
國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

減少傳送次數之窄匯流排編碼

Narrow Bus Encoding to Reduce Bus Transactions

研究生：鄭式勳

指導教授：鍾崇斌 教授

中 華 民 國 九 十 五 年 八 月

減少傳送次數之窄匯流排編碼

Narrow Bus Encoding to Reduce Bus Transactions

研 究 生：鄭式勳

指導教授：鍾崇斌 Advisor：Chung-Ping Chung

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science
June 2006

Hsinchu, Taiwan, Republic of China

中華民國九十五年八月

Abstract
 Narrow Bus is a Bus with narrower width than data width. The Bus with the
same width with data width is called normal Bus. This thesis will focus on 8-bit width
Bus and 32-bit width data environment. Using narrow Bus can save chip area but the
Bus transactions will be raised. Most area constraint systems hope to use narrow Bus
but they cannot tolerate the performance loss and extra system static energy
consumption caused by additional Bus transactions. I add some functions to the
transmitter and corresponding receiver to reduce Bus transactions on narrow Bus. I
will adopt suitable coding methods to the proposed transmitter depending on the
stream type. In instruction address stream, I use T0-C to utilize the sequential
property and narrow Bus DAT to utilize the branch behavior property. In data address
stream, variable stride algorithm, historical addresses algorithm and the idea of
SRWEC (Separated Read/Write Encoding Contents) are used. In instruction stream, a
code compression algorithm is used to reduce the instruction size. In data stream, the
idea of SRWEC, the occurrence of small value and the relationship between data are
utilized. The number of narrow Bus transaction is four times of the number of normal
Bus transactions. In other words, the Bus transactions of normal Bus are 25% of the
Bus transactions of narrow Bus without coding. I hope to reduce the number of
narrow Bus transactions of streams as close to 25% as possible so that the extra Bus
transactions overhead is slighter and there will be more systems are willing to use
narrow Bus.

 i

摘 要

 窄匯流排是指寬度比資料寬度要小的匯流排，而和資料寬度等寬的匯流排則

稱一般匯流排，這篇論文將針對使用 8-bit 寬的匯流排來傳送 32-bit 寬的資料的

環境，使用窄匯流排可以節省晶片面積但是卻需要較多的傳送次數，大部分著重

面積考量的系統希望能使用窄匯流排卻無法容忍效能和額外能量的損失，我新增

了些功能給傳送端和接收端以減少在窄匯流排上的傳送次數，針對不同的資訊

流，我將提出不同的方法，在指令位址流上，我使用 T0-C 以利用其連續的特性

而使用 NBDAT 去利用其不連續的特性，在資料位址流上，我使用 variable stride

algorithm、historical address algorithm 和 SRWEC (Separated Read/Write Encoding

Contents) 的概念，在指令流上，我使用指令壓縮的技巧來減少傳送次數，在資

料流上，我使用 SRWEC 和一些減少資料大小的概念以減少傳送次數，在我的環

境下，一筆資料若不編碼將需要四次傳送，因此，我的編碼的最低傳送次數比例

是 25%，我將儘可能將傳送次數減少至 25%，如此一來，將有更多系統會願意

使用窄匯流排。

 ii

誌 謝

 感謝鍾崇斌老師和單智君老師這兩年的指導，實驗室裡學長和同學的意見和

幫助，最重要的是有家人的支持與鼓勵，由於大家的幫助，我才得以完成此篇論

文，僅在此上我的謝意。
 祝所有幫助過我的人，身體健康，萬事如意。
鄭式勳 2006 年 9 月 2 日

 iii

Chapter 1: Introduction ·· 1
1.1 Narrow Bus Environment and Normal Bus Environment······························· 1
1.2 Research Observation, Motivation and Objective ·· 1
1.3 The Environment and Assumptions·· 2
1.4 Organization ··· 2
Chapter 2: Background··· 2
2.1 Redundant and Effective Fragments··· 3
2.1.1 Redundant bits:·· 3
2.1.2 Effective Bits: ·· 4
2.1.3 Effective Fragments and Redundant Fragments ·· 4
2.2 Related Coding Methods ·· 4
2.2.1 Asymptotic Zero-Transition Activity Encoding for Address Busses in
Low-Power Microprocessor-Based Systems (T0) ·· 5
2.2.2 Irredundant Address Bus Encoding for Low Power (T0-C)························· 6
2.2.3 Discontinuous Address Table Algorithm (DAT) ·· 8
2.2.5 Variable Stride Algorithm·· 10
2.2.4 Idea of Separating Read and Write Streams··· 10
2.2.5 Selective Instruction Compression for Memory Energy Reduction in Embedded
Systems ·· 12
Chapter 3: Design of Proposed Coding ·· 13
3.1 Coding Flow··· 13
3.2 VL-Encoder·· 14
3.2.1 Method One : Adding the Information of the Number of Bus Transactions at the
Beginning of First Transmission ·· 14
3.2.2 Method Two : Indicating the Codeword is Transmitted over or not at Every
Bus Transaction·· 15
3.2.3 Comparison of Method One and Method Two··· 15
3.2.4 The VL-Encoder Using Method Two ·· 17
3.3 Instruction Address Stream ··· 17
3.3.1 Type of Redundant Bits Used by EB VL-Encoder :····································· 17
3.3.2 Encoder : ··· 17
3.3.3 Proposed Methods : ··· 18
3.4 Data Address Stream ·· 19
3.4.1 Type of Redundant Bits Used by EB VL-Encoder :····································· 19
3.4.2 Encoder : ··· 19
3.4.3 Proposed Methods : ··· 23
3.5 Instruction Stream ·· 24
3.6 Data Stream·· 25

 iv

3.6.1 Type of Redundant Bits Used by EB VL-Encoder :····································· 25
Chapter 4: Statistics and Simulation Result·· 27
4.1 Statistics and Simulation Environment··· 27
4.2 Statistics and Simulation Result of Instruction Address Streams···················· 27
4.2.1 Statistics ·· 27
4.2.2 Simulation Result ·· 28
4.3 Statistics and Simulation Result of Data Address Streams ····························· 32
4.3.1 Statistics ·· 32
4.3.2 Simulation Result ·· 32
4.4Statistics and Simulation Result of Instruction Streams ·································· 35
4.4.1 Statistics ·· 35
4.4.2 Simulation Result ·· 36
4.5 Statistics and Simulation Result of Data Streams ··· 37
4.5.1 Statistics ·· 37
4.5.2 Simulation Result ·· 37
4.6 The Simulation Results and Comments of these Streams ······························· 39
4.6.1 Instruction Address·· 39
4.6.2 Data Address ··· 39
4.6.3 Instruction ··· 40
4.6.4 Data ··· 40
4.6.5 Summary ··· 41
Chapter 5: Summary, Discussion, and Conclusion ··· 41
5.1 The Effect of the Narrow Bus Encoding··· 41
5.2 The Coding Methods Effects on Bit Toggles ·· 42
5.3 The Coding Methods Effects on Performance ·· 42
5.4 The Other Bus Architectures ·· 43
5.5 The coding (encoding and decoding) delay affection on memory access stage:
··· 44
5.6 Reducing the coding delay effect on pipeline stage:······································· 45

Q&A ·· 46

 v

Chapter 1: Introduction
In modern computer architecture design, the area, energy consumption, and
performance are some main considering factors. However, these factors are conflict
with each other on design in most time. In this chapter, I will introduce and compare
the environment of narrow Bus and normal Bus on these factors. And then I will
describe my observation, motivation and objective. On the end of this chapter is the
organization of this thesis.

1.1 Narrow Bus Environment and Normal Bus Environment

The narrow Bus is a Bus with narrower width than data width. The normal Bus is a
Bus with the same width with data width. In intrinsic characteristic, the narrow Bus
will have less routing area and lower routing complexity than normal Bus. However,
if a system uses narrow Bus with one-forth width of data width, it needs four times
Bus transactions than normal Bus to transmit data. For example, if a system uses 8-bit
width Bus to transmit 32-bit width data, it needs to send 8-bit fragments four times.
(This thesis will focus on 8-bit width Bus and 32-bit width data environment.) This
will cause system performance loss and more static energy consumption on devices.
Basing on this intrinsic characteristic difference, the time constraint systems will use
normal Bus and the area constraint systems will prefer narrow Bus.

1.2 Research Observation, Motivation and Objective

There should be many area constraint systems hope to use narrow Bus to save routing
area; however, they may give up because they cannot tolerate the severely
performance loss and additional static energy consumption caused by extra Bus
transactions.

In this thesis, I assume the environment is using 8-bit width Bus to transmit 32-bit
width data. In this situation, the number of Bus transactions will rise to four times.
However, there are some opportunities can be used to reduce Bus transactions. First,
the sender can skip the regular portion of a codeword without sending, and inform the
receiver what the regularity is. Second, when the data is regular, the sender can use a
protocol to inform the receiver what the regularity is instead of sending the data.

As mentioned before, the different systems will have different constraint on area,
performance and energy consumption. A system which decides to use narrow Bus
should be a high area constraint system. I hope to reduce the additional Bus

 1

transactions by tolerable area overhead of coding logic gates and extra control lines.
The different systems can tolerate different area overhead, so I will propose several
methods for systems to use without proposing so-called “Best Choice”. My objective
is using narrow Bus encoding to reduce Bus transactions at narrow Bus environment.
In this way, there should be more system willing to use narrow Bus.

1.3 The Environment and Assumptions

In this thesis, I will deal with the traffic between processor and memory. The
processor and memory communicate by external Bus and there is no cache in this
system. I use 8-bit width external Bus to transmit 32-bit width data (address). Figure
1-1 is the architecture of my environment

Figure 1-1: Narrow Bus Architecture

The area overhead caused by coding logic gates depends on the processing technology.
The area overhead caused by extra control lines depends on the processing technology
and routing length. Both of them are decided case by case. It is hard to evaluate the
weighting of them. Base on my environment, I simplify the area overhead to the
number of extra control lines. In other words, I assume the area overhead of coding
logic gates is much slighter than extra control lines. Of course, system designers can
get the area overhead according to their own system environments.

1.4 Organization

The rest of this thesis is organized as follow. Chapter 2 is the background of the
characteristics of streams and some useful coding methods. In chapter 3, I will
introduce my coding flow and then the proposed methods. The statistics and
simulation result will be presented in chapter 4. At last, some summary, discussions,
and conclusions are in chapter 5.

