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中文摘要 

IP Layer Multicast 提出解決網路路由器(router)封包重複於路由之間傳送問題的

方法，使靠近客戶端的路由器可以針對特定群組而送出封包，無需經由來源端到客戶

端當中的所有路由器均參與其中。因此大量減少網路上不必要的封包傳送，使得一對

多服務變成容易許多。然而由於 IP Layer Multicast 背後的問題諸如路由器管理、缺

乏區域路由器之間多播協定、拓展能力、佈建、與異質網路結合、及對上面協定層功

能的支援如流量及擁塞控制等，因而使得至今仍未被具體實現。 

目前許多研究都把重心移到應用層的多播，利用上層資料結構記錄群組成員及傳送

路徑。目前即時串流的應用程多播解決方式分為雙層架構與點對點架構。其最大的共

同點是由來源端建立起一棵傳播樹並且擔任管理的工作，在(1)指派服務節點；(2)節

點加入與離開；(3)中間節點突然遺失時傳播樹重建都需由來源端負擔。在此論文中我

們提出一些改良的方法，由每個節點記錄一些服務節點並定期更新，在加入/離開系統

及當服務節點遺失的時後由使用者自行處理，如此可減少來源端的負荷，並且將系統

負荷平均分散到使用者身上。此外，在傳播樹的建置中，我們會考慮節點到來源端間

所經過的 Hop 及數傳輸時間，使得從來源到每個節點間所經過的 Hop 數與時間都能達

到儘量最少，以便縮短傳輸延遲現象。讓每個節點擁有服務其它節點的能力，而來源

端僅需提供多媒體串流資源，故在這系統上的每個節點都有能力成為來源端而佈建自

己的傳播樹。 
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Abstract 

IP layer multicast provides a solution for the problem of duplicated packets 

retransmission between routers, it makes only the router nearby the clients to duplicate 

packets to specific groups, not each router between sources and clients take part in the 

delivery path. Therefore, that can reduce the unnecessary packets transmission over the 

Internet, makes it easy for one-to-many delivery. However, many problems behind the IP 

layer multicast such as routers management, lack of a robust multicast routing protocol 

between local (inter-domain) routers, scalability, deployment, combination with 

heterogeneous network, and support for higher layers functionality such as flow and 

congestion control. As a result, IP layer multicast has not been concrete accomplished up to 

the present. 

Today most of the research in multicast has been moved from the IP layer to the 

application layer, group members and delivery path are kept in the data structure in 

application layer. We can summarize the solution for live streaming using application layer 

multicast into two-tier and peer-to-peer architecture. The major common point of these are 

the source build a distribution tree and serve as the manager of the system in (1) assigning 

the service node, (2) peers joining and leaving, (3) node failure and tree reconstruction. In 

this thesis, we propose a refined method to diminish the burden of the source and distribute 
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the system load balance to the users. Each peer takes down some peer’s information when 

joining to the system, updating these information periodically, processing node failures. At 

the same time, we will consider the numbers of hops and transmission time from each peer 

to the source to make sure the total hops between each peer and the source is best-effort 

least, such that the delay can be diminished. In consequence, each peer has capability of 

serving, and the source just provides media stream resource such that each one has the 

capability to be the source and build its own distribution tree. 
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Chapter 1 Introduction 
 

1.1 Introductions 
 

Nowadays, Internet communications support not only traditional services, such 

as e-mail, chat rooms, but also new services inclusive of instant message, voice 

communications, video conferencing, file sharing, application sharing, white board, 

etc. With the mass population of emerging personal communication services (PCS) 

networks, multimedia streaming sharing over IP network will be a new important 

application. In the meantime, IP Multimedia Service (IMS) based on Session 

Initialization Protocol (SIP) [1] will provide more multimedia application and 

business. Voice/Video over Internet Protocol (VoIP) [2] has become more and more 

popular in recent years and undoubtedly will dominate the next generation of 

communication models.  

IP layer multicast provides a solution for the problem of duplicated packets 

retransmission between routers, it makes only the router nearby the clients to 

duplicate packets to specific groups, not each router between the sources and clients 

take part in the delivery path. However, many problems behind the IP layer multicast 

result in high building complexity. 

Many methods [3,4,5,6,7,8,9,10,11,12,13] have been proposed to use 

application-layer multicast to solve to the problem of broadcasting live streaming 

over the Internet, including client-server or peer-to-peer architecture. They are always 

forming a distribution delivery tree, some peers serve as a client and serving node 

simultaneously; however, the total delivery paths from the source to clients does not 

often take into account. When selecting a serving node, the closer one maybe not a 
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good way for the new coming node. 

In this thesis, we propose a reformed mechanism for constructing the distribution 

delivery tree based on application-layer multicast to attain to end-to-end hops be 

best-effort the shortest. Every new coming node determines the best location for itself 

on the distribution delivery tree before joining the overlay network. 

 

1.2 Related works 
 

1.2.1 Background 

The P2P phenomenon has radically changed the way in which everyone looks at 

the Internet and also aroused people’ concern in day-to-day life. 

■ P2P (Peer-to-Peer)

This P2P revolution has soon reached applicative areas that were believed to be 

strongholds of the client-server model, such as data transmission and storage, CPU 

computing sharing, search engines, instant-message, massive multi-participant online 

world simulations, Voice/Video over IP and many other fields. 

For live streaming applications, the way of media broadcasting over the 

networks is usually a client-server mode. In the client-server model, clients connect to 

server and receive directly from the server. However, it is very expensive and causes 

many serious problems such as bandwidth, processing power, system resource and 

scalability. 

