
國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

針對低功率 drowsy BTB 設計之預先開啟機制

Next Entries Pre-activation for Low Power Drowsy BTB

研 究 生：潘漢倫

指導教授：單智君 教授

中 華 民 國 九 十 五 年 九 月

 1

針對低功率 drowsy BTB 設計之預先開啟機制

Next Entries Pre-activation for Low Power Drowsy BTB

研 究 生：潘漢倫 Student：Han-Lun Pan

指導教授：單智君 Advisor：Jean Jyn-Jiun Shann

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Information Engineering

September 2006
Hsinchu, Taiwan, Republic of China

中華民國九十五年九月

 2

 3

 4

 5

 6

針對低功率 drowsy BTB 設計之預先開啟機制

學生：潘漢倫 指導教授：單智君 博士

國立交通大學資訊工程學系 (研究所) 碩士班

摘 要

漏電流所造成之電耗已經成為低功率處理器設計上的一項重要考量，特別是

針對更先進的製程。BTB 是一種常見的動態分支預測器。除了快取記憶體之外，

BTB 是 chip 上最大的元件。如果不會被用到的 BTB entry 能被調整至 leakage
saving 的模式，漏電流所造成之電耗可以被節省。然而，由 leakage saving 模式

調整至正常模式，需要一段的時間延遲。因此，這個研究設計出一套預先開啟的

機制，能將下一個即將被存取的 BTB entry 預先調整至正常模式，以隱藏模式轉

換造成之時間延遲，使得我們能藉由更積極的調整 BTB 至低電耗模式來節省更

多在 BTB 上，因為漏電流所造成之電耗。

 i

Next Entries Pre-activation for Low Power

Drowsy BTB

Student：Han-Lun Pan Advisor：Jean Jyn-Jiun Shann

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Chiao Tung

Abstract

Leakage energy consumption is becoming an important design consideration

with the scaling of technology. Branch target buffer (BTB) is a popular kind of branch

predictor. Besides cache, branch predictors are the largest on-chip array structures. If

we put non-accessed branch target buffer entries into leakage saving mode, we gain

branch target buffer leakage energy reduction. However, there is a period of time from

leakage saving mode from normal mode and it introduces system leakage energy

increment. This research proposes an accurate pre-active policy to switch the next

accessed branch target buffer entry from leakage saving mode to normal mode in

order to hide this latency. And we can put BTB entries into leakage saving mode more

aggressively to reduce BTB leakage energy.

 ii

誌 謝

首先感謝我的指導老師 單智君教授，在他的諄諄教誨、辛勤指導與勉勵下，

得以順利完成此篇論文。此外，我想感謝實驗室的另一位指導老師 鍾崇斌教授。

鍾老師除了擔任我的口試委員外，在我的碩士生活中，也給我了許多寶貴的指

導。同時感謝我的口試委員謝萬雲教授，在口試的過程中給予我的建議，使此篇

論文更加完整。

感謝 Low Power 研究群的博士班學長 喬偉豪學長，以及其他實驗室的同

學，熱心的與我討論，給我意見和鼓勵。

最後我要感謝我的家人長久以來毫無保留的給予我支持與鼓勵，讓我能在你

們的關心之中順利的完成學業

謝謝您們！

潘漢倫
2006 年 9 月

 iii

Contents

摘要 …….i

Abstract ……ii

誌謝 …...iii

Contents …...iv

List of Figures …...vi

List of Tables ….viii

Chapter 1 Introduction ……1

1.1 Importance of Low Power Design ……1

1.2 Power Components of CMOS Circuit ……1

1.3 Importance of BTB Leakage Energy Reduction ……2

1.4 Motivation and Objective ……3

1.5 Thesis Organization ……4

Chapter 2 Background and Related Work ……5

2.1 Brief Introduction of Branch Target Buffer ……5

2.2 Circuit Techniques for Reducing SRAM Leakage power ……7

2.3 Related Works of BTB Active Power Reduction ……9

2.4 Related Works of BTB Leakage Power Reduction …..10

2.5 Summary of Related Work …..13

Chapter 3 Proposed Design …..15

 3.1 Overview of Pre-activation Policy …..15

 3.2 Two-direction Pre-active Policy …..16

 3.2.1 Two-direction Based NBET …..16

 3.2.2 Operations of Two-direction Based NBET …..18

 3.3 One-direction Based NBET …..23

 iv

 3.3.1 Why One-direction Pre-activation …..23

 3.3.2 Design of One-direction Pre-activation …..24

 3.3.3 Circuit Modification of One-direction Based NBET …..25

 3.4 BTB Entry Deactivation …..27

 3.5 Discussion …..28

Chapter 4 Evaluation …..32

 4.1 Method …..32

 4.2 Evaluation Metrics …..32

 4.2.1 BTB Leakage Energy Consumption …..32

 4.2.2 Performance Loss …..34

 4.3 Environment …..34

 4.4 Experimental Results …..36

 4.5 Discussion …..40

Chapter 5: Conclusion and Future Work …..42

 5.1 Conclusion …..42

 5.2 Future Work …..42

Reference …..44

 v

List of Figures

Figure 1-1: The ratio of dynamic power to static power source ……2

Figure 2-1 : Branch target buffer overview ……6

Figure 2-2: the subthreshold leakage power reduction of the SRAM cell with DVS 8

Figure 2-3: supply voltage of drowsy SRAM cell ……8

Figure 2-4: how to control the supply voltage of a SRAM cell ……9

Figure 2-5: state diagram for the leakage control circuit in [11] …..11

Figure 2-6: a code fragment with nested loops …..12

Figure 2-7: compilers inserts OFF and ON instructions for (a) the innermost loop

and (b) the outermost loop …..12

Figure 3-1: architecture overview of our design …..15

Figure 3-2: NBET architecture of two-direction pre-active policy …..17

Figure 3-3: an example …..18

Figure 3-4: while updating branch instruction 1 into BTB, we use a register to

record the necessary information …..18

Figure 3-5: while updating branch instruction into BTB, we can write the

location information of branch instruction 2 into the NBET entry

corresponding branch instruction 1. …..19

Figure 3-6: Next BTB location collection circuit …..20

Figure 3-7: how to record NBET location in LR …..20

Figure 3-8: how to find corresponding NBET entry and write …..21

Figure 3-9: Lookup-circuit of two direction based NBET …..21

Figure 3-10: Pre-activation circuit …..22

Figure 3-11: NBET architecture of one-direction pre-active policy …..24

 vi

Figure 3-12: NBET recording with predictor state …..25

Figure 3-13: Next BTB location collection circuit of on-direction based NBET …..25

