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ABSTRACT 

 Asynchronous circuits have been more and more popular these days, since there 

is an increasingly dire need for more efficient use of energy, resulted from not only 

limited battery life but also concerns for global warming. However, asynchronous 

circuits have a nature that renders them difficult to design and verify. With the invention 

of Balsa programming environment, people can forge their “asynchronous” ideas into 

reality more easily by the help of its synthesis and simulation tools.  

A JPEG decoder was chosen as the object of implementation because it was tested 

by time, as well as sophisticated enough to show the viability of this design flow or 

methodology. A pipeline structure was also added to hasten computation of the most 

time-consuming part, the IDCT. Furthermore, the 4-phase bundled data approach was 

taken in this example to facilitate development and avoid excess area cost generated 

otherwise by a dual-rail version. 



1 

 

1. Introduction 

1.1 Less is More 

 Not until recently did so many scientists devote themselves to the research of 

more power saving methods. Once people have calculation speeds enough to meet the 

requirements of most applications, they move on to make those devices more efficient─

that is─ operating on less power while not affecting their functionality. This can be seen 

especially from the ever growing number of hand-held or mobile devices such as 

notebook computers, PDAs, cell-phones, music/video players……etc. All of these 

necessitate longer time of use while powered by fast-draining batteries.  

 Unfortunately, the technologies of batteries aren’t evolving at the same pace as 

those of semiconductors, hence compelling us not to rely on the battery capacity but on 

our own change of ideas. Some techniques like clock gating found in low-power 

synchronous circuits, cache resizing or word-line gating of caches in microprocessors, or 

fine-grain dynamic leakage reduction to reduce intrinsic static leakage current from 

CMOS.  

 Nonetheless, they are highly dependent on the type of implementation, and they 

may pose certain headaches to the developers. On the other hand, asynchronous circuits 

have a low-power nature which derives from their total lack of global clocks. 

Furthermore, they are applicable with any transistor-based technologies. 

1.2 Not at the same time 

 What exactly is an asynchronous circuit? You might ask. Here let me take 

something of my favorite for example. Imagine that several cars are running on the road 

and suddenly the light turns red. The first car stops, then second, third …… until the last 

car in line does. After a while the light changes its color, and the cars accelerate in the 

same order from the first one to the last one.  Every single car must react to the action 

its frontal car takes.  

 If you are comparing asynchronous circuit to road traffic, then an asynchronous 

component is just like a car. It means that no component should make a request for 

input/output data unless the next component is ready, and certainly it must signal or 
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inform the last component it connects to upon completion. Well if you are familiar with 

internet and TCP/IP you must have heard of 3-Way handshake, but we don’t need 3-way 

in an electronic circuit since the correctness of data is guaranteed, if not 100%. Shown 

below is one of such handshake protocols. 

 

Figure 1: The 4-Phase Bundled Data Interface Protocol 
 As you probably guessed, an asynchronous component is active only if 

spatiotemporally required, therefore consuming energy in the right place at the right time. 

This most noticeable feature is what its synchronous counterpart cannot simulate, with 

clocks ticking everywhere.  

 Everything has a price though. It takes a certain amount of time before we can 

step on the pedals because of our limited reflexes. Same goes for handshake protocols, 

the extra circuitry added for coordinating asynchronous signals and data also puts a great 

burden on the area cost and operating speed. That’s why few practitioners of 

asynchronous design compare their results with synchronous ones in respect to 

performance.  

 With these drawbacks in mind, one shouldn’t be too particular about speed or 

cost when he decides to tread this path. Ailed by the difficulties such as possibility of 

data hazards, lack of commercial tools, let alone insufficient experience, we shouldn’t 

further trouble ourselves by doing gate-level design. Therefore, to aid our work, we 

adopted Balsa, a high-level asynchronous-specific language, which was developed at 

Manchester University, in the design process.  

1.3 No! It’s not an e-mail client 

 According to the authors, “Balsa is the name of both the framework for 

synthesizing asynchronous hardware systems and the language for describing such 
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systems”. Interestingly, if you look up the word in the dictionary, it says a tropical 

American tree or a life raft, since they are UK but US, it must be referring to the latter. 

I’m quite satisfied with the answer I found since at least it saves you a lot of time/life. 

