-\

TR Donk TER L R - B te R AT R

P
Sy ¥
—
—

Data Address Prediction for L1 Data Cache Power Mode

Management
SEE NN S
TR SRR KR

it e 2 E e

Data Address Prediction for L1 Data Cache Power Mode Management

Moyod i Ey Student : Fu-Yuan Chuang
I ERR D ETE Advisor : Jean Jyh-Jiun Shann

AL S - B R A -

S S

A Thesis
Submitted to-Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science
Sept. 2006

Hsinchu, Taiwan, Republic of China

e A e Do o]

B xr X & K #

MALRXSXETHECHEHEE

(REBRBALITREABXTLAZIRAA)

FEMEMBMZIEABX ARANBRALITERSE FHIEL A A&
94 SEEE - SHRAALEMZBX -

WXAE AR AR R E B RERA R EEBUTREE

HHHIR BRE

W eE

ANGEAZEE DFEER - BEABRMRA LT BREREEBERE L LB E
0 AN S AN TARLEFE ARSE 2 HEL AENBRTALERRZ
Boy BAIRBREREEB R R SGEE0F R MR 0FR SRR E K
Ao AR EAMAILE ST RSk EREHNA S NEEMECEEREEAN
WA RATRERE - ME ~ TRIFIEP -

W30 30 B R 49 EE o P 2 g6 B B RE R

ARREBMEARR A K ERAL | [A

et W ssidcahom L |

Kesh i 5 LELCUI

B 2XTTHEXALEEH
®’HAHE

r»-r
wEsL L
v#RA 7% 7 A ¥ 8

7T
¢ 7 .

Ll

B X X @ K #

Ll PRV X L4k

(REBHBAE TN EXETHEZHEEZIRAA)

ASHERBEZEARX ARAPBEIRBASL _FMIE 2AT _A2&
m94 BEEY — ZLHREARALPMZEH -

WXAME AR ER A TRR R - RR TR ATRE R
HEHR BB

W AE

AABEAZNE R BEBRARLTEAS A RAR " HRR
I AAAME) 2EA AEHETRPEARLBY BIRBAPEEMEA
MRS ERUMAR S N EEMA S EER KB N KA AT ERIE -

ABXBAAORESRELEHPFENRFFELAKAFRF FEROMRAZ
— PR A P R LR *F A B &

N1

wHARE
_{,.-Q

7
BELL: L % A
vERE 7% T A & =8

XEEHE
BT ETHELARHEE

ID:GT009317564

AR EMIEZIEMB O ARMBAYBRLTERE FNIRE A A&
W09 RFEEF — PHREFALEPEMZII -

WXAME A A EFHRTRARREE R ET A ERAE R

e ERE

LR EWBRMARAFHFH I EIRXEX (HE) LR - £HRHARK
Bl & 48 > AFMRbIR > SRR SR 0 LABLEE ~ Ak XA S SR ML X% LTI
XER EABHMAEZ EFRXRBIXEFHALRABH X 0 REFHERN
BAEEF T 28 Lk - ME -~ TRAFIEP -

¥ OMAENFEAMETZ R Bk ME - FTRAFIEPLFGX - BARZEEH LA MMRTME -

BOHOAC
RERS
v¥RE 747 AL =

B 17 R K2

Bt ¢ Bt fiE £ B
mMXOAZEGEES
AR ERHFETE RN A E T 3

#7430 X

Data Address Prediction for Power Mode Management of

L1 Data Cache

SN EERAE S RERZBGFEFRT -

%R @@%;ﬁ\ § *# 7

ﬁﬁ%}b

B EHR S? /é

oo &

*#RBATE & 7 A b &

wF ORISR PR Y - B PRV TR R R R

g3 f EF |
P2 AT AL () AL

il 2

R T B IR R L R AR AT BT P R Ay S
b] o Mg F AR REN C FREALT AV G FEB A o PG - B
H2- & drowsy cache shfe(F iE-Pie RH ® WG & A7 b h
BT OEEE)T UG 0L K AR B R LT o A 0 Bkl
- Bt drowsy sk lEenE-Bre Rl RALZ B R 2 K E o
fEE RIS CRERER ARTELRETREFNEL o ARH
Fd- BARRIFTR Rk v o JU* Z g RIFA TR TR-E AR T B
| m’}" ALE-Br2e il o F kS5 8T o I AP ark D e B K o

A5 =

qgE A TR AR 0 W - S TR B R 3 P

Data Address Prediction for L1 Data Cache Power Mode Management

student : Fu-Yuan Chuang Advisors : Dr.Jean Jyh-Jiun Shann

Department (Institute) of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

On-chip cache is a major chip jpower consumer. Due to nanoscale
technology, the dominant of this:power loss will be leakage. The drowsy
cache scheme, where; one'can choose between two different supply
voltages in each cache ling;:s a technique that reduces the leakage energy
for cache. Yet, waking up a drowsy line needs extra time and energy, and
this extra time would result in total static power consumption. This paper
proposes one data address prediction and exploits it to preactivate
oncoming cache lines before access requests. Our experimental results
indicate that the proposed preactivation policy reduces the power
consumption by about 3% (assuming 70nm technology) with respect to

previously proposed drowsy cache policies.

e

BANL RSN X A XEF o e EAEEN 0 X
PR ANF 5 FF nE R Pl B RAF O hR L2 R %
SRR AR S NS LSRR Y SRS L £
Fohs ARRBAFHRT V- X HEQ R L EfL T IR

L R b AAA ERLAER

F_
%
)
i
b
ﬂk
RN
i
~ofe
R
-
ik
o
|~

FY-r AR HEZEF AT FEREEF PR R A
SRE L [e R o

BEBEHF %R DT LA BT FI PR me R oG T

a~
P
vk

SRR FHRETH AREA AR B k2 - etk

_/%E’i”‘]%;g ’ ‘}\“7‘\'@7\ i};\—. .

s AR B HBMADRA R AN KT & T LA ;k,i#f.r;si’;):};% » 2R
Ay fein e 2 ¢ E e S8 £ .

BT)

2006 & 4 *

11
111
1.1.2

1.2

1.3

14

15

21

2.1.1.
2.1.2.

2.2

2.2.1.
2.2.2.
2.2.3.
224,

3.1

3.1.1.
3.1.2.
3.1.3.
3.14.
3.1.5.

3.2.
3.3.

4.1

4.2

4.3
431
4.3.2
4.3.3

Table of contents

CHAPTER 1 INTRODUCTION 1

IMPORTANCE OF LOW POWER DESIGNuviiivieitieesiriesieeesireesieeestseessseessseesssesssneesssessssesssesssnes 1
Importance of 10W POWEE AESIGNcviiviiiiieiieieieee e 1
Main power components 0of CMOS CIrCUITS:ccoiiiiieiieiece e 2

IMPORTANCE OF LOW POWER DESIGN FOR DATA CACHEccviiiiitieiteete e eie st steesre e sre e 3

LEAKAGE ENERGY REDUCTION OF CACHEccoviiiiitiiiteeite et eiesttesteesteesteesteesresnesnnesneesneenneenns 4

DATA ADDRESS PREDICTION ...uviettieitieeittiesiteesiteessseessseessseessseessseessseesssesssssesssesssssesssssssnsesensssns 6

MOTIVATION & OBJIECTIVE ...uviiiiiieiieeitiiesite e sttt e siee et eessaa e st e e ssaeestaeesseeestaeessseestsaensaesstaeenneeenens 6

CHAPTER 2 BACKGROUND AND RELATED WORK 8

BACKGROUND ...ttt sttt ettt bbbttt b et e e n e e r bbb e e e nenreanenrs 8
Researches on static POWEr FEAUCTIONcccuiiiiiiiiiiee e 8
An effective data address PrediCtor ... 10

RELATED WORKc.vev e fiatihinteesesteanibiline ovesseasessesseessesssasesssssessesseessesssasessssnessesssassessssnessesnens 11
DrOWSY CACNE...... it e e o i 12
Compiler aPPrOACH s i i i e e 14
A Preactivating Mechanism-for @ VT-CMOS Cache..........cccccrreieniniiinciensee e 20
SUMMArY and OBSERVAtIOR ..o it s afh Bttt sttt sttt 24

CHAPTER 3 PROPOSED DESIGN 26

DATA ADDRESS PREDICTION ...tititiiieiietirestesresie s esseseess et sre st esse e sn et snesse s ennenneanennesnens 26
Basic Idea of data address prediCtion ... 26
DESIGN ISSUER ..ttt ettt ettt e bbb b et e b et et e s b e e bt s b e e bt et e et enbenbenbenbeene s 27
Block Diagram of Data Address Prediction Hardwareccccocoieniniiiinc e 28
Prediction MECNANISM ..o s 29
The flow chart and implementation for our data address prediction.............ccccocccceienene 35

PRE-ACTIVATION POLICY ...ouvttiitiitiiieetieniesr ettt st se et sh et sn st ane st nnesnenneane 37

DE-ACTIVATION POLICY ..otitiittitistesieeiteseess st sbe st este e sn et sre st se s sbesn st esne e anennesnen 39

