
i

An Asynchronous JPEG Decoder Designed with Balsa

by

Yu-shun Cheng

A Thesis Submitted to the Graduate

Faculty of National Chiao Tung University

in Partial Fulfillment of the

Requirements for the degree of

MASTER OF Computer Science

Approved:

陳昌居, Thesis Adviser

National Chiao Tung University
Shinchu, Taiwan

June, 2007

 ii

CONTENTS
An Asynchronous JPEG Decoder Designed with Balsa .. i

LIST OF TABLES .. iv

LIST OF FIGURES ... v

ACKNOWLEDGMENT .. viii

ABSTRACT ... ix

1. Introduction .. 1

1.1 Less is More ... 1

1.2 Not at the same time ... 1

1.3 No! It’s not an e-mail client ... 2

1.4 Lose to gain .. 6

2. Related Work ... 7

2.1 ISO 10918-1 ... 7

2.1.1 Entropy Coding .. 7

2.1.2 Quantization ... 8

2.1.3 Discrete Cosine Transform .. 9

2.2 Classification of Asynchronous Circuits .. 12

2.3 Balsa Back-End .. 13

2.3.1 Basic Elements ... 13

2.3.2 Handshake Components ... 18

2.4 Concluding Remarks .. 20

3. Designing the JPAD .. 22

3.1 JPAD overview .. 22

3.2 Dissecting JPAD .. 23

3.2.1 Bit Supply Unit .. 23

3.2.2 Huffman Decoder ... 24

3.2.3 Extender ... 26

 iii

3.2.4 Dequantizer .. 28

3.2.5 Control Unit ... 28

3.3 Make the Common Case Fast .. 31

4. Implementation and Verification ... 34

4.1 The VLSI and FPGA design flow for asynchronous circuit using Balsa 34

4.2 Implementation Issues .. 36

4.3 Verification .. 38

5. Simulation Result ... 41

5.1 Accuracy Analysis ... 41

5.1.1 PSNR 41

5.1.2 Samples of PSNR ... 41

5.1.3 PSNR in numbers ... 49

5.2 Area Cost .. 51

6. Conclusion, Confession and Future Work ... 55

References .. 56

 iv

LIST OF TABLES

Table 1 : Count of Code Lengths for AC Component 1 24

Table 2 : Huffman Decoding Data ... 25

Table 3 : PSNR of 6 different pictures in YUV color space 50

Table 4 : A List of Total Equivalent Gate Counts ... 51

Table 5 : A List of Total Cell Areas .. 52

 v

LIST OF FIGURES

Figure 1: The 4-Phase Bundled Data Interface Protocol 2

Figure 2: Handshake Circuit for a single-place buffer 3

Figure 3: code for a single-place buffer ... 4

Figure 4: The Complete Balsa Design Flow .. 5

Figure 5 : DCT-based decoder simplified diagram ... 7

Figure 6 : Zig-Zag Sequence ... 8

Figure 7 : Resulting Picture from Quantization ... 9

Figure 8 : An Example of Quantization Table ... 9

Figure 9 : DCT compared with DFT of an input signal 10

Figure 10 : 64 squares of different frequencies ... 11

Figure 11 : A Circuit Segment with Gate and Wire Delays 12

Figure 12 : The Muller C-Element as (i)Gate-Level Implementation,

(ii)Transistor-Level Implementation, (iii)Logic Symbol, (iv) Truth Table

 ... 13

Figure 13 : The NC2P-element as (i) Logic Symbol (ii) Truth Table (iii) Gate-

Level (iv) Transistor-Level Implementation ... 15

Figure 14 : The S-element as (i) Functional Block (ii) Gate-Level

Implementation (iii) Handshaking Protocol .. 16

Figure 15 : The Multiplexer as (i)Logic Symbol (ii) Truth Table (iii) Gate-

Level Implementation .. 17

Figure 16 : The De-Multiplexer as (i) Functional Block (ii) Truth Table (iii)

Gate-Level Implementation ... 17

Figure 17 : The Fetch Component as (i) Symbol (ii) Gate-Level

Implementation .. 18

Figure 18 : The Sequence Component as (i) Symbol (ii) Gate-Level

Implementation .. 19

Figure 19 : The Concurrent Component as (i) Symbol (ii) Gate-Level

Implementation .. 19

Figure 20 : The Variable Component as (i) Handshake Component (ii) Gate-

Level Implementation .. 20

 vi

Figure 21 : The Architecture of JPAD ... 22

Figure 22 : Partial Code of BSU .. 23

Figure 23 : Partial Code of BSU – Continued ... 24

Figure 24 : Code Snippet of Huffman Decoder ... 26

Figure 25 : Magnitude Codes and Ranges ... 27

Figure 26 : Partial Code of Extender ... 27

Figure 27 : Structure of a JPEG File ... 28

Figure 28 : A Code Snippet searching for X”FFDB” from Control Unit 29

Figure 29 : A Code Snippet writing 64 values to quantization table 29

Figure 30 : A Code Snippet performing Huffman DC decoding 30

Figure 31 : Indexable Zig-Zag Sequence ... 31

Figure 32 : The 3 Pipeline Stages of IDCT ... 32

Figure 33 : 3 Stages connected in parallel ... 33

Figure 34 : Data flow diagram of IDCT .. 33

Figure 35 : The FPGA design flow of Balsa ... 35

Figure 36 : The VLSI Design Flow of Balsa ... 36

Figure 37 : JPAD Behavior Simulation Environment 38

Figure 38 : Balsa Description for Memory Model .. 38

Figure 39 : User Interface of Hex2ASCII .. 39

Figure 40 : User Interface of ASCII2BMP .. 40

Figure 41 : Mona Lisa .. 42

Figure 42 : Y Component of Mona Lisa .. 43

Figure 43 : U Component of Mona Lisa .. 44

Figure 44 : V Component of Mona Lisa .. 45

Figure 45 : Spiderman3® ... 46

Figure 46 : Y Component of Spiderman3® .. 47

Figure 47 : U Component of Spiderman3® .. 48

Figure 48 : V Component of Spiderman3® .. 49

Figure 49 : PSNR Displayed in Bars ... 50

Figure 50 : Official Sample ... 51

Figure 51 : Gate Counts Displayed in a Pie ... 52

 vii

Figure 52 : Cell Areas Displayed in a Pie .. 53

Figure 53 : Cell Areas from a 16-bit MUL scheme ... 54

 viii

ACKNOWLEDGMENT

 First and foremost, I would like to thank everyone who made it possible for the

thesis to come out. Without their support (and urge), this piece of work would not have

been achievable. I want to thank Department of Computer Science for providing me with

invaluable resources, thus enabling me to study and research in the first place.

