task mixes with predicted miss rates lower than a given threshold are

considered to schedule. Final scheduling decision is made with other scheduling

factors, such as priority and waited time.

The drawback of this approach is that the AVG mechanism simply assumes all

tasks allocated equal fraction of cache. However, this assumption is not always true,

since the abilities of tasks to compete cache space are different, as discussed in [11].

This might result in inaccurate prediction in set-associative cache, and lead to sub-

optimal scheduling.

- 12 -

From the related work, the cache partitioning approaches focus on partitioning

cache for co-scheduled tasks. However, if all of the co-scheduled tasks frequently

access cache then these tasks may still suffer by cache contentions. The operating

system approaches can resolve this by selecting co-scheduled tasks which use the

different part of the cache. In other words, the cache hardware only affects activities

on the scale of tens to thousands of cycles. On the other hands, the operating system

controls the resources and activities at the larger time scale, million of cycles. We

have more opportunities to improve the system behavior through the operating

system. Besides, the operating system task scheduler is usually implemented as

software. By using software mechanisms, it is possible to build systems that can

evolve when new techniques to be discovered. Furthermore, software approaches

allow us to do some workload specific tuning. These benefits form our basis to

select the operating system task scheduling approach.

In next chapter, we will describe the basic concepts and principles of our

method in some detailed.

- 13 -

Chapter 3 Hint-aided Cache Contention
Avoidance Technique

In this chapter, we will first define some terminologies in section 3.1 and give

the overview of our method in section 3.2. The analysis mechanism is described in

section 3.3. The final prediction and scheduling mechanisms are described in section

3.4 and 3.5.

3.1 Preliminary

First, we introduce the memory space layout. Figure 3.1 shows a typical

memory space layout of a single task. The memory space is partitioned into four

disjoint parts: code, static, heap and stack [24]. The instruction codes are placed at

the “code part”. The literal data are placed at the “static part”. The dynamically

allocated memory blocks are located at the “heap part”. The “stack part” locates

necessary data structures for a procedure call. The content of the code part and the

static part are loaded from the binary image of a task. The binary image contains an

ordered set of machine instruction codes which instructs the processor to accomplish

the task. The basic block is a sequence of instructions with a single entry point and a

single exit point. Besides, we also consider an instruction which performs a

procedure call as a basic block. Sequences of continuous basic blocks are grouped

into procedures. The procedure is started with a basic block which is either the first

- 14 -

Figure 3.1 Typical memory space layout of single task.

static heap free/not used
 space

0x0 2B-1

code stack

basic block of the binary image or the target block of a procedure call instruction. In

the next section, we will give the overview of our method.

3.2 Overview

The scheduler requires predicting the memory access pattern of a task because

the scheduling decision must be made before tasks being executed. Previous

techniques usually predict the memory access behavior of a particular task according

to its previous memory accesses. However, tasks may change their behaviors during

their execution, so these techniques may result in false prediction and lead to an

inferior scheduling decision. In order to obtain more accurate predictions, we

propose the technique that directly analyzes the binary image of a task to figure out

- 15 -

hint generation

binary image
dissection

heap usage
profiling

hint evaluation system
status

hint

task scheduling

predicted cache utilization

scheduling
decision

binary
image

prediction
mechanism

scheduling
mechanism

Figure 3.2 Overall flow of HCCA method.

the memory access pattern. Because the processor is instructed by the binary image

to accomplish the task, it is possible to predict the change of the behavior of tasks by

analyzing their binary images. Therefore, we expect our proposed technique to bring

more precisely predictions and make better scheduling decisions.

The proposed technique is named Hint-aided Cache Contention Avoidance

(HCCA). The overall flow of HCCA is shown in Figure 3.2, which contains three

main phases. First, the hint generation phase will generate an abstract of binary

image which contains necessary information to predict memory accesses. This phase

includes two parts: binary image dissection and heap usage profiling. The binary

image dissection part attempts to extract information from the binary image, which

will be used to predict memory accesses on the code, static and stack partitions. We

call this extracted information as hint. After profiling the task, the heap usage

profiling part attempts to discover instructions that sequentially access memory from

the execution trace. Addresses of these instructions will be recorded and stored into

hint. Then, in the second phase, the hint evaluator will be activated when a task

leaves the core. The hint evaluator predicts the future memory accesses of the

leaving task by combining the hint and other factors such as program counter,

addresses of allocated memory and addresses of call stack top. The predicted

memory accesses are converted into cache set accesses according to the cache

configuration. In the third phase, we attempt to avoid the cache contentions by

assigning tasks using the same cache sets to the different gang. If there is any

unscheduled gang in the gang queue, one of these will be selected for scheduling.

Otherwise, tasks in the global dispatch queue are grouping into gangs for

scheduling.

- 16 -

3.3 Hint generation

Figure 3.3(a) illustrates the conventional processing flow, which is widely used

in existing systems[25]. As shown in Figure 3.3(b), the hint generation resides after

the linking processing of the high level language processing flow.

Analyzing the binary image needs a lot of time. In order to speed up the

prediction, we first extract the necessary information for the prediction in this phase.

Without this phase, the prediction process will need unacceptable long time.

As shown in Figure 3.2, this phase included two methods. We will describe the

binary image dissection in section 3.3.1 and the heap usage profiling in section

3.3.2.

- 17 -

preprocessor

source

compiler

assembler

link-editor

executable
binary image

hint generater

hint

preprocessor

source

compiler

assembler

link-editor

executable
binary image

(a) (b)

preprocessing

compiling

assembling

linking

hint generation

Figure 3.3 The high level programming language processing flow.
(a) The conventional processing flow. (b) The proposed processing flow.

3.3.1 Binary image dissection

This mechanism is designed to extract necessary information from the binary

image. This extracted information can be used to predict the memory accesses. First,

we divide the code context of the binary image into basic blocks. Then, we extract

the basic block characteristics that can assist the prediction. These extracted

characteristics are described in the following.

Let's consider a basic block Bi. We denote code(Bi) as an address set of

instructions which are included in Bi. exp_time(Bi) is the expected execution time of

Bi, which can be computed by summing the numbers of clock cycles executed by all

instructions belong to Bi. static(Bi) is an address set of the accessed data which

- 18 -

B1B0 B2

Main {
 x = random();
 while(x > 0) {
 x = random();
 }
 print(x);
}

random() {
 return (read from random service);
}

print(val) {
 send x to terminal;
}

B0: $TMP = random()

B2: if (x < 0 or x = 0) goto B4;

B5: print(x)

B6: random()
{ return (read from random service) }

B7: print(val)
{ send x to terminal }

B1: x = $TMP

B3: $TMP = random(); goto B2;

B4: x = $TMP

B4B3 B5

B6B6 B7

(a) (b)

(c)

Figure 3.4 An example of sibling-child binary tree representation of basic blocks.

resides in the static partition. We can obtain these addresses from the binary image,

because instructions which access to the static partition usually use immediate

values to indicate their destinations. stack(Bi) is the memory size required to be

allocated from the stack partition. The call stack is used to store the local data

structures, such as local variables and call parameters. Therefore, the stack(Bi) can

be obtained by counting how many local data structures which are allocated and

used in Bi. next_bb(Bi) is used to indicate the basic block executed next to Bi. If Bi is

the latest basic block of a procedure, next_bb(Bi) will be set to empty value. For

example, as shown in Figure 3.4, next_bb(B3) is B4 and next_bb(B5) is empty. If Bi

contains a procedure call instruction, then call_bb(Bi) will indicate the first basic

block of the calling target. Otherwise, call_bb(Bi) will be set to empty value. For

example, in Figure 3.4, call_bb(B3) is B6, and call_bb(B4) is empty value.

