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Student : Han-Lun Pan Advisor : Jean Jyn-Jiun Shann

Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung

Abstract

Leakage energy consumption is becoming an important design consideration
with the scaling of technology. Branch target buffer (BTB) is a popular kind of branch
predictor. Besides cache, branch predictors are the largest on-chip array structures. If
we put non-accessed branch target buffer entries into leakage saving mode, we gain
branch target buffer leakage energy reduction. However, there is a period of time from
leakage saving mode from normal mode and it introduces system leakage energy
increment. This research proposes an accurate pre-active policy to switch the next
accessed branch target buffer entry from leakage saving mode to normal mode in
order to hide this latency. And we can put BTB entries into leakage saving mode more

aggressively to reduce BTB leakage energy.
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Chapter 1 Introduction

1.1 Importance of Low Power Design

Low power design has become more and more important in microprocessor
design. In embedded system, most portable devices are powered by battery, such as
MP3 player, mobile phone, personal digital assistant (PDA), and etc... The life time
of battery is an important consideration. Low power design helps to increase the life
time of battery. On the other hands, for high-end machines, hardware complexity and
high working voltage produces enormous heat, and high temperature results in some
problems. Low power design reduces power consumption and the heat for high

performance device. So the reliability of system could be promoted.

1.2 Power Components of CMOS.-Circuit

The power consumption of CMOS _transistor consists of two parts: dynamic
power and static power. The dynamic power is also called active power. There are two
parts in dynamic power: switching power is dissipated by charging and discharging
the gate output capacitance and short-circuit power is dissipated by the short-circuit
current that Vpp and Vss may be inter mittently shorted during logic gate operation.
The static power is dissipated by leakage current that leaks through transistors, so is
called leakage power. As processor techniques moves below 0.1um, leakage power
consumptions begin dominate the total power consumption of circuit [1]. Figure 1-1
shows the ratio of active power and leakage power in different techniques. How to

reduce leakage becomes an important research issue.
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Figure 1-1: The ratio of dynamic power.ta static power source: EE-Times, 08/06/2004

1.3 Importance of BTB Leakage Energy Reduction

Almost all processors are deéply pipelined today. In order to reduce pipeline stall
cycles due to branch instructions, most processors adopt dynamic branch prediction
techniques. BTB, which is a large on-chip memory with the tag and branch target
address, is used to support dynamic branch prediction. It dissipates 10 % of the
processor’s total dynamic power [2]. Besides caches, BTB is the largest on-chip
memory among a typical processor. Current typical branch target buffer has 512-2048
entries (2-8K bytes) and equals the size of a small cache. In high performance
microprocessors, in order to improve prediction accuracy, BTB has become larger and
larger. For example, Pentium 4 has 4K entries BTB. Moreover, BTB is a thermal
hotspot [3]. The leakage energy of BTB may be more than its size would suggest

since the leakage energy increases exponentially with temperatures increment.



Drowsy cache [4] is a popular circuit technique for SRAM leakage power
reduction. It provides two power modes for each row of SRAM arrays. While the
normal mode is fully functional, the drowsy mode is data preserving only. A drowsy
row needs to be waked up with about one cycle latency if an access requirement is
comes for this row. Since only a small part of BTB entries would be accessed in a
period of time, if the other unused entries can be managed into drowsy mode, the

BTB leakage energy would be reduced

1.4 Motivation and Objective

Branch target buffet is a cache which stores information about branch instruction.
It can gain performance benefit when branch target buffer look-up hit. Since branch
instructions constitute parts of total executed instructions, on the other side, only a
small part of branch target buffer entries will be accessed in a period of execution
time, if those entries not be accessed recently can be put into drowsy mode. Leakage

power consumption could be reduced.

In this research, we proposed a next entry pre-activation method cooperated with
the decay policy [5] to manage power modes of each BTB entries. For the decay
policy, a BTB entry which has not been accessed for a period of time is putted into
drowsy mode. For next entry pre-activation, the possible BTB next entries are cached
for each branch instruction existing in BTB and used to pre-activate the BTB entries
that will be used in the near feature. Unlike the decay management, our method helps
to shorten the decay interval and hide wake-up latency, and both of these benefit

leakage reduction.



For the branch instruction execution, there are at most two possible directions:
taken and non-taken. Moreover, most branch instructions have fixed target addresses.
The behavior of accessing branch target buffer can be tracked during execution time.
For this property, our pre-active policy is to pre-activate the next possible accessed

branch target buffer in both path of the path indicated by branch predictor.

1.5 Thesis Organization

The rest of this paper is organized as follows. Section two presents the related
work of active and leakage reduction techniques. Section three describes our power
mode management policies for BTB. Section.four gives the simulation results, and the

last section is our conclusion and.possiblefuture work.



