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The Study of Neural-based Channel Equalizers

Student: Terng-Ren Hsu
Advisor: Chen-Yi Lee
Department of Electronics Engineering, National Chiao-Tung University

Abstract

In practical communication systems, it is necessary to apply data equalizers to
recover the original waveform from the distorted one. Recently, various equalizer designs
based on artificial neural networks have been studied to the severely distorting signal
recoveries. In this study, we propose a new neural network model that applies a
multivariate power series as the summation function of the MLP/BP neural networks. The
corresponding training algorithm.is deduced by the gradient steepest descent method;
consequently, the convergence :solutions exist. Compared to the conventional approach
using a first order multivariate “polynomial;the boundaries separating the pattern space
change from piecewise linear into piecewisenonlinear. The traditional method is a special
case of the proposed model. Therefore, this new model is a generalized MLP/BP neural
network that is more flexible than other piecewise linear approaches because of the

nonlinear separating pattern space.

For wireline communications, we apply the MLP/BP-based channel equalization
schemes to different applications. In wireline band-limited channels that the data rate is
about ten times as much as the channel bandwidth, the MLP/BP-based DFEs provide
better performance, tolerate more sampling clock skew, and permit larger channel
response variance than LMS DFEs. However, the BER performance of the traditional
MLP/BP-based DFEs is not good enough for the severe ISl channels with nonlinear

distortions. In such channels, the generalized MLP/BP-based DFEs can outperform the



traditional MLP/BP-based DFEs that do better than the LMS DFEs. In wireline
band-limited parallel channels, the MIMO MLP/BP-based DFEs and the MIMO
GMLP/BP-based DFEs can suppress ISI, CClI and AWGN, simultaneously. By the
simulation results, the MIMO GMLP/BP-based DFE can yield a substantial improvement
over the MIMO MLP/BP-based DFE that perform better than the LMS DFEs in such

channels.

For wireless communications, a modified approach, which is also based on the
MLP/BP neural network, is presented. We apply the soft output and the soft decision
feedback structure to the MLP/BP-based channel equalization scheme that concatenates
with the soft decision channel decoder to improve whole performance on multi-path
fading channels. Moreover, the performance of the MLP/BP-based soft DFE is also
increased with the optimal scaling factor.searehing of the transfer function in the output
layer of the MLP/BP neural netwarks and extra small random disturbances added to the
training data. By the simulations; the:MLP/BP-based soft DFEs with bit-interleaved TCM
outperform the MLP/BP-based DFES with: bit-interleaved TCM and the soft output

MLP/BP-based DFEs with bit-interleaved TCM in multi-path fading channels.
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CHAPTER 1

Introduction

1-1 Thesis Motivation

In a digital communication_system, the ‘source signal is transmitted over an
intersymbol interference (ISI) ~channel,.corrupted -by noise, and then received as a
distorted signal. In most cases, the additive white-Gaussian noise (AWGN) can be used to
model the background noise; however, the noise includes not only ISI and AWGN but the
nonlinear distortion as well. If the channel response introduces both intersymbol
interference and nonlinear distortions, transmitted signal will be corrupted nonlinearly,
leading to worse performance. For example, the saturation of non-ideal amplifier and
automatic gain control (AGC) loss in transceivers will produce nonlinear distortions that
further degrade the performance of equalizers. Therefore, it is necessary to apply data
equalizers to recover the original waveform from the distorted one in practical
communication systems [1], [2]. A good equalization design can enhance the whole
system performance with an acceptable cost.

Conventionally, the NRZ signal recovery is based on either linear equalizers (LES)



[1], [3], or decision feedback equalizers (DFESs) [1], [2], [3]. A linear equalizer can restore
the original transmitted signal in a wireline band-limited channel, where the channel
distortion is linear without spectral nulls in the channel frequency response. Nevertheless,
as the channel frequency response has spectral nulls, the received noise will be enhanced
in the process of compensating these nulls, resulting in degraded performance. For linear
equalization scheme, such channels that lead to malfunctions of equalizers have been
termed “severe” I1SI channels [4].

The decision feedback equalizer employing previous decisions to remove the ISI on
the current symbol has been extensively exploited to serve intersymbol interference
rejection. The least mean squares (LMS) algorithm is used to estimate the coefficients of
the equalizer [1], [2], [3] whose accuracy determines the system performance.

For wireline high data rate .applications, timing uncertainly degrades the system
performance [5]. The channel response variance-that is caused by manufacturing
deviation makes the worse situation.:It'is-hecessary that using an equalizer to overcome
clock skew and channel response variance. ln-addition, interconnect paths of parallel data
1/0 would cause the co-channel interference (CCI) [6]. The transmitted signals are tainted
by the intersymbol interference that caused by the band-limited channel, the co-channel
interference that caused by crosstalk between different channels, and background white
noise. For recover the distorted data as well as suppress ISI, CClI and AWGN, a
multi-input multi-output (MIMO) channel equalizer is essential.

Error control codes (ECC) are applied to enhance the accuracy of the transmitted
data in wireless applications. The channel decoder with soft information inputs is widely
employed to improve the error correction capability [7], and the bit interleaving is
included [8] in wireless fading channels. With the soft output [9] and soft feedback [10]

channel equalizers, the soft decision channel decoder will receive more information from



the channel and therefore precisely decode the data sequence, leading to better BER
performance.

Besides, the equalization schemes can be thought of a mapping from the received
waveform to the transmitted data. The pattern recognition techniques have been used to
identify the severely distorting date. Having the capability of classifying the sampling
pattern and fault tolerance, artificial neural networks are very suitable for the channel
equalizations. Recently, various equalizer designs based on artificial neural networks have
been studied to the severely distorting signal recoveries [11]. Neural-based approaches
have more flexibility and better performance than conventional equalization techniques.
The proposed approaches are based on the most popular multi-layer perceptron neural
network with backpropagation algorithm (MLP/BP) [12], [13], [14], [15], [16]. As well,
the MLP architecture can be regarded as a separateness-summation modus operandi in
separating pattern space.

For wireline applications, we apply-the-MLP/BP-based channel equalization schemes
to different applications. In the wireline band-limited channel that the data rate is ten
times as much as the channel bandwidth, the MLP/BP-based feedforward equalizer (FFE)
can recover the distorted data [17]. The MLP/BP-based DFE provide better performance,
tolerate sampling clock skew, and permit channel response variance [18]. In wireline
parallel 1/0 channels, the MIMO MLP/BP-based DFE can suppress ISI, CCl and AWGN,
simultaneously [19]. However, the traditional MLP/BP-based DFEs are not good enough
for the severe ISI channels with nonlinear distortions. We present a new neural network
model, which is based on the MLP/BP neural network. This model utilizes a multivariate
power series for the summation function of the MLP/BP neural networks [20], [21]. The
corresponding training algorithm is deduced by the gradient steepest descent method;

consequently, the convergence solutions exist. Compared to the conventional approach



using a first order multivariate polynomial, the boundaries separating the pattern space
change from piecewise linear into piecewise nonlinear. Therefore, this novel model is a
generalized MLP/BP neural network (GMLP/BP) that is more flexible than other
piecewise linear approaches because of the nonlinear separating pattern space. In such
channels, the GMLP/BP-based DFE can outperform the traditional MLP/BP-based
equalization schemes [22]. Also, the performance of the MIMO GMLP/BP-based DFE is
better than that of the MIMO MLP/BP-based DFE in wireline parallel channels that
contain ISI, CCl, and background white noise [23].

For wireless applications, a modified approach, which is also based on the most
popular MLP/BP neural network, is presented. We apply the soft output and the soft
decision feedback structure to the MLP/BP-based channel equalizer that concatenates
with the soft decision channel deceder to improve whole performance on multi-path
fading channels. Moreover, the performance. of.the MLP/BP-based soft DFE is also
increased with the optimal scaling factor-searching of the transfer function in the output
layer of the MLP/BP neural networks-and.extra small random disturbances added to the

training data [24].

1-2  Paper Survey

There are various channel equalization schemes that are applied to different channel
conditions. We survey the representative equalization approaches for wireline and
wireless communications in these few years. These papers treat of different channel
equalization schemes for wireline band-limited channels, wireline severe ISI channels,
and wireless fading channels, respectively.

The linear equalizers can recover the distorted data in wireline band-limited channels

-4-



[1], [2], [3]. For wireline severe ISI channels or wireless fading channels, the linear
equalization schemes are unsuitable [4], [5].

In serve ISI channels, the DFEs [1], [2], [3], [5] can avoid the influence of the
spectral nulls and outperform the LEs. For wireline high data rate communications, DFEs
are applied to improve the data rate or reduce the error rate [25], [26], [27]. In practice
circuits, the channel responses of different interconnect paths of parallel data I/O are
different. The receiver must tolerate channel responses variance and sampling clock skew.
Besides, CCI makes the problem more severely.

The most popular training algorithm of DFEs is the least mean squares (LMS)
algorithm, which is a minimum mean square error (MMSE) solution. One of the great
methods for improving DFEs, support vector machines (SVM) based DFEs [28], [29], [30]
uses the minimum bit error rate. (MBER) solution instead of the MMSE solution to
enhance system performance, but.requires the estimation of channel impulse response
(CIR) to compute the weighting-vectors.-Altheugh the performance of SVM DFE is better
than LMS DFE, the complexity of: SVM.DFE" is much higher due to the additional
channel estimator.

The Viterbi Equalizer (VE) [31] that requires CIR estimation can also be used in
severe ISI channels and achieve much better performance. However, the accuracy of CIR
dominates the performance particularly, and a nonlinear distortion of received signal will
cause significant performance degradation to VE.

Because feed-forward neural network based channel equalization schemes are the
most suitable architectures for very large-scale integration (VLSI) implementation, we
survey the several well-liked neural network models that contain single layer perceptron
(SLP) neural networks [13], [14], [16], polynomial perceptron (PP) neural network [14],

[16], functional-link (FL) neural networks [14], [16], [32], radial basis function (RBF)



neural networks [14], [15], [16], counterpropagation (CP) neural networks [14], [16], [33],
and MLP/BP neural networks [12], [13], [14], [15], [16].

The single layer perceptron neural network is the simplest neural network model, but
it can’t solve the linear non-separable problem. In wireline applications, SLP-based
channel equalizers [34] are better than LMS-based linear equalizers.

The polynomial perceptron neural network uses a polynomial function to represent
the input data and then a SLP neural network to combine these represented data and
generate the output. By the input data represented, PP neural networks can solve linear
non-separable problems. In severe ISl channels, PPNN-based channel equalizers
outperform linear equalizers [35]. In multi-path fading channels, PPNN-based channel
equalizers can suppress ISI and CCI [36], [37], simultaneously. The complexity of the
PPNN-based channel equalization.'schemes is depended on tap number and polynomial
degree.

Based on the same concept, the.functional-link neural networks are proposed. The
higher-order input terms of the FLneural networks can be generated by the expanded
functions, which comprise polynomial functions, trigonometric functions, signum
functions and other nonlinear functions. The PP neural network is a special case of FL
neural network. In severe ISI channels, FLNN-based channel equalizers can recover
severe distorted data [38], [39], [40]. In multi-path fading channels, FLNN-based channel
equalizers can suppress ISI and CCI with better performance than LEs and DFEs [41],
[42], [43].

Excluding above definitely defined functions, a set of radial basis functions, which
paves the input space with overlapping receptive fields, can be taken as the functional
expander of the RBF neural networks. The most frequently used radial basis function is

the Gaussian function. The output of the radial basis function is maximized by minimized



the Euclidean distance between the input vector and the centroid. To find the correct
centers of the radial basis functions is very important. Thus, the clustering technique is the
key issue [44]. The RBF-based channel equalization schemes [45], [46], [47], [48], [49]
can be applied to wireline band-limited channels, severe ISl channels with or without
nonlinearity, severe I1SI channels with CCI, and wireless fading channels.

Overall, the architecture of PP neural networks, FL neural networks, and RBF neural
networks consists of two main parts, the functional expander and the linear combiner. The
functional expander, which performs nonlinear mapping for the input data, and make the
linear non-separable problem become linear separable. Afterward, a SLP neural network,
which is trained by the simple delta-learning rule, is taken as the linear combiner to
associate the represented input data with the desired outputs. The pattern space separating
boundaries of such neural networks are nonlinear.

The counterpropagation neural network-is two-layer structure. The first layer is a
winner-take-all network, and the second-layer is:perceptron-based architecture. The
learning speed of CP neural networks:is. faster than MLP/BP neural networks, but the
accuracy is worse. The CP-based channel equalizers outperform LEs under nonlinear
channel characteristics [50].

Since late 1980s, the MLP/BP neural network is the most important and most
popular neural network model [12], [13], [14], [15], [16]. The MLP neural network can be
regarded as a separateness-summation modus operandi. Because the summation function
of the MLP/BP neural network is a first order multivariable polynomial function, the
boundaries of neighbors are linear or piecewise linear. Also, it is treated as continuous
linear mapping processes.