In the following, we use a right-sibling left-child binary tree to represent the

execution flow of the task. In this binary tree, a node represents a basic block, and

an edge indicates the control dependency between two connected nodes. For every

basic block Bi, we let call_bb(Bi) and next_bb(Bi) be the child and sibling node of Bi

respectively. However, if the given task contains a recursive call, it will cause an

edge loop in the right-sibling left-child binary tree. Hence, for the basic block Br

which performs a recursive call, we set call_bb(Br) to empty value and merge Br into

next_bb(Br). The corresponding right-sibling left-child binary tree of Figure 3.4(b) is

shown in Figure 3.4(c).

3.3.2 Heap usage profiling

The execution of the same binary image with different input data may result in

- 19 -

different execution trace. In order to discover those memory-referencing instructions

which have predictable behavior, we proposed a mechanism to analyze the collected

execution trace after profiling. Before describing the detailed method of this analysis

mechanism, we introduce the following terminologies.

Considering a memory accesses ai, task(ai) is the task which performs ai,

inst(ai) is the number of instructions which has been executed by task(ai) before ai.

clkc(ai) is the number of elapsed clock cycles from the start of the execution of

task(ai). addr(ai) is the memory address which ai accesses to. instruction(ai) is the

memory-referencing instruction which performs ai.

Definition 3.1 For sequence memory accesses A = {a1, a2, ... an} where a1, a2, ... an

denote the individual accesses of A and they are performed by the same instruction.

A is a sequential access if A satisfies the following conditions:

{inst ai­1­inst ai=inst ai­inst ai1 ... 1
addr ai ­1­addr ai=addr ai­addr ai 1 ... 2

 where 2≤i≤ n­1 , n≥3

An example of such instruction is a memory-referencing instruction within

loop block. If A satisfies the equation (1), it indicates that the number of instructions

executed between any two contiguous memory accesses of A are the same. We

denote the number of instructions between two contiguous memory accesses by

∆inst(A) if A satisfies the equation (1). If A satisfies the equation (2), it indicates that

the address distance between any two contiguous memory accesses of A are the

same. We denote the distance between two access targets by ∆addr(A) if A satisfies

the equation (2). ∆clkc(A) denotes the average number of clock cycles between two

contiguous accesses of A. ∆clkc(A) is calculated by formula 3.1.

- 20 -

clkc A=
∑
i =1

n­1

clkc ai1­clkc ai

n­1
..(3.1)

Now we describe our mechanism in detail. The proposed mechanism has two

stages. The first stage of this analysis is to find the memory-referencing instructions

that perform sequential accesses from the execution trace. We predict that these

instructions will still perform sequential access. Other types of access patterns are

simply ignored, because most of them do not have a determined pattern. This stage

includes the following two steps. First, we extract all sequential accesses from the

execution trace. Then, considering a memory-referencing instruction R which

performs sequential accesses Ki, we predict that R will perform sequential access in

the future if all ∆inst(Ki) have the same value and all ∆addr(Ki) have the same value

for all sequential accesses Ki. For convenience, we denote the value of ∆inst(Ki) for

R as inst_step(R) and denote the ∆addr(Ki) for R as addr_step(R). For R, we also

predict the distance between two accessed addresses will be addr_step(R), and the

number of clock cycles between two accessed addresses will be the averaged value

of ∆clkc(Ki) in the future. For convenience, we denote the averaged value of

∆clkc(Ki) as clkc_step(R). We store the instruction address of R, clkc_step(R) and

addr_step(R) as part of the hint.

In the second stage, we attempt to find the memory-allocating instructions

which allocate memory blocks for the memory-referencing instructions which

perform sequential access. We predict that these memory-allocating instructions will

still perform memory allocation for those memory-referencing instructions. This is

done by comparing the accessed target of the memory-referencing instruction and

the address range of allocated memory blocks. Considering a memory-referencing

- 21 -

instruction R and a memory allocating instruction L, we predict that L will still

allocate memory for R in the future. These referencing-allocating relations are stored

as part of the hint. The algorithm of this mechanism is shown in Figure 3.5.

3.4 Hint evaluation

In the previous phase, we collect the hint which includes the information about

how a task may use memory. In this phase, we predict the future memory usage for

- 22 -

HeapUsageProfiling()
SeqAccess ← NIL // here we store the result of 1st stage

// 1st stage
for each memory accessing event e // collect all memory accesses
do SeqAccess[instruction(e)] ← SeqAccess[instruction(e) ∪] { e}
for each instruction R where SeqAccess[R] exists // remove those are not
do B ← SeqAccess[R] // sequential accesses

if ∃L: L = {K0, K1, ... Kn} where
∀ Ki, Kj ∈ L: Ki ∩ Kj ∀ = Ø, Ki ∈ L: Ki is a sequential access, and

 ∪
∀ K i∈L

K i=B

then calculate clkc_step[R] and addr_step[R]
else remove SeqAccess[R]

// 2nd stage
for each memory allocating event e // check all memory allocations
do if ∃ a ∃, R: a ∈ K, K ∈ SeqAccess[R] where

 allocation_start(e) ≤ addr(a) and allocation_end(e) ≥ addr(a)
then allocating[R] ← allocating[R ∪] { instruction(e) }

// finished, store hint
Store Hint_H as the following set of vectors:
∀ R where SeqAccess[R] is exist:

 <R, address[R], allocating[R], clkc_step[R], addr_step[R]>
Figure 3.5 The algorithm of the heap usage profiling.

tasks when they leave cores by combining the hint and the task execution status. We

first define some symbols in this phase. Considering a task Ti, we use

GoingAccess(Ti) to represent the memory address set which may be accessed by the

task Ti in the next time slice. StackTop(Ti) is the address of the top of the call stack.

Hint_B(Ti) is the hint of Ti which is generated by the binary image dissection. Bj
Ti is

- 23 -

Bj
Ti co

de
(B

jTi
)

ex
p_

tim
e(

B j
Ti
)

st
at

ic
(B

jTi
)

st
ac

k(
B j

Ti
)

ne
xt

_b
b(

B j
Ti
)

ca
ll_

bb
(B

jTi
)

B0
Ti {0xC0, 0xC1, ... 0xDB} 7 32 B1

Ti

B1
Ti {0xDC, 0xDD, ... 0xDF} 1 0 B2

Ti B5
Ti

B2
Ti {0xE0, 0xE1, ... 0xFB} 7 28 B3

Ti

B3
Ti {0xFC, 0xFD, ... 0x278} 96 {0x1000, 0x1001, ... 0x101F} 32 B4

Ti

B4
Ti {0x279, 0x27A, ... 0x297} 8 32

B5
Ti {0x60, 0x61, ... 0x87} 10 20 B6

Ti

B6
Ti {0x88, 0x89, ... 0x8B} 1 0 B6

Ti B8
Ti

B7
Ti {0x8C, 0x8D, ... 0xBB} 12 20

B8
Ti {0x2B1, 0x2B2, ... 0x2FC} 19 28

(a)

B0
Ti B1

Ti B2
Ti B3

Ti B4
Ti

B5
Ti B6

Ti B7
Ti

B8
Ti

(b)

Aj
Ti address(Aj

Ti) allocating(Aj
Ti) addr_step(Aj

Ti) clkc_step(Aj
Ti)

A0
Ti 0x268 0xEC 4 96

(c)

Figure 3.6 An example of Hint.
(a) Hint_B(Ti). (b) The binary tree representation of Hint_B(Ti).
(c) Hint_H(Ti).

the basic block which is included by Hint_B(Ti) where 1≤ j ≤M, M is the number of

basic blocks included in Hint_B(Ti). Hint_H(Ti) is the hint of Ti which is generated

by the heap usage profiling. Ak
Ti is one of the hint entries included in Hint_H(Ti)

where 1≤ k ≤Q, Q is the number of entries included in Hint_H(Ti). Each hint entry

represents one of the memory-referencing instructions which is predicted

performing sequential accesses. We call such memory-referencing instructions as

hint-covered memory-referencing instructions for convenience. address(Ak
Ti)

represents the address of Ak
Ti. allocating(Ak

Ti) is the address of the memory allocating

instruction which allocate memory blocks for Ak
Ti. addr_step(Ak

Ti) is the distance

between two accessed addresses. clkc_step(Ak
Ti) is the number of clock cycles

between two accesses. Figure 3.6 shows an example of the hint. For convenience,

we denote the memory-referencing instruction located at address(Ak
Ti) as

instruction(Ak
Ti).