Chapter 2: Background
In order to reduce Bus transactions, this thesis utilize two opportunities. As mentioned
in chapter 1, first opportunity is to skip the regular portion of a codeword without
sending, and inform the receiver what the regularity is. Second opportunity is when

 2

the data is regular; the sender can use a protocol to inform the receiver what the
regularity is instead of sending the data. I will introduce some regularity below. The
end of this chapter is some of the existing normal Bus coding methods. Some of these
coding methods use protocol to reduce bit toggles and which can be used on narrow
Bus to reduce Bus transactions

2.1 Redundant and Effective Fragments

I will explain some nouns I used in following chapter.

2.1.1Redundant bits:

The general definition of redundant bits is the additional bits added to the original
information data for some specific purposes. However, I use this noun here as the bits
which have the regular property. There may be different regular bits types at different
kinds of stream. When dealing with different streams, the default regular bits type will
be different. Followings are some kinds of regular bits types.

Type 1: Repeated Bits (The Same Leading Bits with Previous Value):
This type often occurs at address stream because of the values of successive addresses
are often close. When the current address is not too far from previous address, this
two address values will be similar and there will be many identical leading bits.
Sometimes the data stream has this property because of the relationship, too. If two
successive accessed data values have relationship, these two values have chance to be
close and have some identical leading bits.

Type 2: Insignificant Bits (Sign Extension):
This type often occurs at data stream because of the occurrence of small values. The
small positive values will be with many leading 0’s and the small negative values will
be with many leading 1’s.

In this thesis, I will only utilize these two kinds of redundant bits mentioned above.
Depending on different systems, applications or Bus interfaces, there may be some
special types of redundant bits can be utilized. Take AMBA for example, whenever
the data width is smaller than Bus width, it will copy the data to other vacant Bus
space. Those special types of redundant bits can be utilized case by case but this thesis
won’t focus on them. Figure 2-1 is some examples of upper described redundant bits
types.

 3

Figure 2-1: types of redundant bits

2.1.2Effective Bits:

Effective bits are the opposition of redundant bits. In other words, a bit will be
effective bit if it is not redundant bit.

2.1.3Effective Fragments and Redundant Fragments

This thesis will focus on 8-bit width external Bus and 32-bit width data environment.
The 32-bit data can be separated into several fragments. If a fragment is composed of
effective bits and redundant bits, or composed only of effective bits, I call this
fragment as effective fragment. If a fragment is composed of only redundant bits, it is
called redundant fragment.

2.2 Related Coding Methods

Following are some of normal Bus coding methods and they have chance to be
adopted on narrow Bus to reduce Bus transactions. “Asymptotic Zero-Transition
Activity Encoding for Address Busses in Low-Power Microprocessor-Based Systems”
(T0), “Irredundant Address Bus Encoding for Low Power” (T0-C, a modified T0),
and discontinuous address table algorithm (DAT) are originally designed to reduce bit
toggles on instruction address Bus. The idea of SRWEC (separating read/write
encoding contents) can be used on data address stream and data stream. Variable
stride algorithm is designed for data address stream. And “Selective Instruction
Compression for Memory Energy Reduction in Embedded Systems” describes a code
compression method which is suitable for us to adopt on narrow Bus to reduce Bus
transactions.

 4

2.2.1Asymptotic Zero-Transition Activity Encoding for Address Busses in
Low-Power Microprocessor-Based Systems (T0)

In “Asymptotic Zero-Transition Activity Encoding for Address Busses in Low-Power
Microprocessor-Based Systems”, the author proposes a coding method utilizing
instruction address sequential property to reduce the bit toggles. This coding method
needs an extra control line. It defines the size of instruction as the stride value.

At the sender, when this instruction address is previous instruction address value adds
the specific stride value, it means the instruction addresses are sequential. When the
instruction addresses are sequential, it sets the extra control line as 1 and freezes the
Bus to reduce bit toggles. Otherwise, it sets the extra control line as 0 and transmits
the instruction address by Bus. At the receiver end, when the extra control line is 1, it
doesn’t care the value at Bus but adds previous instruction address by the specific
stride value to get current instruction address. Only when the extra control line is 0,
the receiver reads the Bus value as instruction address.

Following is the T0 encoder pseudo code.

b(t):real value, B(t):Bus value, S: stride value
T0 encoder pseudo algorithm:
while(1)
{

if (b(t) = = b(t-1) + S)
B(t) = B(t-1)
control = 1

else
B(t) = b(t)
contorl = 0

}

Following is the T0 decoder pseudo code.

b(t):real value, B(t):Bus value, S: stride value
T0 decoder pseudo algorithm:
while(1)
{

if (control = = 1)
b(t) = b(t-1) + S

else

 5

b(t) = B(t)
}

Table 2-1 is a simple example.

b(t):real value, B(t):Bus value, S: stride value = 4
Time Sender Bus Extral line Receiver

t b(t) B(t) control b(t)
1 000000C0 000000C0 0 000000C0
2 000000C4 - 1 000000C4
3 000000C8 - 1 000000C8
4 000000CC - 1 000000CC
5 000000C0 000000C0 0 000000C0
6 000000C4 - 1 000000C4
7 000000C8 - 1 000000C8
8 000000CC - 1 000000CC

Table 2-1
When b(t) = = b(t-1) + S, the control line will be set to 1 and B(t) = B(t-1). When
b(t) != b(t-1) + S, the control line will be set to 0 and B(t) = b(t).

2.2.2Irredundant Address Bus Encoding for Low Power (T0-C)

The T0-C is a modified method of T0. It does some changes to avoid adding the
extra control line. The main idea of T0-C is that making a one-to-one and onto
function. There must be existent a corresponding inverter function. Figure 2-2 is the
T0-C function. When current instruction address is equal to previous instruction
address adds the specific stride value, the sender sends the previous Bus value
(fixes Bus value) instead. On the other hand, if the current instruction address is
equal to previous Bus value, sends the previous instruction address adds the
specific stride value. The other cases will be sent without any change. Because this
is a one-to-one and onto function, the receiver can easily get the instruction
addresses back by the inverter function.

 6

Figure 2-2: T0-C function

Following is the T0-C encoder pseudo code.

b(t):real value, B(t):Bus value, S: stride value
T0-C encoder pseudo algorithm:
while(1)
{

if (b(t) = = b(t-1) + S)
B(t) = B(t-1)

else if (b(t) = = B(t-1))
B(t) = b(t-1) + S

else
B(t) = b(t)

}

Following is the T0-C decoder pseudo code.
b(t):real value, B(t):Bus value, S: stride value

T0-C decoder pseudo algorithm:
while(1)
{

if (B(t) = = B(t-1))
b(t) = b(t-1) + S

else if (B(t) = = b(t-1) + S)
b(t) = B(t-1)

else
b(t) = B(t)

}

 7

Table 2-2 is a simple example.

b(t):real value, B(t):Bus value, S: stride value = 4
Time Sender Bus Receiver

t b(t) B(t) b(t)
1 000000C0 000000C0 000000C0
2 000000C4 - 000000C4
3 000000C8 - 000000C8
4 000000CC - 000000CC
5 000000C0 000000D0 000000C0
6 000000C4 - 000000C4
7 000000C8 - 000000C8
8 000000CC - 000000CC
9 000000F0 000000F0 000000F0

Table 2-2

2.2.3 Discontinuous Address Table Algorithm (DAT)

The instruction addresses can be classified into sequential accesses and
non-sequential accesses. The sequential access property can be utilized by T0 or
T0-C as mentioned above. Discontinuous address Table (DAT) is designed to
utilize the non-sequential accesses part property. The non-sequential access
happens when the processor executes a branch instruction. Discontinuous address
table algorithm needs one extra control line and a discontinuous address table (DAT)
to record the branch information.

In general case, the target addresses of taken branches are seldom changed.
Discontinuous address table algorithm utilizes this property to reduce bit toggles.
When a non-sequential access happens, it means that a branch instruction jumps to
the specific target address. At this time, the address of the branch instruction and
target instruction address will be recorded into DAT. When next time the program
reaches the same source address and branch to the same target address, the sender
sets the extra control line as 1 and freeze the Bus to reduce bit toggles. Otherwise,
the sender sets the extra control line as 0 and sends the instruction address by Bus.

Following is the DAT encoder pseudo code.

b(t):real value, B(t):Bus value, S: stride value
DAT encoder pseudo algorithm:

 8

while(1)
{

if (b(t-1) = = one of source address of DAT
&& b(t) = = the corresponding target address)

B(t) = B(t-1)
control = 1

else
B(t) = b(t)
contorl = 0

}

Following is the DAT decoder pseudo code.

b(t):real value, B(t):Bus value, S: stride value
T0 decoder pseudo algorithm:
while(1)
{

if (control = = 1)
 // b(t-1) is source address

b(t) = the corresponding target address of b(t-1) in DAT
else

b(t) = B(t)
}

Table 2-3 is a simple example and Table 2-4 is corresponding DAT.

b(t):real value, B(t):Bus value, S: stride value = 4
Time Sender Bus Extral line Receiver

T b(t) B(t) control b(t)
DAT

operation
1 00000034 00000034 0 00000034
2 00000040 00000040 0 00000040 Insert
3 00000044 00000044 0 00000044
4 00000030 00000030 0 00000030 Insert
5 00000034 00000034 0 00000034
6 00000040 - 1 00000040 Found
7 00000044 00000044 0 00000044
8 00000030 - 1 00000030 Found

Table 2-3

2 entries DAT

 9

 Entry 1 Entry 2
Time Source 1 Target 1 Source 2 Target 2

T -
1 -
2 00000034 00000040 - - - - - - - - - - - - - - - -
3 00000034 00000040 - - - - - - - - - - - - - - - -
4 00000044 00000030 00000034 00000040
5 00000044 00000030 00000034 00000040
6 00000044 00000030 00000034 00000040
7 00000044 00000030 00000034 00000040
8 00000044 00000030 00000034 00000040

 DAT Queue
Table 2-4

2.2.4 Idea of Separating Read and Write Streams

The data address stream includes the read data addresses and write data addresses.
When executing program, these two streams will be mixed and the characteristics
of each stream will be disturbed. If we deal with these two parts individually, the
characteristics of them will be preserved without being disturbed. For the same
reason, the data stream can utilize this idea, too.

2.2.5 Variable Stride Algorithm

There are two kinds of variable stride algorithm, one is similar to T0 and the other
is similar to T0-C. However, its stride value will be changed with time. Whenever
the current address is encoded at sender end, it updates the variable stride as current
data address minus previous data address. At the receiver, it will update the variable
stride as current data address minus previous data address right after finishing
decoding. I will only introduce variable stride algorithm similar to T0-C for
example below.