In severe ISI channels, the MLP/BP-based feedforward equalizers [51], [52], and the

MLP/BP-based decision feedback equalizers [53], [54], [55] have been widely used to



distorted signal recovery. The MLP/BP neural network combined decoder and equalizer
[4] merges forward equalization and data decoder in an MLP/BP neural network. It can
offer higher system integration and better performance than the traditional separate
solutions. The MLP/BP DFE with lattice filter [56] uses a lattice filter to whiten its input
signal. The lattice filter can reject a quantity of the noise and make the signal clear. The
convergence rate of the neural network, the steady state mean square error, and the bit
error rate of whole system can be improved in chorus.

For constant envelope signal processing, we can separate in-phase and
quadrature-phase components and then the real-value activation functions can handle this
problem. Besides, there are two main approaches for the development of a complex neural
network. One looks for fully complex activation function [57], [58], and has been applied
to distorted QPSK signal recovery [59]. Another has used split complex activation
function [60], [61], and has been-also employed to.channel equalization [62].

For wireless communications, the:MLP/BP-based DFEs are applied to indoor radio
channels [63] and digital satellite channels.[64]. In wireless applications, the length of the
training symbols and the number of the training epochs are sternly limited. As well, the
MLP/BP-based DFEs can be used to suppress not only ISI but also CCI that is due to
other co-channel users [65], [66].

The MLP neural network with hierarchical backpropagation algorithm (HBP)
combines the hierarchical approach and BP algorithm [67]. It can solve some problems of
the local minimum in the BP algorithm and improve the system performance. Except
MMSE based learning rule, the least relative entropy (LRE) [68], [69] based learning
algorithm has been applied to SLP neural network based equalizers and MLP neural
network based equalizers. The dynamics of the LRE based algorithm is better than that of

the MMSE based learning rule. It means that the learning speed of the LRE based



algorithm is faster than the MMSE based one. Moreover, neural networks can be trained
by fuzzy if-then rules [16]. For nonlinear channel equalization applications, an adaptive

neural fuzzy filter provides good performance [70].

1-3 Thesis Organization

The rest of this thesis is organized as follows. The traditional MLP/BP neural
networks and the generalized MLP/BP neural networks are first addressed in chapter 2.
The detail of proposed neural-based channel equalization schemes for wireline SISO
applications, wireline MIMO applications, and wireless applications are described in
chapters 3, 4, and 5, respectively..Some conclusions and future works of the proposed

methods are made in chapter 6. Brief description of each chapter is given below:

* In chapter 2, the brief review of‘the multi-layer perceptron neural networks with
backpropagation algorithm is introduced at first. Subsequently, the generalized
multi-layer perceptron neural networks and corresponding backpropagation
algorithm is proposed. At last, the comparison of computational complexity is

made.

* In chapter 3, the MLP/BP-based DFEs with high skew tolerance for wireline
band-limited channels are presented at the beginning. Afterward, the generalized

MLP/BP-based DFEs for wireline severe ISI channels are proposed.

* In chapter 4, the MIMO MLP/BP-based DFEs and the MIMO generalized
MLP/BP-based DFEs for overcoming ISI and CCI in wireline band-limited

channels are given.



* In chapter 5, the MLP/BP-based soft decision feedback equalizers for wireless

communications are delivered.

* In chapter 6, some concluding remarks will be derived from this research. Then

briefly discussions illustrate our research activities in the future.
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CHAPTER 2

Generalized MLP/BP Neural Networks

Artificial neural networks are systems_that are deliberately constructed to make use
of some organizational principles resembling those of the human brain. In 1943,
McCulloch and Pitts proposed=a’ simple mathematical model of the biological neuron,
usually called an M-P neuron. The generalizations or variations of the M-P neuron are the
basic component of artificial neural networks: An artificial neural network consists of a
set of highly interconnected neurons such that each neuron output is connected to other
ones or/and to itself through weights, which with or without lag. In 1957, Rosenblatt
created the perceptron neural networks that include single-layer feedforward networks,
which without hidden layers; and multi-layer feedforward networks, which with a hidden
layer or more. But there is no suitable training algorithm for multi-layer perceptron neural
networks until the backpropagation algorithm [12] had been proposed. Today, there are
many different artificial neural networks had been proposed, but the multi-layer
perceptron neural network with backpropagation algorithm is the most important and
most popular one [13], [14], [15], [16].

In this work, we treat the MLP/BP neural network model and make a key
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modification to offer a new approach, the generalized MLP/BP neural network. At the
beginning of this chapter, we make a review for the traditional MLP/BP neural network.

Afterward, a detail arrangement of the generalized MLP/BP neural network is given.

2-1 Traditional MLP/BP Neural Networks

Although the MLP neural network had been treated in late 1950s, the suitable
training algorithm wasn’t appeared until the backpropagation algorithm [12] presented.
Bryson and Ho in 1969, Werbos in 1974, LeCun in 1985, Parker in 1985, and Rumelhart
in 1986 proposed the backpropagation algorithm. The most influential publication of the
backpropagation algorithm is Rumelhart’s contribution. Since late 1980s, the MLP/BP
neural network has been widely used to pattern.recognition, and signal processing [13],
[14], [15], [16].

In this section, we treat the"MLP/BP neural network because it is the basis of our
proposed model. At first, we show the detail of the MLP neural network architecture.

Subsequently, the deduced process of the backpropagation algorithm is presented.

2-1-1 Architecture

The architecture of a multi-layer perceptron neural network [12], [13], [14], [15], [16]
is shown in Fig. 2-1. The neurons are arranged into several layers. The first layer is the
input layer, the final layer is the output layer, and other in-between layers are hidden
layers. The neuron number of each layer could be singular form or plural form. In the

input layer, each neuron includes a single input and a single output. In other layers, there
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are several inputs and one output in each neuron. The different neurons, which situate in
neighbor layers, connect together through respective weights without lag.

A neuron, the processing unit, of the MLP neural networks [12], [14], [16] is shown
in Fig. 2-2. The output of a neuron is the value obtained from applying a transfer function
to a weighted sum of its inputs, where each input is the output of a neuron situated in the
previous layer. The weighted sum of the inputs can be described as a first order
polynomial function. As well, commonly used transfer functions include hard limit
functions (step functions), ramp functions (linear functions), unipolar sigmoid functions
(log-sigmoid functions), bipolar sigmoid functions (tan-sigmoid functions), and so on. For
different purposes, we can select dissimilar transfer functions to meet the requirement or
constraint. In this work, we choose the unipolar sigmoid function as the transfer function

of a neuron.

Input Layer Output Layer

Hidden Layer

Fig. 2-1: MLP Neural Network Architecture.
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Fig. 2-2: Neuron of MLP Neural Networks.

2-1-2 Backpropagation Algorithm

The MLP/BP neural networkssare supervised learning. It means that a training set
includes an input vector and a desired output vector.-Using the MLP/BP neural networks
to solve problems includes twophases,“one is-training procedure and another is testing
procedure. In the training phase,”we base on-the gradient steepest descent method to
minimize the error function for updating the weights. After that we apply the training
result to obtain the network response in testing phase. Now, a mathematical description of
backpropagation algorithm [12], [15] is shown as follows:

Output = 4, = finet,, ), (2-1)
where 4, 1s the output of neuron j in the n-th layer, f{’) is the transfer function obtaining
the output of a neuron, and net,; is the output of the summation function of neuron j in the
n-th layer. Furthermore,

net,. = Summation _ Function = ZWﬂ.A(H)i -0 (2-2)

J

j b
where Wj; represents the weight of the connection between neuron j in the n-th layer and
neuron i in the (n-1)-th layer, and 6 is the threshold (bias) of neuron j. The Wj;, should be
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trained to minimize the error function

E = Error _Function :%'Z(Tj —Anj)2 , (2-3)

j
where 7} is the desired output of neuron j in the output layer.

By the gradient steepest descent method, the error function (2-3) can be minimized by

2
AW/i =-n- W , (2-4)

Ji
the update quantity for W}, and # is the learning rate.
By chain rule,

GE E  ohet .
- R (2-5)
W, chet, W

Ji

E _ CE é’Anj éhetn].

— . . , (2-6)
W, A, onet, W,
chet,,;
(Z (n Wk )= A(n—l)i ) (2-7)
ﬂW_ﬂ 0”W /
2, f(net,) = fnet 2-5)
‘ ne ne -
het,, a’h L Y Y
cE .
For 1 there are two cases that should be discussed:
nj
(1) When the n-th layer is the output layer,
cE
— =] =—(T.—A4)). 2-9
OF’AYU. 0’)14 [2 ;( kT nk) ( j n]) ( )
(2) When the n-th layer is a hidden layer,
chet,, .
TR Z( = ) (—2)
nj et(11+1)k é)Anj
= W.-A,-6)]. 2-10
Z o’het 0,, 7 (Z i )] (2-10)

(n+1)k
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Let

cE . . 29
=—0,, be the error signal of neuron £ in n-th layer, —=-4,,,,,, can
el ahet .

be deduced and (2-10) can be rewritten as

E
e Y N A (2-11)
Oﬂ’Anj Zk: (n+D)k ki

Furthermore, according to (2-7), the deviation in (2-5) can be rewritten as

12
W = —5,!/ N A(nfl)i . (2-12)
Ji
By (4) and (12),
12
AW‘iZ_n._zn'é‘n"A(n—l)i‘ (2-13)
J éﬂ%} y
Similarly, the following equation can be obtained
A0, =-n-5,, (2-14)

where A6} is the update quantity-of'@;.

From the above deductions, theré areitwo possible cases:

(1) If W, is between the output layer and'its anterior layer (a hidden layer), (2-7), (2-8),

(2)

and (2-9) can be applied to (2-6),

23 .
=T Ay) [ net,) A, (2-15)

ji
After comparing (2-12) and (2-15), we can obtain
6, =(T,—A4,): f'(net,)  (for output layer). (2-16)
If W, is between a hidden layer and its anterior layer (a hidden layer or the input

layer), (2-7), (2-8), and (2-11) can be applied to (2-6),

ﬁ‘_
w

Ji

[_25(n+1)k 'W/g]'f'(”et;y) ’ A(n—l)i' (2‘17)
k

The following equation can be obtained from comparing equations (2-12) and (2-17)

-16-



d, = [Z‘S(nmk W, 1- f'(net,;)  (for hidden layer). (2-18)
k

In this work, a unipolar sigmoid function is used to the transfer function of a neuron.
The first derivative of the unipolar sigmoid function can be represented as the terms of

itself, as shown in (2-19) and (2-20).

flnet,)=— (2-19)
l+e 7
e 1 1
' (netn') = —ne = —ne ’ (1 - —nei )
S (nety (+e ") 1+e "™ 1+e "
= f(net,)-[1- f(net,)]=4,-(1-4,), (2-20)

By such representation, (2-16) and (2-18) can be rewritten as (2-21) and (2-22).

0,=(T —-4,)-4,-1-4,)  (foreutputlayer), (2-21)

Sy =1 O Wy l- A, -A="4,)  (for hidden layer). (2-22)
k

In each iteration, the weights and thresholds are updated. When the whole set of
training data has been cycled once, calculate mean square error (MSE) of this training
epoch. We repeat such epoch and record the best result, which consists of weights and
thresholds and leads to the minimal MSE among past training epochs. Check whether the
current MSE is smaller than the maximum tolerable error, which the result meets the
training object, and the entire training epochs have been completed, which stands for the
maximum patient training time. If the alternative conditions have been reached, the
training process is terminated. At this moment, the training result is harvested. In general,
reduce training time and enhance system performance are certain exclusive property. [14],

[15],[16]
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Because the MLP/BP neural network is an MMSE approach, the training results will
converge on local optima. Using different network configurations, different initial
condition and different learning rate, will conduce to different performance [13], [14],
[16]. In general, could perform quite a few independent training runs and choose the most
suitable result as the final solution.

Moreover, the MLP/BP neural network can be regarded as a separateness-summation
modus operandi in separating pattern space. Because the summation function of the
MLP/BP neural network is linear, the boundaries of neighbors are linear or piecewise
linear. [14], [16] For a complex system, the number of neurons should increase for better

approximation.

2-2 Generalized MLP/BP Neural Networks

To achieve more flexibility ‘and better performance, a multivariate power series is
used to replace a first order multivariate polynomial as the summation function of the
MLP/BP neural networks, leading to a significant modification for the traditional
MLP/BP neural network. Therefore, regarded as a general form of the MLP/BP neural
network, the proposed model can be termed as a generalized MLP/BP neural network.
This key modification comes from the previous study of speech recognition where a better
performance can be attained by using the multivariate power series [20], [21]. In this
work, this new method is applied to the waveform equalization and results in a significant
improvement in performance.

In this section, we show the architecture of the generalized MLP/BP neural network
at first. Subsequently, the deduced process of the corresponding backpropagation
algorithm is presented. Referring to the traditional MLP/BP neural network and the
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generalized MLP/BP neural network, we find that the traditional method is a special case

of the proposed model.