 What it does is simply translate your syntax into communicating handshake 

components which closely follow Tangram(1). They call their own interpretation of 

Tangram as Breeze(since it must be hot rafting under the blazing sun). To see how it 

looks, here is an example: 

 

Figure 2: Handshake Circuit for a single-place buffer 

 A filled circle represents an active port, sending requests to the unfilled circle, 

which is a passive port. Sequencer “;” ensures that activities on the left side finish before 

those on the right side. Fetch component “→” causes data to be moved to the storage 

element of  Variable x. When these operations are complete, the Sequencer completes its 

handshake with the repeater which initiates the cycle again. It is relatively simple, 

composed of only a few lines. 
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Figure 3: code for a single-place buffer 
  

 We will use loop structures very extensively in the making. Another feature 

worth noting also is its ability to generate a netlist from a breeze description. The netlist 

could then be manually tweaked to be uploaded onto FPGA, or be ready for a layout. 

Now is a good time to introduce its full design flow to the curious eyes. 
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Figure 4: The Complete Balsa Design Flow 
 As the self-explanatory figure reveals, a Balsa description of a circuit is compiled 

using balsa-c to an intermediate breeze description. Most of the Balsa tools are in charge 

of manipulating the breeze handshake intermediate files. Behavioral simulation is 

provided by breeze-sim. This simulator allows source level debugging, visualization of 

the channel activity at the handshake circuit level as well as producing conventional 

waveform traces that can be viewed using the waveform viewer gtkwave. balsa-netlist 

produces a netlist appropriate for the target technology or CAD framework from a 

Breeze description.  

 Now that we are confident of its great potential, we should put it into good use by 

doing something huge, yet not exhausting our system resources. After some surveying, 
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pondering and dithering, I thought the enduring image format JPEG would be best to 

assume the role. Moreover, a standalone decoder would be more than enough to assume 

it, for the procedures concerned are quite similar between a decoder and an encoder. 

1.4 Lose to gain 

 There are quite a few image compression formats, of which the most well-known 

ones are GIF, PNG and JPEG. GIF adopts the LZW lossless data compression technique 

to reduce the file size without degrading the visual quality, however, its 256-color 

limitation makes it virtually useless dealing with photos. Depending on usage, PNG can 

be lossless or lossy, and is quite efficient tackling large blocks of the same colors. 

Among all of the formats, JPEG is the most commonly used standard method of 

compression for photographic images. The compression method is usually lossy 

compression, meaning that some visual quality is lost in the process, although there are 

variations on the standard baseline JPEG which are lossless.  

 There is even a progressive format, in which data is compressed in multiple 

passes of progressively higher detail. This allows for a quick preview before all the data 

has been downloaded. However, progressive JPEGs are not as widely supported. Based 

on the aforementioned circumstances, I decided that a baseline JPEG decoder would be 

best for implementation this time to take advantage of its popularity and versatility. 
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2. Related Work 

 This chapter circles around three axes. First we will start out by sharing a brief 

view at the JPEG specifications and its mechanism. Then we will describe different 

categories of asynchronous circuits regarding delay assumptions. Finally we will 

introduce several frequently encountered basic cells generated automatically by Balsa 

synthesis tool. 

  

2.1 ISO 10918-1 

 The name JPEG stands for Joint Photographic Experts Group, the name of the 

committee who created the standard. The group was organized in 1986, issuing a 

standard in 1992 which was approved in 1994 as ISO 10918-1(2). Its decoding process 

can be easily visualized with the help of the following diagram. 

 

Figure 5 : DCT-based decoder simplified diagram 
 

 As we can see, a decoding process converts compressed image data to 

reconstructed image data through three main stages, entropy (Huffman) decoder, 

dequantizer and IDCT, with the first two having their own tables. 

2.1.1 Entropy Coding 

 In information theory an entropy coding is a lossless data compression scheme 

that assigns codes to symbols so as to match code lengths with the probabilities of the 

symbols. In JPEG, it is useful to consider entropy coding as a 2-step process. The first 
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step converts the zig-zag sequence of quantized coefficients into an intermediate 

sequence of symbols. The second step involves converting the symbols to a data stream 

in which external boundaries of the symbols totally disappear. Figure 6 shows the zig-

zag sequence where the first block represents the DC component and the rest AC 

components. 

 

Figure 6 : Zig-Zag Sequence 
 The DC and AC symbols take the forms (SIZE)(AMPLITUDE) or 

(RUNLENGTH,SIZE) (AMPLITUDE) respectively(3).  To be clear, Runlength is the 

number of zeros encountered along the zig-zag path before a non-zero number. JPEG 

adopts the somewhat weird scheme because zeros are frequent and certain sizes of 

numbers are more frequent than the others. We’ll go in detail about this later. 

2.1.2 Quantization 

 The human eye is good at seeing small differences in brightness over a relatively 

large area, but not so good at distinguishing the exact strength of a high frequency 

brightness variation. This fact allows one to deceive the eye by greatly reducing the 

amount of information in the high frequency components only. This is done by simply 

dividing each component in the frequency domain by a constant for that component, and 

then rounding to the nearest integer. This is what makes JPEG lossy in the whole process. 