I am forever in debt of gratitude to my supervisor, Prof. Chen, for his instruction and

enlightenment on both my academic and spiritual paths.

I deeply appreciate the laboratory members, many other friends and peers for their good

company through all these 3 years to prevent me from being too depressed.

Especially, I will give special thanks to my mother, who understood my dilemma and

inner struggles (and perhaps laziness) which caused me not to graduate in time.

 ix

ABSTRACT

 Asynchronous circuits have been more and more popular these days, since there

is an increasingly dire need for more efficient use of energy, resulted from not only

limited battery life but also concerns for global warming. However, asynchronous

circuits have a nature that renders them difficult to design and verify. With the invention

of Balsa programming environment, people can forge their “asynchronous” ideas into

reality more easily by the help of its synthesis and simulation tools.

A JPEG decoder was chosen as the object of implementation because it was tested

by time, as well as sophisticated enough to show the viability of this design flow or

methodology. A pipeline structure was also added to hasten computation of the most

time-consuming part, the IDCT. Furthermore, the 4-phase bundled data approach was

taken in this example to facilitate development and avoid excess area cost generated

otherwise by a dual-rail version.

1

1. Introduction

1.1 Less is More

 Not until recently did so many scientists devote themselves to the research of

more power saving methods. Once people have calculation speeds enough to meet the

requirements of most applications, they move on to make those devices more efficient─

that is─ operating on less power while not affecting their functionality. This can be seen

especially from the ever growing number of hand-held or mobile devices such as

notebook computers, PDAs, cell-phones, music/video players……etc. All of these

necessitate longer time of use while powered by fast-draining batteries.

 Unfortunately, the technologies of batteries aren’t evolving at the same pace as

those of semiconductors, hence compelling us not to rely on the battery capacity but on

our own change of ideas. Some techniques like clock gating found in low-power

synchronous circuits, cache resizing or word-line gating of caches in microprocessors, or

fine-grain dynamic leakage reduction to reduce intrinsic static leakage current from

CMOS.

 Nonetheless, they are highly dependent on the type of implementation, and they

may pose certain headaches to the developers. On the other hand, asynchronous circuits

have a low-power nature which derives from their total lack of global clocks.

Furthermore, they are applicable with any transistor-based technologies.

1.2 Not at the same time

 What exactly is an asynchronous circuit? You might ask. Here let me take

something of my favorite for example. Imagine that several cars are running on the road

and suddenly the light turns red. The first car stops, then second, third …… until the last

car in line does. After a while the light changes its color, and the cars accelerate in the

same order from the first one to the last one. Every single car must react to the action

its frontal car takes.

 If you are comparing asynchronous circuit to road traffic, then an asynchronous

component is just like a car. It means that no component should make a request for

input/output data unless the next component is ready, and certainly it must signal or

 2

inform the last component it connects to upon completion. Well if you are familiar with

internet and TCP/IP you must have heard of 3-Way handshake, but we don’t need 3-way

in an electronic circuit since the correctness of data is guaranteed, if not 100%. Shown

below is one of such handshake protocols.

Figure 1: The 4-Phase Bundled Data Interface Protocol
 As you probably guessed, an asynchronous component is active only if

spatiotemporally required, therefore consuming energy in the right place at the right time.

This most noticeable feature is what its synchronous counterpart cannot simulate, with

clocks ticking everywhere.

 Everything has a price though. It takes a certain amount of time before we can

step on the pedals because of our limited reflexes. Same goes for handshake protocols,

the extra circuitry added for coordinating asynchronous signals and data also puts a great

burden on the area cost and operating speed. That’s why few practitioners of

asynchronous design compare their results with synchronous ones in respect to

performance.

 With these drawbacks in mind, one shouldn’t be too particular about speed or

cost when he decides to tread this path. Ailed by the difficulties such as possibility of

data hazards, lack of commercial tools, let alone insufficient experience, we shouldn’t

further trouble ourselves by doing gate-level design. Therefore, to aid our work, we

adopted Balsa, a high-level asynchronous-specific language, which was developed at

Manchester University, in the design process.

1.3 No! It’s not an e-mail client

 According to the authors, “Balsa is the name of both the framework for

synthesizing asynchronous hardware systems and the language for describing such

 3

systems”. Interestingly, if you look up the word in the dictionary, it says a tropical

American tree or a life raft, since they are UK but US, it must be referring to the latter.

I’m quite satisfied with the answer I found since at least it saves you a lot of time/life.

 What it does is simply translate your syntax into communicating handshake

components which closely follow Tangram(1). They call their own interpretation of

Tangram as Breeze(since it must be hot rafting under the blazing sun). To see how it

looks, here is an example:

Figure 2: Handshake Circuit for a single-place buffer

 A filled circle represents an active port, sending requests to the unfilled circle,

which is a passive port. Sequencer “;” ensures that activities on the left side finish before

those on the right side. Fetch component “→” causes data to be moved to the storage

element of Variable x. When these operations are complete, the Sequencer completes its

handshake with the repeater which initiates the cycle again. It is relatively simple,

composed of only a few lines.

 4

Figure 3: code for a single-place buffer

 We will use loop structures very extensively in the making. Another feature

worth noting also is its ability to generate a netlist from a breeze description. The netlist

could then be manually tweaked to be uploaded onto FPGA, or be ready for a layout.

Now is a good time to introduce its full design flow to the curious eyes.

 5

Figure 4: The Complete Balsa Design Flow
 As the self-explanatory figure reveals, a Balsa description of a circuit is compiled

using balsa-c to an intermediate breeze description. Most of the Balsa tools are in charge

of manipulating the breeze handshake intermediate files. Behavioral simulation is

provided by breeze-sim. This simulator allows source level debugging, visualization of

the channel activity at the handshake circuit level as well as producing conventional

waveform traces that can be viewed using the waveform viewer gtkwave. balsa-netlist

produces a netlist appropriate for the target technology or CAD framework from a

Breeze description.

 Now that we are confident of its great potential, we should put it into good use by

doing something huge, yet not exhausting our system resources. After some surveying,

 6

pondering and dithering, I thought the enduring image format JPEG would be best to

assume the role. Moreover, a standalone decoder would be more than enough to assume

it, for the procedures concerned are quite similar between a decoder and an encoder.