2-2-1 Architecture

The network architecture of our proposition is the same as the traditional MLP/BP
neural networks. That has been shown in Fig. 2-1. However, the construction of neurons
of the both is different. A neuron of this new approach is shown in Fig. 2-3. The output of
a neuron of the proposed scheme is the value obtained from applying a transfer function
to a weighted sum of the power terms of its inputs, where each input is the output of a
neuron situated in the previous layersThe weighted sum of the power terms of the inputs
can be represented as a multivariate power seties.“On the other word, the summation
function of the generalized MLP/BP neutal networks is a multivariate power series that
substitute for the first order multivariate polynomial. Similarly, we can select dissimilar

transfer functions to meet the requirements of different purposes.

[Ar-]*
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\ ij

Wj12

N
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Fig. 2-3: Neuron of Generalized MLP/BP Neural Networks.
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2-2-2 Corresponding Backpropagation Algorithm

In this subsection, we present the training algorithm for the generalized MLP/BP
neural network. It is similar to the traditional training algorithm. Diversely, the
multivariate power series is used to replace the first order multivariate polynomial as the
summation function of the MLP/BP neural networks. The corresponding backpropagation
algorithm of the proposed approach is deduced by the gradient steepest descent method
and is shown as follows:

Output = A4, = f(netnj) , (2-1)
where 4, is the output of neuron j in the n-th layer, f{’) is the transfer function obtaining
the output of a neuron, and net,; is the output of the summation function of neuron j in the
n-th layer. Furthermore,

Jin J

net,, = Summation_Function = ZZW % =0, (2-23)

where m is the order of the summationfunction,” W, represents the weight of the
connection between neuron j in the u-th layer and neuron i in the (n-1)-th layer
corresponding to order m, and 6; is the threshold (bias) of neuron j. The Wj;, should be

trained to minimize the error function

E = Error _Function = % . Z(TJ - Anj)2 , (2-3)
J

where 7 is the desired output of neuron j in the output layer.
By the gradient steepest descent method, the error function (2-3) can be minimized by

17
AW, =-n- w7 (2-24)

Jim
the update quantity for W, and # is the learning rate.

By chain rule,
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O’VVJW O’VVJWI [;; VV/lm A(” Dk 9/:| - A(n-l)i >
A . o
nj [ l’lel‘ ) = (] net ).
chet,,  chet,, [ (net,)) = f"(net,;)

E )
For ——, there are two cases that should be discussed:

nj
(1) When the n-th layer is the output layer,

cE 2
R —0,,7[5 ;(T;c —A,) 1=-Tmd,) -

nj
(2) When the n-th layer is a hidden layet;

éhet(nﬂ)k

A, _Z(a’het(m)k) ( é’Anj )
— A(m 1Y)
Z éh t(n+1)k) [; " ]

Let =—0,, be the error signal of neuron & in n-th layer,

et el

be deduced and (2-30) can be rewritten as

25(n+1)k [zm kjim Ar(l;”—l)].

Furthermore, according to (2-27), the deviation in (2-25) can be rewritten as

7 m
W = _5nj : A(n—l)i .
Jim
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(2-26)

(2-27)

(2-28)

(2-29)

(2-30)

ek AN
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By (2-24) and (2-32),

2
AW, =—n———=0-0, A, (2-33)
J M;im Y

Similarly, the following equation can be obtained

(2-34)

where A6 is the update quantity of 6.
From the above deductions, there are two possible cases:

(1) If w,

Jim

is between the output layer and its anterior layer (a hidden layer), (2-27),

(2-28), and (2-29) can be applied to (2-26),

2 m
=T =4, [ net,) A, (2-35)

Jjim
After comparing (2-32) and (2:35), we can gbtain

6, =(T,—A,)- ['(net,).. (foroutput layer). (2-30)

(2) If w_ is between a hidden layerandiitS'anterior layer (a hidden layer or the input

Jim

layer), (2-27), (2-28), and (2-31) can'be applied to (2-26),

é’W —=[- Z (n+1)k (Zm kjim Aﬁ,m_l))]'f'(netn,) A(nrll i * (2-37)

Jjim

The following equation can be obtained from comparing equations (2-32) and (2-37)

S, —[Zéwk Zm W, - AS "1 f'(net,)  (for hidden layer).  (2-38)

In this work, a unipolar sigmoid function is used to the transfer function of a neuron.
The first derivative of the unipolar sigmoid function can be represented as the terms of
itself, as shown in (2-19) and (2-20).

flnet,)=—-—, (2-19)
l+e
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, e 1 1
f (netr@/') = = net,, (1 - —net,; )

(A+e ™) l+e"" l+e

= f(net,)-[1- f(net,)]=4,-(1-4,), (2-20)
By such representation, (2-36) and (2-38) can be rewritten as (2-39) and (2-40).

o,=(T—-4,)-4,-(1-4,)  (for output layer), (2-39)

P
o, = [;5(”‘*'1)/‘ -(Z;m W ~A,§;”"”)] +A4,-(1-4,)  (for hidden layer). (2-40)

Referring to the traditional MLP/BP neural network and the generalized MLP/BP
neural network, we make comparisons between (2-16) and (2-36); (2-18) and (2-38);
(2-21) and (2-39); (2-22) and (2-40). The generalized MLP/BP neural network is actually
equivalent to the traditional MLP/BP neural ‘metwork when m=I1, indicating that the
traditional method is a special case.of the proposed model. Thus the new approach being
presented is a generalized model. Moreover;:the-network configuration of this scheme has
more degrees of freedom than the traditional one.

Because the summation function of the GMLP/BP neural networks is a multivariate
power series (nonlinear function), the boundaries of neighbors become either nonlinear or
piecewise nonlinear. As the nonlinear summation function within each neuron is
materialization in each layer of the GMLP/BP neural networks, the proposed approaches
present continuous nonlinear pattern space mapping potential. Theoretically, increases of
the summation function order and the number of neurons can achieve better
approximation to fit a nonlinear system. Therefore, the proposed scheme will have more
flexibility and better performance than traditional MLP/BP neural networks do.

Similar to the traditional approach, the training procedure of this GMLP/BP neural

network attains different performance by varying initial conditions, learning rates,
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network parameters or summation function orders. Moreover, designers could perform
numerous independent training runs and select the most suitable result as the final
solution.

Generally, the order of the fitting function is equal to or less than that of the target
function. In most cases, the target function is complex or even unknown, and the best
fitting function order is determined by experimentation or experience. To simplify the
problem, the fitting function order is selected as low as possible while the error is set to be
less than the maximum tolerable bound. In general, the order of the most approximation
system is equal to or less than three; however, in high performance systems or special
applications, the order may be higher. In algebraic, this new approach extends the
traditional scheme from the first order approximation to infinity. The most suitable
summation function order of this scheme can be determined by computer simulations for

different applications.

2-3 Complexity Analysis

Because the order of the neuron of the generalized MLP/BP neural networks is more
than one, it is necessary to generate the power terms for the inputs in each layer. In
addition, the training algorithm of the generalized MLP/BP neural networks is modified
from “generalized delta-learning rule”. The complexity and cost of the generalized
MLP/BP neural networks will be higher than the traditional MLP/BP neural networks but
the former results in better pattern space separability and better performance. The
comparison of computational complexity in terms of additions, multiplications and
sigmoid function substitution between the traditional MLP/BP neural networks and the
generalized MLP/BP neural networks is shown in Table 2-1.
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Table 2-1: The comparison of computational complexity.

Overati MLP/BP neural networks GMLP/BP neural networks

cration

P (Single Hidden Layer) (Single Hidden Layer)
Addition (Ni+1) -Nh+(Nh+1)- No (m-Ni+1)-Nh+(m-Nh+1) No

Multiplication Ni - Nh + Nh - No (2m-1)-Ni-Nh +m- Nh - No

Function Substitution

Nh + No

Nh + No

Notations:

Input Neuron Number = Vi
Hidden Neuron Number = Nk
Output Neuron Number = No

Summation Function Order = m
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CHAPTER 3
SISO GMLP/BP-based DFEs

for Wireline Applications

For wireline communications, we apply the GMLP/BP-based channel equalization
schemes to different applications. In-wireline band-limited channels that the data rate is
about ten times as much as the channel bandwidth, the traditional MLP/BP-based DFEs
provide better performance, tolerate more sampling clock skew, and permit larger channel
response variance than LMS DFEs. Because the frequency response of a wireline
band-limited channel is without spectral nulls, the high order approximation has no
benefit. The first order ones can satisfy the system requirements. However, the traditional
MLP/BP-based DFEs are not good enough for the severe ISI channels with nonlinear
distortions. The frequency responses of severe ISI channels contain spectral nulls and
nonlinear distortions lead to worse situations. In such channels, the generalized
MLP/BP-based DFEs can outperform the traditional MLP/BP-based DFEs that do better
than the LMS DFEs.

This chapter is organized as follows. The traditional MLP/BP-based DFEs with high
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skew tolerance for wireline band-limited channels are presented at the beginning.

Afterward, the GMLP/BP-based DFEs for wireline severe ISI channels are proposed.

3-1 MLP/BP-based DFEs with High Skew Tolerance

for Band-limited Channels

A traditional MLP/BP neural network is realized as a waveform equalizer for
distorted nonreturn-to-zero (NRZ) data recovery in band-limited channels. Moreover, the
proposed approach can tolerate sampling clock skew and channel response variance.
According to simulation results, the proposed design can recover severe distorted NRZ
data with better performance than:LMS DFES in-the band-limited channel that the data
rate is about ten times as much,as the channel ‘bandwidth. Under the 20% channel
response variance and the 30% sampling-clock-skew, the MLP/BP-based DFE can provide
an acceptable performance. By fixed-point simulations, the proposed scheme is realizable
and outperforms the LMS DFE. Further, the internal resolution enhancement technique
provides a better compromise between cost and performance.

This section is organized as follows. The system overview is presented in subsection
1 while subsection 2 shows the MLP/BP-based DFEs. Afterward, the simulation results

show in subsection 3. Finally, we make a brief summary in subsection 4.

3-1-1 System Overview

In practice circuits of wireline communications, the channel characteristic of
different interconnect paths of parallel data 1/O channels are different but analogous.
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Besides, sampling clock skew makes the problem more severely. In such conditions, the
received signal is deteriorated substantially by intersymbol interference, clock skew and
background noise. The system diagram of a single clock source is shown in Fig. 3-1.

If the data rate of transmitted signals is higher than the channel capacity, the received
signal pulse is unable to complete its transition within a symbol interval. The equivalent
model for the wireline band-limited channels is shown in Fig. 3-2 where a finite impulse
response (FIR) filter is used to model the ISI channel response with the AWGN as the
background noise.

The ISI channel response with AWGN can be written as follows:

H@Ez)=fo+ fi- 2+ fyz 2.+ f, 27", (3-1)
Vi = Zfz "X (3-2)
Vi =Y, tn, (3-3)

where H(z) is the transfer function of the-1Sk=channel; L is the length of the channel
response; x; is the input sequence; y; 1S the.ehannel output which is warped by ISI only; n;
is the AWGN; y is the received signal which is distorted by both ISI and AWGN.

In this work, several wireline band-limited parallel 1/0 channels that consist of
analogous channel responses and different sampling clock skews are used to verify the
proposed approaches. Their transfer functions with different Fsgg/F ratio are shown in
Table 3-1. The frequency responses of these channels are illustrated in Fig. 3-3. These
frequency responses are without spectral nulls. Base on foregoing channels, clock skews
between +/- 30% are considered to represent a worse situation of the practical wireline

high-speed communications.
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Fig. 3-1: System diagram.
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Fig. 3-2: Equivalent model for the band-limited channels.
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Table 3-1: Transfer functions of several wireline band-limited channels.

ID | Fsu/F Channel Impulse Response

1 0.08 [0.3951 0.2390 0.1446 0.0875 0.0529]

2 0.09 [0.4319 0.2454 0.1394 0.0792 0.0450]

3 0.10 [0.4665 0.2489 0.1328 0.0708 0.0378]

4 0.11 [0.4990 0.2500 0.1252 0.0627 0.0314]

5 0.12 [0.5295 0.2491 0.1172 0.0551 0.0259]

Frequency Response

—— Channel 1
Channel 2

---- Channel 3
- Channel 4
Channel 5

Magnitude (dB)

Channel 5
""@hanml4... I—
Ch Channel 3 . eis

Ci’lmnel 2

1 1 1 L 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Frequency

-1 50

Fig. 3-3: Frequency responses of several similar wireline band-limited channels.
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3-1-2 MLP/BP-based DFEs

The block diagram of the MLP/BP-based DFEs is shown in Fig. 3-4. This
MLP/BP-based DFE is the single hidden layer MLP architecture. The inputs of the
MLP/BP-based DFE consist of feed-forward signals, which come from the input symbols
by a tapped-delay-line register, and feedback signals, which come from previous
decisions by another tapped-delay-line register.

