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資 料 位 址 預 測 以 用 來 對 第 一 階 快 取 記 憶 體 做 電 源 管 理 

學生：莊富元       指導教授：單智君 博士 

 

國立交通大學資訊科學與工程學系﹙研究所﹚碩士班 

 

摘 要       

處理器內部的快取記憶體的耗電在整顆處理器的耗電上佔了相當大

的比例。隨著製程的進步，靜態耗電的比例會逐漸上升。目前有一個

稱之為 drowsy cache 的技術(每個快取記憶體區塊都有兩種不同的電

壓可供選擇)可以有效降低在快取記憶體中的靜態耗電。然而，要喚醒

一個處於 drowsy 狀態的快取記憶體區塊需要消耗額外的時間及能量。

而且這個額外的時間會導致整個系統的靜態耗電跟著消耗。本篇論文

提出一套預測資料位址的策略，利用該策略來預先打開即將要被存取

到的資料快取記憶體。實驗結果顯示，利用我們所提出的這個策略，

並與前人的研究做相比，可更進一步地節省資料快取記憶體 3%左右的

靜態耗電。 
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ABSTRACT 
 
 

 

On-chip cache is a major chip power consumer. Due to nanoscale 

technology, the dominant of this power loss will be leakage. The drowsy 

cache scheme, where one can choose between two different supply 

voltages in each cache line, is a technique that reduces the leakage energy 

for cache. Yet, waking up a drowsy line needs extra time and energy, and 

this extra time would result in total static power consumption. This paper 

proposes one data address prediction and exploits it to preactivate 

oncoming cache lines before access requests. Our experimental results 

indicate that the proposed preactivation policy reduces the power 

consumption by about 3% (assuming 70nm technology) with respect to 

previously proposed drowsy cache policies. 
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Chapter 1 Introduction 
 

Reducing power consumption is important for both battery-operated 

embedded/mobile devices and high-end machines. Generally, the power components of 

CMOS circuits can be classified into two parts: dynamic and static. The latter will 

exceed the former to be a major consumer as technology drops below the 65-nm feature 

size. Since the caches constitute a significant portion of the transistor budget of current 

microprocessors, static power reduction of cache is especially important. Besides, 

because data address has locality property, we could use this property to do data address 

prediction. 

 

1.1 Importance of low power design 

In this section, we will discuss the importance of low power design and review the 

power components of CMOS circuits. 

 

1.1.1 Importance of low power design 

Power dissipation has become a significant constraint in modern microprocessor 

design. In battery-operated embedded/mobile devices and high-end machines, power is 

already the leading design constraint. It has become one of the primary design 

constraints along with performance, clock frequency, and die size. In battery-operated 

devices, high power consumption would mainly reduce the battery lifetime. In case of 

high-end machines, high power consumption would lead to thermal issues like device 

degradation, higher packaging cost, and reduced chip lifetime. Consequently, overall 

product quality is highly dependent on techniques for minimizing system power 

consumption. These techniques can be applied on various design abstraction levels, 
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from circuit level to system architecture. Circuit-level power minimization techniques 

have played the predominant role in designing energy efficient ICs. However, 

architecture-level approaches are starting to attain popularity in recent years, thus 

resulting in even greater power optimizations. 

 

1.1.2 Main power components of CMOS circuits: 

Total power is growing exponentially with each process generation. Generally, the 

power components of CMOS circuits include both dynamic and static power. Dynamic, 

or active, power is consumed while the device is in operation. Static, or leakage, power 

is consumed by leakage current in non-ideal transistor operations, i.e., incomplete 

turning off. Dynamic power could be classified into two parts: switch power and 

short-circuit power. Switch power is the power dissipated by charging and discharging 

the load capacitances in circuits. Short-circuit power is the power dissipated by 

momentary short circuit at a gate’s output whenever the gate switches, and this power is 

relatively small.  

In the previous generation of CMOS technology, dynamic power had large impact 

on total chip power. However, with the increasing number of transistors employed in a 

chip and the continued reduction in threshold voltages of these transistors, leakage 

power has become a major concern. Figure 1-1 shows the trends in power across 

process technologies. We can see that static power will exceed dynamic power as 

technology drops below the 65-nm feature size. 
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1.2 Importance of low power design for data cache 

The instruction/data cache subsystem is an important microarchitecture component 

serving to bridge the ever growing gap between memory access time and processor 

execution speed. Not only the increasing variance between processor speed and memory 

access time, but also application complexity constitute driving forces toward larger 

caches implemented on the same die as the microprocessor core. Both tag and data 

arrays are placed on the processor’s die and typically account for a significant part of 

the transistor budget and hence of the total power consumption. For example, the Intel 

Pentium Pro dissipates 33% [2] and the StrongARM-110 dissipates 42% [3] of its total 

power in on-chip caches. The instruction cache is under heavy utilization in every 

processor cycle; the data cache exhibits similar high utilization especially in the case of 

data intensive multimedia applications and very long instruction word processor 

architectures, which exploit a high amount of instruction level parallelism. 

Since the caches constitute a significant portion of the transistor budget of current 

microprocessors, leakage energy reduction for cache is especially important. For 

Figure 1-1: Trends in power across process technologies [1] 
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instance, in the case of a 0.07 mμ process technology, it has been estimated that leakage 

energy of cache accounts for 70% of total cache energy [4]. Since the size of data cache 

is about the half of total cache in many systems, reducing leakage energy of data cache 

is important. 

 

1.3 Leakage energy reduction of cache 

Cache access has locality property. In other words, the activity in a cache is only 

centered on a small subset of the lines during a fixed period time. If we can use some 

techniques (such as decreasing supply voltage or increasing threshold voltage) for those 

unused cache lines, we can reduce leakage energy of cache. 

Two broad categories of circuit techniques aim to reduce leakage: state-destructive 

and state-preserving: 

State-destructive techniques use ground gating, also called gated-Vdd. Ground 

gating adds an NMOS (n-channel metal-oxide semiconductor) sleep transistor to 

connect the memory storage cell and the power supply’s ground [5][6][7]. Turing a 

cache line off saves maximum leakage power, but the loss of state exposes the system to 

incorrect turn-off decisions. Such decisions can in turn induce significant power and 

performance overhead by causing additional cache misses that off-chip memories must 

satisfy. 

State-preserving techniques have two. One is drowsy cache [8], the other is DLC 

(dynamic leakage cut-off) cache [9]. Drowsy caches multiplex supply voltages 

according to the state of each cache line or block. The caches use a low-retention 

voltage level for drowsy mode, retaining the data in a cache region and requiring a high 

voltage level to access it. Waking up the drowsy cache line is treated as a pseudo cache 

miss and incurs one additional cycle overhead. DLC cache saves leakage energy by 
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controlling transistors’ threshold voltage by the line on demand. In other words, the 

threshold voltages of transistors in a cache line are high to suppress leakage current. 

