Ew‘f (£44\§§

FYSVR] S T AT

el

E

% Alloy &2 B8k 5 ¢ 550 3 B34

Access Control Schema Verification Using Alloy SAT Model

N A | S

TR R RaE R

e Nl Jod o0 F A 4

i % Alloy 253 % S0 3 By
Access Control Schema Verification Using Alloy SAT Model Checker

Boyod imieE Student : Yi-Hsing Chen
dn R R Rt Advisor : John Zao
B ol «F
EAC S - S - R AP
AL oo
A Thesis

Submitted to Institute of.Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
Octorber 2006

Hsinchu, Taiwan, Republic of China

PEARAY LT &L

2

BipEhdmer o AP A Alloy B HHE A RE TR T S AP N
B bR EBFFL AR PR A o N BE ARSI RED £ &
= B 3P40 4 4 i (1)Bell-LaPadula Model » 825 2 ¢t 53] e 47 > % 2R FE #
& iNd? ek) B TR deia>b>c e TR 2 R BARE —“‘Ff? F AL EAX S o (2) China Wall
Security Policy (¥ B 48 1%) » & % China Wall Security Policy 2 %iE 5 pcfe » 3+t
AP R AT R T RO P RN T M 2 P TR 2 FRAR R D
PEEM DD DT M AP HREA PR D T RS NP B M

PAERTA I ABBEL TR 2P () Ed Y FIE O AP £ FEA

&

&

2

A

[N

A
|

B EAEEEABIL G ERDES o B BRI " e

W BBk o A i Alloy i Bk & el o

Abstract

Throughout the thesis, our main goal is to verify access control schema to see if they
satisfy certain algebraic properties. In the thesis, we exercise verifications on three access
control policies. The first one is the Bell-LaPadula Model. By exercising Bell-LaPadula
Model in Alloy, we verify the order relations between the security label and the user who
possesses higher security level can read more files. The second one is the China Wall Security
Policy. The Brew and Nash model for China Wall Security Policy is too restrictive to practice.
We loosen the policy to be less restrictive. One company’s information can be written into the
other company, as long as there two companies do not belong to the same conflict of interest.
We exercise this model and to verify if there’s any possible information goes from one to
another and the two companies are in the same conflict of interest class. (Belongs to
transitive relation). The last one is the Role-Based Access Control with Separation of Duty
concept. In the conclusion, we conclude the result of the verification and briefly discuss the

effectiveness of the Alloy SAT model checker.

il

FEEENE SO TR RS AU S UL e F R)

KB by BR - A R Y o e A R A AL, FEE S B R

Ao
=

20 7
I

RHEFREANCREFT HFUD o F4E L F 8 L ARBERF o L AAL R Send = im0
ﬁ%ﬁiiﬁ%%ﬁ’m%i%ﬁﬁﬁéﬁ%ﬁ’ﬁ&%%%%ﬁ@%iﬁvﬁ%@’
DREL R R

ERHHFRIDPET > A FARFR DRI BT I LR B iR
B enEfERA 25 R g SRR R FRATRFER OB ALE g
WRE Finthes > JUER B e Al o B R S R

Bois e AL R REARA A P e R e 2 < AT iR

il

Contents

B s i
AADSITACT. ...ttt ettt et et e et e e et e e et e e e e ae e e tae e e eateeeetaeeeeaaeeetaeeeaaeeeteeeebeeeannes il
B BT ettt ettt e e e e e —e e e et—eeetae e e taeeataeeabaeeartaeeatbaeeattaeetteeeatbeeetreeeaareeas 111
(0] 4] (=] 01 KT OSSO PROSPRRPR v
LIST OF FIQUIES ..ottt ettt ettt et et e e b e e e e e te e s e esbesreesbeessesssenseensenns vi
LIST OF TADIES ..ottt ettt et ere e e aeebe s e sneens vii
Chapter 1: INTrOAUCTIONcouiiiiieieieeeeeeee ettt et et e e e e aeesaeeeeenne 1
1.1 PrOJECt ODJECTIVEoovviiiiieeeeeeeee ettt et e ae e ee s 1

1.2 PrOJECT APPIOACK ...ttt ettt e e e ae e ae s 1

1.3 CRAPLEr OVEIVIBW ...ttt ettt et e raesteesseereesaeesaeeneenns 2
Chapter 2: INtroduction 10 AOYcvioiiiiieieceeeeeeeee et 3
2. L WAL IS ALOY? .ottt ettt e et este et e easesaeenseenaans 3

2.2 BaSiC SYNtaxX OF AHIOYooueoiieeieceeeeee et 3
2.2.1 File Name and Pathcccoooioiiiiiiiceeeeee e 3

2.2.2: Sets, Subsets and Relationcccoeveiiiiiieiicieeeeeeeee e 3

2.2.3: MUITIPHCITY ...t ettt et 4

2.2.4: FaCt ..o 8 B ... 4

2.2.5 Predicate and FUNCLION ..ol i e it 4

2.2.7 FUrther RefEreNCES ... L. it o ettt 5

Chapter 3: Bell-LaPadula Model .. .« i e 6
3.1 Bell-LaPadula MOdel (BLP) tiieesuiiiasitsi ottt 6

BL2 ACCESS RUIB.....oeiiiieeeee ettt ettt sa e e e e te e beesseeseeaeennas 6
3.2.1 Read-DoWN RUIEcoveeiieeeeeeeeee e 6

S22 WIIE-UP TUIE <.ttt 7

3.3 Model checking on Bell-LaPadula Modelc..ccoooieiieiiiiiieeeeeceeen 8
3.3.2 User’s access right on doCUMENTS...........ccuoeieriieiiiieieeieeieere e 9

3.3.3 Verification on the MOEl..........c.ooovieiiiiiiiieeeeeeecee e 10

3.3.4 Additional FUNCtion OFfErING.......c.cccveiieiiieieieeeeeeceee e 10

3.5 Instance Satisfies the Specific SCheme..........ccoovoioieiice e, 11
Chapter 4 China Wall Security Policy EXIENSION...........cccoovvieieiieiieieceeieeeeee e 13
4.1 China Wall SECUTTtY POIICYccooiiieiiiiieeeeceeeeeeee et 13
4.1.1 Conflict of Interest Class (COI) ...uoiiiriiiieiieieeeeeeeeeeeee e 13

4.1.2 ACCESS RUIE ...ttt et eaeaa 13

A.1.3 DraWBbaCKS........ccviiiieiieiieeee ettt eaaan 14

4.2 China Wall Security Policy EXTENSION..........ccceeviieiieiieieeiecieeie et 14
4.2.1 Modification of BN-Write RUIE...........ccoooiiiiiiiiieeiceeceeeeeee e 14

A.3 CONCIUSION ...ttt ettt ettt e et e e te e s e easesseesseessesseenseeseans 20

v

ST 1= 1 = USRS PP 21
5.1 Role-Based Access Control (RBAC)oouveiieiiceeieeeeeeee et 21
5.1.1USEr @NA ROIE ..ottt 21

5.1.2 Role Hierarchy and Separation of Duty (SOD)ccoeevevieiieiciieieee, 22

5.1.3 R0oles and PermiSSIONS..........ccevuieiieieiiieie ettt 22

5.2 Logic Specification Of RBACooi ot 23
5.2.1 Set and Relation Declaration..............ccccceeieviieiiieierieeieceeeeeee e 23

5.2.2 Constraints of Separation of Duty and Role Hierarchy............c.c............. 24

5.2.3 Assertion and VerifiCationcccovuieviieieniecieeieceeee e 24

5.2.4 Additional FUNCtioNs OFfEriNgcc.coeeiiieieiieieeieeeeeeee e 25

5.2.5 Instance Satisfies the Specific Scheme...........c.cccooveiieiieiciicc, 25

5.3 Verification on Bell-LaPadula Model using RBAC Conceptccccccveeveevennenne. 28
5.3.1 New Relation and Set Declarationc.cccoeoeeieiieieeieseeie e 28