The hint evaluation has three stages. In the first stage, we predict the number of

clock cycles will be used by the hint-covered memory-referencing instructions to

access the dynamically allocated memory blocks. The prediction result is used to

adjust the estimated execution time of a basic block which is estimated by the hint

generation phase. In the hint generation phase, we do not know how large the

dynamically allocated memory block will be. Therefore, it is impossible to predict

how many clock cycles will be required for accessing the allocated memory blocks.

However, in this phase, we can retrieve the memory allocation result from the

memory allocation information maintained by the operating system. Therefore, we

can estimate the number of clock cycles which is required for accessing the

dynamically allocated memory blocks in this phase. Considering a task Ti and the

- 24 -

hint entry Ak
Ti included in Hint_H(Ti), the prediction is done in two steps. First, we

estimate how many times the instruction(Ak
Ti) will be executed. This estimation can

be made by dividing the size of the allocated memory block by addr_step(Ak
Ti).

Because we predict that the instruction(Ak
Ti) will perform sequential accesses and the

address distance between two contiguous accesses performed by instruction(Ak
Ti)

will be addr_step(Ak
Ti). If there are multiple memory blocks that are allocated for

instruction(Ak
Ti) to access, we will perform the estimation with the size of the largest

one for safety, because we do not know which one will be accessed. Then, we

multiply the estimation result from previous step with clkc_step(Ak
Ti) to make the

prediction. We implement this two step prediction mechanism with formula 3.2. In

this formula, MaxAllocSize(allocating(Ak
Ti)) denotes the maximum allocated

memory size which is allocated by allocating(Ak
Ti). If there is no memory block

allocated by allocating(Ak
Ti), the value of MaxAllocSize(allocating(Ak

Ti)) is zero.

dynAccessClk  Ak
T i=

MaxAllocSize allocating  Ak
T i 

addr _ step Ak
Ti

×clkc _ step  Ak
T i(3.2)

Then, the predicted number of clock cycles is used to adjust the expected

execution time of basic blocks. Considering Ak
Ti as one of the entries in Hint_H(Ti)

and its corresponding basic block Bj
Ti, the value of exp_time(Bj

Ti) is adjusted by

adding dynAccessClk(Ak
Ti) to it. If there are multiple entries in Hint_H(Ti) which are

mapped to a single basic block, we only select the maximum number of predicted

clock cycles to add it. The value of exp_time(Bj
Ti) will be restored after finishing this

phase. An example of this adjustment is shown in Figure 3.7 which is the adjustment

result of the example in Figure 3.6. The memory allocating result of A0
Ti is shown in

Figure 3.7(a). The corresponding basic block of A0
Ti is B3

Ti because address(A0
Ti) is

- 25 -

included in code(B3
Ti). The adjustment result of the expected execution time is

shown in Figure 3.7(b) where the exp_time(B3
Ti) is adjusted by adding the

calculation result of formula 3.2.

In the second stage, we predict the memory addresses that will be access by the

task Ti in the upcoming allocated time slice. These predicted addresses are converted

into the predicted cache set usage in the next stage. In this stage, we first find the

corresponding basic block of the current execution point of the task. Then, we start a

depth-first traversal from the corresponding basic block of the current execution

point. That is, for every visited basic block Bj
Ti, we first visit its child node

- 26 -

allocating(Aj
Ti) start end size

0xEC 0x010000F0 0x010000FF 16
0xEC 0x01000100 0x0100010A 12

(a)

Bj
Ti co

de
(B

jTi
)

ex
p_

tim
e(

B j
Ti
)

st
at

ic
(B

jTi
)

st
ac

k(
B j

Ti
)

ne
xt

_b
b(

B j
Ti
)

ca
ll_

bb
(B

jTi
)

B0
Ti {0xC0, 0xC1, ... 0xDB} 7 32 B1

Ti

B1
Ti {0xDC, 0xDD, ... 0xDF} 1 0 B2

Ti B5
Ti

B2
Ti {0xE0, 0xE1, ... 0xFB} 7 28 B3

Ti

B3
Ti {0xFC, 0xFD, ... 0x278} 480 {0x1000, 0x1001, ... 0x101F} 32 B4

Ti

B4
Ti {0x279, 0x27A, ... 0x297} 8 32

B5
Ti {0x60, 0x61, ... 0x87} 10 20 B6

Ti

B6
Ti {0x88, 0x89, ... 0x8B} 1 0 B6

Ti B8
Ti

B7
Ti {0x8C, 0x8D, ... 0xBB} 12 20

B8
Ti {0x2B1, 0x2B2, ... 0x2FC} 19 28

(b)
Figure 3.7 An example of the expected execution time adjustment of basic blocks.

(a) The allocation result of memory-allocating instruction at 0xEC
(b) The adjusted Hint_B(Ti)

call_bb(Bj
Ti). Then we visit its sibling node next_bb(Bj

Ti). For every visited basic

block Bj
Ti, we copy the values in code(Bj

Ti) and static(Bj
Ti) into GoingAccess(Ti). We

also add the addresses between StackTop(Ti) and StackTop(Ti)+stack(Bj
Ti) into

GoingAccess(Ti). The added addresses predict the usage of the stack partition. For

memory-referencing instructions Ak
Ti, when their corresponding basic blocks are

traversed, the addresses of memory blocks which are allocated by allocating(Ak
Ti)

are also added into GoingAccess(Ti) to predict the usage of the heap part. The

traversal is stopped when the summing of expected execution time of all traversed

- 27 -

HintEvaluation(Ti)
GoingAccess ← Ø
EstimatedDynAccessClk ← Ø

// 1st stage
for each entries Ak in Hint_H(Ti)
do tmp ← dynAccessClk(Ak)

Locate hint entry Bj from Hint_B(Ti) such that address(Ak) ∈ code(Bj)
if EstimatedDynAccessClk[Bj] is not existed or
 EstimatedDynAccessClk[Bj] < tmp
then EstimatedDynAccessClk[Bj] ← tmp

for each Bj where EstimatedDynAccessClk[Bj] is existed
do exp_time(Bj) ← EstimatedDynAccessClk[Bj]

// 2nd stage
Locate hint entry Bpc from Hint_B(Ti) such that ProgramCounter ∈ code(Bpc)
HintEvaluation_stage2(Bpc, 0, StackTop(Ti)) // predict target addresses of

// memory accesses
// 3rd stage
Convert memory addresses included in GoingAccess into the cache set usage
according to the cache configuration of the system.
Output the converted result as the predicted cache set usage of Ti.

Figure 3.8 The algorithm of the hint evaluation phase.

basic blocks is larger than the time slice.