When one cache line needs to be activated, the threshold voltage of transistors in that 

line changes to a low voltage. 

The above two techniques reduce leakage less than turning a cache line off 

completely, but accessing the low-leakage state incurs much less penalty. Moreover, 

while state-preserving techniques can only reduce leakage by about a factor 10, 

compared to more than a factor a 1,000 for destructive techniques, the net difference in 

power consumed by the two is less than 10 percent. When the reduced wake-up time is 

factored into overall program runtime, state-preserving techniques usually perform 

better. They have the additional benefit of not requiring an L2 cache. 

 

Table 1-1 summarizes the advantage and disadvantage of state-destructive and 

state-preserving technique.  

 

 advantage disadvantage 

state-destructive static power reduction is 

maximum 

need refetch when the 

accessed line is gated 

state-preserving Only need a little time to 

wakeup a deactivated line

only reduce one part of 

static power 

 

 

In this paper, we adopt one state-preserving circuit technique － drowsy cache 

(change supply voltage). The reason why we do not adopt DLC cache (change threshold 

voltage) is that the time of waking up a deactivated line is longer than drowsy cache.  

 

Table 1-1: circuit techniques of controlling cache leakage 
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1.4 Data address prediction 

In this section, we briefly introduce the concept of how data address is predicted. 

In section 2.1.2, we will introduce an effective data address predictor. 

Many load/store instructions are used to access array elements and scalar data, and 

this phenomenon is more obvious in embedded applications. That is, data address has 

locality property because of loop induction variables and programs stepping through 

arrays in a regular fashion. Data address locality is captured by monitoring the stride by 

which the data address of consecutive instances of an instruction change. If the data 

addresses vary by a constant stride, then it is easy to predict the results of future 

instances of that instruction. 

The essence of data address prediction is to predict the effective address of 

load/store instructions based on their past behavior. Exploiting the above data address 

locality, we could easily predict the data address of next execution of one load/store 

instruction.  

 

1.5 Motivation & Objective 

Since waking up a drowsy data cache line needs extra time, propose a 

pre-activation mechanism for data cache to suppress this penalty. To propose a 

pre-activation mechanism for data cache, data address prediction is essential. Since data 

address has locality property, that is, the data address difference between two 

consecutive executions of one load/store instruction is often a constant value. Exploiting 

the data address locality, we could predict the data address of next execution of one 

load/store instruction. In addition, reserve predicted data address sequence, and when 

data address generated by one load/store instruction could be found in this sequence, we 

would pre-activate the next used cache line if it is a low-powered line. 
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So, our objective is to propose a pre-activation mechanism to co-work with drowsy 

data cache to decrease static power dissipation and performance loss. 
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Chapter 2 Background and Related Work 
In section 2.1, we will review some backgrounds on how to reduce static power 

from the view of equation and an effective data address prediction. In section 2.2, we 

will introduce three researches on reducing data cache leakage energy. 

 

2.1 Background 

Now, we briefly introduce static power equation and researches on static power 

reduction. Besides, we also introduce an effective mechanism on data address 

prediction. 

 

2.1.1. Researches on static power reduction 

The following equation defines static power consumption. Static power loss is due 

to leakage current, leakI . 

 

s leakP VI  =                                                      (1) 

(Ps: static power; V: transistor’s supply voltage; Ileak: leakage current) 

 

As noted, leakage current, the source of static power consumption, is a 

combination of subthreshold and gate-oxide leakage: leak sub oxI I I= + . 

Subthreshold power leakage 

 

thV / nV V / V
sub 1I K We (1 e )θ θ− −= −                                       (2) 

 

1K and n are experimentally derived, W is the gate width, and Vθ in the exponents is 
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the thermal voltage. At room temperature, Vθ is about 25mV; it increases linearly as 

temperature increases. If subI grows enough to build up heat, Vθ will also start to rise, 

further increasing subI and possibly causing thermal runaway. 

Equation 2 suggests two ways to reduce subI . First, we could turn off the supply 

voltage－that is, set V to zero so that the factor in parentheses also becomes zero. 

Second, we could increase the threshold voltage, which－because it appears as a 

negative exponent－can have a dramatic effect in even small increments. 

Equation 3 shows the dependency of operating frequency on supply voltage and 

threshold voltage. 

 

thf   (V V ) / Vα∞ −                                                (3) 

 

We know from equation 3 that increasing thV will reduce speed. The problem with 

the first approach is loss of state; the problem with the second approach is the loss of 

performance. 

Gate width W is the other contributor to subthreshold leakage in a particular 

transistor. Designers often use the combined widths of all the processor’s transistors as a 

convenient measure of total subthreshold leakage. 

Gate-oxide power leakage 

 

oxT / V2
ox 2

ox

VI K W( ) e  
T

−α=                                           (4) 

 

2K andα are experimentally derived. The term of interest is oxide thickness, oxT . 

Clearly, increasing oxT will reduce gate leakage. Unfortunately, it also degrades the 

transistor’s effectiveness because oxT must decrease proportionally with process scaling 
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to avoid channel effects. Therefore, increasing oxT is not an option. The research 

community is instead pursuing the development of high-k dielectric gate insulators. 

As with subthreshold leakage, a die’s combined gate width is a convenient measure 

of total oxide leakage. 

 

2.1.2. An effective data address predictor 

A stride-based predictor is proposed by K. Wang et al [10]. The essence of data 

address prediction is to predict the result of load/store instructions based on their past 

behavior; just like predicting the outcome of conditional branches. A good heuristic to 

use is to record the recent results produced by previous instances of an instruction, and 

predict the result of the instruction’s next instance based on past results.  

Figure 2-1(i) gives a block diagram of a simple stride-based value predictor. Its 

VHT entry has 4 fields－Tag, State, Value, and Stride. The state can have one of 3 

states－Init, Transient, and Steady. The state transition diagram is given in Figure 2-1(ii). 

The basic step in a stride-based predictor is the stride detection phase, which aims at 

detecting a stride sequence. The first time an instruction is encountered (as evident from 

a miss in the VHT), no prediction is made. When the instruction produces its result, an 

entry is allocated in the VHT, and the following actions take place: (i) the result is 

stored in the Value field of that entry, and (ii) the State of that entry is set to Init. While 

in the Init state, if another instance of the same instruction is encountered, no prediction 

is made. However, when that instance produces a result (D1), that is potentially the 

beginning of a stride sequence, and the following actions take place: (i) the stride is 

calculated as S1 = D1 – Value in VHT entry, (ii) D1 and S1 are entered in the Value and 

Stride fields of the VHT entry, and (iii) the State is set to Transient. While in Transient 

state, if another instance of the same instruction is encountered, no prediction is made. 
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When that instance produces a result (D2), the following actions take place: (i) the 

stride is calculated as S2 = D2 – Value in VHT entry, (ii) D2 is entered in the Value 

field of the VHT entry, and (iii) if S2 is same as previous stride, the State is set to Steady, 

else S2 is entered in the Stride field. While in the Steady state, predictions are made by 

adding together the Value and Stride fields; if a different stride appears, then the State 

is set to Transient. This simple 3-state scheme can detect most strides. 

