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Abstract 
 Narrow Bus is a Bus with narrower width than data width. The Bus with the 
same width with data width is called normal Bus. This thesis will focus on 8-bit width 
Bus and 32-bit width data environment. Using narrow Bus can save chip area but the 
Bus transactions will be raised. Most area constraint systems hope to use narrow Bus 
but they cannot tolerate the performance loss and extra system static energy 
consumption caused by additional Bus transactions. I add some functions to the 
transmitter and corresponding receiver to reduce Bus transactions on narrow Bus. I 
will adopt suitable coding methods to the proposed transmitter depending on the 
stream type. In instruction address stream, I use T0-C to utilize the sequential 
property and narrow Bus DAT to utilize the branch behavior property. In data address 
stream, variable stride algorithm, historical addresses algorithm and the idea of 
SRWEC (Separated Read/Write Encoding Contents) are used. In instruction stream, a 
code compression algorithm is used to reduce the instruction size. In data stream, the 
idea of SRWEC, the occurrence of small value and the relationship between data are 
utilized. The number of narrow Bus transaction is four times of the number of normal 
Bus transactions. In other words, the Bus transactions of normal Bus are 25% of the 
Bus transactions of narrow Bus without coding. I hope to reduce the number of 
narrow Bus transactions of streams as close to 25% as possible so that the extra Bus 
transactions overhead is slighter and there will be more systems are willing to use 
narrow Bus.  
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摘  要 

 窄匯流排是指寬度比資料寬度要小的匯流排，而和資料寬度等寬的匯流排則

稱一般匯流排，這篇論文將針對使用 8-bit 寬的匯流排來傳送 32-bit 寬的資料的

環境，使用窄匯流排可以節省晶片面積但是卻需要較多的傳送次數，大部分著重

面積考量的系統希望能使用窄匯流排卻無法容忍效能和額外能量的損失，我新增

了些功能給傳送端和接收端以減少在窄匯流排上的傳送次數，針對不同的資訊

流，我將提出不同的方法，在指令位址流上，我使用 T0-C 以利用其連續的特性

而使用 NBDAT 去利用其不連續的特性，在資料位址流上，我使用 variable stride 

algorithm、historical address algorithm 和 SRWEC (Separated Read/Write Encoding 

Contents) 的概念，在指令流上，我使用指令壓縮的技巧來減少傳送次數，在資

料流上，我使用 SRWEC 和一些減少資料大小的概念以減少傳送次數，在我的環

境下，一筆資料若不編碼將需要四次傳送，因此，我的編碼的最低傳送次數比例

是 25%，我將儘可能將傳送次數減少至 25%，如此一來，將有更多系統會願意

使用窄匯流排。 
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Chapter 1: Introduction 
In modern computer architecture design, the area, energy consumption, and 
performance are some main considering factors. However, these factors are conflict 
with each other on design in most time. In this chapter, I will introduce and compare 
the environment of narrow Bus and normal Bus on these factors. And then I will 
describe my observation, motivation and objective. On the end of this chapter is the 
organization of this thesis. 
 
1.1 Narrow Bus Environment and Normal Bus Environment 
 
The narrow Bus is a Bus with narrower width than data width. The normal Bus is a 
Bus with the same width with data width. In intrinsic characteristic, the narrow Bus 
will have less routing area and lower routing complexity than normal Bus. However, 
if a system uses narrow Bus with one-forth width of data width, it needs four times 
Bus transactions than normal Bus to transmit data. For example, if a system uses 8-bit 
width Bus to transmit 32-bit width data, it needs to send 8-bit fragments four times. 
(This thesis will focus on 8-bit width Bus and 32-bit width data environment.) This 
will cause system performance loss and more static energy consumption on devices. 
Basing on this intrinsic characteristic difference, the time constraint systems will use 
normal Bus and the area constraint systems will prefer narrow Bus.  
 
1.2 Research Observation, Motivation and Objective 
 
There should be many area constraint systems hope to use narrow Bus to save routing 
area; however, they may give up because they cannot tolerate the severely 
performance loss and additional static energy consumption caused by extra Bus 
transactions.  
 
In this thesis, I assume the environment is using 8-bit width Bus to transmit 32-bit 
width data. In this situation, the number of Bus transactions will rise to four times. 
However, there are some opportunities can be used to reduce Bus transactions. First, 
the sender can skip the regular portion of a codeword without sending, and inform the 
receiver what the regularity is. Second, when the data is regular, the sender can use a 
protocol to inform the receiver what the regularity is instead of sending the data.  
 
As mentioned before, the different systems will have different constraint on area, 
performance and energy consumption. A system which decides to use narrow Bus 
should be a high area constraint system. I hope to reduce the additional Bus 
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transactions by tolerable area overhead of coding logic gates and extra control lines. 
The different systems can tolerate different area overhead, so I will propose several 
methods for systems to use without proposing so-called “Best Choice”. My objective 
is using narrow Bus encoding to reduce Bus transactions at narrow Bus environment. 
In this way, there should be more system willing to use narrow Bus. 
 
1.3 The Environment and Assumptions 
 
In this thesis, I will deal with the traffic between processor and memory. The 
processor and memory communicate by external Bus and there is no cache in this 
system. I use 8-bit width external Bus to transmit 32-bit width data (address). Figure 
1-1 is the architecture of my environment 

 
Figure 1-1: Narrow Bus Architecture 

The area overhead caused by coding logic gates depends on the processing technology. 
The area overhead caused by extra control lines depends on the processing technology 
and routing length. Both of them are decided case by case. It is hard to evaluate the 
weighting of them. Base on my environment, I simplify the area overhead to the 
number of extra control lines. In other words, I assume the area overhead of coding 
logic gates is much slighter than extra control lines. Of course, system designers can 
get the area overhead according to their own system environments. 
 
1.4 Organization 
 
The rest of this thesis is organized as follow. Chapter 2 is the background of the 
characteristics of streams and some useful coding methods. In chapter 3, I will 
introduce my coding flow and then the proposed methods. The statistics and 
simulation result will be presented in chapter 4. At last, some summary, discussions, 
and conclusions are in chapter 5. 
 

Chapter 2: Background 
In order to reduce Bus transactions, this thesis utilize two opportunities. As mentioned 
in chapter 1, first opportunity is to skip the regular portion of a codeword without 
sending, and inform the receiver what the regularity is. Second opportunity is when 
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the data is regular; the sender can use a protocol to inform the receiver what the 
regularity is instead of sending the data. I will introduce some regularity below. The 
end of this chapter is some of the existing normal Bus coding methods. Some of these 
coding methods use protocol to reduce bit toggles and which can be used on narrow 
Bus to reduce Bus transactions 
 
2.1 Redundant and Effective Fragments 
 
I will explain some nouns I used in following chapter.  
 
2.1.1Redundant bits: 
 
The general definition of redundant bits is the additional bits added to the original 
information data for some specific purposes. However, I use this noun here as the bits 
which have the regular property. There may be different regular bits types at different 
kinds of stream. When dealing with different streams, the default regular bits type will 
be different. Followings are some kinds of regular bits types. 
 
Type 1: Repeated Bits (The Same Leading Bits with Previous Value):  
This type often occurs at address stream because of the values of successive addresses 
are often close. When the current address is not too far from previous address, this 
two address values will be similar and there will be many identical leading bits. 
Sometimes the data stream has this property because of the relationship, too. If two 
successive accessed data values have relationship, these two values have chance to be 
close and have some identical leading bits. 

 
Type 2: Insignificant Bits (Sign Extension):  
This type often occurs at data stream because of the occurrence of small values. The 
small positive values will be with many leading 0’s and the small negative values will 
be with many leading 1’s. 
 
In this thesis, I will only utilize these two kinds of redundant bits mentioned above. 
Depending on different systems, applications or Bus interfaces, there may be some 
special types of redundant bits can be utilized. Take AMBA for example, whenever 
the data width is smaller than Bus width, it will copy the data to other vacant Bus 
space. Those special types of redundant bits can be utilized case by case but this thesis 
won’t focus on them. Figure 2-1 is some examples of upper described redundant bits 
types. 
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Figure 2-1: types of redundant bits 

 
2.1.2Effective Bits: 
 
Effective bits are the opposition of redundant bits. In other words, a bit will be 
effective bit if it is not redundant bit. 
 
2.1.3Effective Fragments and Redundant Fragments 
 
This thesis will focus on 8-bit width external Bus and 32-bit width data environment. 
The 32-bit data can be separated into several fragments. If a fragment is composed of 
effective bits and redundant bits, or composed only of effective bits, I call this 
fragment as effective fragment. If a fragment is composed of only redundant bits, it is 
called redundant fragment. 
 
2.2 Related Coding Methods 
 
Following are some of normal Bus coding methods and they have chance to be 
adopted on narrow Bus to reduce Bus transactions. “Asymptotic Zero-Transition 
Activity Encoding for Address Busses in Low-Power Microprocessor-Based Systems” 
(T0), “Irredundant Address Bus Encoding for Low Power” (T0-C, a modified T0), 
and discontinuous address table algorithm (DAT) are originally designed to reduce bit 
toggles on instruction address Bus. The idea of SRWEC (separating read/write 
encoding contents) can be used on data address stream and data stream. Variable 
stride algorithm is designed for data address stream. And “Selective Instruction 
Compression for Memory Energy Reduction in Embedded Systems” describes a code 
compression method which is suitable for us to adopt on narrow Bus to reduce Bus 
transactions.  
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2.2.1Asymptotic Zero-Transition Activity Encoding for Address Busses in 
Low-Power Microprocessor-Based Systems (T0) 

 
In “Asymptotic Zero-Transition Activity Encoding for Address Busses in Low-Power 
Microprocessor-Based Systems”, the author proposes a coding method utilizing 
instruction address sequential property to reduce the bit toggles. This coding method 
needs an extra control line. It defines the size of instruction as the stride value.  
 
At the sender, when this instruction address is previous instruction address value adds 
the specific stride value, it means the instruction addresses are sequential. When the 
instruction addresses are sequential, it sets the extra control line as 1 and freezes the 
Bus to reduce bit toggles. Otherwise, it sets the extra control line as 0 and transmits 
the instruction address by Bus. At the receiver end, when the extra control line is 1, it 
doesn’t care the value at Bus but adds previous instruction address by the specific 
stride value to get current instruction address. Only when the extra control line is 0, 
the receiver reads the Bus value as instruction address.  
 