 Figure 7 demonstrates the result from such operation. 
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Figure 7 : Resulting Picture from Quantization 
 It is usually the case that many of the higher frequency components are rounded 

to zero, and many of the rest become small positive or negative numbers, which take far 

fewer bits to store. There can be multiple quantization tables for an image file, and a 

common quantization matrix may just look like Figure 8. 

 

Figure 8 : An Example of Quantization Table 
 The first number 16 in the upper left corner stands for dividing by 16 and 

rounding it. Magnitude grows diagonally to the lower right as frequency increases. It’s 

advised to load the tables from the file since they differ from one image to another. 

2.1.3 Discrete Cosine Transform 

 A discrete cosine transform (DCT) is a Fourier-related transform similar to the 

discrete Fourier transform (DFT), but using only real numbers. DCTs can be thought of 

as DFTs with double length, operating on real data with even symmetry (since the 
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2.2 Classification of Asynchronous Circuits 

 

Figure 11 : A Circuit Segment with Gate and Wire Delays 
 At the gate level, asynchronous circuits can be classified as being delay-

insensitive, quasi-delay-insensitive, speed-independent, or self-timed depending on the 

delay assumptions that are made(4). Figure 11 serves to illustrate the following 

discussion. In this figure there are three gates (A, B, C) and three wires (W , W ,W ). dA, 

dB, and dC represent the gate delays for A, B, and C, while d , d , and d  represent the 

wire delays for W , W , and W  respectively. 

(a) Delay-Insensitive (DI): A circuit that operates correctly with positive, bounded but 

unknown delays in wires and gates. Recalling figure11, this is equivalent to arbitrary  

dA, dB , dC , d , d , and d . Unfortunately, assuming ideal zero-delay wires is not 

very realistic in today’s semiconductor processes. 

(b) Quasi-Delay-Insensitive (QDI): a QDI circuit is DI with the exception of some 

carefully identified wire forks called “isochronic forks”. Referring to figure 11, this 

means arbitrary dA, dB, dC, and d , except that d  = d . 

(c) Speed-Independent (SI): a SI circuit is a circuit that operates correctly assuming 

positive, bounded but unknown delays in gates and ideal zero-delay wires. Referring to 

figure 11, this implies arbitrary dA, dB, and dC, except that d  = d  = d  = 0. 

(d) Self-Timed (ST): a self-timed circuit contains a group of self-timed elements. Each 

element is contained in an “equipotential region”, where wires have negligible or 

well-bounded delay. An element itself may be an SI circuit, or a circuit whose correct 

operation relies on use of local timing assumptions. However, no timing assumptions are 

made on the communication between regions. That is, communication between regions 

is DI. 
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2.3 Balsa Back-End 

 The Balsa back-end generates gate level netlists ready for being imported into 

target CAD systems to yield circuits implementations. In this section we are going to 

introduce some basic cells tuned for Xilinx technology which are generated by Balsa, 

such as Muller C element and S element. We will also describe some handshake 

components (5) in Balsa synthesis system. 

2.3.1 Basic Elements 

 The gate level netlist generated for Xilinx technology by Balsa only makes use of  

some basic cells including AND, OR, NOR, XOR, NADN, BUF, XNOR, INV, FD (D-

type flip-flop), FDC and FDCE. Basic elements are built from these cells. 

 

Figure 12 : The Muller C-Element as (i)Gate-Level Implementation, (ii)Transistor-
Level Implementation, (iii)Logic Symbol, (iv) Truth Table 

 Shown in Figure 12, the Muller C-element is a commonly used asynchronous 

logic component originally designed by David E. Muller.  The output of the C-element 
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reflects the inputs when the states of all inputs match. Simply put, the output is set to 0 

when all inputs are 0, and it is set to 1 when all inputs are 1. The other input 

permutations just do not alter the output, when the element serves as a state holder much 

like an asynchronous set-reset latch.   

 Combining this with the observation that all asynchronous circuits rely on 

handshaking that involves cyclic transitions between 0 and 1, it should be clear that the 

Muller C-element is indeed a fundamental component that is extensively used in 

asynchronous circuits. 
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Figure 13 : The NC2P-element as (i) Logic Symbol (ii) Truth Table (iii) Gate-Level 
(iv) Transistor-Level Implementation  
 Figure 13 shows the NC2P element. Output is set to 1 as long as a is 0, regardless 

of b value. It resembles C-element very much in the NMOS or lower part of the circuit, 

while the output assumes the opposite signal. The only permutation left just keeps the 

original state.  It may look weird at this point, however, we will have use for this in the 

upcoming element. 
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Figure 14 : The S-element as (i) Functional Block (ii) Gate-Level Implementation 
(iii) Handshaking Protocol 
 Figure 14 shows the S-element which is ubiquitous in the implementation of 

handshake components. An S-element has 4 pins, among which are 2 

request/acknowledge handshake pairs ― 【Ar】 / 【Aa】 and 【Br】 / 【Ba】. In 

Balsa system it substitutes 【NC2P】 for 【inverter of C-element】. Therefore, it is 

capable of doing the same job while reducing the number of gates because 【NC2P】

occupies only 2 AND gates, 1 NOR gate, and 1 Inverter instead of 3 AND gates, 1 OR 

gate, and 1 Inverter by【inverter of C-element】. 



