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摘要 

  從二維的影像資訊重建出三維的場景模型，一直是電腦視覺領域一個重要的

研究主題，隨著電腦計算速度的進步，這項研究所延伸而出的應用更是琳瑯滿

目。近年來蓬勃發展的電腦繪圖、虛擬實境等等，都會利用到影像重建的技術，

比如將一些現成的玩具利用多個視角的照片，便可在電腦中產生玩具的模型。我

們提出了一個透過影像來重建三維場景模型的方法，透過影像之中與影像之間的

關係將攝影機的內外部參數算出之後，我們變能夠將影像間重複拍攝的部份的三

維座標點算出。在算出三維座標點之後，使用Wendland將三維座標點之間缺乏的

部份算出來形成場景的三維表面模型並將拍攝到的影像當作場景的材質貼到該

模型上以達到擬真的室內環境重建。
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Abstract

In recent years computer hardware and computer graphics has made tremendous progress

in visualizing 3D models of real objects. Many techniques have reached maturity and are

being ported to hardware. This seems like in the area of 3D visualization, performance may

increase even faster than Moor’s law. Some job required a million dollar computer a few

years ago can be now achieved by a custom computer, which cost a few hundred dollars.

It is now possible to visualize complex 3D scenes in real time due to the advancement of

computer hardware.

This speed of evolution causes an essential demand for more complex and realistic

models. Even though we are now able to build three-dimensional models, the tools for

three-dimensional modeling are getting more and more powerful, synthesizing realistic

models is difficult and time-consuming. Many virtual objects are inspired by real objects,

so we are interested in being able to build three-dimensional environment models directly

from the real environments.

In the past, visual inspection and robot guidance were the main applications. We re-

quire more and more 3D content for computer graphics, virtual reality and communication

nowadays. The visual quality becomes one of the main points of attention. Therefore not

only the position of a small number of points have to be measured with high accuracy, but

the geometry and appearance of all points of the surface have to be measured.

We proposed a semi-automatic 3D indoor environment reconstruction procedure using

the thin-plate splines for surface modeling and texture mapping. First, the intrinsic parame-

ters of the two cameras are calibrated. Second, calculate the fundamental matrix by using

the well-known Eight-Point algorithm and the essential matrix is derived to be the combi-

nation of fundamental matrix and the two camera intrinsic matrices. Third, relative pose

of the two cameras can be extracted from the essential matrix and sparse 3D point recon-

struction can be performed. Forth, interpolate 3D surfaces among the reconstructed sparse

3D points with the thin-plate splines. Finally, we can add textures on the reconstructed 3D

surface model with some texture mapping techniques. The 3D surface model established

i



with the proposed reconstruction system provides useful information for robot navigation

and other applications.
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Chapter 1

Introduction



2 Introduction

Figure 1.1:A 3D Laser Scanner.”A 3D laser scanner which scans in the depth data in order to rebuild

virtual objects of real ones.” source: (http://www.muellerr.ch/engineering/laserscanner/default.htm)

1.1 Background

Building 3D environment models using information from 2D images is always a main

issue in computer vision. With the progress in computational speed, more and more ap-

plications were developed using these techniques. Building models suitable for use in

interactive Virtual Environments (VEs) has always been a difficult problem. When the

environment must be synthesized into an existing scene, this requires obtaining accurate

three-dimensional environment models and poses, as well as surface materials or textures.

In addition to the appearance of the reconstructed environment, modeling the behav-

iour of objects is also very important if the system and the environment allow any kind of

nonpassive user interaction. Generally, a scene hierarchy is constructed by specifying the

relationships between objects in the scene. These relationships can then be used to assist

the user in interacting with the environment.

Traditional methods of reconstructing environment models involve a skilled user and a

three-dimensional CAD (Computer Aided Design) program. Accurately modeling a real

environment in such a way can only be done if the user has obtained blueprints is able
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Figure 1.2:3D Laser Scanning Result of A Human Face.”A reconstruction result of human

face using 3D laser scanner.” source: (http://www.muellerr.ch/engineering/laserscanner/default.htm)

to take precise physical measurements of the real environment. In either way mentioned

above, the process is slow and exhausting even if the content of the real environment is

simple. Manually obtaining surface materials and textures is also very difficult. These

problems stimulates human think about how to reconstruct environment with assistance of

hardware and algorithms in order to rebuild the scenes automatically.

To rebuild virtual scenes more automatically with aid of instruments, existing 3D re-

building systems are often built with specialized hardware (e.g. laser range finders or stereo

rigs) and these systems cost extremely expensive. Many new applications however demand

cheaper acquisition systems. This requirement stimulates the use of consumer photo- or

video cameras. Moores law also tells us that more and more can be done in software be-

cause of the recent progress in digital imaging instruments.

Due to the factors mentioned above, many techniques using informations captured from

cameras have been developed over the last few years. Many of these techniques do not

require more than some cameras and a computer to rebuild three-dimensional models of

real objects.

An image like in Figure 1.4 tells us a lot about the observed scene. There is how-
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Figure 1.3:3D Laser Scanning Result of A Shoe.”A 3D rebuilding result of a shoe using 3D

laser scanning data.” source: (http://www.muellerr.ch/engineering/laserscanner/default.htm)

ever not enough information to reconstruct the 3D scene without doing an sufficient num-

ber of assumptions on the structure of the scene. This is due to the nature of the image

formation process which consists of a projection from a three- dimensional scene onto a

two-dimensional image. During this process the depth information of the 3D point is lost.

Figure 1.5 illustrates this projection problem. The three-dimensional point corresponding

to a specific image point is constraint to be on the associated line of sight. From a single

image it is not possible to determine which point on this line corresponds to the image

point. If two or more images are available, then Figure 1.6 shows that the coordinate of the

three-dimensional point can be obtained as the intersection of the two back-projected rays.

This process is calledtriangulation. Notice that, however, some prior knowledge must be

required for triangulation:

• Corresponding image points

• Relative pose of the camera for the different views

• Relation between the image points and the corresponding line of sight
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Figure 1.4:An image of a scene with some features specified.

The relation between an image point and its back-projected ray is given by the camera

model (e.g. perspective camera) and its calibration parameters. These parameters are often

called theintrinsic camera parameters while the position and orientation of the camera are

usually calledextrinsicparameters. In the following of this thesis we will learn how all

these elements that can be retrieved from the images. The key for this are the relations

between multiple views which tell us that corresponding sets of points must contain some

particular structure and that this structure is related to the poses and the calibration of the

camera.

1.2 Thesis Scope

In this thesis, we proposed a 3D reconstruction procedure using images captured by

cameras at different poses. The relation between an image point and its corresponding ray

of sight is given by the camera model (e.g. perspective camera) and the camera calibration

parameters. These parameters are often called the intrinsic camera parameters while the

position and orientation of the camera are in general called camera extrinsic parameters.

In the following chapters we will learn how all these elements can be acquired from the
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Figure 1.5:Back-projection of a point along the line of sight.

images. The key for camera calibration are the relations between multiple views (e.g. cor-

responding image points in images) which tell us that corresponding sets of points must

contain some structure and that this structure is related to the intrinsic and extrinsic para-

meters of the camera.

In our 3D reconstruction procedure, first, the intrinsic parameters of the two cameras are

calibrated. Second, we calculate the fundamental matrix by using the well-known Eight-

Point algorithm and the essential matrix is derived to be the combination of fundamental

matrix and the two camera intrinsic matrices. Third, relative pose of the two cameras can be

extracted from the essential matrix and sparse 3D point reconstruction can be performed.

Fourth, interpolate 3D surfaces among the reconstructed sparse 3D points with the thin-

plate splines. Finally, we can add textures on the reconstructed 3D surface model with

some texture mapping techniques. The 3D surface model established with the proposed
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Figure 1.6:An image of a scene with some features specified.

reconstruction system provides useful information for robot navigation and other applica-

tions.

1.3 Thesis Organization

After this chapter, we will introduce some relative works during the pass few years.

Chapter 3 describes projective geometry and the stratification of geometric structure. After

some geometric fundamentals are introduced, we turn into the perspective camera model

and some geometric calculation of the relation between multiple view cameras in chapter 4.