We evaluate different tap numbers in the forward part and the feedback part of the
equalization schemes and select the most suitable arrangement. In this work, all
equalization schemes have 11 symbols in the forward part and 5 symbols in the feedback
part. The number of neurons in the input layer is equal to 16. The MLP/BP-based DFEs
uses the single hidden layer MLP architecture: The number of neurons in the hidden layer
is 2 times of that in the input layer. Since all the proposed equalization schemes have a

single output, the number of neurons in the output layer is equal to 1.

A 4

A
A

Input Z1t- Z1 -p Z71 Z1|a- Z1 zZ1t
X, X, :J X, Y. Y, Y,

Input Layer

Hidden Layer

MLP/BP Neural Network Output Layer

A

Threshold

v
Output

Fig. 3-4: MLP/BP-based DFEs.
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3-1-3 Simulation Results

The performance of the MLP/BP-based DFE is evaluated through the simulations for
the distorted NRZ signal recovery in the band-limited channel that the data rate is ten
times of the channel bandwidth. In this section, a regular input pattern configuration of
the equalization schemes is presented first followed by the modified configuration. At last,

the fixed-point simulations and its enhancement are discussed in detail.

3-1-3-1 Regular Configuration

Because the MLP/BP neural networks are supervised learning, a training set includes
an input vector and a desired output vector. The training patterns must represent the
system characteristic as exact as.possible. Suitable training patterns can improve the
training quality. In wireline applications, We.can.select a longer training set to achieve
better performance.

In the training procedure, the length of the training set is equal to 10* symbols and
the total training epochs are 102 The two-phase learning is used with the learning rate of
0.5 when the mean square error of the training set is larger than 10, and the learning rate
of 0.125, otherwise. When the training epochs exceed eighty percent of the total epochs,
the best parameters will be recorded to achieve the lowest mean square error of the
training set in the last twenty percent of the training epochs. Hence the steady-state
training results can be recognized. In fact, the simulations indicate no unstable problems
as all training processes are converged.

Because different initial conditions lead to different effects, the non-training
evaluation set that has 10° symbols is used to examine the training quality of numerous

independent simulation outcomes. After numerous independent training and evaluation
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runs, those yielding better outcomes will be chosen to perform a long trial with the test set,
and then the best one will be the final test result. We execute fifty independent runs and
select the best one as the final result. The length of the test set is 10° symbols, and the
evaluation set is a subset of it.

At first, we follow the regular input pattern configuration of the equalizers. A
band-limited channel (Channel 3) described by the transfer function, H3=0.4665 +
0.2489z" + 0.1328z + 0.0708z + 0.0378z, is used to estimate the system performance
of the LMS DFE and the MLP/BP-based DFE, where the training noise and the evaluation
noise are assumed to be SNR=20dB, and SNR of the test signal is between 10dB and
25dB. This channel response indicates that the data rate is ten times of the channel
bandwidth.

Subsequently, several different band-limited:1SI channels (Channels 1, 2, 4, and 5)
are used to describe different channel bandwidth vs. data rate ratios that the data rates are
eight, nine, eleven, and twelve-times-the-channel bandwidth, respectively. The training
result of Channel 3 is applied to these channels, directly. These experiments are used to
evaluate the tolerance under different channel response variances. The BER performance
for the LMS DFE and the MLP/BP-based DFE in different channels is shown in Fig. 3-5.
The proposed approach can outperform the LMS DFE.

At last, -30%, -20%, -10%, +10%, +20%, and +30% sampling clock skews are
considered, respectively. Similarly, the training result of Channel 3 is applied to these
situations, directly. The comparisons of the BER performance for the LMS DFE and the
MLP/BP-based DFE in different channels with different clock skews are shown in Fig.
3-6, Fig. 3-7 and Fig. 3-8, respectively.

The advantage of the proposed approach can be represented in Fig. 3-9. In view of

different channel response variances without sampling clock skew at SNR=20dB, the
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BER performance of the LMS DFE and the BPN DFE is shown in Fig. 3-9 (a).
Considering different clock skews in different channels at SNR=20dB, the comparisons of
the BER performance for the LMS DFE and the BPN DFE are shown in Fig. 3-9 (b) to
Fig. 3-9(f).

From these simulation results, the proposed approach reports better BER
performance under +/- 20% channel response variances and +/- 30% sampling clock
skews. With Fs4,/F=0.08 at BER=107, the LMS DFE endure about +5% / -8% sampling
clock skews and the proposed approach can tolerate over +/- 15%. With F34,/F=0.10, the
LMS DFE endure about +13% / -20% and the proposed approach tolerate over +/- 20%.
With Fs4,/F=0.12, the LMS DFE endure about +15% / -25% and the proposed approach
tolerate over +20 % / -25%. As the variances increase, the proposed approach achieves

more improvement over the LMS DFEs.

Channel Response Variance Tolerance

...... SR g F,.IF=0.08 LMS DFE
- - - - F_/F=0.08 BPN DFE
@ F g F=0.10 LMS DFE
- F,/F=0.10 BPN DFE
vt FyyglF=0.12 LMS DFE

—a Fj,/F=0.12 BPN DFE

10

BER, (Test Symbol = 1e6)

15 20 25
SNR (dB), (Training SNR = 20dB)

Fig. 3-5: BER performance for different types of equalizers in different channels.
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Clock Skew Tolerance
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Fig. 3-6: BER performance for different types of equalizers
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Clock Skew Tolerance
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3-1-3-2 Modified Configuration

Because the input patterns relate with the training quality and the overall
performance, we modify the input pattern configuration that contains more variance by
using Channel 1, Channel 3, and Channel 5 with and without +/- 10 percent sampling
clock skews to generate the training patterns. By this way, the MLP/BP neural network
can provide better fault tolerant capability. The simulation results are shown in Fig. 3-10.
From Fig. 3-9 and Fig. 3-10, the modified input pattern configuration can improve the

overall performance.
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Fig. 3-10: BER performance for different channel conditions
with modified input pattern configuration at SNR=20dB.
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3-1-3-3 Fixed-Point Simulations

In this subsection, the fixed-point simulations and its enhancement of the
MLP/BP-based DFE are presented. In general, higher ADC resolution leads to better
performance and higher cost. It is a trade-off problem. We consider that added internal
resolution to increase the performance under the same ADC resolution. By this way, we
can use a lower resolution ADC to replace a higher resolution one and obtain a similar
performance.

In the fixed-point simulations, we use a hard limiter to replace the log-sigmoid
function for low cost consideration. The performance of the MLP/BP neural network
should be decreased. The training results of the modified configuration are applied to the
fixed-point simulations.

The BER performance for. different#ADC resolution at SNR=15, SNR=18, and
SNR=20 are shown in Fig. 3-11."A BER performance comparison with different ADC
resolution is shown in Fig. 3-12-The-BER"performance for different ADC resolution and
different internal resolution at SNR=20rare shown in Fig. 3-13.

The BER performance for the LMS DFE and the MLP/BP-based DFE in different
channels is shown in Fig. 3-14. The fixed-point simulation comparison for the
MLP/BP-based DFE in Channel 3 with different clock skews is shown in Fig. 3-15. The
BER performance for different channel conditions with modified input pattern
configuration under different resolution at SNR=20dB is shown in Fig. 3-16.

From Fig. 3-11, the acceptable ADC resolution is five or six bits. From Fig. 3-13, the
most suitable combination is five bits ADC with ten bits internal resolution. This internal
resolution enhancement technique can provide better performance under the same ADC
resolution. In the fixed-point simulations, the performance of the proposed equalizer is

better than the LMS DFE.
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MLP/BP-based DFE (Ch3, CS=0, SNR=20)
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3-1-3 Summary

The simulation results show that the proposed approach reports better BER
performance under +/- 20% channel response variances with +/- 30% sampling clock
skews in the band-limited channels that the data rate is about ten times of the channel
bandwidth. With different channel responses at BER=10%, the comparison of sampling
clock skew tolerance between the LMS DFEs and the MLP/BP-based DFEs is shown in
Tab. 3-2. Because the proposed approach can tolerate more clock skews and large channel
response variances, the clock tree design and data interconnection planning can be
simplified. For low cost considerations, we can use a preset equalizer to replace an
adaptive one.

In the fixed-point simulations, the proposed equalizer is realizable and outperforms
the LMS DFE. Further, the internal srresolution’.enhancement technique makes the
proposed scheme with a better compromiSe between cost and performance. By the
fixed-point simulations, the most suitable-combination is five bits ADC with ten bits
internal wordlength.

However, the performance of the traditional MLP/BP-based DFEs is not good
enough for the severe ISI channels with nonlinear distortions. The frequency responses of
severe ISl channels contain spectral nulls and nonlinear distortions lead to worse
situations. For such channels, we propose the generalized MLP/BP-based DFEs for better

performance and show the details in next section.
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Table 3-2: The comparison of sampling clock skew tolerance.

ID Fap/F LMS DFEs MLP/BP-based DFEs
1 0.08 +5% / -8% +11% / -12%
2 0.09 +11% / -18% +17% / -18%
3 0.10 +13% / -20% +20% / -20%
4 0.11 +14% [ -22% +20% / -23%
5 0.12 +15% / -25% +20% / -25%

Simulation Conditions for MLP/BP-based DFEs:
Input Neural Number = 16 (Forward part: 11, and Feedback part: 5),
Hidden Neural Number = 32 (Hx=2),
Output Neural Number =1,
Training Set = 10* symbols,
Evaluation Set = 10° symbols,
Test Set = 10° symbols,
Training Epoch = 107,
Learning Rate = 0.5/ 0;125 (Two Phase Learning, MSE Bound = 10°®),
Re-training Times = 10" Independent Runs.

3-2 GMLP/BP-bpased DFEs for Severe ISI Channels

Based on the MLP/BP neural network, we suggest a general model that uses a
multivariate power series as the summation function of the MLP/BP neural networks. For
more effective data transmissions, this new neural-based channel equalizer is proposed to
compensate for severe I1SI and nonlinear distortions in wireline applications. As compared
with LMS DFE and the traditional MLP/BP-based DFE under the severe ISI channel,
simulation results show that the GMLP/BP-based DFE can improve about 2dB and 1dB

without nonlinearity at BER=10" and improve about 4dB and 1dB with 30% signal
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truncation at BER=10",

This section is organized as follows. The severe ISI channels with nonlinearity are
presented in subsection 1. Subsection 2 shows the proposed GMLP/BP-based DFEs.
Afterward, the simulation results show in subsection 3. Finally, we make a summary in

subsection 4.

3-2-1 Severe ISI Channels and Nonlinear Distortions

In wireline band-limited channels, the traditional MLP/BP-based DFEs provide
better performance, tolerate sampling clock skew, and permit channel response variance.
However, the traditional MLP/BP-based DFEs are not good enough for the severe ISI
channels with nonlinear distortions, «ln thiswork, we consider the possible situation in
wireline applications, for example ATA-like interface, USB-like interface, Ethernet, etc.
Such applications use pulse amplitude modulation' schemes that may suffer severe ISI
channels with nonlinearity. Therefore, we simulate the practical wireline environments.

The description of the equivalent channel model for wireline digital transmission
systems is shown in Fig. 3-17. In this model, a finite impulse response (FIR) filter is used
to model the ISI channel response with the AWGN as the background noise. When a
nonlinear distortion is introduced, a piecewise linear approximation or a \olterra series
will be utilized to represent the nonlinearity.

The severe ISI channel response with AWGN can be written as follows:

HEz)=fo+ f-z + f,z2 4.+ f, 2", (3-1)
Vi = Zfl "Xl (3-2)
V. =Yy, +n, (3-3)

where H(z) is the transfer function of the ISI channel; L is the length of the channel
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response; x; IS the input sequence; yx is the channel output which is warped by ISI only; n;
Is the AWGN; yj is the received signal which is distorted by both ISl and AWGN.

The mathematical describe of the severe ISl channels are same to that of the
band-limited channels. Moreover, a piecewise linear approximation is used to represent
the nonlinear distortion. In a receiver, the output saturation characteristics of non-ideal

amplifiers due to the AGC loss, can be expressed by:

+V, Lif ym)>+V,
y(n)y=s-v, ,ifym)<-v,, (3-4)
y(n) ,otherwise

where V' and V7, represent the saturation values and are considered to be equal because of
the symmetrical characteristics of most real amplifiers.

In practical communication circuits,'the accuracy of AGC relates to the problem of
nonlinearity. If the AGC is perfect, the nonlinear distortion due to non-ideal amplifiers
will not occur. Under this ideal condition; the circuits work at the linear region of the
characteristic curve of practical amplifiers and the amplifiers can be regarded as ideal
ones. However, in practical situations, the AGC is not perfect. When the AGC loss
presents, the gain of amplifiers becomes too large, and the output signal is truncated. In
this work, we use the hard-limiter to model the output characteristic of real amplifiers.
This corresponds to the worst situation of practical communication circuits.