Following is the T0 encoder pseudo code. 

b(t):real value, B(t):Bus value, S: stride value
T0 encoder pseudo algorithm: 
while(1) 
{ 

if (b(t) = = b(t-1) + S) 
B(t) = B(t-1) 
control = 1 

else 
B(t) = b(t) 
contorl = 0 

} 
 
Following is the T0 decoder pseudo code. 

b(t):real value, B(t):Bus value, S: stride value
T0 decoder pseudo algorithm: 
while(1) 
{ 

if (control = = 1) 
b(t) = b(t-1) + S 

else 
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b(t) = B(t) 
} 

 
Table 2-1 is a simple example. 

b(t):real value, B(t):Bus value, S: stride value = 4
Time Sender Bus Extral line Receiver 

t b(t) B(t) control b(t) 
1 000000C0 000000C0 0 000000C0 
2 000000C4 - 1 000000C4 
3 000000C8 - 1 000000C8 
4 000000CC - 1 000000CC 
5 000000C0 000000C0 0 000000C0 
6 000000C4 - 1 000000C4 
7 000000C8 - 1 000000C8 
8 000000CC - 1 000000CC 

Table 2-1
When b(t) = = b(t-1) + S, the control line will be set to 1 and B(t) = B(t-1). When 
b(t) != b(t-1) + S, the control line will be set to 0 and B(t) = b(t). 
 

2.2.2Irredundant Address Bus Encoding for Low Power (T0-C) 
 

The T0-C is a modified method of T0. It does some changes to avoid adding the 
extra control line. The main idea of T0-C is that making a one-to-one and onto 
function. There must be existent a corresponding inverter function. Figure 2-2 is the 
T0-C function. When current instruction address is equal to previous instruction 
address adds the specific stride value, the sender sends the previous Bus value 
(fixes Bus value) instead. On the other hand, if the current instruction address is 
equal to previous Bus value, sends the previous instruction address adds the 
specific stride value. The other cases will be sent without any change. Because this 
is a one-to-one and onto function, the receiver can easily get the instruction 
addresses back by the inverter function.  
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Figure 2-2: T0-C function 

 
Following is the T0-C encoder pseudo code. 

b(t):real value, B(t):Bus value, S: stride value
T0-C encoder pseudo algorithm: 
while(1) 
{ 

if (b(t) = = b(t-1) + S) 
B(t) = B(t-1) 

else if (b(t) = = B(t-1)) 
B(t) = b(t-1) + S 

else 
B(t) = b(t) 

} 
 

Following is the T0-C decoder pseudo code. 
b(t):real value, B(t):Bus value, S: stride value

T0-C decoder pseudo algorithm: 
while(1) 
{ 

if (B(t) = = B(t-1)) 
b(t) = b(t-1) + S 

else if (B(t) = = b(t-1) + S) 
b(t) = B(t-1) 

else 
b(t) = B(t) 

} 
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Table 2-2 is a simple example. 

b(t):real value, B(t):Bus value, S: stride value = 4
Time Sender Bus Receiver 

t b(t) B(t) b(t) 
1 000000C0 000000C0 000000C0 
2 000000C4 - 000000C4 
3 000000C8 - 000000C8 
4 000000CC - 000000CC 
5 000000C0 000000D0 000000C0 
6 000000C4 - 000000C4 
7 000000C8 - 000000C8 
8 000000CC - 000000CC 
9 000000F0 000000F0 000000F0 

Table 2-2
 

2.2.3 Discontinuous Address Table Algorithm (DAT)  
 
The instruction addresses can be classified into sequential accesses and 
non-sequential accesses. The sequential access property can be utilized by T0 or 
T0-C as mentioned above. Discontinuous address Table (DAT) is designed to 
utilize the non-sequential accesses part property. The non-sequential access 
happens when the processor executes a branch instruction. Discontinuous address 
table algorithm needs one extra control line and a discontinuous address table (DAT) 
to record the branch information. 
 
In general case, the target addresses of taken branches are seldom changed. 
Discontinuous address table algorithm utilizes this property to reduce bit toggles. 
When a non-sequential access happens, it means that a branch instruction jumps to 
the specific target address. At this time, the address of the branch instruction and 
target instruction address will be recorded into DAT. When next time the program 
reaches the same source address and branch to the same target address, the sender 
sets the extra control line as 1 and freeze the Bus to reduce bit toggles. Otherwise, 
the sender sets the extra control line as 0 and sends the instruction address by Bus. 
 
Following is the DAT encoder pseudo code. 

b(t):real value, B(t):Bus value, S: stride value
DAT encoder pseudo algorithm: 
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while(1) 
{ 

if (b(t-1) = = one of source address of DAT 
&& b(t) = = the corresponding target address) 

B(t) = B(t-1) 
control = 1 

else 
B(t) = b(t) 
contorl = 0 

} 
 
Following is the DAT decoder pseudo code. 

b(t):real value, B(t):Bus value, S: stride value 
T0 decoder pseudo algorithm: 
while(1) 
{ 

if (control = = 1) 
   // b(t-1) is source address 

b(t) = the corresponding target address of b(t-1) in DAT 
else 

b(t) = B(t) 
} 

 
Table 2-3 is a simple example and Table 2-4 is corresponding DAT. 

b(t):real value, B(t):Bus value, S: stride value = 4
Time Sender Bus Extral line Receiver 

T b(t) B(t) control b(t) 
DAT 

operation 
1 00000034 00000034 0 00000034  
2 00000040 00000040 0 00000040 Insert 
3 00000044 00000044 0 00000044  
4 00000030 00000030 0 00000030 Insert 
5 00000034 00000034 0 00000034  
6 00000040 - 1 00000040 Found 
7 00000044 00000044 0 00000044  
8 00000030 - 1 00000030 Found 

Table 2-3
 

2 entries DAT 
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 Entry 1 Entry 2 
Time Source 1 Target 1 Source 2 Target 2 

T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
2 00000034 00000040 - - - - - - - - - - - - - - - - 
3 00000034 00000040 - - - - - - - - - - - - - - - - 
4 00000044 00000030 00000034 00000040 
5 00000044 00000030 00000034 00000040 
6 00000044 00000030 00000034 00000040 
7 00000044 00000030 00000034 00000040 
8 00000044 00000030 00000034 00000040 

 DAT Queue  
Table 2-4 

 
2.2.4 Idea of Separating Read and Write Streams 
 
The data address stream includes the read data addresses and write data addresses. 
When executing program, these two streams will be mixed and the characteristics 
of each stream will be disturbed. If we deal with these two parts individually, the 
characteristics of them will be preserved without being disturbed. For the same 
reason, the data stream can utilize this idea, too. 
 
2.2.5 Variable Stride Algorithm 
 
There are two kinds of variable stride algorithm, one is similar to T0 and the other 
is similar to T0-C. However, its stride value will be changed with time. Whenever 
the current address is encoded at sender end, it updates the variable stride as current 
data address minus previous data address. At the receiver, it will update the variable 
stride as current data address minus previous data address right after finishing 
decoding. I will only introduce variable stride algorithm similar to T0-C for 
example below. 
 
Following is the Variable Stride algorithm (similar to T0-C) encoder pseudo code. 

b(t):real value, B(t):Bus value, S: stride value 
Variable Stride encoder pseudo algorithm: 
while(1) 
{ 

if (b(t) = = b(t-1) + S) 
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   B(t) = B(t-1) 
else if(b(t) = = B(t-1)) 
   B(t) = b(t-1) + S 
else 
   B(t) = b(t) 
S = b(t) - b(t-1) 

} 
 
Following is the Variable Stride algorithm (similar to T0-C) decoder pseudo code. 

b(t):real value, B(t):Bus value, S: stride value 
Variable Stride decoder pseudo algorithm: 
while(1) 
{ 

if (B(t) = B(t-1)) 
b(t) = = b(t-1) + S 

else if(B(t) = b(t-1) + S) 
b(t) = = B(t-1) 

else 
b(t) = B(t) 

S = b(t) - b(t-1) 
} 

 
Table 2-5 is a simple example. 

b(t):real value, B(t):Bus value, S: variable stride value 
Time Sender Bus Variable stride Receiver 

T b(t) B(t) S b(t) 
1 000000C0 000000C0 - 000000C0 
2 000000C4 000000C4 4 000000C4 
3 000000C8 - 4 000000C8 
4 000000CC - 4 000000CC 
5 000000F0 000000F0 24 000000F0 
6 000000F2 000000F2 2 000000F2 
7 000000F4 - 2 000000F4 
8 000000F6 - 2 000000F6 
9 000000F8 - 2 000000F8 
10 000000FA - 2 000000FA 
11 000000F2 000000FC -8 000000F2 
12 000000F4 000000F4 2 000000F4 
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13 000000F6 - 2 000000F6 
Table 2-5 

 
2.2.6 Selective Instruction Compression for Memory Energy Reduction in 

Embedded Systems 
 
In “Selective Instruction Compression for Memory Energy Reduction in Embedded 
Systems”, the author proposes a dictionary based instruction compression. The 
main idea of this paper is that there are a few instructions are executed frequently. 
The method proposed is to gather the most frequently used 255 instructions in an 
Instruction Decompression Table (IDT) at static time. When the processor 
requesting instruction is in the IDT, the memory sends the index of the instruction 
in IDT to the processor. If the instruction doesn’t exist in the IDT, the memory 
sends the preserved index “mark” (00000000) and then sends the instruction byte 
by byte. At the receiver, if the received byte is not the preserved index “mark” 
(00000000), it looks up the IDT and extracts the instruction. If the receiver receives 
the “mark,” it continues receives the following four bytes and then composes them 
to a complete instruction. Because the instruction is 32 bits and the index is 8 bits, 
this algorithm can reach compression effect when the instruction is in IDT. 
 
Figure 2-3 is the proposed architecture of IDT. 

 
Figure 2-3: the proposed architecture of IDT 

 
If the first byte is not “mark”, the control signal will be 1. If the first byte is “mark”, 
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the control signal will be 0 and the buffer will collect 4 bytes and then compose 
them to original instruction. 
 

Chapter 3: Design of Proposed Coding 
In the beginning of this chapter, I will introduce my coding flow. Next, I will 
discuss how to reduce Bus transactions. At the last of this chapter, I will describe 
the complete coding methods of instruction address stream, data address stream, 
instruction stream, and data stream. 
 