CHAPTER 4 EVALUATION 40

EXPERIMENT METHODOLOGYtvtiitiieiviesieeesireasseeesineessseestssasssssssssassssssssssssesssssssnsessssessnsenans 40
EVALUATION METRICS .oveiitieiieeitieestee et esteeestseasseeestseesseeestssasesessesasssssssesansessssssansessssensnsenans 41
EXPERIMENT RESULTS. .utttttteittteitteestteestteesteeestseassesessseessesassssasssssssssassssssssssnsesssssssnsessssessnsenans 43
PrediCtion FESUIL...........i ittt s be e te e sre e eesanas 43
Leakage energy rESUIL...........oi i e 49
e (0] P Tt (0L SRS 53

CHAPTER 5 CONCLUSION 54

CHAPTER 6 REFERENCE 55

List of Figures

1-1 Trends in Power across Process Technologiescccovvvvii i3
2-1 Block Diagram and State Transition Diagram for a Simple Stride-based Value

o =T 101) PP i &
2-2 Implementation of the Drowsy Cache Lineccoviiiiiiiiiiii e, 13
2-3 Relevant Cache Lines (RCLs) for an Object in a Direct-mapped Data 16

2-4 An Example Code Fragment (a), and its Transformed Versions (b) and (c) 19

2-5 Circuitofa Lineinthe Original DLCccooviiiiiiii 21
2-6 Processor Organization with a Preactivating DLC Cache22
2-7 Circuit of a Line in The Preactivating DLC Cachecccocvviiiiiiiiinnnnn. 22
2-8 Accesses Time of DLC and Non-DLC Cachescoovvvviiieviiieiineeienn, 24
3-1 Block Diagram of Data Address Predictionc.ccoeeiiviieine e e 29
3-2 DAST Mode Transition Riagram:.... G 10
3-3 Predict the Next Used Data Address When DAST Is in Match Mode30
3-4 Predict the Next Used Data’Address When DAST Is in Verify mode 31
3-5 Predict the Next Used Data Address When DAST Is in Verify mode 32
3-6 Overview of Smart Table e s 34
3-7 Instruction Execution Pathooiiii e, 35
3-8 Flow Chart of Our PreactivationPolicyccccccviiviiii i 36
3-9 Implementation of Data Address Prediction Hardware37
3-10 Implementation of Preactivation PoliCyccoiiiiiiiiii e 38
4-1 Define 1deal Casevuieiiie i it A2
4-2 Offset Values Percentage for Auto-Indexed Load/Store Instructions43
4-3 Stride Values Percentage for Non Auto-Indexed Load/Store Instructions44
4-4 Instruction Percentage and Its Data Address Behaviorccoeevviee. 45
4-5 Prediction Accuracy of Top Hitand Bottom Hitcoooeviiiinn . 46
4-6 Prediction Coverage, Accuracy, and Multiple hit fortop hit 47
4-7 Prediction Coverage, Accuracy for DASTand VHTcoeevvennl. 48
4-8 Leakage Energy for Simple Policy and Noaccess Policyccoeenenne. 49
4-9 Leakage Energy for Preactivating DLC D-cacheccoviiiiii e, 50

Vi

4-10
4-11

Normalized Leakage Energy for Each Policycooviiiiiiiiiiiininnn,

Performance Loss for Each POLICYovveiiiiiiiii e

Vii

.52
.53

1-1
2-1

2-2
4-1

List of Tables

Circuit Techniques of Controlling Cache Leakagecccoevveiivinnenn.n.

Impact of Activate/Deactivate Instructions on Different Cache
Line States

Summary of Related WOIKS ..o e e e e

Base Configuration Parameters and Their Values in Our Base

viii

A7
.25

41

Chapter 1 Introduction

Reducing power consumption is important for both battery-operated
embedded/mobile devices and high-end machines. Generally, the power components of
CMOS circuits can be classified into two parts: dynamic and static. The latter will
exceed the former to be a major consumer as technology drops below the 65-nm feature
size. Since the caches constitute a significant portion of the transistor budget of current
microprocessors, static power reduction of cache is especially important. Besides,
because data address has locality property, we could use this property to do data address

prediction.

1.1 Importance of:dow power.design

In this section, we will discuss the importance of low power design and review the

power components of CMOS.circuits.

1.1.1 Importance of low power design

Power dissipation has become a significant constraint in modern microprocessor
design. In battery-operated embedded/mobile devices and high-end machines, power is
already the leading design constraint. It has become one of the primary design
constraints along with performance, clock frequency, and die size. In battery-operated
devices, high power consumption would mainly reduce the battery lifetime. In case of
high-end machines, high power consumption would lead to thermal issues like device
degradation, higher packaging cost, and reduced chip lifetime. Consequently, overall
product quality is highly dependent on techniques for minimizing system power

consumption. These techniques can be applied on various design abstraction levels,

from circuit level to system architecture. Circuit-level power minimization techniques
have played the predominant role in designing energy efficient ICs. However,
architecture-level approaches are starting to attain popularity in recent years, thus

resulting in even greater power optimizations.

1.1.2 Main power components of CMOS circuits:

Total power is growing exponentially with each process generation. Generally, the
power components of CMOS circuits include both dynamic and static power. Dynamic,
or active, power is consumed while the device is in operation. Static, or leakage, power
is consumed by leakage current in non-ideal transistor operations, i.e., incomplete
turning off. Dynamic power could be classified into two parts: switch power and
short-circuit power. Switch power is the power dissipated by charging and discharging
the load capacitances in circuits. Short-circuit, power is the power dissipated by
momentary short circuit at'a gate’s‘output whenever the gate switches, and this power is
relatively small.

In the previous generation of CMOS technology, dynamic power had large impact
on total chip power. However, with the increasing number of transistors employed in a
chip and the continued reduction in threshold voltages of these transistors, leakage
power has become a major concern. Figure 1-1 shows the trends in power across
process technologies. We can see that static power will exceed dynamic power as

technology drops below the 65-nm feature size.

250

' Active Power
:@“200 —— iLeakage
©
=
=450
g =4
8 B
o 100 |
i — |
2 1
S 50 —
o —2
i ﬂ w
0 | 1 | |

0.25p 0.18u 130nm 90nm 65nm

Figure 1-1: Trends in power across process technologies [1]

1.2 Importance of low power design for data cache

The instruction/data cache subsystem.is an, important microarchitecture component
serving to bridge the ever growing gap between memory access time and processor
execution speed. Not only the.increasing variance between processor speed and memory
access time, but also application complexity constitute driving forces toward larger
caches implemented on the same die as the microprocessor core. Both tag and data
arrays are placed on the processor’s die and typically account for a significant part of
the transistor budget and hence of the total power consumption. For example, the Intel
Pentium Pro dissipates 33% [2] and the StrongARM-110 dissipates 42% [3] of its total
power in on-chip caches. The instruction cache is under heavy utilization in every
processor cycle; the data cache exhibits similar high utilization especially in the case of
data intensive multimedia applications and very long instruction word processor
architectures, which exploit a high amount of instruction level parallelism.

Since the caches constitute a significant portion of the transistor budget of current

microprocessors, leakage energy reduction for cache is especially important. For

instance, in the case of a 0.07 um process technology, it has been estimated that leakage
energy of cache accounts for 70% of total cache energy [4]. Since the size of data cache
is about the half of total cache in many systems, reducing leakage energy of data cache

IS important.

1.3 Leakage energy reduction of cache

Cache access has locality property. In other words, the activity in a cache is only
centered on a small subset of the lines during a fixed period time. If we can use some
techniques (such as decreasing supply voltage or increasing threshold voltage) for those
unused cache lines, we can reduce leakage energy of cache.

Two broad categories of circuit techniques aim to reduce leakage: state-destructive
and state-preserving:

State-destructive techniques use ground gating, also called gated-Vy4. Ground
gating adds an NMOS (n-channel metal-oxide semiconductor) sleep transistor to
connect the memory storage cell and the power supply’s ground [5][6][7]. Turing a
cache line off saves maximum leakage power, but the loss of state exposes the system to
incorrect turn-off decisions. Such decisions can in turn induce significant power and
performance overhead by causing additional cache misses that off-chip memories must
satisfy.

State-preserving techniques have two. One is drowsy cache [8], the other is DLC
(dynamic leakage cut-off) cache [9]. Drowsy caches multiplex supply voltages
according to the state of each cache line or block. The caches use a low-retention
voltage level for drowsy mode, retaining the data in a cache region and requiring a high
voltage level to access it. Waking up the drowsy cache line is treated as a pseudo cache

miss and incurs one additional cycle overhead. DLC cache saves leakage energy by

controlling transistors’ threshold voltage by the line on demand. In other words, the
threshold voltages of transistors in a cache line are high to suppress leakage current.
When one cache line needs to be activated, the threshold voltage of transistors in that
line changes to a low voltage.

The above two techniques reduce leakage less than turning a cache line off
completely, but accessing the low-leakage state incurs much less penalty. Moreover,
while state-preserving techniques can only reduce leakage by about a factor 10,
compared to more than a factor a 1,000 for destructive techniques, the net difference in
power consumed by the two is less than 10 percent. When the reduced wake-up time is
factored into overall program runtime, state-preserving techniques usually perform

better. They have the additional benefit of not requiring an L2 cache.