5.3.2 Mechanism on Applying RBAC tO BLP..........coooeieiieieeeeeeeeeee 29

Chapter 6: Conclusion and DISCUSSIONccuecviiieiiieieeieeieeee ettt ae e 32
RETEIENCES ..o BB e 33
APPENAIX oottt b TR 550 2 0afhs e teesseesseseenseeseesseesseessesseenseesseseessesssenns 34
Appendix A :Bell-LaPadul@..... .. i e 34
Appendix B: China Wall Security EXTENSION...ci........ccvevvieiieieeieeieeeeeeee e 37
Appendix C: Role-Based ACCesS CONTIOL ..ot i 40

List of Figures

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

1 User Read Right on Documentcccoeeiiiiiiieeniieeiie e 7
2 Security Label Relation...........cccvieiiiiiiiiieciiecciieeee e 7
3 Parial Order Relation..........coocueiiiiiiiiiiiiiiiec e 9
4 Graph of Partial Order Relationccceeeiiiieiiiiiniiiccieeee e 9
5 Read-down and Writ-up 1ule.........cceeeiiieiiiiiiciieeeeeee e 10
6 Assertion for Checking (BLP)ccovveiiiiiiiiieeceeeeeeeeeeeeee e 10
7 Two Additional Functionls (BLP)cccceeiiiieiiiieieeeeeeeeeeee e 11
8 INStANCE (BLP) ..veiieiiieiiecee ettt 12
9 The Composition Of ODJECEScveieeiiieeiieeciie et 13
10 No Possible Information Flow Violates the Modified Scheme 15
11 Example that Violates the Modified Scheme.............ccceeevveeiiiicciieniee 15
12 Set and Relation declaration (CWall)c.cccccvveeviiieniiiiiieeieeceeeeeeee 16
13 Modified Write Rule (CWall)ccoooiiiiiiieieeceeeeeeeee e 16
14 Consultant’s CanWrite Set (CWall).......ccceeveiieeiiieiiieeeeeeeeee e 17
15 Assertion for checking, possible violation (CWallEXt)ccceevvieiiieniennen. 17
16 Three Additional Functions in China Wall Policy Extension...................... 18
17 Instance (CWall EXt) ... i e 19
18 RBAC BasiC-StruCtUI® . .ciiiiie it 21
19 Role Hierarchy ofla Project-teamc.coooeiiiiniiiiiiiiiieee, 22
20 The Components-0f @ Permission .i.........ccceeerieeerieeeiieeeiee e 22
21 Entity Relation of Diagram'of RBACcccovveviieeiieeeeeeeeee e 23
22 Set and Relation Declartaion (RBAQC)oooviieviiieiiieeieeeeeeeeee 23
23 Constraints 0N SODcoiiiiiiiiiiiee s 24
24 Conflict Check 0n SODoociiiiiiiiiiieee e 25
25 Additonal Function Offering (RBAC)ccvveeiiiieiiiiecieeeceeeeeeee e 25
26 Specfic Scheme (RBACQC)........cciiiiiieeeeeee e 26
27 Instance- Inheritance vs. Conflict Roles (RBAQC).......cccccccvveeiiieeciieniieenee, 26
28 Instance with User Role and Permission............ccecueevienieiiienieincnnienen. 27
29 New Set and Relation Declaration (RBAC on BLP)cccoeevvieviiieeinenee. 28
30 Declaration (RBAC on BLP) Part 2.......cccooviiieiiiieeieeeeeeeeeeeeeeee e 29
31 Different Label with Different Read, Write Rolecc.vvvvvvivviiiiiininnnnnnnn, 29
32 Role Permission(RBAC on BLP)......cccuviioiiiiiiieeeeeeeceeeeeee e 30
33 Verification (Role-Based BLP)........ccocvvioiiiiiiieeeeeeeeeeeeee e 30
34 Instance (RBAC 0n BLP).....oooiiiiiiiieeeeee et 31

vi

List of Tables

Table 1: Run Time and Bits of State of Assert-permitExtCheck......................

Table 2: Run Time and Bits of State of Assert-conflictCheck

vii

Chapter 1: Introduction

1.1 Project Objective

Access control is the basis of computer security. What is an access control? Access
control is a mechanism to determine the usage (such as, read, write) of target object (which is
a passive entity, such as files) by the subject (which is an active entity, such as users). Access
control is the basic security policy and there are certain amounts of application based on this
concept. From traditional access control, such as, Discretionary Control Access Control
(DAC), Mandatory Access Control (MAC), Latticed-Based Access Control (LBAC), such as
Bell-LaPadula Model [3], Role-Based Access Control (RBAC)[7] and Usage Control Policies,
such as, UCONabc [9].

Access Control is no longer been applied only in computer security field. Access
control has been used in other fields, such as business world, healthcare system, e-home
system etcLike the China Wall Security Policy [4] for the business world as to
Bell-LaPadula Model [3] for the military.

Every access control policy has‘its own principals. Are every proposed access control
policies accurate? How do we prove|that-the proposed access control policy has no lack of
consideration? Scientist and researchers use to prove the policies either by mathematical
aspect or by model checker aspect.

What is the objective of the. project? We are going to use Alloy SAT[10] model
checker[1,2] to exercise three cases which are Bell-LaPadula Model[3] , China Wall Security
Policy[4] and the Role-Based Access Control[7] in order to achieve to goals of two level.
First level is the general case which is to verify access control schema [8] on the satisfaction
of certain algebraic properties. For example, in Bell-LaPadula Model [3] the four labels with
the security order, “Top Secrete (TS)” is higher than “Secrete (S)”, “Secrete (S)” is higher
than “Secrete but Unclassified (SBU)” and “Secrete but Unclassified (SBU)” is higher than
“Unclassified (U)”. The security order contains the algebraic property which is
TS>S>SBU>U.

The second level is the specific case which is to find instance that satisfy a specific
scheme. For example, we input a set of element with assigned values and to find instances
that satisfy our scheme. From the two goals, we hope to achieve the debugging of the control
schema.

1.2 Project Approach

Our research approaches are the following steps:

1. From the first access control scheme” Bell-LaPadula model”’[3], the four security labels
are defined to have the orders among the. The order relations between each of the two
labels lead to a algebraic property which is TS>S>SBU>U. And we apply the partial
order relation to achieve the property and follow the read-down and write-up rule to see
if the Bell-LaPadual model does fulfill this property.

2. The traditional China Wall Security Policy by Brew and Nash [4] is too restrictive. We
loosen its write-rule to make it more adequate to the system. We call the less restrictive
China Wall Security Policy as China Wall Security Policy Extension. To let company
information able to flow to the others. The information flow involves in the checking of
transitive relations. In the second case, we focus on verifying if the extension schema
satisfies the transitive relations.

3. In role-based access control, we model the essential components of RBAC structure and
consider the concept of Separation of Duty (SoD). By considering the SoD in our
modeling structure. The SoD involves two ideas which are inheritance and conflict roles.
We focus on verifying if the RBAC with SoD will cause two roles with conflict to be
assigned to the same user. And later to;model Bell-LaPadula Model with RBAC concept

4. In the three access control schema, we try to find the redundant statement in each code
and eliminate it, in order to:minimize the size of the state bits of verification process. We
program the above three cases on“the basis of the paper “RBAC Schema Verification
Using Lightweight Formal Model ‘and Constraint Analysis” [8] by Prof. John Zao,
Daniel Jackson and their research team.

5. We briefly analyze the Alloy model checker by the running result of the above three
schema.

1.3 Chapter Overview

Chapter 1 is the introduction, and we briefly introduce Alloy model checker. In chapter

3, we proceed to the first access control model Bell-LaPadula Model and chapter 4 is the

China Wall Security Policy Extension and transitive closure verification .Chapter 5 is the

Role-Based Access Control schema and its verification and with RBAC applying on

Bell-LaPadula Model .The chapter 6 is the conclusion.

