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在晶片多處理器系統下以減少快取衝突為目的之

動態工作排程方法

研究生: 廖哲瑩          指導教授: 陳正 教授

國立交通大學資訊科學與工程研究所碩士班

摘要

積體電路製程的進步使得需要大量電晶體來實作的微處理器設計得以被

付諸實行，晶片多處理器 (chip multiprocessor) 是這些新世代設計的其中一員。

一個晶片多處理器有多個處理器核心，在晶片多處理器上的 L2 快取記憶體會

由這些處理器核心共用，因此處理器核心間可能會發生快取衝突。快取衝突會

為晶片多處理器的效能帶來負面影響，為了減少快取衝突我們提出了一個稱為

Hint-aided Cache Contention Avoidance (HCCA) 的動態工作排程方法。 HCCA

首先預測工作執行時可能使用的快取記憶體區段，並將會使用到相同快取記憶

體區段的工作分開排程以減低快取衝突。在 HCCA 中包含三個階段，第一階

段我們會由工作的程式碼中萃取出可以協助排班的資訊。接著，在第二階段我

們會利用在第一階段萃取得來的資訊做出快取記憶體使用區段的預測。我們的

預測是基於工作的程式碼所萃取得來的資訊，而工作的程式碼將會直接影響工

作存取快取記憶體的模式，因此我們預期所做出的預測可以比其他的方法有較

好準確率。最後，在第三階段我們根據於前一階段所做出的快取記憶體使用區

段的預測結果做出工作排班。我們以模擬的方式評估 HCCA 的效能，模擬結

果顯示 HCCA 可以使得晶片多處理器系統有較低的快取誤失率，並藉此可以

改善整體效能。
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Abstract

The  chip  multiprocessor  is  an  emerging  microprocessor  architecture  which

attempts to utilize the integration increased by the advances of integrated circuit

technologies. A chip multiprocessor contains multiple execution cores which share

the on-chip L2 cache. Therefore, the cache contentions may occur among cores. In

order to reduce cache contentions which cause negative impacts on performance, we

propose a task scheduling technique named Hint-aided Cache Contention Avoidance

(HCCA). HCCA attempts to avoid cache contentions by separately scheduling tasks

predicted to use the same cache sets. HCCA contains three phases. The first phase

analyzes binary images and extracts information used to support the predictions of

cache set  usages.  Then, the second phase makes the cache set  usage predictions

according to the information extracts  by the previous phase.  The predictions are

made  according  to  the  information  extracted  from binary  images  which directly

affect how tasks accessing cache sets. Therefore, the predictions are expected to be

more  accurate  than  those  made  by  previous  methods.  Finally,  the  scheduling

decisions are made in the third phase according to the cache set usages predictions

made  in  previous  phase.  We  have  constructed  a  simulator  to  evaluate  the

performance of HCCA. The simulation results show that HCCA has lower L2 cache

miss  rate  than  that  of  others  and  also  have  some  improvement  on  overall  IPC

compared with other methods.
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Chapter 1 Introduction

The  advances  in  integrated  circuit  processing  technologies  increase  the

transistor  density  and allow more  micro-processor  design options[12-3].  The chip

multiprocessing  (CMP)  architecture  is  one  of  the  micro-processor  designs  that

attempt to utilize the increased integration[4, 5]. In a typical chip multiprocessor, it

consists a set of identical cores, and each core has its own execution resources such

as ALU, FPU, L1 caches, register file and control logics. The L2 cache and its lower

memory hierarchy are shared by these cores[67-8]. By taking advantage of the thread

level  parallelism,  chip  multiprocessors  can  achieve  better  performance  per  watt

scalability  with  advances  of  integrated  circuit  technologies  than  single  core

processors. This makes chip multiprocessors a promising microprocessor design for

emerging high-performance and power-efficiency computing. Besides, sharing the

L2 cache allows high cache utilization and avoids duplicating the cache hardware

resources. However, cache sharing may cause  cache contentions among executed

tasks[9]. Because the L2 cache is sharing among all executed tasks, the data block

loaded by one task may be replaced by the data block loaded by another task. The

task which loses its data block from cache will experience a cache miss if it accesses

the evicted data again. However, this cache miss would not occur in a single core

processor  environment.  This  extra  L2  miss  called  cache  contention,  which  will

cause the processor to fetch data from the lower memory hierarchy. Fetching data

from the lower memory hierarchy usually takes more time than directly fetching

from the higher memory hierarchy, hence it lengthens the task execution time[101112-

13]. Therefore, cache contentions may harm the performance of chip multiprocessor
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systems by causing extra L2 cache misses and lengthening the execution time of

tasks.

In order to reduce cache misses caused by cache contentions, many techniques

have  been  proposed  in  recent  years[1011-12,  14,  15].  We classify  these  proposed

techniques into two categories: one is cache partitioning[10,  11] and the other is

operating  system  scheduling[12,  14,  15].  The  key  idea  of  cache  partitioning

approach is to partition cache blocks into groups. Then, each group is allocated to an

executed task. During executing, the number of blocks in a group may be changed to

fit  the  cache  need  of  tasks.  Cache contentions  can be  completely  avoided if  all

groups are disjoint. However, groups may be overlapped to increase the flexibility.

The operating system scheduling approach attempts to avoid cache contentions by

separately scheduling tasks which may use the same cache sets. A mechanism to

predict the cache set usage is required for the operating system scheduling approach

because the task scheduling decisions have to be made before the tasks actually

executing on the cores. For cache partitioning approach, tasks may still suffer from

cache contentions if all concurrently executed tasks frequently access memory and

cause  big  overlap  among  groups.  However,  the  operating  system  scheduling

approach can resolve this by separately scheduling the tasks which are predicted to

use the same cache sets.

In this thesis, we propose an effective task scheduling method, called Hint-

aided  Cache  Contention  Avoidance  (HCCA)  to  reduce  the  number  of  cache

contentions for  chip multiprocessor systems.  HCCA contains the following three

phases: hint generation, hint evaluation and task scheduling. Like previous methods,

HCCA first  predict the cache set usage. Then, it  attempts to minimize the cache

- 2 -



contentions among concurrently executed tasks by separately scheduling tasks using

the same cache sets. In  previous task scheduling methods, they usually predict the

cache set usage of tasks according to their previous usage. However, because cache

set usages may change during the execution of tasks, making predictions according

to the previous cache set usage may not be able to predict these changes. Instead of

using the previous cache set usage, we make cache set usage predictions according

to the information extracted from the corresponding binary images of tasks. The

binary image contains an  ordered set of machine instruction codes which instructs

the processor to accomplish the task. Therefore, it directly affects the behavior of a

task. However, analysis the binary image needs unacceptable long time for the task

scheduling. We resolve this by first generating an abstract of a binary image which

we call it a hint before running the task. This phase is called hint generation. While

executing the tasks, we make the cache set usage prediction according the hint. We

call this phase hint evaluation. Then, we make the scheduling decision according to

the cache set usage predictions. This phase is called  task scheduling. In summary,

HCCA contains  the  following three phases.  The hint  generation phase generates

hints  from binary images.  The hint  evaluation phase  makes  the  cache  set  usage

predictions  according the  hints.  The  task  scheduling  phase  make  the  scheduling

decisions according to the predicted cache set usages.

For  evaluating the performance,  we construct  a  simulator  and compare  our

method with previous work.  We form workloads with benchmark  programs and

input  data  sets  from SPEC 2000[16].  Then these  workloads are  used to test  the

scheduling mechanisms. From the simulation results,  we can see that HCCA has
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lower L2 cache miss rate than that of others and also have some improvement on

overall IPC (instruction per cycle) compared with other methods.

This thesis is organized as follows. Chapter 2 introduces the system model and

reviews some related work. Chapter 3 describes our HCCA technique in some detail.

Performance evaluations are presented in Chapter 4. Finally, conclusions and future

work are given in Chapter 5.
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Chapter 2 System Model and Related Work

In  this  chapter,  we  will  first  introduce  our  system  architecture  and  some

terminologies in section 2.1.  Then,  we will  briefly survey some related work  in

section 2.2.

2.1 System model

We make several assumptions for our chip multiprocessor system. First, we

assume that our chip multiprocessor system consists a m cores chip multiprocessor,

as shown in Figure 2.1. Each core has its own hardware context, such as register file

and L1 caches. Every processor core shares the unified L2 cache with the other

cores[6].  We  assume  that  the  L2  cache  in  processor  package  is  a  n-way  set

associative cache. An example of chip multiprocessor is the IBM POWER4 which

contains two cores.  The cores in POWER4 share an 8-way unified L2 cache[8].