 

 17

 

Figure 15 : The Multiplexer as (i)Logic Symbol (ii) Truth Table (iii) Gate-Level 
Implementation 

 

Figure 16 : The De-Multiplexer as (i) Functional Block (ii) Truth Table (iii) Gate-
Level Implementation 
 Figure 15 and 16 show separately the multiplexer and de-multiplexer elements. 

They are used extensively in many components such as Balsa full adder and BrzCase. 
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2.3.2 Handshake Components 

 The handshake component sets used by Tangram(1) and Balsa are very similar. 

Balsa contains about 40 components that signal handshakes for communication, each of 

which has a substantial gate-level implementation associated. We will illustrate some 

handshake components in the following to shed a bit light on their mechanism. 

 

Figure 17 : The Fetch Component as (i) Symbol (ii) Gate-Level Implementation 
 Shown in Figure 17 is the Fetch component which is the most common way to 

control a datapath from a control tree. Transferrers are used to implement assignment, 

input and output channel operations in Balsa by transferring a data value from a pull 

datapath and by pushing  it towards a push datapath.  
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Figure 18 : The Sequence Component as (i) Symbol (ii) Gate-Level Implementation 

 

Figure 19 : The Concurrent Component as (i) Symbol (ii) Gate-Level 
Implementation 
 Sequence and Concur in Figure 18 and 19 form a large part of handshake circuit 

control trees. They are used to activate a number of commands under the control of the 

activate handshake.  
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Figure 20 : The Variable Component as (i) Handshake Component (ii) Gate-Level 
Implementation 
 The variable component in Figure 15 uses D-type flip-flop to store data. The 

source of pulse triggering storage comes from the signal write_0r. When a certain piece 

of data should be stored, write_0r will be pulled up and down to trigger the flip-flop, in 

the meantime signaling acknowledgement write_0a. Likewise, when the data is desired 

read_0r or read_1r is set, followed by read_0a or read_1a. The compilation mechanism 

for HDLs must ensure that activity on the write port and read ports are mutually 

exclusive. 

2.4 Concluding Remarks 

  In this chapter we introduced the ISO10918-1(2) specifications, known widely as 

JPEG. We walked the reader through the three main stages constituting JPEG 

encoding/decoding processes. They are entropy coding, quantization, and DCT operation. 

We learned that if we are to design a JPEG decoder architecture much of the efforts 

should be focused on Huffman decoding, and a lot more on IDCT unit.  
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 Then we introduced the classification of the asynchronous circuits. 

Asynchronous circuits can be classified into SI, DI, QDI, or ST according to the delay 

assumptions. Lastly we illustrated the Balsa back-end with symbols and gate-

level/transistor-level implementations. Balsa synthesis system consists of approximately 

40 components, each of which can be translated to gate-level netlist. Those components 

make use of handshaking protocol for communication. 
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3. Designing the JPAD 

 Knowing that it’s not quite appropriate to get down to details just yet, we shall 

take a rough view at the architecture of JPAD for starter. After being somewhat familiar 

with its directions of dataflow, we shall closely explore each functional block and even 

reveal a few lines of code to help understanding of the algorithms. Eventually we will 

discuss the speedup already done and theoretically possible future optimizations. 

3.1 JPAD overview 

 

Figure 21 : The Architecture of JPAD 
 From a general view at JPAD we know it consists of a control unit, a BSU( bit 

supply unit ), a Huffman decoder, an IDCT unit, a dequantizer, an extender, a register 

file, a RAM, and a ROM. Arrowed buses and lines stand for channels and thus transfers 
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of data as well as their directions. Purple arrowed lines mean that the control unit has 

control over their destination blocks.  

 After the virtual RAM finished loading file to it, the BSU runs parallel to the 

control unit until either one terminates. The idea is as follows: the control unit requests 

data from BSU, asking for certain number of bits, instead of getting it directly from 

RAM. It is BSU that fetches the data from RAM whenever it is empty. The control unit 

will then send data and commands to the Huffman decoder, which further sends the 

decoded index to the register file. 