Chapter 2 Background and Related Work

2.1 Brief Introduction of Branch Target Buffer(BTB)

Almost all processors are highly pipelined today. For a processor with deep
pipeline, how to reduce control hazard becomes a major topic to improve system

performance. A good dynamic branch prediction is a proper solution.

Branch target buffer (BTB) is a very commonly used dynamic branch predictor.
The major function of BTB is to predict the direction of a branch direction and returns
the target address of the branch. BTB performs branch prediction at the first pipeline
stage. If the branch instruction direction is correctly predicted, the branch penalty
could be reduced to zero. In other:words, if all ‘branch instructions can be correctly

predicted, the pipeline will be kept.full.

BTB is a cache which stores the information-about branch instructions. It consists
of three parts: tag array, data array, and branch direction predictor. The tag array saves
source PC of branch inst ructions, the data array saves the target address of branch
instructions, and branch direction predictor is used to predict whether the branch
instruction will be taken or non-taken. While a branch instruction is executed and
taken, it will be placed into BTB. While execution of the branch instruction next, we

can get the direction information from BTB until this instruction being placed.
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Figure 2-1 : Branch target buffer overview

Figure 2-1 is the system overview of branch target buffer in a 5-stage pipeline
processor. When instruction fetcher fetches an instruction in the first pipeline stage, it
sends the address of the instruction (current-value of program counter) to look up
branch target buffer. If look-up is thit-and-predicted taken, it means that current
instruction is a branch instruction"and.it_may be taken. So BTB returns the target
address of this branch instruction. The instruction fetcher fetches the instruction from
the address returned by BTB next cycle. If look-up is not hit or predicted non-taken, it
means that current instruction is not a branch instruction or current branch instruction
may be non-taken. So the instruction fetcher fetches from the address equals to
current pluses the size of an instruction. If the address is correctly predicted, no

branch penalty is introduced for a branch instruction.

All information about branch instructions is gathered during run time. A branch
instruction could be placed into branch target buffer only after is has been executed
and taken. And may be swept out when a conflict happened. We assume that a branch

instruction finishes execution in EXE stage of pipeline. If this branch is not in the



branch target buffer and it is taken, then its target address and predicted direction
would be placed into BTB. If it is in the branch target buffer already, it only modifies
the state of corresponding branch predictor. The branch predictor can predict the

possible direction of the branch instruction execution next time.

2.2 Circuit Techniques for Reducing SRAM Leakage Power

The circuit techniques to reduce SRAM leakage power are classified into
state-destroying and state-preserving techniques. State-destroying techniques such as
gated-Vdd [6] that gates the supply voltage of the SRAM cells in its leakage saving
mode. Therefore, the data stored in SRAM will be loss in this mode and the data need

to refetch if we want to use again.

Unlike the state-destroying methods, State-preserving techniques preserve the
data stored in SRAM cells in“its leakage-saving- mode. One popular method of
state-preserving techniques is scaling the supply voltage of SRAM cells dynamically
[7]. Since higher supply voltage introduces higher leakage power consumption (see
figure 2-2). If we adjust the supply voltage, the leakage power consumption would be
reduced. It provides two power modes with different supply voltages for each row
of SRAM arrays. In active mode, the data stored in SRAM cells can be accessed
arbitrarily. In drowsy mode, the data in SRAM cells is preserved only. If an access
requirement is comes for the drowsy row of the SRAM, it needs to be waked up with

about one cycle latency before accessed.
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Figure 2-3: supply voltage of drowsy SRAM cell

Figure 2-3 is a drowsy SRAM cell with different supply voltage. The two pMOS
control transistors, P1 and P2, control the supply voltage of the SRAM cell. When the
SRAM cell is in the active mode, P1 supplies a standard supply voltage (1V), the
value of the SRAM cell can be accessed normally. When the SRAM cell is in the
drowsy mode, P2 supplies a lower voltage (300mV), however, the SRAM call access

is not allowed. P1 and P2 are controlled by complementary supply voltage control

8
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Figure 2-4: how to control the supply voltage of a SRAM cell

Figure 2-4 shows that how to control the supply voltage of a SRAM cell. The
supply voltage of a SRAM cell ‘depends on-the state of the drowsy bit. If the drowsy
bit is set, the voltage controller supplies lowivoltage and the SRAM cell is in drowsy
mode. If the drowsy bit is cleared, the voltage controller supplies standard voltage and
the SRAM cell is in active mode. When the SRAM cells are in drowsy mode, it takes
a finite amount of time (wake-up latency) to restore the voltage level from drowsy
mode to active mode, about one or two cycle. If we want to hide the wake-up latency,

pre-active policy is a proper method.