Second, we assume the operating system used in our chip multiprocessor system

provides necessary communication and synchronization mechanisms for executed

tasks. A task is a unit of atomic work which is not parallelizable. Parallelized tasks
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can  be  implemented  as  several  sequential  tasks  and  maintain  dependency  with

synchronization mechanisms provided by operating system[17, 18].

There is a task scheduler in system, which chooses tasks for cores to execute.

As shown in Figure 2.2, the task scheduler maintains a global dispatch queue and a

gang queue. When a task comes to system, it is first placed into the global dispatch

queue. Then, tasks will be grouped into small groups called gangs. The number of

tasks in a gang is equal to the number of cores in system. Tasks in the same gang

will be concurrently scheduled on cores. We also call a set of tasks simultaneously

executed on the cores as “co-scheduled tasks” or  “task mix”.  When the gang is

scheduled, tasks in it will be assigned a short time interval called time slice. The task

leaves core when it is terminated, the allocated time slice is expired, or it is going to

wait for some system resource [18,  19]. If one of the executing task leaves core

before its time slice expires, other tasks will be forced to give up the remaining time

- 6 -
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slice and leave cores. When the scheduler is activated, it will first check the gang

queue to see if there exists any unscheduled gang. Otherwise, tasks in the global

dispatch queue will be grouped into gangs and push into the gang queue for future

scheduling. We assume that the task scheduler is executed on a dedicated system

processor.  The  m cores chip multiprocessor  executes dispatched tasks in parallel

with the scheduler. Hence the scheduling overhead does not cause uncertainty in the

executions of the dispatched tasks [14, 15].

2.2 Related work

We classify the approaches for less cache contention on chip multi-processor

architecture into two categories: one is cache partitioning and the other is operating

system scheduling. These approaches will be described in the following sections.

2.2.1 Cache partitioning approach

The cache partitioning approach attempts to partition cache blocks into groups.

Each group is allocated to an executed task. The number of blocks in a group will be

adjusted to fit the cache demand of tasks during executing. Cache contentions can be

completely  avoided  if  all  groups  are  disjoint.  However,  groups  may  overlap  to

increase the flexibility. We briefly survey two methods in the following.

2.2.1.1 Dynamic cache partitioning for CMP/SMT systems [10]

This technique uses an additional hardware to account numbers of cache hit

and miss in a specified time period  t. The cache partition is dynamically adjusted

according  to  the  accounting  results.  A  task  causes  more  cache  misses  will  be
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allocated more cache blocks to  reduce the cache misses.  A modified LRU cache

replacement policy is proposed to realize the cache partitioning.

Besides  the  number  of  cache  hit  and miss,  the  modified  LRU replacement

policy also need the number of cache blocks occupied by each task. The collected

data is used to find out the over-allocated task. The over-allocated task is the task

which the number of allocated  cache blocks is more than the number of accessed

blocks in a specified time period t. Considering the cache miss of task T, if T is an

over-allocated task then the victim block is chosen within cache blocks occupied by

task T with LRU policy. Otherwise, the victim block is chosen within cache blocks

occupied by other over-allocated tasks. If there does not exist any over-allocated

tasks, the standard LRU policy is used to select the victim block from all  cache

blocks.

The drawback of this method is that it requires extra partitioning logic circuits.

These extra circuits will increase the miss penalty.

2.2.1.2 Fair cache sharing and partitioning for CMP [11]

Kim  et  al. address  the  unfair  cache  sharing  problem.  The  conventional

operating system scheduler usually assumes the resource sharing uniformly impacts

co-scheduled tasks. However, this assumption is often unmet on chip multiprocessor

system,  because the abilities  of  tasks  to  compete  cache space are  different.  The

ability  of  a  task  to  compete  cache  space  is  determined  by  its  temporal  reuse

behavior, which are usually different among tasks. If the cache block loaded by a

task is being replaced by another task frequently, the task which lost cache block

will suffer from higher cache miss rate due to the replacement. These extra cache

misses will result in negative effect on the system throughput. In order to solve this
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problem, a metric to measure the fairness of cache sharing and a mechanism to

adjust the cache sharing are proposed.

Considering the task T, the proposed metric is shown as follows:

FairMetric T =
MISSshr

T

MISSded
T

 ......................................................................(2.1)

In this formula, MISSshr
T denotes the miss rate of task T when it shares the

cache with other tasks, and MISSded
T denotes the miss rate of task T when it runs

alone  with  dedicate  cache.  A  task  Ti with  larger  FairMetric(Ti)  value  indicates

relative more cache contention which is caused by sharing cache with other tasks. In

an ideal situation, all values would be the same. The same values indicate that the

increased miss rate causes equal impacts for all tasks. This metric is used in cache

sharing adjustment which is realized by modifying the cache replacement policy.

When a cache miss occur, the metric is evaluated for each running task. The victim

block is selected within those cache blocks allocated by the task whose value is the

smallest.

As the method proposed by Suh et al. [10], this method also need adding extra

logic  circuits  to  the circuits  of  cache which will  increase the miss  penalty.  The

performance of memory accesses may suffer by extra cache miss penalty.

2.2.2 Operating system scheduling approach

The operating system scheduler approach attempts to select co-scheduled tasks

which use different part of cache to minimize occurrences of cache contention. The

scheduling decision must  be made before tasks being executed, so the scheduler
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requires  to  predict  the  memory  behavior  of  tasks.  We  introduce  three  methods

briefly in the following.

2.2.2.1 Active-set supported task scheduling [14]

T. Sherwood et al.[20] have shown that the task behavior is typically periodic

and predictable, and so is the cache access behavior. Hence, [14] attempts to use this

property to predict the cache access behavior. The future cache usage is predicted by

the past cache usage. Then the tasks which might use different cache regions are co-

scheduled.  Thus, it  reduces  the  possibility of  co-scheduled tasks  using the  same

cache regions. Settle et al. propose a monitoring hardware to record the number of

cache accesses for cache sets. The task scheduling decisions are made based on the

recorded results. The cache set are considered as frequently access cache region if it

has  the  number  of  accesses  larger  than  a  preset  threshold.  Tasks  with  different

frequently access cache regions are simultaneously scheduled.

This  method  assumes  that  the  future  memory  behavior  can  be  perfectly

predicted by using past memory behavior. However, tasks may change its behavior

during their execution, and so do their cache access patterns. The prediction policy

may not  be  able  to  react  these  changes  instantly.  Therefore,  the  change of  task

behavior may result in false prediction and lead to an inferior scheduling decision.

2.2.2.2 Inter-thread cache contention prediction [12]

Chandra  et al. propose a method called  Prob to predict the number of cache

contentions in a given task mix. Tasks running on a chip multiprocessor must share

memory hierarchy.  Therefore,  memory accesses from co-scheduled tasks  will  be

interleaved.  Figure  2.3  shows  two  cases  of  interleaving  accesses.  Both  cases

- 10 -



interleave accesses from task T1 with task T2. The access trace of T1 is denoted by

T1
R, and the access trace of T2 is denoted by T2

R. The uppercase letters in access

trace denote the memory addresses. Assuming a 4-way full associative cache, the

second access to A is a cache hit in case 1, but a cache miss in case 2. The difference

is that case 2 interleaved more accesses which load new blocks into cache. These

interleaved accesses make the data block which loaded by first access to  A been

evicted.

Prob uses a probabilistic approach to predict miss rate of a task mix. It needs

the cache access traces for all tasks in the task mix. All possible interleaved access

traces  are  exhaustively  listed.  The  probability  of  an  individual  cache  hit  which

becomes a cache miss is computed. Then, by multiplying the number of cache hits in

access traces and the computed possibility, we can get the expect value of overall

miss  rate.  The  prediction  can  be  used  as  one  of  the  scheduling  criteria  of  task

scheduler to reduce the cache contentions.

The  disadvantage  of  Prob is  that  it  exhaustively  evaluates  all  possible

interleaved access traces. This evaluation would be very expansive while the number

of tasks increases.

- 11 -
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Figure 2.3 Illustration  of  how interleaving accesses  from another  task  determines
whether the access will be a cache hit or cache miss, assuming a 4-way
full associative cache.