 

 

 

2.2 Related work 

There are three papers on reducing leakage energy of data cache. The methodology 

Figure 2-1: Block Diagram and State Transition Diagram for a 
Simple Stride-based Value Predictor 
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of first paper could also be applied for instruction cache. The methodologies of the last 

two papers are dedicated for data cache. The second proposes a pre-activation 

mechanism based on drowsy cache. The third proposes a pre-activation mechanism 

based on DLC cache. 

 

2.2.1. Drowsy cache 

K. Flautner [8] et al. propose a simple technique for reducing leakage power called 

drowsy cache, where one can choose between two different supply voltages in each 

cache line. Their idea is put those unused cache lines into low-power drowsy mode to 

reduce leakage energy of cache. 

 

2.2.1.1. Power control scheme 

Approaches for reducing static power consumption of caches by turning off cache 

lines using the gated-Vdd technique [5] has been described in [6]. These approaches 

reduce leakage power by selectively turning off cache lines that contain data that is not 

likely to be reused. The drawback of this approach is that the state of the cache line is 

lost when it is turned off and reloading it from the level 2 cache has the potential to 

negate any energy savings and have a significant impact on performance. To avoid these 

pitfalls, it is necessary to use complex adaptive algorithms and be conservative about 

which lines are turned off. 

Turning off cache lines is not the only way that leakage energy can be reduced. 

Significant leakage reduction can also be achieved by putting a cache line into a 

low-power drowsy mode. When in drowsy mode, the information in the cache line is 

preserved; however, the line must be reinstated to a high-power mode before its 

contents can be accessed. To be this purpose, propose a simpler and more effective 
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circuit technique for implementing drowsy caches, where one can choose between two 

different supply voltages in each cache line. That is, exploiting voltage scaling to reduce 

static power consumption. Due to short-channel effects in deep-submicron processes, 

leakage current reduces significantly with voltage scaling. The combined effect of 

reduced leakage current and voltage yields a dramatic reduction in leakage power. 

Moreover, the penalty for waking up a drowsy line is relatively small (it requires little 

energy and only 1 or 2 cycles, depending on circuit parameters). 

  

 

 

 

Figure 2-2 shows the changes necessary for implementing a cache line that 

supports a drowsy mode. There are few additions required to a standard cache line. The 

main additions are a drowsy bit, a mechanism for controlling the voltage to the memory 

cells, and a word line gating circuit. In order to support the drowsy mode, the cache line 

circuit includes two more transistors than the traditional memory circuit. The operating 

voltage of an array of memory cells in the cache line is determined by the voltage 

controller, which switches the array voltage between the high (active) and low (drowsy) 

supply voltages depending on the state of the drowsy bit. If a drowsy cache line is 

Figure 2-2: Implementation of the drowsy cache line 
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accessed, the drowsy bit is cleared, and consequently the supply voltage is switched to 

high VDD. The wordline gating circuit is used to prevent accesses when in drowsy mode, 

since the supply voltage of the drowsy cache line is lower than the bitline precharge 

voltage; unchecked accesses to a drowsy line could destroy the memory’s contents.  

Whenever a cache line is accessed, the cache controller monitors the condition of 

the voltage of the cache line by reading the drowsy bit. If the accessed line is in normal 

mode, we can read the contents of the cache line without losing any performance. No 

performance penalty is incurred, because the power mode of the line can be checked by 

reading the drowsy bit concurrently with the read and comparison of the tag. However, 

if the memory array is in drowsy mode, we need to prevent the discharge the bitlines of 

the memory array because it may read out incorrect data. The line is woken up 

automatically during the next cycle, and the data can be accessed during consecutive 

cycles.  

 

2.2.1.2. Leakage control policy 

One line’s status is decided by window size (such as 2000 cycles or 4000 cycles) 

which specifies in cycles how frequently decisions are made about which lines to put 

into drowsy mode. 

There are two policies to decide one line’s status. The first policy uses no perline 

access history is referred to as the simple policy. In this case, all lines in the cache are 

put into drowsy mode periodically (the period is the window size). 

The second policy, Noaccess policy, means that only lines that have not been 

accessed in a window are put into drowsy mode. 

 

2.2.2. Compiler approach 
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W. Zhang et al. [11] present code restructuring techniques for array-based 

applications for reducing drowsy data cache leakage energy consumption. The idea is to 

let the compiler analyze the application code and insert instructions that turn-off cache 

lines that keep variables not used by the current computation. This turning-off does not 

destroy contents of a cache line and waking up the cache line (when it is accessed later) 

does not incur much overhead. 

 

2.2.2.1. Abstraction to the compiler 

The compiler-based strategy can have an important advantage over the pure 

hardware-based techniques. The hardware techniques are mostly application-intensive, 

meaning that a hardware mechanism attached to the individual cache lines (or a block of 

lines, or maybe to the entire cache) turns off the lines according to a fixed policy it 

implements. In comparison, the compiler-based scheme can track the program data 

access pattern, and tune the cache line leakage management policy based on the locality 

of data accesses. That is, it is expected to adapt the leakage control strategy to the 

application execution behavior better. 

Leakage-control strategy has two different flavors: state-preserving mechanism and 

the state-destroying mechanism. The state-destroying mechanism can be implemented 

by gating the supply voltage to the cache line [5], whereas the state-preserving 

mechanism can be implemented by scaling-down the supply voltage [8]. Besides, 

leakage-control strategy also requires some ISA (instruction set architecture) support. 

Basically, we assume the existence of an instruction, called deactivate, that takes as 

parameter a memory address, a length, and a bit. The memory address is typically the 

starting address for the object (or the array element) whose cache line(s) will be turned 

off; the length is the size of the object in bytes (or words) and the bit indicates whether 

the state-preserving or state-destroying mechanism is to be used in turning off the cache 
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line(s). When executed, this instruction turns off the cache line(s) that the object is 

mapped using the indicated leakage-saving mechanism. We also assume the existence of 

a corresponding instruction, referred to as activate, that turns on the cache lines. This 

instruction takes the same parameters as the previous one. 

It should be noted that the implementation of activate and deactivate instructions 

turns on/off several cache lines, which the object (or array element) in question is 

mapped to. That is, the scheme works on a cache line granularity, i.e., a cache line is the 

smallest unit we can turn off. When a deactivate instruction is invoked, we find the 

cache lines occupied by the object and turn them off. As an example, consider the 

object-to-cache line mapping depicted in Figure 2-3. The object here occupies three 

cache lines and we turn off all of them when we execute a deactivate instruction using 

this object as parameter. The set of cache lines that are occupied by a given object is 

called Relevant Cache Lines (RCLs). 