2.3 Related Works of BTB Active Power Reduction

For branch target buffer dynamic energy reduction, since looking up branch
target buffer is only valid when current instruction is a branch instruction and branch

instruction is a small part of total executed instructions, how to skip useless branch

9



target buffer look-up will help to reduce dynamic energy of branch target buffer.

In[8], instruction are pre-decoded to filter out the non-branch instruction. When
instructions are loaded to instruction cache from memory, they are decoded to identify
if there exists any branch instruction in a certain cache line. The information is stored
in a hardware called Prediction Probe Detector (PPD). When instruction fetches an
instruction from instruction cache, it looks up PPD. If PPD returns that current cache
line contains branch instructions, the instruction fetcher looks up branch target buffer
for all instructions in the cache line. If PPD returns that the cache line contains no
branch instructions. The fetcher need not to look up branch target buffer for all

instructions in current cache line.

In [9], it uses compiler to. retrieve the.information of branch instructions and
inserts hint instructions to tell the instruction-fetcher when to look up branch target
buffer. The instruction fetcher needn’t to-look up branch target buffer until
encountering a hint instruction. When the hint instruction is executed, it tells the

instruction fetcher the distance of next branch instruction.

2.4 Related Works of BTB Leakage Power Reduction

For branch target buffer leakage energy reduction, since branch target buffer is a
cache-like data structure, the method for cache leakage energy reduction can be

adapted for branch target buffer leakage energy reduction like decay strategy.

In [10], it applies the decay strategy to branch target buffer for leakage energy

savings. At regular interval, if a BTB entry has not been accessed, they would be

10



placed into low power mode. The interval, called the decay interval, is measured in
processor cycles and is a critical parameter for this scheme. This paper adapts
state-destroy mode for leakage energy saving. In contrast to the decay strategy for
caches, they find that the decay interval for branch predictor should be larger to avoid

branch misprediction and the best decay interval is 64K cycles.

In [11], it uses a state-preserving leakage control mechanism and a
compiler-directed approach based on loop. It uses a finite state machine with three

states to implement the leakage control circuit (see figure 2-5).

e S OFF BN
' on | spBN | mask]|
4 \__/
\\C)N S BBT
e
" off |
NP4

Figure 2-5: state diagram for the leakage control circuit in [11]

The S_OFF and S_ON signals are triggered by OFF and ON instruction inserted
by the compiler. For both the innermost loop and the outermost loop strategies, The
compiler inserts OFF instruction before the loop body and inserts ON instruction after

the loop body (see figure 2-6, figure 2-7).

11
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Figure 2-6: a code fragment with nested loops
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I Loop -1
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¥
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¥
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| ON
(a) (b)

Figure 2-7: compilers inserts OFF and ON instructions for (a) the innermost loop and
(b) the outermost loop

The S_BBT and S_BBN signals are generated by the first execution of the
backward branch instruction in the end of the innermost or the outermost loop and the

backward branch instruction can be identified by the compiler. The S_BBT signal is

12



triggered when the backward branch instruction is taken and the S_BBN signal is

triggered when the backward branch instruction is non-taken.

Initially, the leakage control circuit is in ON state. When encountering an OFF
instruction, the state moves to MASK state and the process will entry a loop. During
first iteration of the loop, the accessed branch predictor entries would be marked. To
implement this strategy, the paper associative a mask bit to each branch target buffer
entry. If the entry is accessed during the first iteration, the bit is set. If the S_BBT
signal is generated, the entries whose mask bit not set will be placed into drowsy
mode. When leaving the loop, the ON instruction will be executed and all branch
predictor entries will be put into active mode. If the S_BBN signal is generated, it
means that this loop has only been executed far one iteration and the state will move

to ON mode.

2.5 Summary of Related Work

In decay approach, so large decay is used to be sure that the decay entry is
invalid, however, so large interval waste the opportunities to reduce BTB leakage
energy. The compiler approach only handles the branch instructions in loop, not
whole program. It may not be suitable to the programs with fewer loops. Second, it
needs to insert extra instructions to support hardware operation so the code size will
increase. The ISA needs to be modified and the system will becomes complex to
implement. Finally, the accessed BTB entries will be keep in normal mode during all
iteration of a loop. However, in a large loop, it is worth to switch the mode of
accessed BTB entries.