  Once the indexed value is analyzed and part of it extended, the quantized 

DC/AC component goes to the register file. After the essential DC/AC components are 

dequantized and stored back again to the register file, IDCT takes charge and 

calculates/restores the original pixels. Because the reordering and upscaling are 

unneeded in visualizing the results, the IDCT unit simply outputs to file each time it 

completes an 8x8 arithmetic block. When the end of file is reached, the whole DSP halts. 

3.2 Dissecting JPAD 

3.2.1 Bit Supply Unit 

 Since the control unit can ask for different numbers of bits from 1 to 16, it’s 

necessary for the BSU to keep track of which bit is read last time. 

 

Figure 22 : Partial Code of BSU 
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 As written in Figure 22, the position tracker curBit assumes a value between 0 

and 16. Whenever it reaches 16, memory is read, the address counter curAddress is 

incremented, and curBit is reset.  As soon as temp is appended enough bits, the loop is 

quit and the value of temp is relayed to the output channel, finishing the transaction. 

 Something worth noting is that during entropy decoding, in order to ensure that a 

marker does not occur within an entropy-coded segment, any X’FF’ byte generated by 

either a Huffman or arithmetic encoder, or an X’FF’ byte that was generated by the 

padding of 1-bit, is followed by a “stuffed” zero byte. In other words, should X’FF’ 

appear during entropy encoding, it must be replaced with X’FF00’ to remove ambiguity. 

Therefore it takes special care to modify the BSU. 

 

Figure 23 : Partial Code of BSU – Continued 
 The trick is to add a flag that indicates the validity of the future X’00’ 

encountered. X’00’ will just be neglected if the flag is false, or be processed as usual if 

the flag is true. Also due to the fact that X’FF00’ may span across 32 bits, we cannot 

keep only 16 bits at one time. Therefore we added nextData, which is next data to come 

after curData is depleted. 

3.2.2 Huffman Decoder 

 In the JPEG mode we will be using in this thesis, the possible Huffman values 

are the integers 0 to 255. It is known that depending upon how the Huffman coding 

algorithm is applied, different codes can be generated from the same symbol values and 

frequency data. The JPEG standard does not specify exactly how Huffman codes are 

generated. Actually, the Huffman codes for values in JPEG files do not have to be 

optimal. 

Table 1 : Count of Code Lengths for AC Component 1 
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Code Length Count 
1 0 
2 2 
3 1 
4 3 
5 3 
6 2 
7 4 
8 3 

. . 

. . 

. . 
 Table 1 lists how many codes there are for each length. It is part of the default 

Huffman table suggested for baseline JPEG. The obvious method for decoding Huffman 

values is to create a binary tree containing the values arranged according to their codes. 

Start at the root of the tree and, using the value of bits read from the input stream to 

determine the path, search for the value in the tree. 

 A simpler method to implement is to use the list of values sorted by Huffman 

code in conjunction with an array of data structures with one element per Huffman code 

length. Each structure contains the minimum and maximum Huffman code for a given 

length and the index of the first value with a Huffman code of that length in the sorted 

value array. 

Table 2 : Huffman Decoding Data 

Length Minimum Code Maximum Code First Value 

1 N/A N/A N/A 
2   00    01 1 
3   100   100 3 
4   1010   1100 4 
5   11010   11100 7 
6   111010   111011 10 
7   1111000   1111011 12 
8   11111000   11111010 16 
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 With predictable Huffman tables like that in Table 2, it is natural to hard-

wire/pre-store those values in the ROM and calculate the original values by the 

algorithm below. 

 

Figure 24 : Code Snippet of Huffman Decoder 
 The upper region looks for proper code length to start with. Once there is a match, 

which is detectable by comparing the target code with the minimum code, the decoded 

index will be sent to the output channel. The index is attainable by subtracting minimum 

code from the target code, which yields an offset, then by adding the first index value of 

that length. In the end, I made 4 versions of this corresponding to all possible Huffman 

tables ever found in pure baseline JPEG. 

3.2.3 Extender 

 In the previous chapter we mentioned the symbol pair (SIZE, AMPLITUDE). In 

order to restore its value we still have to send it into the extender and perform some 

simple computations.  
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Figure 25 : Magnitude Codes and Ranges 
 Figure 25 gives us some clue as to which magnitude represents what range of 

numbers. It is quite apparent that the closer it is to the origin the smaller magnitude it has 

and hence the fewer bits it occupies. To reveal how they convert we would borrow some 

lines from my code. 

 

Figure 26 : Partial Code of Extender 
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 First we would shift vt whose initial value is 1  leftwards by (size – 1) bits, then 

compare the additional bits with vt. If the additional number is greater than vt, it is taken 

as output and we know it’s positive. Otherwise subtract it by vt twice and add a one so it 

is negative. Take B”11” for example, since 11 is larger than 10, it translates to +3. 