2.2.2.3 Throughput-oriented scheduling [15]

Fedorova  et  al. propose a modified  balance-set[21] scheduling algorithm to

decrease the shared L2 cache miss on chip multi-threading system. It first estimates

miss  rate  of  all  possible  task  mixes  by adapting  the  StatCache[22]  probabilistic

model.  The  StatCache  model  used  in  this  approach  is  developed  by  Berg  and

Hagersten. It is used to predict the miss rate of single task with previously recorded

reuse distance information[23]. Fedorova  et al. proposed  a merging method called

AVG to combine individual miss rate predictions into the miss rate prediction of co-

scheduled tasks.  AVG adjusts StatCache by assuming the numbers of cache blocks

accessed by all tasks are equal. The overall miss rate for co-scheduled tasks is the

average miss rate of all tasks.

After  predicting the miss  rate  of  task  mix,  tasks  are  divided  into  groups

according to the estimated results. Then, Fedorova et al. use a mechanism integrated

with  balance-set[21]  and  StatCache[22]  to  schedule  tasks.  When  the  scheduling

decision is made, it first generates all possible task mixes from the global dispatch

queue. Second, it predicts miss rate for all possible task mixes with StatCache and

AVG. Then, task mixes with predicted miss rates lower than a given threshold are

considered to schedule.  Final  scheduling decision is  made with other scheduling

factors, such as priority and waited time.

The drawback of this approach is that the AVG mechanism simply assumes all

tasks allocated equal fraction of cache. However, this assumption is not always true,

since the abilities of tasks to compete cache space are different, as discussed in [11].

This might result in inaccurate prediction in set-associative cache, and lead to sub-

optimal scheduling.
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From the related work, the cache partitioning approaches focus on partitioning

cache for co-scheduled tasks. However, if all of the co-scheduled tasks frequently

access cache then these tasks may still suffer by cache contentions. The operating

system approaches can resolve this by selecting co-scheduled tasks which use the

different part of the cache. In other words, the cache hardware only affects activities

on the scale of tens to thousands of cycles. On the other hands, the operating system

controls the resources and activities at the larger time scale, million of cycles. We

have  more  opportunities  to  improve  the  system  behavior  through  the  operating

system.  Besides,  the  operating  system task  scheduler  is  usually  implemented  as

software. By using software mechanisms, it is possible to build systems that can

evolve when new techniques to be discovered. Furthermore, software approaches

allow us to do some workload specific tuning. These benefits  form our basis  to

select the operating system task scheduling approach.

In  next  chapter,  we  will  describe  the  basic  concepts  and  principles  of  our

method in some detailed.
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Chapter 3 Hint-aided Cache Contention
Avoidance Technique

In this chapter, we will first define some terminologies in section 3.1 and give

the overview of our method in section 3.2. The analysis mechanism is described in

section 3.3. The final prediction and scheduling mechanisms are described in section

3.4 and 3.5.

3.1 Preliminary

First,  we  introduce  the  memory  space  layout.  Figure  3.1  shows  a  typical

memory space layout of a single task. The memory space is partitioned into four

disjoint parts: code, static, heap and stack [24]. The instruction codes are placed at

the “code part”. The literal  data are placed at the “static part”.  The dynamically

allocated memory blocks are located at the “heap part”. The “stack part” locates

necessary data structures for a procedure call. The content of the code part and the

static part are loaded from the binary image of a task. The binary image contains an

ordered set of machine instruction codes which instructs the processor to accomplish

the task. The basic block is a sequence of instructions with a single entry point and a

single  exit  point.  Besides,  we  also  consider  an  instruction  which  performs  a

procedure call as a basic block. Sequences of continuous basic blocks are grouped

into procedures. The procedure is started with a basic block which is either the first
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Figure 3.1 Typical memory space layout of single task.
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basic block of the binary image or the target block of a procedure call instruction. In

the next section, we will give the overview of our method.

3.2 Overview

The scheduler requires predicting the memory access pattern of a task because

the  scheduling  decision  must  be  made  before  tasks  being  executed.  Previous

techniques usually predict the memory access behavior of a particular task according

to its previous memory accesses. However, tasks may change their behaviors during

their execution, so these techniques may result  in false prediction and lead to an

inferior  scheduling  decision.  In  order  to  obtain  more  accurate  predictions,  we

propose the technique that directly analyzes the binary image of a task to figure out
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the memory access pattern. Because the processor is instructed by the binary image

to accomplish the task, it is possible to predict the change of the behavior of tasks by

analyzing their binary images. Therefore, we expect our proposed technique to bring

more precisely predictions and make better scheduling decisions.

The  proposed  technique  is  named  Hint-aided  Cache  Contention  Avoidance

(HCCA). The overall flow of HCCA is shown in Figure 3.2, which contains three

main phases.  First,  the hint  generation phase will  generate an abstract  of  binary

image which contains necessary information to predict memory accesses. This phase

includes two parts:  binary image dissection and  heap usage profiling. The binary

image dissection part attempts to extract information from the binary image, which

will be used to predict memory accesses on the code, static and stack partitions. We

call  this  extracted  information  as  hint.  After  profiling  the  task,  the  heap  usage

profiling part attempts to discover instructions that sequentially access memory from

the execution trace. Addresses of these instructions will be recorded and stored into

hint. Then, in the second phase, the hint evaluator will be activated when a task

leaves  the  core.  The  hint  evaluator  predicts  the  future  memory  accesses  of  the

leaving  task  by  combining  the  hint  and  other  factors  such  as  program counter,

addresses  of  allocated  memory  and  addresses  of  call  stack  top.  The  predicted

memory  accesses  are  converted  into  cache  set  accesses  according  to  the  cache

configuration.  In  the  third  phase,  we attempt  to  avoid  the  cache  contentions  by

assigning  tasks  using the  same  cache  sets  to  the  different  gang.  If  there  is  any

unscheduled gang in the gang queue, one of these will be selected for scheduling.

Otherwise,  tasks  in  the  global  dispatch  queue  are  grouping  into  gangs  for

scheduling.
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3.3 Hint generation

Figure 3.3(a) illustrates the conventional processing flow, which is widely used

in existing systems[25]. As shown in Figure 3.3(b), the hint generation resides after

the linking processing of the high level language processing flow.

Analyzing  the  binary  image  needs  a  lot  of  time.  In  order  to  speed  up  the

prediction, we first extract the necessary information for the prediction in this phase.

Without this phase, the prediction process will need unacceptable long time.

As shown in Figure 3.2, this phase included two methods. We will describe the

binary image dissection in  section 3.3.1 and the heap usage profiling in  section

3.3.2.
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3.3.1 Binary image dissection

This mechanism is designed to extract necessary information from the binary

image. This extracted information can be used to predict the memory accesses. First,

we divide the code context of the binary image into basic blocks. Then, we extract

the  basic  block  characteristics  that  can  assist  the  prediction.  These  extracted

characteristics are described in the following.

Let's  consider  a  basic  block  Bi.  We  denote  code(Bi)  as  an  address  set  of

instructions which are included in Bi. exp_time(Bi) is the expected execution time of

Bi, which can be computed by summing the numbers of clock cycles executed by all

instructions belong to  Bi.  static(Bi)  is  an address set  of  the  accessed data which
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B1B0 B2

Main {
    x = random();
    while(x > 0) {
        x = random();
    }
    print(x);
}

random() {
    return (read from random service);
}

print(val) {
    send x to terminal;
}

B0: $TMP = random()

B2: if (x < 0 or x = 0) goto B4;

B5: print(x)

B6: random()
{ return (read from random service) }

B7: print(val)
{ send x to terminal }

B1: x = $TMP

B3: $TMP = random(); goto B2;

B4: x = $TMP

B4B3 B5

B6B6 B7

(a) (b)

(c)

Figure 3.4 An example of sibling-child binary tree representation of basic blocks.



resides in the static partition. We can obtain these addresses from the binary image,

because  instructions  which  access  to  the  static  partition  usually  use  immediate

values to indicate their  destinations.  stack(Bi)  is  the  memory  size required to be

allocated  from the  stack partition.  The call  stack is  used to  store  the  local  data

structures, such as local variables and call parameters. Therefore, the stack(Bi) can

be obtained by counting how many local data structures which are allocated and

used in Bi. next_bb(Bi) is used to indicate the basic block executed next to Bi. If Bi is

the latest basic block of a procedure,  next_bb(Bi) will be set to empty value. For

example, as shown in Figure 3.4, next_bb(B3) is B4 and next_bb(B5) is empty. If  Bi

contains a procedure call instruction, then  call_bb(Bi) will indicate the first basic

block of the calling target. Otherwise,  call_bb(Bi) will be set to empty value. For

example, in Figure 3.4, call_bb(B3) is B6, and call_bb(B4) is empty value.