Chapter 5 tells the main 3D surface modeling method we use to reconstruct photo texture
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mapped 3D models in this thesis and then run the way through to perform our 3D model

reconstruction procedure in chapter 6. Some reconstruction and experiment results are

shown in chapter 7 and finally, we have some conclusion and future works discussed in

chapter 8.
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Related Works
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Figure 2.1:Camera 3D Reconstruction System - 3D Dome Developed by Narayanan,
Rander and Kanade.

The technique of 3D reconstruction from stereo images of real scenes has been stud-

ied for many years. The focus points of 3D reconstruction studies vary due to different

requirements of various applications such as robot navigation, 3D model reconstruction of

architectures, computer graphics, virtual reality, etc.

Take robot navigation for example, robot vision systems demand no sophisticated or re-

alistic reconstruction results but only the accuracy of depth information and some principle

parts of the environment, therefore, the researchers of robot vision systems focus on how

to calculate depth information from images precisely and efficiently.

Another example is the 3D virtual model reconstruction of a specific real object, the

most common way nowadays is to put the object on a rotating plate and keep capturing

images with a stationary camera while the plate rotates. The camera can be calibrated first

in order to acquire the relationship between image points and its reprojection rays. Camera

motion can be formulated since the rotation speed and the radius of the rotation are prior

knowledge under the model reconstruction system. The main purpose of 3D virtual model

reconstruction systems is to build photo-realistic models from a sequence of images.

In the following sections of this chapter, we will introduce several methods about how

to rebuild 3D virtual models from images captured by various poses of cameras.
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2.1 Multi-View 3D Reconstruction

Multi-view 3D reconstruction systems rebuild the model from photos captured by sev-

eral cameras of different poses. The corresponding features are found amoung cameras in

order to calculate 3D coordinates of the real object. Cameras in multi-view rebuilding sys-

tems are often fully calibrated so that their relative poses are known. Acquire enough 3D

information by tracking the motion of an moving object with multiple calibrated cameras

is the main advantage of these systems.

Narayanan, Rander and Kanade proposed a multi-view photographic reconstruction

system called3D Dome[12]. As illustrated in Figure 2.1, the system 3D Dome is a semi-

sphere multi-capturing system formed by fifty-one synchronous and fully calibrated cam-

eras. Since all the cameras are all fully calibrated, which means in the Equation 4.6 the

camera intrinsic matrixK and relative poses amoung cameras are all known. Therefore,

when a person is taking some actions in the 3D dome, every camera around the 3D dome

will capture images from different point of views and then obtain a dense depth graph for

each camera by running through a multiple-baseline stereo reconstruction procedure. Map-

ping the texture onto the dense depth graph forms a simple reconstructed 3D human model.

The author called this avisible surface model(VSM). But VSM is a surface model recon-

structed from each camera, there is some part of the human have inevitable reconstruction

difficulties due to occlusion. The author solved this problem by synthesizing all the VSMs

together with a optimized integration procedure in order to reconstruct thecomplete surface

model(CSM) of the scene.

In the 3D dome system, cameras are all fully calibrated with relative poses known.

Therefore, in the 3D dome system, calculation of 3D coordinates from the photos needs no

complicated computation. Since the system is equipped with 51 cameras, the main problem

of the system is to have cameras capture images synchronously.

Fua and Leclerc have proposed a similar system which goal is to rebuild the real scenes

in virtual reality [6]. Differ from Narayanan, Rander and Kanade, they use only two cali-

brated cameras to capture images of static scenes. Fua and Leclerc turn the calculated 3D

points into meshes in order to reconstruct the 3D surface model of the scenes.
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2.2 Single-Camera 3D Reconstruction

Single-camera 3D reconstruction systems often obtain images with a single camera but

from different point of view or simply record videos while the camera is moving. The most

often used method is the so-calledstructure from motion. Image processing methods, such

asmulti-image intensity correlation, can be used in single camera video systems in order

to find out image correspondences since there should be small differences between frames

in short-term intervals.

Pollefeys and Van Gool [13] have implemented a single camera reconstruction system

similar to described systems above. The input of their system is a sequence of images

captured from the same scene by single camera. After specifying some distinct features in

each image, similarity comparison methods are used to find out correspondences amoung

images. Since there are some errors in images due to camera projection hardware structure

and some noises caused if the feature points were specified by human, Pollefeys and Van

used a method calledrandom sampling consesus(RANSAC) to calculate several choices

of the fundamental matrices from the image correspondences and picked the most stable

fundamental matrix out from the computed matrices. The fundamental matrix encodes the

transformation of every image points in two corresponding images, the definition of the

fundamental matrix and epipolar geometry will be introduced in chapter 3 and 4. After

finding out the fundamental matrix, a projective reconstruction can be computed. If the

cameras are calibrated, the intrinsic parameters of the camera matrix are all known and

thus a metric reconstruction can be performed, which differs from the real world by only a

scalar factor. After the metric reconstruction is done, the author computed the dense depth

graph in order to calculate depth for every pixel in the image and then performed texture

mapping to reconstruct the whole 3D model.

Fitzgibbon and Zisserman have proposed a similar system, but besides finding feature

points, they used the informations of line segments in the images by using image processing

techniques such as edge detection for 3D reconstruction. Therefore, their reconstruction re-

sults are not only sparse 3D points but with the information support of line segments, which

can assist in reducing the depth error of the 3D reconstruction. In addition, Zisserman used
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both the two-view reconstruction method and the trifocal tensor method, which is to cut

down depth ambiguity by using three-view image correspondences.

2.3 Other Reconstruction Methods and Applications

There are lots of applications require image-based 3D reconstruction systems for assis-

tance. Schreer [15] has developed a robot navigation system with photographic 3D recon-

struction algorithms built in. The two cameras used for robot vision are both fully calibrated

in order to calculate 3D coordinates in real-time while the robot is moving around in the

environment. But this system uses only the distribution condition of the reconstructed 3D

points with some prior knowledge and experiences in order to avoid obstacles. But lack

of considering the structure of indoor environments may cause the robot vision system

inflexible.

Some reconstruction systems use some characteristics of the scenes to refine the recon-

structed model. Cipolla and Robertson [3] used the prior knowledge such as the perpen-

dicular relations amoung walls and floors of the buildings to find the vanishing point in

the image. The vanishing point is then transfered into a 3D vector form in order to reduce

computational error of the vanishing point. After the vanishing point is found, the cam-

era intrinsic parameters can be calculated with the vanishing point in order to simplify the

calculation process of camera intrinsic parameters and 3D model reconstruction.
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The concepts presented in the following two chapters concentrates on concepts of pro-

jective geometry. This chapter and the next one introduce most of the geometric concepts

used in the rest of the thesis. This chapter focuses on projective geometry and introduces

concepts as points, lines an planes in two or three dimensions. A lot of attention goes to the

analysis of geometry in projective, affine, metric and Euclidean layers. Projective geome-

try is used for its simplicity in formalism, additional structure and properties that can then

be introduced were needed through this hierarchy of geometric strata. This section was in-

spired by the introductions on projective geometry found in Faugeras’ book [5]. A detailed

description on the subject can be found in the recent book by Hartley and Zisserman [8].

3.1 Projective Geometry

A point in projectiven-spacePn is given by a(n + 1)-vector of coordinatesx =

[x1...xn+1]
T . At least one of these entries of the vector should differ from zero. These

coordinates are calledhomogeneouscoordinates. In this thesis the coordinate vector and

the point itself will be denoted with the same symbol. Two points denoted by(n + 1)-

vectorsx andy are equal if and only if there exists a nonzero scalarλ such thatx = λy.

This will be indicated byx ∼ y.

A collineation is a mapping between projective spaces. A collineation fromPm to

Pn can be mathematically denoted by a(m + 1) × (n + 1) matrixH, where points are

transformed linearly:x′ ∼ Hx. MatricesH andλH with a nonzero scalarλ represent the

same collineation.

A projective basisis the extension of a coordinate system to projective geometry. A

projective basis is a set ofn + 2 points such that non + 1 of them are linearly dependent.