Figure 3-14: write information into location register in one-direction pre-active

policy …..26

Figure 3-15: writing information into NBET entry in one-direction pre-active

policy …..27

Figure 3-16: Gating the deactivation signals for most recently accessed BTB and

NBET entry …..28

Figure 3-17: code segment of a loop …..29

Figure 3-18: indirect jump destroys the branch instruction execution sequence …..30

Figure 4-1: BTB leakage energy components with two-direction pre-activation

of Mibench …..37

Figure 4-2: BTB leakage energy components with one-direction pre-activation

of Mibench …..37

Figure 4.3: comparison of two-direction and one-direction policy in Mibench …..38

Figure 4-4: BTB leakage energy components with two-direction pre-activation

of SPEC2000 …..38

Figure 4-5: BTB leakage energy components with one-direction pre-activation

of SPEC2000 …..39

Figure 4.6: comparison of two-direction and one-direction policy in SPEC2000 …..39

 vii

List of Tables

Table 4-1: Simulation parameters …..35

Table 4-2: leakage .energy parameters …..35

Table 4-3: best situation in my design …..40

Table 4-4: performance loss of best strategies …..41

 viii

Chapter 1 Introduction

1.1 Importance of Low Power Design

Low power design has become more and more important in microprocessor

design. In embedded system, most portable devices are powered by battery, such as

MP3 player, mobile phone, personal digital assistant (PDA), and etc… The life time

of battery is an important consideration. Low power design helps to increase the life

time of battery. On the other hands, for high-end machines, hardware complexity and

high working voltage produces enormous heat, and high temperature results in some

problems. Low power design reduces power consumption and the heat for high

performance device. So the reliability of system could be promoted.

1.2 Power Components of CMOS Circuit

The power consumption of CMOS transistor consists of two parts: dynamic

power and static power. The dynamic power is also called active power. There are two

parts in dynamic power: switching power is dissipated by charging and discharging

the gate output capacitance and short-circuit power is dissipated by the short-circuit

current that VDD and VSS may be inter mittently shorted during logic gate operation.

The static power is dissipated by leakage current that leaks through transistors, so is

called leakage power. As processor techniques moves below 0.1um, leakage power

consumptions begin dominate the total power consumption of circuit [1]. Figure 1-1

shows the ratio of active power and leakage power in different techniques. How to

reduce leakage becomes an important research issue.

 1

Figure 1-1: The ratio of dynamic power to static power source: EE-Times, 08/06/2004

1.3 Importance of BTB Leakage Energy Reduction

Almost all processors are deeply pipelined today. In order to reduce pipeline stall

cycles due to branch instructions, most processors adopt dynamic branch prediction

techniques. BTB, which is a large on-chip memory with the tag and branch target

address, is used to support dynamic branch prediction. It dissipates 10 % of the

processor’s total dynamic power [2]. Besides caches, BTB is the largest on-chip

memory among a typical processor. Current typical branch target buffer has 512-2048

entries (2-8K bytes) and equals the size of a small cache. In high performance

microprocessors, in order to improve prediction accuracy, BTB has become larger and

larger. For example, Pentium 4 has 4K entries BTB. Moreover, BTB is a thermal

hotspot [3]. The leakage energy of BTB may be more than its size would suggest

since the leakage energy increases exponentially with temperatures increment.

 2

Drowsy cache [4] is a popular circuit technique for SRAM leakage power

reduction. It provides two power modes for each row of SRAM arrays. While the

normal mode is fully functional, the drowsy mode is data preserving only. A drowsy

row needs to be waked up with about one cycle latency if an access requirement is

comes for this row. Since only a small part of BTB entries would be accessed in a

period of time, if the other unused entries can be managed into drowsy mode, the

BTB leakage energy would be reduced

1.4 Motivation and Objective

Branch target buffet is a cache which stores information about branch instruction.

It can gain performance benefit when branch target buffer look-up hit. Since branch

instructions constitute parts of total executed instructions, on the other side, only a

small part of branch target buffer entries will be accessed in a period of execution

time, if those entries not be accessed recently can be put into drowsy mode. Leakage

power consumption could be reduced.

In this research, we proposed a next entry pre-activation method cooperated with

the decay policy [5] to manage power modes of each BTB entries. For the decay

policy, a BTB entry which has not been accessed for a period of time is putted into

drowsy mode. For next entry pre-activation, the possible BTB next entries are cached

for each branch instruction existing in BTB and used to pre-activate the BTB entries

that will be used in the near feature. Unlike the decay management, our method helps

to shorten the decay interval and hide wake-up latency, and both of these benefit

leakage reduction.

 3

For the branch instruction execution, there are at most two possible directions:

taken and non-taken. Moreover, most branch instructions have fixed target addresses.

The behavior of accessing branch target buffer can be tracked during execution time.

For this property, our pre-active policy is to pre-activate the next possible accessed

branch target buffer in both path of the path indicated by branch predictor.