Chapter 2: Introduction to Alloy

In this chapter, we briefly introduce the modeling language named Alloy that we use
throughout the thesis.
2.1 What is Alloy?

Alloy is a modeling tool which is developed by MIT Professor Daniel Jackson and his
research group. The latest version of Alloy is Alloy 3.0-bata. Alloy can model data structure,
such as abstract data type which is the basis of OO programming. Alloy model checker has
two properties (1) Satisfiability (SAT) [10] check. (2) 1% order predicate logic

2.2 Basic Syntax of Alloy
2.2.1 File Name and Path

Every alloy file is name as file name.als .In each file, the first part of the program
begins with the path of the file, for example,
module models/research/alloy/file_name If user needs to include other file (maybe utility
file, test file, marco library etc ...), hé ean use the.” open “ file function , for example: open
util/boolean .Once we open the file, 'we can apply all the declared sets, functions which are
included in the file(in the example'is boolean.als-and bolean.als is located under the folder

util)

2.2.2: Sets, Subsets and Relation

Set is the basic component of the program, and it is declared as:
sig Human({}, sig represents signature which tells the alloy that “‘Human” is a set.

Users can use the key word “ in * or “extends” to declare some set(s) is(are) a subset of
the other, for example: sig Men in Human{} , which means book is a subset of Object .The
difference between in and extends is that extends partitions the sets and all the subset extends
the set are disjoint, for example,
sig Men extends Human{}
sig Women extends Human{} :

It means Men and Women partition the set Human and the subset Men and Women are
disjoint and their union is the set Human. But if we write

sig Men in Human{}

sig Women in Human{}

, it doesn’t mean Men and Women partition Human and their union is the set Human. In alloy,

everything is a relation, such as unary, binary and ternary relation. In the braces, users can
define relation .For example:

sig Human{ eat : some Food , beLoved : set Human }

eat is a relation mapping from Human to Food which means “Every human being eats food.”
and beloved is a relation maps Human to Human that means “Every Human being has zero or
more human being like this Human”. Here we apply multiplicity key words some (one or

more) and Set (zero or more) .We will introduce multiplicity markings in the next section.

2.2.3: Multiplicity

In Alloy, the following are the multiplicity key words.
lone: less than or equal to one
one: exactly one
some: one or more
set: zero or more
all: all

If a user what to declare theré’s only-one.element in the set, he can write “one sig Book
{}”. From the previous sector, if we rewrite ‘sig ‘Book extends Object{} , sig Pen extends
Object{}” into” one sig Book extends Ohject{} one sig Pen extends Object{}”, it means the
two subset Book and Pen both have only on¢ ¢lement in it and the set Object only has two
elements. Multiplicity marking can ‘be used in set declaration, fact, predicate, function,

assertion. We will introduce fact, predicate, function, assertion in the following section.

2.2.4: Fact

Facts are the constraint statements that always hold through out the simulation and
verification process. Every model has its own specification and according to the specification,
we apply the specification into the fact for Alloy to generate all cases under the constrain
statements of fact. According to the listed-fact statement, Alloy uses it for simulation and
verification. For example,
fact { some h: Human | h.beLoved = none}:
It means there are some human being(s) that no one loves.
2.2.5 Predicate and Function
(a)Predicate

If all the inputs satisfy the listed constraints, then the predicate will be be true.

pred loveTest (m:Men , w:Women){ w in m.beLoved},

4

It means giving two input argument m which belongs to Man and w which belongs to Women.
If the w loves the m, the predicate returns true otherwise returns false. Predicate has another
function. When it comes to simulation, the listed statement in the brace will be combined
(conjoint) with all the fact listed in the program and generate one of the instances satisfies all
the constraints statement.

(b) Function

Function can be used to simulate like the Predicate does and it has another function
which can be used to return a set of element satisfying the listed statement in the brace (which
is it body). For example,
fun loveSet (m:Men , W : set Women) : set Women{ m.beLoved & W}:

It which means giving a m belongs to Men and a set of Women and according to the input set
W, function loveSet returns the set of women Who love the m. Here “&” means intersection.
2.2.6 Run, Assert and Check

After a user declare all sets, relations, facts, functions and predicates, he can use the
command “run” to simulate one of cases which meets constraints. For example,
run loveSet for 10 Human:

It will generate one of the-instances under the scope of 5. Users only specify the scope
for top level signature. What is top level signature? It’s the set that doesn’t extend other sets.
Here in our example, Human is'.the top level signature .Since Men and Women extends
Human, these two are not top level signature. The command “run” is used for simulation, and
the command “check” is used for verification. When a user makes an assertion, he would like
to know if the assertion stands or not. That is the command “check” used for. For example,
assert famousPeople {some m: Men | m.beLoved = Women }
check famousPeople for 10:

We make an assertion “famousPeople” that in every case, there’s at least one man that

every women loves. We check the assertion under the scope of 10.

2.2.7 Further References
If reads are interested in understanding more about alloy, please refer to the main page :

http://alloy.mit.edu [1] it’s reference manual [2] for further acknowledgement .

http://alloy.mit.edu/

Chapter 3: Bell-LaPadula Model

In this chapter, we introduce Bell-LaPadla Model and use exercise the model on Alloy
for two levels of goals. The first level is to verify the model if it fulfills certain algebraic
property and the second level is to find an instance that satisfies the specific scheme. We will
use these two level goals throughout the thesis.

3.1 Bell-LaPadula Model (BLP)

The Bell-LaPadula Model was developed by David Elliott Bell and Len LaPadula [1] in
1973 to formalize the U.S. Department of Defense multilevel security policy. The model is a
formal model of computer security policy that describes a set of access control rules by the
use of security labels which Bell-Lapadula named it as classification on objects, from the
most sensitive to the least sensitive, and clearances for subjects. A set of security labels are,
from most to least sensitive, “Top Secret”, “Secret”, “Sensitive but Unclassified” and”

Unclassified “.

3.2 Access Rule

The access control rules are read-down-and.write-up rules.

3.2.1 Read-Down Rule

The user with certain clearance have read right to documents with security level lower
than or equal to the user’s (*1) clearance. Figure 1 shows the relation that some user with
certain clearance and the document(s) that he has read right.

For example, A user named John with its clearance to be Secrete, and there are two
document which are documentl (with classification: Top Secrete), document 2 (with

classification: Secrete but Unclassified).

Since the user’s clearance is higher than document2, he has the right to access
document2 but not documentl due to his clearance (Secret) is in lower security level than

documentl1 (Top Secret). That is how we call it the read-down rule.

*1. We simply subject to be user. We don’t distinguish user, subject, principals for

simplicity reason.

http://en.wikipedia.org/wiki/David_Elliott_Bell
http://en.wikipedia.org/wiki/Department_of_Defense
http://en.wikipedia.org/wiki/Multilevel_security
http://en.wikipedia.org/wiki/State_transition_system
http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Access_control
http://en.wikipedia.org/w/index.php?title=Security_label&action=edit

Document

TS-Uzer can read
S-U=er can read
SBU-Uszer can read

-Uzer can read

Fig. 1 User Read Right on Document
3.2.2 Write-up rule

The write-up rule is opposite to the read-down rule. A user has the right to write
information into the document only when then use’s clearance is lower than or equal to the
document’s classification, he has the right to write information into this document. From the
example in section 3.2.1, John has right to write information into documentl, because John’s
clearance (Security) is lower than document1’s classification (Top Security). Figure 2 shows

the read-down and write-up rules and relations between the security labels.