The P2P has some characteristics: (1) user to user, (2) either side can initiate a 

session, (3) equal responsibility, and in fact (4) two peers on a P2P system often 

require contents from third others. 
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■ IP multicast and Application-layer multicast

The IP Multicast service model extends the Internet delivery service for efficient 

multi-point packet delivery. Figure 1-1 shows the IP Multicast Service models, the 

concept of it was to diminish the transmission of duplicated packets over Internet 

routers.  

 

Figure 1-1 IP Multicast service model 

 

However, in spite of a decade of research on multicast protocols and applications, 

a globally deployed multicast service is nowhere in sight, hindered by multitudes of 

problems such as routers management, lack of a robust multicast routing protocol 

between local (inter-domain) routers, scalability, deployment, combination with 

heterogeneous networks, and support for high layers functionality inclusive of 

retransmission, flow and congestion control. Following we summarize the drawbacks 

of IP multicast. 

First, IP Multicast requires routers to maintain per group state, which not only 

violates the “stateless” architectural principle of the original design, but also 

introduces high complexity and serious scaling constraints at the IP layer. 
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Second, IP Multicast is a best effort service, and attempts to conform to the 

traditional separation of routing and transport layers that have worked well in the 

unicast context. However, providing higher level features such as reliability, 

congestion control, flow control, and security has been shown to be more difficult 

than in the unicast case. 

Finally, IP Multicast needs to change at the infrastructural level, and slows down 

the pace of deployment. 

 

■ SIP (Session Initiation Protocol)

SIP [1] is an application-layer control (signaling) protocol for creating, 

modifying, and terminating sessions with one or more participants. SIP was modified 

from HTTP (Hypertext Transfer Protocol), had the same syntax and format with 

HTTP, high modifiability, defined in Request for Comments (RFC) 2543 by a 

working group of Internet Engineering Task Force (IETF), and a new SIP RFC 3261 

has also been produced. 

SIP defines five types of network entities: (1) user agent client (UAC), (2) user 

agent server (UAS), (3) registrar and location server, (4) redirect server, (5) proxy 

server. A SIP UAC can send SIP requests to UAS directly or through one or more 

proxy servers. Registrar and location server is used to record the addresses mapping 

of each SIP users queried by proxy or redirect servers. When receiving a SIP request, 

a redirect server responds a caller’s SIP request with the callee’s real location (in the 

form of SIP URL). In this thesis, we will combine the (1), (2), and (4) into a SIP UA, 

and a relay server is also included. 

 

■ SDP (Session Description Protocol) 
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SIP uses SDP [14] in an answer/offer mode. A caller sends an INVITE with an 

SDP description that describes the set of media formats, address, and ports (for 

different media sessions) that the caller is willing to use. This set of media formats 

comprises an offer by the calling party. The called party responds with an SDP 

description that aligns with the offered SDP description, but which includes an 

acceptance or rejection of each of the offered media formats. The result of this 

exchange is an agreement between the two parties as to the types of media they are 

willing to share. 

SDP is specified in RFC 2327 entitled “SDP: Session Description Protocol”. 

Nowadays, a number of modifications to the protocol have been suggested such as 

RFC 3266 entitled “Supporting for IPv6 in Session Description Protocol (SDP)” 

obsoletes RFC 2327 by supporting IPv6, RFC 3264 entitled “An Offer/Answer Model 

with Session Description Protocol (SDP)” updates RFC 2543 with an Offer/Answer 

model. 

SDP simply provides a format for describing session information to potential 

session participants. Basically, a session is comprised of a number of media streams 

(voice/video/text/application…). Therefore, the description of a session involves the 

specification of a number of parameters related to each of the media streams. 

Parameters are divided into two parties: session-level parameters and media-level 

parameters. Session-level parameters include information such as the name of the 

session, the originator of the session, and the time(s) that the session is to be active. 

Media-level parameters include the media type, port number, transport protocol, and 

media format. 

Because SDP simply provides session descriptions and does not provide a means 

for transporting or advertising the sessions to potential participants, it must be used in 

conjunction with other protocols (such as SIP). For example, SIP carries SDP 
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information within the SIP message body. 

Similar to SIP, SDP is a text-based protocol, utilizing the ISO 10646 character set 

in Unicode Standard Transmission Format (UTF)-8 encoding (RFC 2044). SDP field 

names use only US-ASCII, and textual information may be passed in any language. 

Although the use of ASCII coding in SDP, as opposed to binary coding, is a little 

bandwidth greedy, SDP is written in a compact from to counteract bandwidth 

inefficiency. 

 

1.2.2 Existing solution for streaming delivery 

 

There are various solutions for streaming delivery using application-layer 

multicast. Some of them need a powerful streaming server to deliver the streams to 

each client, and these systems are usually provided by ISPs (Internet Service 

providers) or companies for charging. 

The others do not use external servers but deliver the streaming by the user 

participating in the overlay network. The streaming source node handles most of the 

operations, including building the distribution delivery tree, forwarding each new 

coming client to an appropriate serving node, rebuilding the connections of some 

nodes in case of a serving node leaving, crash or failure due to software or hardware 

problems. Each function of these takes little times and may influence the quality of 

the system. 

The method of live streaming delivery using application-layer multicast can be 

categorize into four classes. Following shows a representative work for each one that 

we have surveyed.  

(1) StreamCast/OverCast [10, 11]: Figure 1-2 shows the architecture of 
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two-tiers. It use ISP’s proxy servers serve as the media servers to establish distribution 

delivery trees using the low layer routing algorithm built between every server’s 

routing table. It is expensive and these well-known proxy servers maybe easy to under 

attack. 

(2) PeerCast [12, 13, 20]: a P2P architecture without any streaming server. The 

source handles the tree construction while peers joining, and tree reconstruction while 

peers leaves or failures. SN selection policy is based on random or locality policy by 

peer’s redirection. However, the policy may choose a SN with long distance between, 

even if finding a SN with very small hops between, it might still not guarantee the 

total delivery paths between the new coming node and the source are short. Currently, 

PeerCast is open-source and free to use. 