The setel = [0, · · · , 1, · · · , 0]T , ∀l, 1≤l≤n + 1, where 1 is in thelth position anden+2 =

[1, 1, · · · , 1]T is the standard projective basis. A projective point ofPn can be described as

a linear combination of anyn+ 1 points of the standard basis. For example:

m =
n+1
∑

l=1

λlel
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It can be shown [4] that any projective basis can be transformed into a unique collineation of

the standard projective basis. Similarly, if two sets of pointsm1, ...,mn+2 andm′
1, ...,m

′
n+2

both form a projective basis, then there exists a uniquely resolved collineationT such that

ml
′ ∼ Tml, ∀l, 1≤l≤n + 2. This collineationT describes the different combination of

projective basis. Notice thatT is invertible.

3.1.1 The Projective Plane

The projective plane is the projective spaceP2. A point in P2 is represented by a 3-

vectorm = [x, y, z]T . A line l is also represented by a 3-vector. A pointm is located on a

line l if and only if

lTm = 0 (3.1)

This equation, however, can also be described as the expression that ”the linel passes

through the pointm” or ”the pointm in on the linel”. This symmetry in the equation shows

that there is no formal difference between points and lines in the projective plane. This is

known as the principle ofduality. A line l passing through two pointsm1 andm2 is given

by their vector productm1 ×m2. This can also be written as

l ∼ [m1]xm2, with [m1]x =













0 z1 −y1

−z1 0 x1

y1 −x1 0













(3.2)

The dual formulation gives the intersection of two lines. All the lines passing through

a specific point form apencil of lines. If two linesl1 and l2 are distinct elements of the

pencil, all the other lines can be obtained through the following equation:

l ∼ λ1l1 + λ2l2 (3.3)

for some scalarsλ1 andλ2. Note that the ratioλ1

λ2

is important.
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3.1.2 The Projective 3D Space

A projective 3D space typically means the dimension of the projective space is 3, where

is the projective spaceP3. An element inP3 is represented by a 4-entry vectorM =

[X,Y, Z,W ]T . In P3 the duality of an element is a plane, which is also denoted as a 4-

entry vector. A pointM lies on a planeΠ can be denoted mathematically as:

ΠTM = 0 (3.4)

A line can be written into a linear combination of two points as:

λ1M1 + λ2M2

or can be produced by the intersection of two planesΠ1 ∩ Π2.

3.1.3 Projective Transformations

We can denote a transformation between the images as ahomographyof P2 → P2 ,

which can be represented by a3 × 3-matrixH. With the same properties of matrices,H

andλH represent the same homography for all nonzero scalarsλ. A point is transformed

as follows:

m 7→ m′ ∼ Hm (3.5)

The corresponding transformation of a line can be obtained by transforming the points

which are on the line and then finding the line defined by these points:

l′Tm′ = lTH−1Hm = lTm = 0 (3.6)

From the previous equation it is easy to derive a transformation equation for a line

(H−T = (H−1)T = (HT )−1):

l 7→ l′ ∼ H−T l (3.7)
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Similar reasons can be considered inP3 gives the following equations for transforma-

tions of points and planes in 3D space:

M 7→M ′ ∼ TM, (3.8)

Π 7→ Π′ ∼ T−T Π (3.9)

whereT is a4 × 4-matrix.

3.2 Analysis of 3D Geometry

Usually we define the real world as a Euclidean 3D space. But in some particular

cases it is not sufficient to use the full Euclidean structure of 3D space. Euclidean 3D

space is only suitable for less structured and thus simpler projective geometry. Intermediate

layers are formed by the affine and metric geometry. These structures can be thought of as

different geometric layers which can be overlaid on the world for different transformations.

The most complicated is Euclidean, then metric, next affine and finally projective structure.

The concept of stratification is closely related to the groups of transformations acting

on geometric entities and leaving some properties of configurations of these elements in-

variant. Attached to the projective stratum is the set of projective transformations, attached

to the affine stratum is the set of affine transformations, attached to the metric stratum is the

set of similarities and attached to the Euclidean stratum is the set of Euclidean transforma-

tions. It is important to notice that these groups are subgroups of each other, e.g. the metric

group is a subgroup of the affine group and both are subgroups of the projective group.

An important aspect related to these groups are their invariants. Aninvariant is a prop-

erty of a derivation of geometric entities that is not altered by any transformation belonging

to a specific group. Invariants therefore can guild us what measurements we can do consid-

ering a specific stratum of geometry. These invariants are often related to geometric entities

which stay unchanged after applying the transformations to a specific group. These geomet-
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ric entities with invariants related play an important role in part of this thesis.Recovering

them allows us to upgrade the structure of the geometry to a higher level of the geometric

stratification.

In the following sections, different strata of geometry are discussed. The associated

groups of transformations, their invariants and the corresponding invariant structures are

presented.

3.2.1 Projective Stratum

The simplest stratum is the projective stratum. It is the less structured one and has the

least number of invariants and the largest group of transformations related to it. The group

of projective transformations or collineations is composed with the most general group of

linear transformations.

A projective transformation of 3D space can be denoted by a4 × 4-matrix, where the

matrix is invertible:

TP ∼



















p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44



















(3.10)

This transformation matrix is only defined up to a nonzero scale factor and has therefore

15 degrees of freedom.

Relations of collinearity, incidence and tangency are projectively invariant. The cross-

ratio is an invariant property under projective transformations as well. It is defined as

follows: Assume that the four pointsM1, M2, M3 andM4 are collinear. Then they can be

expressed asMi = M + λiM
′ (assume none is coincident withM ′). The cross-ratio is

defined as

{M1,M2;M3,M4} =
λ1 − λ3

λ1 − λ4

:
λ2 − λ3

λ2 − λ4

(3.11)
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The cross-ratio does not depend on the choice of the referencepointsM andM ′ and

is invariant under the group of projective transformations ofP3. It can be derived that a

similar cross-ratio invariant for four line intersecting in a point or four planes intersecting

in a line.

We can regard cross-ratio as the coordinate of the fourth point is the linear combination

of the first three points, since three points form a basis for a projective line inP1. Similarly,

two invariants can be found for five coplanar points, three invariants for six coplanar points,

all in general position.

3.2.2 Affine Stratum

The affine stratum has more structure than the projective one, but less structure than the

metric or the Euclidean strata. Differs from projective stratum, the affine stratum identifies

a special plane, which called theplane at infinity.

To define this plane at infinity, we haveW = 0 and thusΠ∞ = [0, 0, 0, 1]T . We can

consider that the projective space contains the affine space under the one-to-one mapping:

A3 → P3: [X,Y, Z]T 7→ [X,Y, Z, 1]T . The planeW = 0 in P3 can be thought as con-

taining the limit points for‖M‖ = ∞. The Affine transformation is usually denoted as the

following:













X ′

Y ′

Z ′













=













a11 a12 a13

a21 a22 a23

a31 a32 a33

























X

Y

Z













+













a14

a24

a34













, with det(aij) 6= 0 (3.12)

The affine transformation can be rewritten in the matrix form:M ′ ∼ TAM with:

TA ∼



















a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1



















(3.13)
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Therefore, the affine transformation has 12 independent degrees of freedom. All in-

variants under the projective stratum also exsist under the affine stratum. For the more

restrictive affine group, parallelism is added as a new invariant property. Lines or planes

having their intersection at infinity are calledparallel. Another new invariant property for

affine group is theratio of lengths along some direction.

3.2.3 Metric Stratum

The metric stratum resembles in the group of similarities. This stratum differs from

the Euclidean stratum only up to a scale factor. The metric transformations correspond

to Euclidean transformations complemented with a scaling. When no absolute measure-

ment is available, reconstruction in the metric coordinate is the highest level of geometric

structure that 3D reconstruction from images can achieve.

A metric tranformation can be represented as the following:













X ′

Y ′

Z ′













= σ













r11 r12 r13

r21 r22 r23

r31 r32 r33

























X

Y

Z













+













t14

t24

t34













(3.14)

with rij the coefficients of an orthonormal matrix, which is usually denoted byR such

thatRTR = RRT = I and thusR−1 = RT . Recall that R is a rotation matrix if and only if

RRT = I and det(R) = 1. In homogeneous coordinates, Equation 3.14 can be rewritten as

M ′ = TMM , with

TM ∼



















σr11 σr12 σr13 tX

σr21 σr22 σr23 tY

σr31 σr32 σr33 tZ

0 0 0 1



















∼



















r11 r12 r13 σ−1tX

r21 r22 r23 σ−1tY

r31 r32 r33 σ−1tZ

0 0 0 σ−1



















(3.15)

A metric transformation therefore has 7 independent degrees of freedom, 3 for trans-

lation, 3 for orientation and 1 for scale. In metric stratum there are two important new

invariants properties:relative lengthsandangles.
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3.2.4 Euclidean Stratum

The only difference between Euclidean stratum and metric stratum isabsolute length.