TS
% |

q 1

Clearance Classification

UM -pEa

Fig. 2 Security Label Relation

3.2.3 Why Write-Up Rule?

If the write rule is modified to be write-down rule: when a user’s clearance is higher or
equal to the document’s classification, he can write information to the document. Here is a
possible problem. Let us explain with example. There are two user, say Johan and Mary.
John’s clearance is TS, and Mary’s clearance is SBU. There are two documents, say docl and
doc2. The classification of doc1 is S and the classification of doc2 is SBU. John has read right
to both docl and doc2. Now John reads docl information and write the information to doc2
(because here we say write rule becomes write down rule). In doc2, there’s top secrete
information written into it. Then if Mary reads doc2, she can obtain information from docl.
The “write-down” rule would lead to possible information leakage to someone who has lower
security label and doesn’t suppose to obtain that information. That is why the write rule is the

write up rule.

3.3 Model checking on Bell-LaPadula Model

In this section, we exercise the model checking on Bell-Lapadula Model and to see if
we achieve the goals we mentioned in introduction. Since this model has been verified using
mathematical way or using model checking. We still do the checking again in alloy for later
usage in Role-Based Access Control chapter. We address main part of the program. If reader

are interested in reading the whole program , please refer to the Appendix A

3.3.1 Partial Order Relation On security Label

How do we let the TS rank higher than S in security level? The answer is the partial order
relation.

3.3.1.1 Partial Order Relation

For a set, say S, and a relation, say o, if a satisfies (a) reflexive (b) transitive

(c)anti-symmetric relation , then R is the partial order relation.
(a)reflexiveVs:S , “sas” then relation a is reflexive
(b)transitive: Vsl,s2: S, ”sla s2=s2a “sl then a is transitive
(c) anti-symmetric: Vsi,s2:S,"(slas2)& (s2asl) = sl=s2"
3.3.1.2 Relations on Security Label
In Bell-LaPadula model, security label TS is higher than S, S is higher than SBU is
higher than U. We transfer these relations to be algebraic expression: TS >S >SUB>U.

The following part of the program in Fig. 3 is to define relations between security labels and

to define partial order relation in order to achieve “TS>S>SBU>U”

1. Tfact partialOrderRelation 1 fact securitylLevel
2. { 2. {

3. /*reflexive relation*/ 3 TS In S.geq

4. all la: Label] la in la.geq 4. S in SBU.geq

5. /*transitive relation*/ 5 SBU in U.geq

6. all lal , a2 :Label] lal in la2.*geq 6 }

7. => lal in la2.geq

8. /*anti-symmetric relation */

9. all lal , la2:Label |

Fig. 3 Parial Order Relation
From Fig.3, alloy generates the relational graph (Fig 4) among these 4 security label.

geq

geq

Fig. 4 Graph of Partial Order Relation

The arrows with the black dot of Fig.4 are from because of the fact statement that we declare
in Fig.3 The arrows without black dot are derived from the transitive relation. The curve lines

are derived from the reflexive relation.

3.3.2 User’s access right on documents

fact readDown

all w:User | all d: Document | u.clearance in d.classification. geg
== din u.canFead |, d lin u.canFRead
1

fact writelp

all w:User | all d :Document | d.classification in u.clearance.geg
== d in u.can¥rite , d lin u.canVWrite

e L e

Fig. 5 Read-down and Writ-up rule

In Fig.5

line 3-4: if a user’s clearance is greater than or equal to the document’s classification
he has the right to read the document .This is based on the read-down rule in Bell-LaPadula
model.

line 8-9: if a user’s clearance is less than or equal to the document’s classification, he has the
right to write the document. This is based on the write-up rule in Bell-LaPadula model.

3.3.3 Verification on the model

In Fig.6 we do the final part of the modeling language which is verification.

assert higherlevelHeadMare

all ul | uZ: User | ul.clearance in U2 clearance.geg ==
uZ.canRead in ul.canRead

assert higherlevel\Wrteless

all ul | uZ2:User | ul.clearance in u2.clearance.geg ==
ul.can¥nte in u2. can¥Vrite

Fig. 6 Assertion for Checking (BLP)

Line 3: This line is used to assert that one user has higher security level status than the other,
he has right to read more documents than the other has.

Line 4: This line is used to assert that one user has lower security level status than the other,
he has right to write more documents than the other has.

3.3.4 Additional Function Offering

10

Except for verification on the model, we provide additional functions for user to use.
Some user may just want to know that given a set of documents and a user, which documents
the user have access right on. Some user may just want to know some particular case but has
no intention to figure out all the checking process. This is one of the reasons why we provide
the additional function. This helps the user to obtain the answer easily .The additional
functions is an important feature throughout the thesis. In Fig.7 shows two of the functions

that we provide for users.

fun ReadSet BLP (D:set document | uiuser):set document
u.canFead & D

pred checkForHeadAccess (d: document | u; user answer.Bool)

{

d in u.canRead == angwer=True , answer=False

}

Fig. 7 Two Additional Functionls (BLP)
Line 1-4: Given a set of documents and a user as input argument, return a set of document

according to the read rule of Bell-LaPadula model. Here we use the expression in line 3 which

means the intersection of u.canRead and D and to return result in graph or in text format.

Line 5-8: Give a document and a user as input to check if the user has read right on the
documents. If the user can read the document, the predicate output the answer to be true,

otherwise false.

The use of additional functions helps users to understand how to use them easily and obtain

the test result according to the input arguments that the users give.

3.5 Instance Satisfies the Specific Scheme

The following figure shows one of the simulations case.

11

m.

DI
r_I

(R °
. .on cho

(Jo-reay) g owesw I RSP

Fig. 8 Instance (BLP)

12

Chapter 4 China Wall Security Policy Extension

After introducing Bell-LaPadula model in chapter 3, we proceed to another classical
access control policy “China Wall policy”. In this chapter, we first introduce the original
China wall policy and then we modify its policy to be less restrictive.

4.1 China Wall Security Policy

Securities on business world were hardly discussed and were less relevant to the
computer scientist before 1980’s. The issues in business world security were started to attract
computer scientist attention. Due to the need for security policies in business world,
researchers and computer scientist began to propose security policies for the business world
and the China Wall Security Policy [4] was one of the emerging security policies in 1980’s.
China wall policy [4] is proposed by David F.C. Brewer and Michael J. Nash.

4.1.1 Conflict of Interest Class (COI)

In the China Wall policy, each company belongs to one conflict of interest class. The
companies which have conflict of interest in business world will be categorized to the same
conflict of interest class. Fig.9 [4],shows the hierarchical structure among the conflict of

interest class and company data set.

The =et of all object |, ©

Conflict of

irteret=t

Class A B c
Company
datazets o h i i k I m n

]

(conflict of interest class A | company
datazet o)

Fig. 9 The Composition of Objects

For example, BankA and BankB have conflict in interest and these two are categorized to into
the same conflict of interest class. When it comes to BankA and OilB, these two will not be in

the same conflict of interest class.

4.1.2 Access Rule

The Brewer-Nash model [4] for the china wall policy does not distinguish users,

13

principals and subjects. It uses the single concept of subject for all three notions.
(A) BN-Read rule : Subject S can read object O only if

(a) O is in the same company dataset as some object previously read by S (i.e., O is

within the wall) , or

(b) O belongs to a COI class within which S has not read any object (i.e., O is outside

the wall).
(B) BN-Write rule: Subject S can write object O only if

(a) S can read O by BN read rule , and

(b) No object can be read which is in a different company data set to the one for which

that write access is requested.
4.1.3 Drawbacks

In the Lattice-Based Enforcement of Chinese Walls [5], it says “the BN read and write
rule is successful in preventing such information leakage. However, it does so at an
unacceptable cost. And it is easy to see that the access rule has the following implication.
(A) A subject which has read objects from two or more company datasets cannot write at all
(B) A subject which has read object from.exactly: one company dataset can write to that

dataset.*

From the discussion on the paper-[5], the original China wall security policy is too
restrictive to really apply in the real world Situation'a. In the next section, we introduce the
modifications on China wall policy to make it less restrictive.