If we adapt drowsy mode as leakage saving mode co-working with a pre-activation

13



policy, since the data is still preserved, we may gain more BTB leakage energy
reduction by decreasing the value of decay interval and the performance will not

degrade.
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Chapter 3 Proposed Design

3.1 Overview of Pre-activation Policy

Generally speaking, for each branch instruction, there are at most two possible
directions, taken or non-taken. Moreover, most branch instructions have fixed target
address. Therefore, for most branch instructions, the possible next branch instructions
on execution path are fixed.

For a drowsy-based BTB, if the next BTB index is revealed to processor early,
the pre-activation operation becomes trivial. Therefore, our research focuses on how

to record the next possible BTB entries.

Fre-activation
signal

Die-activation
signal

Deactivation
Controller

Drowisy

5TE MNEET

ETE location

Figure 3-1: architecture overview of our design

Figure 3-1 shows the architecture overview of our design. The deactivation
controller puts a BTB entry into drowsy mode if this entry has not been accessed for a
period of time. Next BTB Entry Table (NBET) collects BTB location for next BTB

entry pre-activation.
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While executing the code sequence along the possible path, we will encounter the
next branch instruction. If we can record where the next branch instruction is located
in branch target buffer, we can use this information to pre-activate the next possibly

accessed branch target buffer while executing current branch instruction next time.

3.2 Two-direction Pre-activation Policy

For pre-activating the next possible accessed entry, we need to record two things:
1) the executed code sequence of branch instructions and 2) where a branch
instruction is located in branch target buffer. The information can be gathered during

execution time.

Since there are at most two. directionsfor ‘each branch instruction, we must
record the next possible accessed branch target buffer for a branch instruction along
taken and non-taken path. In order to record the two possible next BTB locations
(which set and which way in BTB) of all branch instructions existing in BTB, we
configure NBET as two-direction based NBET which has the same number of entries
as BTB. Each entry has two fields: one for next BTB entry of taken path and another

one for not-taken path.

3.2.1 Two-direction based NBET

We need to record the necessary information of every branch instruction.
Because a branch instruction may be placed into to one branch target buffer, so a

branch target buffer entry has a corresponding NBET entry to record the next possible

16



accessed branch target buffer entries and the corresponding entry can be placed into

drowsy mode with the branch target buffer to reduced the leakage energy from NBET.

| | I |

: ! : !

\ Branch J | | Branch K |

BTB NBET
Branch I BTE lcation of braic BTE bcaton of braich =
Branch J
Branch [£
LR | |

Figure 3-2: NBET architecture of two-direction pre-active policy

Figure 3-2 is the NBET architecture overview of two-direction pre-active policy.
One NBET entry has two fields: one for taken path and the other for non-taken path.
While executing branch instruction I, we will encounter branch instruction J or K, so
we need to record the location in branch target buffer of branch instruction J and K for
branch instruction 1. We also need a register called “location register (LR)” to record

some information temporarily.
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3.2.2 Operations of Two-direction Based NBET

Branch 1

Branch 2

Figure 3-3: an example

Here we show that NBET how to work. Branch instruction 2 (see figure 3-3) will
be executed after execution of branch instruction 1, for branch instruction 1, we need
to record the location in branch target buffer. Assuming that execution of branch
instruction 1 finishes in EXE stage of the processor pipeline, if branch instruction 1 is
taken or it is in branch target buffer already, its information needs to updated into
branch target buffer. We need to- record fwo things: 1) where the entry saving
information of branch instructien 1.1s located in branch target buffer and 2) whether
branch instruction 1 is taken or-not.x1)-help-to.find:the corresponding entry in BTB
and 2) helps to record where next accessed entry.1s in taken or non-taken path. We use

a register called “Location Register” (LR) to record the information (see figure 3-4).

BTB NBET

[Foenor ot ot vy o sranen 1

Register for recording branch information

Figure 3-4: while updating branch instruction 1 into BTB, we use a register to record
the necessary information
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After executing branch instruction 2 in EXE stage of pipeline. if branch
instruction 2 is taken or it is in branch target buffer already, its information needs to
updated into branch target buffer. Here we have known that where the branch
instruction 2 is located in branch target buffer. Then we can use the information saved
in LR to find the NBET entry corresponding branch instruction 1 to record the

location in branch target buffer of branch instruction 2 (see figure 3-5).

BTB NBET

F

-

| Branch 1 |

/’//
[ Branch2 |
~

Location of branch2

Register for recording branch information

Figure 3-5: while updating branch instruction into BTB, we can write the location
information of branch instruction 2 into the NBET entry corresponding branch
instruction 1.