Therefore, the Euclidean transformation has 6 independent degrees of freedom, 3 for trans-

lation and 3 for rotation. A Euclidean transformation has the following matrix form:

TE ∼



















r11 r12 r13 tX

r21 r22 r23 tY

r31 r32 r33 tZ

0 0 0 1



















(3.16)

with rij the coefficients of an orthonormal matrix, as described previously. If det(R) =

1 then, this transformation is simply the same as a rigid-body transformation in space.

3.2.5 Comparison of the Different Strata

In this chapter some concepts of projective geometry were introduced. Based on these

concepts, some methods can be invented by doing the inverse of the projection process and

obtain 3D reconstructions of the observed scenes, where is the main objective of this thesis.

We can list a table in order to compare different strata described previously:
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ambiguity DOF transformation in matrix form invariants

projective 15 TP =



















p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

p41 p42 p43 p44



















cross-ratio

affine 12 TA =



















a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

0 0 0 1



















relative distances

along direction

parallism

plane at infinity

metric 7 TM =



















σr11 σr12 σr13 tx

σr21 σr22 σr23 ty

σr31 σr32 σr33 tz

0 0 0 1



















relative distances

angles

absolute conic

Euclidean 6 TE =



















r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1



















absolute distances

Table 3.1:Comparison of Different Geometric Strata. ”Number of degrees of freedom, trans-

formation in matrix form and invariants corresponding to different geometric strata.”
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Figure 3.1: Shapes which are equivalent to a cube under different geometric
transforms.
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Chapter 4

Camera Model and 3D Reconstruction

Fundamentals
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Before discussing how to reconstruct 3D objects from relations of images captured

from different poses of cameras, it is important to know how images are formed via the

camera model. In the following sections, first, the perspective camera model is introduced.

Second, some important relationships between multiple views are presented with some

mathematics.

4.1 The Camera Model

In this thesis the model of perspective camera is used. The image-forming process is

completely determined by having a perspective projection center point and a retinal plane.

The projection of a real 3D point is then obtained as the intersection of a line passing

through this real 3D point and the projection centerC with the image planeR.

4.1.1 A Simple Camera Model

In the simplest case, where the center of projectionC is placed at the origin of the world

frame and the image plane is atZ = 1, the projection process can be formulated as follows:

x =
X

Z
, y =

Y

Z
(4.1)

For a world point(X,Y, Z) and its corresponding projected image point(x, y). Using

the homogeneous representation of the points, a linear equation is then obtained as the

following:













x

y

1













∼













1 0 0 0

0 1 0 0

0 0 1 0































X

Y

Z

1



















(4.2)

This projection is illustrated in Figure 4.1, where the optical axis passes through the

projection centerC and is orthogonal to the retinal planeR. The intersection of the optical
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Figure 4.1:Perspective Camera Model.”A simple perspective camera model, cited from: [14].”

axis and the retinal plane is defined as the principle pointc.

4.1.2 Perspective Camera Intrinsic Calibration

Now consider the case when actual camera is used, where the focal lengthf will be

different from 1, the coordinates of Equation 4.2 should be scaled withf to take account.

In addition the coordinates in the image output on the screen do not match the physical

coordinates in the retinal plane. Using a CCD camera the relation between the image

coordinate and the retinal coordinate depends on the size and shape of the pixels and of the
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Figure 4.2:From image coordinates to retinal coordinates.”This figure illustrates how image

coordinates transform to retinal coordinates, cited from: [14].”

position of the CCD chip placed in the camera. The projection process of actual perspective

camera can be formulated in matrix form as follows:













x

y

1













=













f

px
(tanα) f

py
cx

0 f

py
cy

0 0 1

























xR

yR

1













(4.3)

wherepx andpy are the width and height of the pixels, the principle pointc = [cx, cy, 1]T

andα the skew angle as shown in Figure 4.2. Since only the ratiosf

px
and f

py
are important,

we can write a simplified notation of Equation 4.3 as the following:













x

y

1













=













fx s cx

0 fy cy

0 0 1

























xR

yR

1













(4.4)

with fx andfy the focal length measured in width and height of pixels, ands a factor

being the skew factor due to non-rectangular pixels. The above upper triangular matrix is
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called theintrinsic camera calibration matrix, and the notationK is usually used for the

matrix. For a camera with fixed optics these parameters are identical for all the images

taken with the camera. For cameras which have zooming and focusing capabilities the

focal length can obviously change, but also the principal point can vary. In order to find out

the camera intrinsic parameters, we use the calibration method proposed by Z.Zhang [23],

which calibrates perspective cameras with a 2D plane with some features easily extracted

by image processing techniques.

4.1.3 The Projection Matrix

Combining Equations( 4.2), ( 4.4) and rigid-body transformation of the camera, the

following expression can be written with camera intrinsic parameters defined previously

and with a specific camera position and orientation:













x

y

1













∼













fx s cx

0 fy cy

0 0 1

























1 0 0 0

0 1 0 0

0 0 1 0

















RT −RT t

0T
3 1























X

Y

Z

1



















(4.5)

which can be simplified to:

m ∼ K





RT −RT t

0T
3 1



M (4.6)

or even

m ∼ PM (4.7)

The 3 × 4 matrix P is called thecamera projection matrix, which determines how

real world 3D points turn into image 2D points we saw on the monitor screen. With the

Equation 4.7 the planeΠ corresponding to a back-projected linel can also be derived:

SincelTm ∼ lTPM ∼ ΠTM ,
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Figure 4.3:Correspondences Between Two Views.”Even the exact position ofM is not known,

it is bounded on the line of sight of the corresponding image pointm. This line of sight can be projected on

the other camera image plane asl′, cited from: [14].”

Π ∼ P T l (4.8)

4.2 Multi-View Geometry

In the previous sections multi view relations were not discovered. Since several geo-

metric relationships can be build between two, three or more images, these relationships

are the essential parts for camera calibration and 3D reconstruction from images. Many

insights of multiple view geometry are discovered over the last few decades.
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Figure 4.4:Two-View Epipolar Geometry. ”This figure illustrates that different epipolar planes

formed by 3D points and the two projection centersC andC ′ always include the baseline and the two epipoles

e ande′. Each epipolar plane satisfies epipolar geometry and can be formulated in mathematical way (cited

from: [14]).”

4.2.1 Two-View Geometry

After the intrinsic parameters of the perspective camera are known, we can calculate the

corresponding ray of an specific image point passing itself and the projection center. Con-

sider that there are two cameras with different positions and orientation capturing images

from the same scene, is there any relations between the images formed by these cameras?

A more specific question:Given one image point in an image, can this point restrict the

position of an image point in the other image?It turns out that this relationship can be

obtained from the process of camera calibration or even from a set of prior image point

correspondences.

To answer this question, consider the projection relationships of a real world 3D point
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M amoung two cameras, although the exact position ofM is not known, it is bounded on

the line of sight of the corresponding image pointm. This line of sight can be projected on

the other camera image plane as shown in Figure 4.3. In fact all the points on the planeΠ

defined by the two projection centers andM have their image onl′. The same reason that

line l is formed by the projecting all the points on the planeΠ onto the left image.l and

l′ are said to be inepipolar correspondence, the planeΠ is usually named withepipolar

plane.

All these epipolar planes pass through both projection centersC andC ′, results in a

set of corresponding epipolar lines as shown in Figure 4.4. All these epipolar lines pass

through two specific pointse ande′, which are commonly calledepipoles.

This epipolar geometry can be represented mathematically. A pointm on a linel can

be expressed in the formula aslTm = 0. The line passing through pointm and the epipole

e is:

l ∼ [e]
x
m (4.9)

with [e]
x

the antisymmetric3 × 3 matrix describing the cross-product of the epipolee.

4.2.2 Fundamental Matrix and Essential Matrix

After describing the basic two-view epipolar geometry, we can now going further into

some derivations of the fundamental matrix and the essential matrix. From Equation 4.8

and Equation 4.9 the planeΠ can be easily obtained asΠ ∼ P T l and similarlyΠ ∼ P ′T l′.

