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Abstract

In recent years computer hardware and computer graphics has made tremendous progress
in visualizing 3D models of real objects. Many techniques have reached maturity and are
being ported to hardware. This seems like in the area of 3D visualization, performance may
increase even faster than Moor’s law. Some job required a million dollar computer a few
years ago can be now achieved by a custom computer, which cost a few hundred dollars.
It is now possible to visualize,complex;3Dsscenes in real time due to the advancement of
computer hardware.

This speed of evolution causes an essential demand for more complex and realistic
models. Evensthough we are ,now able to build.three-dimensional models, the tools for
three-dimensional- modeling are getting more andsmore powerful, synthesizing realistic
models is difficult and time-consuming. Many:virtual objects are inspired by real objects,
so we are interested in being able to build three-dimensional environment models directly
from the real environments.

In the past, visual inspection ‘and robot guidance were the main applications. We re-
guire more and more 3D content for computer:graphics,virtual reality and communication
nowadays. Thes:visual quality becomes one of the main peints of attention. Therefore not
only the position of a small number of points have'to be measured with high accuracy, but
the geometry and appearance of all-peints of the surface have to be measured.

We proposed a semi-automatic 3D indoor environment reconstruction procedure using
the thin-plate splines for surface modeling and texture mapping. First, the intrinsic parame-
ters of the two cameras are calibrated. Second, calculate the fundamental matrix by using
the well-known Eight-Point algorithm and the essential matrix is derived to be the combi-
nation of fundamental matrix and the two camera intrinsic matrices. Third, relative pose
of the two cameras can be extracted from the essential matrix and sparse 3D point recon-
struction can be performed. Forth, interpolate 3D surfaces among the reconstructed sparse
3D points with the thin-plate splines. Finally, we can add textures on the reconstructed 3D
surface model with some texture mapping techniques. The 3D surface model established



with the proposed reconstruction system provides usefarmmétion for robot navigation
and other applications.
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Building 3D en\zlronment mpd&ls uSlng mformatlorv.irom 2D |mages is always a main
issue in computer VISIOI’] Wlth. the progress in fompufaflonal sfpee;j more and more ap-
plications were developed usmg"th&seieehnmue&Bunldmg models suitable for use in
interactive Virtual EnVIanme'nts (VEs) has always been a dlfﬁcult problem. When the
environment must be synthqsmed into an eX|st|ng scene thls requires obtaining accurate

three-dimensional environment mOdeIs and PR &= Well as surface materials or textures.

In addition to the appearance of the reconstructed environment, modeling the behav-
iour of objects is also very important if the system and the environment allow any kind of
nonpassive user interaction. Generally, a scene hierarchy is constructed by specifying the
relationships between objects in the scene. These relationships can then be used to assist

the user in interacting with the environment.

Traditional methods of reconstructing environment models involve a skilled user and a
three-dimensional CAD (Computer Aided Design) program. Accurately modeling a real
environment in such a way can only be done if the user has obtained blueprints is able
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Figure 1.2:3D-Laser ScanningiResult of A Human Face’Areconstruction result of human
face using 3D laser scanner.” source: (http:/Mmww.muellerr.ch/engineering/laserscanner/default.htm)

to take precise physical measurements of the real environment. In either way mentioned
above, the process is slow and exhausting even if the content of the real environment is
simple. Manually obtaining surfacé materials and textures is also very difficult. These
problems stimulates human thinkabout how to'reconstruct environment with assistance of
hardware andsalgorithmstin order to rebuild the'scenes automatically.

To rebuild virtual scenes more automatically with-aid of instruments, existing 3D re-
building systems are often built with specialized hardware (e.g. laser range finders or stereo
rigs) and these systems cost'extremely expensive. Many new applications however demand
cheaper acquisition systems. This requirement stimulates the use of consumer photo- or
video cameras. Moores law also tells us that more and more can be done in software be-
cause of the recent progress in digital imaging instruments.

Due to the factors mentioned above, many techniques using informations captured from
cameras have been developed over the last few years. Many of these techniques do not
require more than some cameras and a computer to rebuild three-dimensional models of
real objects.

An image like in Figure 1.4 tells us a lot about the observed scene. There is how-
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Figure 1.3:3D LaserScanning Result of A Shoe’A 3D rebuilding result of a shoe using 3D
laser scanning data.” source: (http://www.muellerr.ch/engineering/aserscanner/default.htm)

ever not enough information to reconstruct the 3D scene without doing an sufficient num-
ber of assumptions on the structure of the'scene. This is due to the nature of the image
formation processmwhich consists of a prejection from.a three- dimensional scene onto a
two-dimensional image. During this process the depthinformation of the 3D point is lost.
Figure 1.5 illustratestthis projection problem."The three-dimensional point corresponding
to a specific image pointis constraint to be on the associated line of sight. From a single
image it is not possible to determine which point on'this line corresponds to the image
point. If two or more images are available, then Figure 1.6 shows that the coordinate of the
three-dimensional point can be obtained as the intersection of the two back-projected rays.
This process is callettiangulation. Notice that, however, some prior knowledge must be
required for triangulation:

e Corresponding image points
¢ Relative pose of the camera for the different views

¢ Relation between the image points and the corresponding line of sight



1.2 Thesis Scope 5

particular structure al ‘ he poses and the calibration of the
camera. g :

1.2 Thesis Scope

In this thesis, we proposed a 3D reconstruction procedure using images captured by
cameras at different poses. The relation between an image point and its corresponding ray
of sight is given by the camera model (e.g. perspective camera) and the camera calibration
parameters. These parameters are often called the intrinsic camera parameters while the
position and orientation of the camera are in general called camera extrinsic parameters.
In the following chapters we will learn how all these elements can be acquired from the
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Figure.1.5:Back-proje%tiancif_a point along the line of sight.
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images. The key for camera callbratlon are the relations between-multlple views (e.g. cor-

responding image p0|nt§ in |mages) which tell us that correapondlng sets of points must
contain some structure and that this structure is related to the intrinsic and extrinsic para-

| | .

meters of the camera. o

In our 3D reconstruction procedure, first, the intrinsic parameters of the two cameras are
calibrated. Second, we calculate the fundamental matrix by using the well-known Eight-
Point algorithm and the essential matrix is derived to be the combination of fundamental
matrix and the two camera intrinsic matrices. Third, relative pose of the two cameras can be
extracted from the essential matrix and sparse 3D point reconstruction can be performed.
Fourth, interpolate 3D surfaces among the reconstructed sparse 3D points with the thin-
plate splines. Finally, we can add textures on the reconstructed 3D surface model with
some texture mapping techniques. The 3D surface model established with the proposed
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reconstruction syt m provi ion for robot navigation and other applica-

tions.

1.3 Thesis Organization

After this chapter, we will introduce some relative works during the pass few years.
Chapter 3 describes projective geometry and the stratification of geometric structure. After
some geometric fundamentals are introduced, we turn into the perspective camera model
and some geometric calculation of the relation between multiple view cameras in chapter 4.
Chapter 5 tells the main 3D surface modeling method we use to reconstruct photo texture
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mapped 3D models in this thesis and then run the way througkrform our 3D model
reconstruction procedure in chapter 6. Some reconstruction and experiment results are
shown in chapter 7 and finally, we have some conclusion and future works discussed in

chapter 8.
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Related Works:
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Figure 2.1:Camera 3D Reconstruction System - 3D Dome Developed by Narayanan,
Rander and Kanade.

The technique of 3D reconstruction from stereo images of real scenes has been stud-
ied for many years: The focus points of 3D reconstruction studieswary due to different
requirements of various applications such as robot navigation, 3D model reconstruction of
architectures, computer graphics, virtual reality, etc.