In the following, we use a right-sibling left-child binary tree to represent the

execution flow of the task. In this binary tree, a node represents a basic block, and

an edge indicates the control dependency between two connected nodes. For every

basic block Bi, we let call_bb(Bi) and next_bb(Bi) be the child and sibling node of Bi

respectively. However, if the given task contains a recursive call, it will cause an

edge loop in the right-sibling left-child binary tree. Hence, for the basic block  Br

which performs a recursive call, we set call_bb(Br) to empty value and merge Br into

next_bb(Br). The corresponding right-sibling left-child binary tree of Figure 3.4(b) is

shown in Figure 3.4(c).

3.3.2 Heap usage profiling

The execution of the same binary image with different input data may result in
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different execution trace. In order to discover those memory-referencing instructions

which have predictable behavior, we proposed a mechanism to analyze the collected

execution trace after profiling. Before describing the detailed method of this analysis

mechanism, we introduce the following terminologies.

Considering  a  memory  accesses  ai,  task(ai)  is  the  task  which  performs  ai,

inst(ai) is the number of instructions which has been executed by task(ai) before ai.

clkc(ai)  is the number of elapsed clock cycles from the start  of the execution of

task(ai).  addr(ai) is the memory address which ai accesses to. instruction(ai) is the

memory-referencing instruction which performs ai.

Definition 3.1 For sequence memory accesses A = {a1, a2, ... an} where a1, a2, ... an

denote the individual accesses of A and they are performed by the same instruction.

A is a sequential access if A satisfies the following conditions:

{inst ai­1­inst ai=inst ai­inst ai1 ... 1
addr ai ­1­addr ai=addr ai­addr ai 1 ... 2

 where 2≤i≤ n­1 , n≥3

An example  of  such instruction is  a  memory-referencing instruction within

loop block. If A satisfies the equation (1), it indicates that the number of instructions

executed  between any two contiguous memory  accesses  of  A are  the  same.  We

denote  the  number  of  instructions between two contiguous  memory  accesses  by

∆inst(A) if A satisfies the equation (1). If A satisfies the equation (2), it indicates that

the address distance between any two contiguous memory accesses of  A are the

same. We denote the distance between two access targets by ∆addr(A) if A satisfies

the equation (2). ∆clkc(A) denotes the average number of clock cycles between two

contiguous accesses of A. ∆clkc(A) is calculated by formula 3.1.
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clkc A=
∑
i =1

n­1

clkc ai1­clkc ai

n­1
..............................................................(3.1)

Now we describe our mechanism in detail. The proposed mechanism has two

stages. The first stage of this analysis is to find the memory-referencing instructions

that  perform sequential  accesses from the execution trace.  We predict  that  these

instructions will still perform sequential access. Other types of access patterns are

simply ignored, because most of them do not have a determined pattern. This stage

includes the following two steps. First, we extract all sequential accesses from the

execution  trace.  Then,  considering  a  memory-referencing  instruction  R which

performs sequential accesses Ki, we predict that R will perform sequential access in

the future if all ∆inst(Ki) have the same value and all ∆addr(Ki) have the same value

for all sequential accesses Ki. For convenience, we denote the value of ∆inst(Ki) for

R as  inst_step(R) and denote the  ∆addr(Ki) for  R as  addr_step(R). For  R, we also

predict  the distance between two accessed addresses will be  addr_step(R), and the

number of clock cycles between two accessed addresses will be the averaged value

of  ∆clkc(Ki)  in  the  future.  For  convenience,  we  denote  the  averaged  value  of

∆clkc(Ki) as  clkc_step(R). We store the instruction address of  R,  clkc_step(R) and

addr_step(R) as part of the hint.

In  the  second stage,  we attempt  to  find the  memory-allocating instructions

which  allocate  memory  blocks  for  the  memory-referencing  instructions  which

perform sequential access. We predict that these memory-allocating instructions will

still perform memory allocation for those memory-referencing instructions. This is

done by comparing the accessed target of the memory-referencing instruction and

the address range of allocated memory blocks. Considering a memory-referencing
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instruction  R and a memory allocating instruction  L,  we predict  that  L will  still

allocate memory for R in the future. These referencing-allocating relations are stored

as part of the hint. The algorithm of this mechanism is shown in Figure 3.5.

3.4 Hint evaluation

In the previous phase, we collect the hint which includes the information about

how a task may use memory. In this phase, we predict the future memory usage for
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HeapUsageProfiling()
SeqAccess ← NIL // here we store the result of 1st stage

// 1st stage
for each memory accessing event e // collect all memory accesses
do SeqAccess[ instruction(e) ] ← SeqAccess[ instruction(e) ∪ ]  { e}
for each instruction R where SeqAccess[R] exists // remove those are not
do B ← SeqAccess[R] // sequential accesses

if ∃L: L = {K0, K1, ... Kn} where
∀    Ki, Kj ∈  L: Ki ∩ Kj ∀ = Ø, Ki ∈  L: Ki is a sequential access, and

    ∪
∀ K i∈L

K i=B

then calculate clkc_step[R] and addr_step[R]
else remove SeqAccess[R]

// 2nd stage
for each memory allocating event e // check all memory allocations
do if ∃ a ∃, R: a ∈  K, K ∈  SeqAccess[R] where

    allocation_start(e) ≤ addr(a) and allocation_end(e) ≥ addr(a)
then allocating[R] ← allocating[R ∪]  { instruction(e) }

// finished, store hint
Store Hint_H as the following set of vectors:
∀    R where SeqAccess[R] is exist:

                            <R, address[R], allocating[R], clkc_step[R], addr_step[R]>
Figure 3.5 The algorithm of the heap usage profiling.



tasks when they leave cores by combining the hint and the task execution status. We

first  define  some  symbols  in  this  phase.  Considering  a  task  Ti,  we  use

GoingAccess(Ti) to represent the memory address set which may be accessed by the

task Ti in the next time slice. StackTop(Ti) is the address of the top of the call stack.

Hint_B(Ti) is the hint of Ti which is generated by the binary image dissection. Bj
Ti is
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Figure 3.6 An example of Hint.
(a) Hint_B(Ti).  (b) The binary tree representation of Hint_B(Ti).
(c) Hint_H(Ti).



the basic block which is included by Hint_B(Ti) where 1≤ j ≤M, M is the number of

basic blocks included in Hint_B(Ti). Hint_H(Ti) is the hint of Ti which is generated

by the heap usage profiling.  Ak
Ti is one of the hint entries included in  Hint_H(Ti)

where 1≤ k ≤Q, Q is the number of entries included in Hint_H(Ti). Each hint entry

represents  one  of  the  memory-referencing  instructions  which  is  predicted

performing sequential accesses.  We call  such memory-referencing instructions as

hint-covered  memory-referencing  instructions for  convenience. address(Ak
Ti)

represents the address of Ak
Ti. allocating(Ak

Ti) is the address of the memory allocating

instruction which allocate memory blocks for  Ak
Ti.  addr_step(Ak

Ti)  is the distance

between  two  accessed  addresses.  clkc_step(Ak
Ti)  is  the  number  of  clock  cycles

between two accesses. Figure 3.6 shows an example of the hint. For convenience,

we  denote  the  memory-referencing  instruction  located  at  address(Ak
Ti)  as

instruction(Ak
Ti).

The hint evaluation has three stages. In the first stage, we predict the number of

clock cycles will be used by the hint-covered memory-referencing instructions to

access the dynamically allocated memory blocks. The prediction result is used to

adjust the estimated execution time of a basic block which is estimated by the hint

generation  phase.  In  the  hint  generation  phase,  we  do  not  know how large  the

dynamically allocated memory block will be. Therefore, it is impossible to predict

how many clock cycles will be required for accessing the allocated memory blocks.

However,  in  this  phase,  we  can  retrieve  the  memory  allocation  result  from the

memory allocation information maintained by the operating system. Therefore, we

can  estimate  the  number  of  clock  cycles  which  is  required  for  accessing  the

dynamically allocated memory blocks in this phase. Considering a task  Ti and the
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hint entry Ak
Ti included in Hint_H(Ti), the prediction is done in two steps. First, we

estimate how many times the instruction(Ak
Ti) will be executed. This estimation can

be made  by dividing the size of  the  allocated memory block by  addr_step(Ak
Ti).