Combining these equations gives the following formula:

l′ ∼ (P ′T )†P T l ≡ H−1l (4.10)

with † denoting the pseudo-inverse. Substituting ( 4.9) in ( 4.10) we have the following

equation:
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l′ ∼ H−T [e]
x
m (4.11)

definingF = H−T [e]
x

and substitute in Equation 4.11, we have:

l′ ∼ Fm (4.12)

and thus,

m′TFm = 0 (4.13)

The matrixF is called thefundamental matrix. These definitions and concepts were

introduced by Faugeras [4] and Hartley [7]. Many people have studied the properties of

the fundamental matrix (e.g. Q.T. Luong [9] and [10]) and lots of efforts have been put in

obtaining the fundamental matrix from two-view image pairs robustly [16–18].

When the calibration is not known, the fundamental matrixF can be calculated by

Equation ( 4.13). Every pair of image correspondences gives one constraint on the fun-

damental matrixF . SinceF is a 3 × 3 matrix which is determined only up to a scalar

factor, it has3 × 3 − 1 unknowns, which means eight pairs of image correspondences are

sufficient to computeF with a linear algorithm. The linear algorithm is then introduced in

the following section.

4.2.3 The Eight-Point Linear Algorithm

Linear Solution for the Fundamental Matrix

As described in the previous section, the fundamental matrix is defined by Equation 4.13,

for any matching image pairsm ↔ m′. Given a sufficient number of image point matches

(at least eight)mi ↔ m′
i, Equation 4.13 can be used to compute the unknown fundamental

matrixF . Letm = [u, v, 1]T andm′ = [u′, v′, 1]T , every point correspondence gives one

constraint linear equation to an unknown entry ofF . The coefficients of the equation can

be easily derived in coordinates ofm andm′ as the following:
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uu′F11 + uv′F21 + uF31 + vu′F12 + vv′F22 + vF32 + u′F13 + v′F23 + F33 = 0 (4.14)

The coefficients of the equation can be written into a row vector as follows:

(uu′, uv′, u, vu′, vv′, v, u′, v′, 1) (4.15)

Let the row vector in the Equation 4.15 be matrixA, and the nine-vector column vector

f be the stacked-version matrix containing the entries of the fundamental matrixF . Then

we obtain a set of linear equations of the form:

Af = 0 (4.16)

Because the fundamental matrixF is defined up to an unknown scalar factor, to avoid

the trivial solutionf , an additional constraint can be used as follows:

‖f‖ = 1 (4.17)

where‖f‖ is the norm off .

With the constraints described above, it is possible to find a solution to the linear system

with as few as eight image pairs. If more than eight point correspondences are specified, we

have an overspecified system of equations. Assuming that there exists a non-zero solution

to this system of equations,A is derived to be rank-deficient. In other words, althoughA

has nine columns, the rank ofA must be at most eight. In fact, the rank ofA is exactly

eight, and there is an unique solutionf .

The above discussion assumes that the given point correspondences are all perfect data

and without the disturbance of noise. Actually, because of inaccuracies in the measurement

or specification of the matched points, the matrixAwill not be rank-deficient, which means

it will have rank nine. In this case, there will not be any nontrivial solutions to the system of

equationsAf = 0. Instead of finding a non-zero solution, we seek a least-squares solution
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to this equation set, where is well known to be the unit eigenvector corresponding to the

smallest eigenvalue ofATA. An appropriate algorithm for finding this eigenvector can

refer to the algorithm of Jacobi [21] or thesingular value decomposition(SVD) [1,21].

The properties of the fundamental matrix will be introduced in the next paragraph.

The Singularity Constraint and The Eight-Point Algorithm

A important property of the fundamental matrix is that it is singular, which is in fact

has rank of two. Furthermore, the left and right null-spaces of the fundamental matrixF

can be generated by the vectors in homogeneous coordinate denoting the two epipoles in

the two relative images. Most applications depends on the rank two constraint of the matrix

F . But the matrixF found by solving the system of equations ( 4.16) will not in general

have rank two due to the noise and the error of measurement. Therefore, a convenient

method to enforce the singularity constraint and compute the fundamental matrix is to use

the singular value decomposition. In particular, letF = UDV T be the SVD ofF , where

D is a diagonal matrixD = diag(r, s, t)satisfyingr ≥ s ≥ t. LetF ′ = Udiag(r, s, 0)V T ,

this method is suggested by Tsai and Huang [19] and has been proven to minimize the

Frobenius norm‖F − F ′‖ as required.

Thus, with the previous description we can now formulate the eight-point algorithm

into two main steps for the computation of the fundamental matrixF as follows:

1. Find Linear Solution: Given image pairsm ↔ m′, solve the equationsm′TFm = 0

to findF . The solution is the eigenvector corresponding to the smallest eigenvalue

of ATA with A the equation matrix.

2. Enforce Rank Two Constraint: ReplaceF byF ′, whereF ′ is the closest singular ma-

trix to F under Frobenius norm. This can be done via singular value decomposition.

The algorithm is extremely simple and can be easily implemented, assuming with the

availability of a suitable linear algebra library, for instance, Matlab or OpenCV.
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4.2.4 The Essential Matrix and Extraction of Relative Pose Between

Cameras

In this section we will introduce the definition of the essential matrix and how to find

out the relative pose of the two cameras by extracting the essential matrix.

The Essential Matrix

In comparison to the fundamental matrixF , whereF satifies the equationsm′TFm = 0

in the homogeneous image(pixel) coordinate. The essential matrixE is defined in the met-

ric coordinate satisfying the similar constraintx′TEx = 0, with m = Kx andK the

intrinsic camera matrix. In fact,E = T × R = [T ]
x
R with (R, T ) the coordinate trans-

formation between the two camera coordinates. In other words, the essential matrixE

encodes the relative pose of the two cameras in one matrix with the two cameras intrin-

sically calibrated(KandK ′ are known). Compare to the fundamental matrixF with the

cameras uncalibrated, the essential matrix and the fundamental matrix have the following

relative equation:

E = K ′TFK (4.18)

The meaning of the equation above is that after we calibrate the two cameras and the

fundamental matrixF is calculated with the eight-point algorithm mentioned previously,

the essential matrixE can be computed with Equation 4.18, which informs us the relative

pose of the two cameras.

Pose Recovery of Cameras By Extracting The Essential Matrix

After the essential matrixE is computed, in the previous section we know thatE =

[T ]
x
R, which is the matrix that relative pose of the two cameras(R, T ) can be extracted

from it. In order to extract the coordinate transformation from the essential matrix, the

essential matrixE is decomposed with singular value decomposition at first. LetE =
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Figure 4.5: The Pose Recovery Twisted Pair Extracted from The Essential Matrix.
”Two pairs of camera relative poses which generate the same essential matrix. It is shown that one of the two

solutions will not satisfy the positive depth constraint. Cited from [22]”

UDV T , whereD = diag(a, a, 0), define:

RZ(+
π

2
) =













0 −1 0

1 0 0

0 0 1













(4.19)

then we can derive four solutions with two rotation matricesR1,R2 and two translation

matrices in3 × 3 cross-vector formT1, T2 with the following formula:

(R1, T1) = (URT
Z(+

π

2
)V T , URZ(+

π

2
)DUT )

(R2, T2) = (URT
Z(−π

2
)V T , URZ(−π

2
)DUT )

In the formula above(R1, T1) and(R2, T2) are called thetwisted pair. Figure 4.5 shows

that one solution of the twisted pair will not satisfy thepositive depth constraint, which
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means all 3D points must lie in front of the image planes of bothcameras. In fact, in

order to extract the relative poses from the essential matrix with SVD robustly, Wang and

Hung [20] have proven that there are four solutions for rotation(two additional solutions

for rotation) and two solutions for translation, which permutates into eight solutions for the

relative pose between the two cameras. Let:

R(−Z)(+
π

2
) =













0 −1 0

1 0 0

0 0 −1













(4.20)

then after extracting the solutions of pose from the essential matrix we have the follow-

ing eight solutions:

(R1, T1) = (URT
Z(+

π

2
)V T , URZ(+

π

2
)DUT )