Following is the Variable Stride algorithm (similar to T0-C) encoder pseudo code.

b(t):real value, B(t):Bus value, S: stride value
Variable Stride encoder pseudo algorithm:
while(1)
{

if (b(t) = = b(t-1) + S)

 10

 B(t) = B(t-1)
else if(b(t) = = B(t-1))
 B(t) = b(t-1) + S
else
 B(t) = b(t)
S = b(t) - b(t-1)

}

Following is the Variable Stride algorithm (similar to T0-C) decoder pseudo code.

b(t):real value, B(t):Bus value, S: stride value
Variable Stride decoder pseudo algorithm:
while(1)
{

if (B(t) = B(t-1))
b(t) = = b(t-1) + S

else if(B(t) = b(t-1) + S)
b(t) = = B(t-1)

else
b(t) = B(t)

S = b(t) - b(t-1)
}

Table 2-5 is a simple example.

b(t):real value, B(t):Bus value, S: variable stride value
Time Sender Bus Variable stride Receiver

T b(t) B(t) S b(t)
1 000000C0 000000C0 - 000000C0
2 000000C4 000000C4 4 000000C4
3 000000C8 - 4 000000C8
4 000000CC - 4 000000CC
5 000000F0 000000F0 24 000000F0
6 000000F2 000000F2 2 000000F2
7 000000F4 - 2 000000F4
8 000000F6 - 2 000000F6
9 000000F8 - 2 000000F8
10 000000FA - 2 000000FA
11 000000F2 000000FC -8 000000F2
12 000000F4 000000F4 2 000000F4

 11

13 000000F6 - 2 000000F6
Table 2-5

2.2.6 Selective Instruction Compression for Memory Energy Reduction in

Embedded Systems

In “Selective Instruction Compression for Memory Energy Reduction in Embedded
Systems”, the author proposes a dictionary based instruction compression. The
main idea of this paper is that there are a few instructions are executed frequently.
The method proposed is to gather the most frequently used 255 instructions in an
Instruction Decompression Table (IDT) at static time. When the processor
requesting instruction is in the IDT, the memory sends the index of the instruction
in IDT to the processor. If the instruction doesn’t exist in the IDT, the memory
sends the preserved index “mark” (00000000) and then sends the instruction byte
by byte. At the receiver, if the received byte is not the preserved index “mark”
(00000000), it looks up the IDT and extracts the instruction. If the receiver receives
the “mark,” it continues receives the following four bytes and then composes them
to a complete instruction. Because the instruction is 32 bits and the index is 8 bits,
this algorithm can reach compression effect when the instruction is in IDT.

Figure 2-3 is the proposed architecture of IDT.

Figure 2-3: the proposed architecture of IDT

If the first byte is not “mark”, the control signal will be 1. If the first byte is “mark”,

 12

the control signal will be 0 and the buffer will collect 4 bytes and then compose
them to original instruction.

Chapter 3: Design of Proposed Coding
In the beginning of this chapter, I will introduce my coding flow. Next, I will
discuss how to reduce Bus transactions. At the last of this chapter, I will describe
the complete coding methods of instruction address stream, data address stream,
instruction stream, and data stream.

3.1 Coding Flow

Figure 3-1 is a coding flow diagram. The purpose of the encoder is to convert the
effective bits of a codeword into redundant bits. The redundant type will be
different in different streams. Between encoder and narrow Bus is a variable length
encoder (VL-Encoder). The VL-Encoder will separate the 32-bit codeword into
several fragments, skip the redundant fragments without sending, and put the
effective fragments on the Bus. The variable length decoder (VL-Decoder) receives
the effective fragments of a codeword, composes them, and then fills the redundant
fragment parts to become original codeword. The number of effective fragments of
a codeword is variable and then the number of Bus transactions of a codeword will
be variable. The VL-Decoder has to get the additional information to know the
number of the Bus transactions of a codeword. Otherwise, the receiver won’t know
when to stop receiving data and composing the effective fragments. The
VL-Encoder and VL-Decoder, encoder and decoder, will all be introduced below.

 13

Figure 3-1: the coding flow diagram

3.2 VL-Encoder

The purpose of VL-Encoder is to reduce Bus transactions. There are two problems
rising here. The first problem is what to be transmitted and what to be skipped. The
second problem is how the receiver knows the number of Bus transactions of a
codeword.

The first problem is what can be skipped without sending and what should be
transmitted on Bus. The solution is to transmit the effective fragments and skip the
redundant fragments without sending. The redundant bits type will be different on
different streams. There will be default redundant type at each stream. Because the
receiver knows the redundant bits type, it can retrieve the redundant fragments
which are not transmitted.

The second problem is how the receiver knows the number of Bus transactions of a
codeword. If the receiver end wants to know this additional information, the sender
has to add this information into the codeword. There will be two main directions to
achieve this purpose. The first method is to add the information of the number of
Bus transactions at the beginning of first transmission. The second method is to
inform the receiver whether the total fragments of a codeword are transmitted or
not at every Bus transaction. Following I will introduce these two methods and do a
simple comparison to select the suitable method as my VL-Encoder policy at this
environment.

3.2.1 Method One : Adding the Information of the Number of Bus

Transactions at the Beginning of First Transmission

This method will add the information of the number of Bus transactions at the
beginning of first transmission. The extra information indicates the number of Bus
transactions. This extra information must be transmitted at first transaction of a
codeword; otherwise, the receiver will need much more complexity mechanism to
get this information and this may require too much coding time. The receiver
knows how many fragments should be received whenever the first fragment of a
codeword is received. I formulize the relation between Bus width (w) and extra
information bits (k) at Inequality 3-1.

 14

Take 32-bit width data and 8-bit width Bus for example. The effective bits of data
can be 0 to 32 bits. After adding k bits extra information, the effective bits will be k
to (32 + k) bits. The worse case of Bus transaction will be more than 4 times. In
order to indicate 1 to more than 4 Bus transaction, the ‘k’ has to be more than 3. To
sum up, if I want to transmit 32-bit codeword by 8-bit width Bus, I need 3 extra
information bits. This implies that the effective bits will increase by additional 3
bits and the Bus transaction will be 1 to 5 times.

3.2.2 Method Two : Indicating the Codeword is Transmitted over or not at

Every Bus Transaction

This method informs receiver end whether the total fragments of a codeword are
transmitted over or not at each Bus transaction. This method is to add an extra
control line called “End bit” (EB). If this Bus transaction transmits the last
fragment of a codeword, the sender sets the EB value as 1. Otherwise, the sender
sets EB as 0. At receiver end, the receiver keeps collecting codeword fragments
until the EB is set to 1.

3.2.3 Comparison of Method One and Method Two

The method one adds the information of the number of Bus transactions at the
beginning of first transmission and the method two adds an extra control line to
indicate the last fragment of a codeword. In order to compare the effect of reducing
Bus transactions of method one and method two in the same standard, I use 9-bit as
Bus width.

In method one, I substitute the parameter ‘w’ by 9 in inequality 3-1. The smallest k
I can get is 2. The number of Bus transactions is from 1 to 4. When the Bus
transactions are n times, the sender sends 9*n bits. The representable effective bits
except the extra two information bits are (9*n - 2) bits.

In method two, the extra EB is permanent. The number of Bus transactions is from
1 to 4. When the Bus transactions are n times, the sender can send (8 * n) effective
bits of codeword.

The comparison of representable effective bits of these two methods is shown in
Table 3-1

 15

 The effective bit
represented by method
1

The effective bit represented by
method 2

The number of Bus
transactions is 1

9 – 2 = 7 8

The number of Bus
transactions is 2

2 * 9 – 2 = 16 2 * 8 = 16

The number of Bus
transactions is 3

3 * 9 – 2 = 25 3 * 8 = 24

The number of Bus
transactions is 4

4 * 9 – 2 = 34 (32) 4 * 8 = 32

Table 3-1

The representable effective bits of a method will affect the number of Bus
transactions of a codeword. For example, if the number of effective bits of a
codeword is 8 bits, method one needs 2 Bus transactions because 1 Bus transaction
can only represent 7 effective bits. The main difference of these two methods
appears when the number of effective bits of a codeword is 8 bits or 25 bits. When
the number of effective bits of a codeword is 8 bits, the method one needs 2 Bus
transactions and method two needs 1 Bus transaction. On the other hand, when the
effective bits of a codeword is 25 bits, the method one needs 3 Bus transactions and
method two needs 4 Bus transactions.

I use instruction address stream and data address stream to compare the effect of
these two methods. I don’t use instruction stream to evaluate because I will
compress instruction stream using its statistic property not its numerical property. I
don’t use data stream to evaluate because there may be multiple redundant bits
types are utilized and it need adding other information bits into codeword. Table
3-2 is the Bus transactions ratio based on narrow Bus without coding (4 Bus
transactions).

 IA DA
Method one 27.49% 50.08%
Method two 26.81% 49.39%

Table 3-2

The Bus transactions ratio of method one is smaller than method two when method
two uses 9-bit width Bus. Therefore, we can compare the Bus transactions ratio of
these methods. We can observe that the method one (9-bit Bus) is better than the

 16

method two with 9-bit width Bus. Besides, my objective is to reduce Bus
transactions but the method one with 8-bit width Bus will increase the Bus
transactions in worst case. Therefore, I think the byte based method is more
suitable in my environment.

3.2.4 The VL-Encoder Will Use Method Two

After the discussion and evaluation, I will use method two, EB VL-Encoder, as my
VL-Encoder policy. I will add an extra control bit “EB”. When sending the last
fragment of a codeword, the sender will set the EB as 1. Otherwise, the sender
should set EB as 0. The bytes of a codeword will be sent from MSB to LSB. The
receiver will keep collecting bytes of a codeword until the EB value is 1, compose
the effective bytes, and then fill the redundant bytes to become original codeword.
The Figure 3-2 shows the behavior of EB VL-Encoder.

Figure 3-2: behavior of EB VL-Encoder

3.3 Instruction Address Stream

3.3.1 Type of Redundant Bits Used by EB VL-Encoder :

Due to the numerical property of instruction address stream, the instruction address
stream uses repeated bits (the same leading bits) as default redundant bits type. The
VL-Encoder will skip the redundant bytes of a codeword without sending.

3.3.2 Encoder :

The job of encoder is to convert the effective bits of a codeword into redundant bits
and then the VL-Encoder can transmit fewer bytes. This thesis will propose several
coding methods in each stream. Following I will introduce some coding methods
which I will adopt to narrow instruction address Bus.

 17

Encoder 1: T0 (1 extra control line)
T0 utilizes the sequential property of instruction address. It has been introduced in
chapter 2.

Encoder 2: T0-C (no extra control line)
The same as T0, it utilizes the sequential property of instruction address and has
been introduced in chapter 2.