3.1 Coding Flow 
 
Figure 3-1 is a coding flow diagram. The purpose of the encoder is to convert the 
effective bits of a codeword into redundant bits. The redundant type will be 
different in different streams. Between encoder and narrow Bus is a variable length 
encoder (VL-Encoder). The VL-Encoder will separate the 32-bit codeword into 
several fragments, skip the redundant fragments without sending, and put the 
effective fragments on the Bus. The variable length decoder (VL-Decoder) receives 
the effective fragments of a codeword, composes them, and then fills the redundant 
fragment parts to become original codeword. The number of effective fragments of 
a codeword is variable and then the number of Bus transactions of a codeword will 
be variable. The VL-Decoder has to get the additional information to know the 
number of the Bus transactions of a codeword. Otherwise, the receiver won’t know 
when to stop receiving data and composing the effective fragments. The 
VL-Encoder and VL-Decoder, encoder and decoder, will all be introduced below. 
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Figure 3-1: the coding flow diagram 
 
3.2 VL-Encoder 
 
The purpose of VL-Encoder is to reduce Bus transactions. There are two problems 
rising here. The first problem is what to be transmitted and what to be skipped. The 
second problem is how the receiver knows the number of Bus transactions of a 
codeword.  
 
The first problem is what can be skipped without sending and what should be 
transmitted on Bus. The solution is to transmit the effective fragments and skip the 
redundant fragments without sending. The redundant bits type will be different on 
different streams. There will be default redundant type at each stream. Because the 
receiver knows the redundant bits type, it can retrieve the redundant fragments 
which are not transmitted. 
 
The second problem is how the receiver knows the number of Bus transactions of a 
codeword. If the receiver end wants to know this additional information, the sender 
has to add this information into the codeword. There will be two main directions to 
achieve this purpose. The first method is to add the information of the number of 
Bus transactions at the beginning of first transmission. The second method is to 
inform the receiver whether the total fragments of a codeword are transmitted or 
not at every Bus transaction. Following I will introduce these two methods and do a 
simple comparison to select the suitable method as my VL-Encoder policy at this 
environment. 
 
3.2.1 Method One : Adding the Information of the Number of Bus 

Transactions at the Beginning of First Transmission  
 
This method will add the information of the number of Bus transactions at the 
beginning of first transmission. The extra information indicates the number of Bus 
transactions. This extra information must be transmitted at first transaction of a 
codeword; otherwise, the receiver will need much more complexity mechanism to 
get this information and this may require too much coding time. The receiver 
knows how many fragments should be received whenever the first fragment of a 
codeword is received. I formulize the relation between Bus width (w) and extra 
information bits (k) at Inequality 3-1. 
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Take 32-bit width data and 8-bit width Bus for example. The effective bits of data 
can be 0 to 32 bits. After adding k bits extra information, the effective bits will be k 
to (32 + k) bits. The worse case of Bus transaction will be more than 4 times. In 
order to indicate 1 to more than 4 Bus transaction, the ‘k’ has to be more than 3. To 
sum up, if I want to transmit 32-bit codeword by 8-bit width Bus, I need 3 extra 
information bits. This implies that the effective bits will increase by additional 3 
bits and the Bus transaction will be 1 to 5 times. 
 
3.2.2 Method Two : Indicating the Codeword is Transmitted over or not at 

Every Bus Transaction 
 
This method informs receiver end whether the total fragments of a codeword are 
transmitted over or not at each Bus transaction. This method is to add an extra 
control line called “End bit” (EB). If this Bus transaction transmits the last 
fragment of a codeword, the sender sets the EB value as 1. Otherwise, the sender 
sets EB as 0. At receiver end, the receiver keeps collecting codeword fragments 
until the EB is set to 1. 
 
3.2.3 Comparison of Method One and Method Two 
 
The method one adds the information of the number of Bus transactions at the 
beginning of first transmission and the method two adds an extra control line to 
indicate the last fragment of a codeword. In order to compare the effect of reducing 
Bus transactions of method one and method two in the same standard, I use 9-bit as 
Bus width.  
 
In method one, I substitute the parameter ‘w’ by 9 in inequality 3-1. The smallest k 
I can get is 2. The number of Bus transactions is from 1 to 4. When the Bus 
transactions are n times, the sender sends 9*n bits. The representable effective bits 
except the extra two information bits are (9*n - 2) bits. 
 
In method two, the extra EB is permanent. The number of Bus transactions is from 
1 to 4. When the Bus transactions are n times, the sender can send (8 * n) effective 
bits of codeword. 
 
The comparison of representable effective bits of these two methods is shown in 
Table 3-1 
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  The effective bit 
represented by method 
1 

The effective bit represented by 
method 2 

The number of Bus 
transactions is 1 

9 – 2 = 7 8 

The number of Bus 
transactions is 2 

2 * 9 – 2 = 16 2 * 8 = 16 

The number of Bus 
transactions is 3 

3 * 9 – 2 = 25 3 * 8 = 24 

The number of Bus 
transactions is 4 

4 * 9 – 2 = 34 (32) 4 * 8 = 32 

Table 3-1
 
The representable effective bits of a method will affect the number of Bus 
transactions of a codeword. For example, if the number of effective bits of a 
codeword is 8 bits, method one needs 2 Bus transactions because 1 Bus transaction 
can only represent 7 effective bits. The main difference of these two methods 
appears when the number of effective bits of a codeword is 8 bits or 25 bits. When 
the number of effective bits of a codeword is 8 bits, the method one needs 2 Bus 
transactions and method two needs 1 Bus transaction. On the other hand, when the 
effective bits of a codeword is 25 bits, the method one needs 3 Bus transactions and 
method two needs 4 Bus transactions.  
 
I use instruction address stream and data address stream to compare the effect of 
these two methods. I don’t use instruction stream to evaluate because I will 
compress instruction stream using its statistic property not its numerical property. I 
don’t use data stream to evaluate because there may be multiple redundant bits 
types are utilized and it need adding other information bits into codeword. Table 
3-2 is the Bus transactions ratio based on narrow Bus without coding (4 Bus 
transactions). 

 IA DA 
Method one 27.49% 50.08% 
Method two 26.81% 49.39% 

Table 3-2
 
The Bus transactions ratio of method one is smaller than method two when method 
two uses 9-bit width Bus. Therefore, we can compare the Bus transactions ratio of 
these methods. We can observe that the method one (9-bit Bus) is better than the 
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method two with 9-bit width Bus. Besides, my objective is to reduce Bus 
transactions but the method one with 8-bit width Bus will increase the Bus 
transactions in worst case. Therefore, I think the byte based method is more 
suitable in my environment. 
 
3.2.4 The VL-Encoder Will Use Method Two 
 
After the discussion and evaluation, I will use method two, EB VL-Encoder, as my 
VL-Encoder policy. I will add an extra control bit “EB”. When sending the last 
fragment of a codeword, the sender will set the EB as 1. Otherwise, the sender 
should set EB as 0. The bytes of a codeword will be sent from MSB to LSB. The 
receiver will keep collecting bytes of a codeword until the EB value is 1, compose 
the effective bytes, and then fill the redundant bytes to become original codeword. 
The Figure 3-2 shows the behavior of EB VL-Encoder. 

 

Figure 3-2: behavior of EB VL-Encoder 
 
3.3 Instruction Address Stream  
 
3.3.1 Type of Redundant Bits Used by EB VL-Encoder : 
 
Due to the numerical property of instruction address stream, the instruction address 
stream uses repeated bits (the same leading bits) as default redundant bits type. The 
VL-Encoder will skip the redundant bytes of a codeword without sending.  
 
3.3.2 Encoder : 
 
The job of encoder is to convert the effective bits of a codeword into redundant bits 
and then the VL-Encoder can transmit fewer bytes. This thesis will propose several 
coding methods in each stream. Following I will introduce some coding methods 
which I will adopt to narrow instruction address Bus.  
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Encoder 1: T0 (1 extra control line) 
T0 utilizes the sequential property of instruction address. It has been introduced in 
chapter 2. 
 
Encoder 2: T0-C (no extra control line) 
The same as T0, it utilizes the sequential property of instruction address and has 
been introduced in chapter 2. 
 
Encoder 3: NBDAT (1 extra control line) 
Discontinuous Address Table (DAT) algorithm focuses on the discontinuous 
address behavior of instruction addresses. It has been introduced in chapter 2. 
However, I will propose a modified DAT which I call it “Narrow Bus DAT” 
(NBDAT). This modified DAT has a filter mechanism. If a record can reduce Bus 
transaction, I will record it into NBDAT. Otherwise, I won’t record it into NBDAT 
even if the addresses are discontinuous. This will raise the utility of DAT. 
 
3.3.3 Proposed Methods : 
I will propose several combinational coding methods which have different area 
overhead and different Bus transactions reduction. 
 
Proposed Method 1: (1 extra control line) 
The encoder 1 (T0) can be adopted on narrow Bus independently without the 
assistance of the VL-Encoder. The general T0 on normal Bus will send a signal 
instead of sending the instruction addresses when the instruction addresses are 
sequential. The T0 on narrow Bus uses the same idea. When the instruction 
addresses are sequential, the sender sets the extra control line as 1 and freeze the 
Bus value. The number of Bus transaction will be 1. Otherwise, the sender sets the 
extra control line as 0 and transmits the instruction address byte by byte. The 
number of Bus transaction will be 4. I will use the number of Bus transaction of 
this method as base line to compare with other methods. 
 
Proposed Method 2: (1 extra control line) 
The second method is the combinational method of encoder 2 and EB VL-Encoder. 
The T0 can be used on narrow Bus to reduce Bus transactions independently but 
T0-C can’t. This is because the 32-bit instruction address to the 8-bit Bus is a 
multiple to one function. There is no inverter function if there is no other extra 
coding information. Therefore, method 2 combines T0-C encoder and EB 
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VL-Encoder together to reduce Bus transactions. The T0-C is a 32-bit to 32-bit 
function which can convert the effective bits of a codeword into the redundant bits. 
EB VL-Encoder decomposes the output of T0-C and puts the effective fragments 
on narrow Bus to transmit. 
 
Proposed Method 3: (2 extra control lines) 
The third method is the combinational method of encoder 2, encoder 3 and EB 
VL-Encoder. The NBDAT and T0-C can be adopted on narrow Bus as encoder at 
the same time and get more Bus transaction reduction. 
 
3.4 Data Address Stream 
 
3.4.1 Type of Redundant Bits Used by EB VL-Encoder : 
 
Because of the numerical property of data address stream is similar with instruction 
address stream; the data address stream uses repeated bits (the same leading bits) as 
default redundant bits type, too. The VL-Encoder will skip these redundant 
fragments of a codeword without sending.  
 