1.5 Thesis Organization

The rest of this paper is organized as follows. Section two presents the related

work of active and leakage reduction techniques. Section three describes our power

mode management policies for BTB. Section four gives the simulation results, and the

last section is our conclusion and possible future work.

 4

Chapter 2 Background and Related Work

2.1 Brief Introduction of Branch Target Buffer(BTB)

Almost all processors are highly pipelined today. For a processor with deep

pipeline, how to reduce control hazard becomes a major topic to improve system

performance. A good dynamic branch prediction is a proper solution.

Branch target buffer (BTB) is a very commonly used dynamic branch predictor.

The major function of BTB is to predict the direction of a branch direction and returns

the target address of the branch. BTB performs branch prediction at the first pipeline

stage. If the branch instruction direction is correctly predicted, the branch penalty

could be reduced to zero. In other words, if all branch instructions can be correctly

predicted, the pipeline will be kept full.

BTB is a cache which stores the information about branch instructions. It consists

of three parts: tag array, data array, and branch direction predictor. The tag array saves

source PC of branch inst ructions, the data array saves the target address of branch

instructions, and branch direction predictor is used to predict whether the branch

instruction will be taken or non-taken. While a branch instruction is executed and

taken, it will be placed into BTB. While execution of the branch instruction next, we

can get the direction information from BTB until this instruction being placed.

 5

Figure 2-1 : Branch target buffer overview

Figure 2-1 is the system overview of branch target buffer in a 5-stage pipeline

processor. When instruction fetcher fetches an instruction in the first pipeline stage, it

sends the address of the instruction (current value of program counter) to look up

branch target buffer. If look-up is hit and predicted taken, it means that current

instruction is a branch instruction and it may be taken. So BTB returns the target

address of this branch instruction. The instruction fetcher fetches the instruction from

the address returned by BTB next cycle. If look-up is not hit or predicted non-taken, it

means that current instruction is not a branch instruction or current branch instruction

may be non-taken. So the instruction fetcher fetches from the address equals to

current pluses the size of an instruction. If the address is correctly predicted, no

branch penalty is introduced for a branch instruction.

All information about branch instructions is gathered during run time. A branch

instruction could be placed into branch target buffer only after is has been executed

and taken. And may be swept out when a conflict happened. We assume that a branch

instruction finishes execution in EXE stage of pipeline. If this branch is not in the

 6

branch target buffer and it is taken, then its target address and predicted direction

would be placed into BTB. If it is in the branch target buffer already, it only modifies

the state of corresponding branch predictor. The branch predictor can predict the

possible direction of the branch instruction execution next time.

2.2 Circuit Techniques for Reducing SRAM Leakage Power

The circuit techniques to reduce SRAM leakage power are classified into

state-destroying and state-preserving techniques. State-destroying techniques such as

gated-Vdd [6] that gates the supply voltage of the SRAM cells in its leakage saving

mode. Therefore, the data stored in SRAM will be loss in this mode and the data need

to refetch if we want to use again.

Unlike the state-destroying methods, state-preserving techniques preserve the

data stored in SRAM cells in its leakage saving mode. One popular method of

state-preserving techniques is scaling the supply voltage of SRAM cells dynamically

[7]. Since higher supply voltage introduces higher leakage power consumption (see

figure 2-2). If we adjust the supply voltage, the leakage power consumption would be

reduced. It provides two power modes with different supply voltages for each row

of SRAM arrays. In active mode, the data stored in SRAM cells can be accessed

arbitrarily. In drowsy mode, the data in SRAM cells is preserved only. If an access

requirement is comes for the drowsy row of the SRAM, it needs to be waked up with

about one cycle latency before accessed.

 7

Figure 2-2: the subthreshold leakage power reduction of the SRAM cell with DVS

Figure 2-3: supply voltage of drowsy SRAM cell

Figure 2-3 is a drowsy SRAM cell with different supply voltage. The two pMOS

control transistors, P1 and P2, control the supply voltage of the SRAM cell. When the

SRAM cell is in the active mode, P1 supplies a standard supply voltage (1V), the

value of the SRAM cell can be accessed normally. When the SRAM cell is in the

drowsy mode, P2 supplies a lower voltage (300mV), however, the SRAM call access

is not allowed. P1 and P2 are controlled by complementary supply voltage control

 8

signals.

Figure 2-4: how to control the supply voltage of a SRAM cell

Figure 2-4 shows that how to control the supply voltage of a SRAM cell. The

supply voltage of a SRAM cell depends on the state of the drowsy bit. If the drowsy

bit is set, the voltage controller supplies low voltage and the SRAM cell is in drowsy

mode. If the drowsy bit is cleared, the voltage controller supplies standard voltage and

the SRAM cell is in active mode. When the SRAM cells are in drowsy mode, it takes

a finite amount of time (wake-up latency) to restore the voltage level from drowsy

mode to active mode, about one or two cycle. If we want to hide the wake-up latency,

pre-active policy is a proper method.

2.3 Related Works of BTB Active Power Reduction

For branch target buffer dynamic energy reduction, since looking up branch

target buffer is only valid when current instruction is a branch instruction and branch

instruction is a small part of total executed instructions, how to skip useless branch

 9

target buffer look-up will help to reduce dynamic energy of branch target buffer.

In[8], instruction are pre-decoded to filter out the non-branch instruction. When

instructions are loaded to instruction cache from memory, they are decoded to identify

if there exists any branch instruction in a certain cache line. The information is stored

in a hardware called Prediction Probe Detector (PPD). When instruction fetches an

instruction from instruction cache, it looks up PPD. If PPD returns that current cache

line contains branch instructions, the instruction fetcher looks up branch target buffer

for all instructions in the cache line. If PPD returns that the cache line contains no

branch instructions. The fetcher need not to look up branch target buffer for all

instructions in current cache line.