Table 1-1 summarizes.the advantage-and. disadvantage of state-destructive and

state-preserving technique.

advantage disadvantage
state-destructive static power reduction is need refetch when the
maximum accessed line is gated
state-preserving Only need a little time to only reduce one part of
wakeup a deactivated line static power

Table 1-1: circuit techniques of controlling cache leakage

In this paper, we adopt one state-preserving circuit technique — drowsy cache
(change supply voltage). The reason why we do not adopt DLC cache (change threshold

voltage) is that the time of waking up a deactivated line is longer than drowsy cache.

1.4 Data address prediction

In this section, we briefly introduce the concept of how data address is predicted.
In section 2.1.2, we will introduce an effective data address predictor.

Many load/store instructions are used to access array elements and scalar data, and
this phenomenon is more obvious in embedded applications. That is, data address has
locality property because of loop induction variables and programs stepping through
arrays in a regular fashion. Data address locality is captured by monitoring the stride by
which the data address of consecutive instances of an instruction change. If the data
addresses vary by a constant stride, then it is easy to predict the results of future
instances of that instruction.

The essence of data address prediction is to predict the effective address of
load/store instructions based:on theirpast-behavior. Exploiting the above data address
locality, we could easily predict the data address of next execution of one load/store

instruction.

1.5 Motivation & Objective

Since waking up a drowsy data cache line needs extra time, propose a
pre-activation mechanism for data cache to suppress this penalty. To propose a
pre-activation mechanism for data cache, data address prediction is essential. Since data
address has locality property, that is, the data address difference between two
consecutive executions of one load/store instruction is often a constant value. Exploiting
the data address locality, we could predict the data address of next execution of one
load/store instruction. In addition, reserve predicted data address sequence, and when
data address generated by one load/store instruction could be found in this sequence, we

would pre-activate the next used cache line if it is a low-powered line.

So, our objective is to propose a pre-activation mechanism to co-work with drowsy

data cache to decrease static power dissipation and performance loss.

Chapter 2 Background and Related Work

In section 2.1, we will review some backgrounds on how to reduce static power
from the view of equation and an effective data address prediction. In section 2.2, we

will introduce three researches on reducing data cache leakage energy.

2.1 Background

Now, we briefly introduce static power equation and researches on static power
reduction. Besides, we also introduce an effective mechanism on data address

prediction.

2.1.1. Researches on.static power reduction

The following equation defines static power consumption. Static power loss is due

to leakage current, |

leak *

Ps =V leak (1)

(Ps: static power; V: transistor’s supply voltage; liea: leakage current)

As noted, leakage current, the source of static power consumption, is a

combination of subthreshold and gate-oxide leakage: I, =1, +1.,-

Subthreshold power leakage

|y = K, We ™" /™ (17" (2

K, and n are experimentally derived, W is the gate width, and V, in the exponents is

the thermal voltage. At room temperature, V, is about 25mV; it increases linearly as

temperature increases. If 1, grows enough to build up heat, V, will also start to rise,

sub

further increasing 1, and possibly causing thermal runaway.

sub

Equation 2 suggests two ways to reduce |, . First, we could turn off the supply

sub *
voltage —that is, set V to zero so that the factor in parentheses also becomes zero.
Second, we could increase the threshold voltage, which —because it appears as a
negative exponent— can have a dramatic effect in even small increments.

Equation 3 shows the dependency of operating frequency on supply voltage and

threshold voltage.

foo (V=V,)*/V (3)

We know from equation 3 that increasing V,; will reduce speed. The problem with
the first approach is loss of 'state; the problem with the second approach is the loss of
performance.

Gate width W is the other contributor to subthreshold leakage in a particular
transistor. Designers often use the combined widths of all the processor’s transistors as a
convenient measure of total subthreshold leakage.

Gate-oxide power leakage

o =K W)™ @

[0):¢

K, and a.are experimentally derived. The term of interest is oxide thickness, T, .
Clearly, increasing T_, will reduce gate leakage. Unfortunately, it also degrades the

transistor’s effectiveness because T, must decrease proportionally with process scaling

to avoid channel effects. Therefore, increasing T, is not an option. The research
community is instead pursuing the development of high-k dielectric gate insulators.
As with subthreshold leakage, a die’s combined gate width is a convenient measure

of total oxide leakage.

2.1.2. An effective data address predictor

A stride-based predictor is proposed by K. Wang et al [10]. The essence of data
address prediction is to predict the result of load/store instructions based on their past
behavior; just like predicting the outcome of conditional branches. A good heuristic to
use is to record the recent results produced by previous instances of an instruction, and
predict the result of the instruction’s next instance based on past results.

Figure 2-1(i) gives a block diagram.of a simple stride-based value predictor. Its
VHT entry has 4 fields — Tag, State, VValue, and Stride. The state can have one of 3
states — Init, Transient, and ‘Steady. The state transition diagram is given in Figure 2-1(ii).
The basic step in a stride-based predictor is the stride detection phase, which aims at
detecting a stride sequence. The first time an instruction is encountered (as evident from
a miss in the VHT), no prediction is made. When the instruction produces its result, an
entry is allocated in the VHT, and the following actions take place: (i) the result is
stored in the Value field of that entry, and (ii) the State of that entry is set to Init. While
in the Init state, if another instance of the same instruction is encountered, no prediction
is made. However, when that instance produces a result (D1), that is potentially the
beginning of a stride sequence, and the following actions take place: (i) the stride is
calculated as S1 = D1 — Value in VHT entry, (ii) D1 and S1 are entered in the Value and
Stride fields of the VHT entry, and (iii) the State is set to Transient. While in Transient

state, if another instance of the same instruction is encountered, no prediction is made.

10

When that instance produces a result (D2), the following actions take place: (i) the

stride is calculated as S2 = D2 — Value in VHT entry, (ii) D2 is entered in the Value

field of the VHT entry, and (iii) if S2 is same as previous stride, the State is set to Steady,
else S2 is entered in the Stride field. While in the Steady state, predictions are made by
adding together the Value and Stride fields; if a different stride appears, then the State

is set to Transient. This simple 3-state scheme can detect most strides.

Value History Table (VHT)
Tag State Value Siride

/
)
E
Instruction c
Address, | Hash |__A
”| Function |] ©
D
E
\f\
= SN2 Predicted Dala Value
I\ — |
A = +]
- W
| Prediction Valid
(i)
VHT miss/ Any stride/ Same stride/

Update value Update value and stride Update value

Transient
[Don't predict]

Init
[Don't predict]

) .
0%_,9%.’ Different stride/
L .
ay, Sy Update value and stride

gy
i
fiiy

Figure 2-1: Block Diagram and State Transition Diagram for a
Simple Stride-based Value Predictor

2.2 Related work

There are three papers on reducing leakage energy of data cache. The methodology

11

of first paper could also be applied for instruction cache. The methodologies of the last
two papers are dedicated for data cache. The second proposes a pre-activation
mechanism based on drowsy cache. The third proposes a pre-activation mechanism

based on DLC cache.

2.2.1. Drowsy cache

K. Flautner [8] et al. propose a simple technique for reducing leakage power called
drowsy cache, where one can choose between two different supply voltages in each
cache line. Their idea is put those unused cache lines into low-power drowsy mode to

reduce leakage energy of cache.

2.2.1.1.Power control scheme

Approaches for reducing'static power consumption of caches by turning off cache
lines using the gated-Vq technique [5])-has been'described in [6]. These approaches
reduce leakage power by selectivelyiturning off cache lines that contain data that is not
likely to be reused. The drawback of this approach is that the state of the cache line is
lost when it is turned off and reloading it from the level 2 cache has the potential to
negate any energy savings and have a significant impact on performance. To avoid these
pitfalls, it is necessary to use complex adaptive algorithms and be conservative about
which lines are turned off.

Turning off cache lines is not the only way that leakage energy can be reduced.
Significant leakage reduction can also be achieved by putting a cache line into a
low-power drowsy mode. When in drowsy mode, the information in the cache line is
preserved; however, the line must be reinstated to a high-power mode before its

contents can be accessed. To be this purpose, propose a simpler and more effective

12

circuit technique for implementing drowsy caches, where one can choose between two
different supply voltages in each cache line. That is, exploiting voltage scaling to reduce
static power consumption. Due to short-channel effects in deep-submicron processes,
leakage current reduces significantly with voltage scaling. The combined effect of
reduced leakage current and voltage yields a dramatic reduction in leakage power.
Moreover, the penalty for waking up a drowsy line is relatively small (it requires little

energy and only 1 or 2 cycles, depending on circuit parameters).

drowsy bit voltage confroller
] drowsy j56T)
— - -
™ ™ J_ T [drowsy power iine
= T T
T
'E 3 [L VDO {1V]
2 5 SRAMs
G Y VDDLow {i.3V)
% = -
% B | ™
1= wand fima
- RN L drowsy L
— Wake-Up (rasaq)
"x\'
H‘\" word iing * ./ll
wordline gate

dmm_\-" signal

Figure 2-2: Implementation of the drowsy cache line

Figure 2-2 shows the changes necessary for implementing a cache line that
supports a drowsy mode. There are few additions required to a standard cache line. The
main additions are a drowsy bit, a mechanism for controlling the voltage to the memory
cells, and a word line gating circuit. In order to support the drowsy mode, the cache line
circuit includes two more transistors than the traditional memory circuit. The operating
voltage of an array of memory cells in the cache line is determined by the voltage
controller, which switches the array voltage between the high (active) and low (drowsy)
supply voltages depending on the state of the drowsy bit. If a drowsy cache line is

13

accessed, the drowsy bit is cleared, and consequently the supply voltage is switched to
high Vpp. The wordline gating circuit is used to prevent accesses when in drowsy mode,
since the supply voltage of the drowsy cache line is lower than the bitline precharge
voltage; unchecked accesses to a drowsy line could destroy the memory’s contents.
Whenever a cache line is accessed, the cache controller monitors the condition of
the voltage of the cache line by reading the drowsy bit. If the accessed line is in normal
mode, we can read the contents of the cache line without losing any performance. No
performance penalty is incurred, because the power mode of the line can be checked by
reading the drowsy bit concurrently with the read and comparison of the tag. However,
if the memory array is in drowsy mode, we need to prevent the discharge the bitlines of
the memory array because it may read out incorrect data. The line is woken up
automatically during the next.eycle, and the data can be accessed during consecutive

cycles.