3.4.2 Encoder : 
 
The job of encoder is to convert the effective bits of a codeword into redundant bits 
and then the VL-Encoder can transmit fewer bytes. Because of the idea of 
separating read data address and write data address mentioned in chapter 2, the 
following discussion will all base on this principle without emphasizing it 
repeatedly. As instruction address stream, this thesis will propose several coding 
methods. Following I will introduce some coding methods which I will adopt to 
narrow Bus.  
 
Encoder 1: Variable stride (0 or 1 extra control line) 
Both type of variable stride algorithm (similar to T0 and similar to T0-C) can 
utilize the sequential property of data address. It has been introduced in chapter 2. 
 
Encoder 2: 1P

st
P version historical addresses algorithm (Y extra control lines) 

In order to utilize the spatial locality and temporal locality of data address stream, I 
propose historical addresses algorithm here. The idea of historical addresses 
algorithm is that the surroundings of accessed address have high chance to be used 
latter.  
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First, I define the leading first k bytes of an address as its k-byte-address. On 
narrow Bus environment with the VL-Encoder which I proposed, it will need more 
than 1 Bus transaction whenever the 3-byte-address of Bus value differ from the 
3-byte-address of next data address. The idea of historical addresses algorithm is to 
save some k-byte-address into historical address record. Whenever a k-byte-address 
of transmitted value differ from the k-byte-address of Bus value but recorded in 
historical address record, it can utilize this record to reduce Bus transactions. 
 
Historical addresses algorithm use an X-entries FIFO historical address record table 
and extra Y-bit historical address index control lines to indicate the entry of the 
historical address record. The relationship between X and Y is “X = 2P

Y
P - 1”. This is 

because the Y-bit control lines can represent 2P

Y
P states. One state has to be preserved 

for “the k-byte-address is not found in historical address record.” Therefore, these 
Y-bit control lines can indicate 2P

Y
P – 1 historical address indexes. The value of Y is 

a parameter restricted by the system area constraint. Historical addresses algorithm 
deals with 3 cases. I will introduce the coding with 3-byte-address case by case 
below.  
 
The first case is that the 3-byte-address of transmitted codeword is the same with 
the 3-byte-address of Bus value. In this case, the number of effective bytes of the 
transmitted codeword will be 1 and this codeword needs only 1 Bus transaction. 
The information of extra control line is set to mean “not use record”. 
 
The second case is that the 3-byte-address of transmitted codeword differ from the 
3-byte-address of Bus value and this 3-byte-address of transmitted codeword is not 
stored in historical address record. In this case, the number of effective bytes of the 
transmitted codeword will be more than 1 and this codeword needs more than 1 
Bus transactions. The sender will set the information of extra control line as “not 
use record” and store the 3-byte-address of previous Bus value into the historical 
address record as update. 
 
The third case is that the 3-byte-address of transmitted codeword differ from the 
3-byte-address of Bus value but this 3-byte-address of transmitted codeword has 
been stored in historical address record. In this case, the sender will change the 
leading 3 bytes of the transmitted codeword to be the same with the leading 3 bytes 
of the Bus value, and set the information of extra control line as “index of the 
3-byte-address in historical address record”. In this way, the number of effective 
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bytes of transmitted codeword will be 1 and the number of Bus transaction of this 
codeword has been reduced to only 1. 
 
Table 3-3 is a 1-entry 3-byte-address record example. When time is 2 the case one 
happens. When time is 3 the case two happens. When time is 4 the case three 
happens. The case three affects the number of Bus transactions. When time is 4, the 
number of effective bytes of the codeword reduces from 4 to 1 after encoding. This 
reduces the Bus transactions from 4 to 1 at the same time.  

b(t):real value, B(t):Bus value,
Time Sender Bus control state 1 entry Table 

T b(t) B(t) control state Historical 
address 
record 

1 FFFFFF00 UFFFFFF00U Not use - - - - - - - - 
2 FFFFFF01 FFFFFFU01U Not use - - - - - - - - 
3 EEEEEE00 UEEEEEE00U Not use FFFFFFFF 
4 FFFFFF02 - - - - - - U02U Index FFFFFFFF 

Table 3-3
 
At algorithm 3 and algorithm 4, I will propose two modification versions of 
historical addresses algorithm. First modification, 2P

nd
P version, is to combine the 

information of EB of VL-Encoder and historical addresses indexes information 
together. Basing on algorithm 2, the second modification, 3P

rd
P version, is that the 

sender can utilize all size of historical addresses (1-byte-address, 2-byte-address 
and 3-byte-address) without adding other extra control lines. 
 
Encoder 3: 2P

nd
P version historical addresses algorithm (Y extra control lines) 

After simulation, I find the recording 3-byte-address will be better than recording 
2-byte-address or 1-byte-address. In this 2P

nd
P version I will use 3-byte-address to 

describe the modification. In my observation, when the 3-byte-address is not in the 
historical address record, the codeword needs more than 1 Bus transactions. When 
the fragments are transmitted, no matter the EB is 0 or 1, the value of historical 
address index control lines is meaningless. The coding flow I describe at beginning 
of this chapter is separating the encoder and VL-Encoder into two parts. However, 
if I can combine the information of VL-Encoder EB and the information of encoder 
historical address index control lines, I can represent more number of historical 
address indexes by the same number of extra control lines.  
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Taking a system which can tolerate total Y-bit extra control lines and use 
3-byte-address for example, if we don’t combine the VL-Encoder EB and encoder 
historical address index control lines, we have to leave 1 bit for VL-Encoder EB 
and other (Y - 1) bits can be used to represent 2P

(Y - 1)
P states and can indicate 2P

(Y - 1)
P – 

1 historical address index. This is because 1 of the 2P

(Y - 1)
P state is taken to mean “the 

3-byte-address is not found in historical address record”. On the other hand, if we 
combine the VL-Encoder EB and encoder historical address index control lines, we 
can represent 2P

Y
P states and can indicate 2P

Y
P – 2 historical address index. 1 of the 2P

Y
P 

state is used to mean “this fragment is not the last fragment of this codeword”, this 
will cause more than 1 Bus transactions and hint that the 3-byte-address of this 
codeword is not in historical address record with the result that the Bus transactions 
will be more than 1. Another 1 of the 2P

Y
P state is used to mean “this fragment is the 

last fragment of this codeword but the 3-byte-address of this codeword is not in 
historical address record”. The number of representable states of combining 
VL-Encoder EB with encoder historical address index control lines will be more 
than not combining policy as long as Y is bigger than 1. 
 
Encoder 4: 3P

rd
P version historical addresses algorithm (Y extra control lines) 

After simulation, I find the recording 3-byte-address will be better than recording 
2-byte-address or 1-byte-address. However, there is an embedded hint can be used 
to adopt 1-byte-address, 2-byte-address, and 3-byte-address by the same historical 
address index.  
 
In 2P

nd
P version of historical addresses algorithm, one state can indicate one historical 

address index. If a system can tolerate two (Y = 2) extra control lines, it can 
indicate two (2P

2
P – 2 = 2) historical address indexes. This 3P

rd
P version of historical 

addresses algorithm is modified and can represent two 1-byte-address records, two 
2-byte-address records, and two 3-byte-address records with these two states. This 
is because when I find k-byte-address is utilizable, I will change the first k bytes of 
codeword into redundant bytes and set the historical address index. I have to 
transmit the other (4 - k) effective byte. When the receiver receives these (4 - k) 
effective byte and the historical address index, it will know which size of historical 
address record should be looked up by the number of Bus transactions. Table 3-4 is 
an example and Table 3-5 is the corresponding change of 2-entry historical address 
record. When the time is 3, the sender utilize the first (index = 1) historical address 
of 2-byte-address record. The sender sends the two effective bytes and sets the 
control state as “index = 1”. The receiver receives the second fragment of this 
codeword and finds the control state is set to “index = 1”, it knows that it should 
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look up 2-byte-address and reload the first historical address of 2-byte-address 
record back to codeword. 

B(t):real value, B(t):Bus value
Time Sender Bus Narrow Bus control state 

 b(t) B(t)  index 

1-1 FFFFFF00 FFFFFF00 FF Not End 
1-2   FF Not End 
1-3   FF Not End 
1-4   00 End 
2-1 EEEEEE00 EEEEEE00 EE Not End 
2-2   EE Not End 
2-3   EE Not End 
2-4   00 End 
3-1 FFFF0000 - - - - 0000 00 Not End 
3-2   00 Index = 1 

Table 3-4
 

2 entry historical address record with all size
 1-byte-address record 2-byte-address record 3-byte-address record 

 1-byte-addr
ess 

1-byte-addr
ess 

2-byte-addr
ess 

2-byte-addr
ess 

3-byte-addr
ess 

3-byte-addr
ess 

inde
x 

1 2 1 2 1 2 

Tim
e 

- - - - - - - - - - - - - - - - - - - - - - - - 

1 - - - - - - - - - - - - - - - - - - - - - - - - 
2 FF - - FFFF - - - - FFFFFF - - - - - - 
3 FF - - FFFF - - - - EEEEEE FFFFFF 

Table 3-5
 
3.4.3 Proposed Methods : 
I will propose several combinations of these coding methods and adopt these 
combination methods to narrow Bus. These combinations have different extra 
control lines and can reach different Bus transactions reduction. 
 
Proposed Method 1: (1 extra control line) 
The encoder 1 (similar to T0 type variable stride algorithm) can be adopted on 
narrow Bus independently without the assistance of the VL-Encoder. The behavior 
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is totally the same with proposed method 1 of instruction address stream. 
 
Proposed Method 2: (1 extra control line) 
The second method is to combine encoder 1 (similar to T0-C type variable stride 
algorithm) and EB VL-Encoder. The behavior of this method is totally the same 
with proposed method 2 of instruction address stream. 
 
Proposed Method 3: (Y extra control line) 
The third method is the combinational method of encoder 1 (similar to T0-C type 
variable stride algorithm), encoder 4 (3P

rd 
Pversion of historical addresses algorithm) 

and EB VL-Encoder. The encoder 1 utilizes the sequential access property and 
encoder 4 utilizes the spatial and temporal locality. These two encoder can be 
adopted on narrow Bus at the same time and get more Bus transaction reduction. 
 