(R2, T2) = (URT
Z(−π

2
)V T , URZ(−π

2
)DUT )

(R1, T2) = (URT
Z(+

π

2
)V T , URZ(−π

2
)DUT )

(R2, T1) = (URT
Z(−π

2
)V T , URZ(+

π

2
)DUT )

(R3, T1) = (URT
(−Z)(+

π

2
)V T , URZ(+

π

2
)DUT )

(R3, T2) = (URT
(−Z)(+

π

2
)V T , URZ(−π

2
)DUT )

(R4, T1) = (URT
(−Z)(−

π

2
)V T , URZ(+

π

2
)DUT )

(R4, T2) = (URT
(−Z)(−

π

2
)V T , URZ(−π

2
)DUT )

After the above eight solutions are extracted from the essential matrix, six out of the eight

solutions can be rejected by using the positive depth constraint and one solution is removed

since the relative pose of the two cameras is not reasonable. Thus, after extracting the

solutions of the pose recovery problem from the essential matrix with singular value de-

composition, we can obtain eight solutions where one of them will be the correct relative

pose between the cameras.
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4.2.5 Calculation of Depth Information for Structure Reconstruction

With the rigid-body transformation of the cameras(R, T ) and the intrinsic camera pa-

rameters known, we can calculate 3D coordinates of the paired image points in terms of the

image coordinates and depthsλ, λ′, letxi, xi
′ be the ith image pair points in homogeneous

image coordinate system, the relation between depths and the transformations between two

camera coordinates can be formulated as follows:

λi
′xi

′ = λiRxi + γT (4.21)

notice that because(R, T ) are known, the depthsλ’s and the scale of translationγ in

Equation 4.21 form a linear system of equations and thus they can be easily solved. For

each 3D point,λ andλ′ denote its depths with respect to the first and second camera frames,

respectively. One of the depthsλ or λ′ is therefore redundant, for instance, ifλ is known,

λ′ is simply a function of(R, T ). Hence we can eliminate one of the depths, say,λ′ by

multiplying both sides of the Equation 4.21 by[xi
′]
x
:

λ[xi
′]
x
Rxi + γ[xi

′]
x
T = 0 (4.22)

this is equivalent to solving the following linear equation:

Miλ̄i =
[

[xi
′]
x
Rxi [xi

′]
x
T

]





λi

γ



 = 0 (4.23)

whereMi =
[

[xi
′]
x
Rxi [xi

′]
x
T

]

∈ R
3×2 andλ̄i =





λi

γ



 ∈ R
2, for i = 1, 2, ..., n.

Notice that all then equations above shares the same coefficientγ, we define a vector
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λ̄ = [λ1, λ2, . . . , λn]T ∈ R
n+1 and a matrixM ∈ R

3n×(n+1) as

M =

































[x1
′]
x
Rx1 0 0 0 0 [x1

′]
x
T

0 [x2
′]
x
Rx2 0 0 0 [x2

′]
x
T

0 0 [x3
′]
x
Rx3 0 0 [x3

′]
x
T

0 0 · · · 0 0 · · ·
0 0 0 [x(n−1)

′]
x
Rx(n−1) 0 [x(n−1)

′]
x
T

0 0 0 0 [xn
′]
x
Rxn [xn

′]
x
T

































Then the equation:

Mλ̄ = 0 (4.24)

determines all the unknown depths up to a single universal scaleγ and the linear least-

square solution of̄λ is simply the eigenvector ofMTM that corresponds to the smallest

eigenvalue, where finishes the depth estimation.



Chapter 5

The Thin-Plate Splines for 3D Surface

Modeling
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Figure 5.1:Radio Basis Function of the Thin-Plate Splines in Two-Dimensional Space.
”This figure is cited from [2]”

The Thin-Plate Splines(TPSs) are often used for interpolating surfaces over scattered

data because of its elegant algebra expressing the dependence of the physical bending en-

ergy of a thin metal plate on point constraints. For interpolation of a surface over a fixed

set of sparse points in the plane, the bending energy is a quadratic form in the heights as-

signed to the surface. After calculating the 3D points of the image correspondences, the

3D data can be regarded as a sparse point cloud which spread over an certain area of the

virtual scene. Therefore, we can use the TPS to interpolate the surface including all the

reconstructed sparse 3D points. In recent years, the thin-plate splines is used for biological

deformations [2] since the interpolation results of the TPSs may be suitable for analysing

biological structures. In the following sections we will introduce the formation and algebra

of the thin-plate splines.

5.1 The Radio Basis Function(RBFs)

The splines are all expanded by their basis functions and therefore different basis func-

tions contribute to the variation of the splines. The thin-plate splines are expanded by the



5.1 The Radio Basis Function(RBFs) 45

Figure 5.2:A Mathematical Model of A Thin Steel Plate. ”This figure is cited from [2]”

radio basis functions. For instance, in two-dimensional space the radio basis function is

defined as follows:

z(x, y) = −U(r) = −r2 log r2 (5.1)

wherer is the distance
√
x2 + y2 from the Cartesian origin. The function is zero along

the indicated circle in Figure 5.1, wherer = 1. The radio basis function satisfies the

following equation:

∆2U = (
∂2

∂x2
+

∂2

∂y2
)
2

(5.2)

In addition,U is a so-calledfundamental solutionto thebiharmonic equation∆2U = 0,

the equation for the shape of a thin steel plate can be shown as a functionz(x, y) above the

(x, y)-plane.
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5.2 Bounded Linear Combinations of Radio Basis Func-

tions

Figure 5.2 illustrates a mathematical model of a thin steel plate which is in fact extend-

ing to infinite space in all directions. Passing through this plate is a rigid skeleton of square

size with its side length
√

2, drawn as the rhombus at the center of the figure. The steel is

fixed in position in some distance above two diagonally opposite corners of the square and

the same distance below the other two corners of the square.

The surface in Figure 5.2 can be modeled mathematically into the formula as follows:

z(x, y) = U(
√

x2 + (y − 1)2)

− U(
√

(x+ 1)2 + y2)

+ U(
√

x2 + (y + 1)2)

− U(
√

(x− 1)2 + y2)

=
4

∑

k=1

(−1)kU(|(x, y) −Dk|)

whereDk are the corners(1, 0), (0, 1), (−1, 0), (0,−1) of the square. The coefficients

having with functionU(r) taken are+1 for the ends of one diagonal and−1 for the ends of

the other. As one travels far away from the origin, this plate is asymptotically flat and level

in all directions. For instance, in Figure 5.2, the corner of the plate facing the viewer in the

diagram has apparently become nearly level somewhat underneath the level of constraint

at the nearest corner of the square, and the condition is similar to the other three corners.

The displacement of the thin plate in Figure 5.2 lies in a direction orthogonal to the

plate itself. We can imagine that the displacementsz(x, y) is applied directly to one or

both of the coordinates ofx or y-axis of the plate with which we started. Thus we may

interpret the scheme of Figure 5.2 as theinterpolation function. Thus we can formulate the

mapping function of the interpolation as follows:
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(x, y) → (x′, y′) = (x, y + z(x, y)) (5.3)

In this manner the thin-plate spline we have been examining can be used to solve a

two-dimensional interpolation problem as the computation of a mapR
2 → R

2 from sparse

arbitrary data. Likewise, we can interpolate 3D data as well using the thin-plate splines.

5.3 Algebra of the Thin-Plate Splines

In order the model the surface over sparse 3D reconstructed feature points using the

thin-plate splines, the following text of this section focus on the overview of the algebraic

form of the thin-plate spline method. LetP1 = (x1, y1, z1), P2 = (x2, y2, z2), · · · , Pn =

(xn, yn, zn) ben points in the Euclidean coordinate. Definerij = |Pi − Pj| as the distance

between pointsi andj and the following matrices:

K =



















0 U(r12) · · · U(r1n)

U(r21) 0 · · · U(r2n)

· · · · · · · · · · · ·
U(rn1) U(rn2) · · · 0



















, n× n

P =



















1 x1 y1 z1

1 x2 y2 z2

· · · · · · · · · · · ·
1 xn yn zn



















, n× 4

L =





K P

P T O



 , (n+ 4) × (n+ 4)

whereO is a4 × 4 matrix consists of zeros.