1.4 Lose to gain

 There are quite a few image compression formats, of which the most well-known

ones are GIF, PNG and JPEG. GIF adopts the LZW lossless data compression technique

to reduce the file size without degrading the visual quality, however, its 256-color

limitation makes it virtually useless dealing with photos. Depending on usage, PNG can

be lossless or lossy, and is quite efficient tackling large blocks of the same colors.

Among all of the formats, JPEG is the most commonly used standard method of

compression for photographic images. The compression method is usually lossy

compression, meaning that some visual quality is lost in the process, although there are

variations on the standard baseline JPEG which are lossless.

 There is even a progressive format, in which data is compressed in multiple

passes of progressively higher detail. This allows for a quick preview before all the data

has been downloaded. However, progressive JPEGs are not as widely supported. Based

on the aforementioned circumstances, I decided that a baseline JPEG decoder would be

best for implementation this time to take advantage of its popularity and versatility.

 7

2. Related Work

 This chapter circles around three axes. First we will start out by sharing a brief

view at the JPEG specifications and its mechanism. Then we will describe different

categories of asynchronous circuits regarding delay assumptions. Finally we will

introduce several frequently encountered basic cells generated automatically by Balsa

synthesis tool.

2.1 ISO 10918-1

 The name JPEG stands for Joint Photographic Experts Group, the name of the

committee who created the standard. The group was organized in 1986, issuing a

standard in 1992 which was approved in 1994 as ISO 10918-1(2). Its decoding process

can be easily visualized with the help of the following diagram.

Figure 5 : DCT-based decoder simplified diagram

 As we can see, a decoding process converts compressed image data to

reconstructed image data through three main stages, entropy (Huffman) decoder,

dequantizer and IDCT, with the first two having their own tables.

2.1.1 Entropy Coding

 In information theory an entropy coding is a lossless data compression scheme

that assigns codes to symbols so as to match code lengths with the probabilities of the

symbols. In JPEG, it is useful to consider entropy coding as a 2-step process. The first

 8

step converts the zig-zag sequence of quantized coefficients into an intermediate

sequence of symbols. The second step involves converting the symbols to a data stream

in which external boundaries of the symbols totally disappear. Figure 6 shows the zig-

zag sequence where the first block represents the DC component and the rest AC

components.

Figure 6 : Zig-Zag Sequence
 The DC and AC symbols take the forms (SIZE)(AMPLITUDE) or

(RUNLENGTH,SIZE) (AMPLITUDE) respectively(3). To be clear, Runlength is the

number of zeros encountered along the zig-zag path before a non-zero number. JPEG

adopts the somewhat weird scheme because zeros are frequent and certain sizes of

numbers are more frequent than the others. We’ll go in detail about this later.

2.1.2 Quantization

 The human eye is good at seeing small differences in brightness over a relatively

large area, but not so good at distinguishing the exact strength of a high frequency

brightness variation. This fact allows one to deceive the eye by greatly reducing the

amount of information in the high frequency components only. This is done by simply

dividing each component in the frequency domain by a constant for that component, and

then rounding to the nearest integer. This is what makes JPEG lossy in the whole process.

 Figure 7 demonstrates the result from such operation.

 9

Figure 7 : Resulting Picture from Quantization
 It is usually the case that many of the higher frequency components are rounded

to zero, and many of the rest become small positive or negative numbers, which take far

fewer bits to store. There can be multiple quantization tables for an image file, and a

common quantization matrix may just look like Figure 8.

Figure 8 : An Example of Quantization Table
 The first number 16 in the upper left corner stands for dividing by 16 and

rounding it. Magnitude grows diagonally to the lower right as frequency increases. It’s

advised to load the tables from the file since they differ from one image to another.

2.1.3 Discrete Cosine Transform

 A discrete cosine transform (DCT) is a Fourier-related transform similar to the

discrete Fourier transform (DFT), but using only real numbers. DCTs can be thought of

as DFTs with double length, operating on real data with even symmetry (since the

 Fou

to apply D

input or ou

processed

 For

the set of

x , …, xN
formula:

and the inv

where

 c(k

urier transfo

DFT on pic

utput data a

by DCT or

Figur

rmally, the

real numbe

N are tran

verse transfo

k) =
√

 fo

 = 1 fo

form of a re

tures for th

are shifted b

IDCT.

re 9 : DCT

DCT is a l

ers), or equ

nsformed in

X

form is

x

or k = 0

or k = 1, 2,

1

eal and even

hey are not

by half a sa

compared

inear, inver

uivalently a

nto the N r

2c k
N

x
N

c k X
N

…, N – 1

 10

n function i

in time bu

mple (128 f

with DFT o

rtible functi

an N by N

real number

x cos
2j
2

 k

cos
2j
2N

 j = 0, 1,

s real and e

ut in spatial

for an 8-bit

of an input

ion F: N →

square mat

rs X , …, X

1 kπ
2N

k = 0, 1, …,

1 kπ
N

…, N – 1

even). It is

l domain. In

t sample), b

t signal

→ N(where

trix. The re

XN accor

 N – 1

superfluous

n JPEG the

before being

e R denotes

eal numbers

ding to the

s

e

g

s

s

e

 Th

any known

enables dir

and the 2D

where

 c(u

 c(u

 Th

squares sh

glance. Fo

rows of DC

to accelera

e transform

n transform

rect expansi

X ,
2
N
c

D IDCT as:

x ,
2
N

N

u), c(v) = 1

u), c(v) =

F

e 2D DCT

hown above

ortunately, a

CT followe

ate DCT wh

m possesses

m with a fa

ion into a tw

c u c v
N

c u
NN

1 √2⁄ for u

1 otherwise

igure 10 : 6

transforms

in Figure 1

after some

d by 8 colu

hich will be

1

a high ener

ast computa

wo-dimensi

x ,

N

u c v X ,

u,v = 0

e.