In this section, several different ISI channels, with or without deep nulls of frequency
response, are used to verify the proposed approaches. These channels are practical in
many wireline communication systems, whose transfer functions of ISI channels with
normalized power are shown in Table 3-3. Their frequency responses are illustrated in Fig.
3-18. The transmitted signal is expected to be deteriorated substantially by the I1SI channel,
the AWGN, and the nonlinearity. The comparison of the transmitted data and the received

waveform is shown in Fig. 19.
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Fig. 3-17: Equivalent model for the severe 1SI channels.

Table 3-3: Transfer functions of different wireline severe I1SI channels.

Channel ]
ID Transfer Function

| Hi(z) = 0.4575 + 0.7625z" + 0.457522
(0.6, 1.0, 0.6)

. H,(z) = 0.408 + 0.816z + 0.408z
(0.5, 1.0, 0.5)

" Ha(z) = 0.3482 + 0.8704z™" + 0.348222
(0.4, 1.0, 0.4)

" Ha(z) = 0.227 + 0.460z* + 0.688z + 0.460z° + 0.2272™*
(0.33,0.67, 1.0, 0.67, 0.33)

v Hs(z) = 0.108 + 0.215 z* + 0.430 z2 + 0.717 z° + 0.430 z* + 0.215 z”° + 0.108z°
(0.15,0.3, 0.6, 1.0, 0.6, 0.3, 0.15)

Vi He(z) = 0.147 + 0.295 z* + 0.590 z2 + 0.295 z® + 0.590 z* + 0.295 z° + 0.1472°
(0.25,0.5, 1.0, 0.5, 1.0, 0.5, 0.25)

VIl H:(z) =0.226 + 0.516 z* + 0.645 z*+ 0.516 2
(0.35, 0.8, 1.0, 0.8)
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Fig. 3-18: Frequency responses of different severe ISI channels.
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3-2-2 GMLP/BP-based DFEs

The block diagram of the generalized MLP/BP-based DFEs is shown in Fig. 3-20.
The inputs of the generalized MLP/BP-based DFE consist of feed-forward signals, which
come from the input symbols by a tapped-delay-line register, and feedback signals, which
come from previous decisions by another tapped-delay-line register. Because the order of
the neuron of the generalized MLP/BP neural networks is more than one, it is necessary to
generate the power terms for the inputs in each layer.

We evaluate different symbol numbers in the forward part and the feedback part of
the equalization schemes and select the most suitable arrangement. In this work, all
equalization schemes have 5 symbols in the forward part and the feedback part,
respectively. Both the MLP/BP-based DFEs and:-the GMLP/BP-based DFEs use the single
hidden layer MLP architecture. The number, of neurons in the input layer is equal to 10.
For different MLP neural network configurations, the number of neurons in the hidden
layer is 0.5, 1, 2, or 4 times of that in the input layer, and denoted by “Hx=0.5", “Hx=1",
“Hx=2", and “Hx=4", respectively. Since all the proposed equalization schemes have a
single output, the number of neurons in the output layer is equal to 1. The summation
function order of the generalized MLP/BP-based DFEs is restricted to 1-6 that is denoted
by “Order 1” to “Order 6”. Furthermore, total 24 different configurations need to be
evaluated.

For practical issues, the summation function order should be minimized. First, the
order of the approximation function needs not to be larger than that of the real separating
boundary of pattern space. The critical order is regarded as the point where the system
performance has only slight improvement when the summation function order increases
further as shown in simulation results. Second, a high order approximation leads to a
complex and impractical architecture for current very large scale integration (VLSI)
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technology. However, in light of the rapid progress of VLSI technology, more complex

approaches could potentially be introduced for better performance with acceptable cost.
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Fig. 3-20: Generalized MLP/BP-based DFEs.
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3-2-3 Simulation Results

The performance of the generalized MLP/BP-based DFEs is evaluated through the
simulations for the (2-PAM sequences) NRZ signal recovery in a severe ISI channel
(Channel 1). The training stability for different configurations of the traditional and the
generalized MLP/BP neural networks is analyzed by the standard deviation (Std) of the
mean square errors (MSE) of the training and the evaluation sets in numerous independent
simulations with different random initiations. In addition, different levels of the nonlinear
distortions in the channel that model the circuit saturation characteristics have been
considered. These include the 0%, 10%, 20%, and 30% truncations of the output swing,
denoted by “Sx=1.0", “Sx=0.9”, “Sx=0.8", and “Sx=0.7", respectively. Furthermore, the
proposed approach is applied to compensate the distorted NRZ signals in the several
different 1SI channels (Channels 2, 3p4;:.5; 6.7and 7) and results in a significant
performance improvement.

In a training procedure, the“length-of the'training set is equal to 10* symbols and the
total training epochs are 10°. The two-phase learning is used with the learning rate of 0.5
when the mean square error of the training set is larger than 10, and the learning rate of
0.1, otherwise. When the training epochs exceed ninety percent of total epochs, the best
parameters will be recorded to achieve the lowest mean square error of the training set in
the last ten percent of training epochs. Hence the steady-state training results can be
recognized. In fact, the simulations indicate no unstable problems as all training processes
are converged.

Because different initial conditions lead to different effects, the non-training
evaluation set that has 10° symbols is used to examine the training quality of numerous
independent simulation outcomes. After numerous independent training and evaluation

runs, those yielding better outcomes will be chosen to perform a long trial with the test set,
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and then the best one will be the final test result. The length of the test set is 10” symbols,
and the evaluation set is a subset of it.

At first, a severe ISI channel (Channel 1) described by the transfer function,
H:=0.4575 + 0.7625z* + 0.4575z% is used to estimate the system performance of
different equalization schemes, where the training noise and the evaluation noise are
assumed to be SNR=15dB, and SNR of the test signal is between 10dB and 20dB.

Considering the distortions due to ISI and AWGN only, the training stability of
different configurations is estimated by the standard deviation of MSEs of both the
training and the evaluation sets. For each configuration, the results are analyzed according
to 50 independent simulation outcomes.

Fig. 3-21 and Fig. 3-22 show the minimum MSE and the standard deviation of MSEs
of the training and the evaluation sets for different:hidden neuron multipliers and different
summation function orders at SNR=15dB. Note that the increase of the neuron numbers in
the hidden layer can decrease both the training-error.and the standard deviation of MSEs
of the training set which can also be‘improved Ry increasing the summation function order.
Further improvements can be achieved by increasing both the neuron numbers in the
hidden layer and the summation function order. However, the reciprocal advance for the
evaluation set is difficult to obtain. An increase in the neuron numbers in the hidden layer
can also lead to a decrease in both the training error and the standard deviation of MSEs
of the evaluation set. When the summation function order is equal to 2 or 3, the evaluation
error can be reduced efficiently. Beyond the order of 3 very little improvement can be
observed. Therefore, the critical order can be defined as the order where the system has
little enhancement with higher orders.

Although larger neuron number in the hidden layer increases the complexity, both

the training error and the standard deviation of MSEs can be improved. In this work, we
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select a larger scale MLP/BP neural network for better training stability and higher
performance. However, in practical applications, a smaller size can be selected while
considering the trade-off between performance and complexity.

In addition, there are no obvious improvements for the standard deviation of MSEs
of the evaluation set with a larger summation function order. Since the training results
may be located on a local minimum that leads to a limited performance, in most
neural-based applications many independent runs are regularly carried out in search of the
best outcomes. This demonstrates the reason for using non-training data to evaluate the
training quality.

Fig. 3-23 illustrates the BERs of both the evaluation set and the test set for different
hidden neuron multipliers and different summation function orders at SNR=15dB. The
analogous trend in Fig. 3-23 that confirms our simulation assumption implies the
estimation of training results with the evaluation set is feasible.

The BER performance for-different-levels-of the nonlinearity with different hidden
neuron multipliers at SNR=15dB is'shown.in‘Fig. 3-24. The critical order of the system
with the nonlinearity is higher than the one without the nonlinearity. For “Sx=1.0" and
“Sx=0.9" with “Hx=4", the critical order is 3, while for “Sx=0.8 and “Sx=0.7" with
“Hx=4", the critical order increases to 4. This appearance is reasonable and confirms our
expectation.

Based on the aforementioned results, the summation function order of the
generalized MLP/BP-based DFEs is set to 3, and the hidden neuron multiplier is set to 4.
A comparison with the LMS DFEs, the ideal VE, the traditional MLP/BP-based DFEs and
the generalized MLP/BP-based DFEs is shown in Fig. 3-25. With channel 1 and Sx=1.0,
the proposed approach at BER=10" improves 0.8dB over the traditional MLP/BP-based

DFE and 1.9dB over the LMS DFE. The proposed approach performs better than LMS
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DFE and the traditional MLP/BP-based DFE in the severe ISl channel without the
nonlinearity, but degrades 1.7dB as compared to the ideal VE. Nevertheless, at Sx=0.7
(30% truncations) with the BER is 107, the proposed scheme improves the traditional
MLP/BP-based DFE by 0.8dB, the ideal VE by 2.2dB, and the LMS DFE by 4.4dB. As
the distortions increase in the received signal, the proposed approaches achieve more
improvement over the others.

Subsequently, several different ISI channels are described by transfer functions,
which are Ha(z) = 0.408 + 0.816z + 0.408z7%, Hs(z) = 0.3482 + 0.8704z + 0.3482z7,
Ha(z) = 0.227 + 0.460z" + 0.688z% + 0.460z° + 0.227z*, Hs(z) = 0.108 + 0.215 z* +
0.430z2+0.717 2% + 0.430 z* + 0.215 z° + 0.108z°°, He(z) = 0.147 + 0.295 z* + 0.590
+0.295 2% + 0.590 z* + 0.295 2> + 0.147z°, and H(z) =0.226 + 0.516 z™* + 0.645 z%+
0.516 z°, respectively. The time.domain responses of these channels are symmetric,
except that of channel 7 is asymmetric. The lengths of channel response in channels 1, 2
and 3 are the same, but the influences-of ISl-are different — channel 1 is the worst case,
channel 2 is a better one and channel 3-is.with the least interference. Moreover, channel 4,
5, 6, and 7 with longer ISl and lower signal-to-interference ratio results in a worse signal
quality compared to others. Specially, the channel response of channel 7 is not symmetric.
These channels will be further used to evaluate the system performance of the
equalization schemes.

The simulation results based on channels 2 and 3, where the simulation conditions
are identical to those of channel 1, are shown in Fig. 3-26 and Fig. 3-27, respectively.
Note that the proposed approaches result in a better improvement over the LMS DFE and
the traditional MLP/BP-based DFE in the severer ISI channel. In these three channels
without nonlinearity, the ideal VE appear to outperform the traditional MLP/BP-based

DFEs and the generalized MLP/BP-based DFEs. However, the accuracy of the CIR
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estimator dominates the performance particularly, and thus the improvement of VE may
be lower in real cases. Furthermore, the nonlinear distortions of the received signal will
compromise the VE performance significantly. In the severer I1SI channel with more
nonlinearity, the traditional MLP/BP-based DFEs and the generalized MLP/BP-based
DFEs outperform VE. The BER vs. SNR performance comparison with different
equalizers for channels 1, 2, and 3 without truncations at BER=10" is illustrated in Tab.
3-4. That with 30% truncations at BER=10" is presented in Tab. 3-5.

Fig. 3-28 shows the simulation results with channel 4, where the training noise and
the evaluation noise are assumed to be SNR=20dB and the SNR of the test signal is
between 10dB and 25dB. Fig. 3-29, Fig. 3-30, and Fig. 3-31 show the simulation results
with channel 5, 6, and 7, where the training noise and the evaluation noise are assumed to
be SNR=15dB and the SNR of the test signal is between 10dB and 20dB. For these
channels, the ideal VE is still the best method-without nonlinear distortion in the received
signal. Similarly, the performance of.the-MS-DFE and the ideal VE is limited due to
large truncations. In these severe /ISl channels, the MLP/BP-based DFEs and the
GMLP/BP-based DFEs provide better robustness when large truncations present.