Encoder 3: NBDAT (1 extra control line)
Discontinuous Address Table (DAT) algorithm focuses on the discontinuous
address behavior of instruction addresses. It has been introduced in chapter 2.
However, I will propose a modified DAT which I call it “Narrow Bus DAT”
(NBDAT). This modified DAT has a filter mechanism. If a record can reduce Bus
transaction, I will record it into NBDAT. Otherwise, I won’t record it into NBDAT
even if the addresses are discontinuous. This will raise the utility of DAT.

3.3.3 Proposed Methods :
I will propose several combinational coding methods which have different area
overhead and different Bus transactions reduction.

Proposed Method 1: (1 extra control line)
The encoder 1 (T0) can be adopted on narrow Bus independently without the
assistance of the VL-Encoder. The general T0 on normal Bus will send a signal
instead of sending the instruction addresses when the instruction addresses are
sequential. The T0 on narrow Bus uses the same idea. When the instruction
addresses are sequential, the sender sets the extra control line as 1 and freeze the
Bus value. The number of Bus transaction will be 1. Otherwise, the sender sets the
extra control line as 0 and transmits the instruction address byte by byte. The
number of Bus transaction will be 4. I will use the number of Bus transaction of
this method as base line to compare with other methods.

Proposed Method 2: (1 extra control line)
The second method is the combinational method of encoder 2 and EB VL-Encoder.
The T0 can be used on narrow Bus to reduce Bus transactions independently but
T0-C can’t. This is because the 32-bit instruction address to the 8-bit Bus is a
multiple to one function. There is no inverter function if there is no other extra
coding information. Therefore, method 2 combines T0-C encoder and EB

 18

VL-Encoder together to reduce Bus transactions. The T0-C is a 32-bit to 32-bit
function which can convert the effective bits of a codeword into the redundant bits.
EB VL-Encoder decomposes the output of T0-C and puts the effective fragments
on narrow Bus to transmit.

Proposed Method 3: (2 extra control lines)
The third method is the combinational method of encoder 2, encoder 3 and EB
VL-Encoder. The NBDAT and T0-C can be adopted on narrow Bus as encoder at
the same time and get more Bus transaction reduction.

3.4 Data Address Stream

3.4.1 Type of Redundant Bits Used by EB VL-Encoder :

Because of the numerical property of data address stream is similar with instruction
address stream; the data address stream uses repeated bits (the same leading bits) as
default redundant bits type, too. The VL-Encoder will skip these redundant
fragments of a codeword without sending.

3.4.2 Encoder :

The job of encoder is to convert the effective bits of a codeword into redundant bits
and then the VL-Encoder can transmit fewer bytes. Because of the idea of
separating read data address and write data address mentioned in chapter 2, the
following discussion will all base on this principle without emphasizing it
repeatedly. As instruction address stream, this thesis will propose several coding
methods. Following I will introduce some coding methods which I will adopt to
narrow Bus.

Encoder 1: Variable stride (0 or 1 extra control line)
Both type of variable stride algorithm (similar to T0 and similar to T0-C) can
utilize the sequential property of data address. It has been introduced in chapter 2.

Encoder 2: 1P

st
P version historical addresses algorithm (Y extra control lines)

In order to utilize the spatial locality and temporal locality of data address stream, I
propose historical addresses algorithm here. The idea of historical addresses
algorithm is that the surroundings of accessed address have high chance to be used
latter.

 19

First, I define the leading first k bytes of an address as its k-byte-address. On
narrow Bus environment with the VL-Encoder which I proposed, it will need more
than 1 Bus transaction whenever the 3-byte-address of Bus value differ from the
3-byte-address of next data address. The idea of historical addresses algorithm is to
save some k-byte-address into historical address record. Whenever a k-byte-address
of transmitted value differ from the k-byte-address of Bus value but recorded in
historical address record, it can utilize this record to reduce Bus transactions.

Historical addresses algorithm use an X-entries FIFO historical address record table
and extra Y-bit historical address index control lines to indicate the entry of the
historical address record. The relationship between X and Y is “X = 2P

Y
P - 1”. This is

because the Y-bit control lines can represent 2P

Y
P states. One state has to be preserved

for “the k-byte-address is not found in historical address record.” Therefore, these
Y-bit control lines can indicate 2P

Y
P – 1 historical address indexes. The value of Y is

a parameter restricted by the system area constraint. Historical addresses algorithm
deals with 3 cases. I will introduce the coding with 3-byte-address case by case
below.

The first case is that the 3-byte-address of transmitted codeword is the same with
the 3-byte-address of Bus value. In this case, the number of effective bytes of the
transmitted codeword will be 1 and this codeword needs only 1 Bus transaction.
The information of extra control line is set to mean “not use record”.

The second case is that the 3-byte-address of transmitted codeword differ from the
3-byte-address of Bus value and this 3-byte-address of transmitted codeword is not
stored in historical address record. In this case, the number of effective bytes of the
transmitted codeword will be more than 1 and this codeword needs more than 1
Bus transactions. The sender will set the information of extra control line as “not
use record” and store the 3-byte-address of previous Bus value into the historical
address record as update.

The third case is that the 3-byte-address of transmitted codeword differ from the
3-byte-address of Bus value but this 3-byte-address of transmitted codeword has
been stored in historical address record. In this case, the sender will change the
leading 3 bytes of the transmitted codeword to be the same with the leading 3 bytes
of the Bus value, and set the information of extra control line as “index of the
3-byte-address in historical address record”. In this way, the number of effective

 20

bytes of transmitted codeword will be 1 and the number of Bus transaction of this
codeword has been reduced to only 1.

Table 3-3 is a 1-entry 3-byte-address record example. When time is 2 the case one
happens. When time is 3 the case two happens. When time is 4 the case three
happens. The case three affects the number of Bus transactions. When time is 4, the
number of effective bytes of the codeword reduces from 4 to 1 after encoding. This
reduces the Bus transactions from 4 to 1 at the same time.

b(t):real value, B(t):Bus value,
Time Sender Bus control state 1 entry Table

T b(t) B(t) control state Historical
address
record

1 FFFFFF00 UFFFFFF00U Not use - - - - - - - -
2 FFFFFF01 FFFFFFU01U Not use - - - - - - - -
3 EEEEEE00 UEEEEEE00U Not use FFFFFFFF
4 FFFFFF02 - - - - - - U02U Index FFFFFFFF

Table 3-3

At algorithm 3 and algorithm 4, I will propose two modification versions of
historical addresses algorithm. First modification, 2P

nd
P version, is to combine the

information of EB of VL-Encoder and historical addresses indexes information
together. Basing on algorithm 2, the second modification, 3P

rd
P version, is that the

sender can utilize all size of historical addresses (1-byte-address, 2-byte-address
and 3-byte-address) without adding other extra control lines.

Encoder 3: 2P

nd
P version historical addresses algorithm (Y extra control lines)

After simulation, I find the recording 3-byte-address will be better than recording
2-byte-address or 1-byte-address. In this 2P

nd
P version I will use 3-byte-address to

describe the modification. In my observation, when the 3-byte-address is not in the
historical address record, the codeword needs more than 1 Bus transactions. When
the fragments are transmitted, no matter the EB is 0 or 1, the value of historical
address index control lines is meaningless. The coding flow I describe at beginning
of this chapter is separating the encoder and VL-Encoder into two parts. However,
if I can combine the information of VL-Encoder EB and the information of encoder
historical address index control lines, I can represent more number of historical
address indexes by the same number of extra control lines.

 21

Taking a system which can tolerate total Y-bit extra control lines and use
3-byte-address for example, if we don’t combine the VL-Encoder EB and encoder
historical address index control lines, we have to leave 1 bit for VL-Encoder EB
and other (Y - 1) bits can be used to represent 2P

(Y - 1)
P states and can indicate 2P

(Y - 1)
P –

1 historical address index. This is because 1 of the 2P

(Y - 1)
P state is taken to mean “the

3-byte-address is not found in historical address record”. On the other hand, if we
combine the VL-Encoder EB and encoder historical address index control lines, we
can represent 2P

Y
P states and can indicate 2P

Y
P – 2 historical address index. 1 of the 2P

Y
P

state is used to mean “this fragment is not the last fragment of this codeword”, this
will cause more than 1 Bus transactions and hint that the 3-byte-address of this
codeword is not in historical address record with the result that the Bus transactions
will be more than 1. Another 1 of the 2P

Y
P state is used to mean “this fragment is the

last fragment of this codeword but the 3-byte-address of this codeword is not in
historical address record”. The number of representable states of combining
VL-Encoder EB with encoder historical address index control lines will be more
than not combining policy as long as Y is bigger than 1.

Encoder 4: 3P

rd
P version historical addresses algorithm (Y extra control lines)

After simulation, I find the recording 3-byte-address will be better than recording
2-byte-address or 1-byte-address. However, there is an embedded hint can be used
to adopt 1-byte-address, 2-byte-address, and 3-byte-address by the same historical
address index.

In 2P

nd
P version of historical addresses algorithm, one state can indicate one historical

address index. If a system can tolerate two (Y = 2) extra control lines, it can
indicate two (2P

2
P – 2 = 2) historical address indexes. This 3P

rd
P version of historical

addresses algorithm is modified and can represent two 1-byte-address records, two
2-byte-address records, and two 3-byte-address records with these two states. This
is because when I find k-byte-address is utilizable, I will change the first k bytes of
codeword into redundant bytes and set the historical address index. I have to
transmit the other (4 - k) effective byte. When the receiver receives these (4 - k)
effective byte and the historical address index, it will know which size of historical
address record should be looked up by the number of Bus transactions. Table 3-4 is
an example and Table 3-5 is the corresponding change of 2-entry historical address
record. When the time is 3, the sender utilize the first (index = 1) historical address
of 2-byte-address record. The sender sends the two effective bytes and sets the
control state as “index = 1”. The receiver receives the second fragment of this
codeword and finds the control state is set to “index = 1”, it knows that it should

 22

look up 2-byte-address and reload the first historical address of 2-byte-address
record back to codeword.

B(t):real value, B(t):Bus value
Time Sender Bus Narrow Bus control state

 b(t) B(t) index

1-1 FFFFFF00 FFFFFF00 FF Not End
1-2 FF Not End
1-3 FF Not End
1-4 00 End
2-1 EEEEEE00 EEEEEE00 EE Not End
2-2 EE Not End
2-3 EE Not End
2-4 00 End
3-1 FFFF0000 - - - - 0000 00 Not End
3-2 00 Index = 1

Table 3-4

2 entry historical address record with all size
 1-byte-address record 2-byte-address record 3-byte-address record

 1-byte-addr
ess

1-byte-addr
ess

2-byte-addr
ess

2-byte-addr
ess

3-byte-addr
ess

3-byte-addr
ess

inde
x

1 2 1 2 1 2

Tim
e

-

1 -
2 FF - - FFFF - - - - FFFFFF - - - - - -
3 FF - - FFFF - - - - EEEEEE FFFFFF

Table 3-5

3.4.3 Proposed Methods :
I will propose several combinations of these coding methods and adopt these
combination methods to narrow Bus. These combinations have different extra
control lines and can reach different Bus transactions reduction.