(3) SplitStream [4]: A tree-based architecture but splits the streaming to N 

parties (strips called in the thesis), each part was delivered over one tree. Every node 

takes its role as a serving node in one tree, and a leaf node in the other N-1 trees. Each 

peer gives back to the network as much as bandwidth as it consumes, it is designed to 

overcome the unbalance forwarding load in single tree architecture. This method is 

used to reduce the influence of the node failures. The failure of any single node can 

only lead to the interruption of one tree over the architecture. However, the tree 

construction is complex and needs a streaming description method such as MDC 

(Multiple Description Coding) to identify each streaming part. Delay of each tree is 

not stable for real-time application. Figure 1-3 shows an example of multiple trees 

with seven nodes in logical view. 
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Figure 1-2 Two-tiers architecture 

 

 

Figure 1-3 Multiple trees with seven nodes 

 

(4) Improved Single-tree Approaches: Most of the Single-trees method are 

managed by the root, and they are good at delay, but sill have problems on the nodes 

leaves of failures. Zigzag [21] is a proposal from the University of Central Florida 

which addresses robustness problem of the single-tree architecture by splitting the role 

of the leader over two different entities, the head and the associate-head. Heads inherit 

all the administrative functions of the leader, except the responsibility of forwarding 

the data stream to others. Associate heads are picked between the non head peers of a 
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cluster and are delegated both the privilege to receive data from the higher layer and 

relay streams to their cluster-mates. In addition, all non-head peers of a cluster in a 

higher level can forward the streams to the associate-heads on the lower-level clusters. 

Once their associate-head fails, the children can contact to their cluster head. Figure 

1-4 illustrate the tree proposed on Zigzag. The improvements brought by these 

changes are the following (k is a constant value, k>3): 

 Any peer cannot directly serve more than 6k-3 peers 

 The worst-case number of peers that need to reconnect due to a crashed 

node is 6k-2 

 Reconnecting is made easier in case of associate head failure, since the head 

is still alive and can pick a substitute associate head without burdening the 

server; if only the head fails , though, the data stream in the cluster is not 

disrupted and it’s possible to easily pick another head. 

 

 
Figure 1-4 Zigzag’s Single tree 

 

Multiple-source technology used in file-sharing environment may not 

appropriate for streaming multicasting. The drawback of multiple-source method are 
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(1) needs exchange massive messages for query the frames that the user lack of, (2) 

needs a method to avoid receiving the duplicated packets, (3) delay is not steady thus 

can not assure of real-time transmissions. 

In this thesis we do not use mechanism similar to distributed hash table (DHT) 

such as Chord, or Content-Addressable Network (CAN) which are mostly used in 

recently peer-to-peer architecture. In the DHT method, most of these nodes in the 

tables do not actually request the content of the media from the source, but they have 

to relay the content for some nodes (once the software is executed and online, they are 

constructed into the DHT), this result in fairness problem. Another problem is that 

because our streaming data is transfer on single connection (for the infinity length 

streaming feature, it is not easy to index like a fix-length media file and obtain from 

multiple source), DHT is not appropriate for this need. 

 

1.3 Motivations 
 

Currently, multimedia streaming sharing always needs media servers. The burden 

on media servers get increased with more and more clients connections. On the other 

hand, most of these media servers are always well-known; they may be vulnerable to 

DoS attacks. Most importantly, the network capability does not increase with the 

numbers of connected clients but is constant and bounded, and requires the manual 

addition of the servers to be increased. 

At the same time, P2P architecture does not use broadcasting methods, every 

peer receiving data streaming from others also contributes resources to others, and any 

peer may not be impacted on others leaves or crashes. 

The network topology viewed from the application layer may not be the same 
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with the actual one from the IP layer. When constructing a delivery tree, the delay is 

proportioned to the hops between. Defining the cost function of the tree be the sum of 

the routing path of each peer to the source, hence, our goal in this thesis is to form a 

shortest path delivery tree. 

Figure 1-5(a) shows the view on the application layer, streaming direction is 

from peer A to B, and peer B to C. However, the real topology could be the case in 

figure 1-5(b), that is to say, C is far from peer A. The latency will be reduced if the 

streaming is directly from peer A to C as shown in figure 1-5(c). At the meantime, for 

C, the numbers of routers to A and B are the same but A is the better choice due to it is 

nearby the source than B if we consider the total routing path from the source. 

 

             

A 

B C 

A

B C 

R1

Figure 1-5(a) Application layer view       Figure 1-5(b) IP layer view 

 

A

B C 

R1 

Figure 1-5(c) the best path 

 

1.4 Objectives 
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The purpose of this thesis is to design a multicast system for live video/audio 

streaming sharing, it is a distribution delivery tree architecture, peers in this system 

perform most of operations by themselves. Using peer list, we can diminish the 

burden of the media source when (1) joining or leaving the system; (2) SN selection; 

(3) recovering from SN leaves or failures. 

In our implementation, SIP is used as the signaling protocol and RTP [15] 

(Real-Time Transport Protocol)/RTCP [16] (Real-Time Control Protocol) are used to 

deliver the media streaming on Internet. 

 Our solution OverCast 

ScatterCast 

PeerCast 

architecture Tree-based Two-Tiers Tree-based 

Deliver contents By Clients By proxy servers By Clients 

System loading Balanced to clients Load on proxies Balanced to clients

SN selection Routing path Routing table Closest 

Deal with 

Fault-tolerant 

Client use peer list 

to re-join 

Proxy servers Steaming source or 

SN forwarding 

System cost Low High Low 

Table 1-1: The difference among our solution, two-tiers and tree-based method 

 

1.5 Overview of this thesis 
 

The remaining of thesis is organized as follows. Chapter 2 describes the concept 

of the live streaming multicast system. Chapter 3 presents the architecture and system 

implementation. Conclusions and future work are given in Chapter 4. 