By above simulation results, the proposed GMLP/BP-based DFEs can yield a
substantial improvement over the traditional MLP/BP-based DFE that performs better
than the LMS DFE. In such applications, the proposed schemes can provide more
improvement when larger truncation occurred. The proposed schemes present better

capability of classifying the sampling patterns, and tolerate distortions.
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Fig. 3-21: Minimum MSE and standard deviation of MSEs of the training set in Channel
1 at SNR=15dB: (a) Minimum MSE for different hidden neuron multipliers (Hx) and
different summation function orders (Order), (b) Minimum MSE for different orders, (c)
Minimum MSE for different multipliers, (d) Standard deviation of MSEs for different
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Fig. 3-22: Minimum MSE and standard deviation of MSEs of the evaluation set in
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Fig. 3-24: BER performance for different levels of the nonlinearity (Sx) with different
hidden neuron multipliers (Hx) in Channel 1 at SNR=15dB.
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Fig. 3-25: Channel 1 test results: (a) BER performance for different levels of the
nonlinearity (Sx) at SNR=15dB, (b) BER performance for different summation function
orders at SNR=15dB, (c) BER performance for different types of equalizers under
training at SNR=15dB.
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Fig. 3-26: Channel 2 test results: (a) BER performance for different levels of the
nonlinearity (Sx) at SNR=15dB, (b) BER performance for different summation function
orders at SNR=15dB, (c) BER performance for different types of equalizers under
training at SNR=15dB.
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Fig. 3-27: Channel 3 test results: (a) BER performance for different levels of the
nonlinearity (Sx) at SNR=15dB, (b) BER performance for different summation function
orders at SNR=15dB, (c) BER performance for different types of equalizers under

training at SNR=15dB.
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Fig. 3-28: Channel 4 test results: (a) BER performance for different levels of the
nonlinearity (Sx) at SNR=18dB, (b) BER performance for different summation function
orders at SNR=18dB, (c) BER performance for different types of equalizers under

training at SNR=20dB.
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Fig. 3-29: Channel 5 test results: (a) BER performance for different levels of the
nonlinearity (Sx) at SNR=15dB, (b) BER performance for different summation function
orders at SNR=15dB, (c) BER performance for different types of equalizers under

training at SNR=15dB.
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Fig. 3-30: Channel 6 test results: (a) BER performance for different levels of the
nonlinearity (Sx) at SNR=15dB, (b) BER performance for different summation function
orders at SNR=15dB, (c) BER performance for different types of equalizers under

training at SNR=15dB.
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Fig. 3-31: Channel 7 test results: (a) BER performance for different levels of the
nonlinearity (Sx) at SNR=15dB, (b) BER performance for different summation function
orders at SNR=15dB, (c) BER performance for different types of equalizers under
training at SNR=15dB.

Table 3-4: The BER vs. SNR performance comparison with different equalizers
for Channel 1, 2, and 3 without truncations at BER=10",

Channel MLP/BP-based | GMLP/BP-based
ip | S | [ldealVE | LMSDFEs DFEs DFEs (Order=3)

1 | 10| 14048 17.6 dB 16.5 dB 15.7 dB

2 | 10| 1384dB 16.3 dB 159 dB 15.7 dB

3 | 10| 129dB 14.7 dB 14.7 dB 14.5 dB

Simulation Conditions for Neural-based Schemes:

Input Neural Number = 10 (Forward part: 5, and Feedback part: 5),
Hidden Neural Number = 40 (Hx=4),
Output Neural Number = 1,
Training Set = 10* symbols,
Evaluation Set = 10° symbols,
Test Set = 107 symbols,
Training Epoch = 10°,

Learning Rate = 0.5/ 0.1 (Two Phase Learning, MSE Bound = 10°®),
Re-training Times = 50 Independent Runs.
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Table 3-5: The BER vs. SNR performance comparison with different equalizers
for Channel 1, 2, and 3 with 30% truncations at BER=10".

Channel MLP/BP-based | GMLP/BP-based
ID Sx \deal VE LMS DFEs DFEs DFEs (Order=3)

1 0.7 17.0dB 19.2 dB 15.6 dB 14.8 dB

2 0.7 15.0dB 17.9dB 14.9 dB 14.6 dB

3 0.7 12.5dB 14.6 dB 13.6 dB 13.3dB

Simulation Conditions for Neural-based Schemes:
Input Neural Number = 10 (Forward part: 5, and Feedback part: 5),

Hidden Neural Number = 40 (Hx=4),

Output Neural Number = 1,
Training Set = 10* symbols,
Evaluation Set = 10° symbols,

Test Set = 107 symbols,
Training Epoch = 10°,

Learning Rate = 0.5/ 0.1 (Two Phase' Leafning, MSE Bound = 107%),
Re-training Times = 50 Independent Runs.

3-2-4 Summary

With multivariate power series as the summation function, the generalized MLP/BP

neural network based decision feedback equalizer has been developed to compensate the

distorted NRZ signal for severe ISI channels in wireline applications. In addition, the

proposed approaches present continuous nonlinear pattern space mapping potential,

leading to a better space mapping capability than the traditional MLP/BP neural networks

in nonlinear applications. The simulation results show that the proposed equalizer can

provide a significant improvement over the other schemes such as the LMS DFEs, the

ideal VE, and the traditional MLP/BP-based DFEs when the received signal contains

more distortions caused by I1SI, AWGN and the nonlinearity.
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CHAPTER 4
MIMO GMLP/BP-based DFEs

for Wireline Applications

Interconnect paths of parallel'data I/O would cause the co-channel interference. The
transmitted signals are tainted: by ~the .intersymbol interference that caused by the
band-limited channel, the co-channel interference that caused by crosstalk between
different channels, and background white noise. For recover the distorted data as well as
suppress I1SI, CCl and AWGN, a multi-input multi-output (MIMO) channel equalizer is
essential. In wireline band-limited parallel channels, the MIMO MLP/BP-based DFEs and
the MIMO GMLP/BP-based DFEs can suppress ISI, CCl and AWGN, simultaneously. By
the simulations, the MIMO GMLP/BP-based DFEs can yield a substantial improvement
over the MIMO MLP/BP-based DFEs that perform better than a set of the LMS DFEs.

This chapter is organized as follows. The MIMO MLP/BP-based DFEs are presented

at the beginning. Afterward, the MIMO GMLP/BP-based DFEs are proposed.
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4-1 MIMO MLP/BP-based DFEs for Overcoming ISI and

CClI in Wireline Band-limited Parallel Channels

An MIMO MLP/BP neural network is realized as a waveform equalizer for distorted
nonreturn-to-zero data recovery in band-limited channels with co-channel interference.
From the simulation results, we note that the proposed design can recover severe distorted
NRZ data as well as suppress ISI and CCIl. As a result, the better performance as
compared to a set of LMS DFEs is achieved in the band-limited channels where the data
rate is ten times as much as the channel bandwidth. By fixed-point simulations, the
proposed scheme outperforms a set of LMS DFEs. Further, the internal resolution
enhancement technique provides a better compromise between cost and performance.

This section is organized as follows. The:MIMO system is presented in subsection 1
while subsection 2 shows the MIMO MLP/BR-based DFE. Afterward, the simulation

conditions and results show in subsection 3: Finally, we make a summary in subsection 4.

4-1-1 Multi-channel Environment

If the data rate of transmitted signals is higher than the channel capacity, the received
signal pulse is unable to complete its transition within a symbol interval. Moreover,
interconnect paths of parallel data 1/0 would cause the co-channel interference and taint
the received signals. The equivalent model for the band-limited channels with co-channel
interference is shown in Fig. 4-1 where FIR filters are used to model the ISI channel
responses and the CCI responses with the AWGN as the background noise.

The ISI channel responses and CCI responses with AWGN can be written as follows:
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HEz)=fy+ fi-z 7+ f, 27 +.+ f, -2, (4-1)

C(z2)=8.,0+8n z +8, z T+ g z M (4-2)
S 0

Vi = ZfI “Xpi (4-3)
i=0
r M

Ck =z Zgj 'x/:—j ' (4-4)

j=0
Vi =Vt T, (4-5)

where Hy(z) is the transfer function of the ISI channel responses; L is the length of the ISI
channel response; C,(z) is the transfer function of the CCI responses; M is the length of
the CCI response; x;° is the input sequence of ISI response; x;~ is the input sequence of
r-th CCI response; y, is the channel output which is warped by ISI only; ¢ is the sum of
co-channel interference; ny is the AWGN; y; is the, received signal which is distorted by
ISI, CCl and AWGN.

In this work, we assume that the-transfer-function of the band-limited channels is
Hy(z) = 0.4665 + 0.2489z + 0.1328z% +:0.07082" + 0.0378z and the transfer function of
the co-channel interference is C,(z) = 0.408 + 0.816z' + 0.408z7. Such channel
condition is practical in many wireline communication systems. The frequency responses
of the ISI and CCI are illustrated in Fig. 4-2. Moreover, we use uniform distribution
random values to build an N-by-N matrix 4. We also construct a symmetric matrix
(4+4") and normalize this matrix to make the sum of squares of all elements be N. The
weighting of co-channel interference between different channels is shown in Table 4-1
where N is equal to 8. Table 4-1 represents the co-channel interference of parallel 1/0
channels in space. For example, a cable includes several parallel 1/0 wires.

The received signals include the intersymbol interference that caused by the

band-limited channel, and the co-channel interference that caused by crosstalk between
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different channels. The transmitted signal is expected to be deteriorated substantially by

ISI, CCI, and AWGN.

RX
ISI Response {>—>
2-PAM Signal NRZ Signal
CCI Response
RX
ISI Response {>—>
2-PAM Signal NRZ Signal
| CCI Response |
RX
ISI Response {>—>
2-PAM Signal NRZ Signal

CCI Response

Fig. 4-1: Equivalent model for the band-limited channels with co-channel interference.
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Table 4-1: Weighting of co-channel interference between different channels in space.

1 0.2253 | 0.5402 | 0.3404 | 0.3298 | 0.4465 | 0.2831 | 0.4023 | 0.3974

2 0.5402 | 0.0944 | 0.4480 | 0.2017 | 0.4642 | 0.5114 | 0.3507 | 0.4017

0.3404 | 0.4480 | 0.0822 | 0.4380 | 0.4010 | 0.2750 | 0.3313 | 0.3290

3
4 0.3298 | 0.2017 | 0.4380 | 0.1737 | 0.2754 | 0.1670 | 0.2886 | 0.4169

5 0.4465 | 0.4642 | 0.4010 | 0.2754 | 0.1135 | 0.2877 | 0.3738 | 0.4772

6 0.2831 | 0.5114 | 0.2750 | 0.1670 | 0.2877 | 0.1451 | 0.0898 | 0.1779

7 0.4023 | 0.3507 | 0.3313 | 0.2886 | 0.3738 | 0.0898 | 0.3009 | 0.5230

8 0.3974 | 0.4017 | 0.3290 | 0.4169 | 0.4772 | 0.1779 | 0.5230 | 0.0227

Frequency Response

Magnitude (dB)

— ISl : :
~100 0.2 0.4 06 0.8 1
Normalized Frequency

Fig. 4-2: Frequency responses of the ISI and the CCI responses.
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4-1-2 MIMO MLP/BP-based DFE

The block diagram of the MIMO MLP/BP-based DFE is shown in Fig. 4-3. This
MIMO MLP/BP-based DFE is the single hidden layer MLP architecture. The inputs of the
MIMO MLP/BP-based DFE consist of feed-forward signals, which come from the input
symbols by tapped-delay-line registers, and feedback signals, which come from previous
decisions by another tapped-delay-line registers.

Based on the results of chapter 3, all equalization schemes in this work have 11
symbols per channel in the forward part and 5 symbols per channel in the feedback part.
We assume there are 8 parallel channels in this system. The number of neurons in the
input layer is equal to 128 (16-by-8). The MLP/BP-based DFEs uses the single hidden
layer MLP architecture. The number of neurons in the hidden layer is 16. Since all the
proposed equalization schemes have a single-output'per channel, the number of neurons in

the output layer is equal to 8 (1-by-8).

Ch-n Feegback

Input Input

_____________ Input Layer

______________ ] Hidden Layer

Output Layer

MIMO MLP/BP Neural Network

N A4

Threshold Threshold

v v
Ch-n Ch-1
Output Output

Fig. 4-3: MIMO MLP/BP-based DFEs.
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4-1-3 Simulation Results

The performance of the MIMO MLP/BP-based DFE is evaluated through the
simulations for the distorted NRZ signal recovery in the band-limited channels with
co-channel interference. The data rate is ten times of the channel bandwidth. In this
section, floating-point simulations of the equalization schemes are presented first
followed by the fixed-point simulations. Finally, the internal resolution enhancement

technique is discussed in detail.

4-1-3-1 Floating-Point Simulations

In this work, we apply the MIMO MLP/BP-base DFE to recover the distorted NRZ
data in the band-limited channels with CCl. It'isalso a wireline application so we select a
longer training set to achieve better. performance.

In the training procedure, the length-of-the training set is equal to 10 symbols and
the total training epochs are 102 The two-phaseé learning is used with the learning rate of
0.5 (2™) when the mean square error of the training set is larger than 10, and the learning
rate of 0.125 (27%), otherwise. When the training epochs exceed eighty percent of the total
epochs, the best parameters will be recorded to achieve the lowest mean square error of
the training set in the last twenty percent of the training epochs. Hence the steady-state
training results can be recognized. In fact, the simulations indicate no unstable problems
as all training processes are converged.

Because different initial conditions lead to different effects, the non-training
evaluation set that has 10° symbols is used to examine the training quality of numerous
independent simulation outcomes. After numerous independent training and evaluation

runs, those yielding better outcomes will be chosen to perform a long trial with the test set,

-69-



and then the best one will be the final test result. The length of the test set is 10’ symbols,
and the evaluation set is its subset. In this work, we execute ten independent runs and
select the best one as the final result.