Proposed Method 1: (1 extra control line)
The encoder 1 (similar to T0 type variable stride algorithm) can be adopted on
narrow Bus independently without the assistance of the VL-Encoder. The behavior

 23

is totally the same with proposed method 1 of instruction address stream.

Proposed Method 2: (1 extra control line)
The second method is to combine encoder 1 (similar to T0-C type variable stride
algorithm) and EB VL-Encoder. The behavior of this method is totally the same
with proposed method 2 of instruction address stream.

Proposed Method 3: (Y extra control line)
The third method is the combinational method of encoder 1 (similar to T0-C type
variable stride algorithm), encoder 4 (3P

rd
Pversion of historical addresses algorithm)

and EB VL-Encoder. The encoder 1 utilizes the sequential access property and
encoder 4 utilizes the spatial and temporal locality. These two encoder can be
adopted on narrow Bus at the same time and get more Bus transaction reduction.

3.5 Instruction Stream

In this stream, I adopt code compression method to reduce code size. There are two
main consideration factors when we select code compression method. First
consideration factor is coding time. The Bus coding (encoding and decoding) is a
time critical work. The coding time delay must be very short. The second
consideration factor is compression ratio. In our environment, the unit of
compression size is byte due to the 8-bit Bus width. It is the same to compress a
date into 8 bits and into 1 bit because they both need 1 Bus transaction.

Due to the instinct property, the narrow Bus environment has higher probability to
be an embedded system environment. Therefore, we can choose a code
compression method even if it has high compression ratio only in embedded
system.

The “Selective Instruction Compression for Memory Energy Reduction in
Embedded Systems” encodes instruction at static time. It has no encoding delay to
do encoding. The decoding delay is equal to access a 256 entries direct map cache.
In average of my test programs (Mibench), 98.35% instructions can be compressed
into 8 bits and need only 1 Bus transactions. I think it is one of the suitable code
compression methods.

After compress instruction, I discuss the methods of transmitting this compressed
instruction on narrow Bus below.

 24

Transmission method 1: (no extra control line)
This is just transplant the code compression mechanism from memory to Bus. As
mentioned at chapter 2, if the transmitted instruction is in IDT, the sender transmits
the index of that instruction. If the transmitted instruction is not in IDT, it transmits
the preserved index MARK “00000000” and then sends the instruction byte by
byte.

Transmission method 2: (1 extra control line)
This transmission method use the extra control line EB to replace the function of
the preserved index MARK “00000000”. If the instruction is in IDT, the sender
transmits the index of that instruction and set the EB as 1. Otherwise, the sender
sends the instruction byte by byte, sets the EB as 0 until the last Bus transaction the
sender sets the EB as 1.

The differences between these two methods are the control line, transaction times,
and the number of instruction stored in IDT. Method 2 needn’t the preserved index
“00000000” so it can save total 2P

8
P = 256 instructions into IDT. When the

instruction is not in IDT, the method 2 needn’t transmit the preserved index and the
Bus transaction will be 4 instead of 5. However, the method 2 needs an extra
control line EB as assistance.

3.6 Data Stream

3.6.1 Type of Redundant Bits Used by EB VL-Encoder :

Different from instruction address stream and data address stream, the two types of
redundant bits (insignificant bits and repeated bits) both can be utilized in data
stream. If there is k-bit extra control lines to indicate the type of redundant bits, I
have total k+1 extra control lines (including EB). Besides the not transmitted over
state, I can utilize 2P

k+1
P-1 kinds of redundant bits type. In instruction address stream

and data address stream, the value of k is 0, so there is only 2P

0+1
P-1 = 1 kind of

default redundant bits type can be used.

When I regard the leading 0’s or 1’s as the redundant bits type, there are two ways
to utilize it. The original behavior of sign extension is that the system decides to
extend 0’s or 1’s depending on the value is positive or negative. If I want to skip the
leading 0’s and leading 1’s, I have to decide where the positive or negative hint

 25

should be recorded. It may be preserved outsides the codeword or embedded in the
codeword as the first bit of effective bits. For example, a data value is
“11111111,11111111,11100000,10100011”. It may be seen as
“--------,--------,---00000,10100011” with extra information to indicate this is a
negative value, or it may be seen as “--------,--------,--100000,10100011” and using
the first effective bit to hint that this is a negative value. In order to fill the correct
bits at VL-Decoder, there must be enough information to indicate the redundant bits
type. If I want to use the former policy, I need two information states to indicate
that “the redundant bits should be filled by doing 0’s extension” and “the redundant
bits should be filled by doing 1’s extension”. If I want to use the latter policy, I
need only one information state to indicate that “the redundant bits should be filled
by doing sign extension” because the positive or negative hint has been embedded
in first bit of effective bits.

How to choose the suitable redundant bits types is the most important thing in data
stream. For using insignificant bits as redundant bits, I have two possible choices as
mention above. One needs two information states and the other will raise the
number of effective bits by 1 but needs only one information state. For using
repeated bits as redundant bits, it needs only one information states to indicate that
“the redundant bits should be filled by copying the corresponding bits of previous
Bus value”. These two kinds of redundant bits both may be used or not. Therefore,
the possible redundant bits combinations are classified at Table 3-6. For
insignificant bits, it may be not seen as redundant bits, use two information states,
or use one information state to utilize. For repeated bits, it may be not seen as
redundant bits or use one information state to utilize.

 Repeated Insignificant
Embedded hint

Insignificant
Additional hint

Number of
need states

Choice 1 0 0 0 0
Choice 2 1 0 0 1
Choice 3 0 1 0 1
Choice 4 1 1 0 2
Choice 5 0 0 2 2
Choice 6 1 0 2 3

Table 3-6

Even if no extra control line to indicate the type of redundant type, I also can
decide a default redundant type. Therefore the choice 1 won’t be adopted. If there is
no extra control line to indicate the type of redundant bits, I have one default

 26

redundant bits type can use and I can use choice 2 or choice 3. If there is one extra
control line to indicate the type of redundant bits, I can indicate three redundant bits
types and I can use choice 4, choice 5, or choice 6. There may be multiple choices
on the same extra control line constraint. I will make decision by simulation result.

Chapter 4: Statistics and Simulation Result
In this chapter, I will describe the environment of my statistics and simulation. And
then are the statistics and coding simulation results of instruction address stream,
data address stream, instruction stream, and data stream.

4.1 Statistics and Simulation Environment

The simulator I use is simple-scalar for ARM instruction. The simulated programs
are Mibench. My environment is 8-bit width narrow Bus and 32-bit width data.

The area overheads include extra control lines, extra coding logic gates, and
additional table. I assume the area overhead of external extra control lines is much
severer than extra logic gates. Because of the table size must be limited; I will use
different size of table to simulate and observe the effects of different size, and then
suggest a “good enough” size. The main advantage of coding is to reduce Bus
transactions. This will reduce Bus bit toggles at the same time. However, I won’t
consider the power advantage of reducing bit toggles. I will put my attention on the
Bus transactions only.

I will use Bus transactions ratio to compare the effect of coding methods. I
normalize the number of Bus transactions of narrow Bus without coding as 1. In
my simulation environment, the Bus transaction of narrow Bus without coding is 4;
therefore the number of normal Bus transactions will be one forth comparing to
narrow Bus. The Bus transactions ratio of normal Bus will be 25%.

4.2 Statistics and Simulation Result of Instruction Address Streams

4.2.1 Statistics

In average, the ratio of sequential instruction addresses is 91% and the ratio of non
sequential instruction addresses is 9%. These sequential instruction addresses can
be utilized by T0 (or T0-C) and the Bus transaction will be 1. If we discuss them in
more detail, there is 0.17% of total instruction address is first executed and 8.83%

 27

of instruction address is repeatedly executed. That is, the 8.83% of instruction
address can be utilized by NBDAT.

In total instruction addresses, 93.93% of instruction address with 1 effective byte,
4.82% of instruction addresses with 2 effective bytes, 1.25% of instruction address
with 3 effective bytes, and almost no instruction address with 4 effective bytes. The
number of effective bytes is equal to the number of Bus transactions with EB
VL-Decoder. Therefore, even if no other coding, EB VL-Encoder can reach very
low Bus transactions ratio in instruction address stream.

4.2.2 Simulation Result

I propose three narrow Bus coding methods in this thesis. First of them is
transplanting the normal Bus T0 coding to narrow Bus. The second is that T0-C
algorithm and EB VL-Encoder work together. The third method is that T0-C
algorithm, NBDAT algorithm and EB VL-Encoder work together.

First, I compare the effect of DAT and NBDAT in Figure 4-1. Figure 4-1 is the Bus
transactions ratio of DAT and NBDAT comparing to narrow Bus without coding.
The Y-axis is the Bus transactions ratio of the coding methods comparing to narrow
Bus without coding. The X-axis is the table entries of DAT and NBDAT. Because
NBDAT has a filter to filter the helpless entry not to save in table, NBDAT can
reach lower Bus transactions ratio than DAT. The Bus transactions ratio of
512-entry NBDAT can reach the same effect with unlimited NBDAT. I choose
16-entries NBDAT as “good enough” choice and the effect of 512-entries NBDAT
as the lower bound of Bus transactions ratio of NBDAT algorithm.

 28

Figure 4-1: The Bus transactions ratio of DAT and NBDAT in different number of

table entries

Figure 4-2 is the comparison of the proposed coding methods. The Y-axis is the Bus
transactions ratio of the coding methods comparing to narrow Bus without coding.
The X-axis lists the proposed coding methods. The last value is the Bus
transactions ratio of normal Bus. The first method is to transplant the normal Bus
T0 to narrow Bus. The second is that T0-C algorithm and EB VL-Encoder work
together. The third and forth method are that T0-C algorithm, NBDAT algorithm
and EB VL-Encoder work together. The third method is with 16-entries NBDAT
and the forth method is with 512-entries (unlimited) NBDAT.

 29

instruction address stream

31.75%

26.53%

25.13% 25.00%

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

narrow T0 (8+1) T0-C_EB (8+1) T0_NBDAT_EB

(8+1+1)

normal (32)

coding methods

bu
s

tr
an

sa
ct

io
n

ra
ti

o
to

 n
ar

ro
w

 b
us

w
it

ho
ut

 c
od

in
g

bus transactions ratio

Figure 4-2: The Bus transactions ratio of proposed methods in instruction address
stream.