Figure 3-6 is the overview of BTB location collection circuit. Figure 3-7 shows
that how to write information into location register. The SET of a branch target buffer
entry can be get from the index part of PC. We need a encoder to identify the in which
way the entry is. We also record whether current is taken or not in the DIR field in
location register.. Figure 3-8 shows that we use the information of location register to
find corresponding NBET entry. Then need a demultiplexer to decide which field of

NBET entry to be wrote into.
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NBET write circuit
D Taken [Non-taken
BTB location E
of previous branch 8
D
E
R
Last branch direction
pd T NT
LR [DIR]|
T Current branch direction
BTB location
of current branch

Instruction Address

Figure 3-6: Next BTB location collection circuit

Index

Tag

| Offset |

E Tag Data
Decoder[—®
*—
9
Encoder

Taken or not

)

Set | Way | Taken? |

Location Register

Figure 3-7: how to record NBET location in LR
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Branch location of

currert branch

Set | Way |Taken? |
Way
Decoder Demultiplexer
& .
. w
E Taken ([Non-taken Taken |Non-taken
Set
Decoder

o]

Figure 3-8: how to find corresponding NBET entry and write

[ PC]

ETE lookup circuit
D
E
C
s O N ETE
D
E
R
BTH hit

MEBET lookup circuit

Taken

Mon-taken

133si6a1 uogeo0| g1 A

P re-activation
Register 1

Pre-activation
Register2

Figure 3-9: Lookup-circuit of two direction based NBET
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Register 2 ! O
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Figure 3-10: Pre-activation circuit

Figure 3-9 displays lookup-circuit ofjtwe=direction based NBET. BTB is looked
up every cycle for target address prediction. If BTB hits, it means that current
instruction is a branch instruction and the-outputs of BTB row decoder are latched in
BTB location register. Then, in the“nexticycle, the NBET lookup operation is
performed to get the next BTB location. Note that this operation is performed only
while the BTB lookup is hit in the previous cycle. After NBET lookup operation, the
valid entries of the two corresponding NBET entries are latched in pre-activation
registers. Figure 3-10 presents the pre-activation circuit. It decodes the contents of the
two pre-activation registers to generate the pre-activation signals to power mode

controller of drowsy BTB.
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3.3 One-direction Pre-activation Policy

3.3.1: Why One-direction Pre-activation

There are two drawbacks for two-direction pre-activation. The first one is that
there is a wasted filed at sometimes. For example, unconditional branch instruction is
always taken and highly biased branch instruction is frequently taken or not-taken.
Another drawback is that if we always pre-activate the next possibly accessed BTB
locations along taken and not-taken paths of a branch, at least one pre-activated BTB

entry is unnecessary.

If each NBET entry has only one filedto store the BTB location of next branch
instruction, half of NBET size and pre-activation circuits can be saved and the above
problems can be ignored. Therefore, the problem becomes how to record the most

possible next BTB location in onée-field NBET.

Here we introduce one-direction pre-active policy by branch predictor. Because
the branch predictor can indicates the direction of a branch instruction, we would
pre-activate the possible accessed along the path indicated by branch predictor. And
the predicted direction can be gathered during runtime, we need not to record the next
accessed entries along both direction, we need to record the next possible accessed

entry along the path indicated by branch predictor.
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3.3.2: Design of One-direction Pre-activation

v Voo
b L
|L ElranchJj : Branch K |
BTE NBET
Branch I Mg
Branch J BTE location of
hiranch J or
hranch E
Branch I
LR | |

Figure 3-11: NBET architecture of one=direction pre-active policy

Figure 3-11 is the architeCture-averview: of ‘one-direction pre-active policy by
branch predictor. After execution of branch:instruction I, we will encounter branch
instruction J or K. The NBET entry corresponding branch instruction I will selectively
record where branch instruction J or K is located in branch target buffer. The selection
is decided by branch predictor. Because the NBET record should consists with the
predicted direction, so the NBET record changes only with predicted direction

changing.

Figure 5 shows the state transition diagram of a typical 2-bit branch predictor.
Initially, a taken branch is placed in BTB with weakly-taken (WT) state. The BTB
location of next branch instruction along taken path is recorded in NBET. Then, in the
following executions of the branch instruction, the NBET update is contents only

when the next predicted direction is changed. In 2-bit branch predictor, only while the
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predictor state changes from WT to SNT or WNT to ST, the NBET is needed to be

update.