3.5 Instruction Stream 
 
In this stream, I adopt code compression method to reduce code size. There are two 
main consideration factors when we select code compression method. First 
consideration factor is coding time. The Bus coding (encoding and decoding) is a 
time critical work. The coding time delay must be very short. The second 
consideration factor is compression ratio. In our environment, the unit of 
compression size is byte due to the 8-bit Bus width. It is the same to compress a 
date into 8 bits and into 1 bit because they both need 1 Bus transaction.  
 
Due to the instinct property, the narrow Bus environment has higher probability to 
be an embedded system environment. Therefore, we can choose a code 
compression method even if it has high compression ratio only in embedded 
system. 
 
The “Selective Instruction Compression for Memory Energy Reduction in 
Embedded Systems” encodes instruction at static time. It has no encoding delay to 
do encoding. The decoding delay is equal to access a 256 entries direct map cache. 
In average of my test programs (Mibench), 98.35% instructions can be compressed 
into 8 bits and need only 1 Bus transactions. I think it is one of the suitable code 
compression methods. 
 
After compress instruction, I discuss the methods of transmitting this compressed 
instruction on narrow Bus below.  
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Transmission method 1: (no extra control line) 
This is just transplant the code compression mechanism from memory to Bus. As 
mentioned at chapter 2, if the transmitted instruction is in IDT, the sender transmits 
the index of that instruction. If the transmitted instruction is not in IDT, it transmits 
the preserved index MARK “00000000” and then sends the instruction byte by 
byte. 
 
Transmission method 2: (1 extra control line) 
This transmission method use the extra control line EB to replace the function of 
the preserved index MARK “00000000”. If the instruction is in IDT, the sender 
transmits the index of that instruction and set the EB as 1. Otherwise, the sender 
sends the instruction byte by byte, sets the EB as 0 until the last Bus transaction the 
sender sets the EB as 1.  
 
The differences between these two methods are the control line, transaction times, 
and the number of instruction stored in IDT. Method 2 needn’t the preserved index 
“00000000” so it can save total 2P

8
P = 256 instructions into IDT. When the 

instruction is not in IDT, the method 2 needn’t transmit the preserved index and the 
Bus transaction will be 4 instead of 5. However, the method 2 needs an extra 
control line EB as assistance.  
 
3.6 Data Stream 
 
3.6.1 Type of Redundant Bits Used by EB VL-Encoder : 
 
Different from instruction address stream and data address stream, the two types of 
redundant bits (insignificant bits and repeated bits) both can be utilized in data 
stream. If there is k-bit extra control lines to indicate the type of redundant bits, I 
have total k+1 extra control lines (including EB). Besides the not transmitted over 
state, I can utilize 2P

k+1
P-1 kinds of redundant bits type. In instruction address stream 

and data address stream, the value of k is 0, so there is only 2P

0+1
P-1 = 1 kind of 

default redundant bits type can be used. 
 
When I regard the leading 0’s or 1’s as the redundant bits type, there are two ways 
to utilize it. The original behavior of sign extension is that the system decides to 
extend 0’s or 1’s depending on the value is positive or negative. If I want to skip the 
leading 0’s and leading 1’s, I have to decide where the positive or negative hint 
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should be recorded. It may be preserved outsides the codeword or embedded in the 
codeword as the first bit of effective bits. For example, a data value is 
“11111111,11111111,11100000,10100011”. It may be seen as 
“--------,--------,---00000,10100011” with extra information to indicate this is a 
negative value, or it may be seen as “--------,--------,--100000,10100011” and using 
the first effective bit to hint that this is a negative value. In order to fill the correct 
bits at VL-Decoder, there must be enough information to indicate the redundant bits 
type. If I want to use the former policy, I need two information states to indicate 
that “the redundant bits should be filled by doing 0’s extension” and “the redundant 
bits should be filled by doing 1’s extension”. If I want to use the latter policy, I 
need only one information state to indicate that “the redundant bits should be filled 
by doing sign extension” because the positive or negative hint has been embedded 
in first bit of effective bits. 
 
How to choose the suitable redundant bits types is the most important thing in data 
stream. For using insignificant bits as redundant bits, I have two possible choices as 
mention above. One needs two information states and the other will raise the 
number of effective bits by 1 but needs only one information state. For using 
repeated bits as redundant bits, it needs only one information states to indicate that 
“the redundant bits should be filled by copying the corresponding bits of previous 
Bus value”. These two kinds of redundant bits both may be used or not. Therefore, 
the possible redundant bits combinations are classified at Table 3-6. For 
insignificant bits, it may be not seen as redundant bits, use two information states, 
or use one information state to utilize. For repeated bits, it may be not seen as 
redundant bits or use one information state to utilize.  

 Repeated Insignificant 
Embedded hint

Insignificant 
Additional hint

Number of 
need states 

Choice 1 0 0 0 0 
Choice 2 1 0 0 1 
Choice 3 0 1 0 1 
Choice 4 1 1 0 2 
Choice 5 0 0 2 2 
Choice 6 1 0 2 3 

Table 3-6
 
Even if no extra control line to indicate the type of redundant type, I also can 
decide a default redundant type. Therefore the choice 1 won’t be adopted. If there is 
no extra control line to indicate the type of redundant bits, I have one default 
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redundant bits type can use and I can use choice 2 or choice 3. If there is one extra 
control line to indicate the type of redundant bits, I can indicate three redundant bits 
types and I can use choice 4, choice 5, or choice 6. There may be multiple choices 
on the same extra control line constraint. I will make decision by simulation result.  
 

Chapter 4: Statistics and Simulation Result 
In this chapter, I will describe the environment of my statistics and simulation. And 
then are the statistics and coding simulation results of instruction address stream, 
data address stream, instruction stream, and data stream. 
 
4.1 Statistics and Simulation Environment 
 
The simulator I use is simple-scalar for ARM instruction. The simulated programs 
are Mibench. My environment is 8-bit width narrow Bus and 32-bit width data. 
 
The area overheads include extra control lines, extra coding logic gates, and 
additional table. I assume the area overhead of external extra control lines is much 
severer than extra logic gates. Because of the table size must be limited; I will use 
different size of table to simulate and observe the effects of different size, and then 
suggest a “good enough” size. The main advantage of coding is to reduce Bus 
transactions. This will reduce Bus bit toggles at the same time. However, I won’t 
consider the power advantage of reducing bit toggles. I will put my attention on the 
Bus transactions only. 
 
I will use Bus transactions ratio to compare the effect of coding methods. I 
normalize the number of Bus transactions of narrow Bus without coding as 1. In 
my simulation environment, the Bus transaction of narrow Bus without coding is 4; 
therefore the number of normal Bus transactions will be one forth comparing to 
narrow Bus. The Bus transactions ratio of normal Bus will be 25%. 
 
4.2 Statistics and Simulation Result of Instruction Address Streams 
 
4.2.1 Statistics  
 
In average, the ratio of sequential instruction addresses is 91% and the ratio of non 
sequential instruction addresses is 9%. These sequential instruction addresses can 
be utilized by T0 (or T0-C) and the Bus transaction will be 1. If we discuss them in 
more detail, there is 0.17% of total instruction address is first executed and 8.83% 
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of instruction address is repeatedly executed. That is, the 8.83% of instruction 
address can be utilized by NBDAT. 
 
In total instruction addresses, 93.93% of instruction address with 1 effective byte, 
4.82% of instruction addresses with 2 effective bytes, 1.25% of instruction address 
with 3 effective bytes, and almost no instruction address with 4 effective bytes. The 
number of effective bytes is equal to the number of Bus transactions with EB 
VL-Decoder. Therefore, even if no other coding, EB VL-Encoder can reach very 
low Bus transactions ratio in instruction address stream. 
 
4.2.2 Simulation Result 
 
I propose three narrow Bus coding methods in this thesis. First of them is 
transplanting the normal Bus T0 coding to narrow Bus. The second is that T0-C 
algorithm and EB VL-Encoder work together. The third method is that T0-C 
algorithm, NBDAT algorithm and EB VL-Encoder work together.  
 
First, I compare the effect of DAT and NBDAT in Figure 4-1. Figure 4-1 is the Bus 
transactions ratio of DAT and NBDAT comparing to narrow Bus without coding. 
The Y-axis is the Bus transactions ratio of the coding methods comparing to narrow 
Bus without coding. The X-axis is the table entries of DAT and NBDAT. Because 
NBDAT has a filter to filter the helpless entry not to save in table, NBDAT can 
reach lower Bus transactions ratio than DAT. The Bus transactions ratio of 
512-entry NBDAT can reach the same effect with unlimited NBDAT. I choose 
16-entries NBDAT as “good enough” choice and the effect of 512-entries NBDAT 
as the lower bound of Bus transactions ratio of NBDAT algorithm. 
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Figure 4-1: The Bus transactions ratio of DAT and NBDAT in different number of 

table entries 
 
Figure 4-2 is the comparison of the proposed coding methods. The Y-axis is the Bus 
transactions ratio of the coding methods comparing to narrow Bus without coding. 
The X-axis lists the proposed coding methods. The last value is the Bus 
transactions ratio of normal Bus. The first method is to transplant the normal Bus 
T0 to narrow Bus. The second is that T0-C algorithm and EB VL-Encoder work 
together. The third and forth method are that T0-C algorithm, NBDAT algorithm 
and EB VL-Encoder work together. The third method is with 16-entries NBDAT 
and the forth method is with 512-entries (unlimited) NBDAT.  
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Figure 4-2: The Bus transactions ratio of proposed methods in instruction address 
stream. 

 
The Table 4-1 shows the coding time delay and the area overhead (ignoring the 
coding logic). Because the real delay time will depend on the implementation, I 
only list the gate delay here. 

 T0 T0-C DAT(NBDAT) EB 

Gate delay 

(encoder) 
Comparitor(32) 

2-to-1 MUX 

Comparitor(32)
3-to-1 MUX 

Comparitor(32)
2-to-1 MUX 

Comparitor(8) 

4-to-1 MUX 

Gate delay 

(decoder) 
2-to-1 MUX Comparitor(32)

3-to-1 MUX 

2-to-1 MUX  

Overhead 1 control line  1 control line 

2*k entry table
1 control line 

Table 4-1 
 
The followings are the coding logic diagram. In pipeline system, the input can be 
processed in previous pipeline stage. It won’t cause coding delay. 

 
Logic 4-1: block information 
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Logic 4-2: T0 

 
Logic 4-3: T0-C 

 
Logic 4-4: DAT 
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Logic 4-5: VL-Encoder (redundant type : insignificant bits) 

 
4.3 Statistics and Simulation Result of Data Address Streams 
 
4.3.1 Statistics 
 
As mentioned in instruction address, I separate the data addresses into sequential 
and non sequential. In average, the ratio of sequential data address is 37.66% and 
the ratio of non sequential data address is 62.34%. These sequential data addresses 
can be utilize by variable stride algorithm and the Bus transaction will be 1.  
 