4.2 China Wall Security Policy Extension
4.2.1 Modification of BN-Write Rule

We modify the BN-Write rule to be
(A) A consultant(*2) can read one company’s information and write to another company as

long as the two company belongs to different conflict of interest class , and
(B) For any two different companies which belong to the same conflict of interest class,

there couldn’t be any information flow that flow from one to the other.
In Fig.10, it shows the existing information flow satisfy our modification rule.
In Fig. 10, there are three relations: BankA-> OilA(by U1) , OilA->CarA(by Us) , CarB->
BankB(by U2) . OilA has BankA’s information, meanwhile CarA has OilA’s information, but

CarA’s information wasn’t being written into any companies.

*2: In China wall security policy we simply the subject to be the consultant and the object to

be company.

14

COIClassBank={Bank# , BankB}
COIClass0il={0ilA |, OIB}

CarB BankB
Consultant={L1 , Uz , U=z}
W

COIC|assCar=(Cara , CarB) R Uz
@ @
R W
R 3
ur W

Fig. 10 No Possible Information Flow Violates the Modified Scheme

This information flow satisfies our modification rule. In fact, all the relations in Fig.10

satisfy our modification write rule. Let us show an example in Fig.11that violates our rule.

BankB
Consultant={Ll1 , Uz , Uz}
COICkassBank={Banka , BankB)
W

COICass0i={0ilA , QIlB}
COIClassCar=(Carf, , CarB) R Uz

Fig. 11 Example that Violates the Modified Scheme

In Fig.11 the red line marks out the case that violates our write rule (B). Here is the
information flow of the case: BankA->OilA (by Uti), OilA-> BankB (by U2). This situation
would let BankB to have information which belongs to BankA and the flow is not obeying the

write rule and should be eliminated in simulation/verification process.

4.2.2 Logic Specification of the China Wall Security Policy Extension
4.2.2.1 Set and Relation Declaration

sig COIClass {dataSet | same Company }
sig Company
class : one COIClass
infoCameFrom : Company -= Consultant }
sig Consultant]
haveRead: set Company,
havelritten: =et Company,
can'rite ; set Company,
t o Company -= Company }

Fig. 12 Set and Relation declaration (CWall)
In Fig.12, Line 1: It declares conflict of interest set (COIClass) and each element in COIClass

has a relation named dataSet. DataSet is a relation that maps each COIClass to some
company(s) which the company(s) belongs to this COIClass.

Line2-4: Each company belongs to exactly one COIClass (*3) and each element in Company
has a relation named infoComeFrom. InfoComeFrom is a relation that records that which
company information has been written into the company and by whom did the action.
Line5-8: Each consultant has 4 relations which are haveRead, haveWritten, canWrite and rw.
Rw relation represents which company(s)rhas-been‘read by the consultant and the company
information was written to the other.company.

4.2.2.2 Apply Modified Write Rule

fact preventFromlinformationLeakageToOtherMemberofTheClass

{
no disj 1, c2 :Company |
clin [~MConsultant. rw). c2) && (o1 class=c2 class)

}

Fig. 13 Modified Write Rule (CWall)
In Fig. 13, we apply the modified write rule into the model.

Line3: There are no two different company elements which can make the two formulas
happen simultaneously. First formula is that if the two companies belong to the same conflict
of interest class, and the second formula is if one company information flow to another

company.

*3. Actually not every company can only belong to one conflict of interest class, i.e., A
company could be both bank and insurance company, such as Cathy united bank.It has both
bank business and insurance business. In the exercise “A Chinese Wall Approach to Privacy
Policies for the web” [6], the researcher has such point of view that each information group

can belong to more than one conflict of interest class.

16

4.2.2.3 Other Facts

After the read and write relation declarations, what companies can a user still have

write access right?

fact ConsulantCamiriteSet

all u:Consultant | all ¢1:Company |
(no c2 : *[Consultant. rad). (u haveRead)-c1|
cl.class=cZ. class)== ¢l in u.canrite, c1 lin u.can'Write

Fig. 14 Consultant’s CanWrite Set (CWall)
In Fig.14:

Line3-5: A user’s canWrite set is judged based on what company he has read and the existing
rw (read-write) relations. Based on the haveRead and rw relation, we use the transitive and
reflexive closure which generates a set of company, say Coml. For any company, say c2, if
there’s no company belongs to (Com1-c2) that ¢l and c2 are in the same conflict of interest
class , then the consultant has the write access right-on c2.

4.2.2.4 Assertion and Verification on Transitive Relation for Information Leakage

azsert nolnfoLeakage

all coi:COIClass | all digj ¢l |, ¢ coi.dataSet |
ol lin Y Consultant. red. c2

check nolnfoLeakage for 16

Fig. 15 Assertion for checking possible violation (CWallExt)

In Fig.15, we assert that there’s no information flow which would cause the situation
like the example in Fig.12. Indeed, there’s no counter example in the verification process to

show that the modeling program will lead to the violation cases.

4.2.2.5 Additional Functions Offering
In the code, we still offer some functions for user to use. We list 3 of the functions in
Fig.16,
(A) The consultantWriteSet function: Input a consultant, say John, and a company, say
BankA and according to the rw relation, it returns the set of document that was written by
the John and John wrote BankA’s information into the set of document.

(B) The canWriteSet function: Input a consultant and a set of company, it returns the set of

17

company that the consultant still has write access right.

fun consultantWriteSet (u:Consultant | c:Company) © set Company

{
u.nw|c]

}

fun canriteSet (u:Consultant | C:set Company) ; set Company
{

u.canrite & C

}

pred canriteExam (u:Consultant, c:Company |, answer. Boal)
{

Cin w.canyWrite == answer=True, answer=False
}

Fig. 16 Three Additional Functions in China Wall Policy Extension

(C) The canWriteExam predicate is to test that giving a consultant, and a company if the

company has the write access right.

4.2.2.6 Instance Satisfies the Specific schéme

We show readers one the simulation case in Fig:17 in next page.

18

[+]

[»

=T e T]
QSWod ‘0oQuwosd "OEwod ‘gZwoa 'O wo Daiunnu

OWES

u._I

0500 -0EWe D
OCWGa 'OLW0a '0aas "QEWas (3 uE|

ey

i1 O3 'EWod 'QLWod ‘QEuod 'Qoluod C3Hnug s
[N WEX3a1UpuED])
ouyer

OgWaoas-0lLwad

{JJ0-Tea]) [29UEISUT WEXHNIIMUTEDI =

Fig. 17 Instance (CWall Ext)

19

4.3 Conclusion

Unlike the Brew-Nash model for China wall security policy, there couldn’t be any
information flow to the other companies. Our China wall security policy extension makes the
situation less restrictive, more reasonable and make it possible for one company to have
another company’s information. But the extension policy still obeying the principal that for all
company belong to the same conflict of interest class, no information could flow from one

company to another.

20

Chapter 5: Role-Based Access Control Verification

Schema

In this chapter, we first introduce role-based access control policy and its structure with
separation of duty. We apply role base access control policy on Bell-LaPadula model in the
next section.

5.1 Role-Based Access Control (RBAC)

Access is the ability to do something with a computer resource (e.g. read, write,
modify ...etc). Access control is the means by which the ability is explicitly enabled or
restricted in some way. Traditional access control, such as DAC, MAC, is the mechanism by
which a system constrains the actions of a user. When a new user account is created, the
system has to assign access permission right to the new user. In the system, maybe there are
new users who are assigned to the same access permission, but the system has to assign same
permissions to different user twice. Situations like this will require extensive and huge loads

of system administration work. This is main drawback of the traditional access control policy.

— T —

Fig..18- RBAC Basic Structure

In the 1990’s David Ferraiolo and Richard Kuhn proposed an access control policy
which named The Role-Based Access Control [7]. Fig.18 shows the basic structure of the
role-base access control. The role-based access control policy is different from the traditional
access point of view. Instead of assigning permission to users, the system assigns permission
to roles. The process of defining roles should base on a thorough analysis of how the
organization operates. And the access decisions are based on roles. Each user will be the
members of the roles which means, every user can be assigned more than one role. Once a
person joins the organization, the only task the system has to do is assign roles to the new
member. This improves the system effectiveness and decreases the system administration

work.