In [9], it uses compiler to retrieve the information of branch instructions and

inserts hint instructions to tell the instruction fetcher when to look up branch target

buffer. The instruction fetcher needn’t to look up branch target buffer until

encountering a hint instruction. When the hint instruction is executed, it tells the

instruction fetcher the distance of next branch instruction.

2.4 Related Works of BTB Leakage Power Reduction

For branch target buffer leakage energy reduction, since branch target buffer is a

cache-like data structure, the method for cache leakage energy reduction can be

adapted for branch target buffer leakage energy reduction like decay strategy.

In [10], it applies the decay strategy to branch target buffer for leakage energy

savings. At regular interval, if a BTB entry has not been accessed, they would be

 10

placed into low power mode. The interval, called the decay interval, is measured in

processor cycles and is a critical parameter for this scheme. This paper adapts

state-destroy mode for leakage energy saving. In contrast to the decay strategy for

caches, they find that the decay interval for branch predictor should be larger to avoid

branch misprediction and the best decay interval is 64K cycles.

In [11], it uses a state-preserving leakage control mechanism and a

compiler-directed approach based on loop. It uses a finite state machine with three

states to implement the leakage control circuit (see figure 2-5).

Figure 2-5: state diagram for the leakage control circuit in [11]

The S_OFF and S_ON signals are triggered by OFF and ON instruction inserted

by the compiler. For both the innermost loop and the outermost loop strategies, The

compiler inserts OFF instruction before the loop body and inserts ON instruction after

the loop body (see figure 2-6, figure 2-7).

 11

Figure 2-6: a code fragment with nested loops

Figure 2-7: compilers inserts OFF and ON instructions for (a) the innermost loop and
(b) the outermost loop

The S_BBT and S_BBN signals are generated by the first execution of the

backward branch instruction in the end of the innermost or the outermost loop and the

backward branch instruction can be identified by the compiler. The S_BBT signal is

 12

triggered when the backward branch instruction is taken and the S_BBN signal is

triggered when the backward branch instruction is non-taken.

Initially, the leakage control circuit is in ON state. When encountering an OFF

instruction, the state moves to MASK state and the process will entry a loop. During

first iteration of the loop, the accessed branch predictor entries would be marked. To

implement this strategy, the paper associative a mask bit to each branch target buffer

entry. If the entry is accessed during the first iteration, the bit is set. If the S_BBT

signal is generated, the entries whose mask bit not set will be placed into drowsy

mode. When leaving the loop, the ON instruction will be executed and all branch

predictor entries will be put into active mode. If the S_BBN signal is generated, it

means that this loop has only been executed for one iteration and the state will move

to ON mode.

2.5 Summary of Related Work

In decay approach, so large decay is used to be sure that the decay entry is

invalid, however, so large interval waste the opportunities to reduce BTB leakage

energy. The compiler approach only handles the branch instructions in loop, not

whole program. It may not be suitable to the programs with fewer loops. Second, it

needs to insert extra instructions to support hardware operation so the code size will

increase. The ISA needs to be modified and the system will becomes complex to

implement. Finally, the accessed BTB entries will be keep in normal mode during all

iteration of a loop. However, in a large loop, it is worth to switch the mode of

accessed BTB entries.

 If we adapt drowsy mode as leakage saving mode co-working with a pre-activation

 13

policy, since the data is still preserved, we may gain more BTB leakage energy

reduction by decreasing the value of decay interval and the performance will not

degrade.

 14

Chapter 3 Proposed Design

3.1 Overview of Pre-activation Policy

Generally speaking, for each branch instruction, there are at most two possible

directions, taken or non-taken. Moreover, most branch instructions have fixed target

address. Therefore, for most branch instructions, the possible next branch instructions

on execution path are fixed.

For a drowsy-based BTB, if the next BTB index is revealed to processor early,

the pre-activation operation becomes trivial. Therefore, our research focuses on how

to record the next possible BTB entries.

Figure 3-1: architecture overview of our design

 Figure 3-1 shows the architecture overview of our design. The deactivation

controller puts a BTB entry into drowsy mode if this entry has not been accessed for a

period of time. Next BTB Entry Table (NBET) collects BTB location for next BTB

entry pre-activation.

 15

While executing the code sequence along the possible path, we will encounter the

next branch instruction. If we can record where the next branch instruction is located

in branch target buffer, we can use this information to pre-activate the next possibly

accessed branch target buffer while executing current branch instruction next time.

3.2 Two-direction Pre-activation Policy

For pre-activating the next possible accessed entry, we need to record two things:

1) the executed code sequence of branch instructions and 2) where a branch

instruction is located in branch target buffer. The information can be gathered during

execution time.

Since there are at most two directions for each branch instruction, we must

record the next possible accessed branch target buffer for a branch instruction along

taken and non-taken path. In order to record the two possible next BTB locations

(which set and which way in BTB) of all branch instructions existing in BTB, we

configure NBET as two-direction based NBET which has the same number of entries

as BTB. Each entry has two fields: one for next BTB entry of taken path and another

one for not-taken path.

3.2.1 Two-direction based NBET

We need to record the necessary information of every branch instruction.

Because a branch instruction may be placed into to one branch target buffer, so a

branch target buffer entry has a corresponding NBET entry to record the next possible

 16

accessed branch target buffer entries and the corresponding entry can be placed into

drowsy mode with the branch target buffer to reduced the leakage energy from NBET.

Figure 3-2: NBET architecture of two-direction pre-active policy

Figure 3-2 is the NBET architecture overview of two-direction pre-active policy.

One NBET entry has two fields: one for taken path and the other for non-taken path.

While executing branch instruction I, we will encounter branch instruction J or K, so

we need to record the location in branch target buffer of branch instruction J and K for

branch instruction I. We also need a register called “location register (LR)” to record

some information temporarily.