Because we predict that the instruction(Ak
Ti) will perform sequential accesses and the

address  distance between two contiguous accesses  performed by  instruction(Ak
Ti)

will be  addr_step(Ak
Ti). If there are multiple memory blocks that are allocated for

instruction(Ak
Ti) to access, we will perform the estimation with the size of the largest

one for  safety,  because  we do not  know which one will  be  accessed. Then,  we

multiply the estimation result from previous step with  clkc_step(Ak
Ti) to make the

prediction. We implement this two step prediction mechanism with formula 3.2. In

this  formula,  MaxAllocSize(allocating(Ak
Ti)) denotes  the  maximum  allocated

memory size which is  allocated by  allocating(Ak
Ti).  If  there is  no memory block

allocated by allocating(Ak
Ti), the value of MaxAllocSize(allocating(Ak

Ti)) is zero.

dynAccessClk  Ak
T i=

MaxAllocSize allocating  Ak
T i 

addr _ step Ak
Ti

×clkc _ step  Ak
T i .........(3.2)

Then,  the  predicted  number  of  clock  cycles  is  used to  adjust  the  expected

execution time of basic blocks. Considering Ak
Ti as one of the entries in Hint_H(Ti)

and its  corresponding basic block  Bj
Ti,  the value of  exp_time(Bj

Ti)  is  adjusted by

adding dynAccessClk(Ak
Ti) to it. If there are multiple entries in Hint_H(Ti) which are

mapped to a single basic block, we only select the maximum number of predicted

clock cycles to add it. The value of exp_time(Bj
Ti) will be restored after finishing this

phase. An example of this adjustment is shown in Figure 3.7 which is the adjustment

result of the example in Figure 3.6. The memory allocating result of A0
Ti is shown in

Figure 3.7(a). The corresponding basic block of A0
Ti is B3

Ti because address(A0
Ti) is
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included  in  code(B3
Ti).  The  adjustment  result  of  the  expected  execution  time  is

shown  in  Figure  3.7(b)  where  the  exp_time(B3
Ti) is  adjusted  by  adding  the

calculation result of formula 3.2.

In the second stage, we predict the memory addresses that will be access by the

task Ti in the upcoming allocated time slice. These predicted addresses are converted

into the predicted cache set usage in the next stage. In this stage, we first find the

corresponding basic block of the current execution point of the task. Then, we start a

depth-first  traversal  from the corresponding basic block of  the current  execution

point.  That  is,  for  every  visited  basic  block  Bj
Ti,  we  first  visit  its  child  node
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Figure 3.7 An example of the expected execution time adjustment of basic blocks.

(a) The allocation result of memory-allocating instruction at 0xEC
(b) The adjusted Hint_B(Ti)



call_bb(Bj
Ti).  Then we visit its sibling node  next_bb(Bj

Ti).  For every visited basic

block Bj
Ti, we copy the values in code(Bj

Ti) and static(Bj
Ti) into GoingAccess(Ti). We

also  add  the  addresses  between  StackTop(Ti)  and  StackTop(Ti)+stack(Bj
Ti)  into

GoingAccess(Ti). The added addresses predict the usage of the stack partition. For

memory-referencing  instructions  Ak
Ti,  when  their corresponding  basic  blocks  are

traversed, the addresses of memory blocks which are allocated by  allocating(Ak
Ti)

are  also  added  into  GoingAccess(Ti)  to  predict  the  usage  of  the  heap  part.  The

traversal is stopped when the summing of expected execution time of all traversed
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HintEvaluation(Ti)
GoingAccess ← Ø
EstimatedDynAccessClk ← Ø

// 1st stage
for each entries Ak in Hint_H(Ti)
do tmp ← dynAccessClk(Ak)

Locate hint entry Bj from Hint_B(Ti) such that address(Ak) ∈ code(Bj)
if EstimatedDynAccessClk[Bj] is not existed or
     EstimatedDynAccessClk[Bj] < tmp
then  EstimatedDynAccessClk[Bj] ← tmp

for each Bj where EstimatedDynAccessClk[Bj] is existed
do exp_time(Bj) ← EstimatedDynAccessClk[Bj]

// 2nd stage
Locate hint entry Bpc from Hint_B(Ti) such that ProgramCounter ∈ code(Bpc)
HintEvaluation_stage2(Bpc, 0, StackTop(Ti)) // predict target addresses of

// memory accesses
// 3rd stage
Convert memory addresses included in GoingAccess into the cache set usage
according to the cache configuration of the system.
Output the converted result as the predicted cache set usage of Ti.

Figure 3.8 The algorithm of the hint evaluation phase.



basic blocks is larger than the time slice.

In the third stage, the predicted memory addresses are converted into predicted

cache set usage. Therefore, in the task scheduling phase, we can attempt to avoid

cache contentions by not concurrently scheduling tasks which use the same cache

sets on cores. Considering a m-set cache and a task Ti, the predicted cache accesses
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HintEvaluation_stage2(Bx, used_time, stack_top)
max_stack_offset ← 0
basic_block_pointer ← Bx

// compute maximum call stack offset
while NIL ≠ next_bb(basic_block_pointer)
do if max_stack_offset < stack(basic_block_pointer)

then max_stack_offset ← stack(basic_block_pointer)
basic_block_pointer ← next_bb(basic_block_pointer)

basic_block_pointer ← Bx

// traverse the basic blocks and make the prediction
while used_time < TimeSlice and NIL ≠ next_bb(basic_block_pointer)
do if NIL ≠ call_bb(basic_block_pointer)

then used_time ← HintEvaluation_stage2(basic_block_pointer,
                                                used_time, stack_top + max_stack_offset)
used_time ← used_time + exp_time(basic_block_pointer)
GoingAccess ← GoingAccess ∪  code(Bx) // code part
GoingAccess ← GoingAccess ∪  static(Bx) // static part
// heap part
if ∃ Ak ∈ Hint_H(Ti) where address(Ak ∈)  code(basic_block_pointer)
then GoingAccess ← GoingAccess∪ allocated_memories(allocating(Ak)
for ∀s: s≥stack_top and s<stack_top + max_stack_offset // stack part
do GoingAccess ← GoingAccess ∪  {s}
basic_block_pointer ← next_bb(basic_block_pointer)

return used_time
Figure 3.9 The algorithm of the hint evaluation phase. (cont.)



of Ti is represented in a bit vector <C1
Ti, C2

Ti, ..., Cm
Ti>. Cb

Ti represents the predicted

usage of the  bth cache set. The  bth cache set is predicted to be used if there is a

memory address included in GoingAccess(Ti) which is mapped to it. If the bth cache

set is predicted to be used, the value of Cb will be set to 1. Otherwise Cb will be set

to 0. The algorithm of this phase is shown in Figure 3.8 and Figure 3.9.

3.5 Task scheduling

In the previous phase, the cache set usage of a task is predicted. In this phase,

we group tasks in the global  dispatch queue into small  gangs according to their

predictions  of  the  cache  usages  and  store  gangs  into  the  gang queue  for  future

scheduling.  When  the  scheduler  is  activated  by  idle  cores,  the  scheduler  will

randomly pick one gang from the gang queue and assign tasks in the gang to the

cores. For each gang, the number of contained tasks is no more than the number of

cores within the system. The number of gang is equal to the following formula. In

this  formula,  TaskCount denotes  the  number  of  tasks  in  the  system.  CoreCount

denotes the number of cores in the system.

GangCount=⌈ TaskCount
CoreCount

⌉ ............................................................................. (3.3)

Before we describing the detailed mechanism of this phase, we first introduce

the following formulas and terminologies which are used in this phase. Formula 3.4

is used to predict the number of cache contentions between two tasks.

PredictedCacheContention T i ,T j=∑
k=1

m

C k
T i×C k

T j  ....................................... (3.4)

In this formula, Ti and Tj are two tasks, m is the number of cache sets. Ck
Ti and Ck

Tj

represent the predicted usage of the kth cache set of Ti and Tj which are described in
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the previous section. Considering two tasks Ti and Tj, we multiply Ck
Ti with Ck

Tj to

see if  both  Ti and  Tj are predicted to use the  kth cache set.  If  both  Ti and  Tj are

predicted to use the kth cache set, as we described in the previous section, both the

value of  Ck
Ti and  Ck

Tj will be one. Therefore, the multiplication result will be one

which indicates one predicted cache contention. However, if none of  Ti and  Tj are

predicted to use the kth cache set or only one of Ti and Tj is predicted to use the kth

cache set, at least one of  Ck
Ti and  Ck

Tj will be zero. Therefore, the multiplication

result  will  be  zero  which  indicates  no  cache  contention.  By  summing  all

multiplication results on m cache sets, we can get the number of predicted cache

contentions  between  Ti and  Tj.  Furthermore,  formula  3.5  predicts  the  number  of

cache contentions between a task and tasks of a gang.