Likewise, since B”00” is smaller than 10, it makes a -3. 

3.2.4 Dequantizer 

 This is by far the most trivial component in the whole JPAD. It’s no big deal but 

a booth multiplier, so we will just skip it for now. 

3.2.5 Control Unit 

 The control unit is the thinking brain that issues all commands to its minions. It is 

also the only component dealing with markers or tags. The JPEG header is a messy 

tangle, and it deserves full attention when being handled. 

 

Figure 27 : Structure of a JPEG File 
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 All of the markers are represented by 2 bytes, starting with X”FF”.  The SOI 

marker (X”FFD8”) marks the beginning of an image. Well, since all image files have 

X”FFD8” at the very top of them, it can be skipped without any doubt. The next adjacent 

JFIF marker (X”FFE0”) stores a lot of information from “JFIF” string, version, units, 

density, to thumbnail. Ironically, since we know what we are doing, we have no use for 

them either. The next Define Quantization table (DQT) marker (X”FFDB”) records a 

quantization table mandated by the dequantization process and should be processed. 

 

Figure 28 : A Code Snippet searching for X”FFDB” from Control Unit 
 The 2 lines req <- reqInfo and streamData -> curData are the standard procedure 

throughout the code to fetch data from BSU. The loop appends 8 bits to temp each time 

it receives data until X”FFDB” is found. This way it is convenient to locate a certain 

marker within the file, and to skip desired number of bits as well.  Certainly we 

shouldn’t forget to store the tables too. 

 

Figure 29 : A Code Snippet writing 64 values to quantization table 
 After storing what is necessary and discarding what’s not, we are ready to jump 

to the Start of Scan (SOS) marker (X”FFDA”) and commence entropy decoding.  
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Figure 30 : A Code Snippet performing Huffman DC decoding 
 Figure 30 explains the way control unit calls Huffman decoder. Temp is 

appended one bit at a time and transferred to Huffman decoder to determine if there is a 

hit. If there is a match, we can use “index” together with the Huffman table to find its 

code value, otherwise “index = 255” will inform us there is no match and the loop 

continues.  

 For a DC coefficient the decoded code value can be sent to extender and the real 

DC value will be derived. Unlike a DC one, for an AC component the run length is 

extracted from the 4 higher bits of the decoded code value and the size is extracted from 

the lower 4 bits. The DC/AC components, whether zero or non-zero, are placed in the 

array in a zig-zag order. The sequence is indexed by pre-stored table just like min-max 

of Huffman. 
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Figure 31 : Indexable Zig-Zag Sequence 
 When all 64 components are filled, it’s time to move them into the IDCT unit 

and wait for the results.  

3.3 Make the Common Case Fast 

 Everyone familiar with Computer Architecture knows painfully well about 

Amdahl’s law. The law is used to find the maximum expected improvement to an overall 

system when only part of the system is improved. From our experience and cognition, 

most of the computing time is spent on IDCT calculation. Even the Huffman decoding 

process is intrinsically a downward matter. The following codes are indecipherable until 

the precedent ones are decoded.  

 As a consequence, all the struggles should be put on IDCT and on it only for the 

sake of performance. At the time being there are generally two tactics tackling IDCT, 

one of which is butterfly(6) and the other is without butterfly. If the butterfly is exploited 

to full extent, the number of multiplications can be drastically reduced, for the cost of 

more additions and more time. Bearing in mind no matter how hard we manage to 

reduce multiplicative operations, there are still inevitable ones over there.  
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 Since the speed of a pipeline is determined by the slowest stage within, the 

optimal speed is restricted to the time of a single multiplication. In Jari Nikara’s 

paper(7)(8) he introduced a pipeline structure that is divided by 3 sets of multipliers 

evenly placed. This is exactly what we are looking for ― each stage is accompanied by 

4 or 5 multipliers running in parallel. 

 

Figure 32 : The 3 Pipeline Stages of IDCT 
 As shown in Figure 32, the 8 inputs X0 ~ X7 flow from the left to the right, 

eventually transforming into 8 results x0 ~ x7. We then encapsulate the 3 stages with an 

outer module IDCT, to facilitate connection with other modules and to improve its 

modularity. 
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Figure 33 : 3 Stages connected in parallel 
 One thing to pay attention to when using the module is that during the first 2 

cycles of feeding the data, the outputs are far from ready, yet we have to access them lest 

a deadlock be caused.  