 17

3.2.2 Operations of Two-direction Based NBET

Figure 3-3: an example

Here we show that NBET how to work. Branch instruction 2 (see figure 3-3) will

be executed after execution of branch instruction 1, for branch instruction 1, we need

to record the location in branch target buffer. Assuming that execution of branch

instruction 1 finishes in EXE stage of the processor pipeline, if branch instruction 1 is

taken or it is in branch target buffer already, its information needs to updated into

branch target buffer. We need to record two things: 1) where the entry saving

information of branch instruction 1 is located in branch target buffer and 2) whether

branch instruction 1 is taken or not. 1) help to find the corresponding entry in BTB

and 2) helps to record where next accessed entry is in taken or non-taken path. We use

a register called “Location Register” (LR) to record the information (see figure 3-4).

Figure 3-4: while updating branch instruction 1 into BTB, we use a register to record
the necessary information

 18

After executing branch instruction 2 in EXE stage of pipeline. if branch

instruction 2 is taken or it is in branch target buffer already, its information needs to

updated into branch target buffer. Here we have known that where the branch

instruction 2 is located in branch target buffer. Then we can use the information saved

in LR to find the NBET entry corresponding branch instruction 1 to record the

location in branch target buffer of branch instruction 2 (see figure 3-5).

Figure 3-5: while updating branch instruction into BTB, we can write the location
information of branch instruction 2 into the NBET entry corresponding branch
instruction 1.

Figure 3-6 is the overview of BTB location collection circuit. Figure 3-7 shows

that how to write information into location register. The SET of a branch target buffer

entry can be get from the index part of PC. We need a encoder to identify the in which

way the entry is. We also record whether current is taken or not in the DIR field in

location register.. Figure 3-8 shows that we use the information of location register to

find corresponding NBET entry. Then need a demultiplexer to decide which field of

NBET entry to be wrote into.

 19

Figure 3-6: Next BTB location collection circuit

Figure 3-7: how to record NBET location in LR

 20

Figure 3-8: how to find corresponding NBET entry and write

Figure 3-9: Lookup-circuit of two direction based NBET

 21

Figure 3-10: Pre-activation circuit

Figure 3-9 displays lookup-circuit of two-direction based NBET. BTB is looked

up every cycle for target address prediction. If BTB hits, it means that current

instruction is a branch instruction and the outputs of BTB row decoder are latched in

BTB location register. Then, in the next cycle, the NBET lookup operation is

performed to get the next BTB location. Note that this operation is performed only

while the BTB lookup is hit in the previous cycle. After NBET lookup operation, the

valid entries of the two corresponding NBET entries are latched in pre-activation

registers. Figure 3-10 presents the pre-activation circuit. It decodes the contents of the

two pre-activation registers to generate the pre-activation signals to power mode

controller of drowsy BTB.

 22

3.3 One-direction Pre-activation Policy

3.3.1: Why One-direction Pre-activation

There are two drawbacks for two-direction pre-activation. The first one is that

there is a wasted filed at sometimes. For example, unconditional branch instruction is

always taken and highly biased branch instruction is frequently taken or not-taken.

Another drawback is that if we always pre-activate the next possibly accessed BTB

locations along taken and not-taken paths of a branch, at least one pre-activated BTB

entry is unnecessary.

If each NBET entry has only one filed to store the BTB location of next branch

instruction, half of NBET size and pre-activation circuits can be saved and the above

problems can be ignored. Therefore, the problem becomes how to record the most

possible next BTB location in one-field NBET.

Here we introduce one-direction pre-active policy by branch predictor. Because

the branch predictor can indicates the direction of a branch instruction, we would

pre-activate the possible accessed along the path indicated by branch predictor. And

the predicted direction can be gathered during runtime, we need not to record the next

accessed entries along both direction, we need to record the next possible accessed

entry along the path indicated by branch predictor.

 23

3.3.2: Design of One-direction Pre-activation

Figure 3-11: NBET architecture of one-direction pre-active policy

Figure 3-11 is the architecture overview of one-direction pre-active policy by

branch predictor. After execution of branch instruction I, we will encounter branch

instruction J or K. The NBET entry corresponding branch instruction I will selectively

record where branch instruction J or K is located in branch target buffer. The selection

is decided by branch predictor. Because the NBET record should consists with the

predicted direction, so the NBET record changes only with predicted direction

changing.

Figure 5 shows the state transition diagram of a typical 2-bit branch predictor.

Initially, a taken branch is placed in BTB with weakly-taken (WT) state. The BTB

location of next branch instruction along taken path is recorded in NBET. Then, in the

following executions of the branch instruction, the NBET update is contents only

when the next predicted direction is changed. In 2-bit branch predictor, only while the

 24

predictor state changes from WT to SNT or WNT to ST, the NBET is needed to be

update.

Figure 3-12: NBET recording with predictor state

3.3.3 Circuit Modification of One-direction based NBET

Figure 3-13: Next BTB location collection circuit of on-direction based NBET

 25

In order to implement one-direction pre-active policy, we need to gather the

kinds of information during run time: 1) whether the predicted direction changes or

not and 2) where the entry saving information of a branch instruction is located in

branch target buffer (see figure 3-14). While updating a branch instruction into branch

target buffer, we can know the predicted direction next time by the state of branch

predictor and whether current execution is taken or not. Because one NBET entry has

only one field to record the next possible accessed branch target buffer, comparison

with two-direction pre-active policy, half of NBET size can be reduced. While we

look up branch target buffer and find current PC value is a branch instruction, we can

use the value of corresponding NBET entry to pre-activate the next possible accessed

branch target buffer entry.

Figure 3-14: write information into location register in one-direction pre-active policy

 26

Figure 3-15: writing information into NBET entry in one-direction pre-active policy

The modifications for NBET lookup and pre-activation circuit are trivial.
Therefore, we ignore the description here.