TaskGangCacheContentionT i ,G x= ∑
∀ T j∈G x

PredictedCacheContention T i ,T j

................................................................................................... (3.5)

In this formula,  Ti is  a task and  Gx is  a gang. The number of cache contentions

between Ti and tasks of Gx is predicted by summing the number of predicted cache

contentions between Ti and each task included in Gx. The number of predicted cache

contentions between two tasks can be got by applying formula 3.4. We use formula

3.5 to see if a task and a gang are perfect matching or not. Considering a task Ti and

a gang  Gx,  if  Ti and  Gx are  perfect  matching,  we can assign  Ti into  Gx without

introducing any predicted cache contentions with other tasks within Gx. We say that

Ti and Gx are perfect matching if the value of TaskGangCacheContention(Ti, Gx) is

zero. Otherwise, we say that Ti and Gx are not perfect matching.

There are two stages in our gang grouping mechanism. In the first stage, the

tasks with the largest number of predicted used cache sets will be distributed into
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different gangs.  Therefore,  the possibility of the occurrence of cache contentions

could  be  reduced.  In  this  stage,  we  first  sort  tasks  according  to  the  number  of

predicted  used cache  sets  in  the  decreasing order.  Then we distribute  tasks  into

gangs. The first gang is created by assigning the task with most predicted used cache

sets  to  an empty gang.  The remaining tasks are assigned to  a  gang one by one

according to the number of predicted used sets. Considering a task Ti and a gang Gx,

Ti will be assign to  Gx if  Ti and  Gx are perfect matching. If there is no such gang

exists and the number of the created gang is less than GangCount, a new gang will

be created and Ti will be assigned to the created gang. If there is no such gang which
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Predicted cache usage

T1 <1, 1, 0, 0, 1, 1, 1, 0>
T2 <0, 0, 1, 1, 1, 1, 0, 0>
T3 <0, 1, 1, 1, 0, 0, 0, 0>
T4 <0, 0, 0, 0, 0, 1, 1, 0>
T5 <0, 0, 1, 0, 0, 0, 0, 1>
T6 <1, 0, 0, 1, 1, 1, 0, 0>
T7 <0, 1, 1, 0, 0, 1, 0, 0>
T8 <0, 0, 1, 1, 0, 0, 0, 0>

(a)

Predicted cache usage

T1 <1, 1, 0, 0, 1, 1, 1, 0>
T2 <0, 0, 1, 1, 1, 1, 0, 0>
T6 <1, 0, 0, 1, 1, 1, 0, 0>
T3 <0, 1, 1, 1, 0, 0, 0, 0>
T7 <0, 1, 1, 0, 0, 1, 0, 0>
T4 <0, 0, 0, 0, 0, 1, 1, 0>
T5 <0, 0, 1, 0, 0, 0, 0, 1>
T8 <0, 0, 1, 1, 0, 0, 0, 0>

(b)

T1 <1, 1, 0, 0, 1, 1, 1, 0>

T2 <0, 0, 1, 1, 1, 1, 0, 0>

T6 <1, 0, 0, 1, 1, 1, 0, 0>

T3 <0, 1, 1, 1, 0, 0, 0, 0>

T7 <0, 1, 1, 0, 0, 1, 0, 0>

T4 <0, 0, 0, 0, 0, 1, 1, 0>

T5 <0, 0, 1, 0, 0, 0, 0, 1>

T8 <0, 0, 1, 1, 0, 0, 0, 0>

G1

G2

Unscheduled tasks: Created gangs:

(c)
Figure 3.10An example of the first stage of gang grouping.

(a) The predicted cache usage of tasks. (b) The sorted tasks.
(c) The result of first stage of gang grouping.



exists and the number of gangs is equal to GangCount, the assignment of Ti will be

left to the next stage. Figure 3.10 shows an example of this stage. Assuming there is

an 8-sets L2 cache and two cores in the system. There are 8 tasks in the system,

therefore the value of GangCount is 2.

After the previous stage, a task may still remain to be assigned if the task can

not form any perfect matching with created gangs and the number of created gangs

is equal to GangCount. We distribute the remaining tasks into gangs in the second

stage. In the second stage, the remaining tasks are assigned to gangs one by one

according to the number of predicted used cache sets. Each remained task is greedily

assigned to a gang which creates the lowest number of predicted cache contentions

with other tasks within the gang. We expect the overall assignment will cause the

least  number  of  cache  contentions,  because  we  introduce  the  least  number  of

predicted  cache  contention  for  each  assignment.  Considering  a  task  Ti,  we  first
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T1 <1, 1, 0, 0, 1, 1, 1, 0>

T2 <0, 0, 1, 1, 1, 1, 0, 0>

T6 <1, 0, 0, 1, 1, 1, 0, 0>

T5 <0, 0, 1, 0, 0, 0, 0, 1>

G1

G2

TaskGangCacheContention(T6, G2)=3

TaskGangCacheContention(T6, G1)=3

(a)

T1 <1, 1, 0, 0, 1, 1, 1, 0>

T2 <0, 0, 1, 1, 1, 1, 0, 0>

T6 <1, 0, 0, 1, 1, 1, 0, 0>

T3 <0, 1, 1, 1, 0, 0, 0, 0>

T7 <0, 1, 1, 0, 0, 1, 0, 0>

T4 <0, 0, 0, 0, 0, 1, 1, 0>

T5 <0, 0, 1, 0, 0, 0, 0, 1>

T8 <0, 0, 1, 1, 0, 0, 0, 0>

G1

G2

(b)

Figure 3.11An example of the second stage of gang grouping.
(a) The assignment of T6. (b) The final result of gang grouping.
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TaskScheduling()

GangCount ← ⌈ TaskCount
CoreCount

⌉

// 1st stage
Sort  tasks  according to  the  number  of  predicted  used  cache  sets  in  the
decreasing order;
<T0, T1, T2, ... TTaskCount-1> ← the sorting result
G[0] ← {T0}
created_gang_id ← 0
for i ← 1 to (TaskCount – 1)
do if ∀Tk ∈  G[created_gang_id]: 0 = PredictedCacheContention(Ti, Tk)

then G[created_gang_id] ← G[created_gang_id ∪]  Ti

if CoreCount = | G[created_gang_id] |
then created_gang_id ← created_gang_id + 1

G[created_gang_id] ← Ø
assigned[Ti] ← TRUE

else if (GangCount - 1) = created_gang_id
then assigned[Ti] ← FALSE
else created_gang_id ← created_gang_id + 1

G[created_gang_id] ← {Ti}
assigned[Ti] ← TRUE

// 2nd stage
for i ← 1 to (TaskCount - 1)
do if FALSE = assigned[Ti] // assign remaining tasks only

then candidate_gang ← 0
current_contention ← TaskGangCacheContention(Ti, G[0])
for j ← 1 to (created_gang_id-1) // look for gang w/ least contention

do tmp ← TaskGangCacheContention(Ti, G[0])
if tmp < current_contention
then candidate_gang ← j

current_contention ← tmp
G[candidate_gang] ← G[candidate_gang ∪]  Ti

Figure 3.12The algorithm of the task scheduling phase.



calculate the number of predicted cache contentions of Ti and every existing gangs.

For  gang  Gx,  the  number  of  predicted  cache  contentions  between  Gx and  Ti is

calculated by formula 3.5. Then,  Ti is assigned to the gang which has the smallest

number of predicted cache contentions between the gang and Ti. If there are multiple

gangs which have the same number of predicted cache contentions with Ti, the gang

with  fewer  tasks  will  be  selected.  Figure  3.11  shows  the  second  stage  of  gang

grouping for the example which is illustrated in Figure 3.10. Figure 3.11(a) shows

the assignment of T6, where the number of cache contentions between T6 and both

gangs are the same. But, G2 has the less number of tasks. Therefore, T6 is assigned to

G2. Figure 3.11(b) shows the final result of the gang grouping. The algorithm of this

phase is shown in Figure 3.12.