In the third stage, the predicted memory addresses are converted into predicted

cache set usage. Therefore, in the task scheduling phase, we can attempt to avoid

cache contentions by not concurrently scheduling tasks which use the same cache

sets on cores. Considering a m-set cache and a task Ti, the predicted cache accesses

- 28 -

HintEvaluation_stage2(Bx, used_time, stack_top)
max_stack_offset ← 0
basic_block_pointer ← Bx

// compute maximum call stack offset
while NIL ≠ next_bb(basic_block_pointer)
do if max_stack_offset < stack(basic_block_pointer)

then max_stack_offset ← stack(basic_block_pointer)
basic_block_pointer ← next_bb(basic_block_pointer)

basic_block_pointer ← Bx

// traverse the basic blocks and make the prediction
while used_time < TimeSlice and NIL ≠ next_bb(basic_block_pointer)
do if NIL ≠ call_bb(basic_block_pointer)

then used_time ← HintEvaluation_stage2(basic_block_pointer,
 used_time, stack_top + max_stack_offset)
used_time ← used_time + exp_time(basic_block_pointer)
GoingAccess ← GoingAccess ∪ code(Bx) // code part
GoingAccess ← GoingAccess ∪ static(Bx) // static part
// heap part
if ∃ Ak ∈ Hint_H(Ti) where address(Ak ∈) code(basic_block_pointer)
then GoingAccess ← GoingAccess∪ allocated_memories(allocating(Ak)
for ∀s: s≥stack_top and s<stack_top + max_stack_offset // stack part
do GoingAccess ← GoingAccess ∪ {s}
basic_block_pointer ← next_bb(basic_block_pointer)

return used_time
Figure 3.9 The algorithm of the hint evaluation phase. (cont.)

of Ti is represented in a bit vector <C1
Ti, C2

Ti, ..., Cm
Ti>. Cb

Ti represents the predicted

usage of the bth cache set. The bth cache set is predicted to be used if there is a

memory address included in GoingAccess(Ti) which is mapped to it. If the bth cache

set is predicted to be used, the value of Cb will be set to 1. Otherwise Cb will be set

to 0. The algorithm of this phase is shown in Figure 3.8 and Figure 3.9.

3.5 Task scheduling

In the previous phase, the cache set usage of a task is predicted. In this phase,

we group tasks in the global dispatch queue into small gangs according to their

predictions of the cache usages and store gangs into the gang queue for future

scheduling. When the scheduler is activated by idle cores, the scheduler will

randomly pick one gang from the gang queue and assign tasks in the gang to the

cores. For each gang, the number of contained tasks is no more than the number of

cores within the system. The number of gang is equal to the following formula. In

this formula, TaskCount denotes the number of tasks in the system. CoreCount

denotes the number of cores in the system.

GangCount=⌈ TaskCount
CoreCount

⌉ ... (3.3)

Before we describing the detailed mechanism of this phase, we first introduce

the following formulas and terminologies which are used in this phase. Formula 3.4

is used to predict the number of cache contentions between two tasks.

PredictedCacheContention T i ,T j=∑
k=1

m

C k
T i×C k

T j  (3.4)

In this formula, Ti and Tj are two tasks, m is the number of cache sets. Ck
Ti and Ck

Tj

represent the predicted usage of the kth cache set of Ti and Tj which are described in

- 29 -

the previous section. Considering two tasks Ti and Tj, we multiply Ck
Ti with Ck

Tj to

see if both Ti and Tj are predicted to use the kth cache set. If both Ti and Tj are

predicted to use the kth cache set, as we described in the previous section, both the

value of Ck
Ti and Ck

Tj will be one. Therefore, the multiplication result will be one

which indicates one predicted cache contention. However, if none of Ti and Tj are

predicted to use the kth cache set or only one of Ti and Tj is predicted to use the kth

cache set, at least one of Ck
Ti and Ck

Tj will be zero. Therefore, the multiplication

result will be zero which indicates no cache contention. By summing all

multiplication results on m cache sets, we can get the number of predicted cache

contentions between Ti and Tj. Furthermore, formula 3.5 predicts the number of

cache contentions between a task and tasks of a gang.

TaskGangCacheContentionT i ,G x= ∑
∀ T j∈G x

PredictedCacheContention T i ,T j

... (3.5)

In this formula, Ti is a task and Gx is a gang. The number of cache contentions

between Ti and tasks of Gx is predicted by summing the number of predicted cache

contentions between Ti and each task included in Gx. The number of predicted cache

contentions between two tasks can be got by applying formula 3.4. We use formula

3.5 to see if a task and a gang are perfect matching or not. Considering a task Ti and

a gang Gx, if Ti and Gx are perfect matching, we can assign Ti into Gx without

introducing any predicted cache contentions with other tasks within Gx. We say that

Ti and Gx are perfect matching if the value of TaskGangCacheContention(Ti, Gx) is

zero. Otherwise, we say that Ti and Gx are not perfect matching.

There are two stages in our gang grouping mechanism. In the first stage, the

tasks with the largest number of predicted used cache sets will be distributed into

- 30 -

different gangs. Therefore, the possibility of the occurrence of cache contentions

could be reduced. In this stage, we first sort tasks according to the number of

predicted used cache sets in the decreasing order. Then we distribute tasks into

gangs. The first gang is created by assigning the task with most predicted used cache

sets to an empty gang. The remaining tasks are assigned to a gang one by one

according to the number of predicted used sets. Considering a task Ti and a gang Gx,

Ti will be assign to Gx if Ti and Gx are perfect matching. If there is no such gang

exists and the number of the created gang is less than GangCount, a new gang will

be created and Ti will be assigned to the created gang. If there is no such gang which

- 31 -

Predicted cache usage

T1 <1, 1, 0, 0, 1, 1, 1, 0>
T2 <0, 0, 1, 1, 1, 1, 0, 0>
T3 <0, 1, 1, 1, 0, 0, 0, 0>
T4 <0, 0, 0, 0, 0, 1, 1, 0>
T5 <0, 0, 1, 0, 0, 0, 0, 1>
T6 <1, 0, 0, 1, 1, 1, 0, 0>
T7 <0, 1, 1, 0, 0, 1, 0, 0>
T8 <0, 0, 1, 1, 0, 0, 0, 0>

(a)

Predicted cache usage

T1 <1, 1, 0, 0, 1, 1, 1, 0>
T2 <0, 0, 1, 1, 1, 1, 0, 0>
T6 <1, 0, 0, 1, 1, 1, 0, 0>
T3 <0, 1, 1, 1, 0, 0, 0, 0>
T7 <0, 1, 1, 0, 0, 1, 0, 0>
T4 <0, 0, 0, 0, 0, 1, 1, 0>
T5 <0, 0, 1, 0, 0, 0, 0, 1>
T8 <0, 0, 1, 1, 0, 0, 0, 0>

(b)

T1 <1, 1, 0, 0, 1, 1, 1, 0>

T2 <0, 0, 1, 1, 1, 1, 0, 0>

T6 <1, 0, 0, 1, 1, 1, 0, 0>

T3 <0, 1, 1, 1, 0, 0, 0, 0>

T7 <0, 1, 1, 0, 0, 1, 0, 0>

T4 <0, 0, 0, 0, 0, 1, 1, 0>

T5 <0, 0, 1, 0, 0, 0, 0, 1>

T8 <0, 0, 1, 1, 0, 0, 0, 0>

G1

G2

Unscheduled tasks: Created gangs:

(c)
Figure 3.10An example of the first stage of gang grouping.