3.4 BTB Entry Deactivation

We adopt decay strategy proposed in [5] to deactivate BTB entries. In this

method, a BTB entry is putted into drowsy mode if this entry has not been accessed

for a period of time (decay interval). For the implementation of decay idea, a global

counter and a set of local counters are required. The global counter reset itself after a

period of time (global interval). The local counter adopted for each BTB entries resets

itself while the corresponding BTB entry is accessed and increments itself at each

time that the global interval is reached. If any local counter reaches its maximum

value, the corresponding BTB and NBET entry is putted into drowsy mode. Note that

the power modes of NBET are managed together to further save the NBET power

overhead.

 27

Figure 3-16: Gating the deactivation signals for most recently accessed BTB and

NBET entry

With accurate pre-activation, the decay interval becomes only about hundreds of

cycles, since the energy overhead due to power mode changes is very small.

Unfortunately, while program execution flow enters into a large basic block, the

previous accessed NBET entry may be deactivated before the next BTB location

updating. Therefore, the previous accessed NBET entry should prevent to be

deactivated. Figure 3-16 shows its implementation circuits. This circuit the gates

deactivation signals for most recently accessed BTB and NBET entry.

3.5 Discussion

There are some situations our proposed pre-active policy can not work well. It is

to say that when we access a branch target buffer entry but it is still in drowsy mode.

We will discuss these situations.

 28

First, we define perfect pre-activation. If next branch instruction is in branch

target buffer already, it will be translated into to active mode before accessing. If next

branch instruction is not in branch target buffer, no branch target buffer would be

translated into active mode. If pre-activating a branch target buffer entry violates the

roles, it is failed.

The NBET entry corresponding to a branch instruction has no information until

next branch instruction finishes execution. Sometimes the next branch instruction is

put into branch target buffer than current branch instruction, so the NBET has no

information to pre-activate.

Figure 3-17: code segment of a loop

Figure 3-17 is a example of such a situation. When we enter the loop first time,

we encounter branch instruction 1 first, if it is taken, it will be put into branch target

buffer. In the end of this loop, we encounter branch instruction 3. if it is taken , we

will jump to label “Start” and encounter branch instruction 1 next. Since we execute

branch instruction 3 first time, we have no information to pre-activate the branch

 29

target buffer entry saving branch instruction 1.

There is a period of time from drowsy mode to active mode and it is called

wake-up latency. Assuming the wake-up latency is one cycle penalty. When we

encounter continuous branch instruction, since we has accurate information, we still

can not pre-activate the entry in time.

In our proposed design, we say that there are at most two possible directions of a

branch. We will encounter next branch instructions along both paths. But indirect

jump instruction will destroy the sequence. And it lets our pre-activation to be failed.

Figure 3-18: indirect jump destroys the branch instruction execution sequence

In figure 3-18, when we execute upper Call instruction, the processor will enter

the subroutine and executes branch instruction 3 than 1. when we execute the second

Call instruction, the processor will enter the subroutine and execute branch instruction

 30

3 again, but it will pre-activate the branch target buffer entry saving information about

branch instruction 1, not 2.

Since branch target buffer is a cache like data structure, conflict may happen

sometimes. Sometimes some NBET entry will indicates the same branch target buffer

entry. If a conflict happens and the value of the branch target buffer entry is replaced,

Those NBET entries will save invalid information. But when we access these NBET

entries, we still use the information to pre-activate.

Branch target buffer is a cache of branch instruction. The same as instruction

cache or data cache, the conflict miss will happen on branch target buffer. Once miss

happens, a branch instruction will be replaced and corresponding NBET value will be

loss. It may make pre-activation fail.

In one-direction pre-active policy, we pre-activate the next possible accessed by

the result of branch predictor. If branch predictor predicts error, then our

pre-activation will fail, either. In two-direction pre-activation, we don’t care the result

of the predicted result, so such situation will not happen, but when NBET has valid

value about taken and non-taken path, it will pre-activate one unnecessary branch

target buffer entry.

 31

Chapter 4 Evaluation

4.1 Method

It is very difficult to time-consuming to re-design processor and implement my

proposed design methods into it. Another approach is using a simulator to simulate the

behavior of a processor. It is very commonly used approach in architecture design.

Because it is economic than re-design a processor and it is still accurate. By

modifying the simulator, we can observe the result of my proposed design.

I evaluate my design by a simulation-driven simulator. Like a real processor, the

simulator simulates the behavior of the components in a real processor. I will gather

the execution result of my proposed design through simulating the behavior of my

design.

4.2 Evaluation Metrics

In this research, I use the following metrics to evaluate my proposed design:

‧BTB leakage energy consumption

‧Performance loss

This two metrics are meaningful for user.

4.2.1 BTB Leakage Energy Consumption

The purpose of my proposed design is to save “energy consumption”, and I focus

on branch target buffer leakage energy. The BTB leakage energy consumptions may

include the extra energy caused by additional hardware and performance loss.

 32

Therefore, it composed of the following terms:

 ‧BTB leakage energy

 ‧NBET energy

 ‧System leakage energy duo to performance loss

 ‧Energy of extra control logics

We defines the terms as follows:

‧ BTB leakage energy

 leakage energy consumption of BTB

‧ NBET energy

 Leakage energy consumption of NBET

‧ System leakage energy duo to performance loss

 There are extra cycles due to performance, the system leakage energy

increases because of execution time increment.

‧ Energy of extra control logics

 Some hardware are added to implement my design, the extra hardware

will consume dynamic energy. It includes the reading and writing

NBET, global and local counter to implement decay, and some logic

diagram.

The leakage energy of BTB and NBET is calculated by the following equation:

()∑ ×+×
entryBTBevery

cycleperenergydrowsycyclesdrowsycycleperenergyactivecyclesactive

“Active cycles” is the number of cycles that a branch target buffer entry is in

active mode and “Active energy per cycle” is the leakage consumption of a branch

target buffer during a processor cycle. The sum of every branch target buffer’s leakage

 33

energy consumption is the total leakage energy consumption of a branch target buffer.