So far, we have introduced the essence of our mechanism. In the next chapter,

we will evaluate the performance of our mechanism and compare with others.
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Chapter 4 Preliminary Performance
Evaluation

In this chapter, we will demonstrate our experimental results. The architecture

of simulator and evaluated workloads are described in section 4.1. The evaluation

results are shown in section 4.2.

4.1 Simulation overview

Before executing the simulation, we first use a modified SimpleScalar[26] to

collect the execution trace of tasks. The trace collecting process is diagrammed at

Figure  4.1(a).  The  hints  are  also  generated  before  executing  the  simulation.  As

shown in Figure 4.1(b), our hint generator contains a binary image dissector and a

heap usage  profiler  to  simulate  the  hint  generation  phase  of  HCCA (Hint-aided

Cache Contention Avoidance). Then, the execution traces and hints are sent to our

simulator.
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Figure 4.1 The trace generator and the hint generator.

(a) The trace generator.  (b) The hint generator.



Figure  4.2  shows  the  architecture  of  our  simulator  which  contains  three

modules:  trace parser,  scheduling method simulator,  and  memory simulator.  The

trace parser extracts memory access events from the execution trace. The extracted

events are sent to the  scheduling method simulator. In addition to memory access

events,  values  of  registers  and  results  of  memory  allocating  operations  are  also

extracted by the trace parser for HCCA. The scheduling method simulator makes the

scheduling  decisions.  For  tasks  which  are  selected  by  the  scheduling  method

simulator to be active tasks, the corresponding memory access events received from

the trace parser are forwarded to the memory simulator by the scheduling method

simulator. Otherwise, those memory access events will be queued at the scheduling

method simulator. For the comparisons among different task scheduling methods,

we  have  to  implement  different  scheduling  methods  in  the  scheduling  method
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Figure 4.2 The architecture of our simulator.



simulator.  The  following  methods  are  implemented:  Round-Robin[18],  Active-

Set[14],  TOS  (Throughput-oriented  Scheduling)[15]  and  HCCA.  The

implementation  of  HCCA contains  a  hint  evaluator  and  a  task  scheduler  which

simulate the hint evaluation phase and the task scheduling phase respectively. The

corresponding  hints  of  tasks  and  all  trace  events  from  the  trace  parser  except

memory access events are sent to the hint evaluator. The memory access events are

sent to the task scheduler. The memory simulator simulates the memory hierarchy.

The accessing hit and miss events of L2 cache are sent to the scheduling method

simulator for Active-Set and TOS. In our simulation, we simulate a four core chip-

multiprocessor system. Figure 4.3 shows the cache configuration of our simulation.

This configuration is based on the configuration of MIPS R10000 processor used in
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Parameter Values

Number of cores 4

L1 I-cache

size 32 KB
associativity 2

line size 32 bytes
miss latency 10 cycles

replacement policy LRU

L1 D-cache

size 32 KB
associativity 2

line size 16 bytes
miss latency 10 cycles

replacement policy LRU

L2 cache

size 2 MB
associativity 4, 8, 16

line size 32 bytes
miss latency 81 cycles

replacement policy LRU
Figure 4.3 The configuration of memory simulator



the SGI Origin200 workstation[27, 28]. We want to evaluate how the associativity

of L2 cache may affect our method. Therefore, we simulate three different L2 cache

associativity configurations. We simulate eight hundred million instructions for each

task. The length of the time slice is set to ten million cycles for all evaluated task

scheduling methods[14].

The  simulation  workload  is  formed  by  a  set  of  tasks.  We  use  benchmark

programs and corresponding input data sets included in SPEC CPU2000[16] to form

our workloads. A task is formed by a benchmark program and one of its input data

set. Tasks are named by hyphening the name of the benchmark program and the

name of the input data set. For example, the benchmark program gzip has four input

data sets: graphic, program, source and random. Therefore, we form the following

four tasks with gzip and its input data sets: gzip-graphic, gzip-program, gzip-source

and gzip-random. Two input data sets may have the same name if they are used in

different benchmark programs. The list of tasks used in our simulation is shown in

Figure 4.4. For each benchmark program, a separated training data set is used as the

input  data  of  the  hint  generator  to  generate  the  hints.  In  our  simulation,  each

workload  includes  twelve  tasks.  We  form  three  workloads  to  evaluate  the

performance  of  our  mechanism.  We  want  to  evaluate  the  performance  of  our
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ammp art-110 art-470 bzip2-graphic
bzip2-program bzip2-random bzip2-source equake
gcc-166 gcc-200 gcc-expr gcc-integrate
gcc-scilab gzip-graphic gzip-program gzip-random
gzip-source mcf mesa vortex-lendian1
vortex-lendian2 vortex-lendian3 vpr-place vpr-route
Figure 4.4 The list of tasks used in our simulation.



mechanism under the different possibility of the occurrence of cache contention. The

tasks which frequently cause cache misses may cause more cache contentions[11,

15]. Therefore, we form our workloads according to the number of cache misses

caused by individual tasks. We first execute the tasks once for eight hundred million

cycles and sort  tasks according to the number of cache misses in the decreasing

order. The sorting result of our tasks is shown in Figure 4.5. Then, we form the
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vpr-route 
vpr-place 

equake 
mesa 

gcc-scilab 
gcc-integrate 

gcc-200 
gcc-expr 
gcc-166 

vortex-lendian2 
vortex-lendian3 
vortex-lendian1 

mcf 
ammp 

bzip2-source 
bzip2-random 
bzip2-graphic 

bzip2-program 
gzip-graphic 
gzip-source 

gzip-random 
gzip-program 

art-110 
art-470 

0 500000 1500000 2500000 3500000 4500000 5500000
number of cache misses

Figure 4.5 The sorted task list.

Workload 1
ammp art-110 art-470 bzip2-graphic
bzip2-program bzip2-random bzip2-source mcf
gzip-graphic gzip-program gzip-random gzip-source

Workload 2
ammp bzip2-graphic bzip2-program gcc-166
gcc-expr gzip-graphic gzip-program mcf
vortex-1 vortex-2 vpr-place vpr-route

Workload 3
equake gcc-166 gcc-200 gcc-expr
gcc-integrate gcc-scilab mesa vortex-lendian1
vortex-lendian2 vortex-lendian3 vpr-place vpr-route

Figure 4.6 The simulation workloads.



workloads  according  to  the  sorting  result.  Figure  4.6  shows  our  three  kinds  of

workloads. Workload 1 is formed by selecting the first twelve tasks from the sorted

task  list  which  have  more  number  of  cache  misses.  Workload  2  is  formed  by

randomly selecting six tasks from the first half of the sorted task list and randomly

selecting another six tasks from the second half of the sorted task list. Workload 3 is

formed by selecting the last twelve tasks from the sorted task list which have less

number of cache misses.

4.2 Evaluation results

In  the  following  subsections,  we  will  first  compare  the  cache  set  usage

prediction accuracy of HCCA with Active-Set. Next, we will compare the L2 cache

miss rate of HCCA with Round-Robin, Active-Set and TOS. Then, we will evaluate

the overall performance improvement of HCCA.

4.2.1 Prediction accuracy

Both HCCA and Active-Set attempt to avoid cache contentions by separately

scheduling the tasks which are predicted to use the same cache set. Therefore, the

accuracy of  cache set  usage prediction has  a  great  effect  on the performance of

contention avoidance. The prediction accuracy is the percentage of cache set usage

predictions which correctly predict the actual cache set usage. In order to obtain the

prediction accuracy, we execute tasks alone in our simulator and compare the cache

set usage predictions made by the task scheduler with the actual cache set usage.

Figure 4.7 shows the prediction accuracy of Active-Set and HCCA for individual

tasks.  For  most  of  tasks,  HCCA performs  better  than Active-Set.  For  tasks  that
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HCCA performs worse than Active-Set, we inspect the source code of such tasks for

the causes of inferior predictions.  After inspecting the source code of the binary

images of these tasks, we realize that such tasks heavily use data structures which

require irregular accesses within the heap part. However, HCCA does not predict

such accesses.

4.2.2 L2 miss rate

Figure 4.8 shows the simulation result of workload 1. Figure 4.8(a) shows the

simulated L2 miss rate. Figure 4.8(b) shows the improvement over Round-Robin.