 

 

 

There are two important issues here that need to be clarified. First, sometimes, a 

given cache line can contain multiple objects and turning off such a cache line leads to a 

(re-)activation overhead if the other object in the line is later accessed. For example, in 

Figure 1-4, if the third cache line that holds the part of our object and holds some other 

object, deactivating this cache line will lead to extra access latency for this other object 

Figure 2-3: Relevant cache lines (RCLs) for an object in a direct-mapped data 
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if it is accessed in a subsequent computation. The second issue is what happens if the 

object whose cache lines we want to turn off/on is not in the cache. If this happens, we 

do not turn off/on the cache lines as otherwise we would be targeting wrong objects. 

Consequently, our deactivate/activate instructions operate just like normal cache 

accesses, except that instead of retrieving/updating data, they turn off/on the cache line 

that hold the object. 

Based on the circuit and instruction support explained, the main task of compiler is 

to insert activate/deactivate instructions in appropriate places in the code. It should be 

noticed, however, that placement of activate/deactivate instructions in the code may not 

be 100% accurate in every case. Specifically, in some case, it might be possible to 

invoke an instruction for a cache line whose state is not a proper one. As an example, in 

Figure 4, deactivating the RCLs of the object shown will lead to unnecessary 

deactivation of the words. Later, for some other object that occupies these words, 

deactivating the same cache line would be unnecessary. However, as long as we use 

only the state-preserving mechanism, such misuse of these instructions does not affect 

the correctness of the application being executed; it can only cost performance and/or 

energy loss (since the state-preserving leakage mode does not destroy the cache 

contents). 

 

 

 

 

Table 2-1 summarizes the functionality of activate/deactivate instructions when 

they are invoked for different cache line states. In this table, “line state” indicates the 

Table 2-1: Impact of Activate/Deactivate Instructions on Different Cache  
Line States 
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state of the cache line at the time of execution of the instruction. In particular, invoking 

activate (deactivate) instruction on an already-activated (deactivated) cache line has no 

effect. Invoking a normal read/write instruction on a deactivated cache line leads to the 

activation of the cache line before the read/write can take place (which, obviously, 

incurs a performance penalty). 

For the sake of clarity in the presentation, this paper specifies an instruction that 

turns off (on) the RCLs that hold an object denoted by U as deactivate(&U) 

(activate(&U)); that is, we omit the length and leakage mode parameters. Similarly, to 

turn off (on) the RCLs that hold an array element V[i], we use deactivate(&V[i]) 

(activate(&V[i])). 

 

2.2.2.2. Code Transformation 

The approach for inserting activate/deactivate instructions in an array-based 

application is based on a compiler analysis that predicts future data accesses in the code. 

Initially, we assume that all cache lines are turned off. Once a future data address is 

identified, the compiler inserts an activate instruction for the RCLs of the data in 

question (before the data is accessed). The compiler analysis also determines when the 

access to the data is completed and inserts the appropriate deactivate instruction in the 

code. The baseline implementation uses only the state-preserving leakage control 

mechanism, and we assume that arrays are aligned across cache line boundaries (i.e., the 

first element of an array always resides in the first location in a cache line). 
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Let us focus on the code fragment in Figure 2-4a to illustrate this approach. In this 

code, a one-dimension array U is accessed sequentially with perfect spatial locality 

(suppose that k is stored in a register). Assuming that each line holds four array 

elements, Figure 2-4b shows the high-level code generated by this approach. In this 

transformed code, activate(&U[i+4]) preenergizes the next cache line (actually, the 

RCLs) to be accessed, whereas deactivate(&U[i]) deactivates the current cache line 

(actually, the RCLs) after its use. It should be noted that we implicitly assume that the 

time it takes to preactivate (preenergize) the next cache line is shorter than the time it 

takes to process the elements in the current cache line. In fact, one might even delay the 

activation of the next cache line further (e.g., just before the statement k = k + U[i+3] in 

Figure 1-5b), since it takes only 1 cycle to activate it. On the other hand, even if a 

particular leakage-control mechanism employed takes more time to effect, we can easily 

Figure 2-4: An example code fragment (a), and its transformed versions (b) and (c) 
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accommodate it by inserting the activate instruction a bit earlier. Returning to the 

example in Figure 2-4a, let us assume an average cache line activation time of 8 cycles 

(for a hypothetical leakage-control) and a loop iteration of 4 cycles, we need to schedule 

the activate instructions two iterations ahead. This is illustrated in Figure 2-4c. 

The compiler analysis needed to identify the program points to insert 

activate/deactivate instructions involves a data reuse analysis. Specifically, the compiler 

needs to identify the array access patterns. Since trying to determine all loop iterations 

that reuse a given array element (or cache line) is costly, the implementation of W. 

Zhang et al. employs the data reuse framework given by Wolf and Lam [12]. This 

analysis tells us for each array reference what type of data reuse (temporal or spatial), if 

any, it exhibits. If a reference within the innermost loop exhibits temporal reuse, we 

insert the activate instruction just above the innermost loop, and insert the deactivate 

instruction after the innermost loop (i.e., the corresponding RCLs will be active only 

during the loop it is used). On the other hand, if the reference exhibits spatial reuse in 

the innermost loop, we first unroll the loop to make the references that access the same 

the same cache line explicit, insert the activate instruction ahead of time depending on 

the time it takes to activate cache lines (as in the example given in Figure 1-5), and 

insert the deactivate instruction only after all the references (in the loop body after the 

unrolling) that accesses the same cache line are touched. If, on the other hand, the 

reference in question does not exhibit any reuse in the innermost loop, we find the next 

(outer) loop level where it exhibits some form of reuse and insert the activate/deactivate 

instructions there. 

 

2.2.3. A Preactivating Mechanism for a VT-CMOS Cache 

R. Fujioka et al. [13] propose a mechanism for DLC cache that suppresses the 
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performance degradation by preactivating cache lines using address prediction before 

access requests.  

 

2.2.3.1. Power control scheme 

 

 
 

 

Figure 2-5 shows the circuit of a line in the original DLC cache [9]. In DLC, each 

SRAM cell is composed of Variable-threshold CMOS (VT-CMOS) [14]. Any SRAM 

cells of any unselected lines are initially deactivated. In other words, the threshold 

voltages of transistors in a cell are high to suppress leakage current. When a reference 

address is applied and a line is selected after the address is decoded, all cells in the 

selected line are activated by changing the threshold voltages of transistors to a low 

voltage. This is done by the n-well and p-well drivers. Soon after being activated, the 

word line of the selected lines rises. Since the threshold voltages of the accessed cells 

are low, the delay of the bit line is as short as in a normal cache. Although the activated 

line consumes significant static power, it is negligibly small in a large cache. Note that 

the activation is triggered after the address is decoded and the activation time is 

significant long (it is estimated in Section 2.2.2.3). As a result, the access time becomes 

considerably longer than a normal cache. 