2.2.1.2.Leakage control policy

One line’s status is decided by window size (such as 2000 cycles or 4000 cycles)
which specifies in cycles how frequently decisions are made about which lines to put
into drowsy mode.

There are two policies to decide one line’s status. The first policy uses no perline
access history is referred to as the simple policy. In this case, all lines in the cache are
put into drowsy mode periodically (the period is the window size).

The second policy, Noaccess policy, means that only lines that have not been

accessed in a window are put into drowsy mode.

2.2.2. Compiler approach

14

W. Zhang et al. [11] present code restructuring techniques for array-based
applications for reducing drowsy data cache leakage energy consumption. The idea is to
let the compiler analyze the application code and insert instructions that turn-off cache
lines that keep variables not used by the current computation. This turning-off does not
destroy contents of a cache line and waking up the cache line (when it is accessed later)

does not incur much overhead.

2.2.2.1.Abstraction to the compiler

The compiler-based strategy can have an important advantage over the pure
hardware-based techniques. The hardware techniques are mostly application-intensive,
meaning that a hardware mechanism attached to the individual cache lines (or a block of
lines, or maybe to the entire cache) turns off the lines according to a fixed policy it
implements. In comparison, the compiler-based scheme can track the program data
access pattern, and tune the-cache-line leakage management policy based on the locality
of data accesses. That is, it is expected to-adapt the leakage control strategy to the
application execution behavior better.

Leakage-control strategy has two different flavors: state-preserving mechanism and
the state-destroying mechanism. The state-destroying mechanism can be implemented
by gating the supply voltage to the cache line [5], whereas the state-preserving
mechanism can be implemented by scaling-down the supply voltage [8]. Besides,
leakage-control strategy also requires some ISA (instruction set architecture) support.
Basically, we assume the existence of an instruction, called deactivate, that takes as
parameter a memory address, a length, and a bit. The memory address is typically the
starting address for the object (or the array element) whose cache line(s) will be turned
off; the length is the size of the object in bytes (or words) and the bit indicates whether
the state-preserving or state-destroying mechanism is to be used in turning off the cache

15

line(s). When executed, this instruction turns off the cache line(s) that the object is
mapped using the indicated leakage-saving mechanism. We also assume the existence of
a corresponding instruction, referred to as activate, that turns on the cache lines. This
instruction takes the same parameters as the previous one.

It should be noted that the implementation of activate and deactivate instructions
turns on/off several cache lines, which the object (or array element) in question is
mapped to. That is, the scheme works on a cache line granularity, i.e., a cache line is the
smallest unit we can turn off. When a deactivate instruction is invoked, we find the
cache lines occupied by the object and turn them off. As an example, consider the
object-to-cache line mapping depicted in Figure 2-3. The object here occupies three
cache lines and we turn off all of them when we execute a deactivate instruction using
this object as parameter. The set of cache lines that are occupied by a given object is

called Relevant Cache Lines (RCLS).

Object

RCLs ~_)

Figure 2-3: Relevant cache lines (RCLs) for an object in a direct-mapped data

There are two important issues here that need to be clarified. First, sometimes, a
given cache line can contain multiple objects and turning off such a cache line leads to a
(re-)activation overhead if the other object in the line is later accessed. For example, in
Figure 1-4, if the third cache line that holds the part of our object and holds some other
object, deactivating this cache line will lead to extra access latency for this other object

16

if it is accessed in a subsequent computation. The second issue is what happens if the
object whose cache lines we want to turn off/on is not in the cache. If this happens, we
do not turn off/on the cache lines as otherwise we would be targeting wrong objects.
Consequently, our deactivate/activate instructions operate just like normal cache
accesses, except that instead of retrieving/updating data, they turn off/on the cache line
that hold the object.

Based on the circuit and instruction support explained, the main task of compiler is
to insert activate/deactivate instructions in appropriate places in the code. It should be
noticed, however, that placement of activate/deactivate instructions in the code may not
be 100% accurate in every case. Specifically, in some case, it might be possible to
invoke an instruction for a cache line whose state is not a proper one. As an example, in
Figure 4, deactivating the RCLS of the object:shown will lead to unnecessary
deactivation of the words. Later, for some other object that occupies these words,
deactivating the same cache line.would be unneeessary. However, as long as we use
only the state-preserving mechanism, such misuse of these instructions does not affect
the correctness of the application being executed; it can only cost performance and/or
energy loss (since the state-preserving leakage mode does not destroy the cache

contents).

Instruction | / Line State — Deactivated Activated
deactivate NOP deactivate
activate activate NOP

read/write activate and read/write read/write

Table 2-1: Impact of Activate/Deactivate Instructions on Different Cache
Line States

Table 2-1 summarizes the functionality of activate/deactivate instructions when

they are invoked for different cache line states. In this table, “line state” indicates the

17

state of the cache line at the time of execution of the instruction. In particular, invoking
activate (deactivate) instruction on an already-activated (deactivated) cache line has no
effect. Invoking a normal read/write instruction on a deactivated cache line leads to the
activation of the cache line before the read/write can take place (which, obviously,
incurs a performance penalty).

For the sake of clarity in the presentation, this paper specifies an instruction that
turns off (on) the RCLs that hold an object denoted by U as deactivate(&U)
(activate(&U)); that is, we omit the length and leakage mode parameters. Similarly, to
turn off (on) the RCLs that hold an array element V/[i], we use deactivate(&V[i])

(activate(&V[i])).

2.2.2.2.Code Transformation

The approach for inserting activate/deactivate instructions in an array-based
application is based on a compiler-analysis-that predicts future data accesses in the code.
Initially, we assume that all cache-lines are turned off. Once a future data address is
identified, the compiler inserts an activate instruction for the RCLs of the data in
question (before the data is accessed). The compiler analysis also determines when the
access to the data is completed and inserts the appropriate deactivate instruction in the
code. The baseline implementation uses only the state-preserving leakage control
mechanism, and we assume that arrays are aligned across cache line boundaries (i.e., the

first element of an array always resides in the first location in a cache line).

18

(a) (c)

for (i=0;i<N;i++) activate (&U[0]);
k =k + U[i]; activate (&U[4]);

(b) fO]E{i=O:i<N—8;i=i+4)
activate(&U[0]); activate (&U[i+8]);
for(i=0;i<N-4;i=i+4) k =k + Uli];

{ k =k + U[i+1];
activate (&U[1+4]); k =k + U[1i+42];
k =k + U[i1]; k =k + U[1i+43];
k =k + U[i+1]; deactivate(&U[1i]);
k =k + U[i+2]; }
k =k + U[143]; for(i=N-8;i<N;i=1i+4)
deactivate (&U[1]); {
k =k + U[i];
k =k + U[N-4]; k = k + U[i+1];
k = k + U[N-3]; k =k + U[1+2];
k =k + U[N-2]; k =k + U[1+3];
k = k + U[N-1]; deactivate(&U[1]);
deactivate (&U[N-41]); }

Figure 2-4: An example code fragment (a), and its transformed versions (b) and (c)

Let us focus on the code fragmentin-Figure 2-4a to illustrate this approach. In this
code, a one-dimension array U is‘accessed sequentially with perfect spatial locality
(suppose that Kk is stored in a register). Assuming that each line holds four array
elements, Figure 2-4b shows the high-level code generated by this approach. In this
transformed code, activate(&U[i+4]) preenergizes the next cache line (actually, the
RCLs) to be accessed, whereas deactivate(&U[i]) deactivates the current cache line
(actually, the RCLs) after its use. It should be noted that we implicitly assume that the
time it takes to preactivate (preenergize) the next cache line is shorter than the time it
takes to process the elements in the current cache line. In fact, one might even delay the
activation of the next cache line further (e.g., just before the statement k = k + U[i+3] in
Figure 1-5b), since it takes only 1 cycle to activate it. On the other hand, even if a

particular leakage-control mechanism employed takes more time to effect, we can easily

19

accommodate it by inserting the activate instruction a bit earlier. Returning to the
example in Figure 2-4a, let us assume an average cache line activation time of 8 cycles
(for a hypothetical leakage-control) and a loop iteration of 4 cycles, we need to schedule
the activate instructions two iterations ahead. This is illustrated in Figure 2-4c.