 

Figure 34 : Data flow diagram of IDCT 
 The strategy is to ignore the data obtained at the first 2 cycles and continue to get 

them until 8 rows or 8 columns are completed. Applying this simple pipeline structure 

can give us 3*8/10 = 2.4X speedup versus a non-pipelined approach. If more 

sophisticated pipelining is desired, more registers or RAM cells must be included to 

reduce bubbles and increase throughput to achieve an ideal 3X improvement for the 

IDCT part. 



 

 34

4. Implementation and Verification 

 This relatively short chapter consists of three parts. First we will illustrate our 

design flow for asynchronous implementation based on FPGA and VLSI. Then we will 

point out several issues and problems circling Balsa synthesis. Finally we will explain 

how we verify our design. 

4.1 The VLSI and FPGA design flow for asynchronous circuit using 
Balsa 

 The JPAD core is modeled with Balsa language, and then compiled into a 

collection of “handshake components” with the balsa-c compiler. Each of these 

components has a concrete gate level implementation. By using the balsa-netlist tool we 

can automatically generate them into Verilog for Xilinx or other target synthesis tools.  

The following steps are the design flow for FPGA. The Verilog netlist generated by 

balsa-netlist is converted into a netlist of basic gates in the synthesis step of the design 

flow. The netlist may be optimized using technology-independent logic minimization 

algorithms.  

 However, we must avoid the logic minimization for hazard free circuits and 

buffers generated by balsa-netlist. We should add the constraint “keep hierarchy” to 

avoid the logic minimization. Then the synthesized netlist is mapped to the target device 

using a technology-mapping algorithm. The placement algorithm maps logic blocks 

from the netlist to physical locations on an FPGA. Once the placement has been done, 

the routing algorithm determines how to interconnect the logic blocks using the available 

routing. The final output of the design flow is the FPGA programming file, which is a bit 

stream determining the state of every programmable element inside an FPGA. The 

design flow is shown is Figure 35. 
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Figure 35 : The FPGA design flow of Balsa 
 The VLSI design flow of Balsa is somewhat different from that on FPGA. For 

the first thing, the Balsa-netlist does not support the Synopsys technology. The only 

thing we may use is the “Example technology”, with some gates modified in the 

standard cells to adapt for Synopsys. Then we proceed to use Synopsys Design Compiler 

to synthesize the Verilog model. After synthesis, we can run the functional simulation 
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with Modelsim. If everything is alright, we may move a step further to do the place and 

route with SOC Encounter and export the layout GDS file. 

Balsa description

 Layout netlist Timing Simulation

Balsa-c

Breeze description

Balsa-netlist

Netlist for Synopsys

Synopsys Design 
Compiler

Cadence SOC encounter

Behaviour Simulation

Function Simulation

Gate level netlist

ModelSim

Balsa development kit

 

Figure 36 : The VLSI Design Flow of Balsa 

4.2 Implementation Issues 

 Compilation from Balsa programs into Xilinx netlists proceeds in two steps.  In 

the first step, handshake circuits are produced to form the intermediate framework. An 

interesting feature of this compilation is that it is transparent, allowing feedback about 

important performance characteristics such as performance, area, timing, and so forth to 
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be created at the handshake circuit level and to be presented to the VLSI programmer at 

the Balsa level. When the designer is content with the performance of the Balsa program, 

the corresponding handshaking circuit is then expanded into a gate-level netlist targeted 

for a certain technology. At this level the design can be simulated to obtain more 

accurate performance figures with the help of commercial simulators. 

We chose four-phase bundled data protocol over dual-rail to implement the 

handshake circuit in order to reduce the area cost. Balsa also provides a few technologies 

to select from. If we select Xilinx ISE, the circuits are implemented using just the Xilinx 

standard cells such as AND, OR, Inverter gate and flip-flop. If the target synthesis tools 

are not supported, like Synopsys Design Compiler, we can use the “Example” 

technology which translates the circuit to some basic cells, and we have to somehow 

make them compatible with the standard cells in the target synthesis tool. 

It should be bewared that the Xilinx synthesis tool could perform logic minimization 

but it must be avoided. The asynchronous system adds some buffer or redundant circuit 

to ensure hazard-free, however, minimization is not applicable here. We can avoid this 

situation by adding the constraint “keep hierarchy” on the handshake modules. 

RAM is not modeled by Balsa language. We can implement it using the block RAM 

on FPGA or using the standard RAM in VLSI. A handshake interface between the JPAD 

core and the memory must be devised if so required. 
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4.3 Verification 

 

Figure 37 : JPAD Behavior Simulation Environment 
 

The environment used to do behavior simulation for JPAD is illustrated in Figure 37. 

The RAM model is the predefined procedures in Balsa as shown in Figure 38.  