 12



Chapter 2 Mechanism of designing P2P 
multicast system 
 

2.1 Overview of the proposed mechanism 
 

The chief purpose of the proposed mechanism is to construct a shortest path 

distribution delivery tree for media streaming sharing under peer-to-peer environment. 

There are three principles in this thesis: (1) balance the loading of the media source; 

(2) find and contact a nearby SN that has shortest routing paths from the media source 

to clients; and (3) dynamic adjustment the location for each peer. When a new coming 

node wants to join this system, it first contacts the source, the major task of the source 

is to determine whether directly accepts this request or responds with a redirection 

message that contains some SNs’ information so that the new coming node can 

determine by itself which to contact using a simple measurement method in its peer 

layer. 

Define the data structure of each peer in the peer list and the function of each 

member variable. Each UA maintains one peer list that contains partial peers’ 

information which it knows about on the overlay network. Table 2-1 shows the data 

structure of each peer’s elementary information, and a peer list is composed of one to 

many peers. Most of the peer information can be obtained by one pass; each peer 

maintains two global variables for itself, “g_Hops2Source” and “g_RTT2Source”, 

which are obtained by two passes. Each peer can designate different serving degrees 

in terms of its capabilities such as processing power, network bandwidth, system 

loading, memory resource, resource usage, etc. 
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Table 2-1 Data Structure of peer information 

 

We keep this data structure as simple as possible; therefore, we can include some 

information within the SIP request/response message by adding them as a header 

parameter and need not change the original SIP syntax. In our implementation, two 

header parameters are included in the SIP “Contact:” header, r stands for RTT to “the 

source” and h stands for numbers of hops to “the source”. 

The functions of each peer include (1) sending a SIP message to the media 

source or SN, (2) detecting a SN, (3) exchanging peer list with others for update 

periodically, (4) relaying media streaming for other peers, (5) recovering from node 

failure by peer list, and (6) dynamic adjustment. The media source just provides 

streaming media to the system, it does not keep the global states of the overlay 

network and manage nothing. We want to make the media source as if resembling any 

other peer. 
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2.2 Peer joins 
  

First, we define an entity: SN, a super node or serving node, is a SIP UA that can 

relay the signaling and streaming media from the media source to the requester. Every 

peer in this overlay network has the ability to become a SN in terms of their 

capabilities such as processing power or network bandwidth, etc. 

When a SIP UA wants to receive the streaming media, it has to first contact the 

media source or to obtain a peer list. The media source receives the request message 

and determines in terms of its capabilities whether to accept this request or respond 

with a peer list to ask the new coming peer choosing another peer as its SN. If the 

selected SN has enough capacities, it will accept this call, otherwise, it sends a 

response with children peers’ information from its peer list to the new coming peer, 

and these steps are continuous until the new coming peer finds one SN with the 

shortest routing path through it. 

We use SIP for our signaling control and combine some behavior of SIP servers 

(e.g., redirect server and relay server) into the original SIP UA. Our join algorithm is 

almost implemented and accomplished on the “Peer layer”. 

 

2.2.1 Joining Peer accepted by the source/SN 

 

    Figure 2-1 illustrates the signaling flow when the media source/SN accepts 

UA1’s request in terms of its capabilities. Both the new coming peer UA1 and the 

source/SN should run a ping echo routine to obtain the numbers of hops and RTT 

between each other and record this information into the peer list. Using the peer 

information one can know how far the routing path to the source of each peer. 
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Figure 2-1: The source/SN accepts UA1’s request 

  

After receiving the SIP ACK message, the source/SN joins UA1 to its RTP 

streaming member list. Then the new coming peer UA1 can obtain media streaming 

from the source/SN. 

 

2.2.2 Joining Peer forwarded by the source/SN 

 

If the source/SN has up to its capabilities or maximum serving degrees, it can 

forward this request message to another peer which is selected by random policy, 

round-robin policy, or locality policy. Figure 2-2 shows the signaling flow of this 

method. 

There are various policy in common use proposed by [16], (1) Random policy: 

the source/SN randomly chooses a peer from its peer list; (2) Round-Robin (RR) 

policy: the source/SN chooses a peer with maximum surplus serving degrees, each 

node requires some state information of others; (3) Smart-placement policy: the 
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source/SN chooses a closest node; (4) Knock-downs policy: If the requesting node 

is closer to the source/SN node ( or in terms of network bandwidth), the source/SN 

node will accept the requesting node as its child, and redirect the farthest node. 

 

 

Figure 2-2 The source/SN forward the request to PeerA 

     

    This method can be used in case of UA1 is not powerful to become a SN (this 

can be accomplished by adding another parameter in the SIP header to describe 

joining peer’s serving degrees). We may want this kind of peer to be a leaf in the 

overlay network because it cannot serve anymore. Therefore, the source/SN can select 

a peer with the longest path to the source and forward to it. In next section, we will 

describe how to select the best SN for each peer that can also become SN in the 

overlay network. 

 

2.2.3 Joining Peer redirected by the source/SN 
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        Figure 2-3 The source/SN redirect with SIP 302 Move temporarily 

 

The selected SN close to the source/SN may not close to UA1 peer. Our main 

goal is to find a SN with shortest routing path from the source, and it is difficult for 

forwarding method. In addition to forward by the source/SN, we can also use 

redirection mechanism. 

Figure 2-3 shows the signaling flows when the source/SN rejects the INVITE 

request from UA1 and sends a redirect response message with the peer information. 