5.1.1 User and Role
Under the framework of RBAC, each user is granted membership into role(s) based on

their responsibilities in the organization. The permission that a user can perform is based on

21

the user’s role(s).User membership into roles can be revoked and assigned easily. Role
associations can be established when a new permission is created.
5.1.2 Role Hierarchy and Separation of Duty (SoD)

Role hierarchy defines roles that may contain other roles, that is one role may include

other role’s permissions .Fig. 19 [8] shows one example of role hierarchy.

Fig. 19 Role Hierarchy of a Project team

The role hierarchy is a way of organizing roles to reflect each role’s responsibilities toward
the organization. The role in which theuser is assigned is not mutually exclusive with another
role for which the user already‘possessessmembership .But when it comes the idea of
separation of duty (SoD), two roles may besin conflict, that is, the two roles cannot be
provided to the same user .They have to-be provided to different user to avoid permission
abuse. For example, in fig.19, the role Engl and the role Test Engr are in conﬂb.lf one user
are assigned to both roles, and if the user does not pay full responsibility to hlE%‘Eigjgay

r1 ads

the possible failure of the project. That’s why the concept of separation of duty was proposed.

want to forge the test data to conceal the possible bugs in his design. This circu

An organization will function even better under the idea SoD.

5.1.3 Roles and Permissions
In role-based access control, each role is assigned certain permissions. A permission

consists of two parts which are operations and target objects. See Fig.20.

Permission

Opera- ‘ '
tions

Fig. 20 The Components of a Permission

22

Organizations can establish rules for the association of permission with roles. For

example, in a healthcare organization, the role pharmacist can be provided the permission to

dispense but not to prescribe, medication [11].

Fole Hierarchy

Role

Fig. 21 Entity Relation of Diagram of RBAC

5.2 Logic Specification of RBAC

5.2.1 Set and Relation Declaration

sig User

{

}
sig Role

{

inherits ; set Role,

userRole ; set Role,
userRoleExt | set Role

conflictRole ; set Role,
permitAsgn © set Permission,
permitExt : set Permission

}

sig Permission
opfTalbj: Operation -= Object,
ohTaOpr: Object - Operation
i

}

optToObj=~objTaOpr

Fig. 22 Set and Relation Declartaion (RBAC)

In fig. 22,

Role-Pe
Assigt

Linel-5: Each user has two relations which are userRole and userRoleExt. UserRole maps

form user to roles that system assigned. UserRoleExt are the role collections of userRole and

the role which userRole inherits.

Line6-12: Each role has four relations which are inherits, conflicts, permitAsgn, permitExt.

Inherits relations represent that which role(s) that the role inherits. Conflict relations are being

23

used for SoD function. PermitAsgn relation represents what permission(s) this role possesses.
Linel13-19: Each permission has two relations which are oprToObj and objToOpr. OprToObj
relation means what operation can perform on the object under permission. ObjtoOpr and
oprToObj are inverse relation.

5.2.2 Constraints of Separation of Duty and Role Hierarchy

fact conflictRoleRule
|
all rrRaole | rlin r.conflictFole
all 11, r2:Rale | 1 in 2. conflictRole == 2 in 1. conflictRole
all vl r2:Raole | 1 in 2. conflictRole == 1 lin 2. inherits
all 1, 2:Role | 1 in 2. conflictRole ==
(all r3:Roale | rl in 13 inherits== r3 in 2. conflictRale)
all u:User | all r u.userRale | no {u.userRoleExt & r.conflictRole)

}

fact inherit_relation

all r:Role | rin rinherits
all 1, r2:Rale [vl in r2 Finherits == 11 in r2.inherits
all r1, 2 Rale | r1 in 2 inherits && 2 in r1.inherits == r1=2

}

Fig. 23 Constraints on:SoD

In fig.23, first fact statement define-the-constramts on conflictRole and the second one
defines the inherit relation which is“a partial order relation.
Line3-4: Every role does not in its conflictRole relation. For any two roles, say rl r2, if rl is
in r2’s conflict role, it implies that r2 is in r1’s conflictRole.
Line5: If two roles are in conflict, it impliesy no one can inherit the other.
Line6-7: If two roles, say rl 12, if they are in conflict, it implies for any r3 that inherits
rl, r3 and r2 are in conflict.
Line8: For all roles, say rl, belongs to user’s role set, the intersection of user’s role extension
and r1’s conflict role set is empty set.

Line10-15: The fact describes the partial order relation among roles.

5.2.3 Assertion and Verification
In fig. 24, we assert that the role assignment and inheritance relation will not generate
any cases that violate the principal of SoD. After we checked all the cases under certain scope,

there are no counter-examples.

24

assert conflictCheck

{

all u:lser | all digj r1, r2:u.userRoleExt | r1 lin 12 conflictRale
}
assent SoDCheck

all digj r1 |, rZ:Hale | r1 in 2. conflictRole
=x{nouwUser | r1+2 inuuserRole)
}

check conflictCheck for 16
check SodCheck for 16

Fig. 24 Conflict Check on SoD

5.2.4 Additional Functions Offering

Like we mentioned in previous chapter, some lazy user may just want to obtain certain
answer .In RBAC, we still offer three functions for user to use. In Fig.25 A user may just
want to know what role extension he has, he may use the function”userRoleExtension”.The
function “rolePermissionExtension” retufns thesset of the permission extension that the roles
possess. The last function “permissionThatAUserHas” gives the permission set according to

the relation from user-role and réle<permisson: 1t helps. the user to realize what permissions he

has.
fun userRoleExtension{u:User) ; set Role
u.userHaleExt
ﬁin rolePermissionExtension(rRole J:set Permission
{ r.permitExt
}fun whatPermissionAllserHas (u:llser):set Permission
{ (u.userRaoleExt) permitExt
}

Fig. 25 Additonal Function Offering (RBAC)

5.2.5 Instance Satisfies the Specific Scheme
According to the specific scheme (Fig.26) that we apply on RBAC code, alloy

generates one of the instances in fig.27 and fig.28.

25

fact

ac fact
o1 oprTaObj =Write-> MyrrtFile Lo .
p2. oprTaObj=Yrite-= DesignFile S
b3, oprToObj=Write-> TestFile Egrz in TEngr.conflictRole
pd. aprToObj=Read->MgmtFile VST CToelL
b5.0prTa0bj=Read->DesignFile TEngr in PrajLeader.inherits
pb. oprToObj=Read->TestFile J

ProjLeader. permitAsgn=p1 +pd +p5+ph
Egrl permitAsgn=p2+p5+pb

Eqr? permitAsgn=p2+p5+pb

TEngr. permitAsgn=p3+ph

}

Fig. 26 Specfic Scheme (RBAC)

In Fig.27, it shows that the four roles only require 3 users to accomplish the task. In the
instance, John is assigned with role “Engrl’, Mary is assigned with role “Engr2” and Ken is

assigned with role “ProjLeader” and role “TEgnr”. In fig.28, it shows the relation among user,

SR RLLEE &
= il F
o R il

role and permission. L

& example_instance 02 (fear-off)

Fig. 27 Instance- Inheritance vs. Conflict Roles (RBAC)

26

4]

Fig. 28 Instance with User Role and Permission

27

5.3 Verification on Bell-LaPadula Model using RBAC Concept

The Bell-LaPadula model is a Lattice based access control policy, in this section, we
apply RBAC schema on the Bell-LaPadula model to do verification on it. Some part of the
codes is the same as the code in Appendix A and Appendix C. We omit this part and explain
how we apply RBAC schema on Bell-LaPadula model in the following sections.