The Table 4-1 shows the coding time delay and the area overhead (ignoring the
coding logic). Because the real delay time will depend on the implementation, I
only list the gate delay here.

 T0 T0-C DAT(NBDAT) EB

Gate delay

(encoder)
Comparitor(32)

2-to-1 MUX

Comparitor(32)
3-to-1 MUX

Comparitor(32)
2-to-1 MUX

Comparitor(8)

4-to-1 MUX

Gate delay

(decoder)
2-to-1 MUX Comparitor(32)

3-to-1 MUX

2-to-1 MUX

Overhead 1 control line 1 control line

2*k entry table
1 control line

Table 4-1

The followings are the coding logic diagram. In pipeline system, the input can be
processed in previous pipeline stage. It won’t cause coding delay.

Logic 4-1: block information

 30

Logic 4-2: T0

Logic 4-3: T0-C

Logic 4-4: DAT

 31

Logic 4-5: VL-Encoder (redundant type : insignificant bits)

4.3 Statistics and Simulation Result of Data Address Streams

4.3.1 Statistics

As mentioned in instruction address, I separate the data addresses into sequential
and non sequential. In average, the ratio of sequential data address is 37.66% and
the ratio of non sequential data address is 62.34%. These sequential data addresses
can be utilize by variable stride algorithm and the Bus transaction will be 1.

In total data address, 63.85% of data address with 1 effective byte, 9.64% of data
address with 2 effective bytes, 13.18% of data address with 3 effective bytes, and
13.33% of data address with 4 effective bytes. The number of effective bytes is
equal to the number of Bus transactions with EB VL-Decoder.

4.3.2 Simulation Result

I propose three narrow Bus coding methods for data address in this thesis. First of
them is to transplant the normal Bus variable stride algorithm (similar to T0) to
narrow Bus. The second is that variable stride algorithm (similar to T0-C) and EB
VL-Encoder work together. The third method is that variable stride algorithm
(similar to T0-C), historical addresses algorithm and EB VL-Encoder work
together.

Figure 4-3 is the Bus transactions ratio to narrow Bus without coding of historical
addresses algorithm with different number of control lines. The Y-axis is the Bus
transactions ratio of historical addresses algorithm comparing to narrow Bus
without coding. The X-axis is the number of extra control lines used. These extra
control lines include EB information therefore it begin from 2. (1 extra control line

 32

can only indicate “this is not the last fragment of a codeword” and “this is the last
fragment of a codeword”.) The Bus transactions ratio of unlimited extra control
lines is about the same with 8-bit extra control lines. I choose 4-bit extra control
lines (3-bit extra control lines except EB) as “good enough” choice and the effect of
8-bit extra control lines as the lower bound of Bus transactions ratio of historical
addresses algorithm.

Figure 4-3: The Bus transactions ratio of different number of control lines using in
historical addresses algorithm.

Figure 4-4 is the comparison of the proposed coding methods. The Y-axis is the Bus
transactions ratio of the coding methods comparing to narrow Bus without coding.
The X-axis lists the proposed three coding methods. The last value is the Bus
transactions ratio of normal Bus. The Bus transactions ratio is 25%. The first
method is to transplant the normal Bus variable stride algorithm (similar to T0) to
narrow Bus. The second is that the variable stride algorithm (similar to T0-C) and
EB VL-Encoder work together. The third, forth, fifth, and sixth method are that the
variable stride algorithm (similar to T0-C), historical addresses algorithm and EB
VL-Encoder work together. They are corresponding to 2-bit, 3-bit, 4-bit, and 8-bit
(unlimited) extra control lines.

 33

Figure 4-4: The Bus transactions ratio of proposed methods in data address stream.

The Table 4-2 shows the coding time delay represented by gate delay and the area
overhead (ignoring the coding logic).

 Variable stride

(similar to T0)
Variable stride

(similar to T0-C)
Historical
address

(k extra lines)

EB

Gate
delay

(encoder)

Comparitor(32)

2-to-1 MUX

Comparitor(32)

3-to-1 MUX

Comparitor(24)

(2k+1-1)-to-1
MUX

Comparitor(8)
4-to-1 MUX

Gate
delay

(decoder)

2-to-1 MUX Comparitor(32)
3-to-1 MUX

(2 k+1-1)-to-1
MUX

Overhead 1 control line K control line

2 k+1-2 entry table
1 control line

Table 4-2

The followings are the coding logic diagram

 34

Logic 4-6: variable stride algorithm (similar to T0)

Logic 4-7: variable stride algorithm (similar to T0-C)

Logic 4-8: historical addresses algorithm

4.4 Statistics and Simulation Result of Instruction Streams

4.4.1 Statistics

 35

In instruction stream, the most often used 255 instructions are executed for 97.8%
of the time and the most often used 256 instructions are executed for 98.34% of the
time.

4.4.2 Simulation Result

In instruction stream, I compare two transmission methods. I will transplant the
code compression method mentioned in chapter 2 from memory to Bus. The first
transmission method is using the preserved index “00000000” to indicate that this
is an index or a fragment of an instruction. The second transmission method is
using VL-Encoder EB to indicate that. When transmitting an index, the EB will be
set to 1. When the transmitted data is the fragments of an instruction, EB will be set
to 0 except that the EB will be set to 1 at last Bus transaction. Figure 4-5 is the Bus
transactions ratio to narrow Bus without coding of these two transmission ways.

Figure 4-5 : The Bus transactions ratio of two transmission ways.

The Table 4-3 shows the coding time delay represented by gate delay and the area
overhead (ignoring the coding logic).

 IDT + MARK IDT + EB

Gate delay (encoder) Static time Static time
Gate delay (decoder) 255 entries Table lookup

2-to-1 MUX

256 entries Table lookup

2-to-1 MUX

 36

Area Overhead 255 entry table 1 control line

256 entry table

Table 4-3

The followings are the coding logic diagram

Logic 4-9: IDT, cited from“Selective Instruction Compression for Memory
Energy Reduction in Embedded Systems”, L Benini, A Macii, E Macii, M Poncino,

ISLPED, 1999

4.5 Statistics and Simulation Result of Data Streams

4.5.1 Statistics

In data stream, there is no encoding to the effective bits of codeword into redundant
bits but the sender may utilize multiple kinds of redundant bits types. Therefore the
statistics result will be very similar to simulation result. I will discuss these at next
section.

4.5.2 Simulation Result

As describe in Table 3-6, I have five possible redundant type VL-Encoder policies.
Figure 4-6 is the comparison of the different redundant type VL-Encoder policies.
The first policy is using insignificant bits as redundant bits type and with embedded
sign extension hint. The second is using repeated bits as redundant bits type. These
two policies needn’t extra control line except the EB. The third policy is using
insignificant bits as redundant bits type and with additional sign extension hint. It
needs 1-bit extra control line to provide the additional sign extension hint. The forth
is to utilize the insignificant bits as redundant bits type with embedded sign

 37

extension hint and to utilize the repeated bits as redundant bits type together. It
needs 1-bit extra control line to indicate these two types of redundant types. The
fifth policy is to utilize the insignificant bits as redundant bits type with additional
sign extension hint and to utilize the repeated bits as redundant bits type together.
Because this policy needs 2 states to provide the sign extension hint and 1 state to
indicate the redundant type is repeated bits, it needs three states (2-bit extra control
lines) to indicate the redundant bits type.

Figure 4-6: The Bus transactions ratio of five VL-Encoder policies.

I make my decision depending on the simulation result. If I have only one extra
control line (EB), I will use repeated bits as default redundant bits type. If I have
two extra control lines, I will use repeated bits and insignificant bits with embedded
sign extension hint as two redundant bits types. If there are three extra control lines
can be used, I will use repeated bits and insignificant bits with additional sign
extension hint as redundant bits types.

The Table 4-3 shows the coding time delay represented by gate delay and the area
overhead (ignoring the coding logic).
 Repeated bits Insignificant bits Insignificant bits

Deal with Copy Embedded hint Additional hint
Gate delay

(encoder)
Comparitor(8)

4-to-1 MUX

Comparitor(8)

4-to-1 MUX

Comparitor(8)

4-to-1 MUX

Area Overhead 1 state 1 state 2 states

Table 4-4

 38

The followings are the coding logic diagram

Logic 4-10: VL-Encoder (redundant type : repeated bits)

4.6 The Simulation Results and Comments of these Streams

Table 4-5 is the simulation results summary. The red portion represents the entries
which when comparing to normal Bus, the Bus transactions overhead is lower than
10%.
 Instruction

Address
Data Address Instruction Data

0 control line U26.65%U
1 control line U26.53%U 46.42% U26.23%U 55.74%
2 control lines U25.13%U 29.93% 45.49%
3 control lines U26.56%U
8 control lines U25.01%U

Table 4-5

4.6.1 Instruction Address

In instruction address stream, the number of Bus transactions of sequential
instruction address (91%) can be reduced to 1 by T0 (or T0-C). The number of Bus
transactions of repeated occurrence the same branch source and target (8.83%) can
be reduced to 1 by NBDAT. I can use 8-bit width Bus and 2-bit extra control lines
to utilize both these two properties and reduce the Bus transaction of the 99.83%
instruction address to 1. There is only the 0.17% unpredictable first occurrence
branch instruction addresses need more than 1 Bus transaction. The Bus
transactions of these unpredictable instruction addresses have chance to be reduced
by EB because of spatial locality.

4.6.2 Data Address

 39

In data address stream, the sequential data address (37.66%) can be reduced to 1 by
variable stride algorithm. The more extra control lines added the more Bus
transactions can be reduced. When there are 8-bit width Bus with 8-bit extra control
lines (total 16-bit width Bus lines), the ratio of Bus transaction is reduce to 25.01%.
This is only 0.01% of Bus transactions ratio different from 32-bit width normal
Bus.

The reason that we can reduce the data address Bus transactions ratio to 25.01%
(better than instruction address) is mainly on test pattern. When I use Mibench to
do simulation, there is only one program executed at the same time. This will cause
the data being located too centralize.

The historical addresses algorithm will record the occurred 1-byte-address,
2-byte-address, and 3-byte-address. After all 3-byte-addresses in a program are
recorded, all data addresses need only 1 Bus transaction. Due to test patterns and
program size, 256 entries historical addresses table can record all 3-byte-addresses
in my simulation program (Mibench). However, before all 3-byte-addresses in a
program are recorded, some data addresses need more than 1 Bus transaction. We
can reduce the Bus transaction ratio to 25.01% and there is only 0.01% to reach
25%. This 0.01% Bus transaction ratio is wasted on historical addresses table
initialization.