The 302 Moved temporarily message is used to tell UA1 that the source/SN cannot 

accept this request in terms of its capabilities and provides its children peers to UA1 

for choosing. The reasons for only sends children peer are that the source/SN 

presumes UA1 already knows about some peers and from these peers UA1 can 

choose a best one from them. These children peers’ information are packeted into the 

SIP 302 Moved_Temporarily response message in the form as illustrated in Figure 

2-3: 

“Contact:SIP_URL;h=[ Hops to the source];r=[ RTT to the source]\r\n” 
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At the peer layer, UA1 parses the message and extracts peers’ information from 

the response message, stores to peer list; it also executes an ICMP echo routine 

iteratively and compares with the peers already in its peer list to find a SN with 

shortest path to the source. With the ICMP echo function, if the remote peers are 

reachable they will copy the original data packets to a serious of reply packets and 

send them back to the echo requesting node. 

When receiving these replies packets, we calculate the round-trip time (RTT) by 

the difference from the first sending packet to latest receiving one and numbers of 

hops between. Every computer implements the ICMP echo function, so we can use 

this to measure the network state. Therefore, we can choose the peers with lowest 

hops between and lowest transmission time to contact. Because we have known the 

numbers of hops between the selectable serving peers and the source from the SIP 

302 response message, store them to each “Hops2Source” of specific peer data 

structure, after ICMP echo function we can obtain the “Hops2Peer” information of 

each. Adding “Hops2Source” and “Hops2Peer” of each peer and selecting the 

minimum one. If the selected SN accepts this request, setting UA1’s global variable 

with them. 

(1) g_Hops2Source = SN.Hops2Source + SN.Hops2Peer + 1; 

(2) g_RTT2Source = SN.RTT2Source + SN.RTT2Peer + 1 

In next section, we will describe our algorithm in more detail by using a 

simulation example. 

 

2.3 Distribution Delivery Tree Construction 
  

    We can solve these problems by shifting multicast to the end system on the 
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application layer that maintains the stateless nature of the network. In addition, we 

believe that the solutions for supporting higher layer features such as error detection 

and correction, flow and congestion control can be significantly simplified by 

leveraging well understood unicast solutions for these problems. 

 

2.3.1 Replace and dynamically adjust construction policy 

 

When every new coming node joins, the location of peers in the overlay network 

will dynamically adjust to response our shortest path finding mechanism. Figure 2-4 

shows the concept of dynamic adjustment on each serving node. 

 

 
Figure 2-4 Dynamic adjustment the location 

 

In figure 2-4, the SN A originally has two children node B and C, if A’s 

maximum serving degrees are two, a new coming node D has shorter routing path 

than B and C, SN A therefore selects D as its child and replaces C (C is longer than B 

in routing path). C will re-join the overlay network and this dynamic adjustment 

happen recursively to C’s children simultaneously. 

Figure 2-5 shows an example of three new coming peers {A, B, C} that want to 

join the overlay network created by the source. From the views on the application 
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layer, if the joining sequence is A, C, and B, figure 2-5 (a) shows the delivery tree 

where B can select one of {A, C} as its SN by only the transmission time due to the 

numbers of hops between AB are equal to that between AC, and we assume B chooses 

A. 

On the views on the IP layer shown in figure 2-5 (c) we can calculate the routing 

path from the source to A and C are 27 but from the source to B is 54. Define the cost 

of the overlay tree are the sum of routing path from the source to each peer, we can 

calculate the cost are 27+54+27=108. With dynamic reconstruction policy shown in 

figure 2-5 (b), when peer B joining, the source finds B is closer than A or C, thus it 

knocks down one of {A, C} with the longer transmission time and chooses B as its 

new child, and we assume B replaces A. The replaced peer A recalculates the distance 

of “source-B-A” and “source-C-A” and selects B or C as its new SN, in this case they 

are the same so A can use the transmission time for choosing. 

Now, the routing path from the source to B is 2 and 29 to A, the cost of the tree 

are 2+29+27=58. If letter a new coming node selects B as its SN, the routing path can 

be better than the former case as shown in figure 2-5 (a). 
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Figure 2-5 Replacement and dynamic adjustment policy 

 

2.3.2 A simulation example of peers joining 

 

We develop a simulation tool to illustrate the tree construction step by step. First 

we randomly generate a square array with size n by n as input data, n stands for the 

peers participated in the system, and assume each node has the same maximum 

serving degrees of 3. In practice, the maximum serving degrees of each node can be 

different in terms of their capabilities. 

The joining criteria we take here is the routing path from the source to each node, 

assuming the transmission time (or RTT) between two peers are proportions to the 

numbers of hops between; therefore, our simulation is only focus on the latter metric. 

On the initial state only P0, the media source, exists in the overlay network. 
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Figure 2-6 (a) shows the result of P1, P2, and P3 joining. After accepting three 

connection requests, P0 has up to its maximum serving degrees. In reception of 

request message from P4, P0 determines P4 is closer than P1, therefore, P0 chooses 

P4 as its new child to replace P1. At the same time, P0 provides its children {P2, P3, 

P4} to P1 and P4 provides its peer list information {NULL} (NULL in this case) to P1, 

then P1 combines these information and knows about there are three selectable peers 

{P2, P3, P4} and how they are far from the source P0. The replaced node P1 

determines a new appropriate SN by calculating “Hops2Source + Hops2Peer” as 

describe in figure 2-6 (b). The result is showed in figure 2-6 (c). In practice, the SNs 

are needed to be calculated in the routing path, thus the g_Hops2Source variable need 

to add 1 for each SN in our implementation and simulation. 

Figure 2-6 (d) shows the case of P5 joining and replaces P2, using the same 

algorithm P2 has selectable peers {P3, P4, P5} and eventually P3 is selected as 

illustrated in figure 2-6 (e). When P6 joining, no peer is farther from P0 than P6, thus 

P0 redirects it to its children {P3, P4, P5} and P5 is selected as figure 2-6 (f) shows. 