5.3.1 New Relation and Set Declaration

sig Document

{
... [amitted)
labelReadRole : one readRole,
labelWriteFole: one writeRole

}

sig User

{
... [amitted)
roleCanFead: set Document,
roleCanyrite: set Document

}

Fig. 29 New Set and Relation Declaration (RBAC on BLP)
In Fi1g.29,

(1) In the set Documents, two new relations which are labelReadRole and labelWriteRole
were added.The labelReadRole “is a+relation maps from label to one readRole , the
labelWriteRole maps from label to writeRole:

(2) In the set User, two new relations are roleCanRead and roleCanWrite.The

roleCanRead maps user to documents so does the roleCanWrite relation.

In Fig.30,

(1) In the set readRole, two relations are readRoleLabel and readPermission. The
readRoleLabel maps readRole to one label and the readPermission represents
permission this readRole possesses.

(2) In the set writeRole, two relations which are writeRoleLabel and writePermission were

defined.The writeRoleLabel maps writeRole to one label and the writePermission represents

permissions the writeRole possesses.

28

sig readRole extends Hale

readRolelabel : ane label,
readPermission: ReadOp-> Document

}

sig writeFole extends Role

{

writeFoleLabel : one label,
writePermission : WriteOp -» Document

}

Fig. 30 Declaration (RBAC on BLP) Part 2

5.3.2 Mechanism on Applying RBAC to BLP
5.3.2.1 Different Label with Different Read, Write Role

fact differentLabelithDifferentFale

all disf 1a1, laZ:label | {lal.labelReadRole 1= 132 labelReadRale)
L& lal.labelW'riteRole 1= la2 labelWriteRole)
;

fact roleMapTaolabel

all la: label | all v1: readRole | la. labelReadRole= 11 ==
t1.readRoleLabel =la | 11 readRolelabel 1=la
all la:label | all ¥2: writeRale | la. labelriteRole=rd ==
¥2 writeRolelabel=la 12 writeRoleLabel I=la

Fig. 31 Different Label with Different Read, Write Role
In fig.31,

Line3-4: For any two different labels, their labels on readRole are different, so are the labels
on writeRole.

Line8-11: Each role maps to a readRole label and writeRole label.

5.3.2.2 Role Permission

In fig.32,

Line 1-7: We define the set of documents each readRole can read, and set of documents each
writeRole can write.If the document’s classification is the same as the role’s readRole label
then this document can be read by the role.Same method applies on writeRole.

Line 9-17: We define the set of documents that each user can read and can write according to

the role that was assigned to them.

29

fact rolePermission

all v readRole | all d:document | d.classification= rreadRolelabel ==
din rreadPermizssion[ReadOp] , d lin r.readPermission[ReadOp]
all pwriteRole | all d:docurment | d.classification=r.writeRolelabel ==
d in rwritePermission[WriteOp] | d lin rwriteFPermission[Write Op]

}

tact userToRoleCanReadandyWriteSet
d
all wuser | all d document |
(some ru.userRoleExt | d in rreadPermission[ReadOp])
== d in u.roleCanRead, d lin u.roleCanRead
all u: user| all d: docurment |
(some ru.userRoleExt | d in rwritePermission[WriteOp])
==d in . roleCam®rite | d lin o roleCany'rite

Fig. 32 Role Permission(RBAC on BLP)
5.3.2.3 Assertion and Verification on the Role-based BLP Model

assert equivCanHead

all ulluser | u canRread=u.roleCanRead

}

assert egquivCanWrite

all u; User | u.can®hwrite=u.roleCan'rite

}

Fig. 33 Verification (Role-Based BLP)

In Fig33, in line3, we assert that for any user, say u, u’s canRead set is equal to the
user’s roleCanRead set. Same assertion was made on equivCanWrite.
5.3.2.4 Instance

After the verification process, we found out these two assertion hold thorough out the
model .It means we successfully apply the role-based access control schema on the
Bell-LaPadual model.Fig.34 (in next page) shows one of the instanecs (Due to the size of the

graph , we chose not to show attributes in order to let the graph fit in the page).

30

uo
labelReadRale: raadRolk1
abelnfriteRole: writeRo
geq: U0, SBUD, S0, TS"

T

1ol

SBUD
labelReadRale: readRole:
abelnfriteRole: writeRo

geq: S0, SBUO, TS0

o

r-t’?-':l

g0 |
IpbelReadRale: raadRols2
abelnfriteRole: writeRofe

geq: TS0, 50

re_ﬂ [

LED] !
labelReadRals: reaanﬂeu

abelniiteRale: writeRole
geq: TS0

31

Chapter 6: Conclusion and Discussion

From the exercise of verification of the three access control policy, we successfully
verify that each access control has met the fulfillment of certain algebraic properties. For
example, the China Wall Security Policy Extension has been verified under the transitive
relation that one company’s information doesn’t leak to the other companies that belong to the
same conflict of interest class of that company.

In table 1 and table 2, we show the run time/bits of state vs. size of model of the two

assertions in RBAC code.

Size of Model Run Time(min:sec)/ Bits of State
2° 0:01/54
4 0:02/252
8 0:15/1472
16° 3:08/9840

Table 1: Run Time-and'Bits of the Assert-permitExtCheck

Size of Model Run Time(min:sec)/ Bits of State
2° 0:01/54
4 0:02/256
8 0:14/1472
16° 3:10/9856

Table 1: verification data of RBAC assertion-conflictCheck

32

References

[1] Alloy main page: http://alloy.mit.edu

[2] “Alloy Reference Manual “Daniel Jackson, May 2004

[3] “Secure Computer System: Mathematical Foundations and Models”, D. E. Bell and L. J.
LaPadula , Mitre Corp., BedFord ,MA , 1975

[4] “The Chinese Wall Security Policy “, David F.C. Brewer and Michael J.Nash,
IEEE symposium, May 1989, page 206-214

[5] “ Lattice-Based Enforcement of Chinese Walls “ Ravi S. Sandhu, Computer& Security ,
Volumnl1, Number 8, December 1992 , page 753-763

[6] “A Chinese Wall Approach to Privacy Policies for the Web “Frans A. Lategen and Martin
S. Oliver, COMPSAC °02

[7] “Role-Based Access Control”, David Ferraiolo and Richard Kuhn , 15th National

Computer Security Conference ,1992

[8] “RBAC Schema Verification Using Lightweight Formal Model and Constraint Analysis”,
John Zao, HoetTech Wee, Johnathan Chu, Daniel Jackson, SACMAT, 2003

[9] “The UCON ABC Usage Control|Madel”, J PARK, R SANDHU - ACM Transactions on
Information and System Security, 2004

[10] “Algorithm for the Satisfiability (SAT)Problem”, J. Gu, P. W. Purdom, J. Franco and B.
W. Wah, DIMACS Series in Disctete Mathematics and Theoretical Computer Science ,
1996

[11] "An Introduction to Role Based Access Control" NIST CSL Bulletin on RBAC,
December, 1995

33

http://alloy.mit.edu/
http://csrc.nist.gov/rbac/NIST-ITL-RBAC-bulletin.html

Appendix
Appendix A :Bell-LaPadula
module models/BLP/InputSet

sig label
{

geq : some label

}

onesig S, TS, SBU, U extends label {}

fact priority

{
TS in S.geq
S in SBU.geq
SBU in U.geq

}

sig user

{
clearance : one label,
canread : set document,
canwrite : set document

}

sig document

{

classification : one label

}

fact PartialOrderRelation
{
/* transitive and reflexive : reflexive and transitive closure*/
all lal,la2:label|lal inla2.*geq=>lal in la2.geq
/*antisymetric*/
all lal , la2 : label | lal in la2.geq && 1a2 in lal.geq => lal=la2
}
/* all x:X | formula - every x of type X satisfies formula. */
fact readdown
{
all u: user | all d: document | u.clearance in d.classification.geq