(a) The predicted cache usage of tasks. (b) The sorted tasks.
(c) The result of first stage of gang grouping.

exists and the number of gangs is equal to GangCount, the assignment of Ti will be

left to the next stage. Figure 3.10 shows an example of this stage. Assuming there is

an 8-sets L2 cache and two cores in the system. There are 8 tasks in the system,

therefore the value of GangCount is 2.

After the previous stage, a task may still remain to be assigned if the task can

not form any perfect matching with created gangs and the number of created gangs

is equal to GangCount. We distribute the remaining tasks into gangs in the second

stage. In the second stage, the remaining tasks are assigned to gangs one by one

according to the number of predicted used cache sets. Each remained task is greedily

assigned to a gang which creates the lowest number of predicted cache contentions

with other tasks within the gang. We expect the overall assignment will cause the

least number of cache contentions, because we introduce the least number of

predicted cache contention for each assignment. Considering a task Ti, we first

- 32 -

T1 <1, 1, 0, 0, 1, 1, 1, 0>

T2 <0, 0, 1, 1, 1, 1, 0, 0>

T6 <1, 0, 0, 1, 1, 1, 0, 0>

T5 <0, 0, 1, 0, 0, 0, 0, 1>

G1

G2

TaskGangCacheContention(T6, G2)=3

TaskGangCacheContention(T6, G1)=3

(a)

T1 <1, 1, 0, 0, 1, 1, 1, 0>

T2 <0, 0, 1, 1, 1, 1, 0, 0>

T6 <1, 0, 0, 1, 1, 1, 0, 0>

T3 <0, 1, 1, 1, 0, 0, 0, 0>

T7 <0, 1, 1, 0, 0, 1, 0, 0>

T4 <0, 0, 0, 0, 0, 1, 1, 0>

T5 <0, 0, 1, 0, 0, 0, 0, 1>

T8 <0, 0, 1, 1, 0, 0, 0, 0>

G1

G2

(b)

Figure 3.11An example of the second stage of gang grouping.
(a) The assignment of T6. (b) The final result of gang grouping.

- 33 -

TaskScheduling()

GangCount ← ⌈ TaskCount
CoreCount

⌉

// 1st stage
Sort tasks according to the number of predicted used cache sets in the
decreasing order;
<T0, T1, T2, ... TTaskCount-1> ← the sorting result
G[0] ← {T0}
created_gang_id ← 0
for i ← 1 to (TaskCount – 1)
do if ∀Tk ∈ G[created_gang_id]: 0 = PredictedCacheContention(Ti, Tk)

then G[created_gang_id] ← G[created_gang_id ∪] Ti

if CoreCount = | G[created_gang_id] |
then created_gang_id ← created_gang_id + 1

G[created_gang_id] ← Ø
assigned[Ti] ← TRUE

else if (GangCount - 1) = created_gang_id
then assigned[Ti] ← FALSE
else created_gang_id ← created_gang_id + 1

G[created_gang_id] ← {Ti}
assigned[Ti] ← TRUE

// 2nd stage
for i ← 1 to (TaskCount - 1)
do if FALSE = assigned[Ti] // assign remaining tasks only

then candidate_gang ← 0
current_contention ← TaskGangCacheContention(Ti, G[0])
for j ← 1 to (created_gang_id-1) // look for gang w/ least contention

do tmp ← TaskGangCacheContention(Ti, G[0])
if tmp < current_contention
then candidate_gang ← j

current_contention ← tmp
G[candidate_gang] ← G[candidate_gang ∪] Ti

Figure 3.12The algorithm of the task scheduling phase.

calculate the number of predicted cache contentions of Ti and every existing gangs.

For gang Gx, the number of predicted cache contentions between Gx and Ti is

calculated by formula 3.5. Then, Ti is assigned to the gang which has the smallest

number of predicted cache contentions between the gang and Ti. If there are multiple

gangs which have the same number of predicted cache contentions with Ti, the gang

with fewer tasks will be selected. Figure 3.11 shows the second stage of gang

grouping for the example which is illustrated in Figure 3.10. Figure 3.11(a) shows

the assignment of T6, where the number of cache contentions between T6 and both

gangs are the same. But, G2 has the less number of tasks. Therefore, T6 is assigned to

G2. Figure 3.11(b) shows the final result of the gang grouping. The algorithm of this

phase is shown in Figure 3.12.

So far, we have introduced the essence of our mechanism. In the next chapter,

we will evaluate the performance of our mechanism and compare with others.

- 34 -

Chapter 4 Preliminary Performance
Evaluation

In this chapter, we will demonstrate our experimental results. The architecture

of simulator and evaluated workloads are described in section 4.1. The evaluation

results are shown in section 4.2.

4.1 Simulation overview

Before executing the simulation, we first use a modified SimpleScalar[26] to

collect the execution trace of tasks. The trace collecting process is diagrammed at

Figure 4.1(a). The hints are also generated before executing the simulation. As

shown in Figure 4.1(b), our hint generator contains a binary image dissector and a

heap usage profiler to simulate the hint generation phase of HCCA (Hint-aided

Cache Contention Avoidance). Then, the execution traces and hints are sent to our

simulator.

- 35 -

binary
image

input
data

modified
SimpleScalar

execution
trace

(a)

binary
image

input
data

modified
SimpleScalar

execution
trace heap usage

profiler

hint

binary image dissector

(b)
Figure 4.1 The trace generator and the hint generator.

(a) The trace generator. (b) The hint generator.

Figure 4.2 shows the architecture of our simulator which contains three

modules: trace parser, scheduling method simulator, and memory simulator. The

trace parser extracts memory access events from the execution trace. The extracted

events are sent to the scheduling method simulator. In addition to memory access

events, values of registers and results of memory allocating operations are also

extracted by the trace parser for HCCA. The scheduling method simulator makes the

scheduling decisions. For tasks which are selected by the scheduling method

simulator to be active tasks, the corresponding memory access events received from

the trace parser are forwarded to the memory simulator by the scheduling method

simulator. Otherwise, those memory access events will be queued at the scheduling

method simulator. For the comparisons among different task scheduling methods,

we have to implement different scheduling methods in the scheduling method

- 36 -

execution
trace 1

execution
trace 2

execution
trace N

memory simulator

trace
parser

hint 1

hint 2

hint N

trace
parser

trace
parser

Hint evaluator

Task scheduler

HCCA

Round-
Robin

Active-
Set TOS

scheduling method simulator

Figure 4.2 The architecture of our simulator.

simulator. The following methods are implemented: Round-Robin[18], Active-

Set[14], TOS (Throughput-oriented Scheduling)[15] and HCCA. The

implementation of HCCA contains a hint evaluator and a task scheduler which

simulate the hint evaluation phase and the task scheduling phase respectively. The

corresponding hints of tasks and all trace events from the trace parser except

memory access events are sent to the hint evaluator. The memory access events are

sent to the task scheduler. The memory simulator simulates the memory hierarchy.

The accessing hit and miss events of L2 cache are sent to the scheduling method

simulator for Active-Set and TOS. In our simulation, we simulate a four core chip-

multiprocessor system. Figure 4.3 shows the cache configuration of our simulation.

This configuration is based on the configuration of MIPS R10000 processor used in

- 37 -

Parameter Values

Number of cores 4

L1 I-cache

size 32 KB
associativity 2

line size 32 bytes
miss latency 10 cycles

replacement policy LRU

L1 D-cache

size 32 KB
associativity 2

line size 16 bytes
miss latency 10 cycles

replacement policy LRU

L2 cache

size 2 MB
associativity 4, 8, 16

line size 32 bytes
miss latency 81 cycles

replacement policy LRU
Figure 4.3 The configuration of memory simulator

the SGI Origin200 workstation[27, 28]. We want to evaluate how the associativity

of L2 cache may affect our method. Therefore, we simulate three different L2 cache

associativity configurations. We simulate eight hundred million instructions for each

task. The length of the time slice is set to ten million cycles for all evaluated task

scheduling methods[14].