The compiler analysis needed to identify the program points to insert
activate/deactivate instructions involves a data reuse analysis. Specifically, the compiler
needs to identify the array access patterns. Since trying to determine all loop iterations
that reuse a given array element (or cache line) is costly, the implementation of W.
Zhang et al. employs the data reuse framework given by Wolf and Lam [12]. This
analysis tells us for each array reference what type of data reuse (temporal or spatial), if
any, it exhibits. If a reference within the innermost loop exhibits temporal reuse, we
insert the activate instruction just above the innermost loop, and insert the deactivate
instruction after the innermast loop (i.€., the corresponding RCLs will be active only
during the loop it is used). On the.ather hand, if the reference exhibits spatial reuse in
the innermost loop, we first unroll.the loopto make the references that access the same
the same cache line explicit, insert the activate instruction ahead of time depending on
the time it takes to activate cache lines (as in the example given in Figure 1-5), and
insert the deactivate instruction only after all the references (in the loop body after the
unrolling) that accesses the same cache line are touched. If, on the other hand, the
reference in question does not exhibit any reuse in the innermost loop, we find the next
(outer) loop level where it exhibits some form of reuse and insert the activate/deactivate

instructions there.

2.2.3. A Preactivating Mechanism for a VT-CMOS Cache

R. Fujioka et al. [13] propose a mechanism for DLC cache that suppresses the

20

performance degradation by preactivating cache lines using address prediction before

access requests.

2.2.3.1.Power control scheme

]
wordline) |
— control -
reference - ;:
address D
® T —
L=, n-well 1 T
& driver J {
e ? % |
5
v 4
© p-well ‘ _
driver

Figure 2-5: Circuit of a line in the original DLC

Figure 2-5 shows the Circuit of a line.in the-original DLC cache [9]. In DLC, each
SRAM cell is composed of Variable-threshald CMOS (VT-CMOS) [14]. Any SRAM
cells of any unselected lines are initially deactivated. In other words, the threshold
voltages of transistors in a cell are high to suppress leakage current. When a reference
address is applied and a line is selected after the address is decoded, all cells in the
selected line are activated by changing the threshold voltages of transistors to a low
voltage. This is done by the n-well and p-well drivers. Soon after being activated, the
word line of the selected lines rises. Since the threshold voltages of the accessed cells
are low, the delay of the bit line is as short as in a normal cache. Although the activated
line consumes significant static power, it is negligibly small in a large cache. Note that
the activation is triggered after the address is decoded and the activation time is
significant long (it is estimated in Section 2.2.2.3). As a result, the access time becomes

considerably longer than a normal cache.

21

2.2.3.2.Leakage control policy

. reference
I-Cache Decode Instuction Address DLC Reorder
Rename Window Calculator | Leancel \ D-Cache Buffer
Address reservation
Predictor

Figure 2-6: Processor organization with a preactivating DLC cache

Figure 2-6 shows proposed processor organization (note that the figure does not
present a precise pipeline organization; it depends on implementation). Although the
organization is basically similar to the usual superscalar processor, it is differentiated by
having an address predictorand‘a D-cache with three address inputs (reference, cancel,
and reservation) per memory. instruction.. The address predictor predicts the address of a
location which a memory instruction will-aceess before the address is calculated. R.
Fujioka et al. use a stride-based predictor to predict addresses because it gives the best
cost/performance as an address predictor. The details of this predictor have been

introduced in section 2.1.2.

|

reference i
wordline control | . L

address "
reservation =
address reservation|_ ™1 ariver e b =
cancel | counter 1
address p-well ' F H4—
driver
"’
‘ [|

Figure 2-7: Circuit of a line in the preactivating DLC cache

address decoder

22

Figure 2-7 shows the organization of a line of our DLC cache. The differences
from a conventional DLC cache are the two extra address decoders per memory
instruction, and an up/down counter we call the reservation counter per cache line. The
counter indicates the number of the reservation for line accesses.

As shown in Figure 2-6, while instructions are decoded, the addresses of locations
which will be accessed by decoding instructions are predicted using the address
predictor. The predicted addresses are written into an entry for the corresponding
instruction in the instruction window. At the same time, they are sent to the D-cache as
reservation addresses, and the reservation counter in each line is increased by one. If the
counter value changes from zero to one, the corresponding line is activated to prepare
for later actual references. When the counter value is non-zero, the line is continuously
activated.

At some cycles later, a memory instruction-s issued from the instruction window
with the prior-written predicted address. An effective address is then calculated. The
effective address is sent to the D-cache as a reference, and the predicted address as a
cancel addresses. The reference address is used to access D-cache data in a usual cache.
If the predicted address is correct, the selected cache line is already activated. Thus,
delay due to DLC is not incurred; if not correct, a delay may be incurred. Meanwhile,
the reservation counter in the selected line accessed by the cancel address is decreased
by one. If the counter value becomes zero, the corresponding line is deactivated. Note

that when a branch is found to be mispredicted, all reservation counters are reset.

2.2.3.3.Estimation of DLC cache delay

Figure 2-8 shows the evaluation results of the access time of a DLC and a normal

23

non-DLC cache for various capacities. Associativity for both caches are two
(associativity has only a small impact according to the simulation, except for
direct-mapped). Two lines for each cache present the cases of 32B and 64B lines. As
shown in Figure 1-9, the access time of a DLC cache is much larger than that of the
non-DLC cache. As a line size becomes larger, the access time is longer. For example,
the 32KB DLC cache with 32B or 64B lines has a 2.7or 3.9 times longer access time,

respectively, than the non-DLC cache.

5
— 4} -
(73]
L
®ql .
£ 328 line
l_
A
85 ace |
non-
< 64Bline_____m— —
1r n— .325 line T
0 6K 32K 64K 126K

Capacity [KB]

Figure 2-8: Accesses time of DLC and non-DLC caches

2.2.4. Summary and Observation

Table 1-3 summarizes the above three related works. As shown the “circuit
technique” row in Table 1-3, drowsy cache, compared with DLC, has little wakeup
latency. In addition, implementing a cache line is very few additions. The main
additions required to a standard cache line are a drowsy bit, a mechanism for controlling
the voltage to the memory cells, and a word line gating circuit. Consequently, our cache
architecture is based on drowsy cache.

24

Compiler approach has two disadvantages. First, program portability is restricted
because it needs preprocessing. Second, it is only targeted to array-based applications,
not to all applications. To avoid these two restrictions, propose a hardware preactivation
mechanism applied for all applications based on drowsy data cache architecture is
essential.

Although the third related work proposes a hardware preactivation mechanism, the
address predictor overhead is too large (10KB SRAM). Our objective is to propose a

hardware preactivation mechanism whose effectiveness is good and overhead is little.

il
drowsy cache comprier VT-CMOS
approach
circuit technique drowsy drowsy DLC
normalized wakeup time 0.5 0.5 2.7 (32B lines)
(1: cache access time) ' ' 3.9 (64B lines)
reactivation polic 0 insert activate stride-based
P pohcy nstruction predictor
o . simple policy and |insert deactivate stride-based
deactivation policy
noaccess policy struction predictor

Table 2-2: summary of related works

25

Chapter 3 Proposed Design

In this chapter, we divide our design into three parts. First, we propose one data
address prediction to predict the next data address sent by processor. Second, using our
proposed data address prediction to preactivate oncoming accessed data cache line.

Third, we introduce our de-activation policy for drowsy data cache.

3.1. Data address prediction

In this section, we will introduce our data address prediction. First, we introduce
the basic idea of our prediction and list some design issues for this prediction. Then we
show our block diagram of prediction hardware and our prediction mechanism and the

implementation of data address, prédictionshardware.

3.1.1. Basic Idea of data-address prediction

The goal of our data address.prediction is to predict the next data address sent by
processor. To achieve this goal, there are two works that we should do. First, we must
have the ability to predict the next generated data address for one load/store instruction.
Second, reserving each predicted data address in the order of instruction execution when
each load/store instruction is executed. If we are able to do these two works, whenever
executing the same instruction sequence, data address sent by processor would have
high chance to be found in this prior reserved sequence. Thus the predicted next data
address sent by processor is just it’s the data address next to founding data address.

However, there is one important problem is how to predict the next generated data
address for one load/store instruction. The essence of this prediction relies on current
data address and predicted stride value for this instruction. Noted that the term “stride
value” means two prior consecutive data address for one load/store instruction. In this

26

paper, we take ARM ISA (instruction set architecture) as example. Because load/store
instructions are implemented through base register plus offset addressing mode and base
register plus index addressing mode and the percentage of former is much larger than
latter (about 93% in MiBench). In base register plus offset addressing mode, this offset
is invariable. Consequently, we divide load/store instructions into two types
(auto-indexed and non auto-indexed) depending on base register behavior and decide its
predicted stride value, respectively. For auto-indexed instruction type, which is often
used to access array data, since the base register would be modified as original base
register value plus offset after data access, so the next generated data address for this
instruction type is predicted as the sum of current data address and offset field value
(this offset value is our predicted “stride value” for this instruction type). For non
auto-indexed instruction type,swhich is often.used to access scalar data, since the base
register would not be modified.after its execution, so the next generated data address for
this instruction type is predicted.as the current data address (zero is our predicted stride

value for this instruction type).