We use Round-Robin as the baseline for comparison, because it does not contain

any cache contention reduction mechanism. The simulation result shows that HCCA

performs better than others. In workload 1, all three methods perform better under

higher  associativity.  Figure  4.9  shows the  simulation  result  of  workload  2.  The

simulation result of workload 2 is similar to the result of workload 1 but with more

improvement  over  Round-Robin.  Figure  4.10  shows  the  simulation  result  of
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Figure 4.9 The simulation result of workload 2.
(a) The L2 miss rate under various associativity configuration.
(b) The percentage of improvement over Round-Robin.
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Figure 4.8 The simulation result of workload 1.
(a) The L2 miss rate under various associativity configuration.
(b) The percentage of improvement over Round-Robin.



workload 3. Workload 3 is formed by tasks with less number of cache misses. In

workload 3, HCCA still performs better than others. However, as shown in Figure

4.10(b), comparing to workload 1 and workload 2, we have the lower percentage of

improvement  over  Round-Robin  at  the  higher  cache  associativity.  As  shown  in

Figure 4.10(a), the reduced miss rate is similar in all three methods. Comparing to

the  simulation  result  of  workload  1  and  workload  2,  the  reduced  miss  rate  is

relatively small. In summary, for workload 1 and workload 2, we will have better

cache miss improvement under higher associativity. This result is expected because

the cache misses caused by cache contentions belong to conflict miss. The conflict

misses can be further reduced under higher associativity[29]. However, for workload

3, the effect of cache contention is low enough and limits the further improvement

of cache miss. All evaluated task scheduling methods may not be able to have better

improvement under higher associativity for such workload.
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Figure 4.10The simulation result of workload 3.
(a) The L2 miss rate under various associativity configuration.
(b) The percentage of improvement over Round-Robin.



Comparing  with  workload  2  and  workload  3,  workload  1  has  the  lowest

percentage  of  improvement  over  Round-Robin.  Workload  1  is  formed  by  tasks

which have more number of cache misses. As described in [11], such tasks may

occupy lots number of cache blocks. Therefore, for such workloads, the possibility
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Figure 4.11Overall IPC under various workloads for different cache associativity.

(a) 4-way associativity. (b) 8-way associativity. (c) 16-way associativity.



of causing cache contention among tasks is higher than the other two workloads.

This limits the further improvement of cache miss rate for workload 1.

4.2.3 Overall performance

We use the IPC (instruction per cycle) as the metric of the overall performance

measurement[10,  11,  14,  15]. Higher IPC results in shorter execution time for the

given  workload.  Figure  4.11  shows  the  IPC of  Round-Robin  and  HCCA  under

various  workloads  with  different  cache  associativity.  For  all  workloads,  HCCA

performs slightly better under all associativity configurations. Our simulation shows

that the L1 cache hit rate higher than 97% for all workloads under all associativity

configurations. In other words, most data blocks are loaded from L1 cache for all

workloads. Therefore, the improvement on the miss rate of L2 cache is diluted and

results in a small overall IPC improvement.

Figure 4.12 shows the IPC improvement of HCCA over Round-Robin under
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Figure 4.12The  improved  percentage  of  IPC  over  Round-Robin  under  various
associativity.



different associativity.  For all  cache associativity configurations, HCCA achieves

better improvement for workload 2. Comparing workload 2 to workload 1, workload

2 has the lower miss rate and the higher improved percentage on miss rate over

Round-Robin,  therefore  it  is  reasonable  for  workload  2  to  achieve  the  better

performance improvement over workload 1. Comparing workload 2 to workload 3,

both workload 2 and workload 3 have similar percentage of improvement on miss

rate  over  Round-Robin,  however  workload  2  has  higher  cache  miss.  Therefore,

workload 2 can achieve the better performance improvement.

In this chapter, we have evaluated the performance of our HCCA technique. In

the next chapter, some conclusions and future work are remarked.
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Chapter 5 Conclusions and Future Work

In this thesis, we have designed a less cache contention task scheduling method

for chip multiprocessor systems. We will make conclusions and give some future

work in this chapter for our research.

5.1 Conclusions

The chip multiprocessor is  a promising microprocessor design to efficiently

utilize  the  transistors  increased  by  the  advances  of  integrated  circuit  processing

technologies[4,  5]. In a typical chip multiprocessor, the L2 cache is shared among

cores.  Sharing  L2  cache  causes  cache  contentions  between  executed  tasks.  The

cache  contentions  between  executed  tasks  may  affect  the  performance  of  chip

multiprocessors. For this issue, we propose a less cache contention task scheduling

method, called HCCA. We first analyze the binary images of tasks and then predict

the cache usage of tasks by combining the analysis result and system status. The

final  task  scheduling  decisions  are  made  according  to  the  prediction  result.  In

summary, our method has the following main features and contributions.

(1) In HCCA, the cache set usage prediction is made at the hint evaluation

phase which combine the system status and hints generated by the hint generation

phase to make the prediction. Differ from previous methods which make prediction

according  to  previous cache  set  usages  of  tasks,  our  method  does  not  rely  on

previous cache set usages. Because tasks may change their cache set usage during

execution, making predictions according to previous cache set usages may not be

able to predict these changes. Instead of using previous cache set usage, we use the
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hints  which are  generated from directly  analyzing the binary images  of  tasks to

support the predictions. Binary images contain instruction sequences which instruct

the processor to accomplish tasks. In other words, binary images directly affect the

behavior and the cache set  usages of tasks.  Therefore,  we expect our method to

achieve more accuracy predictions by making predictions according to hints. The

simulations  show  that  our  prediction  mechanism  can  achieve  around  63.2%

prediction accuracy.

(2) The task scheduling phase greedily distributes tasks in the dispatch queue

into gangs according to the cache set usage prediction. We attempt to avoid cache

contentions  by  separately  scheduling  tasks  which  are  predicted  to  use  the  same

cache sets. We expect HCCA to achieve lower miss rate because HCCA has more

accurate L2 cache set usage predictions. Through the simulations, we have evaluated

the performance of our method comparing with Round-Robin, Active-Set and TOS.

The simulations show that our HCCA technique achieves lower miss rate than other

methods.  However,  the  improvement  on L2 cache miss  rate  only brings slightly

improvement on overall  IPC, because most  accesses can result  in L1 cache hits.

Therefore, the improvement on the miss rate of L2 cache is diluted and results in a

small overall IPC improvement.

5.2 Future work

In addition to our previous features, there are still some attractive issues worthy

of further investigations in the future.

(1) In our task model, we assume all tasks do not share any data. However,

some tasks may share data with others through sharing a number of memory blocks.
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Concurrently  scheduling  tasks  sharing  data  with  each  other  may  improve  the

performance because tasks can prefetch data into the cache for each other. In order

to consider the data sharing among tasks, we have to modify the hint generation

phase and hint evaluation phase to make the predictions on data sharing. Besides, in

the task scheduling phase, we also need a new gang grouping mechanism which

attempts to concurrently schedule tasks shared data among them.

(2) We assume that all tasks have the same importance. However, it will be

more desirable if we allow tasks with different level of importance. We need a new

gang  grouping  mechanism  in  the  task  scheduling  phase  to  make  it  to  consider

priorities. For such grouping mechanism, more critical tasks should encounter less

cache contentions even if  some cores must  be left  idle.  In order  to measure the

performance,  we  also  need  a  more  sophisticated  design  for performance  metric

because the IPC does not consider the importance level of individual tasks.

(3) Simultaneous Multithreaded Processors (SMT)[30,  31] are another multi-

core processor architecture. For such architecture, in addition to L2 cache, execution

resources such as ALU and FPU are also sharing among cores. This sharing may

introduce  resource  contentions  which  will  affect  the  overall  performance  of

system[3233-  34]. In the future, we can try to adapt our method for this architecture

and consider about other types of resource contentions. The hint generation phase

and  the  hint  evaluation  phase  need  to  be  modified  for  the  predicting  of  these

resource  contentions.  Furthermore,  different  types  of  resource  contentions  may

cause different latencies, the task scheduling mechanism may need considering this

difference to make an efficient task scheduling.

(4) We assume that our scheduler is executed on a dedicated system processor,
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and the scheduling overhead is ignored. However, the scheduler may have a lot of

idle time if the task load is low. This is not economic for a cost-sensitive system.

The scheduling processor may be used for computation while it is idle as well as

scheduling  tasks.  In  this  way,  the  scheduling  overhead  needs  to  be  taken  into

account  for  those  tasks  scheduled  on  the  system processor.  How to  define  and

quantify the scheduling overhead is not trivial and becomes one of the extensions of

this thesis.
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