The simulation workload is formed by a set of tasks. We use benchmark

programs and corresponding input data sets included in SPEC CPU2000[16] to form

our workloads. A task is formed by a benchmark program and one of its input data

set. Tasks are named by hyphening the name of the benchmark program and the

name of the input data set. For example, the benchmark program gzip has four input

data sets: graphic, program, source and random. Therefore, we form the following

four tasks with gzip and its input data sets: gzip-graphic, gzip-program, gzip-source

and gzip-random. Two input data sets may have the same name if they are used in

different benchmark programs. The list of tasks used in our simulation is shown in

Figure 4.4. For each benchmark program, a separated training data set is used as the

input data of the hint generator to generate the hints. In our simulation, each

workload includes twelve tasks. We form three workloads to evaluate the

performance of our mechanism. We want to evaluate the performance of our

- 38 -

ammp art-110 art-470 bzip2-graphic
bzip2-program bzip2-random bzip2-source equake
gcc-166 gcc-200 gcc-expr gcc-integrate
gcc-scilab gzip-graphic gzip-program gzip-random
gzip-source mcf mesa vortex-lendian1
vortex-lendian2 vortex-lendian3 vpr-place vpr-route
Figure 4.4 The list of tasks used in our simulation.

mechanism under the different possibility of the occurrence of cache contention. The

tasks which frequently cause cache misses may cause more cache contentions[11,

15]. Therefore, we form our workloads according to the number of cache misses

caused by individual tasks. We first execute the tasks once for eight hundred million

cycles and sort tasks according to the number of cache misses in the decreasing

order. The sorting result of our tasks is shown in Figure 4.5. Then, we form the

- 39 -

vpr-route
vpr-place

equake
mesa

gcc-scilab
gcc-integrate

gcc-200
gcc-expr
gcc-166

vortex-lendian2
vortex-lendian3
vortex-lendian1

mcf
ammp

bzip2-source
bzip2-random
bzip2-graphic

bzip2-program
gzip-graphic
gzip-source

gzip-random
gzip-program

art-110
art-470

0 500000 1500000 2500000 3500000 4500000 5500000
number of cache misses

Figure 4.5 The sorted task list.

Workload 1
ammp art-110 art-470 bzip2-graphic
bzip2-program bzip2-random bzip2-source mcf
gzip-graphic gzip-program gzip-random gzip-source

Workload 2
ammp bzip2-graphic bzip2-program gcc-166
gcc-expr gzip-graphic gzip-program mcf
vortex-1 vortex-2 vpr-place vpr-route

Workload 3
equake gcc-166 gcc-200 gcc-expr
gcc-integrate gcc-scilab mesa vortex-lendian1
vortex-lendian2 vortex-lendian3 vpr-place vpr-route

Figure 4.6 The simulation workloads.

workloads according to the sorting result. Figure 4.6 shows our three kinds of

workloads. Workload 1 is formed by selecting the first twelve tasks from the sorted

task list which have more number of cache misses. Workload 2 is formed by

randomly selecting six tasks from the first half of the sorted task list and randomly

selecting another six tasks from the second half of the sorted task list. Workload 3 is

formed by selecting the last twelve tasks from the sorted task list which have less

number of cache misses.

4.2 Evaluation results

In the following subsections, we will first compare the cache set usage

prediction accuracy of HCCA with Active-Set. Next, we will compare the L2 cache

miss rate of HCCA with Round-Robin, Active-Set and TOS. Then, we will evaluate

the overall performance improvement of HCCA.

4.2.1 Prediction accuracy

Both HCCA and Active-Set attempt to avoid cache contentions by separately

scheduling the tasks which are predicted to use the same cache set. Therefore, the

accuracy of cache set usage prediction has a great effect on the performance of

contention avoidance. The prediction accuracy is the percentage of cache set usage

predictions which correctly predict the actual cache set usage. In order to obtain the

prediction accuracy, we execute tasks alone in our simulator and compare the cache

set usage predictions made by the task scheduler with the actual cache set usage.

Figure 4.7 shows the prediction accuracy of Active-Set and HCCA for individual

tasks. For most of tasks, HCCA performs better than Active-Set. For tasks that

- 40 -

HCCA performs worse than Active-Set, we inspect the source code of such tasks for

the causes of inferior predictions. After inspecting the source code of the binary

images of these tasks, we realize that such tasks heavily use data structures which

require irregular accesses within the heap part. However, HCCA does not predict

such accesses.

4.2.2 L2 miss rate

Figure 4.8 shows the simulation result of workload 1. Figure 4.8(a) shows the

simulated L2 miss rate. Figure 4.8(b) shows the improvement over Round-Robin.

We use Round-Robin as the baseline for comparison, because it does not contain

any cache contention reduction mechanism. The simulation result shows that HCCA

performs better than others. In workload 1, all three methods perform better under

higher associativity. Figure 4.9 shows the simulation result of workload 2. The

simulation result of workload 2 is similar to the result of workload 1 but with more

improvement over Round-Robin. Figure 4.10 shows the simulation result of

- 41 -

am
m

p
ar

t-1
10

ar
t-4

70
bz

ip
2-

gr
ap

hi
c

bz
ip

2-
pr

og
ra

m
bz

ip
2-

ra
nd

om
bz

ip
2-

so
ur

ce
eq

ua
ke

gc
c-

16
6

gc
c-

20
0

gc
c-

ex
pr

gc
c-

in
te

gr
at

e
gc

c-
sc

ila
b

gz
ip

-g
ra

ph
ic

gz
ip

-p
ro

gr
am

gz
ip

-ra
nd

om
gz

ip
-s

ou
rc

e
m

es
a

vo
rte

x-
le

nd
ia

n1
vo

rte
x-

le
nd

ia
n2

vo
rte

x-
le

nd
ia

n3
vp

r-p
la

ce
vp

r-r
ou

te

20%

30%

40%

50%

60%

70%

80%

90%

Hint
Active-Set

benchmark

ac
cu

ra
cy

Figure 4.7 The prediction accuracy.

- 42 -

4-way 8-way 16-way
12.0%

12.5%

13.0%

13.5%

14.0% Round-
Robin
Active-Set
TOS
HCCA

m
is

s
ra

te

(a)

4-way 8-way 16-way
0%

2%

4%

6%

8%

Active-Set
TOS
HCCA

associativity

im
pr

ov
em

en
t o

ve
r R

ou
nd

-R
ob

in

(b)

Figure 4.9 The simulation result of workload 2.
(a) The L2 miss rate under various associativity configuration.
(b) The percentage of improvement over Round-Robin.

4-way 8-way 16-way
24.0%

24.5%

25.0%

25.5%

26.0%
Round-
Robin
Active-Set
TOS
HCCA

m
is

s
ra

te

(a)

4-way 8-way 16-way
0%

2%

4%

6%

8%
Active-Set
TOS
HCCA

associativity
im

pr
ov

em
en

t o
ve

r R
ou

nd
-R

ob
in

(b)

Figure 4.8 The simulation result of workload 1.
(a) The L2 miss rate under various associativity configuration.
(b) The percentage of improvement over Round-Robin.

workload 3. Workload 3 is formed by tasks with less number of cache misses. In

workload 3, HCCA still performs better than others. However, as shown in Figure

4.10(b), comparing to workload 1 and workload 2, we have the lower percentage of

improvement over Round-Robin at the higher cache associativity. As shown in

Figure 4.10(a), the reduced miss rate is similar in all three methods. Comparing to

the simulation result of workload 1 and workload 2, the reduced miss rate is

relatively small. In summary, for workload 1 and workload 2, we will have better

cache miss improvement under higher associativity. This result is expected because

the cache misses caused by cache contentions belong to conflict miss. The conflict

misses can be further reduced under higher associativity[29]. However, for workload

3, the effect of cache contention is low enough and limits the further improvement

of cache miss. All evaluated task scheduling methods may not be able to have better

improvement under higher associativity for such workload.