64 squares

64 pixels o

10. It may se

evaluation

umns of DCT

discussed l

 11

rgy compac

ational algo

onal DCT. A

cos
2i
2

 u、v

cos
2i
2N

 i、j =

of differen

of a block

eem a huge

we realize

T, or vice v

ater.

ction proper

orithm. Its l

A 2D DCT

1 uπ
2N

cos

= 0, 1, …,

1 uπ
N cos

2

= 0, 1, …, N

nt frequenc

to a linear

e number of

that it can

versa. There

rty which is

linear prop

is defined a

2j 1 vπ
2N

N-1

2j 1 vπ
2N

N-1

ies

combinatio

f multiplicat

be decomp

e are several

 superior to

erty further

as:

on of the 64

tions at first

posed into 8

l algorithms

o

r

4

t

8

s

 12

2.2 Classification of Asynchronous Circuits

Figure 11 : A Circuit Segment with Gate and Wire Delays
 At the gate level, asynchronous circuits can be classified as being delay-

insensitive, quasi-delay-insensitive, speed-independent, or self-timed depending on the

delay assumptions that are made(4). Figure 11 serves to illustrate the following

discussion. In this figure there are three gates (A, B, C) and three wires (W , W ,W). dA,

dB, and dC represent the gate delays for A, B, and C, while d , d , and d represent the

wire delays for W , W , and W respectively.

(a) Delay-Insensitive (DI): A circuit that operates correctly with positive, bounded but

unknown delays in wires and gates. Recalling figure11, this is equivalent to arbitrary

dA, dB , dC , d , d , and d . Unfortunately, assuming ideal zero-delay wires is not

very realistic in today’s semiconductor processes.

(b) Quasi-Delay-Insensitive (QDI): a QDI circuit is DI with the exception of some

carefully identified wire forks called “isochronic forks”. Referring to figure 11, this

means arbitrary dA, dB, dC, and d , except that d = d .

(c) Speed-Independent (SI): a SI circuit is a circuit that operates correctly assuming

positive, bounded but unknown delays in gates and ideal zero-delay wires. Referring to

figure 11, this implies arbitrary dA, dB, and dC, except that d = d = d = 0.

(d) Self-Timed (ST): a self-timed circuit contains a group of self-timed elements. Each

element is contained in an “equipotential region”, where wires have negligible or

well-bounded delay. An element itself may be an SI circuit, or a circuit whose correct

operation relies on use of local timing assumptions. However, no timing assumptions are

made on the communication between regions. That is, communication between regions

is DI.

 13

2.3 Balsa Back-End

 The Balsa back-end generates gate level netlists ready for being imported into

target CAD systems to yield circuits implementations. In this section we are going to

introduce some basic cells tuned for Xilinx technology which are generated by Balsa,

such as Muller C element and S element. We will also describe some handshake

components (5) in Balsa synthesis system.

2.3.1 Basic Elements

 The gate level netlist generated for Xilinx technology by Balsa only makes use of

some basic cells including AND, OR, NOR, XOR, NADN, BUF, XNOR, INV, FD (D-

type flip-flop), FDC and FDCE. Basic elements are built from these cells.

Figure 12 : The Muller C-Element as (i)Gate-Level Implementation, (ii)Transistor-
Level Implementation, (iii)Logic Symbol, (iv) Truth Table

 Shown in Figure 12, the Muller C-element is a commonly used asynchronous

logic component originally designed by David E. Muller. The output of the C-element

 14

reflects the inputs when the states of all inputs match. Simply put, the output is set to 0

when all inputs are 0, and it is set to 1 when all inputs are 1. The other input

permutations just do not alter the output, when the element serves as a state holder much

like an asynchronous set-reset latch.

 Combining this with the observation that all asynchronous circuits rely on

handshaking that involves cyclic transitions between 0 and 1, it should be clear that the

Muller C-element is indeed a fundamental component that is extensively used in

asynchronous circuits.

 15

Figure 13 : The NC2P-element as (i) Logic Symbol (ii) Truth Table (iii) Gate-Level
(iv) Transistor-Level Implementation
 Figure 13 shows the NC2P element. Output is set to 1 as long as a is 0, regardless

of b value. It resembles C-element very much in the NMOS or lower part of the circuit,

while the output assumes the opposite signal. The only permutation left just keeps the

original state. It may look weird at this point, however, we will have use for this in the

upcoming element.

 16

Figure 14 : The S-element as (i) Functional Block (ii) Gate-Level Implementation
(iii) Handshaking Protocol
 Figure 14 shows the S-element which is ubiquitous in the implementation of

handshake components. An S-element has 4 pins, among which are 2

request/acknowledge handshake pairs ― 【Ar】 / 【Aa】 and 【Br】 / 【Ba】. In

Balsa system it substitutes 【NC2P】 for 【inverter of C-element】. Therefore, it is

capable of doing the same job while reducing the number of gates because 【NC2P】

occupies only 2 AND gates, 1 NOR gate, and 1 Inverter instead of 3 AND gates, 1 OR

gate, and 1 Inverter by【inverter of C-element】.

 17

Figure 15 : The Multiplexer as (i)Logic Symbol (ii) Truth Table (iii) Gate-Level
Implementation

Figure 16 : The De-Multiplexer as (i) Functional Block (ii) Truth Table (iii) Gate-
Level Implementation
 Figure 15 and 16 show separately the multiplexer and de-multiplexer elements.

They are used extensively in many components such as Balsa full adder and BrzCase.

 18

2.3.2 Handshake Components

 The handshake component sets used by Tangram(1) and Balsa are very similar.

Balsa contains about 40 components that signal handshakes for communication, each of

which has a substantial gate-level implementation associated. We will illustrate some

handshake components in the following to shed a bit light on their mechanism.

Figure 17 : The Fetch Component as (i) Symbol (ii) Gate-Level Implementation
 Shown in Figure 17 is the Fetch component which is the most common way to

control a datapath from a control tree. Transferrers are used to implement assignment,

input and output channel operations in Balsa by transferring a data value from a pull

datapath and by pushing it towards a push datapath.

 19

Figure 18 : The Sequence Component as (i) Symbol (ii) Gate-Level Implementation

Figure 19 : The Concurrent Component as (i) Symbol (ii) Gate-Level
Implementation
 Sequence and Concur in Figure 18 and 19 form a large part of handshake circuit

control trees. They are used to activate a number of commands under the control of the

activate handshake.

 20

Figure 20 : The Variable Component as (i) Handshake Component (ii) Gate-Level
Implementation
 The variable component in Figure 15 uses D-type flip-flop to store data. The

source of pulse triggering storage comes from the signal write_0r. When a certain piece

of data should be stored, write_0r will be pulled up and down to trigger the flip-flop, in

the meantime signaling acknowledgement write_0a. Likewise, when the data is desired

read_0r or read_1r is set, followed by read_0a or read_1a. The compilation mechanism

for HDLs must ensure that activity on the write port and read ports are mutually

exclusive.

2.4 Concluding Remarks

 In this chapter we introduced the ISO10918-1(2) specifications, known widely as

JPEG. We walked the reader through the three main stages constituting JPEG

encoding/decoding processes. They are entropy coding, quantization, and DCT operation.