Take robot navigation for example, robot vision.systems demand no sophisticated or re-
alistic reconstruction ‘results but only the accuracy of depth information and some principle
parts of the environment, therefare, the researchers of robot vision systems focus on how
to calculate depth information from images precisely and efficiently.

Another example is the 3D virtual‘'model reconstruction of a specific real object, the
most common way nowadays is to put the object on a rotating plate and keep capturing
images with a stationary camera while the plate rotates. The camera can be calibrated first
in order to acquire the relationship between image points and its reprojection rays. Camera
motion can be formulated since the rotation speed and the radius of the rotation are prior
knowledge under the model reconstruction system. The main purpose of 3D virtual model
reconstruction systems is to build photo-realistic models from a sequence of images.

In the following sections of this chapter, we will introduce several methods about how
to rebuild 3D virtual models from images captured by various poses of cameras.
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2.1 Multi-View 3D Reconstruction

Multi-view 3D reconstruction systems rebuild the model from photos captured by sev-
eral cameras of different poses. The corresponding features are found amoung cameras in
order to calculate 3D coordinates of the real object. Cameras in multi-view rebuilding sys-
tems are often fully calibrated so that their relative poses are known. Acquire enough 3D
information by tracking the motion of an moving object with multiple calibrated cameras
is the main advantage of these systems.

Narayanan, Rander and’Kanade proposed.a multi-view photographic reconstruction
system calle@®D Donte[12]. As illustrated in Figure 2:1, the system 3D Dome is a semi-
sphere multi-capturing system formed by fifty-one synchronous and fully calibrated cam-
eras. Since all.the cameras-are all fully calibrated, which-means in the Equation 4.6 the
camera intrinsic matriK and relative poses amoung cameras are all known. Therefore,
when a persen is taking some actions in the,3D dome, everyseamera around the 3D dome
will capture images from different point of views and then obtain a dense depth graph for
each camera by running through a.multiple-baseline stereo recenstruction procedure. Map-
ping the texture onto the dense depth graph forms a simple reconstructed 3D human model.
The author called this asible surface mod€VSM). But VSM.is a surface model recon-
structed from each camera; there is some part of the-human have inevitable reconstruction
difficulties due to‘occlusion. The author solved this;problem by synthesizing all the VSMs
together with a optimized integration procedure in order to reconstrucbtnelete surface
model(CSM) of the scene.

In the 3D dome system, cameras are all fully calibrated with relative poses known.
Therefore, in the 3D dome system, calculation of 3D coordinates from the photos needs no
complicated computation. Since the system is equipped with 51 cameras, the main problem
of the system is to have cameras capture images synchronously.

Fua and Leclerc have proposed a similar system which goal is to rebuild the real scenes
in virtual reality [6]. Differ from Narayanan, Rander and Kanade, they use only two cali-
brated cameras to capture images of static scenes. Fua and Leclerc turn the calculated 3D
points into meshes in order to reconstruct the 3D surface model of the scenes.
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2.2 Single-Camera 3D Reconstruction

Single-camera 3D reconstruction systems often obtain images with a single camera but
from different point of view or simply record videos while the camera is moving. The most
often used method is the so-callgtucture from motion. Image processing methods, such
asmulti-image intensity correlation, can be used in single camera video systems in order
to find out image correspondences since there should be small differences between frames
in short-term intervals.

Pollefeys and Van Gool [13].have implemented a single camera reconstruction system
similar to described systems above. The input of their system is a sequence of images
captured from the same scene by single.camera. After specifying some distinct features in
each image, similarity.comparison-methods are used to find out correspondences amoung
images. Since there.are some errors-in{imagesidue to camera projection hardware structure
and some noises caused if the feature points were specified:-by human, Pollefeys and Van
used a method calle@ndom sampling consesus(RANSAC) to calculate several choices
of the fundamental matrices from the image correspondences and picked the most stable
fundamental matrix.out,from the computed matrices. The fundamental matrix encodes the
transformation of every image.points. in two corresponding images, the definition of the
fundamental matrix and epipolar geometry will be introduced inichapter 3 and 4. After
finding out the fundamental matrix, a projective reconstruction can be computed. If the
cameras are calibrated, the'intrinsic parameters of the ‘camera matrix are all known and
thus a metric reconstruction can be performed, which differs from the real world by only a
scalar factor. After the metric reconstruction is done, the author computed the dense depth
graph in order to calculate depth for every pixel in the image and then performed texture
mapping to reconstruct the whole 3D model.

Fitzgibbon and Zisserman have proposed a similar system, but besides finding feature
points, they used the informations of line segments in the images by using image processing
techniques such as edge detection for 3D reconstruction. Therefore, their reconstruction re-
sults are not only sparse 3D points but with the information support of line segments, which
can assist in reducing the depth error of the 3D reconstruction. In addition, Zisserman used
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both the two-view reconstruction method and the trifocabtemmethod, which is to cut
down depth ambiguity by using three-view image correspondences.

2.3 Other Reconstruction Methods and Applications

There are lots of applications require image-based 3D reconstruction systems for assis-
tance. Schreer [15] has developed a robot navigation system with photographic 3D recon-
struction algorithms built in. The two cameras used for robot vision are both fully calibrated
in order to calculate 3D,coaordinates in real-time while the robot is moving around in the
environment. But this system uses only the distribution condition of the reconstructed 3D
points with some prior. knowledge.and experiences in order to avoid obstacles. But lack
of considering the structure-of indeor environments may cause the robot vision system
inflexible.

Some reconstruction systems use some characteristics of the scenes to refine the recon-
structed model. Cipolla and Robertson [3] used the prior knowledge such as the perpen-
dicular relations' amoung walls_and floors of the buildings to.find the vanishing point in
the image. The vanishing point.is.then.transfered.into a 3D vector form in order to reduce
computational.error of the vanishing point. .After the vanishing point is found, the cam-
era intrinsic parameters can be calculated with the-vanishing point in order to simplify the
calculation process of camera intrinsic parameters and 3D model reconstruction.
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The concepts presented in the following two chapters coreteston concepts of pro-
jective geometry. This chapter and the next one introduce most of the geometric concepts
used in the rest of the thesis. This chapter focuses on projective geometry and introduces
concepts as points, lines an planes in two or three dimensions. A lot of attention goes to the
analysis of geometry in projective, affine, metric and Euclidean layers. Projective geome-
try is used for its simplicity in formalism, additional structure and properties that can then
be introduced were needed through this hierarchy of geometric strata. This section was in-
spired by the introductions on projective geometry found in Faugeras’ book [5]. A detailed
description on the subject can be found in the recent book by Hartley and Zisserman [8].

3.1 Projective'Geometry

A point in projectiven-spaceP” is given by a(n + 1)-vector of coordinates =
[z1...7,.1]7. At least one of these entries of the'vector should differifrom zero. These
coordinates are calleldomogeneousoordinates. In this thesis the coordinate vector and
the point itself willbe denoted with the" same symbol. Two points denotethby 1)-
vectorsz andy are ‘equal if and only if-therevexiststarnonzero scalauch thatr = \y.

This will be indicateddoye ~-y.

A collineationis a mapping. between projective spaces. A ‘collineation f@mto
P™ can be mathematically denoted bysa + 1) x (n 1) matrix , where points are
transformed linearlyz’ ~ Hz. MatricesH and\H with'a nonzero scalax represent the

same collineation.