In total data address, 63.85% of data address with 1 effective byte, 9.64% of data 
address with 2 effective bytes, 13.18% of data address with 3 effective bytes, and 
13.33% of data address with 4 effective bytes. The number of effective bytes is 
equal to the number of Bus transactions with EB VL-Decoder.  
 
4.3.2 Simulation Result 
 
I propose three narrow Bus coding methods for data address in this thesis. First of 
them is to transplant the normal Bus variable stride algorithm (similar to T0) to 
narrow Bus. The second is that variable stride algorithm (similar to T0-C) and EB 
VL-Encoder work together. The third method is that variable stride algorithm 
(similar to T0-C), historical addresses algorithm and EB VL-Encoder work 
together. 
 
Figure 4-3 is the Bus transactions ratio to narrow Bus without coding of historical 
addresses algorithm with different number of control lines. The Y-axis is the Bus 
transactions ratio of historical addresses algorithm comparing to narrow Bus 
without coding. The X-axis is the number of extra control lines used. These extra 
control lines include EB information therefore it begin from 2. (1 extra control line 
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can only indicate “this is not the last fragment of a codeword” and “this is the last 
fragment of a codeword”.) The Bus transactions ratio of unlimited extra control 
lines is about the same with 8-bit extra control lines. I choose 4-bit extra control 
lines (3-bit extra control lines except EB) as “good enough” choice and the effect of 
8-bit extra control lines as the lower bound of Bus transactions ratio of historical 
addresses algorithm. 

 

Figure 4-3: The Bus transactions ratio of different number of control lines using in 
historical addresses algorithm. 

 
Figure 4-4 is the comparison of the proposed coding methods. The Y-axis is the Bus 
transactions ratio of the coding methods comparing to narrow Bus without coding. 
The X-axis lists the proposed three coding methods. The last value is the Bus 
transactions ratio of normal Bus. The Bus transactions ratio is 25%. The first 
method is to transplant the normal Bus variable stride algorithm (similar to T0) to 
narrow Bus. The second is that the variable stride algorithm (similar to T0-C) and 
EB VL-Encoder work together. The third, forth, fifth, and sixth method are that the 
variable stride algorithm (similar to T0-C), historical addresses algorithm and EB 
VL-Encoder work together. They are corresponding to 2-bit, 3-bit, 4-bit, and 8-bit 
(unlimited) extra control lines.  
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Figure 4-4: The Bus transactions ratio of proposed methods in data address stream. 
 
The Table 4-2 shows the coding time delay represented by gate delay and the area 
overhead (ignoring the coding logic).  

 Variable stride 

(similar to T0) 
Variable stride 

(similar to T0-C)
Historical 
address 

(k extra lines) 

EB 

Gate 
delay 

(encoder) 

Comparitor(32) 

2-to-1 MUX 

Comparitor(32) 

3-to-1 MUX 

Comparitor(24) 

(2k+1-1)-to-1 
MUX 

Comparitor(8)
4-to-1 MUX 

Gate 
delay 

(decoder) 

2-to-1 MUX Comparitor(32) 
3-to-1 MUX 

(2 k+1-1)-to-1 
MUX 

 

Overhead 1 control line  K control line 

2 k+1-2 entry table
1 control line 

Table 4-2
 
The followings are the coding logic diagram 
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Logic 4-6: variable stride algorithm (similar to T0) 

 

Logic 4-7: variable stride algorithm (similar to T0-C) 

 

Logic 4-8: historical addresses algorithm 
 
4.4 Statistics and Simulation Result of Instruction Streams 
 
4.4.1 Statistics  
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In instruction stream, the most often used 255 instructions are executed for 97.8% 
of the time and the most often used 256 instructions are executed for 98.34% of the 
time.  
 
4.4.2 Simulation Result 
 
In instruction stream, I compare two transmission methods. I will transplant the 
code compression method mentioned in chapter 2 from memory to Bus. The first 
transmission method is using the preserved index “00000000” to indicate that this 
is an index or a fragment of an instruction. The second transmission method is 
using VL-Encoder EB to indicate that. When transmitting an index, the EB will be 
set to 1. When the transmitted data is the fragments of an instruction, EB will be set 
to 0 except that the EB will be set to 1 at last Bus transaction. Figure 4-5 is the Bus 
transactions ratio to narrow Bus without coding of these two transmission ways. 

 

Figure 4-5 : The Bus transactions ratio of two transmission ways. 
 
The Table 4-3 shows the coding time delay represented by gate delay and the area 
overhead (ignoring the coding logic).  

 IDT + MARK IDT + EB 

Gate delay (encoder) Static time Static time 
Gate delay (decoder) 255 entries Table lookup 

2-to-1 MUX 

256 entries Table lookup 

2-to-1 MUX 
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Area Overhead 255 entry table 1 control line 

256 entry table 

Table 4-3 
 
The followings are the coding logic diagram 

 

Logic 4-9: IDT, cited from“Selective Instruction Compression for Memory 
Energy Reduction in Embedded Systems”, L Benini, A Macii, E Macii, M Poncino, 

ISLPED, 1999 
 
4.5 Statistics and Simulation Result of Data Streams 
 
4.5.1 Statistics  
 
In data stream, there is no encoding to the effective bits of codeword into redundant 
bits but the sender may utilize multiple kinds of redundant bits types. Therefore the 
statistics result will be very similar to simulation result. I will discuss these at next 
section. 
 
4.5.2 Simulation Result 
 
As describe in Table 3-6, I have five possible redundant type VL-Encoder policies. 
Figure 4-6 is the comparison of the different redundant type VL-Encoder policies. 
The first policy is using insignificant bits as redundant bits type and with embedded 
sign extension hint. The second is using repeated bits as redundant bits type. These 
two policies needn’t extra control line except the EB. The third policy is using 
insignificant bits as redundant bits type and with additional sign extension hint. It 
needs 1-bit extra control line to provide the additional sign extension hint. The forth 
is to utilize the insignificant bits as redundant bits type with embedded sign 
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extension hint and to utilize the repeated bits as redundant bits type together. It 
needs 1-bit extra control line to indicate these two types of redundant types. The 
fifth policy is to utilize the insignificant bits as redundant bits type with additional 
sign extension hint and to utilize the repeated bits as redundant bits type together. 
Because this policy needs 2 states to provide the sign extension hint and 1 state to 
indicate the redundant type is repeated bits, it needs three states (2-bit extra control 
lines) to indicate the redundant bits type.  

 
Figure 4-6: The Bus transactions ratio of five VL-Encoder policies. 

 
I make my decision depending on the simulation result. If I have only one extra 
control line (EB), I will use repeated bits as default redundant bits type. If I have 
two extra control lines, I will use repeated bits and insignificant bits with embedded 
sign extension hint as two redundant bits types. If there are three extra control lines 
can be used, I will use repeated bits and insignificant bits with additional sign 
extension hint as redundant bits types. 
 
The Table 4-3 shows the coding time delay represented by gate delay and the area 
overhead (ignoring the coding logic).  
 Repeated bits Insignificant bits Insignificant bits 

Deal with Copy Embedded hint Additional hint 
Gate delay 

(encoder) 
Comparitor(8) 

4-to-1 MUX 

Comparitor(8) 

4-to-1 MUX 

Comparitor(8) 

4-to-1 MUX 

Area Overhead 1 state 1 state 2 states 

Table 4-4 
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The followings are the coding logic diagram 

 
Logic 4-10: VL-Encoder (redundant type : repeated bits) 

 
4.6 The Simulation Results and Comments of these Streams 
 
Table 4-5 is the simulation results summary. The red portion represents the entries 
which when comparing to normal Bus, the Bus transactions overhead is lower than 
10%. 
 Instruction 

Address 
Data Address Instruction Data 

0 control line   U26.65%U  
1 control line U26.53%U 46.42% U26.23%U 55.74% 
2 control lines U25.13%U 29.93%  45.49% 
3 control lines  U26.56%U   
8 control lines  U25.01%U   

Table 4-5 
 
4.6.1 Instruction Address 
 
In instruction address stream, the number of Bus transactions of sequential 
instruction address (91%) can be reduced to 1 by T0 (or T0-C). The number of Bus 
transactions of repeated occurrence the same branch source and target (8.83%) can 
be reduced to 1 by NBDAT. I can use 8-bit width Bus and 2-bit extra control lines 
to utilize both these two properties and reduce the Bus transaction of the 99.83% 
instruction address to 1. There is only the 0.17% unpredictable first occurrence 
branch instruction addresses need more than 1 Bus transaction. The Bus 
transactions of these unpredictable instruction addresses have chance to be reduced 
by EB because of spatial locality.  
 
4.6.2 Data Address 
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In data address stream, the sequential data address (37.66%) can be reduced to 1 by 
variable stride algorithm. The more extra control lines added the more Bus 
transactions can be reduced. When there are 8-bit width Bus with 8-bit extra control 
lines (total 16-bit width Bus lines), the ratio of Bus transaction is reduce to 25.01%. 
This is only 0.01% of Bus transactions ratio different from 32-bit width normal 
Bus.  
 
The reason that we can reduce the data address Bus transactions ratio to 25.01% 
(better than instruction address) is mainly on test pattern. When I use Mibench to 
do simulation, there is only one program executed at the same time. This will cause 
the data being located too centralize.  
 
The historical addresses algorithm will record the occurred 1-byte-address, 
2-byte-address, and 3-byte-address. After all 3-byte-addresses in a program are 
recorded, all data addresses need only 1 Bus transaction. Due to test patterns and 
program size, 256 entries historical addresses table can record all 3-byte-addresses 
in my simulation program (Mibench). However, before all 3-byte-addresses in a 
program are recorded, some data addresses need more than 1 Bus transaction. We 
can reduce the Bus transaction ratio to 25.01% and there is only 0.01% to reach 
25%. This 0.01% Bus transaction ratio is wasted on historical addresses table 
initialization. 
 
4.6.3 Instruction 
 
In instruction stream, I use “Selective Instruction Compression for Memory Energy 
Reduction in Embedded Systems” to compress code to reduce Bus transactions. 
Under Mibench, 98.35% instructions can be transmitted by 1 Bus transaction in 
average. In worst case, there are still 87.54% instructions can be saved to IDT and 
be transmitted by 1 Bus transaction. 
 