T l Branch instruction

WT ST
MBET record along 7 * MBET record along
taken path taken path

SNT

MBET recard along
non-taken path

NT

MBET recaord alang —
nan-taken path

Figure 3-12: NBET recording with predictor state

3.3.3 Circuit Modification of One-direction based NBET

NBET write circuit
D | NBET
BTB location E
of previous branch c
(o]
D
E
R
Last branch predicied
Dimsction changes 7
IR IDR]
I
Cumant branch predicied
diraction changes? BTB location
of curent branch

Figure 3-13: Next BTB location collection circuit of on-direction based NBET
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In order to implement one-direction pre-active policy, we need to gather the
kinds of information during run time: 1) whether the predicted direction changes or
not and 2) where the entry saving information of a branch instruction is located in
branch target buffer (see figure 3-14). While updating a branch instruction into branch
target buffer, we can know the predicted direction next time by the state of branch
predictor and whether current execution is taken or not. Because one NBET entry has
only one field to record the next possible accessed branch target buffer, comparison
with two-direction pre-active policy, half of NBET size can be reduced. While we
look up branch target buffer and find current PC value is a branch instruction, we can
use the value of corresponding NBET entry to pre-activate the next possible accessed

branch target buffer entry.

Instruction Address
| Index | Tag | Offset |

E Tag Data

Decoder—®

Encoder

* Fredicted
= direction
changfs?

| Set | way | Change? |
Location Register

Figure 3-14: write information into location register in one-direction pre-active policy
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Branch location of |

current branch l

| Set | Way |Chan e?

Way
Decoder Change = 1?7

.

NBET entry

)

p

Set
Decoder

]

Figure 3-15: writing information into. NBET entry in one-direction pre-active policy

The modifications for NBET fookup and 'pre-activation circuit are trivial.
Therefore, we ignore the description here.

3.4 BTB Entry Deactivation

We adopt decay strategy proposed in [5] to deactivate BTB entries. In this
method, a BTB entry is putted into drowsy mode if this entry has not been accessed
for a period of time (decay interval). For the implementation of decay idea, a global
counter and a set of local counters are required. The global counter reset itself after a
period of time (global interval). The local counter adopted for each BTB entries resets
itself while the corresponding BTB entry is accessed and increments itself at each
time that the global interval is reached. If any local counter reaches its maximum
value, the corresponding BTB and NBET entry is putted into drowsy mode. Note that
the power modes of NBET are managed together to further save the NBET power

overhead.
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Figure 3-16: Gating the deactivation signals for most recently accessed BTB and
NBET entry

With accurate pre-activation, the decay: interval-becomes only about hundreds of
cycles, since the energy overhead: due-to—power mode changes is very small.
Unfortunately, while program execution flow enters into a large basic block, the
previous accessed NBET entry may be deactivated before the next BTB location
updating. Therefore, the previous accessed NBET entry should prevent to be
deactivated. Figure 3-16 shows its implementation circuits. This circuit the gates

deactivation signals for most recently accessed BTB and NBET entry.

3.5 Discussion

There are some situations our proposed pre-active policy can not work well. It is
to say that when we access a branch target buffer entry but it is still in drowsy mode.

We will discuss these situations.
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First, we define perfect pre-activation. If next branch instruction is in branch
target buffer already, it will be translated into to active mode before accessing. If next
branch instruction is not in branch target buffer, no branch target buffer would be
translated into active mode. If pre-activating a branch target buffer entry violates the

roles, it is failed.

The NBET entry corresponding to a branch instruction has no information until
next branch instruction finishes execution. Sometimes the next branch instruction is
put into branch target buffer than current branch instruction, so the NBET has no

information to pre-activate.

Start :
é.ranch 1
é.ranch 2

é.ranch 3(target is start)

Figure 3-17: code segment of a loop

Figure 3-17 is a example of such a situation. When we enter the loop first time,
we encounter branch instruction 1 first, if it is taken, it will be put into branch target
buffer. In the end of this loop, we encounter branch instruction 3. if it is taken , we
will jump to label “Start” and encounter branch instruction 1 next. Since we execute

branch instruction 3 first time, we have no information to pre-activate the branch
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target buffer entry saving branch instruction 1.

There is a period of time from drowsy mode to active mode and it is called
wake-up latency. Assuming the wake-up latency is one cycle penalty. When we
encounter continuous branch instruction, since we has accurate information, we still

can not pre-activate the entry in time.

In our proposed design, we say that there are at most two possible directions of a
branch. We will encounter next branch instructions along both paths. But indirect

jump instruction will destroy the sequence. And it lets our pre-activation to be failed.

Call sub "
Branch 1
Branch 3
Call sub
re.t.u.rn
Branch 2

Figure 3-18: indirect jump destroys the branch instruction execution sequence

In figure 3-18, when we execute upper Call instruction, the processor will enter
the subroutine and executes branch instruction 3 than 1. when we execute the second

Call instruction, the processor will enter the subroutine and execute branch instruction
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3 again, but it will pre-activate the branch target buffer entry saving information about

branch instruction 1, not 2.