A projective basigs the extension of a coordinate system to projective geometry. A
projective basis is a set af+ 2 points such that ne + 1 of them are linearly dependent.
The sete; = [0,---,1,---,0]7, VI, 1<I<n + 1, where 1 is in théth position anc,, ., =
[1,1,---,1]7 is the standard projective basis. A projective poinPdfcan be described as
a linear combination of any + 1 points of the standard basis. For example:

n+1

m = Z )\lel
=1
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It can be shown [4] that any projective basis can be transfdinte a unique collineation of
the standard projective basis. Similarly, if two sets of points..., m,,» andm/, ..., m; .,
both form a projective basis, then there exists a uniquely resolved collindasach that
my ~ Tmy, VI, 1<I<n + 2. This collineationT’ describes the different combination of
projective basis. Notice th&t is invertible.

3.1.1 The Projective Plane

The projective plane is.thé projective spaeéé._ A point in P? is represented by a 3-
vectorm = [z,y, z|]*. Aline [ is also represented-by a 3-vector. A painis located on a
line [ if and only if

Tm = 0 (3.1)

This equation, however, can also be.described as the expression that "thpdsses
through the poinin” or "the‘pointm in on.the linel”. This symmetry in the equation shows
that there is'no formal difference between points.and lines in the projective plane. This is
known as the principle duality. A line/ passing through two points; andm. is given
by their vectoriproducin; x ms. This can also be written as

0 21 W
[~ [mi]xmy,Withmx = -2 0 oy (3.2)
no o~z 0

The dual formulation gives the intersection of two lines. All the lines passing through
a specific point form gencil of lines. If two lined; andl, are distinct elements of the
pencil, all the other lines can be obtained through the following equation:

l ~ )\1[1 -+ )\2[2 (33)

for some scalara; and\,. Note that the ratie% IS important.
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3.1.2 The Projective 3D Space

A projective 3D space typically means the dimension of the projective space is 3, where
is the projective spac®3. An element inP? is represented by a 4-entry vectdbf =
(X, Y, Z, W]T. In P? the duality of an element is a plane, which is also denoted as a 4-
entry vector. A point\/ lies on a planél can be denoted mathematically as:

M =0 (3.4)
A line can be written into a linear combination of twe points as:
>\1M1 —‘l_ )\2M2

or can be produced hy.the intersection of two plaies) I15.

3.1.3 Projective Transformations

We can denote.a transformation between.the imageshasnagraphyef P2 — P? ,
which can be represented bya< 3-matrix:H. With the same properties of matrices,
and\H represent the same homography for all nonzero scalafspaint is transformed

as follows:

m —m’~Hm (3.5)
The corresponding transformation of a line can be obtained by transforming the points
which are on the line and then finding the line defined by these points:
'm/ =1"H'Hm =1"m =0 (3.6)
From the previous equation it is easy to derive a transformation equation for a line

(H™" = (H7)" = (H")™):

=1 ~HT] (3.7)
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Similar reasons can be consideredfh gives the following equations for transforma-
tions of points and planes in 3D space:

M M ~TM, (3.8)

I ~ 77111 (3.9)

whereT is a4 x 4-matrix.

3.2 Analysis of 3D Geometry

Usually we define the_real world as,a Euclidean 3Dispace. But in some particular
cases it is ‘not sufficient to use the full Euclidean structure of 3D space. Euclidean 3D
space is only suitable for less structured andthus simpler projective geometry. Intermediate
layers are formed by the affine and metric geometry. These structures can be thought of as
different geometric layers which can be overlaid on the world for different transformations.
The most complicated is‘Euclidean, then metric, next affine and finally projective structure.

The concept of stratification is closely related to the groups of transformations acting
on geometric entities and leaving some properties of ‘configurations of these elements in-
variant. Attached to the'projective stratum is the set of projective transformations, attached
to the affine stratum is the set of affine transformations, attached to the metric stratum is the
set of similarities and attached to the Euclidean stratum is the set of Euclidean transforma-
tions. Itis important to notice that these groups are subgroups of each other, e.g. the metric
group is a subgroup of the affine group and both are subgroups of the projective group.

An important aspect related to these groups are their invariantswvanantis a prop-
erty of a derivation of geometric entities that is not altered by any transformation belonging
to a specific group. Invariants therefore can guild us what measurements we can do consid-
ering a specific stratum of geometry. These invariants are often related to geometric entities
which stay unchanged after applying the transformations to a specific group. These geomet-
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ric entities with invariants related play an important raiepiart of this thesis.Recovering
them allows us to upgrade the structure of the geometry to a higher level of the geometric
stratification.

In the following sections, different strata of geometry are discussed. The associated
groups of transformations, their invariants and the corresponding invariant structures are
presented.

3.2.1 Projective Stratum

The simplest stratum is the projective stratum. It'is the less structured one and has the
least number of invariants.and the largest group of transformations related to it. The group
of projective transformations or collineations is composed with the'most general group of
linear transformations.

A projective transformation of 3D space canbe denoted by<al-matrix, where the
matrix is invertible;
B T
P11 Pi2..Pi3. P4
T P21 P22 P33 P24 (3.10)
P31 P32 P33 P34
L P41 P42 P43 P44 |

This transformation matrix is only defined up to a nonzero scale factor and has therefore
15 degrees of freedom.

Relations of collinearity, incidence and tangency are projectively invariant. The cross-
ratio is an invariant property under projective transformations as well. It is defined as
follows: Assume that the four point®/;, M,, M3 and M, are collinear. Then they can be
expressed a8/, = M + \;M’ (assume none is coincident wiff’). The cross-ratio is
defined as

A=A A=A
A=A A — Ny

{Ml,MQ;M37M4} = (311)
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The cross-ratio does not depend on the choice of the refepints A/ and M’ and
is invariant under the group of projective transformationg?éf It can be derived that a
similar cross-ratio invariant for four line intersecting in a point or four planes intersecting
in aline.

We can regard cross-ratio as the coordinate of the fourth point is the linear combination
of the first three points, since three points form a basis for a projective liRé.igimilarly,
two invariants can be found for five coplanar points, three invariants for six coplanar points,

all in general position.

3.2.2 Affine Stratum

The affine Stratum has more structure than the projective one, but less structure than the
metric or the:Euclidean strata: Différs from projective,stratum; the affine stratum identifies
a special plane, which called tipéane at infinity-.

To define this plane at infinity, we'ha¥® = 0 and thuslly, = [0,0,0,1]7. We can
consider that the projective space contains the affine space under the one-to-one mapping:
A3 — P3 XY, Z)T — [ X5V, ZyiflerThesplanei#== 0 in P* can be thought as con-
taining the limit'points folj.M |j»= oco. The Affine transformation is usually denoted as the

following:

X' aip  @rzl.013 X 14
Y’ = ag1 Q922 0423 Y + 94 y with det(aL]) 7é 0 (312)
Z' az1 asz as3 Z 34

The affine transformation can be rewritten in the matrix fofi: ~ 74 M with:

11 Q12 A1z Aaiq
Q21 Q22 Q23 A24
Ty ~ (3.13)

31 Aaz2 G33 A34
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Therefore, the affine transformation has 12 independeniedsgyf freedom. All in-
variants under the projective stratum also exsist under the affine stratum. For the more
restrictive affine group, parallelism is added as a new invariant property. Lines or planes
having their intersection at infinity are calledrallel. Another new invariant property for
affine group is theatio of lengths along some direction.

3.2.3 Metric Stratum

The metric stratum resembles insthe group of similarities. This stratum differs from
the Euclidean stratum only up to a scale factor. The meiric transformations correspond
to Euclidean transformations complemented with a scaling. When no absolute measure-
ment is available, reconstruction in the metric coordinate is the highest level of geometric
structure that 3D reconstruction from images can achieve.