3.1.2. Design issue

There are two design issues before proposing our data address prediction. Issue 1 is
about the size of table which is used to store predicted data address sequence. Since
instruction execution has temporal locality, instructions that are executed recently are
probably executed soon, we have not to reserve all predicted data addresses and just
reserve recent predicted data addresses. Issue 2 is about how the predicted stride value
is transferred. Since our goal in this paper is to reduce static power of data cache, the
energy of additional hardware should not be too large. If one predicted stride value need

to be completely transferred from processor to data cache, we should offer one

27

additional bus called stride bus and its length is equal to data bus. This cost is too large.
Thus, our solution to this issue is collect the common predicted stride values, encode
them, need one narrow bus (maybe 2-bit) to transfer them, and decode them in data

cache.

3.1.3. Block Diagram of Data Address Prediction Hardware

Figure 3-1 shows the block diagram of data address prediction hardware. The
additional components added to conventional drowsy data cache are a 4/2 encoder, 2 bit
stride bus, 2/4 decoder, and DAST (Data Address Sequence Table) which is used to
store predicted data address sequence. The four possible inputs for this encoder are our
predicted stride value for load/store_ instructions, including three common offset values
for auto-indexed load/store instructions-and zero for non auto-indexed instructions.
However, if its offset value for one auto-indexed-instruction is not in these common
offset values, we take zero as predicted-stride value for this instruction. The output of
encoder is sent to DAST through2-bit stride bus. The value sent through stride bus is
decoded by 2/4 decoder. DAST stores our predicted data address sequence. Each entry
of DAST has two fields called PDA (predicted data address) and Stride. PDA stores the
next generated data address for one load/store instruction, and Stride stores predicted
stride value for one load/store instruction. DAST needs two pointers. One is called
|_pointer which is used to indicate the insertion location when one predicted data
address is stored into DAST. The other is called P_pointer which is used to indicate the

location which predicted next data address sent by processor resides in.

28

4/2

2/4
encoder 2 bit stride bus

Figure 3-1: Block diagram of data address prediction

3.1.4. Prediction mechanism

In this section, we describe our prediction algorithm in detail. First, we introduce
when to predict data address and this is determined by DAST behavior. Second, we
introduce how the predicted next data address sent by processor is generated. Third, we
introduce how to maintain and 'U‘p(j'.éte DAST
3141 DASTmode = &~

Our prediction mechanigm i§ imple‘mente'd through DAST. DAST has two possible
modes which decide its behavior when data address is sent to data cache. One is match
mode, the other is verify mode. Figure 3-2 shows DAST mode transition diagram.
When DAST is in match mode, data address sent to data cache would lookup DAST
(fully search). If hitting, DAST changes to verify mode and one predicted data address
is generated. This predicted data address means our predicted next data address sent by
processor. When DAST is in verify mode, data address sent to data cache would check
if it is the same as prior predicted data address. If yes, it means that our prior prediction
is correct and another predicted next data address sent by processor is generated. If no,
it means that our prior prediction is wrong, stopping prediction, and DAST returns to

match mode.

29

Lookup hit

Lookup miss Predict correctly

Predict wrongly
initial

“igure 3-2: DAST mode transition diagram

3.1.4.2. How to predict the next data address sent by processor

In our data address prediction, the prediction time is when one data address could
be found in reserved predicted data address sequence and the predicted next data
address sent by processor is that address next to founding address in reserved sequence.
Depending on DAST behavior,,thére ‘arertwo cases for predicting the next used data
address.

Casel: DAST is in match mode and lookup hit

In this case, it means ‘one data address'is found in the predicted data address
sequence, so the predicted next used data address is the PDA field of the entry next to

the hitting entry. Consequently, we pre-activate the corresponding data cache line.

PDA Stride

DAST (match mode)

Figure 3-3: predict the next used data address when DAST is in match mode

As shown in Figure 3-3, the predicted next used data address is just as the PDA

30

field indicated by P pointer.

Case2: DAST is in verify mode and predict correctly

In this case, it means we have predicted the current used data address.
Consequently, we keep predicting the next used data address. The predicted next used
data address is the PDA field of the entry next to the correct prediction entry.

Consequently, we pre-activate the corresponding data cache line.

PDA Stride

DA——)

“——— P

DAST (verify mode)

Figure 3-4: predict the next used data address when DAST is in verify mode

As shown in Figure 3-4;.the predicted next used data address is just as the PDA

field indicated by P pointer.

3.1.4.3. DAST maintenance

Depending on DAST behavior, we have three cases for updating DAST. For the
sake of reserving predicted data address sequence, whatever the result of looking up
DAST or predicting, we should do this action, delete one entry and insert one entry to

the last of DAST.

Case 1: Lookup DAST hit or Correct prediction

When looking up DAST hit or predicting correctly, it means that we have the right

stride value for this load/store instruction. Thus, fill the result of adding PDA field value

31

and Stride field value of current entry as well as Stride field value of current entry into
the last entry of DAST. At the same time, we delete the current entry of DAST to

reserved predicted data address sequence.

Case 2: Lookup DAST miss

When looking up DAST miss, it means that we have no information about the
predicted data address of this instruction in DAST. Thus, fill the result of adding current
data address in data address bus and the value in the stride bus as well as the value in

the stride bus into the last of DAST.

Case 3: Wrong prediction

When wrong prediction oceurs, it possibly means that we have the wrong predicted
stride value for this load/store. instruction. However, we could fix the right stride value
through this wrong prediction. iThe_right_stride value should be: current data address
sent by processor — the last generated data-address of this load/store instruction. It is
noted as: the last generated data address of this load/store instruction could be obtained

from the wrong predicted data address and the wrong predicted stride value.

3.1.4.4. Handle multiple hit

When we use the current data address to index DAST, multiple hit may happen.
This is because there are more than two instructions whose predicted data addresses are
the same and the same data addresses are put into DAST. Figure 3-5 shows the original

of multiple hit.

32

DA

HJIU'

Figure 3-5: predict the next used data address when DAST is in verify mode

There are two solutions to multiple hit, called “top hit”, and “bottom hit”,
respectively. The appropriate situation using top hit: When one execution path would be
executed continuously and there are more than two instructions whose predicted data
addresses are the same. On the other hand, the appropriate situation using bottom hit:
When one execution path would be executed continuously and there are no the same
predicted data addresses for those instructions.in this execution path.

These two solutions te-multiple hit maybe not suitable solutions. However, after
considering hardware cost, these.selutions.are candidates for handling multiple hit. In
fact, we have another solution‘if we don’t.consider hardware cost, and we call this
solution is “best hit”. When there are more than two hitting entries, the PDA fields of
next entry of hitting entries are all our predicted data address sent by processor. For
instance, if entry 1 and entry 4 are hitting entries, the PDA fields of entry 2 and entry 5

are all our predicted data address sent by processor.

3.1.4.5. Handle wrong prediction

Before handing wrong prediction, we have to analyze and classify wrong
prediction. We use one smart table to help us classify wrong prediction into “PC wrong”
and “PDA wrong”. Figure 3-6 shows this smart table. Each entry of this table has three
fields called PC, PDA, Stride. The operation of this table is similar to DAST. It is
differentiated by having PC field and PC needs to be sent to data cache. Noted that we

33

now virtually analyze wrong prediction, so the assumption of sending PC to data cache

is allowed.

PC PDA Stride

Figure 3-6: overview of smart table

Smart table is indexed:by-data address just like DAST. When wrong prediction
happens, we check if the PC field of this-entry.is the same as the current input PC. If it
is not the same, we call this wrong prediction is PC wrong. If it is the same, we call this
wrong prediction is PDA wrong. The cause of PC wrong may be changed instruction
execution path, multiple hit, and etc. The cause of PDA wrong is due to wrong predicted
data address for one load/store instruction.

Whatever the wrong prediction is PC wrong or PDA wrong, the handle of wrong
prediction is not different. Recover the last generated data address, fix stride value, and
calculate the predicted next generated data address. Obviously, this handle is aimed at
PDA wrong. However, there is one problem is whether this handle is appropriate if
wrong prediction is incurred by PC wrong. Our answer to this problem is yes if wrong
prediction is incurred by changed instruction execution path. Our explanation is as
follows. Figure 3-7 shows the different instruction execution path. If path 1 is executed

consecutively and at one time pathl changes to path 2, there would be wrong prediction.

34

This is because the predicted data addresses on DAST are belonged to load/store
instructions in pathl, not path2. However, if path2 are also executed consecutively

afterwards, we could predict the data address of load/store instructions in new path.

pathl path2

Figure 3-7: instruction execution path

3.1.5. The flow chart and implementation for our data address
prediction
Figure 3-8 shows our flow chart of preactivation policy. In this figure, DA means

the current data address sent by processor.