4.6.3 Instruction

In instruction stream, I use “Selective Instruction Compression for Memory Energy
Reduction in Embedded Systems” to compress code to reduce Bus transactions.
Under Mibench, 98.35% instructions can be transmitted by 1 Bus transaction in
average. In worst case, there are still 87.54% instructions can be saved to IDT and
be transmitted by 1 Bus transaction.

4.6.4 Data

Due to the data types, the sizes of data may be byte, half word, word and so on. In
normal Bus, these data are all transmitted on 32-bit Bus even if the data size small
than 32 bits. On 8-bit narrow Bus environment, the proposed methods can transmit
data with smaller size by fewer Bus transactions without mistake.

 40

The general researches on discussing data size focus on insignificant bits and the
data relationships. The proposed methods can transmit only the significant bytes to
reduce Bus transactions. Besides, we forsake the repeated bytes without sending to
utilize the data relationship.

In general, the data value is unpredictable and almost random distribution. We can
hardly predict the exact value and we can only predict the range. There is no
encoding can be applied on data stream to reduce the range of data value. The
number of bytes which are needed to be transmitted depends on the range of data
values. In other words, we can hardly use encoding to reduce the number of Bus
transactions.

There may be other redundant bits type can be used such as floating point. No
matter in exponent part or mantissa part, there is high chance that there is a string
of 0’s or 1’s. But these properties are highly application specific; I won’t discuss
this subject in this thesis.

4.6.5 Summary

Adopting narrow Bus to system without coding will bring severely performance
loss and this is hard to be tolerated in most situations. However, if we do some
coding on narrow Bus system, this problem can be reduced to a very slight degree.
According to the simulation and description above, we can know that we don’t
always need 32-bit width Bus if we can tolerate slightly performance loss and the
coding delay. This will cause more systems being willing to use narrow Bus.

Chapter 5: Summary, Discussion, and Conclusion

5.1 The Effect of the Narrow Bus Encoding

The Bus width and the number of Bus transactions are inverse proportion when the
Bus width is narrower than data width. The decision of Bus width should be a
problem of trade-off. However, many systems which have high area constraint but
they may not tolerate the severely performance loss and extra static energy
consumption caused by additional Bus transactions. For the narrow Bus without
coding environment discussed in this thesis, the system uses additional three times
of Bus transactions to exchange the 24-bit width Bus saving is an unwise behavior.
This should be the reason of why there is almost no system uses narrow Bus. As

 41

most low power or high performance researches, we hope to use a few overhead to
get high advantage. Narrow Bus encoding provides a compromise choice for
system designers. It can save large external Bus area by only a few number of
additional Bus transactions.

5.2 The Coding Methods Effects on Bit Toggles

In my thesis, I only discuss the number of Bus transactions. The number of Bus
transactions can affect the performance and energy consumption at the same time.
For a system which cares about energy consumption, we should take the bit toggles
into consideration. Because of the total Bus transactions are reduced, the total bit
toggles are reduced as side effect.

 The side effect on bit toggle can be separated into two parts. First, some
of the coding methods use a special signal to inform the receiver the transmitted
data and set the Bus value as don’t care. These coding methods can reduce bit
toggles. Second, some of the coding methods such as code compression algorithm
which doesn’t care about bit toggle. This will affect the number of bit toggle but it
is random effect.

 The objective of this thesis is to reduce Bus transactions. The proposed
methods can reduce bit toggles as side effect. However, these methods are not
designed to reduce bit toggle. If a system cares about the energy consumption, it
should evaluate the weights of the static energy caused by additional Bus
transactions and the dynamic energy caused by bit toggles. It can adopt the power
model of system and of Bus to find the most suitable method easily.

5.3 The Coding Methods Effects on Performance

The number of Bus transactions will affect the system performance. However, they
are not direct proportion. When the system executes programs with pipeline, there
will be some pipeline stall cycles can fill the extra Bus transactions. This will
reduce the performance loss caused by extra narrow Bus transactions. Besides, one
pipeline cycle may be able to fill multiple Bus transactions if there is hardware
support. However, this involves the system implementation and has no relation with
this thesis.

 42

5.4 The Other Bus Architectures

In this thesis, we discuss the behavior of the four streams independently. However,
there are some systems with only 2 Buses or only 1 Bus as figure 5-1 and figure
5-2.

Figure 5-1 : The 2 Buses architecture

Figure 5-2 : The 1 Bus architecture

The mixed data broke the properties of individual stream. A trivial solution is to
add extra control lines to separate these streams. For 2 Buses architecture in Figure
5-1, we need only 1 extra control line to separate two types of stream in a Bus. For
the 1 Bus architecture systems shown in Figure 5-2, we need only 1 extra control
line, too. This is because whenever an address is transmitted, there will be a data
followed. The function of the extra control line is to indicate that this address is
instruction address or data address.

We need different number of extra control lines to encode different streams. On the
mixed data stream, the number of extra control lines depends on the stream which
requires most. That is waste for other streams. This will be another consideration of
mixed streams Bus architecture.

The information of different streams on a Bus can be utilized by each other. Take
the instruction addresses and data addresses mixed Bus for example, the instruction
address can provide the hints of data address stride value. The same instruction
address means the same instruction is executed. The accessed data addresses of this
instruction will be regular. The same idea can be adopted on the Bus which
transmits instruction stream and data address stream on the same Bus.

 43

5.5 The coding (encoding and decoding) delay affection on memory access

stage:
 There is enough free time intervals in memory access stage to fit coding

(encoding and decoding) time.
 The coding delay won’t effect memory access stage cycle.

 There is no enough free time intervals in memory access stage to fit
coding (encoding and decoding) time.
1. Increase the memory access stage cycle.
2. Using extra pipeline stage cycle to do coding.

I use address Bus transaction to illustrate. It is the same at all
streams.
1. There is enough free time interval to fit decoding but there is no

enough free time interval to fit encoding.

1. When it needs only 1 Bus transaction :
=> it needs 1 extra pipeline stage cycle to do encoding

2. When it needs more than 1 Bus transaction :
=> Encoding can be done at first Bus transaction and it
doesn’t need extra pipeline stage cycle.

2. There is no enough free time intervals to fit coding (encoding
and decoding) delay.

1. Encoding can be done at first Bus transaction and
decoding can be done at last Bus transaction. This need 1
extra pipeline stage cycle.

It is worthy to do narrow Bus encoding even if the coding delay need 1
pipeline stage cycle time.

 The worst case is that there is no enough free time intervals in memory
access stage to fit both encoding and decoding time.

 Every data needs 1 more pipeline stage cycle to do coding (encoding
and decoding), it is equal to that each data need 1 more Bus

 44

transaction.
 The Bus transaction ratio will be increased by 25%.
 The narrow Bus transaction ratio reductions are all more than

40% in all streams.
 It is worthy to do narrow Bus encoding even if the coding delay

need 1 more pipeline stage cycle.

5.6 Reducing the coding delay effect on pipeline stage:
 DAT:

Looking up table can be done before the discontinuous address occurs.
 IA(t) : instruction address at time t
 Time = t

Look up IA(t) in source address entries of DAT
 Case 1 : IA(t) is in source address entries of DAT

Extract the destination address of IA(t) in DAT.
 Case 2 : IA(t) is not in source address entries of DAT

IA(t+1) cannot utilize DAT to reduce Bus transactions.
 Time = t + 1 (Case 1)

Comparing this destination address with IA(t+1)
 Case 1 : IA(t+1) is the same with the destination address

Sending a specific signal instead of sending IA(t+1).
 Case 2 : IA(t+1) is not the same with the destination address

IA(t+1) cannot utilize DAT to reduce Bus transactions.

 45

Q&A
Q1:

The proposed methods are many and diverse. What is the main idea of
the narrow Bus encoding? (chapter 3.1)

A:

Reduce transmitted bytes of data as long as receiver can get exact data.
 VL-Encoder :

 The sender can skip the leading regular bytes of data without
sending, and inform the receiver what the regularity is.

 Using additional information to inform the sender what the
regularity is.

 Using additional information to inform the sender the number
of Bus transactions.

 VL-Encoder :
 Increasing the leading regular bytes in each 32-bits data.

Q2:
 When considering the energy consumption, the bit toggles play an
important role. Though the purpose of this thesis isn’t on low energy, how is
effect of the narrow Bus encoding on bit toggles?

A:
 The proposed methods are designed without considering bit toggles.

 System static energy consumption:

The narrow Bus encoding can reduce Bus transaction.
 Fewer Bus transaction => Shorter program execution time
 Shorter program execution time => Lower system static energy

consumption

 The bit toggles of transmitted bytes:

 Coding methods which have good effect:
 Some of the coding methods use a specific signal to inform the

receiver the transmitted data and see the Bus value as “don’t care”.
=> The Bus value can be set to reduce bit toggles except the control
line.

 Coding methods which have unpredictable effect:

 46

 Some of the coding methods don’t consider the bit toggles. The effect
on bit toggle is unpredictable.

Q3:
 The simulations are basing on the traces extracted by O1 compiler. How
about the effect on the O3 or other level compiler?

A:

My research focuses on the streams characteristic. I don’t consider the difference
between O1 and O3 compiler.

Q4:
 No matter what stream, you propose several coding methods. What method
you suggest to use in each stream? (chapter 1.3)

A:

The product of Bus width and Bus transaction ratio
 When the Bus width is smaller than data width and the Bus width is the

power of 2, the Bus width and the Bus transaction ratio is inverse
proportion. I use the product of Bus width and Bus transaction ratio as
evaluation matrix.

The commended method of each stream evaluated by this function
 Instruction Address

 T0-C + EB
 1 extra control line
 I don’t consider the area overhead of NBDAT table and the “2

control line method” has gotten worse ratio. If the “2 control lines
method” considers the area overhead of NBDAT, the product ratio
will be worse.