We learned that if we are to design a JPEG decoder architecture much of the efforts

should be focused on Huffman decoding, and a lot more on IDCT unit.

 21

 Then we introduced the classification of the asynchronous circuits.

Asynchronous circuits can be classified into SI, DI, QDI, or ST according to the delay

assumptions. Lastly we illustrated the Balsa back-end with symbols and gate-

level/transistor-level implementations. Balsa synthesis system consists of approximately

40 components, each of which can be translated to gate-level netlist. Those components

make use of handshaking protocol for communication.

 22

3. Designing the JPAD

 Knowing that it’s not quite appropriate to get down to details just yet, we shall

take a rough view at the architecture of JPAD for starter. After being somewhat familiar

with its directions of dataflow, we shall closely explore each functional block and even

reveal a few lines of code to help understanding of the algorithms. Eventually we will

discuss the speedup already done and theoretically possible future optimizations.

3.1 JPAD overview

Figure 21 : The Architecture of JPAD
 From a general view at JPAD we know it consists of a control unit, a BSU(bit

supply unit), a Huffman decoder, an IDCT unit, a dequantizer, an extender, a register

file, a RAM, and a ROM. Arrowed buses and lines stand for channels and thus transfers

 23

of data as well as their directions. Purple arrowed lines mean that the control unit has

control over their destination blocks.

 After the virtual RAM finished loading file to it, the BSU runs parallel to the

control unit until either one terminates. The idea is as follows: the control unit requests

data from BSU, asking for certain number of bits, instead of getting it directly from

RAM. It is BSU that fetches the data from RAM whenever it is empty. The control unit

will then send data and commands to the Huffman decoder, which further sends the

decoded index to the register file.

 Once the indexed value is analyzed and part of it extended, the quantized

DC/AC component goes to the register file. After the essential DC/AC components are

dequantized and stored back again to the register file, IDCT takes charge and

calculates/restores the original pixels. Because the reordering and upscaling are

unneeded in visualizing the results, the IDCT unit simply outputs to file each time it

completes an 8x8 arithmetic block. When the end of file is reached, the whole DSP halts.

3.2 Dissecting JPAD

3.2.1 Bit Supply Unit

 Since the control unit can ask for different numbers of bits from 1 to 16, it’s

necessary for the BSU to keep track of which bit is read last time.

Figure 22 : Partial Code of BSU

 24

 As written in Figure 22, the position tracker curBit assumes a value between 0

and 16. Whenever it reaches 16, memory is read, the address counter curAddress is

incremented, and curBit is reset. As soon as temp is appended enough bits, the loop is

quit and the value of temp is relayed to the output channel, finishing the transaction.

 Something worth noting is that during entropy decoding, in order to ensure that a

marker does not occur within an entropy-coded segment, any X’FF’ byte generated by

either a Huffman or arithmetic encoder, or an X’FF’ byte that was generated by the

padding of 1-bit, is followed by a “stuffed” zero byte. In other words, should X’FF’

appear during entropy encoding, it must be replaced with X’FF00’ to remove ambiguity.

Therefore it takes special care to modify the BSU.

Figure 23 : Partial Code of BSU – Continued
 The trick is to add a flag that indicates the validity of the future X’00’

encountered. X’00’ will just be neglected if the flag is false, or be processed as usual if

the flag is true. Also due to the fact that X’FF00’ may span across 32 bits, we cannot

keep only 16 bits at one time. Therefore we added nextData, which is next data to come

after curData is depleted.

3.2.2 Huffman Decoder

 In the JPEG mode we will be using in this thesis, the possible Huffman values

are the integers 0 to 255. It is known that depending upon how the Huffman coding

algorithm is applied, different codes can be generated from the same symbol values and

frequency data. The JPEG standard does not specify exactly how Huffman codes are

generated. Actually, the Huffman codes for values in JPEG files do not have to be

optimal.

Table 1 : Count of Code Lengths for AC Component 1

 25

Code Length Count
1 0
2 2
3 1
4 3
5 3
6 2
7 4
8 3

. .

. .

. .
 Table 1 lists how many codes there are for each length. It is part of the default

Huffman table suggested for baseline JPEG. The obvious method for decoding Huffman

values is to create a binary tree containing the values arranged according to their codes.

Start at the root of the tree and, using the value of bits read from the input stream to

determine the path, search for the value in the tree.

 A simpler method to implement is to use the list of values sorted by Huffman

code in conjunction with an array of data structures with one element per Huffman code

length. Each structure contains the minimum and maximum Huffman code for a given

length and the index of the first value with a Huffman code of that length in the sorted

value array.

Table 2 : Huffman Decoding Data

Length Minimum Code Maximum Code First Value

1 N/A N/A N/A
2 00 01 1
3 100 100 3
4 1010 1100 4
5 11010 11100 7
6 111010 111011 10
7 1111000 1111011 12
8 11111000 11111010 16

 26

 With predictable Huffman tables like that in Table 2, it is natural to hard-

wire/pre-store those values in the ROM and calculate the original values by the

algorithm below.

Figure 24 : Code Snippet of Huffman Decoder
 The upper region looks for proper code length to start with. Once there is a match,

which is detectable by comparing the target code with the minimum code, the decoded

index will be sent to the output channel. The index is attainable by subtracting minimum

code from the target code, which yields an offset, then by adding the first index value of

that length. In the end, I made 4 versions of this corresponding to all possible Huffman

tables ever found in pure baseline JPEG.

3.2.3 Extender

 In the previous chapter we mentioned the symbol pair (SIZE, AMPLITUDE). In

order to restore its value we still have to send it into the extender and perform some

simple computations.

 27

Figure 25 : Magnitude Codes and Ranges
 Figure 25 gives us some clue as to which magnitude represents what range of

numbers. It is quite apparent that the closer it is to the origin the smaller magnitude it has

and hence the fewer bits it occupies. To reveal how they convert we would borrow some

lines from my code.

Figure 26 : Partial Code of Extender

 28

 First we would shift vt whose initial value is 1 leftwards by (size – 1) bits, then

compare the additional bits with vt. If the additional number is greater than vt, it is taken

as output and we know it’s positive. Otherwise subtract it by vt twice and add a one so it

is negative. Take B”11” for example, since 11 is larger than 10, it translates to +3.

Likewise, since B”00” is smaller than 10, it makes a -3.

3.2.4 Dequantizer

 This is by far the most trivial component in the whole JPAD. It’s no big deal but

a booth multiplier, so we will just skip it for now.