- 43 -

4-way 8-way 16-way
0.0%

0.5%

1.0%

1.5%

2.0%
Round-
Robin
Active-Set
TOS
HCCA

m
is

s
ra

te

(a)

4-way 8-way 16-way
0%

2%

4%

6%

8%

Active-Set
TOS
Hint

associativity

im
pr

ov
em

en
t o

ve
r R

ou
nd

-R
ob

in
(b)

Figure 4.10The simulation result of workload 3.
(a) The L2 miss rate under various associativity configuration.
(b) The percentage of improvement over Round-Robin.

Comparing with workload 2 and workload 3, workload 1 has the lowest

percentage of improvement over Round-Robin. Workload 1 is formed by tasks

which have more number of cache misses. As described in [11], such tasks may

occupy lots number of cache blocks. Therefore, for such workloads, the possibility

- 44 -

Workload 1 Workload 2 Workload 3
1.5

2.0

2.5

3.0

3.5 Round-
Robin
HCCA

IP
C

(a)
Workload 1 Workload 2 Workload 3

1.5

2.0

2.5

3.0

3.5 Round-
Robin
HCCA

IP
C

(b)

Workload 1 Workload 2 Workload 3
1.5

2.0

2.5

3.0

3.5 Round-
Robin
HCCA

IP
C

(c)
Figure 4.11Overall IPC under various workloads for different cache associativity.

(a) 4-way associativity. (b) 8-way associativity. (c) 16-way associativity.

of causing cache contention among tasks is higher than the other two workloads.

This limits the further improvement of cache miss rate for workload 1.

4.2.3 Overall performance

We use the IPC (instruction per cycle) as the metric of the overall performance

measurement[10, 11, 14, 15]. Higher IPC results in shorter execution time for the

given workload. Figure 4.11 shows the IPC of Round-Robin and HCCA under

various workloads with different cache associativity. For all workloads, HCCA

performs slightly better under all associativity configurations. Our simulation shows

that the L1 cache hit rate higher than 97% for all workloads under all associativity

configurations. In other words, most data blocks are loaded from L1 cache for all

workloads. Therefore, the improvement on the miss rate of L2 cache is diluted and

results in a small overall IPC improvement.

Figure 4.12 shows the IPC improvement of HCCA over Round-Robin under

- 45 -

4-way 8-way 16-way
0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

Workload 1
Workload 2
Workload 3

%
 IP

C
 im

pr
ov

em
en

t

Figure 4.12The improved percentage of IPC over Round-Robin under various
associativity.

different associativity. For all cache associativity configurations, HCCA achieves

better improvement for workload 2. Comparing workload 2 to workload 1, workload

2 has the lower miss rate and the higher improved percentage on miss rate over

Round-Robin, therefore it is reasonable for workload 2 to achieve the better

performance improvement over workload 1. Comparing workload 2 to workload 3,

both workload 2 and workload 3 have similar percentage of improvement on miss

rate over Round-Robin, however workload 2 has higher cache miss. Therefore,

workload 2 can achieve the better performance improvement.

In this chapter, we have evaluated the performance of our HCCA technique. In

the next chapter, some conclusions and future work are remarked.

- 46 -

Chapter 5 Conclusions and Future Work

In this thesis, we have designed a less cache contention task scheduling method

for chip multiprocessor systems. We will make conclusions and give some future

work in this chapter for our research.

5.1 Conclusions

The chip multiprocessor is a promising microprocessor design to efficiently

utilize the transistors increased by the advances of integrated circuit processing

technologies[4, 5]. In a typical chip multiprocessor, the L2 cache is shared among

cores. Sharing L2 cache causes cache contentions between executed tasks. The

cache contentions between executed tasks may affect the performance of chip

multiprocessors. For this issue, we propose a less cache contention task scheduling

method, called HCCA. We first analyze the binary images of tasks and then predict

the cache usage of tasks by combining the analysis result and system status. The

final task scheduling decisions are made according to the prediction result. In

summary, our method has the following main features and contributions.

(1) In HCCA, the cache set usage prediction is made at the hint evaluation

phase which combine the system status and hints generated by the hint generation

phase to make the prediction. Differ from previous methods which make prediction

according to previous cache set usages of tasks, our method does not rely on

previous cache set usages. Because tasks may change their cache set usage during

execution, making predictions according to previous cache set usages may not be

able to predict these changes. Instead of using previous cache set usage, we use the

- 47 -

hints which are generated from directly analyzing the binary images of tasks to

support the predictions. Binary images contain instruction sequences which instruct

the processor to accomplish tasks. In other words, binary images directly affect the

behavior and the cache set usages of tasks. Therefore, we expect our method to

achieve more accuracy predictions by making predictions according to hints. The

simulations show that our prediction mechanism can achieve around 63.2%

prediction accuracy.

(2) The task scheduling phase greedily distributes tasks in the dispatch queue

into gangs according to the cache set usage prediction. We attempt to avoid cache

contentions by separately scheduling tasks which are predicted to use the same

cache sets. We expect HCCA to achieve lower miss rate because HCCA has more

accurate L2 cache set usage predictions. Through the simulations, we have evaluated

the performance of our method comparing with Round-Robin, Active-Set and TOS.

The simulations show that our HCCA technique achieves lower miss rate than other

methods. However, the improvement on L2 cache miss rate only brings slightly

improvement on overall IPC, because most accesses can result in L1 cache hits.

Therefore, the improvement on the miss rate of L2 cache is diluted and results in a

small overall IPC improvement.

5.2 Future work

In addition to our previous features, there are still some attractive issues worthy

of further investigations in the future.

(1) In our task model, we assume all tasks do not share any data. However,

some tasks may share data with others through sharing a number of memory blocks.

- 48 -

Concurrently scheduling tasks sharing data with each other may improve the

performance because tasks can prefetch data into the cache for each other. In order

to consider the data sharing among tasks, we have to modify the hint generation

phase and hint evaluation phase to make the predictions on data sharing. Besides, in

the task scheduling phase, we also need a new gang grouping mechanism which

attempts to concurrently schedule tasks shared data among them.

(2) We assume that all tasks have the same importance. However, it will be

more desirable if we allow tasks with different level of importance. We need a new

gang grouping mechanism in the task scheduling phase to make it to consider

priorities. For such grouping mechanism, more critical tasks should encounter less

cache contentions even if some cores must be left idle. In order to measure the

performance, we also need a more sophisticated design for performance metric

because the IPC does not consider the importance level of individual tasks.

(3) Simultaneous Multithreaded Processors (SMT)[30, 31] are another multi-

core processor architecture. For such architecture, in addition to L2 cache, execution

resources such as ALU and FPU are also sharing among cores. This sharing may

introduce resource contentions which will affect the overall performance of

system[3233- 34]. In the future, we can try to adapt our method for this architecture

and consider about other types of resource contentions. The hint generation phase

and the hint evaluation phase need to be modified for the predicting of these

resource contentions. Furthermore, different types of resource contentions may

cause different latencies, the task scheduling mechanism may need considering this

difference to make an efficient task scheduling.