35

—

. Next data address prediction:
PDA field of the hitting entry + Stride field of the
hitting entry

) 2. Store: insert the result and Stride field value into the
DA DAST in) Ves»l Use DA to Yes—» Rear of DAST
match mode? lookup DAST 3. Invalid: invalid the hitting entry
(curent data address) L.
4. Data address sequence prediction:

PDA field of the entry next to the hitting entry = dasp
. Change mode: DAST changes to verify mode

W

—_

. Next data address prediction:
DA + predicted stride value

. Store: Insert the result and predicted stride value
into the Rear of DAST

No—|

[SS]

. Next data address prediction:

PDA field of the correct prediction entry + Stride field of the correct prediction entry

. Store: insert the result and stride field value into the Rear of DAST

. Invalid: invalid the correct prediction entry

. Data address sequence prediction: PDA field of the entry next to the hitting entry = dasp

1. Recover the last data address:
PDA field of the wrong prediction - Stride field of the wrong prediction entry
. Update stride value: DA - the last data address
. Next data address prediction: DA + updated stride value
. Store: insert the result and updated stride value into the Rear of DAST
. Invalid: invalid the wrong prediction entry
. Change mode: DAST changes to match mode

No——»

N W BN

Figure 3-8: flow chart of our preactivation policy

Figure 3-9 shows our implementation of data address prediction hardware. In this
figure, lookup control is used toidecide the search behavior (search all entries or just one
entry) for the input address; write-controlis used to decide whether the output of
decoder is written into DAST or not; priority encoder is responsible for choosing one

predicted data address when multiple hit happens.

36

P_[i(:inter
DA
(<]
5 a
22
<2 Vv PDé Stride
S g
s £
o o
Q ®
state £l > _
machine ® 4—;[|_pointer
decoder ® §
=g
) 3
1 a
e ’ ® o
s _I LA 44 >
J z
N A A LIVt [\1]
b 4 b 4 h 4 *
—b{ mux ‘ mux ‘ priority encoder
< predicted data
=h address
s +/- o PN—
=}
) =
N
A A
S A
]
v ¥
L]

Figure 3-9: the implementation of data address prediction hardware

3.2. Pre-activation policy

We use proposed data address prediction to preactivate oncoming data cache line.
Figure 3-10 shows the implementation of preacitvation policy for drowsy data cache.
To apply on pre-activation, we extra index decoder, n comparators (n: way numbers in

data cache) to select the corresponding cache line.

37

state
machine

DA

anjeA apL
pajoipaid papaous

lookup
control

P_pointer

F

WY PDé Stride
®
IN
h 4 4 ® {—}’W‘
decoder
L s
=
* 5
] o
N) ? * 0
1 PV V' >
- J 2
g (G VYV,
h 4 h 4 b 4 *
—b{ mux ‘ mux ‘ priority encoder
g
— +/- 2 e P
o
> .:::. P |
=5
N h 4
o A
7\ y, -
v v
]
. h 4
| tag [index [offse]
\Vi Tag Data \Y Tag Data

preactivate
this line

preactivate
this line

Figure 3-10: the implementation of preactivation policy

38

3.3. De-activation policy

Data cache access has locality property. In other words, the activity in data cache is
only centered on a small subset of the lines during a fixed period of time. If we can put
those unused cache lines into drowsy mode, we can reduce leakage energy of data cache.
To implement this idea, we adopt the similar cache decay policy [8] proposed by
Kaxiras et al. A binary counter associates with each cache line. Whenever one cache line
Is accessed, its counter is reset to initial value (zero). The counter is incremented
periodically at fixed time intervals. If one counter saturates to its maximum value, this

cache line switches to drowsy mode.

39

Chapter 4 Evaluation

In this section, we will show our simulation results. First, we will introduce our
experiment methodology. Second, we give our evaluation metrics. Third, we show our

experiment results.

4.1 Experiment methodology

To implement our proposed data address prediction, we used SimpelScalar/ARM.
It allows detailed simulation of programs on a range of modern architectures using
execution-driven simulation. Table 4-1 gives the default values of the parameters used
in our base configuration. The energy values listed in the table are for 70nm technology.
Note that leakage energy consumption-isvery critical in 70nm and below process
technologies. Energy Parameters and-drowsy transition time are obtained from [8] and

[15].

40

Configuration Parameter

Value

Processor

Functional Units

Decode/issue width
Commit width
In-order issue

4 Integer ALUs

1 integer multiplier/divider
4 FP ALUs

1 FP multiplier/divider

1 instruction/cycle

1 instruction/cycle
true

Cache and Memory hierarchy

L1 Instruction Cache
L1 Data Cache
Instruction TLB

Data TLB

L1 cache miss penalty

32 KB, 4 way, 32 byte blocks
32 KB, 4 way, 32 byte blocks
16 entries, full-associative

16 entries, full -associative

8 cycles

Branch Logic

Transition energy (low to high)
Transition energy (high to low)
Transition latency from drowsy mode
Transition latency from active mode

Predictor bimodal (2-bit predictor)
BTB 128 sets, 4 way
Misprediction penalty 3 cycles

Energy Parameters
L1 dynamic energy per access 294 pJ
Leakage energy per cache line 0.417 pJicycle
Drowsy leakage energy per cache line 0.066304 pJicycle

25.6 pJ/transition
8.53 pJ/transition
1 cycle
1 cycle

Table 4-1: Base Configuration Parameters and Their Values in Our Base

In order to evaluate the effectiveness of our methodology, we use MiBench to be

our benchmark. It is a free, commercially representative embedded benchmark suite.

MiBench consists of six categories including: Automotive and Industrial Control,

Network, Security, Consumer Devices, Office Automation, and Telecommunications.

The detail information about MiBench is in [16].

4.2 Evaluation metrics

First, we define ideal case for drowsy cache. This ideal case means that how many

cycles of cache line be drowsy mode to compensate the voltage transition energy. Figure

4-1 shows our calculation for this ideal case. We could obtain that we would save the

leakage energy of data cache if one cache line has not been used for 97 cycles.

interval x (leakage, ;. -leakage s,)=ENErgy ose wansition
energymode_transition
Ieakageactive -Ieakagedrowsy

25.6pJ+8.63pJ
0.417pJ-0.066304pJ

= interval =

interval = =97 cycle

eNETGY noge wansivion- ENEFGY of power mode transition, including low to high and high to low
leakage,,.: leakage energy of active cache line per cycle
leakage,,,.,: leakage energy of drowsy cache line per cycle

Figure 4-1: define ideal case
Next, we show our evaluation metrics. There are four metrics we would evaluate

including: prediction coverage; prediction aceuracy, energy saving, and performance

loss.

number of prediction times
number of load/store instructions executed

1. prediction coverage =

number of correct prediction times

2. prediction accuracy = ——
number of total prediction times

3. Energy saving = (SEo -SEn)/SE0 x100%
o SEO = Static energy consumption before applying preactivation
° SEn = Static energy consumption after applying preactivation
SEo = > active cyclesxactive power x cycle time (k=total number of lines)
0~k-1
drowsy cyclesx drowsy power +

SE = . . xcycle time+E
N o~ k-p\active cyclesxactive power

overhead

E = number of transitions x transition energy +
overhead

SP x extra execution cycles x cycle time + E
system 4 4 extraHW

EextraHW = energy consumed by those HW needed by my preactivation policy

42

CL*TP

4. performance loss = x100%

CL.: cycle losses due to mode transition for total cache lines
TP: transition penalty
ET: original exeuction time

4.3 Experiment results

In this section, we classify experiment results into prediction accuracy and leakage

energy.

4.3.1 Prediction result

First, we want to know how many bits of stride bus are suitable. This needs to be
analyzed from the common stride values for auto-indexed load/store instructions and the
percentage of stride value=0 for non auto-intlexed load/store instructions. Figure 4-2
shows the common offset value for auto-indexed: load/store instructions. We would see

that the percentage of offset value isequal.to 1,4, -4 is over 92% of total offset values.

offset percentage for auto-index instructions

Ooffset=1 Moffset=4 Ooffset=-4 Oothers

0.047839927

0.052213513‘\
0.179590453

0.720356107

Figure 4-2: the offset value percentage for auto-indexed load/store instructions

43

stride value percentage for non auto-indexed instructions u str%de=—32
B stride=-8
1 M stride=24
0.9 M stride=13
O stride=16
0.8 O stride=3
0.7 B stride=-3
0.6 M stride=-1
0.5 O stride=-2
B stride=8
0.4 B stride=—4
0.3 B stride=1
0.2 O stride=2
0.1 Ustride=4
B stride=32
0 B stride=0

.

Figure 4-3: stride value percentage for non auto-indexed load/store instructions
w "y '_-

instructions. We would see that

Figure 4-3 shows the lue=0 for non auto-indexed load/store
ge of stride value=0 is about 50% for non

auto-indexed load/store instructions.

44

B instruction percentage M data address behavior

percentage

Auto-indexed Non Auto-indexed

load/store instruction type

Figure 4-4: the instruction percentage and its data address behavior

Then we collect the percentage of auto-indexed load/store instructions and non
auto-indexed load/store instructions. Besides, we also collect the prediction accuracy if
we take offset field value as its predicted stride value for auto-indexed load/store
instructions and take 0 as its predicted stride value for non auto-indexed load/store
instructions, and this collection we call data address behavior in Figure 4-4.

As shown in Figure 4-4, we see that the instruction percentage is 4:6 for
auto-indexed and non auto-indexed load/store instructions. Besides, the data address
behavior is over 70% for auto-indexed load/store instructions, and over 50% for non

auto-indexed load/store instructions.

45

B top hit Mbottom hit B best hit

70%

60%

50%
]
o0
S 40% |
&
£ 30%
(=]

20%

10%

0%
size=8 size=16 size=32 size=64
DAST size
~ARMRLE,,
Figure 4-5: prediction accuracy of top hit and bottom hit
f(—H 'l'” b Y ‘f;
. f’x i*
After analyzing the mﬁﬁfucu s of benchmark, now we evaluate the
'F;’,!-_h h-""" —
prediction accuracy for top hlﬁ:b‘m}p it est hit From Figure 4-5, we could see that
Igen

multiple hit seems have no effective solution because the accuracy of best hit is close
top hit and bottom. From this figure, we could see top hit has better performance for our
benchmark.