In this work, we compare the performance of our proposed approach with that of a
set of LMS DFEs. We use a LMS DFE without cross inputs for a channel among these
parallel channels. The simulation conditions are listed in Tab. 4-2.

The band-limited channel described by the transfer function, Hy(z) =0.4665 +
0.2489z" + 0.1328z7 + 0.0708z” + 0.0378z, with the co-channel interference described
by the transfer function, C,(z) = 0.408 + 0.816z" + 0.408z7, is used to estimate the
system performance of the LMS DFE and the MLP/BP-based DFE. This ISI channel
response indicates that the data rate is ten times of the channel bandwidth. The training
noise and the evaluation noise are;assumed to be SNR=20dB, and SNR of the test signal
is between 10dB and 25dB. The signal to co-channel interference ratio (SIR) is equal to
10, 12.5, 15, 17.5, and 20, respectively.

Fig. 4-4 shows the comparisons of.the. BER ‘performance vs. SNR for the LMS DFE
and the MIMO MLP/BP-based DFE in the band-limited channels with different SIR. The
MIMO MLP/BP-based DFE outperform a set of LMS DFEs. Considering different SIR in
the band-limited channels at SNR = 15dB and 20dB, Fig. 4-5 also shows the comparisons
of the BER performance vs. SIR between a set of the LMS DFEs and the MIMO
MLP/BP-based DFE. At SNR = 20dB, the BER performance vs. SIR for the MIMO
MLP/BP-based DFE can improve about 2.4dB over that for a set of LMS DFEs. From Fig.
4-4 and Fig. 4-5, the MIMO MLP/BP-based DFE reports better performance under larger

intersymbol interference and larger co-channel interference.
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Table 4-2: Simulation conditions for MIMO MLP/BP-based DFE.

Simulation Conditions LMS DFEs MIMO MLP/BP-based DFE
Input Channel Number 1 8
Forward Length 11 symbols
Feedback Length 5 symbols
Input Number per Channel 16 symbols
Input Numbers 16 128 (16x8)
Hidden Neuron Number 16
Output Number 1 8
Training Set 10* symbols
Evaluation Set 10° symbols
Test Set 10° symbols
Training Epochs 100 cycles
Re-training Times 1 10
2273
Most Suitable Learning Rate 28 (Two phase learning,
MSE Bound=107%)

Training SNR 20 dB
Test SNR 10 to 25 dB (Step = 1 dB)
SIR 10, 12.5, 15, 17.5, and 20 dB

Equalizer Number
for 8 channels

8

1
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Fig. 4-4: BER vs. SNR for different types of equalizers in the band-limited channels
with co-channel interterencq at SIR=10, 15 and 20dB.
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Fig. 4-5: BER vs. SIR for different types of equalizers in the band-limited channels
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4-1-3-2 Fixed-Point Simulations

Based on the above floating-point simulation results, the fixed-point simulations of
the MIMO MLP/BP-based DFEs are presented. Also, we use a hard limiter to replace the
log-sigmoid function for low cost, leading to decreased system performance. The best
weighting parameters yielded by the floating-point simulations are applied to the
fixed-point simulations. In the fixed-point simulations, the test symbol number per
channel is equal to 10°.

The BER performance under SIR=15dB, 17.5dB, and 20dB for different ADC
resolution at SNR=15dB, 17.5dB, and 20dB are shown in Fig. 4-6. A comparison of BER
performance versus SNR for different ADC resolution is shown in Fig. 4-7.

From Fig. 4-6, the acceptable ADC resolution is ten bits. Unfortunately, suitable ten
bits ADCs are too expensive for:such high=speed‘applications. Based on the results of
chapter 3, we also increase the internal wordlength instead of ADC resolution to achieve
acceptable performance with a-reasonable-cost.  The detail of the internal resolution

enhancement technique is shown in next'subsection.
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. ADC Resolution Test (SIR = 15 dB)
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Fig. 4-6: BER performance under SIR=15dB, 17.5dB, and 20dB
for different ADC resolution at SNR=15dB, 17.5dB, and 20dB.
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o Fixed Point Simulations (SIR = 15 dB)
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4-1-3-3 Internal Resolution Enhancement

For sensible cost consideration, the internal resolution enhancement technique has
been applied to the proposed equalizer. We consider adding internal resolution to increase
the performance under low ADC resolution. Thus, we can use lower resolution ADCs to
obtain a similar performance.

The BER performance under SIR=15dB, 17.5dB, and 20dB for different ADC
resolution with different internal resolution at SNR=20dB is shown in Fig. 4-8. The
comparisons of BER performance versus SNR under SIR=15dB, 17.5dB, and 20dB with
different ADC resolutions and different internal resolutions are shown in Fig. 4-9.

From Fig. 4-8 and Fig. 4-9, we suggest the most suitable wordlength configuration is
five bits ADC with ten bits internal resolution. The internal resolution enhancement
technique can significantly improve BER=performance and achieves a better compromise
between cost and performance.

Finally, we summarize thesimulation-results that apply the suggested wordlength
configuration for the LMS DFEs and the:MIMO MLP/BP-based DFEs. A comparison of
BER performance versus SNR for the referred and the proposed equalizers at
SIR=15.0dB, 17.5dB, and 20.0dB is shown in Fig. 4-10. The proposed scheme
significantly outperforms the LMS DFE when large CCI presents. By this approach, we

can realize the MIMO MLP/BP-based DFEs with reasonable cost.
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¢ Internal Resolution Enhancement (SIR = 15 dB)
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Fig. 4-8: BER performance under SIR=15dB, 17.5dB, and 20dB for different ADC
resolution with internal resolution enhancement technique at SNR=20dB.
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i meahemal Resolution Enhancement (SIR = 1508)
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Fig. 4-9: BER performance vs. SNR with different ADC resolution and different internal
resolution at SIR=15dB, 17.5dB, and 20dB.

-78-



0o Internal Resolution Enhancement
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Fig. 4-10: BER performance vs. SNR for the LMS DFEs and MIMO MLP/BP-based
DFEs at SIR=15.0dB,.17.5dB, and 20.0dB.

4-1-4 Summary

The proposed scheme can overcome ISl while suppress CCI. According to the
simulation results, the MIMO MLP/BP-based DFE can recover severe distorted NRZ
signals and suppress CCI to achieve better BER performance than LMS DFEs in the
band-limited channels in which the data rate is ten times as much as the channel
bandwidth. Because the proposed equalizer is a multi-input multi-output architecture, we
can extend the input and output number for more complex system.

In the fixed-point simulations, the proposed equalizer also outperforms the LMS
DFE. Since suitable high-speed ADCs are expensive, the internal resolution enhancement
technique has been applied to the LMS DFEs and the MIMO MLP/BP-based DFEs to

provide acceptable performance with lower resolution ADCs. This method will results in
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a better compromise between cost and performance. Moreover, the proposed scheme
significantly outperforms the LMS DFE when large CCI presents.

However, the performance of the MIMO MLP/BP-based DFEs is not good enough
under small background noise with large co-channel interference conditions. For such
situations, the MIMO GMLP/BP-based DFEs can provide better performance. The detail

of the GMLP/BP-based DFEs is shown in next section.

4-2 MIMO GMLP/BP-based DFEs for Overcoming ISI and

CCI in Wireline Band-limited Parallel Channels

Referring to the MIMO MLP/BP-based DFEs and the GMLP/BP-based DFEs, the
MIMO GMLP/BP neural networks are realized.as- waveform equalizers for distorted
nonreturn-to-zero data recovery- in band-limited channels with co-channel interference.
From the simulation results, we note that the proposed design can recover severe distorted
NRZ data as well as suppress ISI, CCl and AWGN. As a result, the better performance as
compared to the LMS DFEs and the MIMO MLP/BP-based DFEs is achieved in the
wireline band-limited channels with co-channel interference. In this work, we assume that
the parallel interconnection paths lay on a plane within a chip or within a printed circuit
board (PCB).

This section is organized as follows. The equivalent channel model is presented in
subsection 1 while subsection 2 shows the proposed architecture. Afterward, the
simulation conditions and results show in subsection 3. Finally, we make a summary in

subsection 4.
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4-2-1 Multi-channel Environment within a Plane

In this work, the channel characteristics are same as those in the previous section
except the weighting of co-channel interference between different channels. We assume
that the parallel interconnection paths lay on a plane within a chip or within a PCB.
Because the effect of CCI should be proportional to the distance with an inverse ratio, it is
a worse case that uses sorted uniform distribution random values between 1 and 0 to
simulate the effects between different channels. By this way, we construct an N-by-N
symmetric matrix and normalize this matrix to make the sum of squares of all elements be

N. The weighting of co-channel interference between different channels is shown in Table

4-3 where N is equal to 8.

Table 4-3: Weighting of co-channel interference between different channels on a plane.

1 2 3 4 5 6 7 8
1 0 0.7070 | 0.5984 | 0.3760 | 0.3112 | 0.1641 | 0.1576 | 0.1338
2 0.7070 0 0.4131 | 0.3155 | 0.2690 | 0.1800 | 0.1398 | 0.0215
3 0.5984 | 0.4131 0 0.5883 | 0.4451 | 0.3705 | 0.2296 | 0.0353
4 0.3760 | 0.3155 | 0.5883 0 0.6650 | 0.4303 | 0.4189 | 0.0002
5 0.3112 | 0.2690 | 0.4451 | 0.6650 0 0.5375 | 0.2003 | 0.1160
6 0.1641 | 0.1800 | 0.3705 | 0.4303 | 0.5375 0 0.3726 | 0.1420
7 0.1576 | 0.1398 | 0.2296 | 0.4189 | 0.2003 | 0.3726 0 0.6319
8 0.1338 | 0.0215 | 0.0353 | 0.0002 | 0.1160 | 0.1420 | 0.6319 0
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4-2-2 MIMO GMLP/BP-based DFE

In this work, the 1/0O format is same as that in section 4-1. The neural network
architecture is similar to that in section 3-2. The block diagram of the MIMO generalized
MLP/BP-based DFE is shown in Fig. 4-11. This MIMO generalized MLP/BP-based DFE
is the single hidden layer MLP architecture. The inputs of the MIMO generalized
MLP/BP-based DFE consist of feed-forward signals, which come from the input symbols
by tapped-delay-line registers, and feedback signals, which come from previous decisions
by another tapped-delay-line registers. Because the order of the neuron of the generalized
MLP/BP neural networks is more than one, it is necessary to generate the power terms for
the inputs in each layer. Although the complexity of the MIMO GMLP/BP-based DFE is
higher than that of the MIMO MLP/BP-based DFE, the MIMO GMLP/BP-based DFE
provide better performance.

Same as the previous configurations, all equalization schemes in this work have 11
symbols per channel in the forward part and-5-symbols per channel in the feedback part.
We also assume there are 8 parallel channels'in this system. The number of neurons in the
input layer is equal to 128 (16-by-8). The MLP/BP-based DFEs uses the single hidden
layer MLP architecture. The number of neurons in the hidden layer is 16. Since all the
proposed equalization schemes have a single output per channel, the number of neurons in
the output layer is equal to 8 (1-by-8). The summation function order of the generalized
MLP/BP-based DFEs is restricted to 1, 2, and 3 that is denoted by “Order 1”, “Order 27,

and “Order 37, respectively.
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Fig. 4-11: The MIMO generalized MLP/BP-based DFEs.

4-2-3 Simulation Results

The performance of the MIMO generalized MLP/BP-based DFE is evaluated
through the simulations for the distorted NRZ signal recovery in the band-limited
channels with co-channel interference. The data rate is ten times of the channel bandwidth.
It is a wireline application so we can select a longer training set to achieve better
performance.

In the training procedure, the length of the training set is equal to 10* symbols and
the total training epochs are 102 The two-phase learning is used with the learning rate of
0.5 (2) when the mean square error of the training set is larger than 103, and the learning
rate of 0.125 (2°%), otherwise. When the training epochs exceed eighty percent of the total
epochs, the best parameters will be recorded to achieve the lowest mean square error of

the training set in the last twenty percent of the training epochs. Hence the steady-state

-83-



training results can be recognized. In fact, the simulations indicate no unstable problems
as all training processes are converged.

Because different initial conditions lead to different effects, the non-training
evaluation set that has 10° symbols is used to examine the training quality of numerous
independent simulation outcomes. After numerous independent training and evaluation
runs, those yielding better outcomes will be chosen to perform a long trial with the test set,
and then the best one will be the final test result. The length of the test set is 10" symbols,
and the evaluation set is its subset. In this work, we execute fifty independent runs and
select the best one as the final result.

Similarly, we compare the performance of our proposed approach with that of a set
of LMS DFEs. We use a LMS DFE without cross inputs for a channel among these
parallel channels. The simulation conditions are listed in Tab. 4-4.