A metric tranformation can be represented as the'following:

¥ 11 T12 T13 X 14
Yy = 0| 791 Tooi T3 Y == toy (3 14)
z' r3; T3 T33 v/ L34

with r;; the coefficients of an orthonormal matrix, which is usually denoted Isyich
that R”T R = RRT = I and thusR~! = R”. Recall that R is:a rotation matrix if and only if
RRT = I and det( = 1. In homogeneous coordinates, Equation 3.14 can be rewritten as
M’ =Ty M, with

—1
oryn orig orig tx ri1 Tiz Tz 0 lx
—1
OT91 0Ty 0OT23 Ly o1 Tog Toz 0O ly
Ty ~ ~ 1 (3.15)
or31 Orsy o0rsz lz r31 T3 T3z O ‘lz
0 0 0 1 0 0 0 o1

A metric transformation therefore has 7 independent degrees of freedom, 3 for trans-
lation, 3 for orientation and 1 for scale. In metric stratum there are two important new
invariants propertieselative lengthsandangles.
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3.2.4 Euclidean Stratum

The only difference between Euclidean stratum and metric stratasislute length.
Therefore, the Euclidean transformation has 6 independent degrees of freedom, 3 for trans-
lation and 3 for rotation. A Euclidean transformation has the following matrix form:

i T2 Tz tx
T T T t
TE -~ 21 22 23 Y (316)
T31. T3z T33 lz

Ot s’ O a1

with r;; the cogfficients-of an orthonormal matrix, as described previously. If det(R
1 then, this transfermation is simply the same as a rigid-body transformation in space.

3.2.5 Comparison of the Different Strata

In this chapter some concepts of projective geometry were introduced. Based on these
concepts, seame methods can be invented by doing the inverse,of the projection process and
obtain 3D reconstructions ef the'observed scenes;where is the main objective of this thesis.
We can list a table in.order to'compare different strata described previously:
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ambiguity | DOF | transformation in matrix form invariants
P11 P12 P13 P4
projective | 15 cross-ratio
affine 12
metric 7
Euclidean| 6 lute distances

D

Table 3.1:Comparison of Different Geometric Strata. "Number of degrees of freedom, trans-

formation in matrix form and invariants corresponding to different geometric strata.”
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transforms.
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Chapter 4

Camera Model.and 3D_Reconstruction
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Before discussing how to reconstruct 3D objects from relatiohimages captured
from different poses of cameras, it is important to know how images are formed via the
camera model. In the following sections, first, the perspective camera model is introduced.
Second, some important relationships between multiple views are presented with some
mathematics.

4.1 The Camera Model

In this thesis the model of perspective camera is used. The image-forming process is
completely determined by:having a perspective projection center point and a retinal plane.
The projection of a real 3D point is then.obtained as the intersection of a line passing
through this real 3D _point and the-projection ceritewith the image plan&.

4.1.1 A Simple Camera Model

In the simplest'case, where the center of projeatias placed at the origin of the world
frame and the image plane isAt= 1;the projection process can be formulated as follows:

X Y
= 4.1
A (*1)

For a world point X, Y, Z) and its corresponding projected image pdinty). Using
the homogeneous representation of the paints, a linear equation is then obtained as the

following:
T
x 1000 v
y|~10100 4.2)
Z
1 0010 .

This projection is illustrated in Figure 4.1, where the optical axis passes through the
projection cente€' and is orthogonal to the retinal plafie The intersection of the optical
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optical axis

o

x{ ¥:"'J

Figure 4.1:Perspective Camera Model.’A simple perspective camera model, cited from: [14].”

axis and the retinal plane is defined as the"principle paint

4.1.2 Perspective Camera Intrinsic Calibration

Now consider the case when actual camera is used, where the focal Jengjthoe
different from 1, the coordinates of Equation 4.2 should be scaledfatititake account.

In addition the coordinates in the image output on the screen do not match the physical
coordinates in the retinal plane. Using a CCD camera the relation between the image
coordinate and the retinal coordinate depends on the size and shape of the pixels and of the
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pixel

)
¢!
B

i

Figure 4.2:From image coordinatesto retinal coordinates:This figure illustrates how image
coordinates transform'to retinal.coordinates, cited from: [14].”

position of the CCD.chip placedin the camera. The projection processof actual perspective

camera can be formulated in matrix ferm:as follows:

x ;)% (tan o) é o TR
= L | | (4.3)
1 0 0 1 1

wherep, andp, are the width and height of the pixels, the principle peirt [c,, ¢,, 1]T
anda the skew angle as shown in Figure 4.2. Since only the r%%id % are important,

we can write a simplified notation of Equation 4.3 as the following:

x f z S Cg IR
Yy = 0 f y Cy Yr (44)
1 0 0 1 1

with f, and f, the focal length measured in width and height of pixels, aadfactor
being the skew factor due to non-rectangular pixels. The above upper triangular matrix is
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called theintrinsic camera calibration matrix, and the notatidis usually used for the
matrix. For a camera with fixed optics these parameters are identical for all the images
taken with the camera. For cameras which have zooming and focusing capabilities the
focal length can obviously change, but also the principal point can vary. In order to find out
the camera intrinsic parameters, we use the calibration method proposed by Z.Zhang [23],
which calibrates perspective cameras with a 2D plane with some features easily extracted
by image processing techniques.

4.1.3 The Projection/Matrix

Combining Equations( 4.2), ( 4.4) and rigid-body-transformation of the camera, the
following expression can be written with camera intrinsic parameters defined previously
and with a specific camera position and. orientation:

f 1 000 [ x ]
x z S Cg
0 f JRE |~ | Y (4.5)
~Y C .
; . 0l 1 7Z
1 | At 00 1 0 )
which can be simplified to:
RT_=R"¢
m~ K M (4.6)
i | 1
or even
m ~ PM (4.7)

The 3 x 4 matrix P is called thecamera projection matrix, which determines how
real world 3D points turn into image 2D points we saw on the monitor screen. With the
Equation 4.7 the planél corresponding to a back-projected lihean also be derived:
Sincel™m ~ I"PM ~ 11" M,
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Figure 4.3:Correspondences Between Two ViewsSEyven the exact position af/ is not known,

it is bounded on the line of sight of the corresponding image painThis line of sight can be projected on
the other camera image planelg<ited from: [14]."

I~ PT] (4.8)

4.2 Multi-View Geometry

In the previous sections multi view relations were not discovered. Since several geo-
metric relationships can be build between two, three or more images, these relationships
are the essential parts for camera calibration and 3D reconstruction from images. Many
insights of multiple view geometry are discovered over the last few decades.
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Figure 4.4;Two-View Epipolar Geametry. "This figure illustrates that different epipolar planes
formed by 3D points and the two projection cente€randC” always include the baseline and the two epipoles

e ande’. Eachlepipolar plane satisfies-epipolar-geoemetry-and can be formulated in mathematical way (cited
from: [14]).”

4.2.1 Two-View Geemetry

After the intrinsic parameters ofthe perspective camera are known, we can calculate the
corresponding ray of an specific image point passing itself and the projection center. Con-
sider that there are two cameras with different positions and orientation capturing images
from the same scene, is there any relations between the images formed by these cameras?
A more specific questionGiven one image point in an image, can this point restrict the
position of an image point in the other imagd®Pturns out that this relationship can be
obtained from the process of camera calibration or even from a set of prior image point
correspondences.