 

 

Figure 2-6 simulation of peers joining (a)(b)(c) 
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Figure 2-6 simulation of peers joining (d)(e)(f) 

 

If the replaced peer has children, it should notify all its children of dynamically 

adjusting because of there are some other peers better than its parents. If the children 

also have children, they will be notified recursively until the lowest level. 

Up to present, by the policy of replacing the farthest peer with a close one on the 

routing path. The routing path from the source can be reduced level by level and the 

total routing path is taken into account. Figure 2-7 is our simulation input data, a 

square array, every element with a index [row][column], or A[i][j] for short, presents 

the numbers of hops between peer I and peer J, thus A[i][j] = A[j][i] and A[i][i] = 0. 

Other A[i][j] maybe zero if they are under the same subnet. We do not consider the 

reach less problem on the network states, therefore A[i][j] cannot be negative. 

 

 

Figure 2-7 Simulation input data 
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    Without dynamic adjustment and replacement policy, the latter coming peer will 

always on the leaves layer and have no chance to find a better SN except rejoining the 

overlay network. 

 

2.4 Analysis of the join criteria 
 

At the beginning the replacement may happen frequently, the numbers of 

impacted nodes due to recursively replacing are very small. With more and more 

nodes joining the overlay network, the upper links especially those close to the source 

are hardly to be replaced, thus the impacted nodes are limited to a range of specific 

levels. If D is the maximum serving degrees of the tree, the replaced node is at level I, 

and the tree has a level L. Total impacted node are less than 1-D
)1( 1 −+−ILD , more I 

approach to L, smaller 1-D
)1( 1 −+−ILD  is. The shape of the spanning tree is 

depended on the network topology. 

We also concern about the time complexity of one new coming peer joining. If N 

represents the numbers of peers on the overlay network, D represents the maximum 

serving degrees of each peer, and peers reaches to its maximum serving degrees are 

called saturated peers (or SP). When the new coming peer contacts any saturated peer, 

it will be redirected to others or replace one child of the saturated peer. First we want 
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The ΔSP(t) stands for the difference redirection cost between RCi and RCi-1 

after peer i joining. RCi stands for the total redirection count over the system after 

node i join. The departing cost of peer i has the same definition with the joining cost 

because one peer departing may increase the redirection cost of the system. A 

redirection cost is similar to an accepting cost because of they represent a transaction 

element in SIP. Hence, we take the redirection cost into account, not only the replaced 

peers in calculating joining cost. The larger serving degrees each peer has, the smaller 

saturated peers are on the system, and thus the joining cost can be reduced obviously 

in our simulation result. In practice, each new coming peer may not contact to all the 

saturated peers. 

We use a best-effort method for finding a shortest routing path from the source. 

In the best situations, peers on the lower levels need to frequently determine whether a 

better SN exists or not whenever a new coming peer joins. But it is difficult for a P2P 

overlay network to know about someone’s joining without a global state maintainer. 

Therefore, we fire up a timer counter on each peer for dynamically adjusting, 

whenever the timer is triggered, peers can exchange the peers’ information with others 

and run the chooseSN() routine for determining the existence of another better SN. 

More far from peers to the source, more frequently the dynamic adjustment happen. 

There are two situations the dynamic adjustment should happen: (1) timer trigger, (2) 

parent or upper level peers have been replaced or left.  
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2.5 Process Node Leave 
  

 When one peer leaves, all of its children need to reconstruction for receiving 

streaming media continuously. In normal situations, each peer which wants to leave 

the overlay network must send a SIP BYE request to its immediate parent and 

children. When the parent node receives a BYE request, it just deletes this peer 

information from its peer list and removes the peer record from the RTP member list 

to stop transferring streaming media. On the other hand, when children receive a BYE 

request from its SN, they first choose a new SN respectively and rejoin to the overlay 

network. Afterwards, they should notify their children of this reconstruction and this 

is recursively until the leaves nodes complete reconstructions. This reconstruction is 

accomplished recursively to avoid massive peers simultaneously rejoining. 

A node usually dynamically adjusts only when its SN has been replaced, timer 

triggered or SN leaves. In general, there will be many nodes joining or leaving 

unknown by other peers as time goes on. Thus the exchange of peers’ information and 

SN determination are accomplished by the timer counter. 

It is necessary to take frame buffer [17] into account when dynamic adjustment 

from one SN to another. Figure 2-9 shows the frame buffer issues on dynamic 

adjustment. When P4 joining, assume P4 replaces other peer and receives packets 

from frame 31. Afterward, we also assume P3 determines P4 is a better SN after 

triggering of timer, receiving the first from P4 is frame 31, but it has received to 20 at 

the current time. Therefore, P3 needs to wait for receiving frames 21 to 30 from P2 

then send SIP BYE request to P2. The buffer manager on low layer will rearrange the 

order of the frames to play. 
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Figure 2-9 frame buffer issues on dynamic adjustment 

 

2.6 Different Serving Degrees 
 

On the normal Internet network situations, peers may have different serving 

degrees. After tree construction, there may be peers with little degrees on top of the 

tree and peers with larger degrees on the bottom of the tree. If promoting the peers 

with larger degrees up to top levels could go down the cost of the tree, we can 

promote them up. 

Having a bonus point mechanism, we can let the peers with degrees get bonus 

periodically and promote them up when getting the specific point. For example, peers 

with degree 1 can get 1 bonus and 2 bonuses with degrees 2. 