4.6.4 Data  
 
Due to the data types, the sizes of data may be byte, half word, word and so on. In 
normal Bus, these data are all transmitted on 32-bit Bus even if the data size small 
than 32 bits. On 8-bit narrow Bus environment, the proposed methods can transmit 
data with smaller size by fewer Bus transactions without mistake.  
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The general researches on discussing data size focus on insignificant bits and the 
data relationships. The proposed methods can transmit only the significant bytes to 
reduce Bus transactions. Besides, we forsake the repeated bytes without sending to 
utilize the data relationship. 
 
In general, the data value is unpredictable and almost random distribution. We can 
hardly predict the exact value and we can only predict the range. There is no 
encoding can be applied on data stream to reduce the range of data value. The 
number of bytes which are needed to be transmitted depends on the range of data 
values. In other words, we can hardly use encoding to reduce the number of Bus 
transactions. 
 
There may be other redundant bits type can be used such as floating point. No 
matter in exponent part or mantissa part, there is high chance that there is a string 
of 0’s or 1’s. But these properties are highly application specific; I won’t discuss 
this subject in this thesis. 
 
4.6.5 Summary  
 
Adopting narrow Bus to system without coding will bring severely performance 
loss and this is hard to be tolerated in most situations. However, if we do some 
coding on narrow Bus system, this problem can be reduced to a very slight degree. 
According to the simulation and description above, we can know that we don’t 
always need 32-bit width Bus if we can tolerate slightly performance loss and the 
coding delay. This will cause more systems being willing to use narrow Bus. 
 

Chapter 5: Summary, Discussion, and Conclusion 
 
5.1 The Effect of the Narrow Bus Encoding 
 
The Bus width and the number of Bus transactions are inverse proportion when the 
Bus width is narrower than data width. The decision of Bus width should be a 
problem of trade-off. However, many systems which have high area constraint but 
they may not tolerate the severely performance loss and extra static energy 
consumption caused by additional Bus transactions. For the narrow Bus without 
coding environment discussed in this thesis, the system uses additional three times 
of Bus transactions to exchange the 24-bit width Bus saving is an unwise behavior. 
This should be the reason of why there is almost no system uses narrow Bus. As 
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most low power or high performance researches, we hope to use a few overhead to 
get high advantage. Narrow Bus encoding provides a compromise choice for 
system designers. It can save large external Bus area by only a few number of 
additional Bus transactions. 
 
5.2 The Coding Methods Effects on Bit Toggles 
 
In my thesis, I only discuss the number of Bus transactions. The number of Bus 
transactions can affect the performance and energy consumption at the same time. 
For a system which cares about energy consumption, we should take the bit toggles 
into consideration. Because of the total Bus transactions are reduced, the total bit 
toggles are reduced as side effect.  
 
  The side effect on bit toggle can be separated into two parts. First, some 
of the coding methods use a special signal to inform the receiver the transmitted 
data and set the Bus value as don’t care. These coding methods can reduce bit 
toggles. Second, some of the coding methods such as code compression algorithm 
which doesn’t care about bit toggle. This will affect the number of bit toggle but it 
is random effect. 
 
 The objective of this thesis is to reduce Bus transactions. The proposed 
methods can reduce bit toggles as side effect. However, these methods are not 
designed to reduce bit toggle. If a system cares about the energy consumption, it 
should evaluate the weights of the static energy caused by additional Bus 
transactions and the dynamic energy caused by bit toggles. It can adopt the power 
model of system and of Bus to find the most suitable method easily. 
 
 
5.3 The Coding Methods Effects on Performance 
 
The number of Bus transactions will affect the system performance. However, they 
are not direct proportion. When the system executes programs with pipeline, there 
will be some pipeline stall cycles can fill the extra Bus transactions. This will 
reduce the performance loss caused by extra narrow Bus transactions. Besides, one 
pipeline cycle may be able to fill multiple Bus transactions if there is hardware 
support. However, this involves the system implementation and has no relation with 
this thesis. 
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5.4 The Other Bus Architectures 
 
In this thesis, we discuss the behavior of the four streams independently. However, 
there are some systems with only 2 Buses or only 1 Bus as figure 5-1 and figure 
5-2.  
 

 
Figure 5-1 : The 2 Buses architecture 

 

Figure 5-2 : The 1 Bus architecture 
 
The mixed data broke the properties of individual stream. A trivial solution is to 
add extra control lines to separate these streams. For 2 Buses architecture in Figure 
5-1, we need only 1 extra control line to separate two types of stream in a Bus. For 
the 1 Bus architecture systems shown in Figure 5-2, we need only 1 extra control 
line, too. This is because whenever an address is transmitted, there will be a data 
followed. The function of the extra control line is to indicate that this address is 
instruction address or data address. 
 
We need different number of extra control lines to encode different streams. On the 
mixed data stream, the number of extra control lines depends on the stream which 
requires most. That is waste for other streams. This will be another consideration of 
mixed streams Bus architecture. 
 
The information of different streams on a Bus can be utilized by each other. Take 
the instruction addresses and data addresses mixed Bus for example, the instruction 
address can provide the hints of data address stride value. The same instruction 
address means the same instruction is executed. The accessed data addresses of this 
instruction will be regular. The same idea can be adopted on the Bus which 
transmits instruction stream and data address stream on the same Bus. 
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5.5 The coding (encoding and decoding) delay affection on memory access 

stage: 
 There is enough free time intervals in memory access stage to fit coding 

(encoding and decoding) time. 
 The coding delay won’t effect memory access stage cycle. 

 There is no enough free time intervals in memory access stage to fit 
coding (encoding and decoding) time. 
1. Increase the memory access stage cycle. 
2. Using extra pipeline stage cycle to do coding. 

I use address Bus transaction to illustrate. It is the same at all 
streams. 
1. There is enough free time interval to fit decoding but there is no 

enough free time interval to fit encoding. 

 

1. When it needs only 1 Bus transaction :  
=> it needs 1 extra pipeline stage cycle to do encoding 

2. When it needs more than 1 Bus transaction : 
=> Encoding can be done at first Bus transaction and it 
doesn’t need extra pipeline stage cycle. 

2. There is no enough free time intervals to fit coding (encoding 
and decoding) delay. 

 

1. Encoding can be done at first Bus transaction and 
decoding can be done at last Bus transaction. This need 1 
extra pipeline stage cycle. 

It is worthy to do narrow Bus encoding even if the coding delay need 1 
pipeline stage cycle time. 

 The worst case is that there is no enough free time intervals in memory 
access stage to fit both encoding and decoding time.  

 Every data needs 1 more pipeline stage cycle to do coding (encoding 
and decoding), it is equal to that each data need 1 more Bus 
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transaction.  
 The Bus transaction ratio will be increased by 25%. 
 The narrow Bus transaction ratio reductions are all more than 

40% in all streams. 
 It is worthy to do narrow Bus encoding even if the coding delay 

need 1 more pipeline stage cycle. 
 

5.6 Reducing the coding delay effect on pipeline stage: 
 DAT:  

Looking up table can be done before the discontinuous address occurs. 
 IA(t) : instruction address at time t 
 Time = t 

Look up IA(t) in source address entries of DAT 
 Case 1 : IA(t) is in source address entries of DAT 

Extract the destination address of IA(t) in DAT. 
 Case 2 : IA(t) is not in source address entries of DAT 

IA(t+1) cannot utilize DAT to reduce Bus transactions. 
 Time = t + 1 (Case 1) 

Comparing this destination address with IA(t+1) 
 Case 1 : IA(t+1) is the same with the destination address 

Sending a specific signal instead of sending IA(t+1). 
 Case 2 : IA(t+1) is not the same with the destination address 

IA(t+1) cannot utilize DAT to reduce Bus transactions. 
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Q&A 
Q1:  

The proposed methods are many and diverse. What is the main idea of 
the narrow Bus encoding? (chapter 3.1) 
 
A:  

Reduce transmitted bytes of data as long as receiver can get exact data. 
 VL-Encoder : 

 The sender can skip the leading regular bytes of data without 
sending, and inform the receiver what the regularity is. 

 Using additional information to inform the sender what the 
regularity is. 

 Using additional information to inform the sender the number 
of Bus transactions.  

 VL-Encoder : 
 Increasing the leading regular bytes in each 32-bits data. 

 
Q2:  
 When considering the energy consumption, the bit toggles play an 
important role. Though the purpose of this thesis isn’t on low energy, how is 
effect of the narrow Bus encoding on bit toggles? 
 
A:  
 The proposed methods are designed without considering bit toggles. 
  
 System static energy consumption: 

The narrow Bus encoding can reduce Bus transaction. 
 Fewer Bus transaction => Shorter program execution time 
 Shorter program execution time => Lower system static energy 

consumption 
 
 The bit toggles of transmitted bytes: 

 Coding methods which have good effect: 
 Some of the coding methods use a specific signal to inform the 

receiver the transmitted data and see the Bus value as “don’t care”. 
=> The Bus value can be set to reduce bit toggles except the control 
line. 

 Coding methods which have unpredictable effect: 

 46



 Some of the coding methods don’t consider the bit toggles. The effect 
on bit toggle is unpredictable. 

 
Q3:  
 The simulations are basing on the traces extracted by O1 compiler. How 
about the effect on the O3 or other level compiler? 
 
A:  

My research focuses on the streams characteristic. I don’t consider the difference 
between O1 and O3 compiler.  

 
Q4: 
 No matter what stream, you propose several coding methods. What method 
you suggest to use in each stream? (chapter 1.3) 
 
A: 

The product of Bus width and Bus transaction ratio 
 When the Bus width is smaller than data width and the Bus width is the 

power of 2, the Bus width and the Bus transaction ratio is inverse 
proportion. I use the product of Bus width and Bus transaction ratio as 
evaluation matrix. 

The commended method of each stream evaluated by this function 
 Instruction Address 

 T0-C + EB 
 1 extra control line 
 I don’t consider the area overhead of NBDAT table and the “2 

control line method” has gotten worse ratio. If the “2 control lines 
method” considers the area overhead of NBDAT, the product ratio 
will be worse. 