To answer this question, consider the projection relationships of a real world 3D point
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M amoung two cameras, although the exact position/ois not known, it is bounded on
the line of sight of the corresponding image potnt This line of sight can be projected on
the other camera image plane as shown in Figure 4.3. In fact all the points on thélplane
defined by the two projection centers ahtihave their image ofi. The same reason that
line [ is formed by the projecting all the points on the pldh@nto the left image/ and

I are said to be irpipolar correspondence, the plafleis usually named witlepipolar
plane.

All these epipolar planes pass through both projection celdteasd C’, results in a
set of corresponding epipolar linesias shown in Figure 4.4. All these epipolar lines pass
through two specific pointsande’, which are commonly calleepipoles.

This epipolar geometry can be represented.mathematically. /A poon a linel can
be expressed in the formula d3n = 0. Theline passing through point and the epipole
eis:

[ ~ [e]lxm (4.9)

with [e], the antisymmetri8'x 3'matrix-describingthereross-product of the epipale

4.2.2 Fundamental Matrix and Essential Matrix

After describing the basic two-view epipolar geometry, we can now going further into
some derivations of the fundamental matrix and the essential matrix. From Equation 4.8
and Equation 4.9 the plarié can be easily obtained &~ P! and similarlyIl ~ P'*1.
Combining these equations gives the following formula:

'~ (POYPTI=H Y (4.10)

with { denoting the pseudo-inverse. Substituting ( 4.9) in (4.10) we have the following
equation:
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'~ H Tle]ym (4.11)

defining " = H~Te], and substitute in Equation 4.11, we have:

'~ Fm (4.12)

and thus,

m' Fm =0 (4.13)

The matrix F' is.called thefundamental matrix. These. definitions and concepts were
introduced by Faugeras [4] and Hartley [7].“Many people have studied the properties of
the fundamental matrix (e.g. Q.T. kuong-[9] and [10]) and lots of efforts have been put in
obtaining the fundamental matrix from two-view image pairs robustly [16—18].

When the calibration is not known, the fundamental matrfixcan be calculated by
Equation (4.13). Every pair of image.correspondences gives; one constraint on the fun-
damental matrix/'. Since £ is«a 3:x 3 matrix which is determined only up to a scalar
factor, it has3. x 3 — 1 unknowns, which means eight pairs of image correspondences are
sufficient to compute” with a linear algorithm. The linear algorithm is then introduced in
the following section.

4.2.3 The Eight-Point Linear Algorithm
Linear Solution for the Fundamental Matrix

As described in the previous section, the fundamental matrix is defined by Equation 4.13,
for any matching image pairgs < m'. Given a sufficient number of image point matches
(at least eight)n; < m/;, Equation 4.13 can be used to compute the unknown fundamental
matrix F. Letm = [u,v, 1] andm’ = [v/,v',1]7, every point correspondence gives one
constraint linear equation to an unknown entryfof The coefficients of the equation can
be easily derived in coordinatesafandm’ as the following:
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UU/FH + U’U/F21 -+ UF31 + UU,Flg + U’U/FQQ + ’UF32 + U/Flg + U/Fgg + F33 =0 (414)

The coefficients of the equation can be written into a row vector as follows:

(v, uv', u, vu’ v’ v, Ul 0" 1) (4.15)

Let the row vector in the Equation 4.15 be matdxand the nine-vector column vector
f be the stacked-version matrix eontaining the entries of the fundamental matfiken
we obtain a set of linear equations of the form:

e (4.16)

Because the fundamental matikis defined up toran unknown scalar factor, to avoid
the trivial solutionf, an additional constraint can be used as follows:

L =1 (4.17)

where|| f|| is the norm off.

With the constraints described above, it is possible to'find a solution to the linear system
with as few as eight image pairs. If more than eight point correspondences are specified, we
have an overspecified system of equations.”/Assuming that there exists a non-zero solution
to this system of equationsl is derived to be rank-deficient. In other words, although
has nine columns, the rank df must be at most eight. In fact, the rank_.éfis exactly
eight, and there is an unique solutign

The above discussion assumes that the given point correspondences are all perfect data
and without the disturbance of noise. Actually, because of inaccuracies in the measurement
or specification of the matched points, the mattiwill not be rank-deficient, which means
it will have rank nine. In this case, there will not be any nontrivial solutions to the system of
equationsA f = 0. Instead of finding a non-zero solution, we seek a least-squares solution
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to this equation set, where is well known to be the unit eigetorecorresponding to the
smallest eigenvalue ofi” A. An appropriate algorithm for finding this eigenvector can
refer to the algorithm of Jacobi [21] or tlsengular value decomposition(SVD) [1, 21].

The properties of the fundamental matrix will be introduced in the next paragraph.

The Singularity Constraint and The Eight-Point Algorithm

A important property of the fundamental matrix is that it is singular, which is in fact
has rank of two. Furthermare, the left and right:null-spaces of the fundamental matrix
can be generated by the vectors in homogeneaous coordinate denoting the two epipoles in
the two relative images. Most applications depends onthe.rank two constraint of the matrix
F. But the matrixF found by solving the system of equations ( 4.16) will not in general
have rank two due to the-noise.-and the error of measurement. Therefore, a convenient
method to enforce the singularity constraint and compute the fundamental matrix is to use
the singular value decomposition. In particular,#®et= U DV’ T be the SVD ofF’, where
D is a diagonal matriXD = diag(r, sit)satisfyingr > s > t. Let B! = Udiag(r,s,0)V7,
this method IS suggested by Tsai and Huang [19] and has been proven to minimize the
Frobenius narm{ £ — F'||‘as required.

Thus, with the previous ‘description we can now:formulate the eight-point algorithm
into two main steps for the.computation of the fundamental métras follows:

1. Find Linear Solution: Given image pairs < m/, solve the equations/” Fim = 0
to find £'. The solution is the eigenvector corresponding to the smallest eigenvalue
of AT A with A the equation matrix.

2. Enforce Rank Two ConstrainReplaceF’ by F’, whereF" is the closest singular ma-
trix to £ under Frobenius norm. This can be done via singular value decomposition.

The algorithm is extremely simple and can be easily implemented, assuming with the
availability of a suitable linear algebra library, for instance, Matlab or OpenCV.
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4.2.4 The Essential Matrix and Extraction of Relative Pose Between

Cameras

In this section we will introduce the definition of the essential matrix and how to find
out the relative pose of the two cameras by extracting the essential matrix.

The Essential Matrix

In comparison to the fundamental.matfixwhereF satifies the equations’” Fm = 0
in the homogeneous image(pixel) coordinate. The essential matsxiefined in the met-
ric coordinate satisfying;the similar constrairft £z = 0, with'm = Kz and K the
intrinsic camera matrix. dn facty = 7' x R = [T]xR-with (R, T) the coordinate trans-
formation between the two camera-coordinates. In other waords, the essential matrix
encodes the relative pose of the two cameras in one matrix with the two cameras intrin-
sically calibrated(sand/’ are known). Compare to.the fundamentakmatrixvith the
cameras uncalibrated, the essential matrix and-.the fundamental matrix have the following
relative equation:

E=KT'FK (4.18)

The meaning of the equation above is that after we calibrate the two cameras and the
fundamental matrix: is calculated with the eight-pointialgorithm mentioned previously,
the essential matri¥’ can be computed with Equation 4.18, which informs us the relative
pose of the two cameras.