Figure 2-5: Circuit of a line in the original DLC 
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2.2.3.2. Leakage control policy 

 

 
 

 

Figure 2-6 shows proposed processor organization (note that the figure does not 

present a precise pipeline organization; it depends on implementation). Although the 

organization is basically similar to the usual superscalar processor, it is differentiated by 

having an address predictor and a D-cache with three address inputs (reference, cancel, 

and reservation) per memory instruction. The address predictor predicts the address of a 

location which a memory instruction will access before the address is calculated. R. 

Fujioka et al. use a stride-based predictor to predict addresses because it gives the best 

cost/performance as an address predictor. The details of this predictor have been 

introduced in section 2.1.2. 

 

 

 Figure 2-7: Circuit of a line in the preactivating DLC cache 

Figure 2-6: Processor organization with a preactivating DLC cache 
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Figure 2-7 shows the organization of a line of our DLC cache. The differences 

from a conventional DLC cache are the two extra address decoders per memory 

instruction, and an up/down counter we call the reservation counter per cache line. The 

counter indicates the number of the reservation for line accesses. 

As shown in Figure 2-6, while instructions are decoded, the addresses of locations 

which will be accessed by decoding instructions are predicted using the address 

predictor. The predicted addresses are written into an entry for the corresponding 

instruction in the instruction window. At the same time, they are sent to the D-cache as 

reservation addresses, and the reservation counter in each line is increased by one. If the 

counter value changes from zero to one, the corresponding line is activated to prepare 

for later actual references. When the counter value is non-zero, the line is continuously 

activated.  

At some cycles later, a memory instruction is issued from the instruction window 

with the prior-written predicted address. An effective address is then calculated. The 

effective address is sent to the D-cache as a reference, and the predicted address as a 

cancel addresses. The reference address is used to access D-cache data in a usual cache. 

If the predicted address is correct, the selected cache line is already activated. Thus, 

delay due to DLC is not incurred; if not correct, a delay may be incurred. Meanwhile, 

the reservation counter in the selected line accessed by the cancel address is decreased 

by one. If the counter value becomes zero, the corresponding line is deactivated. Note 

that when a branch is found to be mispredicted, all reservation counters are reset. 

 

2.2.3.3. Estimation of DLC cache delay 

Figure 2-8 shows the evaluation results of the access time of a DLC and a normal 
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non-DLC cache for various capacities. Associativity for both caches are two 

(associativity has only a small impact according to the simulation, except for 

direct-mapped). Two lines for each cache present the cases of 32B and 64B lines. As 

shown in Figure 1-9, the access time of a DLC cache is much larger than that of the 

non-DLC cache. As a line size becomes larger, the access time is longer. For example, 

the 32KB DLC cache with 32B or 64B lines has a 2.7or 3.9 times longer access time, 

respectively, than the non-DLC cache.  

 

 

 

 

2.2.4. Summary and Observation 

Table 1-3 summarizes the above three related works. As shown the “circuit 

technique” row in Table 1-3, drowsy cache, compared with DLC, has little wakeup 

latency. In addition, implementing a cache line is very few additions. The main 

additions required to a standard cache line are a drowsy bit, a mechanism for controlling 

the voltage to the memory cells, and a word line gating circuit. Consequently, our cache 

architecture is based on drowsy cache. 

Figure 2-8: Accesses time of DLC and non-DLC caches 
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Compiler approach has two disadvantages. First, program portability is restricted 

because it needs preprocessing. Second, it is only targeted to array-based applications, 

not to all applications. To avoid these two restrictions, propose a hardware preactivation 

mechanism applied for all applications based on drowsy data cache architecture is 

essential. 

Although the third related work proposes a hardware preactivation mechanism, the 

address predictor overhead is too large (10KB SRAM). Our objective is to propose a 

hardware preactivation mechanism whose effectiveness is good and overhead is little. 

 

 

 

 

 

 

 

 

 

 

 

Table 2-2: summary of related works
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Chapter 3 Proposed Design 
In this chapter, we divide our design into three parts. First, we propose one data 

address prediction to predict the next data address sent by processor. Second, using our 

proposed data address prediction to preactivate oncoming accessed data cache line. 

Third, we introduce our de-activation policy for drowsy data cache.  

 

3.1.   Data address prediction 

In this section, we will introduce our data address prediction. First, we introduce 

the basic idea of our prediction and list some design issues for this prediction. Then we 

show our block diagram of prediction hardware and our prediction mechanism and the 

implementation of data address prediction hardware.  

 

3.1.1. Basic Idea of data address prediction 

The goal of our data address prediction is to predict the next data address sent by 

processor. To achieve this goal, there are two works that we should do. First, we must 

have the ability to predict the next generated data address for one load/store instruction. 

Second, reserving each predicted data address in the order of instruction execution when 

each load/store instruction is executed. If we are able to do these two works, whenever 

executing the same instruction sequence, data address sent by processor would have 

high chance to be found in this prior reserved sequence. Thus the predicted next data 

address sent by processor is just it’s the data address next to founding data address. 

However, there is one important problem is how to predict the next generated data 

address for one load/store instruction. The essence of this prediction relies on current 

data address and predicted stride value for this instruction. Noted that the term “stride 

value” means two prior consecutive data address for one load/store instruction. In this 
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paper, we take ARM ISA (instruction set architecture) as example.  Because load/store 

instructions are implemented through base register plus offset addressing mode and base 

register plus index addressing mode and the percentage of former is much larger than 

latter (about 93% in MiBench). In base register plus offset addressing mode, this offset 

is invariable. Consequently, we divide load/store instructions into two types 

(auto-indexed and non auto-indexed) depending on base register behavior and decide its 

predicted stride value, respectively. For auto-indexed instruction type, which is often 

used to access array data, since the base register would be modified as original base 

register value plus offset after data access, so the next generated data address for this 

instruction type is predicted as the sum of current data address and offset field value 

(this offset value is our predicted “stride value” for this instruction type). For non 

auto-indexed instruction type, which is often used to access scalar data, since the base 

register would not be modified after its execution, so the next generated data address for 

this instruction type is predicted as the current data address (zero is our predicted stride 

value for this instruction type). 

 

3.1.2. Design issue 

There are two design issues before proposing our data address prediction. Issue 1 is 

about the size of table which is used to store predicted data address sequence. Since 

instruction execution has temporal locality, instructions that are executed recently are 

probably executed soon, we have not to reserve all predicted data addresses and just 

reserve recent predicted data addresses. Issue 2 is about how the predicted stride value 

is transferred. Since our goal in this paper is to reduce static power of data cache, the 

energy of additional hardware should not be too large. If one predicted stride value need 

to be completely transferred from processor to data cache, we should offer one 
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additional bus called stride bus and its length is equal to data bus. This cost is too large. 