Since branch target buffer is a cache like data structure, conflict may happen
sometimes. Sometimes some NBET entry will indicates the same branch target buffer
entry. If a conflict happens and the value of the branch target buffer entry is replaced,
Those NBET entries will save invalid information. But when we access these NBET

entries, we still use the information to pre-activate.

Branch target buffer is a cache of branch instruction. The same as instruction
cache or data cache, the conflict miss will happen on branch target buffer. Once miss
happens, a branch instruction will.be replaced and.corresponding NBET value will be

loss. It may make pre-activation-fail.

In one-direction pre-active policy;.we pre-activate the next possible accessed by
the result of branch predictor. If branch predictor predicts error, then our
pre-activation will fail, either. In two-direction pre-activation, we don’t care the result
of the predicted result, so such situation will not happen, but when NBET has valid
value about taken and non-taken path, it will pre-activate one unnecessary branch

target buffer entry.
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Chapter 4 Evaluation

4.1 Method

It is very difficult to time-consuming to re-design processor and implement my
proposed design methods into it. Another approach is using a simulator to simulate the
behavior of a processor. It is very commonly used approach in architecture design.
Because it is economic than re-design a processor and it is still accurate. By

modifying the simulator, we can observe the result of my proposed design.

I evaluate my design by a simulation-driven simulator. Like a real processor, the
simulator simulates the behavior of the components in a real processor. | will gather
the execution result of my proposed design-through simulating the behavior of my

design.

4.2 Evaluation Metrics

In this research, I use the following metrics to evaluate my proposed design:
- BTB leakage energy consumption
» Performance loss

This two metrics are meaningful for user.

4.2.1 BTB Leakage Energy Consumption

The purpose of my proposed design is to save “energy consumption”, and | focus
on branch target buffer leakage energy. The BTB leakage energy consumptions may

include the extra energy caused by additional hardware and performance loss.
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Therefore, it composed of the following terms:
- BTB leakage energy
« NBET energy
- System leakage energy duo to performance loss

« Energy of extra control logics

We defines the terms as follows:

BTB leakage energy
B [eakage energy consumption of BTB
NBET energy
B [eakage energy consumption of NBET
System leakage energy duo to performance loss
B There are extra cycles dugito performance, the system leakage energy
increases because of execution time increment.
Energy of extra control fagics
B Some hardware are addedito'implement my design, the extra hardware
will consume dynamic energy. It includes the reading and writing
NBET, global and local counter to implement decay, and some logic

diagram.
The leakage energy of BTB and NBET is calculated by the following equation:

Z(active cycles x active energy per cycle + drowsy cycles x drowsy energy per cycle)
every BTB entry

“Active cycles” is the number of cycles that a branch target buffer entry is in
active mode and “Active energy per cycle” is the leakage consumption of a branch

target buffer during a processor cycle. The sum of every branch target buffer’s leakage
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energy consumption is the total leakage energy consumption of a branch target buffer.

4.2.2 Performance Loss

Performance loss means the increment of execution cycle. There is a finite period
of time from drowsy mode to active mode and it so called “wake-up latency”. Here
we assume wake-up latency is one cycle. If we activate a drowsy branch target buffer
entry on demand, the overall system must wait until the entry translated to active
mode. Because the execution time increases, the system leakage energy will increase,
too. The purpose of my design is to hide wake-up latency. The performance loss is

another important metric of my design.

4.3 Environment

The architectural simulator used-in-this.research is the Simplescalar/Alpha 3.0
and xtrem1.0. Simplescalar/Alpha is.acommonly used simulation-driven simulator in
architecture design domain. It is a suite tools for the Alpha ISA. Xtrem1.0 is a
simulator derived form the Simplescalar, but ii is suite to ARM ISA. Table 4-1 are the

main parameters of my simulation environment:

Most of the energy numbers are obtained from the power libraries in XTREM
[12] tool set. The SRAM energy parameters of different power modes and the mode
transition are listed in table 4-2 [13]. The number of execution cycles is obtained from

Simplescalar/Alpha 3.0.
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Table 4-1: Simulation parameters

Parameter Value
Inst. Window 16-RUU, 8-LSQ
Issue Width 4 instructions per cycle

Function Units

4 IntALUs
4 FPALUs

L1 I-cache 16KB, 2-way, 32B block
L1 D-cache 16KB, 2-way, 32B block
I-TLB 32 entries, fully assoc
D-TLB 32 entries, fully assoc
BTB 512-entries, 4-way
Direction Bimodal predictor build
Predictor in BTB

Table 4-2: leakage .energy parameters

Parameter Value

Active leakage energy per BTB entry 0:33 pJleycle
Drowsy leakage energy per BTB entry 0.0495 plicycle
Transition energy 11 pJ

The benchmark | selected in:this-research are Mibench and SPEC2000
benchmark.
Mibench is a free, commercially representative embedded benchmark suite and
consist of six categories
Automotive and Industrial Control
Consumer Device
Network
- Office
Security

+  Telecommunications
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SPEC2000 is another commonly used benchmark for high end processor. | use
these two kinds of benchmark to examine the effectiveness of my design in different

domain of application.