Pose Recovery of Cameras By Extracting The Essential Matrix

After the essential matri¥) is computed, in the previous section we know that
[T« R, which is the matrix that relative pose of the two camerasl’) can be extracted
from it. In order to extract the coordinate transformation from the essential matrix, the
essential matrixt is decomposed with singular value decomposition at first. Aet
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Figure 4.5:The Pose Recovery Twisted:Pair Extracted from The Essential Matrix.
"Two pairs of'‘camera relative poses which generate the same essential matrix. It is shown that one of the two
solutions will'not satisfy the positive depth-constraint. Cited from [22]”

UDVT, wheteD = diag(a, a, 0), define:

0 —1 .0

e (o= ) =t LSO (4.19)
0“0 1

then we can derive four solutions with two rotation matriégs?, and two translation

matrices in3 x 3 cross-vector formy, 15 with the following formula:

T T
(R, Ty) = (UR§(+§)VT, URZ(+§)DUT)

0

(R, Ty) = (URY(=5)V", URz(~5)DU”)

In the formula abovéR;, T}) and(R,, T3) are called théwisted pair. Figure 4.5 shows
that one solution of the twisted pair will not satisfy thesitive depth constraint, which
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means all 3D points must lie in front of the image planes of lm@meras. In fact, in
order to extract the relative poses from the essential matrix with SVD robustly, Wang and
Hung [20] have proven that there are four solutions for rotation(two additional solutions
for rotation) and two solutions for translation, which permutates into eight solutions for the
relative pose between the two cameras. Let:

0 -1 0
Rep(+5) =11 0 0 (4.20)
(B B0 B

then after extracting the solutions of pose from the essential.matrix we have the follow-
ing eight solutions:

(Ri.Ty) = (URG(+5)V". URy(+3)DU")
(Ro. 7o) = (URG(= ViU Rs(—) DU™)
(Ry. T3) = (UR§(+§)VT, URZ(—g)DUT)
(). — (URE(—%)VT, URZ(+g)DUT)
(Rs, T (UR(T_Z)(+g)VT, URZ(+g)DUT)
(Ry, Ty) = (UR(T_Z)(+g)VT, URZ(—%T)DUT)
(R, T1) = (UR(T_Z)(—g)VT, URZ(+g)DUT)
(Ry, Ty) = (URL ;(—5)V", URz(~3)DU")

After the above eight solutions are extracted from the essential matrix, six out of the eight
solutions can be rejected by using the positive depth constraint and one solution is removed
since the relative pose of the two cameras is not reasonable. Thus, after extracting the
solutions of the pose recovery problem from the essential matrix with singular value de-
composition, we can obtain eight solutions where one of them will be the correct relative
pose between the cameras.



4.2 Multi-View Geometry 41

4.2.5 Calculation of Depth Information for Structure Reconstruction

With the rigid-body transformation of the camerd® 7") and the intrinsic camera pa-
rameters known, we can calculate 3D coordinates of the paired image points in terms of the
image coordinates and depths), let z;, ;" be the ith image pair points in homogeneous
image coordinate system, the relation between depths and the transformations between two
camera coordinates can be formulated as follows:

notice thatlbecausgr, 7') are-known, the depths's and the scale of translationin
Equation 4.21 form a linear system of equations and thus they can be easily solved. For
each 3D pointA and\’ denote its depths with respect to the firstand second camera frames,
respectively. One 'of the depthsor )’ is therefore redundant, for instance\ifs known,
X is simply-a function of(R, T"). Hence we can eliminate onesof the depths, 3ayy
multiplying both sides of the Equation 4.21 by},

this is equivalent to solving the following linear equation:

\i ]
—0 (4.23)

7

whereM; = [ [/]xRx; [x/]<T ] e R*>*? and)\; = [
Y

] € R% fori=1,2,...,n.

Notice that all then equations above shares the same coefficiemte define a vector
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_ [21/]x Ry 0 0 0 0 [T |

0 (25 R 0 0 0 (22T

0 0 xR 0 0 T

M = [25']x Ras 7]

0 0 0 0

0 0 0 ey kBre-y 0 [T

0 0 0 0 [/ xR o/l T

Then the equation:
(4.24)

determines all the @l the linear least-

square solution ol to the smallest

IL‘IFEH-

eigenvalue, wherefi
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Figure 5.1:Radio Basis Function.of the Thin-Plate Splines in Two-Dimensional Space.
"This figure is cited from [2]"

The Thin-Plate Splines(TPSs) are often used for interpolating surfaces over scattered
data because of its elegant algebra expressing the dependence of the physical bending en-
ergy of a thin metal plate on point constraints. For interpolation of asurface over a fixed
set of sparse points in the plane,-the bending energy s a quadratic form in the heights as-
signed to the surface. After caleulating the 3D points of the image correspondences, the
3D data can be regarded as'a sparse point cloud which spread over an certain area of the
virtual scene. Therefore, we can use the TPS to interpolate the surface including all the
reconstructed sparse 3D points. In recent years, the thin-plate splines is used for biological
deformations [2] since the interpolation results of the TPSs may be suitable for analysing
biological structures. In the following sections we will introduce the formation and algebra
of the thin-plate splines.

5.1 The Radio Basis Function(RBFSs)

The splines are all expanded by their basis functions and therefore different basis func-
tions contribute to the variation of the splines. The thin-plate splines are expanded by the
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Figure 5.2:A Mathematical Model of A Thin Steel Plate.”This figure is cited from [2]”

radio basisifunctions. For instance, in two-dimensional spacé!the radio basis function is

defined as follows:

2w, y) ==U(r) = =r2log r> (5.1)

wherer is the distance/x? + y*from.the Cartesian origin. The function is zero along
the indicated circle in Figure 5.1, where='1. The radio basis function satisfies the

following equation:

0? o2 2
A 2717 _
U= (8332 * 8y2) (5-2)

In addition,U is a so-calledundamental solutioto thebiharmonic equatiod\2U = 0,
the equation for the shape of a thin steel plate can be shown as a function above the

(x,y)-plane.
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5.2 Bounded Linear Combinations of Radio Basis Func-

tions

Figure 5.2 illustrates a mathematical model of a thin steel plate which is in fact extend-
ing to infinite space in all directions. Passing through this plate is a rigid skeleton of square
size with its side lengtk/2, drawn as the rhombus at the center of the figure. The steel is
fixed in position in some distance above two diagonally opposite corners of the square and
the same distance below the other two corners of the square.

The surface in Figure 5.2.can be modeled mathematically into the formula as follows:

2(x,y) =—U/a2H 0,719
— Ulfle+ 1"+ 42
+ U224 (y+1)%)
— LUC L =1) + o2

(=D*T(@.y) — Dil)

I
RIE

=
I

1

where D, are the corner§l, 0),(0,1),(—1,0), (0, —1) of the 'square. The coefficients
having with function/(r) takenaret-1 for the-ends of one diagonal ard for the ends of
the other. As one travels far away fromthe arigin,'this plate is asymptotically flat and level
in all directions. For instance, in Figure 5.2, the corner of the plate facing the viewer in the
diagram has apparently become nearly level somewhat underneath the level of constraint
at the nearest corner of the square, and the condition is similar to the other three corners.

The displacement of the thin plate in Figure 5.2 lies in a direction orthogonal to the
plate itself. We can imagine that the displacemerits y) is applied directly to one or
both of the coordinates af or y-axis of the plate with which we started. Thus we may
interpret the scheme of Figure 5.2 as ihierpolation function. Thus we can formulate the

mapping function of the interpolation as follows:
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(z,y) — (2, y) = (z,y + 2(2,9)) (5.3)

In this manner the thin-plate spline we have been examining can be used to solve a
two-dimensional interpolation problem as the computation of aRap+ R? from sparse
arbitrary data. Likewise, we can interpolate 3D data as well using the thin-plate splines.