Thus, our solution to this issue is collect the common predicted stride values, encode 

them, need one narrow bus (maybe 2-bit) to transfer them, and decode them in data 

cache.  

 

3.1.3. Block Diagram of Data Address Prediction Hardware 

Figure 3-1 shows the block diagram of data address prediction hardware. The 

additional components added to conventional drowsy data cache are a 4/2 encoder, 2 bit 

stride bus, 2/4 decoder, and DAST (Data Address Sequence Table) which is used to 

store predicted data address sequence. The four possible inputs for this encoder are our 

predicted stride value for load/store instructions, including three common offset values 

for auto-indexed load/store instructions and zero for non auto-indexed instructions. 

However, if its offset value for one auto-indexed instruction is not in these common 

offset values, we take zero as predicted stride value for this instruction. The output of 

encoder is sent to DAST through 2-bit stride bus. The value sent through stride bus is 

decoded by 2/4 decoder. DAST stores our predicted data address sequence. Each entry 

of DAST has two fields called PDA (predicted data address) and Stride. PDA stores the 

next generated data address for one load/store instruction, and Stride stores predicted 

stride value for one load/store instruction. DAST needs two pointers. One is called 

I_pointer which is used to indicate the insertion location when one predicted data 

address is stored into DAST. The other is called P_pointer which is used to indicate the 

location which predicted next data address sent by processor resides in. 
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3.1.4. Prediction mechanism 

In this section, we describe our prediction algorithm in detail. First, we introduce 

when to predict data address and this is determined by DAST behavior. Second, we 

introduce how the predicted next data address sent by processor is generated. Third, we 

introduce how to maintain and update DAST.  

 

3.1.4.1.  DAST mode 

Our prediction mechanism is implemented through DAST. DAST has two possible 

modes which decide its behavior when data address is sent to data cache. One is match 

mode, the other is verify mode. Figure 3-2 shows DAST mode transition diagram. 

When DAST is in match mode, data address sent to data cache would lookup DAST 

(fully search). If hitting, DAST changes to verify mode and one predicted data address 

is generated. This predicted data address means our predicted next data address sent by 

processor. When DAST is in verify mode, data address sent to data cache would check 

if it is the same as prior predicted data address. If yes, it means that our prior prediction 

is correct and another predicted next data address sent by processor is generated. If no, 

it means that our prior prediction is wrong, stopping prediction, and DAST returns to 

match mode. 

 

Figure 3-1: Block diagram of data address prediction 
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3.1.4.2.  How to predict the next data address sent by processor 

In our data address prediction, the prediction time is when one data address could 

be found in reserved predicted data address sequence and the predicted next data 

address sent by processor is that address next to founding address in reserved sequence. 

Depending on DAST behavior, there are two cases for predicting the next used data 

address. 

Case1: DAST is in match mode and lookup hit 

In this case, it means one data address is found in the predicted data address 

sequence, so the predicted next used data address is the PDA field of the entry next to 

the hitting entry. Consequently, we pre-activate the corresponding data cache line.  

 

PDA Stride

DA
P

DAST (match mode)

hitting entry

 
 

 

 As shown in Figure 3-3, the predicted next used data address is just as the PDA 

Figure 3-2: DAST mode transition diagram

Figure 3-3: predict the next used data address when DAST is in match mode
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field indicated by P pointer.  

Case2: DAST is in verify mode and predict correctly 

In this case, it means we have predicted the current used data address. 

Consequently, we keep predicting the next used data address. The predicted next used 

data address is the PDA field of the entry next to the correct prediction entry. 

Consequently, we pre-activate the corresponding data cache line.  

 

PDA Stride

P

DAST (verify mode)

correct prediction entry
DA

 
 

  

As shown in Figure 3-4, the predicted next used data address is just as the PDA 

field indicated by P pointer. 

 

3.1.4.3.  DAST maintenance 

Depending on DAST behavior, we have three cases for updating DAST. For the 

sake of reserving predicted data address sequence, whatever the result of looking up 

DAST or predicting, we should do this action, delete one entry and insert one entry to 

the last of DAST. 

 

Case 1: Lookup DAST hit or Correct prediction 

When looking up DAST hit or predicting correctly, it means that we have the right 

stride value for this load/store instruction. Thus, fill the result of adding PDA field value 

Figure 3-4: predict the next used data address when DAST is in verify mode
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and Stride field value of current entry as well as Stride field value of current entry into 

the last entry of DAST. At the same time, we delete the current entry of DAST to 

reserved predicted data address sequence. 

 

Case 2: Lookup DAST miss 

When looking up DAST miss, it means that we have no information about the 

predicted data address of this instruction in DAST. Thus, fill the result of adding current 

data address in data address bus and the value in the stride bus as well as the value in 

the stride bus into the last of DAST. 

 

Case 3: Wrong prediction 

When wrong prediction occurs, it possibly means that we have the wrong predicted 

stride value for this load/store instruction. However, we could fix the right stride value 

through this wrong prediction. The right stride value should be: current data address 

sent by processor – the last generated data address of this load/store instruction. It is 

noted as: the last generated data address of this load/store instruction could be obtained 

from the wrong predicted data address and the wrong predicted stride value. 

 

3.1.4.4.  Handle multiple hit 

When we use the current data address to index DAST, multiple hit may happen. 

This is because there are more than two instructions whose predicted data addresses are 

the same and the same data addresses are put into DAST. Figure 3-5 shows the original 

of multiple hit. 
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There are two solutions to multiple hit, called “top hit”, and “bottom hit”, 

respectively. The appropriate situation using top hit: When one execution path would be 

executed continuously and there are more than two instructions whose predicted data 

addresses are the same. On the other hand, the appropriate situation using bottom hit: 

When one execution path would be executed continuously and there are no the same 

predicted data addresses for those instructions in this execution path.  

These two solutions to multiple hit maybe not suitable solutions. However, after 

considering hardware cost, these solutions are candidates for handling multiple hit. In 

fact, we have another solution if we don’t consider hardware cost, and we call this 

solution is “best hit”. When there are more than two hitting entries, the PDA fields of 

next entry of hitting entries are all our predicted data address sent by processor. For 

instance, if entry 1 and entry 4 are hitting entries, the PDA fields of entry 2 and entry 5 

are all our predicted data address sent by processor. 

 

3.1.4.5.  Handle wrong prediction 

Before handing wrong prediction, we have to analyze and classify wrong 

prediction. We use one smart table to help us classify wrong prediction into “PC wrong” 

and “PDA wrong”. Figure 3-6 shows this smart table. Each entry of this table has three 

fields called PC, PDA, Stride. The operation of this table is similar to DAST. It is 

differentiated by having PC field and PC needs to be sent to data cache. Noted that we 

Figure 3-5: predict the next used data address when DAST is in verify mode
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now virtually analyze wrong prediction, so the assumption of sending PC to data cache 

is allowed. 