3.2.5 Control Unit

 The control unit is the thinking brain that issues all commands to its minions. It is

also the only component dealing with markers or tags. The JPEG header is a messy

tangle, and it deserves full attention when being handled.

Figure 27 : Structure of a JPEG File

 29

 All of the markers are represented by 2 bytes, starting with X”FF”. The SOI

marker (X”FFD8”) marks the beginning of an image. Well, since all image files have

X”FFD8” at the very top of them, it can be skipped without any doubt. The next adjacent

JFIF marker (X”FFE0”) stores a lot of information from “JFIF” string, version, units,

density, to thumbnail. Ironically, since we know what we are doing, we have no use for

them either. The next Define Quantization table (DQT) marker (X”FFDB”) records a

quantization table mandated by the dequantization process and should be processed.

Figure 28 : A Code Snippet searching for X”FFDB” from Control Unit
 The 2 lines req <- reqInfo and streamData -> curData are the standard procedure

throughout the code to fetch data from BSU. The loop appends 8 bits to temp each time

it receives data until X”FFDB” is found. This way it is convenient to locate a certain

marker within the file, and to skip desired number of bits as well. Certainly we

shouldn’t forget to store the tables too.

Figure 29 : A Code Snippet writing 64 values to quantization table
 After storing what is necessary and discarding what’s not, we are ready to jump

to the Start of Scan (SOS) marker (X”FFDA”) and commence entropy decoding.

 30

Figure 30 : A Code Snippet performing Huffman DC decoding
 Figure 30 explains the way control unit calls Huffman decoder. Temp is

appended one bit at a time and transferred to Huffman decoder to determine if there is a

hit. If there is a match, we can use “index” together with the Huffman table to find its

code value, otherwise “index = 255” will inform us there is no match and the loop

continues.

 For a DC coefficient the decoded code value can be sent to extender and the real

DC value will be derived. Unlike a DC one, for an AC component the run length is

extracted from the 4 higher bits of the decoded code value and the size is extracted from

the lower 4 bits. The DC/AC components, whether zero or non-zero, are placed in the

array in a zig-zag order. The sequence is indexed by pre-stored table just like min-max

of Huffman.

 31

Figure 31 : Indexable Zig-Zag Sequence
 When all 64 components are filled, it’s time to move them into the IDCT unit

and wait for the results.

3.3 Make the Common Case Fast

 Everyone familiar with Computer Architecture knows painfully well about

Amdahl’s law. The law is used to find the maximum expected improvement to an overall

system when only part of the system is improved. From our experience and cognition,

most of the computing time is spent on IDCT calculation. Even the Huffman decoding

process is intrinsically a downward matter. The following codes are indecipherable until

the precedent ones are decoded.

 As a consequence, all the struggles should be put on IDCT and on it only for the

sake of performance. At the time being there are generally two tactics tackling IDCT,

one of which is butterfly(6) and the other is without butterfly. If the butterfly is exploited

to full extent, the number of multiplications can be drastically reduced, for the cost of

more additions and more time. Bearing in mind no matter how hard we manage to

reduce multiplicative operations, there are still inevitable ones over there.

 32

 Since the speed of a pipeline is determined by the slowest stage within, the

optimal speed is restricted to the time of a single multiplication. In Jari Nikara’s

paper(7)(8) he introduced a pipeline structure that is divided by 3 sets of multipliers

evenly placed. This is exactly what we are looking for ― each stage is accompanied by

4 or 5 multipliers running in parallel.

Figure 32 : The 3 Pipeline Stages of IDCT
 As shown in Figure 32, the 8 inputs X0 ~ X7 flow from the left to the right,

eventually transforming into 8 results x0 ~ x7. We then encapsulate the 3 stages with an

outer module IDCT, to facilitate connection with other modules and to improve its

modularity.

 33

Figure 33 : 3 Stages connected in parallel
 One thing to pay attention to when using the module is that during the first 2

cycles of feeding the data, the outputs are far from ready, yet we have to access them lest

a deadlock be caused.

Figure 34 : Data flow diagram of IDCT
 The strategy is to ignore the data obtained at the first 2 cycles and continue to get

them until 8 rows or 8 columns are completed. Applying this simple pipeline structure

can give us 3*8/10 = 2.4X speedup versus a non-pipelined approach. If more

sophisticated pipelining is desired, more registers or RAM cells must be included to

reduce bubbles and increase throughput to achieve an ideal 3X improvement for the

IDCT part.

 34

4. Implementation and Verification

 This relatively short chapter consists of three parts. First we will illustrate our

design flow for asynchronous implementation based on FPGA and VLSI. Then we will

point out several issues and problems circling Balsa synthesis. Finally we will explain

how we verify our design.

4.1 The VLSI and FPGA design flow for asynchronous circuit using
Balsa

 The JPAD core is modeled with Balsa language, and then compiled into a

collection of “handshake components” with the balsa-c compiler. Each of these

components has a concrete gate level implementation. By using the balsa-netlist tool we

can automatically generate them into Verilog for Xilinx or other target synthesis tools.

The following steps are the design flow for FPGA. The Verilog netlist generated by

balsa-netlist is converted into a netlist of basic gates in the synthesis step of the design

flow. The netlist may be optimized using technology-independent logic minimization

algorithms.

 However, we must avoid the logic minimization for hazard free circuits and

buffers generated by balsa-netlist. We should add the constraint “keep hierarchy” to

avoid the logic minimization. Then the synthesized netlist is mapped to the target device

using a technology-mapping algorithm. The placement algorithm maps logic blocks

from the netlist to physical locations on an FPGA. Once the placement has been done,

the routing algorithm determines how to interconnect the logic blocks using the available

routing. The final output of the design flow is the FPGA programming file, which is a bit

stream determining the state of every programmable element inside an FPGA. The

design flow is shown is Figure 35.

 35

Figure 35 : The FPGA design flow of Balsa
 The VLSI design flow of Balsa is somewhat different from that on FPGA. For

the first thing, the Balsa-netlist does not support the Synopsys technology. The only

thing we may use is the “Example technology”, with some gates modified in the

standard cells to adapt for Synopsys. Then we proceed to use Synopsys Design Compiler

to synthesize the Verilog model. After synthesis, we can run the functional simulation

 36

with Modelsim. If everything is alright, we may move a step further to do the place and

route with SOC Encounter and export the layout GDS file.