5.3 Algebra of the Thin-Plate Splines

In order the modelsthersurface over sparse 3D reconstructed feature points using the
thin-plate splines;‘the following text of this section focus:on the overview of the algebraic
form of the thin-plate spline method. Lét = (z1,v1, 21), Poo—= (72,92,22), -+, P, =
(zn, yn, 2,) bem points in the Euclidean coordinate. Define="F, — P;| as the distance
between points and; and the following matrices:

0 U(’f’lg) U(T‘ln)
K - U(T’Ql) 0 U(Tgn) S
| Urn1) Urpe) (i

L = PO ,(n+4) x (n+4)

whereO is a4 x 4 matrix consists of zeros.

LetV = (vy,vs,...,v,) be any arbitrary-vector and havé = (V[0 0 0 0)", whichis
a column vector of length + 4. Define the vectoW = (wy, ..., w,) and the coefficients
a1, az, ay, a, by the equation:
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LY = (Way, ag, ay, a.)" (5.4)

Use the elements df 'Y to define a functiory (z, y, z) everywhere in the Euclidean
3D space:

f(@,y,2) = a1+ a, + ay + a. + Y_wU(|P, — (z,y,2)|) (5.5)

i=1

We take the pointéz;, y;, z;) to be our source landmarks aidto be then x 3 target

matrix:
xll x2/ “ e l‘n/
V = yll yzl PR yn,
le Z2, . . zn’

where every(z;, y;'s2i") Is the landmark hemolegous (o, yi, z;) mapped by the thin-
plate spline functién in the Euclidean 3D spdge. The resulting functiory (x,y, z) =
[fa(z,y, 2), fy(x,y,2), f-(24y, 2)] IS vector-valued: it maps each 3D point, y, 2) to its
corresponding result’, /', 2’). These vector-valued functiorf§x, y, z) aré thethin-plate
spline mappings.

5.4 The Wendland Radial Basis Function

The radial basis function of Wendland is shown below:
441
Gan(r) = 1= () (5.6)
Therefore, we can use the functionality of the Wendland radial basis function after
building point correspondences in the 3D virtual space to interpolate the surface amoung
the computed discrete and sparse 3D points.
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In this section we focus on the main steps of our 3D environmesunstruction pro-
cedure. First of all, we compute the intrinsic parameters of the two perspective pan-tilt-
zoom(PTZ) cameras by using Zhang’s method [23]. After the cameras are calibrated, we
capture the photos with the two cameras in different point of view and specify the image
correspondences manually. With the image correspondences we can compute the funda-
mental matrix and in addition the essential matrix by combining camera intrinsic parame-
ters and the fundamental matrix. Then we can extract the relative pose of the two cameras
from the essential matrix. Positive depth constraint is used for choosing the correct solu-
tion from the extraction of the essentiakhmatrix. After the relative pose is obtained, we can
calculate the 3D coordinates.of the image pairs, which is a sparse distributed point cloud in
the virtual scenes.

In order to make the computed-3D points into a surface, wesuse the algebra of the
thin-plate splines by creating some source-and-target mapping, we merge the reconstructed
distinct scene surfaces with the-aid of calibrated pan-tilt informations. Finally, after the
procedure mentioned previously is done, with texture mapping we can browse the virtual
3D model of the environment from any arbitrary point of view.

6.1 Perspective Camera Calibration'with .a 2D Plane

In this section we will describe -how we calibratesour two perspective cameras by us-
ing Zhang's method. The method s really a milestone when proposed in the year 2000
since 2D planar objects is proven to be able to be used for camera calibration. The calibra-
tion procedure consists of a closed-form solution, followed by an nonlinear refinement of
maximum likelihood criterion.

The calibration procedure recommended by Zhang [23] is as follows:

1. Print a pattern and attach the pattern to a planar surface.

2. Take some images of the planar pattern under different orientations and positions by
moving either the plane or the camera.
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Computational Part

CPU AMD 2200+ 1.8GHz
RAM 1.0GB
OS Windows XP

Programming Tool

Microsoft Visual Studio 6.0

Image Acquiring Part

PanoServer 3000
Video Input 4.channels, 120 fps, NTSC
Video Output VGA: 640 %480 at 60Hz, D-SUB"15 pin
Size 427(W) x.88.5(H) x 366.6(D) m.m.
Pan-tilt-zoom Camera
Signal.-System NTSC PAL
Effective Pixels(HxV) || 768 x 494 752 x 582

Imaging Area

4.9mmX 3.7mm

Image Pickup Device

1/4”-type SuperHAD CCD

Mechanism

Panning Range

360 degrees endless

Tilting Range

92 degrees

Pan-tilt Accuracy

Panning Speed Manual 0.1-90 degree/sec

Panning Speed Preset 300 degree/sec

Tilting Speed Manual

0.1-45 degree/sec

Tilting Speed Preset

200 degree/sec

Cumulative error less than 0.6 degree per 10000 rotations

Table 6.1:The Specification of Our 3D Environment Recontruction System:Cited from
http://www.messoa.com/product/Produtedel Spec.aspx?Modelld=51""
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3. Detect the features in the images(usually done with imageegsing techniques).

4. Estimate the five intrinsic parameters and all the extrinsic parameters using the closed-
form solution.

5. Estimate the coefficients of the radial distortion.

6. Refine all parameters by minimizing the reprojection error.

Since any camera usually exhibits lens distortion, we asstum® to be theradio
distortion coefficientandp,, p, to be thetangential distortion coefficiensnd model this
two kinds of distortion using the following formula:

T gl 1 oy Bt ) 20 T £ D2 (@ 4 21%))
7 =y + y(kir® + kor®) + 2pary +p1(7 + 20°))

wherer? = 22 492, (r,y) the ideal(distortion-free) and:, ¢) the real(distorted) image
physical coordinates. The formula shown above can be transformed into pixel coordinates
via camera intrinsiciparameters, assume thatis theé image point'.corresponding they
in the pixel coordinate;Since by definition,= zf, + ¢, andv' = v, + c,, the above
formula can be rewritten as follows:

2
r
=u+ (u— cx)(k1r2 + kort + 2p1y + pg(; + 2x))

2
~ r
v=v+ (v— Cy>(/€17’2 + kot + 2pox —|—p1(g + 2y))

N

Our camera calibration method differs from the Zhang’s method in only the image
processing and the feature extraction part. We use a planar pattern with circles printed on
it and find the centers of the circles to avoid errors occured by corner detection due to the
noise in images. We compute the coordinates by extracting the center of the circles printed
on our planar calibration pattern with the following steps:
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1. Transform the color image into intensity(gray scale) immag

2. Binarize the tranformed intensity image with the threshold calculated by Otsu’s method
[11].

3. Specify the blobs by finding connected components and determine whether the blob
is a circle or not, if the blob is a circle then preserve it as a grid point.

4. Use ransac grid alignment to recover the grid points of the calibration pattern.

5. Define the coordinates of the grid points and perform Zhang's camera calibration
method.

6.2 Extraction of-Relative:Pose:Between Cameras from

Images

After calibrating the two pan-tiltzoom cameras, the intrinsic parameters of both the
cameras are all known.' Therefore; we cancompute the-fundamental matrix and then com-
bine the two intrinsic matrices. in order to obtain the essential matrix. After the essential
matrix is calculated, eight solutions can be extracted as described in Section 4.2.4 and pos-
itive depth constraint,and straightward visualization can be used to eliminate the incorrect
relative poses extracted from the essential matrix which was introduced in Section 4.2.5.