Peers could rejoin the system when they reach the specific point, with this 

improvement the source/SN determines whether to replace the children not only by 

the hops or RTT between, but also by their bonus point, the decisive factor of each 

metric may be 50%. Eventually, the peer with little or zero serving degrees will be 

moved down to the low levels. 
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Chapter 3 System implementation  
3.1 Platform and Tools 

■ Hardware and Software

We use Microsoft Visual C++ 6.0 integrated development environment (IDE) 

tools to implement on CCL SIP User Agent (UA). The CCL SIP UA [18,19] was 

implemented by the Computer & Communication Research Laboratories (CCL) of the 

Industrial Technology Research Institute (ITRI). Execution file and simulation tool 

run on Microsoft Windows XP operation system. 

 

■ Protocol stack of SIP UA 

 

 

CallManager MediaManager UAProfile

UI

UACore cclRTP Codec

WaveIO 
sipTx

RTPSIP

SDP

Transport

Peer List 

Figure 3-1 CCL SIP User Agent Structure 

 

The “User Interface” (UI) layer is on top of the protocol stack, used to read the 
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user’s command, settings and invoke the “CallManager” layer. The “UAProfile” layer 

is used to save all user configurations including local address, proxy, registrar, SIP 

user name, and host name…etc. The “PeerList” layer keeps the remote selectable 

serving nodes’ information such as IP address, Port number, user name, RTT to the 

media source, and numbers of hops to the media source…etc. The “CallManager” 

layer implements the SIP dialog behavior and core call control models by providing 

the “UACore” callback functions, and it also refer to the “MediaManager” layer to 

control and process media session objects. The “UACore” layer is designed for UA 

kernel, used to create SIP message objects, SDP object contained in SIP message and 

control the creation and deletion of SIP dialog objects. The “SipTx” layer is a single 

thread event-callback programming model, and serves as the finite state machine 

(FSM) of SIP UA by implementing the four types of SIP transactions defined in RFC 

3261. The “SIP” layer implements all functions of SIP such as create SIP request and 

response messages and modify header contents. The “Transport” layer is responsible 

for low-layer network APIs, including socket management, network initiation…etc. 

The “MediaManager” layer refers to the “WaveIO” layer for media playback, 

recording and refers to the “cclRTP” layer for RTP handling. 

 

3.2 System implementation 
 

We implement first on SIP UA for accepting multiple calls by modifying RTP 

member list receiver. Using the cclRTPAddReceiver() routine in the “MediaManager” 

layer to open a new RTP session and add a new client to the RTP member list in the 

“RTP” layer, all actions are accomplished in the “MediaManager” layer. The 

cclRTPSetEventHandler() routine in the “cclRTP” layer creates a new thread for 

reading received RTP packets and callbacks to the routine RTPEventHandler() for 
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writing the received RTP packet to a “Read Buffer”. Another thread triggers the 

corresponding callback routine CMediaManager::RTP2Wav() to read data from the 

“Read Buffer” and then calls the WavInOut::wavOutOpen() routine for playing the 

streaming data. 

Then we implement the function of redirect server for supporting creation and 

processing of the SIP 302 Moved_Temporarily response. When the UAS receive a SIP 

INVITE request, if its serving degrees are not full, accepts this call and opens RTP 

session directly; otherwise, creates a SIP 302 Moved_Temporarily response with the 

“Contact:” header filled in its children peer information, and waits for the SIP ACK 

message for deleting this dialog session. On the other hand, when the new coming 

node receives the SIP 302 Moved_Temporarily response on the “Transport” layer, the 

peer information in the “Contact:” header will be handled in the upper two layer: 

“UACore” and “CallManager”. In the “UACore” first parses the information of the 

“Contact:” header and passes it to the “CallManager” layer for parsing and recording 

peer information to peer list data structure, then uses ChooseSN() routine to select an 

appropriate SN and return to the “UACore” layer. 

The “UACore” layer uses the original SIP request message and the selected SN 

to create a new SIP INVITE request, transaction, adds to the original dialog, deletes 

the original transaction from the dialog, sets the dialog state to “Dialing”, and passes 

to the “SipTx” layer to send this new SIP request to the new serving node. At the same 

time, the client also sends a SIP ACK message to the previous serving node to 

response the receiving of SIP 302 Moved_Temporarily redirect message. 

Every SIP UA also needs to implement the function of relay servers. Media 

streaming packets on the “Transport” layer will pass to the “RTP” layer thread in 

terms of the packet port number (this is accomplished within the event-driven call 

back programming model in one Dispatch thread). When the “RTP” layer receiving 
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these streaming packets, it will lookup the member list of the same RTP session, and 

relay these packets it has received from its serving node to all children in terms of the 

information on RTP member list. 

The “Peer List” layer implements the Internet Control Message Protocol (ICMP) 

functions, which is used to help the IP layer for error control, for example, when a 

datagram cannot reach its destination, the ICMP messages can typically report errors 

in the processing of datagram. In this thesis we use the echo function of ICMP to 

obtain the TTL and RTT. In fact, ICMP can detect many error functions with different 

message format. Table 3-1 shows the data structure of ICMP header used for Echo 

functions defined in RFC 792. 

 

Field Descriptions 

Type Define the type of this message, such as ECHO request(8) or reply(0) 

Code Harmony with Type to specify the reason of the error 

CheckSum Verify the correctness of the request data 

ID If Code=0, an ID to aid in matching echoes and replies, may be zero 

Sequence Same with ID in currently define 

Table 3-1 ICMP headers 

 

Our ECHOREQUEST data structure hence include an ICMP header and dwTime, 

used to record the time of when this request is sent, a serious of data. When receiving 

the ECHO reply message corresponding to the sequence number of packet we have 

just sent, calculate the received time and minus the sending time (dwTime in the 

ECHO reply message), that is round-trip time (RTT). 

We fill the packets with largest data (1480 bytes, because maximum IP packet is 
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1500 bytes, and IP header is 20 bytes) to reduce the transfer number of packets. 