 Coding method Bus transaction ratio
1 control line UT0-C + EBU U26.53%U

2 control lines T0-C + NBDAT(unlimited) + EB 25.13%

 Data Address
 No control line variable stride algorithm + historical addresses

algorithm (with 6 historical address entries) + EB
 3 extra control lines

 Coding method Bus transaction

 47

ratio
1 control
line

No control line variable stride algorithm
+ EB

46.42%

2 control
lines

No control line variable stride algorithm
+ historical addresses algorithm (with 2
historical address entries) + EB

29.93%

3 control
lines

UNo control line variable stride algorithm
U+ historical addresses algorithm (with 6
historical address entries) + EBU

U26.56%U

… … …
8 control
lines

No control line variable stride algorithm
+ historical addresses algorithm (with 254
historical address entries) + EB

25.01%

 Instruction

 Using “MARK” to indicate whether this instruction is in IDT or not
 0 extra control line

 Coding method Bus transaction
ratio

0 control
line

UUsing “MARK” to indicate whether this
instruction is in IDT or notU

U26.65%U

1 control
line

Using “EB” to indicate whether this
instruction is in IDT or not

26.23%

 Data

 utilize both insignificant bit and repeated bit + EB
 2 extra control lines

 Coding method Bus transaction
ratio

1 control
line

utilize repeated bit + EB 55.74%

2 control
lines

Uutilize both insignificant bit and repeated
bit + EBU

U45.49%U

These methods need different number of extra control lines and get different Bus
transactions reduction. There may be systems cannot tolerate the area overhead
of suggest method. They can choose the suitable coding method from the tables.

 48

Q5:
 You have an assumption that the area overhead of extra coding logic gates is
much slighter than the extra control lines. Is this assumption reasonable?
(chapter 1.3)

A:
 Coding logic gates area depends on:

 Processing technology
Extra control lines area depends on:

 Processing technology
 Routing length

The needed coding logic gates and extra control lines are provided. The system
designer can evaluate easily.

My thesis environment focuses on the external Bus between processor and
memory. The assumption that the area overhead of extra coding logic gates is
much slighter than the extra control lines is reasonable.

Q6:
 There are many coding methods can inform the receiver end the number of
Bus transactions. Why do you use the method which adds an extra control line to
indicate the number of Bus transactions? (chapter 3.2.1, 3.2.2, 3.2.3)

A:

If I want to inform the receiver end the number of Bus transactions, I have to
transmit extra information. There are two main directions to reach this purpose.

Policy 1 :

 Using an extra control line (EB) to indicate a codeword is transmitted over
or not at every Bus transaction.

Policy 2 :
 Adding several extra bits to indicate the number of Bus transactions.

The reason to use policy 1:

 In order to compare these two policies in the same standard, I use the same
Bus width (including control lines) for both policies to compare the Bus
transaction ratio of these two methods.

 The policy 1 can get lower Bus transaction ratio.

 49

Q7:
 You seem to reduce the number of Bus transaction to a very low degree.
However, why do you think these ratios are low enough? (chapter 5.8)

A:

 Instruction
Address

Data Address Instruction Data

0 control line U26.65%U
1 control line U26.53%U 46.42% U26.23%U 55.74%
2 control lines U25.13%U 29.93% 45.49%
3 control lines U26.56%U
8 control lines U25.01%U

Instruction Address Stream:

 Sequential addresses (T0, T0-C)
The number of Bus transaction can be reduced to 1.

 Non-sequential addresses pairs (NBDAT)
 When executing a branch instruction, it will branch from source

address to target address. The source address and target address is a
non-sequential addresses pair.

 First occurrence non-sequential addresses pair:
The number of Bus transactions is not guaranteed to be 1.

 After second occurrence non-sequential addresses pair:
The number of Bus transactions can be reduced to 1.

The Bus transactions of those first occurrence non-sequential addresses pairs can
be reduced by EB, but they are not guaranteed to be 1. Only these addresses may
cause more than 1 Bus transaction.

Data Address Stream:

 Sequential addresses (Variable stride algorithm)
 The number of Bus transaction can be reduced to 1.

 Locality properties (Historical addresses --- Described in section 3.4.2

encoder 2 ~ encoder 4)
 The historical addresses algorithm will record the occurred

1-byte-address, 2-byte-address, and 3-byte-address.

 50

 After all 3-byte-addresses in this program are recorded; all data
addresses need only 1 Bus transaction.

 Due to test patterns and program size, 254 entries historical
addresses table can record all 3-byte-addresses in my
simulation program (Mibench).

 Initialization
 Variable stride algorithm:

 Before get right stride value, some data addresses need more
than 1 Bus transaction.

 When updating right stride value, EB can help to reduce the
Bus transactions, but they are not guaranteed to be 1.

 Historical addresses algorithm:
 Before all 3-byte-addresses in this program are recorded,

some data addresses need more than 1 Bus transaction.
 When initializing historical addresses table, EB can help to

reduce the Bus transactions, but they are not guaranteed to be 1.
 When initializing historical addresses table, 2-byte-address and

1-byte-address recorders can help to reduce the Bus
transactions, but they are not guaranteed to be 1.

The Bus transactions of those not utilized by variable stride and not recorded
in 3-byte-address table addresses can be reduced by EB, but they are not
guaranteed to be 1. Only these addresses may cause more than 1 Bus
transactions. Besides, the table size and control lines cannot be unlimited. The
effect of proposed method will be further limited.
The proposed methods can reduce the Bus transactions of almost all data
addresses to 1. The situation that the address need more than 1 Bus transaction
is when the table or stride value is under initialization. I consider that the
proposed method can reduce the Bus transactions low enough.

Instruction Stream:

 Lower Bus transaction ratio than other streams when using the same
number of control lines:
 Even if there is no extra control line, the Bus transaction ratio of

instruction stream is about the same with instruction address stream
using 1 extra control line. And it is about the same with data address
stream using 3 extra control lines.

 51

 Some surveyed but not suitable compression methods
 VLC coding is not suitable in my environment

The VLC coding can be used for compressing a whole program but
it is not suitable to compress instructions one by one. However, the
“Selective Instruction Compression for Memory Energy Reduction
in Embedded Systems” is very suitable to compress instruction one
by one.

 Compressing operands is not suitable in my environment
Though some operands can be compressed to very small, some
operands may be still very large. The Bus transactions are the ceiling
of the quotient of the compressed size divided by 8. It doesn’t
consider this and get lower Bus transaction reduction than
“Selective Instruction Compression for Memory Energy Reduction
in Embedded Systems” in my environment.

 The “Selective Instruction Compression for Memory Energy

Reduction in Embedded Systems” is suitable in my environment
 Not all programs execute lower than 256 kinds of instructions. That

is, not all instructions can be transmitted by 1 Bus transactions.
 We can increase the table size to store more instructions.

However, this will further increase the table access delay and
need more bit for indexing.

 In average, there is only 1.65% instructions need more than 1 Bus
transaction. I think it is not worthy to double the table size and
increase the Bus width by 1.

As the reasons mentioned above, I think that the “Selective Instruction
Compression for Memory Energy Reduction in Embedded Systems” is the
most suitable compression method which I have surveyed and the Bus
transaction ratio is low enough.

Data Stream:

 Different data type:
Due to the data types, the sizes of data may be various. In normal Bus, these
data are all transmitted on 32-bit Bus even if the data size smaller than 32
bits. On 8-bit narrow Bus environment, the proposed methods can transmit
data with small size by fewer Bus transactions without mistake.

 The general researches on the data size in time critical environments

 52

focus on two main points
 Insignificant Bits (sign extension)
 Repeated Bits (relationships between data)

 The reason that I think that the data stream needn’t encoding.
 The relationship between 2 data

 Using repeated bit as redundant type is to utilize the
relationship between 2 data.

 The relationship between more than 2 data
 It is highly program dependent. It is hard to find a common

relationship in all programs.
 Some data value will repeatedly occur

 The probability is very low and hardly to catch the appearance.

The data stream only utilizes the most efficient properties. The other properties
are unobvious and hardly to utilize. I think that it is good enough to use just
insignificant bits and repeated bits as redundant bits types in data stream.

Q8:
 The Bus encoding is a time critical work. How do you convince us that the
proposed method won’t affect pipeline? (chapter 4)

A:

I cannot convince that the proposed method won’t affect pipeline. I can only
propose the coding (encoding and decoding) delays of coding methods for
system designer to estimate.

The coding (encoding and decoding) delays of coding method:

 Instruction Address
 T0 T0-C DAT(NBDAT) EB (Repeated

bits)
Gate
delay

(encoder)

Comparitor(32)

2-to-1 MUX

Comparitor(32)
3-to-1 MUX

Comparitor(32)
2-to-1 MUX

Comparitor(8)

4-to-1 MUX

Gate
delay

(decoder)

2-to-1 MUX Comparitor(32)
3-to-1 MUX

2-to-1 MUX

 Data Address
 Variable stride Variable stride Historical EB (Repeated

 53

(similar to T0) (similar to
T0-C)

address

(k extra lines)
bits)

Gate
delay

(encoder)

Comparitor(32)

2-to-1 MUX

Comparitor(32)
3-to-1 MUX

Comparitor(24)
(2k+1-1)-to-1
MUX

Comparitor(8)

4-to-1 MUX

Gate
delay

(decoder)

2-to-1 MUX Comparitor(32)
3-to-1 MUX

(2 k+1-1)-to-1
MUX

 Instruction
 IDT + MARK IDT + EB

Gate delay (encoder) No run time delay No run time delay
Gate delay (decoder) 255 entries direct map

cache look up

2-to-1 MUX

256 entries direct map
cache look up

2-to-1 MUX

 Data (VL-Encoder)
 Repeated bits Insignificant bits Insignificant bits

Handle Method Copy Embedded hint Additional hint
Gate delay

(encoder)
Comparitor(8)

4-to-1 MUX

Comparitor(8)

4-to-1 MUX

Comparitor(8)

4-to-1 MUX

Gate delay
(decoder)

No delay No delay No delay

 54

94

碩

士

論

文

減

少

傳

送

次

數

之

窄

匯

流

排

編

碼

94

碩

士

論

文

減

少

傳

送

次

數

之

窄

匯

流

排

編

碼

94

碩

士

論

文

減

少

傳

送

次

數

之

窄

匯

流

排

編

碼

94

碩

士

論

文

減

少

傳

送

次

數

之

窄

匯

流

排

編

碼

94

碩

士

論

文

減

少

傳

送

次

數

之

窄

匯

流

排

編

碼

交

通

大

學

交

通

大

學

交

通

大

學

交

通

大

學

交

通

大

學

 55

資

訊

科

學

與

工

程

研

究

所

資

訊

學

院

資

訊

科

學

與

工

程

研

究

所

資

訊

學

院

資

訊

科

學

與

工

程

研

究

所

資

訊

學

院

資

訊

科

學

與

工

程

研

究

所

資

訊

學

院

資

訊

科

學

與

工

程

研

究

所

資

訊

學

院

鄭
式
勳

9317580

鄭
式
勳

9317580

鄭
式
勳

9317580

鄭
式
勳

9317580

鄭
式
勳

9317580

 56

	鄭式勳論文封面.pdf
	鄭式勳論文20060903.pdf