LetV = (v1, v2, . . . , vn) be any arbitraryn-vector and haveY = (V |0 0 0 0)T , which is

a column vector of lengthn+ 4. Define the vectorW = (w1, . . . , wn) and the coefficients

a1, ax, ay, az by the equation:
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L−1Y = (W |a1, ax, ay, az)
T (5.4)

Use the elements ofL−1Y to define a functionf(x, y, z) everywhere in the Euclidean

3D space:

f(x, y, z) = a1 + ax + ay + az +
n

∑

i=1

wiU(|Pi − (x, y, z)|) (5.5)

We take the points(xi, yi, zi) to be our source landmarks andV to be then × 3 target

matrix:

V =













x1
′ x2

′ · · · xn
′

y1
′ y2

′ · · · yn
′

z1
′ z2

′ · · · zn
′













where every(xi
′, yi

′, zi
′) is the landmark homologous to(xi, yi, zi) mapped by the thin-

plate spline function in the Euclidean 3D spaceR
3. The resulting functionf(x, y, z) =

[fx(x, y, z), fy(x, y, z), fz(x, y, z)] is vector-valued: it maps each 3D point(x, y, z) to its

corresponding result(x′, y′, z′). These vector-valued functionsf(x, y, z) are thethin-plate

spline mappings.

5.4 The Wendland Radial Basis Function

The radial basis function of Wendland is shown below:

ψd,k(r) = Ik(1 − r)
b d

2
c+k+1

+ (r) (5.6)

Therefore, we can use the functionality of the Wendland radial basis function after

building point correspondences in the 3D virtual space to interpolate the surface amoung

the computed discrete and sparse 3D points.



Chapter 6

Our Image-Based 3D Environment

Reconstruction Procedure and Results
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In this section we focus on the main steps of our 3D environmentreconstruction pro-

cedure. First of all, we compute the intrinsic parameters of the two perspective pan-tilt-

zoom(PTZ) cameras by using Zhang’s method [23]. After the cameras are calibrated, we

capture the photos with the two cameras in different point of view and specify the image

correspondences manually. With the image correspondences we can compute the funda-

mental matrix and in addition the essential matrix by combining camera intrinsic parame-

ters and the fundamental matrix. Then we can extract the relative pose of the two cameras

from the essential matrix. Positive depth constraint is used for choosing the correct solu-

tion from the extraction of the essential matrix. After the relative pose is obtained, we can

calculate the 3D coordinates of the image pairs, which is a sparse distributed point cloud in

the virtual scenes.

In order to make the computed 3D points into a surface, we use the algebra of the

thin-plate splines by creating some source-and-target mapping, we merge the reconstructed

distinct scene surfaces with the aid of calibrated pan-tilt informations. Finally, after the

procedure mentioned previously is done, with texture mapping we can browse the virtual

3D model of the environment from any arbitrary point of view.

6.1 Perspective Camera Calibration with a 2D Plane

In this section we will describe how we calibrate our two perspective cameras by us-

ing Zhang’s method. The method is really a milestone when proposed in the year 2000

since 2D planar objects is proven to be able to be used for camera calibration. The calibra-

tion procedure consists of a closed-form solution, followed by an nonlinear refinement of

maximum likelihood criterion.

The calibration procedure recommended by Zhang [23] is as follows:

1. Print a pattern and attach the pattern to a planar surface.

2. Take some images of the planar pattern under different orientations and positions by

moving either the plane or the camera.



6.1 Perspective Camera Calibration with a 2D Plane 51

Computational Part

CPU AMD 2200+ 1.8GHz

RAM 1.0 GB

OS Windows XP

Programming Tool Microsoft Visual Studio 6.0

Image Acquiring Part

PanoServer 3000

Video Input 4 channels, 120 fps, NTSC

Video Output VGA: 640 x 480 at 60Hz, D-SUB 15 pin

Size 427(W) x 88.5(H) x 366.6(D) m.m.

Pan-tilt-zoom Camera

Signal System NTSC PAL

Effective Pixels(HxV) 768 x 494 752 x 582

Imaging Area 4.9mm x 3.7mm

Image Pickup Device 1/4”-type SuperHAD CCD

Mechanism

Panning Range 360 degrees endless

Tilting Range 92 degrees

Pan-tilt Accuracy Cumulative error less than 0.6 degree per 10000 rotations

Panning Speed Manual 0.1-90 degree/sec

Panning Speed Preset 300 degree/sec

Tilting Speed Manual 0.1-45 degree/sec

Tilting Speed Preset 200 degree/sec

Table 6.1:The Specification of Our 3D Environment Recontruction System.”Cited from

http://www.messoa.com/product/ProductsModel Spec.aspx?ModelId=51.”
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3. Detect the features in the images(usually done with image processing techniques).

4. Estimate the five intrinsic parameters and all the extrinsic parameters using the closed-

form solution.

5. Estimate the coefficients of the radial distortion.

6. Refine all parameters by minimizing the reprojection error.

Since any camera usually exhibits lens distortion, we assumek1, k2 to be theradio

distortion coefficientsandp1, p2 to be thetangential distortion coefficientsand model this

two kinds of distortion using the following formula:

x̃ = x+ x(k1r
2 + k2r

4) + (2p1xy + p2(r
2 + 2x2))

ỹ = y + y(k1r
2 + k2r

4) + (2p2xy + p1(r
2 + 2y2))

wherer2 = x2 +y2, (x, y) the ideal(distortion-free) and(x̃, ỹ) the real(distorted) image

physical coordinates. The formula shown above can be transformed into pixel coordinates

via camera intrinsic parameters, assume thatu, v is the image point corresponding thex, y

in the pixel coordinate, Since by definition,u = xfx + cx andv = yfy + cy, the above

formula can be rewritten as follows:

ũ = u+ (u− cx)(k1r
2 + k2r

4 + 2p1y + p2(
r2

x
+ 2x))

ṽ = v + (v − cy)(k1r
2 + k2r

4 + 2p2x+ p1(
r2

y
+ 2y))

Our camera calibration method differs from the Zhang’s method in only the image

processing and the feature extraction part. We use a planar pattern with circles printed on

it and find the centers of the circles to avoid errors occured by corner detection due to the

noise in images. We compute the coordinates by extracting the center of the circles printed

on our planar calibration pattern with the following steps:
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1. Transform the color image into intensity(gray scale) image.

2. Binarize the tranformed intensity image with the threshold calculated by Otsu’s method

[11].

3. Specify the blobs by finding connected components and determine whether the blob

is a circle or not, if the blob is a circle then preserve it as a grid point.

4. Use ransac grid alignment to recover the grid points of the calibration pattern.

5. Define the coordinates of the grid points and perform Zhang’s camera calibration

method.

6.2 Extraction of Relative Pose Between Cameras from

Images

After calibrating the two pan-tilt-zoom cameras, the intrinsic parameters of both the

cameras are all known. Therefore, we can compute the fundamental matrix and then com-

bine the two intrinsic matrices in order to obtain the essential matrix. After the essential

matrix is calculated, eight solutions can be extracted as described in Section 4.2.4 and pos-

itive depth constraint and straightward visualization can be used to eliminate the incorrect

relative poses extracted from the essential matrix which was introduced in Section 4.2.5.

6.3 Sparse 3D Points Reconstruction

With the rigid-body transformation of the cameras(R, T ) and the intrinsic camera pa-

rameters known, we can calculate 3D coordinates of the paired image points in terms of the

image coordinates and depthsλ, λ′, letxi, xi
′ be the ith image pair points in homogeneous

image coordinate system, the relation between depths and the transformations between two

camera coordinates can be formulated as follows:
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λi
′xi

′ = λiRxi + γT (6.1)

notice that because(R, T ) are known, the depthsλ’s and the scale of translationγ in

Equation 4.21 form a linear system of equations and thus they can be easily solved. For

each 3D point,λ andλ′ denote its depths with respect to the first and second camera frames,

respectively. One of the depthsλ or λ′ is therefore redundant, for instance, ifλ is known,

λ′ is simply a function of(R, T ). Hence we can eliminate one of the depths, say,λ′ by

multiplying both sides of the Equation 4.21 by[xi
′]
x
:

λ[xi
′]
x
Rxi + γ[xi

′]
x
T = 0 (6.2)

this is equivalent to solving the following linear equation:

Miλ̄i =
[

[xi
′]
x
Rxi [xi

′]
x
T

]





λi

γ



 = 0 (6.3)

whereMi =
[

[xi
′]
x
Rxi [xi

′]
x
T

]

∈ R
3×2 andλ̄i =





λi

γ



 ∈ R
2, for i = 1, 2, ..., n.