 

3.3 Simulation Results and Demo Scenarios 
 

■ Simulation Results 

We write a simulator program to simulate the distribution delivery tree when 

there are many nodes join the system. Figure 3-2 shows the simulation of PeerCast 

with 100 peers and figure 3-3 shows the simulation of our method with 100 peers. 

From the comparison with PeerCast in simulations, we can reduce the “Tree Cost” 

and “Join Cost” at the same time.  

In figure 3-2 the maximum level of the tree is 6 and the level 4 is not full, but in 

figure 3-3 the maximum level of the tree is 5 and the level 4 is almost full and better 

in the “Tree Cost” and “Join Cost”. Because we take the routing path from the source 

to each peer into account, we can have a better cost than PeerCast. When selecting a 

SN, PeerCast always choose the closest one, hence this results in many replacement 

happen and reflects on the “Join Cost”. 
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Figure 3-2 PeerCast simulation with 100 Peers 

 

 

Figure 3-3 Our method simulation with 100 peers 

 

    Figure 3-4 and 3-5 illustrate the statistics of the result with 100 peers from 

figure 3-2 and 3-3. In figure 3-4 there are 4 peers on the system on the system with the 

JoinCosti over 40%, but in figure 3-5 that are 3 peers. The “Tree Cost” is 78 saved and 

the “Join Cost” is 40 saved than PeerCast in total. 
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Figure 3-4 PeerCast statistics 

 

 

Figure 3-5 Our method statistics 

     

Peers with more degrees can help the system reduced the “Tree Cost” and “Join 

Cost” because of the (1) routing path, (2) replacement and (3) redirection are reduced. 

Figure 3-6 and 3-7 shows the statistics when peers with serving degrees 4 and 5 

respectively, here we assume every peer has the same serving degree. 

In figure 3-6 there is only one peer with Join Cost over 40%, the “Tree Cost” is 

87 saved and the “Join Cost” is 188 saved than figure 3-5 in total. In figure 3-7 the 

“Join Cost” of each peer is less than 20%, the “Tree Cost” is 129 saved and the “Join 

Cost” is 325 saved than figure 3-5. 

 35



 

 

Figure 3-6 Our method statistics with D=4 

 

 

Figure 3-7 Our method statistics with D=5 

 

    Table 3-2 shows the comparison with PeerCast in the same input data with the 

degrees from 2 to 4. Obviously, the join cost will reduce gracefully while the serving 

degrees increasing. Table 3-3 shows our simulation result when the serving degree 

increased from 2 to 7, the variation on the tree cost and redirection cost of the system. 

Especially, the join cost of each peer is no more than 10% while the serving degree is 

up to 7. 
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Table 3-2 comparison with PeerCast from degrees 2 to 4 

 

 

Table 3-3 variations with different serving degree 

 

■ Demo Scenario 

 We describe our demo scenario as follows: 

(1) Scenario 1: 1-to-many call, UA0 serve as the media source, UA1 and UA2 send 

SIP INVITE request to UA0, then UA0 can talk to UA1 and UA2. 

(2) Scenario 2: redirect, select SN, and media relay. Follow the example above, there 

is a new coming peer UA3, UA3 was rejected and redirected by UA0. UA3 use 
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the peer information contain in SIP 302 redirect message and call the ChooseSN() 

routine to find an appropriate SN. In the meantime, the SN accepts the call and 

open media relay function. 

(3) Scenario 3: self reconnection, when UA3’s SN leaves the system, UA3 run the 

ChooseSN() routine to rejoin the overlay network, at this time, UA0 is the best 

SN. 
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Chapter 4 Conclusions 
 

Multimedia and streaming sharing will bring an extreme fanaticism in recent 

years, and especially apply to multicast application environment such as personal TV 

show, personal radio station, etc. Although this can easily be accomplished by using 

client-server models, but the building cost is very expensive in servers’ maintenances 

for service providers or companies. From the point of view of most users, they may 

want to save money, and peer-to-peer architecture provides a good solution for this in 

another robust way. The most fascination of using peer-to-peer architecture is that all 

services are free of charge, and the quality of service (QoS) impends over the 

client-server model can come true in a few days. 

In this thesis, we construct an overlay distribution delivery tree for live streaming 

multicast. When selecting one appropriate serving node, not only consider the 

distance between the new coming node and the serving node, but also calculate the 

total distance from the media source to this new coming node through the serving 

node. The total distance between the new coming node and the media source can be 

obtained in two passes. In the first pass, the new coming node can receive from some 

selectable serving nodes the information about how far they are from the source, and 

in the second pass, the new coming node calculates the numbers of hops and 

round-trip time between each selectable serving node by itself. From these two passes, 

the new coming node can sum up the information and send SIP INVITE request 

message to the selected serving node by choosing one with least hops or RTT between. 

This step is continuous until the new coming node finds a serving node that can 

accept the request. 

For the client-server model, the system capability in term of the media servers, 

when the numbers of clients increase, the only way to serve the clients is to increase 
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the number and capability of the servers simultaneously for keeping the service 

qualities. Using peer-to-peer architecture, each peer serves as a client as well as a 

serving node at the same time, more nodes on the overlay network, more capabilities 

the system has. Since all clients upload contents when playing media, everyone 

becomes a server (or broadcaster) like the traditional media servers. Load balance and 

self organization are accomplished in P2P architecture. 

In the future work, we will consider the bandwidth of each peer to determine its 

appropriate serving degrees. Because we know every peer on the Internet has different 

capacities, such as processing power, bandwidth, and system resources. These 

situations result in the different serving degrees on each node. At the same time, we 

may also want to let the peer with more capabilities closer to the media source to 

serve more nodes to reduce the transmission delay. 
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