6.3 Sparse 3D Points Reconstruction

With the rigid-body transformation of the camerd® 7") and the intrinsic camera pa-
rameters known, we can calculate 3D coordinates of the paired image points in terms of the
image coordinates and depths), letz;, ;" be the ith image pair points in homogeneous
image coordinate system, the relation between depths and the transformations between two
camera coordinates can be formulated as follows:
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notice that becausgr, T') are known, the depth¥'s and the scale of translationin
Equation 4.21 form a linear system of equations and thus they can be easily solved. For
each 3D point) and)\’ denote its depths with respect to the first and second camera frames,
respectively. One of the depthsor )\’ is therefore redundant, for instance\ifs known,
X is simply a function of(R,T"). Hence we can eliminate one of the depths, 3ayy
multiplying both sides of the Equation 4.21 py']:

this is equivalent to solving the following linear equation:

M X = [ [z xRx; [z/]xT }

" } =0 (6.3)

A
Notice that all ther equations above shares the same coeffiejemte define a vector
5\ = [)\1, )\2, R )\n]T c Rn+1 and a matrix\/ < R3n><(n+1) as

whereM; = [ [#)Re; [z/]xL } €. R332 and = { ] e R fori=1,2,..,n.

[21']x Ry 0 0 0 0 o T
0 [w)xRrs 0 0 0 o/ T
| 0 [oy)<Rus 0 0 5T
0 0 0 0
0 0 0 [2n-1)[x BT (1) 0 -0 lT
0 0 0 0 [z, |xRxn  [2,/]xT

Then the equation:

MX =0 (6.4)
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determines all the unknown depths up to a single universé scand the linear least-
square solution o is simply the eigenvector af/” M that corresponds to the smallest
eigenvalue, where finishes the depth estimation. After the depths are computed for every
image pair, we can use depth information from one of the camera frame$; siy,calcu-
lating their corresponding 3D coordinates, which completes the sparse 3D reconstruction.

6.4 3D Environment Surface Modeling and Texture Map-

ping Using Thin-Plate Splines

After the sparse 3D point cloud is reconstructed, we can interpolate a surface in 3D
space by using.the thin-plate-splines. Since the coefficientsiof the thin-plate splines can be
calculated from the corresponding source and target points in the 3D coordinate system, we
specify the reconstructed 3D points as targets and generatethe source points by mapping
them onto a sphere surface. Once the source points and the target points are determined,
the coefficient of the thin-plate splines in 3D space can be calculated and then we can
interpolate ‘a nonlinear surface over the sparse 3D points which all located exactly on the

interpolated thin-plate spline surface.

In order to reconstruct the' whole environment, we combine the eight-point algorithm for
reconstructing particularscenes and the calibrated pan-tilt angles of the two pan-tilt-zoom
cameras. Therefore, our reconstruction procedure is based on the following assumptions:

1. The mechanic model parameters (e.g. pan angle, tilt angle) of the two pan-tilt-zoom

cameras are calibrated accurately.
2. The pan axis and tilt axis of the pan-tilt-zoom cameras are orthogonal.

3. The transformation of different views from the same pan-tilt-zoom camera with vari-
ous positions and orientations consists of only pure rotation. In other words, the focal
length is the radius of the pan-tilt sphere and the lense rotates with its center exactly

on the sphere center.
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With the assumptions listed above, we can use the pan andgles of a pan-tilt-
zoom camera to calculate relative poses of the individually reconstructed scenes and then
combine them altogether using the thin-plate splines with source points mapped onto a
sphere. Our reconstruction procedure is listed as follows:

1. Reconstruct point clouds of reconstructable scenes in the virtual 3D space individu-
ally with two intrinsically calibrated cameras.

2. Calculate relative poses among individual scenes by using pan-tilt angles of the cali-
brated pan-tilt-zoom camera:

3. Specify the integrated sparse 3D points as target points of the thin-plate splines and
map the integrated-sparse 3D points onto a sphere to generate the source points of
the thin-plate splines.

4. Calculate the coefficients of the thin-plate splines using the method described in Sec-
tion 5.3.

5. Interpolate the thin-plate spline surface with spherical meshes; which forms the vir-
tual surface of the environment.

6. Apply texture mapping to the environment surface, where finishes the final textured
environment surface model-
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Figure 6.1:0ur 2D Planar Camera.Calibration Pattern. "The pattern consists of circles in
order to reduce image processing.errors due to'the noise by finding the centers of the circles.”
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Figure 6.2:Result Image After Binarization.
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Figure 6.4:Multi-view Photos For 3D Environment Reconstruction With Correspond-
ing Image Points Specified - Scene 1.
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Figure 6.5:Mu It|.V|ew PhOtos‘Fper n\/lrl)nmentE Re'const[ucuon With Correspond-
ing Image Pn.lnls Specified - Scene 2. . ! K
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Figure 6.6:Multi-view Photos For 3D Environment Reconstruction With Correspond-
ing Image Points Specified - Scene 3.
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Table 6.2: The Calibrated Par

Calibration Method.

I

1Sic Parameters Using Our
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Figure 6.8:Scene 2 - Epipolar Lines Calculated With The Fundamental Matrix.
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Figure 6.10:Scene 1 Viewpoint 2 - Individually Reconstructed Surface Model.
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Figure 6.12:Scene 1 Viewpoint 4 - Individually Reconstructed Surface Model.
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Figure 6.13:Scene 2 Viewpoint 1 - Individually Reconstructed Surface Model.

Figure 6.14:Scene 2 Viewpoint 2 - Individually Reconstructed Surface Model.
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Figure 6.15:Scene 2 Viewpoint 3 - Individually Reconstructed Surface Model.
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Figure 6.16:Scene 2 Viewpoint 4 - Individually Reconstructed Surface Model.
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Figure 6.17:Scene 3 Viewpoint 1 - Individually Reconstructed Surfe}ce Model.
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Figure 6.18:Scene 3 Viewpoint 2 - Individually Reconstructed Surface Model.
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Figure 6.19:Scene 3 Viewpoint 3 - Individually Reconstructed Surface Model.
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Figure 6.21.Viewpoint 2 - Reconstructed Environment Using Our Method.
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Figure 6.23.Viewpoint 4 - Reconstructed Environment Using Our Method.
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Figure 6.24:Viewpoint 5 - Reconstructed Environment Using OuriMethod.

Figure 6.25:Viewpoint 6 - Reconstructed Environment Using Our Method.
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Figure 6.26:Wireframe - Projecting all'the'synthesized views onto a sphere.

Figure 6.27:Wireframe - Reconstructed part of all the synthesized views.
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to a sphere.

Figure 6.29:Textured model - Reconstructed part of all the synthesized views.
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Conclusion
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In this thesis a 3D indoor environment reconstruction sysgaimplemented by using
Wendland to interpolate the surface of the reconstructed 3D point cloud and then perform
texture mapping. Relative pose between cameras are extracted in our 3D reconstruction
steps which may assist robot navigation greatly. Since robotic errors are often accumulated
while the robot is moving, recoordinating the robot by calculating relative pose between
cameras with images results in less error if the robot moves further. By integrating the
robot system and the computer vision system may control the robot more precisely.

Extraction and matching of the image correpondences mainly influent 3D reconstruc-
tion results. If denser pixel coordinates of the image pairs can be obtained more accu-
rately, our reconstruction of'the“3D points could be more stable since the input of the
eight-point algorithm is assumed to satisfy some limitation, which means to be random
sampled enough. Since the image pairs are specified by human, errors can not be avoid in
this case.

With our 3D environment.reconstruction procedure we can obtain a 3D environment
model of a real indoor scene using images captured by the cameras as texture. The 3D
surface model established with the propesed reconstruction system provides useful infor-
mation for robot navigation and.other applications.
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