4.2.2 Performance Loss

Performance loss means the increment of execution cycle. There is a finite period

of time from drowsy mode to active mode and it so called “wake-up latency”. Here

we assume wake-up latency is one cycle. If we activate a drowsy branch target buffer

entry on demand, the overall system must wait until the entry translated to active

mode. Because the execution time increases, the system leakage energy will increase,

too. The purpose of my design is to hide wake-up latency. The performance loss is

another important metric of my design.

4.3 Environment

The architectural simulator used in this research is the Simplescalar/Alpha 3.0

and xtrem1.0. Simplescalar/Alpha is a commonly used simulation-driven simulator in

architecture design domain. It is a suite tools for the Alpha ISA. Xtrem1.0 is a

simulator derived form the Simplescalar, but ii is suite to ARM ISA. Table 4-1 are the

main parameters of my simulation environment:

Most of the energy numbers are obtained from the power libraries in XTREM

[12] tool set. The SRAM energy parameters of different power modes and the mode

transition are listed in table 4-2 [13]. The number of execution cycles is obtained from

Simplescalar/Alpha 3.0.

 34

Table 4-1: Simulation parameters
Parameter Value
Inst. Window
Issue Width
Function Units

L1 I-cache
L1 D-cache
I-TLB
D-TLB
BTB
Direction
Predictor

16-RUU, 8-LSQ
4 instructions per cycle
4 IntALUs
4 FPALUs
16KB, 2-way, 32B block
16KB, 2-way, 32B block
32 entries, fully assoc
32 entries, fully assoc
512-entries, 4-way
Bimodal predictor build
in BTB

Table 4-2: leakage .energy parameters
Parameter Value
Active leakage energy per BTB entry 0.33 pJ/cycle
Drowsy leakage energy per BTB entry 0.0495 pJ/cycle
Transition energy 11 pJ

The benchmark I selected in this research are Mibench and SPEC2000

benchmark.

Mibench is a free, commercially representative embedded benchmark suite and

consist of six categories

‧ Automotive and Industrial Control

‧ Consumer Device

‧ Network

‧ Office

‧ Security

‧ Telecommunications

 35

SPEC2000 is another commonly used benchmark for high end processor. I use

these two kinds of benchmark to examine the effectiveness of my design in different

domain of application.

4.4 Experimental Results

Figure 4-1 shows the BTB leakage energy consumption with two-direction

pre-activation policy. The Y-axis in the figure is the ratio of branch target buffer

leakage energy consumption of my design normalized to original branch target buffer

leakage energy consumption. The X-axis are my proposed design with different decay

interval.

The most left bar chart of figure is ideal case. From leakage energy parameters,

we have the equation:

()

() () ...21.39
/0495.0/33.0

11
=

− cyclepJenergydrowsycyclepJenergyactive
pJenergytransition

For a branch target buffer entry, if the times between two successive accessing

are more than 40 cycle. We will gain leakage reduction if we put the entry into drowsy

mode. If the time is less than 40 cycles, the entry should be in active mode. The ideal

case is to obey the above rule, always pre-activate accurately, and has best energy

saving.

The most right chart bar is the simulation of related work [5]. I will compare

with these two policies.

 36

BTB Leakage energy components in Mibench

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Ideal 32 64 128 256 512 1024 2048 Decay only 2K

Decay interval

B
T

B
 l

ea
ka

ge
 e

ne
rg

y

BTB_S_energy trans_energy S_overhead D_overhead

Figure 4-1: BTB leakage energy components with two-direction pre-activation of
Mibench

BTB leakage energy components in Mibench

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Ideal 32 64 128 256 512 1024 2048 Decay only 2K

Decay interval

B
T

B
 l
ea

ka
ge

 e
ne

rg
y

BTB_S_energy trans_energy S_overhead D_overhead

Figure 4-2: BTB leakage energy components with one-direction pre-activation of
Mibench

 37

BTB leakage energy in Mibench

0%

10%

20%

30%

40%

50%

32 64 128 256 512 1024 2048

Decay interval

B
T

B
 le

ak
ag

e
en

er
gy

Two-Direction One-direction

Figure 4.3: comparison of two-direction and one-direction policy in Mibench

BTB leakage energy components in SPEC2000

0%

10%

20%

30%

40%

50%

60%

70%

Ideal 32 64 128 256 512 1024 2048 Decay only 8K

Decay interval

B
T

B
 l

ea
ka

ge
 e

ne
rg

y

BTB_S_energy trans_energy S_overhead D_overhead

Figure 4-4: BTB leakage energy components with two-direction pre-activation of
SPEC2000

 38

BTB leakage energy components in SPEC2000

0%

10%

20%

30%

40%

50%

60%

70%

Ideal 32 64 128 256 512 1024 2048 Decay only 8K

Decay interval

B
T

B
 l

ea
ka

ge
 e

ne
rg

y

BTB_S_energy trans_energy S_overhead D_overhead

Figure 4-5: BTB leakage energy components with one-direction pre-activation of
SPEC2000

BTB leakage energy in SPEC2000

0%

10%

20%

30%

40%

50%

60%

70%

32 64 128 256 512 1024 2048

Decay interval

B
T

B
 le

ak
ag

e
en

er
gy

Two-Direction One-direction

Figure 4.6: comparison of two-direction and one-direction policy in SPEC2000

 39

4.5 Discussion

From figure 4-1 and figure 4-2, my design has about 5% better than related work

in Mibench. From figure 4-4 and figure 4-5, my design bas about 14% better than

related work in SPEC2000. The characteristic of the benchmarks makes the result..