=>d in u.canread, d !in u.canread

34

fact writeup

{

all u: user | all d: document | d.classification in (u.clearance).geq

=>d in u.canwrite , d !in u.canwrite

fun ReadSet BLP (D:set document , u:user):set document

{

u.canread & D

pred checkForReadAccess (d: document , u: user ,answer:Bool)

{

d in u.canread => answer=True , answer=False

fun WriteSet BLP (D:set document ju:uisér):set document

{

u.canwrite & D

pred checkForWriteAccess (d: document , uztiser ,answer:Bool)

{

d inu.canwrite => answer=True , answer=False

pred example(){}

one sig John , Sam, Mary extends user{}
fact
{

John.clearance=TS

Sam.clearance=S

Mary.clearance=U

35

one sig document0 , documentl , document2 extends document{}
fact
{
document0.classification=S
documentl .classification=SBU

document?2.classification=U

run ReadSet BLP for exactly 4 label,exactly 3 user , exactly 3 document,exactly 2 Bool
run checkForReadAccess for 4 label , 3 user , exactly 3 document , exactly 2 Bool

run WriteSet BLP for exactly 4 label,exactly 3 user , exactly 3 document,exactly 2 Bool
run checkForWriteAccess for exactly 4 label,exactly 3 user, exactly 3 document, exactly 2
Bool

run example for 4 label , 3 user , exactly 5 document,exactly 2 Bool

36

Appendix B: China Wall Security Extension
module models/MCW

open util/boolean

sig COIClass
{
dataSet : some Company
b
sig Company
{
class : one COIClass ,
infoComeFrom : Company -> Consultant
b
sig Consultant
{
haveRead: set Company,
haveWritten: set Company,
canWrite : set Company,
rw : Company -> Company
b

fact eachCOIClassHasAtLeastOneComBelongsToTheCOIClass

{

all coi: COIClass | all c:Company |c.class=coi => ¢ in coi.dataSet , ¢ !in coi.dataSet

}

fact preventFromInfoLeakage

{

no disj cl , c2 :Company |c1 in (*(Consultant.rw).c2) && (c1.class=c2.class)

}

fact consultantHaveReadand WrittenSet

{

all u:Consultant | u.haveRead =u.rw.Company

all u:Consultant | u.haveWritten=u.rw[Company]

37

fact ConsulantCanWriteSet
{
all u:Consultant | all c1:Company | (no c2 : *(Consultant.rw).(u.haveRead)-c1|
cl.class=c2.class)=> cl in u.canWrite, c1 !in u.canWrite

}

fact companyInfoComeFromSetbySomeUser
{
all u: Consultant| all c1 , ¢2 :Company |
cl in u.rw.c2 => cl->u in c2.infoComeFrom , c1->u !in c2.infoComeFrom

}

fact

{

all u:Consultant | u.rw !=none-> none

}

fun consultantWriteSet (u:Consultant) : set Company

{

u.rw[Company]

}

fun canWriteSet (u:Consultant , C:set Company): set Company

{
u.canWrite & C

pred canWriteExam (u:Consultant, c:Company , answer: Bool)

{

¢ in u.canWrite => answer=True, answer=False

}

assert notwoComBelongsToSameCOIClass

{

all u:Consultant | no disj c1, c2:u.rw.Company +u.rw[Company] | c1.class=c2.class

}

assert nolnfoLeakage

{

all coi:COIClass | all disj ¢l , ¢2: coi.dataSet | ¢l !in ~(Consultant.rw).c2

b
pred example(){}

check nolnfoLeakage for 15
check notwoComBelongsToSameCOIClass for 10

38

run example for exactly 3 COIClass , exactly 6 Company , exactly 3 Consultant
run consultantWriteSet for 3 COIClass, 6 Company, 3 Consultant

run canWriteSet for 3 COIClass , 6 Company , 3 Consultant

run canWriteExam for 3 COIClass , 6 Company , 3 Consultant

one sig John , Sam , Mary extends Consultant{}
one sig coml , com2 , com3, com4 , com5 , com6 extends Company {}
one sig coil , coi2 , coi3 extends COIClass{}
fact
{

coml.class=coil

com?2.class=coil

com3.class=coi2

com4.class=coi2

comb3.class=coi3

comb.class=coi3

}

Fact

{

John.rw= com1->com3
Mary.rw=com3-> com5

Sam.rw=com4->com6

39

Appendix C: Role-Based Access Control
module models’RBAC/RBAC2

sig User
{
userRole : set Role,

userRoleExt : set Role

b
sig Role

{
inherits : set Role,
conflictRole : set Role,
permitAsgn : set Permission,
permitExt : set Permission
h
sig Permission
{
oprToObj: Operation -> Object,
objToOpr: Object -> Operation

i1
oprToObj=~objToOpr
b
sig Operation{}
sig Object{}
fact conflictRoleRule
{
all r:Role | r !in r.conflictRole
all r1, r2:Role | r1 in r2.conflictRole => 12 in rl.conflictRole
all r1 , r2:Role | rl in r2.conflictRole => r1 !in r2.inherits
all r1 , r2:Role | rl in r2.conflictRole =>
(all r3:Role | rl in r3.inherits=> 13 in r2.conflictRole)
all u:User | all r: u.userRole | no (u.userRoleExt & r.conflictRole)
b
fact inherit_relation
{

all r:Role | r in r.inherits

40

// all r:Role | r.*inherits in r.inherits
all r1, r2:Role | rl in r2.*inherits => r1 in r2.inherits
all r1, r2:Role | rl in r2.inherits && 12 in rl.inherits => r1=r2

}

fact permissionExt

{

all r1:Role | all p:Permission|
(some 12: rl.inherits | p in r2.permitAsgn)=> p in rl.permitExt, p !in rl.permitExt

¥
fact userRoleExtDef

{

all u: User | all r1:Role | (some r2:u.userRole | r1 in r2.inherits)

=>r] in u.userRoleExt , r1 !in u.userRoleExt

}

assert permitExtCheck

{

all r1:Role | all p: rl.permitExt | p inrliinhérits.permitAsgn

¥
assert SoDCheck

{

all disj r1, r2:Role | r1 in r2.cenflictRol€ == no u:User | r1+r2 in u.userRole)

assert conflictCheck

{

all u:User | all disj r1, r2:u.userRoleExt | r1 !in r2.conflictRole

}

fun userRoleExtension(u:User) : set Role

{

u.userRoleExt

}

fun rolePermissionExtension(r:Role):set Permission

{

r.permitExt

}

fun whatPermissionAUserHas(u:User):set Permission

{

41

(u.userRoleExt).permitExt

b
pred example (){}

check permitExtCheck for 10
check conflictCheck for 10
check SoDCheck for 16

run example for 3 User , 4 Role , 2 Operation,3 Object,6 Permission
one sig ProjLeader, Egrl, Egr2 , TEngr extends Role{}

one sig John , Mary, Ken extends User{}

one sig Read , Write extends Operation{}

one sig MgmtFile , DesignFile , TestFile extends Object{}

one sig pl , p2 ,p3 ,p4,pS,p6 extends Permission{}

fact

{
Egrl in Egr2.conflictRole
Egr2 in TEngr.conflictRole
TEngr in Egrl.conflictRole
TEngr in ProjLeader.inherits

b

fact

{
pl.oprToObj =Write-> MgmtFile
p2.oprToObj=Write-> DesignFile
p3.oprToObj=Write-> TestFile
p4.oprToObj=Read->MgmtFile
pS.oprToObj=Read->DesignFile
p6.oprToObj=Read->TestFile

ProjLeader.permitAsgn=p1+p4+p5+p6
Egrl.permitAsgn=p2+p5+p6

Egr2.permitAsgn=p2+p5+p6
TEngr.permitAsgn=p3+p6

fact

42

all r:Role | rin User.userRole

43

	封面.doc
	論文內頁.doc
	Thesis全部+版面設定9-11am_Figlist.doc