4.4 Experimental Results

Figure 4-1 shows the BTB leakage energy consumption with two-direction
pre-activation policy. The Y-axis in the figure is the ratio of branch target buffer
leakage energy consumption of my design normalized to original branch target buffer
leakage energy consumption. The X-axis are my proposed design with different decay

interval.

The most left bar chart of figure is’ideal-case..From leakage energy parameters,

we have the equation:

transition energy(11pJ)

: =39.21...
active energy(0.33pJ / cycle)— drowsy ‘energy(0.0495pJ / cycle)

For a branch target buffer entry, if the times between two successive accessing
are more than 40 cycle. We will gain leakage reduction if we put the entry into drowsy
mode. If the time is less than 40 cycles, the entry should be in active mode. The ideal
case is to obey the above rule, always pre-activate accurately, and has best energy

saving.

The most right chart bar is the simulation of related work [5]. | will compare

with these two policies.
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BTB Leakage energy components in Mibench
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Figure 4-1: BTB leakage energy comy with two-direction pre-activation of
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Figure 4-2: BTB leakage energy components with one-direction pre-activation of
Mibench
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BTB leakage energy in Mibench
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Figure 4-4: BTB leakage energy components with two-direction pre-activation of
SPEC2000
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BTB leakage energy components in SPEC2000
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Figure 4-5: BTB leakage energy cory _with one-direction pre-activation of
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Figure 4.6: comparison of two-direction and one-direction policy in SPEC2000
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4.5 Discussion

From figure 4-1 and figure 4-2, my design has about 5% better than related work
in Mibench. From figure 4-4 and figure 4-5, my design bas about 14% better than
related work in SPEC2000. The characteristic of the benchmarks makes the result..
Mibench has smaller loop than SPEC2000 and it has the ratio of branch instruction is
smaller than SPEC2000, too. The decay-only strategy has good effect of leakage
energy saving already in Mibench. Although we switch the mode of branch target
buffer entries more aggressively, the improvement is not obvious. In SPEC2000, my
proposed design has better effect. Table 4-3 is my best situation comparing to related

work in these two benchmarks.

Table 4-3: best situation in my design

Benchmark Strategy Energy saving Decay only

Mibench One-direction with | 0:047 0.391836
decay 128

SPEC2000 One-direction with | 0.141 0.521057
decay 128

From figure 4-3 and figure 4-6, we also find that one-direction pre-active policy
is better than two-direction pre-active policy. Although one-direction has poor

performance because branch prediction error, it reduces half of NBET size.

Putting branch target buffer entries into drowsy mode more aggressively may has
better branch target buffer leakage energy saving, but we will encounter more mode
switching. We find that with decay interval decreasing, the leakage energy of branch
target buffer decreases and the system leakage energy increases. So the decay interval
IS non better with smaller value. In my experiment, the best value of decay interval is

128 cycles.
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Performance loss is an important metric of my design. Table 4-4 introduces the

performance loss in my best situation. my proposed still keeps the performance well.

Table 4-4: performance loss of best strategies

benchmark My strategy Performance loss
Mibench One-direction with decay | 0.53%

128
SPEC2000 One-direction with decay | 0.57%

128
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Chapter 5 Conclusion and Future Work

5.1 Conclusion

Since accessing branch target buffer pattern has the characteristic of locality.
Only a small part of branch target buffer will be accessed in a period of time. We pan
put the non-accessed branch target buffer entries into drowsy mode to reduce leakage

energy of branch target buffer.

If we put branch target buffer entries into drowsy mode more aggressively, we
gain more leakage energy reducing. But it will introduce serious wake-up latency. My
proposed effectively hides the wake-up latency. so that the execution time will

increase only a few. The leakage energy will be reduced effectively.

5.2 Future Work

In this research, we reduce the leakage energy of branch target buffer effectively.
But there are other directions to future reduce energy consumption of branch target

buffer.

In some processors, the branch target buffer separates from branch predictor.
Only when branch predictor predicts taken, it needs to access branch target buffer. We

can record the branch target buffer accessed pattern to pre-activate.

Moreover, several related research directions worth further studying. For
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example, power mode managements for instruction caches, data caches, and L2
caches. The management policies are designed according to the different access

patterns
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