 Coding method Bus transaction ratio 
1 control line UT0-C + EBU U26.53%U 

2 control lines T0-C + NBDAT(unlimited) + EB 25.13% 
 

 Data Address 
 No control line variable stride algorithm + historical addresses 

algorithm (with 6 historical address entries) + EB 
 3 extra control lines 

 Coding method Bus transaction 
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ratio 
1 control 
line 

No control line variable stride algorithm 
+ EB 

46.42% 

2 control 
lines 

No control line variable stride algorithm  
+ historical addresses algorithm (with 2 
historical address entries) + EB 

29.93% 

3 control 
lines 

UNo control line variable stride algorithm 
U+ historical addresses algorithm (with 6 
historical address entries) + EBU 

U26.56%U 

… … … 
8 control 
lines 

No control line variable stride algorithm  
+ historical addresses algorithm (with 254 
historical address entries) + EB 

25.01% 

 
 Instruction 

 Using “MARK” to indicate whether this instruction is in IDT or not 
 0 extra control line 

 Coding method Bus transaction 
ratio 

0 control 
line 

UUsing “MARK” to indicate whether this 
instruction is in IDT or notU 

U26.65%U 

1 control 
line 

Using “EB” to indicate whether this 
instruction is in IDT or not 

26.23% 

 
 Data  

 utilize both insignificant bit and repeated bit + EB 
 2 extra control lines 

 Coding method Bus transaction 
ratio 

1 control 
line 

utilize repeated bit + EB 55.74% 

2 control 
lines 

Uutilize both insignificant bit and repeated 
bit + EBU 

U45.49%U 

 
These methods need different number of extra control lines and get different Bus 
transactions reduction. There may be systems cannot tolerate the area overhead 
of suggest method. They can choose the suitable coding method from the tables. 
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Q5: 
 You have an assumption that the area overhead of extra coding logic gates is 
much slighter than the extra control lines. Is this assumption reasonable? 
(chapter 1.3) 
 
A: 
 Coding logic gates area depends on: 

 Processing technology 
Extra control lines area depends on: 

 Processing technology 
 Routing length 

The needed coding logic gates and extra control lines are provided. The system 
designer can evaluate easily. 
 
My thesis environment focuses on the external Bus between processor and 
memory. The assumption that the area overhead of extra coding logic gates is 
much slighter than the extra control lines is reasonable. 

 
Q6: 
 There are many coding methods can inform the receiver end the number of 
Bus transactions. Why do you use the method which adds an extra control line to 
indicate the number of Bus transactions? (chapter 3.2.1, 3.2.2, 3.2.3) 
 
A: 

If I want to inform the receiver end the number of Bus transactions, I have to 
transmit extra information. There are two main directions to reach this purpose.  
 
Policy 1 : 

 Using an extra control line (EB) to indicate a codeword is transmitted over 
or not at every Bus transaction. 

Policy 2 : 
 Adding several extra bits to indicate the number of Bus transactions. 

 
The reason to use policy 1: 

 In order to compare these two policies in the same standard, I use the same 
Bus width (including control lines) for both policies to compare the Bus 
transaction ratio of these two methods.  

 The policy 1 can get lower Bus transaction ratio. 
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Q7: 
 You seem to reduce the number of Bus transaction to a very low degree. 
However, why do you think these ratios are low enough? (chapter 5.8) 
 
A: 

 Instruction 
Address 

Data Address Instruction Data 

0 control line   U26.65%U  
1 control line U26.53%U 46.42% U26.23%U 55.74% 
2 control lines U25.13%U 29.93%  45.49% 
3 control lines  U26.56%U   
8 control lines  U25.01%U   

 
Instruction Address Stream: 

 Sequential addresses (T0, T0-C) 
The number of Bus transaction can be reduced to 1.  

 Non-sequential addresses pairs (NBDAT) 
 When executing a branch instruction, it will branch from source 

address to target address. The source address and target address is a 
non-sequential addresses pair. 

 First occurrence non-sequential addresses pair: 
The number of Bus transactions is not guaranteed to be 1. 

 After second occurrence non-sequential addresses pair: 
The number of Bus transactions can be reduced to 1. 
 

The Bus transactions of those first occurrence non-sequential addresses pairs can 
be reduced by EB, but they are not guaranteed to be 1. Only these addresses may 
cause more than 1 Bus transaction. 

 
Data Address Stream: 

 Sequential addresses (Variable stride algorithm) 
 The number of Bus transaction can be reduced to 1. 

 
 Locality properties (Historical addresses --- Described in section 3.4.2 

encoder 2 ~ encoder 4) 
 The historical addresses algorithm will record the occurred 

1-byte-address, 2-byte-address, and 3-byte-address.  
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 After all 3-byte-addresses in this program are recorded; all data 
addresses need only 1 Bus transaction. 

 Due to test patterns and program size, 254 entries historical 
addresses table can record all 3-byte-addresses in my 
simulation program (Mibench). 

 Initialization  
 Variable stride algorithm: 

 Before get right stride value, some data addresses need more 
than 1 Bus transaction. 

 When updating right stride value, EB can help to reduce the 
Bus transactions, but they are not guaranteed to be 1. 

 Historical addresses algorithm: 
 Before all 3-byte-addresses in this program are recorded, 

some data addresses need more than 1 Bus transaction. 
 When initializing historical addresses table, EB can help to 

reduce the Bus transactions, but they are not guaranteed to be 1. 
 When initializing historical addresses table, 2-byte-address and 

1-byte-address recorders can help to reduce the Bus 
transactions, but they are not guaranteed to be 1. 

 
The Bus transactions of those not utilized by variable stride and not recorded 
in 3-byte-address table addresses can be reduced by EB, but they are not 
guaranteed to be 1. Only these addresses may cause more than 1 Bus 
transactions. Besides, the table size and control lines cannot be unlimited. The 
effect of proposed method will be further limited. 
The proposed methods can reduce the Bus transactions of almost all data 
addresses to 1. The situation that the address need more than 1 Bus transaction 
is when the table or stride value is under initialization. I consider that the 
proposed method can reduce the Bus transactions low enough. 

 
Instruction Stream: 

 Lower Bus transaction ratio than other streams when using the same 
number of control lines: 
 Even if there is no extra control line, the Bus transaction ratio of 

instruction stream is about the same with instruction address stream 
using 1 extra control line. And it is about the same with data address 
stream using 3 extra control lines. 
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 Some surveyed but not suitable compression methods 
 VLC coding is not suitable in my environment 

The VLC coding can be used for compressing a whole program but 
it is not suitable to compress instructions one by one. However, the 
“Selective Instruction Compression for Memory Energy Reduction 
in Embedded Systems” is very suitable to compress instruction one 
by one. 

 Compressing operands is not suitable in my environment 
Though some operands can be compressed to very small, some 
operands may be still very large. The Bus transactions are the ceiling 
of the quotient of the compressed size divided by 8. It doesn’t 
consider this and get lower Bus transaction reduction than 
“Selective Instruction Compression for Memory Energy Reduction 
in Embedded Systems” in my environment.  

 
 The “Selective Instruction Compression for Memory Energy 

Reduction in Embedded Systems” is suitable in my environment 
 Not all programs execute lower than 256 kinds of instructions. That 

is, not all instructions can be transmitted by 1 Bus transactions. 
 We can increase the table size to store more instructions. 

However, this will further increase the table access delay and 
need more bit for indexing.  

 In average, there is only 1.65% instructions need more than 1 Bus 
transaction. I think it is not worthy to double the table size and 
increase the Bus width by 1.  

 
As the reasons mentioned above, I think that the “Selective Instruction 
Compression for Memory Energy Reduction in Embedded Systems” is the 
most suitable compression method which I have surveyed and the Bus 
transaction ratio is low enough. 
 
Data Stream: 

 Different data type: 
Due to the data types, the sizes of data may be various. In normal Bus, these 
data are all transmitted on 32-bit Bus even if the data size smaller than 32 
bits. On 8-bit narrow Bus environment, the proposed methods can transmit 
data with small size by fewer Bus transactions without mistake. 

 The general researches on the data size in time critical environments 

 52



focus on two main points 
 Insignificant Bits (sign extension) 
 Repeated Bits (relationships between data) 

 The reason that I think that the data stream needn’t encoding. 
 The relationship between 2 data 

 Using repeated bit as redundant type is to utilize the 
relationship between 2 data. 

 The relationship between more than 2 data 
 It is highly program dependent. It is hard to find a common 

relationship in all programs. 
 Some data value will repeatedly occur 

 The probability is very low and hardly to catch the appearance.  
 

The data stream only utilizes the most efficient properties. The other properties 
are unobvious and hardly to utilize. I think that it is good enough to use just 
insignificant bits and repeated bits as redundant bits types in data stream.  

 
Q8: 
 The Bus encoding is a time critical work. How do you convince us that the 
proposed method won’t affect pipeline? (chapter 4) 
 
A: 

I cannot convince that the proposed method won’t affect pipeline. I can only 
propose the coding (encoding and decoding) delays of coding methods for 
system designer to estimate.  

 
The coding (encoding and decoding) delays of coding method: 

 Instruction Address 
 T0 T0-C DAT(NBDAT) EB (Repeated 

bits) 
Gate 
delay 

(encoder) 

Comparitor(32) 

2-to-1 MUX 

Comparitor(32)
3-to-1 MUX 

Comparitor(32)
2-to-1 MUX 

Comparitor(8) 

4-to-1 MUX 

Gate 
delay 

(decoder) 

2-to-1 MUX Comparitor(32)
3-to-1 MUX 

2-to-1 MUX  

 Data Address 
 Variable stride Variable stride Historical EB (Repeated 
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(similar to T0) (similar to 
T0-C) 

address 

(k extra lines) 
bits) 

Gate 
delay 

(encoder) 

Comparitor(32) 

2-to-1 MUX 

Comparitor(32)
3-to-1 MUX 

Comparitor(24)
(2k+1-1)-to-1 
MUX 

Comparitor(8) 

4-to-1 MUX 

Gate 
delay 

(decoder) 

2-to-1 MUX Comparitor(32)
3-to-1 MUX 

(2 k+1-1)-to-1 
MUX 

 

 Instruction 
 IDT + MARK IDT + EB 

Gate delay (encoder) No run time delay No run time delay 
Gate delay (decoder) 255 entries direct map 

cache look up 

2-to-1 MUX 

256 entries direct map 
cache look up 

2-to-1 MUX 

 Data (VL-Encoder) 
 Repeated bits Insignificant bits Insignificant bits 

Handle Method Copy Embedded hint Additional hint 
Gate delay 

(encoder) 
Comparitor(8) 

4-to-1 MUX 

Comparitor(8) 

4-to-1 MUX 

Comparitor(8) 

4-to-1 MUX 

Gate delay 
(decoder) 

No delay No delay No delay 
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