In this figure, best hit means that when multiple hit happens, we would use all
multiple hit entries to predict the next data address sent by processor. Noted that the
implementation of best hit is not practical, because its hardware cost would be larger

than top hit and bottom hit.

46

M prediction coverage MM prediction accuracy multiple hit

70. 00%

60. 00%

50. 00%

40. 00%

30. 00%

percentage

20. 00%

10. 00%

0. 00%

size=8 size=16 size=32 size=64

DAST size

verage, accuracy, and multiple hit for top hit

S
|

Figure 4-6: prediction co

Figure 4-6 shows the 'Qfedicfiqn'pi_:ygrage, accuracy, and multiple hit ratio of DAST.
We see that DAST size=16 would-have about 40% prediction coverage and about 55%

prediction accuracy, and its multiple hit ratio is less than 5%. As the size of DAST

increases, the gained performance is not obvious.

47

I DAST coverage B VHT coverage [IDAST accuracy
LIVHT accuracy B DAST effect [EVHT effect
70%
60% — N
50% | B
&
S 40%
g
£ 30% |
(@
20%
10% ¢ I
0%
size=8 size=16 size=32 size=64
Table size

Figure 4-7: prediction coverage, accuracy for DAST and VHT

Figure 4-7 shows that the performance for DAST and VHT. In this figure, DAST

effect and VHT effect is calculated framDAST coverage * DAST accuracy and VHT

coverage * VHT accuracy, respectively.

48

4.3.2 Leakage energy result

—~simple policy = noaccess policy

23.50%

23.00% =

22. 50% \\ / .
22. 00%

21.50% \//

21.00%

Normalized Leakage Energy

20.50%

20. 00%
DI=128 DI=256 DI=512 DI=1024 DI=2048 DI=4096

Decay Interval

Figure 4-8: leakage energy for simple policy and noaccess policy

Figure 4-8 shows the leakage energy: for the policies proposed in Section 2.2.1. We
see that simple policy with 256 cycles decay interval and noaccess policy with 512
cycles decay interval have the best leakage energy reduction.

Compared with simple policy, noaccess policy has to add one counter for each
cache line to monitor each cache line access. However, simple policy implementation
just only needs one counter. Our simulation result shows that the benefit gained from

simple policy would be better than noaccess policy.

49

30%

25%

20%

15%

10%

Normalized Leakage Energy

5%

0%

B High Leakage B Low_Leakage B Overhead

i

size=8 size=16 size=32 size=64 size=128 size=256
VHT size
leakage energy for preactivating DLC D-cache

Figure 4-9:
- 1 7l

E C =l

|5 |

- |

= =
-.-]

=
F:l-1:]

= . L 1896

oy

Figure 4-9 shows the Iealfagle g_r]e[gyrfpﬁ'athe policy proposed in Section 2.2.3. In

this figure, high leakage means that the energy which all cache lines consumed in active

mode; low leakage means that the energy which all cache lines consumed in drowsy

mode; overhead means the energy due to mode transition and extra hardware cost. We

see that the VHT with 64 entries has the best leakage energy reduction. As table size

increases, the energy consumed in overhead would be larger.

50

[0 Line M Set
2%
&
;_‘25%7
(&)
S
[€a)]
0,
O]
co23/°
S
=
< 21%
=
N
= 19%
—
o
s
- “ “‘
=
mihninnn LT LT LT
15/0&%&%&%2&2&%2%&%&%&%%%%%%
e e e e e T =2 A =~ B = B = = R = R = N S A N A I N R A B N T = S
T eS8 B EfEREZIEETREEEEEEREE B
= o = oo = oo
Size and decay interval

Figure 4-9: leakage energy for our proposed design

Figure 4-9 shows the leakage energy reduction for our proposed design. The bar
named as “Line” and “Set” in this figure means the turn on/off unit: line or set. On the
average, line is much better than set for leakage energy reduction. The X-axis means
that how many entries DAST needs and how many cycles decay interval is. We see
S16_1128 has the best leakage energy reduction, in other words, DAST size=16 entry
with decay interval=128 cycles has the best leakage energy benefit.

Noted that 256 cycles, 512 cycles, 128 cycles are the best decay interval for simple
policy, noaccess policy, DAST policy respectively. This means our policy put those

unused cache lines into drowsy mode more aggressively than simple and noaccess

policy.

51

B High_Leakage M Low_Leakage B Overhead

25.00%
B>
£

< 20.00%
€3]
&

< 15.00%
4]
]
—

< 10.00%
N
=

£ 5.00%
2

0.00%

simple noaccess DAST Ideal
policy

Figure 4-10: normalized leakage energy for each policy

Figure 4-10 shows thév_hormal jlzevaggkagr‘e ehergy for each policy. In this figure,
Ideal means ideal case WhicH IS défined ‘in Section 4.2. For each policy, we take its best
case to compare with others. We see that DAST has the best leakage energy reduction
compared with other policies. DAST reduces the power consumption by about 3.64%,
4.35% with respect to simple policy, noaccess policy respectively. Besides, the

difference of leakage energy between DAST policy and ideal case is relatively small.

52

4.3.3 Performance loss

7.00%

6.00%

5.00%

4.00%

3. 00%

2.00%

1. 00%

performance loss percentage

0.00%

simple noaccess DAST VHT

policy

Figure 4-11: performance loss for each policy

-
b

~

Figure 4-11 shows the perf S ‘for each policy. DAST has the largest
performance loss, which is not too much considering the large leakage energy benefits.
The higher performance loss for simple policy compared with noaccess policy is due to
simple policy with 256 cycles decay interval. In other words, as putting the unused

cache lines more aggressively, the performance loss usually would be larger than others.

53

Chapter 5 Conclusion

We propose one data address prediction called DAST and exploit it to put those
unused data cache lines into drowsy mode than cache decay policy. Our mechanism
predicts the address of the location that a load/store instruction will access, and
preactivate a data cache line. When the load/store instruction actually accesses the
cache line, it is already activated, imposing no penalty if the prediction was correct. Our
evaluation shows the proposed policy reduces the power consumption by about 3%
(assuming 70nm technology) with respect to previously proposed drowsy cache

policies.

54

Chapter 6 Reference

[1] Robert Jones, “Modeling and design techniques reduce 90 nm power”;

http://www.eetimes.com

[2] S. Gunther and S. Rajgopal, Personal communication.

[3] J. Montenaro. et al., “A 160MHz 32b 0.5W CMOS RISC Microprocessor,” Int.
Solid-State circuits Conf., 1996.

[4] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Drowsy instruction caches;
Leakage power reduction using dynamic voltage scaling and cache sub-bank
prediction,” Proc. Int. Symp. on Microarchitecture, pp.219-230, Nov. 2002

[5] M. Powell et al., “Gated-Vdd: A Circuit Technique to Reduce Leakage in
Deep-Submicron Cache Memories,” Proc. Int’l Symp. Low-Power Electronics and
Design (ISLPED 00), ACM Press, 2000;pp. 90-95.

[6] S. Kaxiras, Z. Hu, and M. Martonosi; “Cache:Decay: Exploiting Generational
Behavior to Reduce Cache Leakage Power,” Proc. 28th Int’l Symp. Computer
Architecture (ISCA 28), IEEE CSPress, 2001, pp. 240-251.

[7] M. Powell et al., “Reducing Leakage in a High-Performance Deep-Submicron
Instruction Cache,” IEEE Trans. VLSI, Feb. 2001, pp. 77-89.

[8] K. Flautner et al., “Drowsy Caches: Simple Techniques for Reducing Leakage
Power,” Proc. 29™ Ann. Int’l Symp. Computer Architecture (ISCA 29),

IEEE CS Press, 2002, pp. 148-157.

[9] H. Kawaguchi et al. Dynamic Leakage Cut-off Scheme for Low-Voltage SRAM’s.
In Symposium on VLSI Circuits Digest of Technical Papers, pages 140-141, June 1998.
[10] K. Wang et al. Highly Accurate Data Value Prediction using Hybrid Predictors. In

Proc. MICRO-30, pages 281-290, December 1997.

55

[11] W. Zhang et al. Reducing Data Cache Leakage Energy Using a Compiler-Based
Approach. ACM Transactions on Embedded Computing Systems, August 2005

[12] WoLr, M. ang Lam, M. 1991. A data locality optimizing algorithm. In ACM
SIGPLAN Conference on Programming Language and Implementation. 30-44.

[13] Fujioka, R et al. A Preactivating Mechanism for a VT-CMOS Cache using Address
Prediction. ISLPED August, 2002

[14] T. Kuroda et al. A 0.9-V, 150-MHz, 10-mW, 4mm?, 2-D Discrete Cosine Transform
Core Processor with Variable-Threshold-Voltage (VT) Scheme. IEEE Journal of
Solid-State Circuits, 31(11): 1770-1779, November 1996.

[15] S. Petit, et al. Exploiting Temporal Locality in Drowsy Cache Policies. Proceedings

of the 2nd conference on Computing frontiers

56