Balsa description

 Layout netlist Timing Simulation

Balsa-c

Breeze description

Balsa-netlist

Netlist for Synopsys

Synopsys Design
Compiler

Cadence SOC encounter

Behaviour Simulation

Function Simulation

Gate level netlist

ModelSim

Balsa development kit

Figure 36 : The VLSI Design Flow of Balsa

4.2 Implementation Issues

 Compilation from Balsa programs into Xilinx netlists proceeds in two steps. In

the first step, handshake circuits are produced to form the intermediate framework. An

interesting feature of this compilation is that it is transparent, allowing feedback about

important performance characteristics such as performance, area, timing, and so forth to

 37

be created at the handshake circuit level and to be presented to the VLSI programmer at

the Balsa level. When the designer is content with the performance of the Balsa program,

the corresponding handshaking circuit is then expanded into a gate-level netlist targeted

for a certain technology. At this level the design can be simulated to obtain more

accurate performance figures with the help of commercial simulators.

We chose four-phase bundled data protocol over dual-rail to implement the

handshake circuit in order to reduce the area cost. Balsa also provides a few technologies

to select from. If we select Xilinx ISE, the circuits are implemented using just the Xilinx

standard cells such as AND, OR, Inverter gate and flip-flop. If the target synthesis tools

are not supported, like Synopsys Design Compiler, we can use the “Example”

technology which translates the circuit to some basic cells, and we have to somehow

make them compatible with the standard cells in the target synthesis tool.

It should be bewared that the Xilinx synthesis tool could perform logic minimization

but it must be avoided. The asynchronous system adds some buffer or redundant circuit

to ensure hazard-free, however, minimization is not applicable here. We can avoid this

situation by adding the constraint “keep hierarchy” on the handshake modules.

RAM is not modeled by Balsa language. We can implement it using the block RAM

on FPGA or using the standard RAM in VLSI. A handshake interface between the JPAD

core and the memory must be devised if so required.

 38

4.3 Verification

Figure 37 : JPAD Behavior Simulation Environment

The environment used to do behavior simulation for JPAD is illustrated in Figure 37.

The RAM model is the predefined procedures in Balsa as shown in Figure 38.

Figure 38 : Balsa Description for Memory Model

 We assign the address width and data width to decide their size. For convenience,

address width is 2^22 and data width is 2 bytes which yield a total 8MB to accommodate

all possible size JPEG files. The contents of the RAM are loaded during initialization as

 39

16-bit quantities in the hexadecimal format from an ASCII file. An ASCII file is

translated from a JPEG file from my own C# program named Hex2ASCII written just

for this project.

Figure 39 : User Interface of Hex2ASCII
 Whenever an address arrives at the RAM model from the RAM address channel

along with rNw set to “read”, the RAM outputs the header information or the image data.

The photo viewer software, such as ACDSee or Photoshop, offers us options to compare

the pictures by bare eyes or to compare uncompressed BMP files converted from JPEG

and my own program ASCII2BMP in Figure 40. If the results differ too much, we must

go back to modify the code of JPAD.

 40

Figure 40 : User Interface of ASCII2BMP

 41

5. Simulation Result

 This chapter is organized as follows: We will start by analyzing some pictures we

decoded with JPAD. Then we will post the gate counts and area costs calculated from

different EDA tools.

5.1 Accuracy Analysis

 In general, the fixed-point arithmetic is employed for speed and area efficiency

of the design. However, a fixed-point representation introduces an accuracy problem due

to the finite word length. Consequently, the signals must be quantized to the given word

length and can be represented only in finite precision. From the implementation point of

view, the truncation of two’s complement is the cheapest quantization method. Since we

took the fixed-point approach in designing the multiplier, errors are likely to surface and

should not be overlooked.

5.1.1 PSNR

This metric, which is used often in practice, is called peak-to-peak signal-to-noise ratio.

d X, Y 10 log
∑ X , Y ,

,
,

Generally, this metric is equal to Mean Square Error, but it is more convenient to use

because of logarithmic scale.

5.1.2 Samples of PSNR

 Below we will paste a couple of JPAD-decoded BMP files and their

measurements of PSNR with respect to Y, U, and V components in the YUV color space.

The first portrait is the worldly known Mona Lisa by Leonardo da Vinci.

 42

Figure 41 : Mona Lisa

 43

Figure 42 : Y Component of Mona Lisa

 44

Figure 43 : U Component of Mona Lisa

 45

Figure 44 : V Component of Mona Lisa

Another iss a wallpapeer of the pop

F

4

pular Marve

Figure 45 : S

 46

el® movie se

Spiderman

eries Spider

n3®

rman®.

Figure 46

4

: Y Compo

 47

onent of Sppiderman3®®

Figure 47

4

: U Compo

 48

onent of Sppiderman3®®

5.1.3 PS

However w

Hence we

NR in num

we want to

can do noth

Figure 48

mbers

show all th

hing but res

4

: V Compo

he pictures w

ort to nume

 49

onent of Sp

we picked,

eric figures h

piderman3®

it would se

here.

®

eem impropper to do so

.

 Th

be associat

A much hi

we cannot

indeed fau

blo

m

spi

Table 3

bloodelv

crysis

haruhi

monalis

spiderm

twilight

e blue dots

ted with tha

igher PSNR

t hardly tel

ultless and n

0

odelves

crysis

haruhi

monalisa

derman

twilight

3 : PSNR of

ves

a

man

Figure

 represent v

at of therma

R can be se

l the differ

not worth an

20

5

f 6 differen

49 : PSNR

very low er

al imaging,

een from Fi

rence at all,

n overhaul.

40

 50

nt pictures i

Y U

42.6964

42.4501

45.2988

45.0897

45.818

45.5227

R Displayed

rror rates. T

with white

gure 50. Si

, we know

60

in YUV col

U V

48.3756

49.9767

48.6319

49.8218

48.2936

47.1696

d in Bars

This kind of

e color as th

ince the resu

that the fix

80

lor space

V

47.5346

50.8844

47.889

48.7581

49.8223

48.0545

f data prese

he highest te

ults are qui

xed-point m

100

V

U

Y

entation can

emperature

ite well and

multiplier is

n

.

d

s

 51

Figure 50 : Official Sample

5.2 Area Cost

 We have two sets of figures concerning cost, one of which is based on gate

counts, and the other on areas. The gate count numbers are taken from Map Report in

Xilinx ISE. The “total equivalent gate count” is an estimate of the number of gates if this

design has been implemented with standard-cells.