 

Figure 38 : Balsa Description for Memory Model 
 

 We assign the address width and data width to decide their size. For convenience, 

address width is 2^22 and data width is 2 bytes which yield a total 8MB to accommodate 

all possible size JPEG files. The contents of the RAM are loaded during initialization as 
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16-bit quantities in the hexadecimal format from an ASCII file. An ASCII file is 

translated from a JPEG file from my own C# program named Hex2ASCII written just 

for this project.  

 

Figure 39 : User Interface of Hex2ASCII 
 Whenever an address arrives at the RAM model from the RAM address channel 

along with rNw set to “read”, the RAM outputs the header information or the image data. 

The photo viewer software, such as ACDSee or Photoshop, offers us options to compare 

the pictures by bare eyes or to compare uncompressed BMP files converted from JPEG 

and my own program ASCII2BMP in Figure 40. If the results differ too much, we must 

go back to modify the code of JPAD. 
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Figure 40 : User Interface of ASCII2BMP 
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5. Simulation Result 

 This chapter is organized as follows: We will start by analyzing some pictures we 

decoded with JPAD. Then we will post the gate counts and area costs calculated from 

different EDA tools. 

5.1 Accuracy Analysis 

 In general, the fixed-point arithmetic is employed for speed and area efficiency 

of the design. However, a fixed-point representation introduces an accuracy problem due 

to the finite word length. Consequently, the signals must be quantized to the given word 

length and can be represented only in finite precision. From the implementation point of 

view, the truncation of two’s complement is the cheapest quantization method. Since we 

took the fixed-point approach in designing the multiplier, errors are likely to surface and 

should not be overlooked.  

5.1.1 PSNR 

This metric, which is used often in practice, is called peak-to-peak signal-to-noise ratio. 

d X, Y 10 log
∑ X , Y ,

,
,

  

Generally, this metric is equal to Mean Square Error, but it is more convenient to use 

because of logarithmic scale. 

5.1.2 Samples of PSNR 

 Below we will paste a couple of JPAD-decoded BMP files and their 

measurements of PSNR with respect to Y, U, and V components in the YUV color space. 

The first portrait is the worldly known Mona Lisa by Leonardo da Vinci. 
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Figure 41 : Mona Lisa 
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Figure 42 : Y Component of Mona Lisa 
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Figure 43 : U Component of Mona Lisa 
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Figure 44 : V Component of Mona Lisa 
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Figure 50 : Official Sample 

5.2 Area Cost 

 We have two sets of figures concerning cost, one of which is based on gate 

counts, and the other on areas. The gate count numbers are taken from Map Report in 

Xilinx ISE. The “total equivalent gate count” is an estimate of the number of gates if this 

design has been implemented with standard-cells. 

Table 4 : A List of Total Equivalent Gate Counts 

  Gate Count

ControlUnit 441590

IDCT 158509

Stage1 50038

Stage2 42669

Stage3 42768

Huffman Decoder 22832

BSU 8577

Mul 7018

Dequantizer 4092

Extender 2000
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6. Conclusion, Confession and Future Work 

 In the end of the project we successfully designed and implemented JPEG 

Asynchronous Pipelined Decoder, abbreviated JPAD, with Balsa the asynchronous 

synthesis tool. The resulting decompressed pictures are nearly indiscernible from those 

of commercial image viewing application programs.  

 From the performance-oriented viewpoint, a speedup of 2.4X was achieved. Too 

bad we don’t have an FPGA-ready Modelsim-compatible netlist yet, which is why we 

don’t have an object to compare it with except our own. Balsa may be very convenient to 

use in preliminary design phases, however, during post-completion stages the circuit it 

generates is far from being compact and efficient, plus tedious to tune up. My 

proposition here is that, for handshake simulation and educational purposes the toolset is 

quite useful against a manual approach, yet not so for making market-value commercial 

products. 

 There is much future work left to be done. The proposed pipeline structure still 

has a lot of room for improvement―that is― to totally remove bubbles and keep its 

usage at 100%. Most importantly, we have a long bumpy way to go to reach our ultimate 

goal, the layout.  

Overall, the thesis offers the following contributions, if not much: 

 The architecture of the asynchronous baseline JPEG decoder modeled with 

Balsa is described. Some design issues for Balsa language is also covered. 

 The design flow for the asynchronous circuit implementation on FPGA as well 

as VLSI is mentioned. 

 The verification flow is devised, which involves subjective visual inspection 

and software ratings. 

 A pipeline structure to improve the most time-consuming arithmetic is 

developed. 

 Some may doubt that those were just pretty words, I myself doubt that too. But 

from what I have heard, the authors of Balsa promised that they would do their best to 

fix the problem as well as add more new features. Have faith, folks! 
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