(4) We assume that our scheduler is executed on a dedicated system processor,

- 49 -

and the scheduling overhead is ignored. However, the scheduler may have a lot of

idle time if the task load is low. This is not economic for a cost-sensitive system.

The scheduling processor may be used for computation while it is idle as well as

scheduling tasks. In this way, the scheduling overhead needs to be taken into

account for those tasks scheduled on the system processor. How to define and

quantify the scheduling overhead is not trivial and becomes one of the extensions of

this thesis.

- 50 -

Bibliography

[1] Y. N. Patt, S. J. Patel, M. Evers, D. H. Friendly, J. Stark, "One Billion

Transistors, One Uniprocessor, One Chip", Computer, Volume 30, Issue 9,

pp.51-57, 1997.

[2] W. J. Dally, S. Lacy, "VLSI Architecture: Past, Present, and Future", Proc.

of 20th Anniversary Conference on Advanced Research in VLSI, pp.232-

241, 1999.

[3] R. Nair, "Effect of Increasing Chip Density on The Evolution of Computer

Architectures", IBM Journal of Researchand Development, Volume 46,

Number 2, pp.223-234, 2002.

[4] D. Burger, J. R. Goodman, "Billion-Transistor Architectures", Computer,

Volume 30, Issue 9, pp.46-48, 1997.

[5] K. Olukotun and L. Hammond, "The Future of Microprocessors", ACM

Queue, Volume 3, Issue 7, pp.26-29, 2005.

[6] L. Hammond, B. A. Hayfeh, and K. Olukotun, "A Single-Chip

Multiprocessor", Computer, Volume 30, Issue 9, pp.79-85, 1997.

[7] L. Hammond, B. A. Hubbert, M. Siu, M. K. Prabhu, M. Chen and K.

Olukolun, "The Stanford Hydra CMP", IEEE micro, Volume 20, Issue 2,

pp.71-84, 2000.

[8] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le and B. Sinharoy,

"POWER4 System Microarchitecture", IBM Journal of Researchand

Development, Volume 46, Number 1, pp.5-25, 2002.

[9] B. A. Nayfeh and K. Olukotun, "Exploring the Design Space for A Shared-

Cache Multiprocessor", Proc. of 21st Annual International Symposium on

Computer Architecture, pp.166-175, 1994.

[10] G. E. Suh, L. Rudolph, and S. Devadas, "Dynamic Cache Partitioning for

CMP/SMT Systems", The Journal of Supercomputing, Volume 28, Issue

1, pp.7-26, 2004.

- 51 -

[11] S. Kim, D. Chandra, and Y. Solihin, "Fair Cache Sharing and Partitioning

in a Chip Multiprocessor Architecture", Proc. of 13th International

Conference on Parallel Architectures and Compilation Techniques,

pp.111-122, 2004.

[12] D. Chandra, F. Guo, S. Kim, and Y. Solihin, "Predicting Inter-Thread

Cache Contention on a Chip Multi-Processor Architecture", Proc. of 11th

International Symposium on High-Performance Computer Architecture,

pp.340-351, 2005.

[13] S. Hily, A. Seznex, "Contention on 2nd Level Cache May Limit the

Effectiveness of Simultaneous Multithreading", Tech. Report PI-1086,

IRISA, 1997.

[14] A. Settle, J. Kihm, A. Janiszewski, and D. A. Connors, "Architectural

Support for Enhanced SMT Job Scheduling", Proc. of 13th International

Conference on Parallel Architectures and Compilation Techniques, pp.63-

73, 2004.

[15] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum, "Throughput-

Oriented Scheduling On Chip Multithreading Systems", Tech. Report TR-

17-04, Harvard, 2004.

[16] J. L. Henning, "SPEC CPU2000: Measuring CPU Performance in the New

Millennium", Computer, Volume 33, Issue 7, pp.28-35, 2000.

[17] C. A. R. Hoare, "Monitors: An Operating System Structuring Concept",

Communications of the ACM, Volume 17, Number 10, pp.549-557, 1974.

[18] A. Silberschatz, P. B. Galvin and G. Gagne, "Operating System Concept",

Wiley, 2002

[19] D. G. Feitelson and M. A. Jette, "Improved Utilization and Responsiveness

with Gang Scheduling", Proceedings of the Job Scheduling Strategies for

Parallel Processing, pp.238-261, 1997.

[20] T. Sherwood, E. Perelman, and B. Calder, "Basic Block Distribution

Analysis to Find Periodic Behavior and Simulation Points in

Applications", Proc. of 10th International Conference on Parallel

Architectures and Compilation Techniques, pp.3-14, 2001.

- 52 -

[21] P. J. Denning, "Thrashing: Its causes and prevention", Proc. of American

Federation of Information Processing Societies Fall Joint Computer

Conference, pp.915-922, 1968.

[22] E. Berg and E. Hagersten, "StatCache: A Probabilistic Approach to

Efficient and Accurate Data Locality Analysis", Proc. of 4th International

Symposium on Performance Analysis of Systems and Software, pp.20-27,

2004.

[23] R. L. Mattson, J. Gecsei, D. R. Slutz and I. L. Traiger, "Evaluation

Techniques for Storage Hierarchies", IBM Systems Journal, Volume 9,

Number 2, pp.78-117, 1970.

[24] K. D. Cooper and L. Torczon, "Engineering a Compiler", Morgan

Kaufmann, 2004

[25] A. V. Aho, R. Sethi and J. D. Ullman, "Compilers: Principles, Techniques

and Tools", Addison-Wesley, 1985

[26] D. Burger and T. M. Austin, "The SimpleScalar Tool Set 2.0", ACM

SIGARCH Computer Architecture News, Volume 25, Issue 3, pp.13-25,

1997.

[27] K. C. Yeager, "The MIPS R10000 Superscalar Microprocessor", IEEE

Micro, Volume 16, Number 2, pp.28-40, 1996.

[28] J. Laudon and D. Lenoski, "System Overview of the SGI Origin

200/2000", Proceedings of COMPCON 97, p.150, 1997.

[29] M. D. Hill and A. J. Smith, "Evaluating Associativity in CPU Caches",

IEEE Transactions on Computers, Volume 38, Issue 12, pp.1612-1630,

1989.

[30] H. Hirata, K. Kimura, S. Nagamine, Y. Mochizuki, A. Nishimura, Y.

Nakase and T. Nishizawa, "An Elementary Processor Architecture with

Simultaneous Instruction Issuing from Multiple Threads", Proc. of the

19th Annual International Symposium on Computer Architecture, pp.136-

145, 1992.

- 53 -

[31] J. L. Lo, J. S. Emer, H. M. Levy, R. L. Stamm, D. M. Tullsen and S. J.

Eggers, "Converting Thread-Level Parallelism to Instruction-Level

Parallelism via Simultaneous Multithreading", ACM Transactions on

Computer Systems, Volume 15, Issue 3, pp.322-354, 1997.

[32] S. J. Eggers, J. S. Emer, H. M. Leby, J. L. Lo, R. L. Stamm and D. M.

Tullsen, "Simultaneous Multi-Threading: A Platform for Next-Generation

Processors", IEEE micro, Volume 17, Issue 5, pp.12-19, 1997.

[33] S. E. Raasch and S. K. Reinhardt, "The Impact of Resource Partitioning on

SMT Processors", Proc. of 12th International Conference on Parallel

Architectures and Compilation Techniques, pp.15-25, 2003.

[34] L. K. McDowell, S. J. Eggers and S. D. Gribble, "Improving Server

Software Support for Simultaneous Multithreaded Processors", Proc. of

the 9th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, pp.37-48, 2003.

- 54 -