 

PC PDA Stride 

   

   

   

   

   

   

 

 

Smart table is indexed by data address just like DAST. When wrong prediction 

happens, we check if the PC field of this entry is the same as the current input PC. If it 

is not the same, we call this wrong prediction is PC wrong. If it is the same, we call this 

wrong prediction is PDA wrong. The cause of PC wrong may be changed instruction 

execution path, multiple hit, and etc. The cause of PDA wrong is due to wrong predicted 

data address for one load/store instruction.  

Whatever the wrong prediction is PC wrong or PDA wrong, the handle of wrong 

prediction is not different. Recover the last generated data address, fix stride value, and 

calculate the predicted next generated data address. Obviously, this handle is aimed at 

PDA wrong. However, there is one problem is whether this handle is appropriate if 

wrong prediction is incurred by PC wrong. Our answer to this problem is yes if wrong 

prediction is incurred by changed instruction execution path. Our explanation is as 

follows. Figure 3-7 shows the different instruction execution path. If path 1 is executed 

consecutively and at one time path1 changes to path 2, there would be wrong prediction. 

Figure 3-6: overview of smart table
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This is because the predicted data addresses on DAST are belonged to load/store 

instructions in path1, not path2. However, if path2 are also executed consecutively 

afterwards, we could predict the data address of load/store instructions in new path. 

 

 

 

 

3.1.5. The flow chart and implementation for our data address 

prediction 

Figure 3-8 shows our flow chart of preactivation policy. In this figure, DA means 

the current data address sent by processor. 

 

 

Figure 3-7: instruction execution path
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Figure 3-9 shows our implementation of data address prediction hardware. In this 

figure, lookup control is used to decide the search behavior (search all entries or just one 

entry) for the input address; write control is used to decide whether the output of 

decoder is written into DAST or not; priority encoder is responsible for choosing one 

predicted data address when multiple hit happens.  

Figure 3-8: flow chart of our preactivation policy 
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3.2. Pre-activation policy 

We use proposed data address prediction to preactivate oncoming data cache line. 

Figure 3-10 shows the implementation of preacitvation policy for drowsy data cache. 

To apply on pre-activation, we extra index decoder, n comparators (n: way numbers in 

data cache) to select the corresponding cache line. 

 

Figure 3-9: the implementation of data address prediction hardware
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Figure 3-10: the implementation of preactivation policy 
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3.3. De-activation policy 

Data cache access has locality property. In other words, the activity in data cache is 

only centered on a small subset of the lines during a fixed period of time. If we can put 

those unused cache lines into drowsy mode, we can reduce leakage energy of data cache. 

To implement this idea, we adopt the similar cache decay policy [8] proposed by 

Kaxiras et al. A binary counter associates with each cache line. Whenever one cache line 

is accessed, its counter is reset to initial value (zero). The counter is incremented 

periodically at fixed time intervals. If one counter saturates to its maximum value, this 

cache line switches to drowsy mode. 
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Chapter 4 Evaluation 
In this section, we will show our simulation results. First, we will introduce our 

experiment methodology. Second, we give our evaluation metrics. Third, we show our 

experiment results.  

 

4.1 Experiment methodology 

To implement our proposed data address prediction, we used SimpelScalar/ARM. 

It allows detailed simulation of programs on a range of modern architectures using 

execution-driven simulation. Table 4-1 gives the default values of the parameters used 

in our base configuration. The energy values listed in the table are for 70nm technology. 

Note that leakage energy consumption is very critical in 70nm and below process 

technologies. Energy Parameters and drowsy transition time are obtained from [8] and 

[15]. 
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Configuration Parameter              Value
Processor

Functional Units         4 Integer ALUs
                     1 integer multiplier/divider

        4 FP ALUs
                     1 FP multiplier/divider

Decode/issue width                      1 instruction/cycle
Commit width                      1 instruction/cycle
In-order issue                               true

Cache and Memory hierarchy
L1 Instruction Cache 32 KB, 4 way, 32 byte blocks
L1 Data Cache 32 KB, 4 way, 32 byte blocks
Instruction TLB 16 entries, full-associative
Data TLB 16 entries, full -associative 
L1 cache miss penalty 8 cycles

Branch Logic
Predictor bimodal (2-bit predictor)
BTB 128 sets, 4 way
Misprediction penalty 3 cycles

Energy Parameters
L1 dynamic energy per access 294 pJ
Leakage energy per cache line 0.417 pJ/cycle
Drowsy leakage energy per cache line 0.066304 pJ/cycle
Transition energy (low to high) 25.6 pJ/transition
Transition energy (high to low)                      8.53 pJ/transition
Transition latency from drowsy mode 1 cycle
Transition latency from active mode 1 cycle

 

 

  

In order to evaluate the effectiveness of our methodology, we use MiBench to be 

our benchmark. It is a free, commercially representative embedded benchmark suite. 

MiBench consists of six categories including: Automotive and Industrial Control, 

Network, Security, Consumer Devices, Office Automation, and Telecommunications. 

The detail information about MiBench is in [16]. 

 

4.2 Evaluation metrics 

First, we define ideal case for drowsy cache. This ideal case means that how many 

cycles of cache line be drowsy mode to compensate the voltage transition energy. Figure 

Table 4-1: Base Configuration Parameters and Their Values in Our Base 
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4-1 shows our calculation for this ideal case. We could obtain that we would save the 

leakage energy of data cache if one cache line has not been used for 97 cycles. 

 

off active drowsy mode_transition

mode_transition
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leakage : leakage energy of active cache line per cycle
leakage : leakage energy of drowsy cache line per cycle

 

 Next, we show our evaluation metrics. There are four metrics we would evaluate 

including: prediction coverage, prediction accuracy, energy saving, and performance 

loss.  

number of prediction times1. prediction coverage = 
number of load/store instructions executed

number of correct prediction times2. prediction accuracy = 
number of total prediction times
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Figure 4-1: define ideal case
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CL*TP4. performance loss = 100%
ET

    CL: cycle losses due to mode transition for total cache lines
    TP: transition penalty
    ET: original exeuction time

×

 

 

4.3 Experiment results 

In this section, we classify experiment results into prediction accuracy and leakage 

energy.  

4.3.1 Prediction result 

First, we want to know how many bits of stride bus are suitable. This needs to be 

analyzed from the common stride values for auto-indexed load/store instructions and the 

percentage of stride value=0 for non auto-indexed load/store instructions. Figure 4-2 

shows the common offset value for auto-indexed load/store instructions. We would see 

that the percentage of offset value is equal to 1, 4, -4 is over 92% of total offset values. 