Notice that all then equations above shares the same coefficientγ, we define a vector

λ̄ = [λ1, λ2, . . . , λn]T ∈ R
n+1 and a matrixM ∈ R

3n×(n+1) as

M =

































[x1
′]
x
Rx1 0 0 0 0 [x1

′]
x
T

0 [x2
′]
x
Rx2 0 0 0 [x2

′]
x
T

0 0 [x3
′]
x
Rx3 0 0 [x3

′]
x
T

0 0 · · · 0 0 · · ·
0 0 0 [x(n−1)

′]
x
Rx(n−1) 0 [x(n−1)

′]
x
T

0 0 0 0 [xn
′]
x
Rxn [xn

′]
x
T

































Then the equation:

Mλ̄ = 0 (6.4)
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determines all the unknown depths up to a single universal scale γ and the linear least-

square solution of̄λ is simply the eigenvector ofMTM that corresponds to the smallest

eigenvalue, where finishes the depth estimation. After the depths are computed for every

image pair, we can use depth information from one of the camera frames, say,λ1, for calcu-

lating their corresponding 3D coordinates, which completes the sparse 3D reconstruction.

6.4 3D Environment Surface Modeling and Texture Map-

ping Using Thin-Plate Splines

After the sparse 3D point cloud is reconstructed, we can interpolate a surface in 3D

space by using the thin-plate splines. Since the coefficients of the thin-plate splines can be

calculated from the corresponding source and target points in the 3D coordinate system, we

specify the reconstructed 3D points as targets and generate the source points by mapping

them onto a sphere surface. Once the source points and the target points are determined,

the coefficient of the thin-plate splines in 3D space can be calculated and then we can

interpolate a nonlinear surface over the sparse 3D points which all located exactly on the

interpolated thin-plate spline surface.

In order to reconstruct the whole environment, we combine the eight-point algorithm for

reconstructing particular scenes and the calibrated pan-tilt angles of the two pan-tilt-zoom

cameras. Therefore, our reconstruction procedure is based on the following assumptions:

1. The mechanic model parameters (e.g. pan angle, tilt angle) of the two pan-tilt-zoom

cameras are calibrated accurately.

2. The pan axis and tilt axis of the pan-tilt-zoom cameras are orthogonal.

3. The transformation of different views from the same pan-tilt-zoom camera with vari-

ous positions and orientations consists of only pure rotation. In other words, the focal

length is the radius of the pan-tilt sphere and the lense rotates with its center exactly

on the sphere center.
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With the assumptions listed above, we can use the pan and tilt angles of a pan-tilt-

zoom camera to calculate relative poses of the individually reconstructed scenes and then

combine them altogether using the thin-plate splines with source points mapped onto a

sphere. Our reconstruction procedure is listed as follows:

1. Reconstruct point clouds of reconstructable scenes in the virtual 3D space individu-

ally with two intrinsically calibrated cameras.

2. Calculate relative poses among individual scenes by using pan-tilt angles of the cali-

brated pan-tilt-zoom camera.

3. Specify the integrated sparse 3D points as target points of the thin-plate splines and

map the integrated sparse 3D points onto a sphere to generate the source points of

the thin-plate splines.

4. Calculate the coefficients of the thin-plate splines using the method described in Sec-

tion 5.3.

5. Interpolate the thin-plate spline surface with spherical meshes, which forms the vir-

tual surface of the environment.

6. Apply texture mapping to the environment surface, where finishes the final textured

environment surface model.
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Figure 6.1:Our 2D Planar Camera Calibration Pattern. ”The pattern consists of circles in

order to reduce image processing errors due to the noise by finding the centers of the circles.”

Figure 6.2:Result Image After Binarization.



58 Our Image-Based 3D Environment Reconstruction Procedure and Results

Figure 6.3:Result Image After Grid Alignment.

Figure 6.4:Multi-view Photos For 3D Environment Reconstruction With Correspond-
ing Image Points Specified - Scene 1.
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Figure 6.5:Multi-view Photos For 3D Environment Reconstruction With Correspond-
ing Image Points Specified - Scene 2.

Figure 6.6:Multi-view Photos For 3D Environment Reconstruction With Correspond-
ing Image Points Specified - Scene 3.
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Camera Intrinsic Parameters Camera A Camera B

α 556.480999 559.695405

β 565.233869 569.268765

γ 0.0 0.0

u0 239.572583 232.915437

v0 179.785209 177.405891

Distortion Coefficients Camera A Camera B

k1 -0.261327 -0.271668

k2 0.290120 0.324966

p1 -0.001173 -0.000919

p2 -0.001431 0.000440

Average Reprojection Error 0.149034 0.164551

Table 6.2: The Calibrated Pan-Tilt-Zoom Camera Intrinsic Parameters Using Our
Calibration Method.
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Figure 6.7:Scene 1 - Epipolar Lines Calculated With The Fundamental Matrix.

Figure 6.8:Scene 2 - Epipolar Lines Calculated With The Fundamental Matrix.
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Figure 6.9:Scene 1 Viewpoint 1 - Individually Reconstructed Surface Model.

Figure 6.10:Scene 1 Viewpoint 2 - Individually Reconstructed Surface Model.
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Figure 6.11:Scene 1 Viewpoint 3 - Individually Reconstructed Surface Model.

Figure 6.12:Scene 1 Viewpoint 4 - Individually Reconstructed Surface Model.
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Figure 6.13:Scene 2 Viewpoint 1 - Individually Reconstructed Surface Model.

Figure 6.14:Scene 2 Viewpoint 2 - Individually Reconstructed Surface Model.
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Figure 6.15:Scene 2 Viewpoint 3 - Individually Reconstructed Surface Model.

Figure 6.16:Scene 2 Viewpoint 4 - Individually Reconstructed Surface Model.
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Figure 6.17:Scene 3 Viewpoint 1 - Individually Reconstructed Surface Model.

Figure 6.18:Scene 3 Viewpoint 2 - Individually Reconstructed Surface Model.
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Figure 6.19:Scene 3 Viewpoint 3 - Individually Reconstructed Surface Model.
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Figure 6.20:Viewpoint 1 - Reconstructed Environment Using Our Method.

Figure 6.21:Viewpoint 2 - Reconstructed Environment Using Our Method.
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Figure 6.22:Viewpoint 3 - Reconstructed Environment Using Our Method.

Figure 6.23:Viewpoint 4 - Reconstructed Environment Using Our Method.
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Figure 6.24:Viewpoint 5 - Reconstructed Environment Using Our Method.

Figure 6.25:Viewpoint 6 - Reconstructed Environment Using Our Method.
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Figure 6.26:Wireframe - Projecting all the synthesized views onto a sphere.

Figure 6.27:Wireframe - Reconstructed part of all the synthesized views.
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Figure 6.28:Textured model - Projecting all the synthesized views onto a sphere.

Figure 6.29:Textured model - Reconstructed part of all the synthesized views.



Chapter 7

Conclusion
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In this thesis a 3D indoor environment reconstruction systemis implemented by using

Wendland to interpolate the surface of the reconstructed 3D point cloud and then perform

texture mapping. Relative pose between cameras are extracted in our 3D reconstruction

steps which may assist robot navigation greatly. Since robotic errors are often accumulated

while the robot is moving, recoordinating the robot by calculating relative pose between

cameras with images results in less error if the robot moves further. By integrating the

robot system and the computer vision system may control the robot more precisely.

Extraction and matching of the image correpondences mainly influent 3D reconstruc-

tion results. If denser pixel coordinates of the image pairs can be obtained more accu-

rately, our reconstruction of the 3D points could be more stable since the input of the

eight-point algorithm is assumed to satisfy some limitation, which means to be random

sampled enough. Since the image pairs are specified by human, errors can not be avoid in

this case.

With our 3D environment reconstruction procedure we can obtain a 3D environment

model of a real indoor scene using images captured by the cameras as texture. The 3D

surface model established with the proposed reconstruction system provides useful infor-

mation for robot navigation and other applications.
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