Table 4 : A List of Total Equivalent Gate Counts

 Gate Count

ControlUnit 441590

IDCT 158509

Stage1 50038

Stage2 42669

Stage3 42768

Huffman Decoder 22832

BSU 8577

Mul 7018

Dequantizer 4092

Extender 2000

 On

micromete

synthesis t

n the other h

ers. It is cal

tool.

158509

50038

42669

Figure 51

hand, the “to

lculated by

Table 5

Contro

IDCT

Stage1

Stage2

Stage3

Huffm

BSU

Mul

Dequa

Exten

8

42768
22832

8577

5

: Gate Cou

otal cell are

Synopsis D

5 : A List o

olUnit

1

2

3

man Decoder

antizer

der

2
7018 4

Ga

 52

unts Display

ea” is an est

Design Com

of Total Ce

Total Cel

1909

568

193

159

158

104

35

24

14

9

4092
20

ate Coun

yed in a Pie

imate of are

mpiler, an in

ll Areas

ll Area

9812.63

8211.44

3338.95

9384.16

8403.06

4809.36

5198.98

4644.55

4643.47

9722.71

441590

000

nt

e

eas measure

ndustry app

C

I

S

S

S

H

B

M

D

E

ed in square

proved RTL

ControlUnit

DCT

Stage1

Stage2

Stage3

Huffman Deco

BSU

Mul

Dequantizer

Extender

e

L

oder

 Fro

a good job

what they

 Be

can affirm

since 1.9M

the sofa an

FPGA, or

(After

design so

fortunately

pasted belo

1069

om the two

b (or bad o

have to do w

cause both

m that they r

M um isn’t

nd say it’s

even on a c

r the thesis

that the m

y, the pictur

ow as an ap

314762.4

934.50

88018.68

87927.01

104

Figure 52
charts we c

ne) of eval

with JPAD,

ControlUni

represent th

an astronom

a viable de

chip if more

s defense, t

multiplier in

re looked lit

ppendix.)

7

4809.36

35198.98

5

2 : Cell Are
could infer t

uating the

, we have to

it and BSU

he total area

mical numb

esign. When

 crew effort

the commit

nvolved in I

terally the s

14096.91
14643.

Tota

 53

eas Display
that both Xi

area costs,

o restate aga

are the top

a cost for th

ber out of h

n we have m

ts are grante

ttee membe

IDCT is re

same and th

1

1
.47 9

al Cell A

yed in a Pie
ilinx ISE an

for they ar

ain their rela

modules op

he whole JP

human reach

more time i

ed.

ers demand

educed to 1

he cost was

527466.50

9722.71

Area

nd Design C

re so close.

ationship.

perating in p

PAD circuit.

h, we could

it will be v

ded that I

6-bit by 16

even less. T

C

I

S

S

S

H

B

M

D

E

U
:

Compiler do

To explain

parallel, we

. Moreover

lie back on

erifiable on

modify my

6-bit. Quite

The chart is

ControlUnit

DCT

Stage1

Stage2

Stage3

Huffman Deco

BSU

Mul(16‐bit Ve

Dequantizer

Extender

Unit µm2

o

n

e

,

n

n

y

e

s

oder

r.)

1069

Fig

314762.4

934.50

88018.68

87927.01

104

gure 53 : Ce

7

4809.36

35198.98

5

ell Areas fr

14096.91
14643.

Tota

 54

rom a 16-bi

1

1
.47 9

al Cell A

it MUL sch

527466.50

9722.71

Area

heme

C

I

S

S

S

H

B

M

D

E

U
:
ControlUnit

DCT

Stage1

Stage2

Stage3

Huffman Deco

BSU

Mul(16‐bit Ve

Dequantizer

Extender

Unit µm2

oder

r.)

 55

6. Conclusion, Confession and Future Work

 In the end of the project we successfully designed and implemented JPEG

Asynchronous Pipelined Decoder, abbreviated JPAD, with Balsa the asynchronous

synthesis tool. The resulting decompressed pictures are nearly indiscernible from those

of commercial image viewing application programs.

 From the performance-oriented viewpoint, a speedup of 2.4X was achieved. Too

bad we don’t have an FPGA-ready Modelsim-compatible netlist yet, which is why we

don’t have an object to compare it with except our own. Balsa may be very convenient to

use in preliminary design phases, however, during post-completion stages the circuit it

generates is far from being compact and efficient, plus tedious to tune up. My

proposition here is that, for handshake simulation and educational purposes the toolset is

quite useful against a manual approach, yet not so for making market-value commercial

products.

 There is much future work left to be done. The proposed pipeline structure still

has a lot of room for improvement―that is― to totally remove bubbles and keep its

usage at 100%. Most importantly, we have a long bumpy way to go to reach our ultimate

goal, the layout.

Overall, the thesis offers the following contributions, if not much:

 The architecture of the asynchronous baseline JPEG decoder modeled with

Balsa is described. Some design issues for Balsa language is also covered.

 The design flow for the asynchronous circuit implementation on FPGA as well

as VLSI is mentioned.

 The verification flow is devised, which involves subjective visual inspection

and software ratings.

 A pipeline structure to improve the most time-consuming arithmetic is

developed.

 Some may doubt that those were just pretty words, I myself doubt that too. But

from what I have heard, the authors of Balsa promised that they would do their best to

fix the problem as well as add more new features. Have faith, folks!

 56

References

1. Kessels, J. and Peeters, A. The Tangram framework: asynchronous circuits for low

power. 2001. p. 255.

2. Continuous-Tone, Information Technology – Digital Compression and Coding of.

ISO/IEC 10918-1 and ITU-T Recommendation T.81. 1993.

3. The JPEG Still Picture Compression Standard. Wallace, Gregory K.;. Maynard,

Massachusetts : IEEE Transactions on Consumer Electronics.

4. Davis, Al and Nowick, M. Steven. An Introduction to Asynchronous Circuit Design.

1997. UUCS-97-013.

5. Berkel, K. V. Handshake Circuits. An Asynchronous Architecture for VLSI. 1993.

6. Chen, Wen-Hsiung, Smith, C. Harrison and Fralick, S. C. A Fast Computatonal

Algorithm for the Discrete Cosine Transform. 1977.

7. Nikara, Jari, et al. Implementation of Two-Dimensional Discrete Cosine Transform

and its Inverse. 2003.

8. Pipeline Architecture for Two-Dimensional Cosine Transform and Its Inverse. Takala,

Jarmo, Nikara, Jari and Punkka, Konsta. Tampere, Finland : IEEE, 2002.