 

 

 

offset percentage for auto-index instructions

0.720356107

0.179590453

0.052213513

0.047839927

offset=1 offset=4 offset=-4 others

Figure 4-2: the offset value percentage for auto-indexed load/store instructions
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Figure 4-3 shows the percentage of stride value=0 for non auto-indexed load/store 

instructions. We would see that the percentage of stride value=0 is about 50% for non 

auto-indexed load/store instructions.  
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Figure 4-3: stride value percentage for non auto-indexed load/store instructions
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Then we collect the percentage of auto-indexed load/store instructions and non 

auto-indexed load/store instructions. Besides, we also collect the prediction accuracy if 

we take offset field value as its predicted stride value for auto-indexed load/store 

instructions and take 0 as its predicted stride value for non auto-indexed load/store 

instructions, and this collection we call data address behavior in Figure 4-4. 

 As shown in Figure 4-4, we see that the instruction percentage is 4:6 for 

auto-indexed and non auto-indexed load/store instructions. Besides, the data address 

behavior is over 70% for auto-indexed load/store instructions, and over 50% for non 

auto-indexed load/store instructions. 
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Figure 4-4: the instruction percentage and its data address behavior



 46

 

0%

10%

20%

30%

40%

50%

60%

70%

size=8 size=16 size=32 size=64

DAST size

pe
r
ce
nt
a
ge

top hit bottom hit best hit

 

 

 

After analyzing the instructions of MiBench benchmark, now we evaluate the 

prediction accuracy for top hit, bottom hit, best hit From Figure 4-5, we could see that 

multiple hit seems have no effective solution because the accuracy of best hit is close 

top hit and bottom. From this figure, we could see top hit has better performance for our 

benchmark. 

In this figure, best hit means that when multiple hit happens, we would use all 

multiple hit entries to predict the next data address sent by processor. Noted that the 

implementation of best hit is not practical, because its hardware cost would be larger 

than top hit and bottom hit. 

 

 

 

 

Figure 4-5: prediction accuracy of top hit and bottom hit 



 47

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6 shows the prediction coverage, accuracy, and multiple hit ratio of DAST.  

We see that DAST size=16 would have about 40% prediction coverage and about 55% 

prediction accuracy, and its multiple hit ratio is less than 5%. As the size of DAST 

increases, the gained performance is not obvious.  
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Figure 4-6: prediction coverage, accuracy, and multiple hit for top hit
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Figure 4-7 shows that the performance for DAST and VHT. In this figure, DAST 

effect and VHT effect is calculated from DAST coverage * DAST accuracy and VHT 

coverage * VHT accuracy, respectively.   
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Figure 4-7: prediction coverage, accuracy for DAST and VHT
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4.3.2 Leakage energy result 

 

 

 

 

 

 

 

 

 

  

Figure 4-8 shows the leakage energy for the policies proposed in Section 2.2.1. We 

see that simple policy with 256 cycles decay interval and noaccess policy with 512 

cycles decay interval have the best leakage energy reduction.  

 Compared with simple policy, noaccess policy has to add one counter for each 

cache line to monitor each cache line access. However, simple policy implementation 

just only needs one counter. Our simulation result shows that the benefit gained from 

simple policy would be better than noaccess policy. 
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Figure 4-8: leakage energy for simple policy and noaccess policy
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Figure 4-9 shows the leakage energy for the policy proposed in Section 2.2.3. In 

this figure, high leakage means that the energy which all cache lines consumed in active 

mode; low leakage means that the energy which all cache lines consumed in drowsy 

mode; overhead means the energy due to mode transition and extra hardware cost. We 

see that the VHT with 64 entries has the best leakage energy reduction. As table size 

increases, the energy consumed in overhead would be larger. 

 

 

 

 

Figure 4-9: leakage energy for preactivating DLC D-cache 
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Figure 4-9 shows the leakage energy reduction for our proposed design. The bar 

named as “Line” and “Set” in this figure means the turn on/off unit: line or set. On the 

average, line is much better than set for leakage energy reduction. The X-axis means 

that how many entries DAST needs and how many cycles decay interval is. We see 

S16_I128 has the best leakage energy reduction, in other words, DAST size=16 entry 

with decay interval=128 cycles has the best leakage energy benefit.  

 Noted that 256 cycles, 512 cycles, 128 cycles are the best decay interval for simple 

policy, noaccess policy, DAST policy respectively. This means our policy put those 

unused cache lines into drowsy mode more aggressively than simple and noaccess 

policy. 

 

15%

17%

19%

21%

23%

25%

27%

S
8
I
6
4

S
8
I
1
2
8

S
8
I
2
5
6

S
8
I
5
1
2

S
8
I
1
0
2
4

S
8
I
2
0
4
8

S
1
6
I
6
4

S
1
6
I
1
2
8

S
1
6
I
2
5
6

S
1
6
I
5
1
2

S
1
6
I
1
0
2
4

S
1
6
I
2
0
4
8

S
3
2
I
6
4

S
3
2
I
1
2
8

S
3
2
I
2
5
6

S
3
2
I
5
1
2

S
3
2
I
1
0
2
4

S
3
2
I
2
0
4
8

S
6
4
I
6
4

S
6
4
I
1
2
8

S
6
4
I
2
5
6

S
6
4
I
5
1
2

S
6
4
I
1
0
2
4

S
6
4
I
2
0
4
8

Size and decay interval

No
rm
al
iz
ed
 L
ea
ka
ge
 E
ne
rg
y

Line Set

Figure 4-9: leakage energy for our proposed design 
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Figure 4-10 shows the normalized leakage energy for each policy. In this figure, 

Ideal means ideal case which is defined in Section 4.2. For each policy, we take its best 

case to compare with others. We see that DAST has the best leakage energy reduction 

compared with other policies. DAST reduces the power consumption by about 3.64%, 

4.35% with respect to simple policy, noaccess policy respectively. Besides, the 

difference of leakage energy between DAST policy and ideal case is relatively small. 
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Figure 4-10: normalized leakage energy for each policy 
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4.3.3 Performance loss 

 

 

 

 

 

 

 

 

 
  

Figure 4-11 shows the performance loss for each policy. DAST has the largest 

performance loss, which is not too much considering the large leakage energy benefits. 

The higher performance loss for simple policy compared with noaccess policy is due to 

simple policy with 256 cycles decay interval. In other words, as putting the unused 

cache lines more aggressively, the performance loss usually would be larger than others. 
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Figure 4-11: performance loss for each policy 
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Chapter 5 Conclusion  
 

We propose one data address prediction called DAST and exploit it to put those 

unused data cache lines into drowsy mode than cache decay policy. Our mechanism 

predicts the address of the location that a load/store instruction will access, and 

preactivate a data cache line. When the load/store instruction actually accesses the 

cache line, it is already activated, imposing no penalty if the prediction was correct. Our 

evaluation shows the proposed policy reduces the power consumption by about 3% 

(assuming 70nm technology) with respect to previously proposed drowsy cache 

policies. 
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