Mibench has smaller loop than SPEC2000 and it has the ratio of branch instruction is

smaller than SPEC2000, too. The decay-only strategy has good effect of leakage

energy saving already in Mibench. Although we switch the mode of branch target

buffer entries more aggressively, the improvement is not obvious. In SPEC2000, my

proposed design has better effect. Table 4-3 is my best situation comparing to related

work in these two benchmarks.

Table 4-3: best situation in my design
Benchmark Strategy Energy saving Decay only
Mibench One-direction with

decay 128
0.047 0.391836

SPEC2000 One-direction with
decay 128

0.141 0.521057

From figure 4-3 and figure 4-6, we also find that one-direction pre-active policy

is better than two-direction pre-active policy. Although one-direction has poor

performance because branch prediction error, it reduces half of NBET size.

Putting branch target buffer entries into drowsy mode more aggressively may has

better branch target buffer leakage energy saving, but we will encounter more mode

switching. We find that with decay interval decreasing, the leakage energy of branch

target buffer decreases and the system leakage energy increases. So the decay interval

is non better with smaller value. In my experiment, the best value of decay interval is

128 cycles.

 40

Performance loss is an important metric of my design. Table 4-4 introduces the

performance loss in my best situation. my proposed still keeps the performance well.

Table 4-4: performance loss of best strategies

benchmark My strategy Performance loss
Mibench One-direction with decay

128
0.53%

SPEC2000 One-direction with decay
128

0.57%

 41

Chapter 5 Conclusion and Future Work

5.1 Conclusion

Since accessing branch target buffer pattern has the characteristic of locality.

Only a small part of branch target buffer will be accessed in a period of time. We pan

put the non-accessed branch target buffer entries into drowsy mode to reduce leakage

energy of branch target buffer.

If we put branch target buffer entries into drowsy mode more aggressively, we

gain more leakage energy reducing. But it will introduce serious wake-up latency. My

proposed effectively hides the wake-up latency so that the execution time will

increase only a few. The leakage energy will be reduced effectively.

5.2 Future Work

In this research, we reduce the leakage energy of branch target buffer effectively.

But there are other directions to future reduce energy consumption of branch target

buffer.

In some processors, the branch target buffer separates from branch predictor.

Only when branch predictor predicts taken, it needs to access branch target buffer. We

can record the branch target buffer accessed pattern to pre-activate.

 Moreover, several related research directions worth further studying. For

 42

example, power mode managements for instruction caches, data caches, and L2

caches. The management policies are designed according to the different access

patterns

 43

Reference

[1] NS Kim, T. Austin, D. Blaauw, T. Mudge, K.Flautner, JS Hu, Mj Irwin, M.
Kandemir, and V. Narayanan, “Leakage Current: Moore’s Law Meets Static Power”,
IEEE Computer Society, Volume 36, Issue 12, pages 68-75, December 2003.

[2] D. Parikh, K. Skadron, Y. Zhang, and M. Stan. “Power-aware Branch Prediction:
Characterization and Design”, IEEE Transactions on Computers, Volume 53, Issue 2,
pages 168-186, February 2004.

[3] K. Skadron, T. Abdelzaher, and M. R. Stan. “Control-theoretic Technique and
Thermal-RC Modeling for Accurate and Localized Dynamic Thermal Management”,
In Proceedings of the 8th International Symposium on High-Performance Computer
Architecture, pages 17-28, February 2002.

[4] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge. “Drowsy caches:
Simple techniques for Reducing Leakage Power”, In Proceeding of the 29th
International Symposium on Computer Architecture, pages 148-157, May 2002.

[5] Z. Hu, P. Juang, K. Skadron, D. Clark and M. Nartonosi “Applying Decay
Strategies to Branch Predictors for Leakage Energy Savings”, In Proceedings of the
2002 IEEE International Conference on Computer Design: VLSI in Computers and
Processors, pages 442-445, September 2002.

[6] M. D. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar, “Gated Vdd:
A Circuit Technique to Reduce Leakage in Cache Memories”, In Proceedings of the
International Symposium on Low Power Electronics and Design, pages 90-95, July
2000.

[7] N. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Circuit and Microarchitectural
Techniques for Reducing Cache Leakage Power”, IEEE Transactions on Very Large
Scale Integration Systems, Volume 12, Issue 2, pages 167-184, February 2004.

[8]D. Parikh, K. Skadron, Y. Zhang, and M. Stan, “Power-aware Branch Prediction:
Characterization and Design”, 2004.

 44

http://www.informatik.uni-trier.de/%7Eley/db/conf/islped/index.html

[9]M. Monchiero, G.Palermo, M. Sami, C.Silvano, V. Zaccaria, and R. Zafalon,
“Power-aware Branch Prediction Techniques: A Compiler-hints based Approach for
VLIW Processors”, 2004

[10] Wei Zhang, Bramha Allu “Loop-based Leakage Control for Branch Predictors”,
In Proceedings of the 2004 International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, pages 149-155, September 2004.

[11] D.C. Burger and T. M. Austin. “The Simplescalar Tool Set, Version 2.0”, ACM
SIGARCH Computer Architecture News, Volume 25, Issue 3, pages 13-25, June
1997.

[12] Gilberto Contreras, Margaret Martonosi, Jinzhan Peng, Roy Ju, and Guei-Yuan
Lueh “XTREM: A Power Similator for the Intel XScale ® Core”, In Proceedings of
the 2004 ACM SIGPLAN/SIGBED conference on Languages, compilers, and tools
for embedded systems, pages 115-125, June 2004.

[13] W. Zhang, M. Karakoy, M. Kandemir, G. Chen “Reducing Data Cache Leakage
Energy Using a Compiler-based Approach”, ACM Transactions on Embedded
Computing Systems, Volume 4, Issue 3, pages 652-678, August 2005.

 45