The band-limited channel- described by the' transfer function, Hy(z) =0.4665 +
0.2489z" + 0.1328z7 + 0.0708z” + 0.0378z -with the co-channel interference described
by the transfer function, C,(z) = 0:408.+ 0.816z" + 0.408z7, is used to estimate the
system performance of the LMS DFEs, the MIMO MLP/BP-based DFE, and the MIMO
generalized MLP/BP-based DFE. This ISI channel response indicates that the data rate is
ten times of the channel bandwidth. The training noise and the evaluation noise are
assumed to be SNR=20dB, and SNR of the test signal is between 10dB and 25dB. The
signal to co-channel interference ratio (SIR) is equal to 10, 12.5, 15, 17.5, and 20,
respectively.

Fig. 4-12 shows the comparisons of the BER performance vs. SNR for the LMS
DFEs, the MIMO MLP/BP-based DFE, and the MIMO GMLP/BP-based DFE in the
band-limited channels with different SIR. In this figure, we find that the MIMO

GMLP/BP-based DFE outperform the MIMO MLP/BP-based DFE under small
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background noise with large co-channel interference. Considering different SIR in the
band-limited channels at SNR=15dB and 20dB, Fig. 4-13 also shows the comparisons of
the BER performance vs. SIR for the LMS DFEs, the MIMO MLP/BP-based DFE, and
the MIMO GMLP/BP-based DFE. As compared with LMS DFEs and the MIMO
MLP/BP-based DFE, the MIMO GMLP/BP-based DFE can improve the SIR performance
about 2.5dB and 0.3dB at BER=10". Moreover, we can find that the suitable summation
function order is equal to two when small interference presented, or three when large

distortion appeared.

BER Performance (Training Epoch = 100)

10

LMS DFE (SIR=10dB)
_| -+~ MIMO MLP/BP DFE (SIR=10dB) i
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Fig. 4-12: BER vs. SNR for different types of equalizers in the wireline band-limited
channels with co-channel interference at SIR=10, 15 and 20dB.
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Table 4-4: Simulation conditions for MIMO GMLP/BP-based DFE.

Simulation Conditions LMS DFEs MIMO G'\[/I)IEE/BP'baSEd
Input Channel Number 1 8 channels
Forward Length 11 symbols
Feedback Length 5 symbols
Input Number per Channel 16 symbols
Input Numbers 16 128 (16x8)
Hidden Neuron Number 16
Output Number 1 8
Summation Function Order 1,2,and 3
Training Set 10* symbols
Evaluation Set 10° symbols
Test Set 10° symbols
Training Epochs 100 cycles
Re-training Times 1 50
223
Most Suitable Learning Rate 28 (Two phase learning,
MSE Bound=10"%)

Training SNR 20 dB
Test SNR 10 to 25 dB (Step = 1 dB)
SIR 10, 12.5, 15, 17.5, and 20 dB

Equalizer Number
for 8 channels

8

1
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Fig. 4-13: BER vs. SIR for different types.of equalizers in the wireline band-limited
channels with co-channel interference at SNR= 15 and 20dB.

4-2-4 Summary

According to the simulation results, the MIMO GMLP/BP-based DFE can recover
severe distorted NRZ signals and suppress CCI to achieve better BER performance than
LMS DFEs and the MIMO MLP/BP-based DFE in wireline band-limited channels in
which the data rate is ten times as much as the channel bandwidth. Also the proposed
scheme is a multi-input multi-output architecture, we can extend the input and output
number for more complex system. Overall, the MIMO GMLP/BP-based DFE can yield a
substantial improvement over the MIMO MLP/BP-based DFE that performs better than

the LMS DFEs.
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CHAPTER 5
MLP/BP-based Soft DFEs with TCM

for Wireless Communications

For more efficient data transmissions, .a new MLP/BP-based channel equalizer is
proposed to compensate for multi-path fadingrin wireless applications. In this chapter, for
better system performance, we apply:the-soft output and the soft feedback structure as
well as the soft decision channel decoding. Moreover, to improve packet error rate (PER)
and bit error rate (BER), we search for the optimal scaling factor of the transfer function
in the output layer of the MLP/BP neural networks and add small random disturbances to
the training data. As compared with the conventional MLP/BP-based DFEs and the soft
output MLP/BP-based DFEs, the proposed MLP/BP-based soft DFEs under multi-path
fading channels can improve over 3dB ~ 0.6dB at PER=10" and over 3.3dB ~ 0.8dB at
BER=10",

The system diagram of wireless digital communication systems is shown in Fig. 5-1.
This chapter is organized as follows. The wireless channel environment is presented in

section 1. Section 2 makes a discussion for the error control coding while section 3 shows
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the architecture of the MLP/BP-based soft DFEs with bit-interleaved TCM. Afterward,

the simulation results show in section 4. Finally, we make a summary in section 5.

Transmitted P Encoder p»| Interleaver »  Modulator
Data
Demodulator |« Channel <
Equalizer »| Deinterleaver »  Decoder > Received
Data

Fig. 5-1: System Diagram.

5-1 Wireless Channel Environment

The description of the equivalent channel model for wireless digital transmission
systems is shown in Fig. 5-2. In this model, a finite impulse response (FIR) filter is used
to model the ISI channel response and the AWGN is used to model the background noise.
The equivalent FIR filters of the multi-path fading channels are time varying. In this work,
we assume the FIR filter coefficients constant within a packet interval. Nevertheless, in
the fast channel variation, we can select a smaller packet to avoid this problem.

The ISI channel response with AWGN can be written as follows:
Hz) =hy+h -z +hy-z2+..+h, 27", (5-1)

h =A4 -, (5-2)
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L
Vi = Zhi K (5-3)
i-0

V. =y, +n,, (5-4)
where H(z) is the transfer function of the ISI channel; #,, is the coefficient of the channel
response that is a complex value; L is the length of the channel response; 4,, is the
magnitude of 4,,; ¢,, is the phase of £,,; x; is the input sequence; yy is the channel output
which is warped by ISI only; n is the AWGN; yy is the received signal which is distorted
by both I1SI and AWGN.

In this work, we assume that the channel length is six, and the transmission
modulation is QPSK. In (5-2), we generate the magnitude by uniform distribution random
values between 0 to 1 and the phase by different uniform distribution random values from
0 to 27 . The filter responses are*normalized to unity. The channel responses of the

multi-path fading channels are- shown in Fig. 5-3-and their frequency responses are

illustrated in Fig. 5-4.

AWGN

n=(c+jd)

Tx . . Rx
| .| Multipath Fading f N
Channel A A
y=(A+jB)

\ 4

<>

x=(A+jB)

Fig. 5-2: The Equivalent Model for the Multi-path Fading Channels.
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Fig. 5-4: Frequency Responses of Multi-path Fading Channels.
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5-2 Error Control Coding

Error control coding is often applied in a communication system to enhance the error
performance. Among the well-known coding techniques, the convolutional code would be
the most popular one that provides the superior error correction capacity and has
reasonable decoding complexity. The Viterbi algorithm [7] is a maximum likelihood
decoding for convolutional codes. With the probabilistic soft inputs, the Viterbi decoder
can optimally decode the received codeword. In the present wireless system, the bit
interleaved 64 states convolutional codes is adopted while considering the system
complexity and the error performance.

The bit interleaving is included for the fading channel to achieve a decoding
performance close to that in the AWGN channel [8]. A larger convolutional code can
further provide better error resistance;=however;.the decoding complexity increases
exponentially as the constraint length increases, and thie decoder would be unacceptable in

real applications.

5-3 Architecture

In this section, the MLP/BP-based soft DFE with bit-interleaved trellis coded
modulation (TCM) is presented for the distorted QPSK signal recovery in multi-path
fading channels under different AWGN power. For better performance, we select the
unipolar sigmoid function with the scaling adjustment as the transfer function of the
MLP/BP neural networks and show as below.

S (net,;) = ;K , (5-5)
l+e v

where K is the scaling factor.
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As compared with the conventional hard output MLP/BP-based DFE, we apply the
soft decision channel decoding to the soft output MLP/BP-based equalization schemes for
better performance. The soft output features of the equalizer are quite suitable for the soft
decision channel decoding and work much better than the conventional hard output one.
Moreover, we apply not only the soft output but also the soft decision to the
MLP/BP-based DFE to further advance the decoding performance of the soft decision
channel decoder.

In this section, we first report the proposed MLP/BP-based soft DFE architecture.
Subsequently, the solution for the soft decision channel decoding and the interleaving is
presented — Combine this neural-based soft equalization scheme and bit-interleaved trellis

coded modulation to achieve better system performance in wireless applications.

5-3-1 The MLP/BP-pased Soft DFEs

We apply the soft output and-the soft decision feedback structure to MLP/BP-based
channel equalizers for the soft decision channel decoding and improve whole performance
on multi-path fading channels. The block diagram of the MLP/BP-based soft DFEs is
shown in Fig. 5-5. We use a single-hidden-layer MLP/BP neural network architecture,
where the log-sigmoid function is used as the transfer function of the neurons. There are
four tapped delay line registers for I-channel input, I-channel feedback, Q-channel input,
and Q-channel feedback, respectively. The MLP/BP neural network has two output
neurons that correspond to I-channel output and Q-channel output.

In order to increase the performance, we find the optimal scaling factor for the
transfer function in the output layer of the MLP/BP neural networks and add extra small
random disturbances to the training data. The scaling factor adjustment enlarges the
mapping range of the output of the MLP/BP-based soft DFEs and improves the soft
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decision channel coding. With the extra small random disturbances in the training data,
the training results are able to avoid the local minimum of the cost function, achieving
better training quality. The suitable scaling factor and the disturbance magnitudes are
selected by experiences and experiments.

In this work, we search the most suitable input configuration by assuming different
forward taps and feedback taps of the equalizers. As a result, all neural-based equalization
schemes have 17 symbols in the forward part and 8 symbols in the feedback part. Because
the signal includes real part and imaginary part, we separate the input symbols to
I-channel and Q-channel. Accordingly, the number of neurons in the input layer is equal
to 50 (25x2). All of the neural-based equalizers in this work use the single hidden layer
MLP architecture. The number of neurons in the hidden layer is equal to 25. Since all of
the equalization schemes produce the detection of'a QPSK symbol each time, the number
of neurons in the output layer is-equal to<2 (1x2), corresponding to the outputs of

I-channel and Q-channel.
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MLP/BP Neural Network Output Layer
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Output Output

Fig. 5-5: MLP/BP-based Soft DFEs for Wireless Applications.
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5-3-2 Soft Decision Channel Coding and Interleaving

Based on the soft outputs from the equalization, we use the soft inputs Viterbi
decoder to improve the decoding performance. As compared with the hard-decision
decoding algorithm, about 2dB-3dB improvement in SNR can be achieved [10]. The
survivor memory is also truncated to be five times the constraint length for negligible
truncation error.

Besides, the bit interleaving is integrated to increase the decoding performance. The
size of the bit interleaving relates to the channel response length, the frame size of
equalizers, and the decoding complexity, a trade-off between the performance and the cost.
We decide the bit interleaving size from the channel models as well as the experiments.

In this work, the coding rate of the TCM is equal to 1/3, and the size of the block
interleaver is equal to 1024 (32x32). Byicombining this neural-based soft equalization
scheme and bit-interleaved trellis* coded modulation, we can enhance whole system

performance in wireless communications.

5-4 Simulation Results

The overall performance of the MLP/BP-based soft DFEs with bit-interleaved TCM
is evaluated through the simulations for the distorted QPSK signal recovery in multi-path
fading channels under different AWGN power. In these simulations, we apply the
proposed architecture to different packet size and prove the proposed scheme with better
performance.

The length of the training symbols within a packet is equal to 128 symbols and the

total training epochs are 40. When the training epochs exceed fifty percent of total epochs,
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the best parameters will be recorded to achieve the lowest mean square error of the
training set. The length of transmitted data within a packet is 10°, 2x10% 4x10° and
8x10° bits, respectively. There are 10° packets tested in different configurations.

In this work, different learning rates, equal to 1, 0.5, 0.25, and 0.125, have been
evaluated for all of the equalization schemes. For the conventional MLP/BP-based DFE,
the soft output MLP/BP-based DFE, the MLP/BP-based soft DFE, and the
MLP/BP-based soft DFE with transfer function scaling factor adjustment, the most
suitable learning rate is equal to 0.5, 0.25, 0.25, and 0.5, respectively.

For the MLP/BP-based soft DFEs, different scaling factor of the transfer function in
the output layer of the MLP/BP neural networks, equal to 1, 0.5, 0.25, and 0.125, have
been evaluated. For this application, the most suitable scaling factor is 0.5. Moreover,
different magnitudes of extra small random disturbances have been added to the training
data to improve the training quality. From experiments, the most suitable magnitude is
about 10% of the training signal. Thus;rtheproposed MLP/BP-based soft DFEs has
included the suitable scaling factor ‘to the transfer function of the output neurons and
added the suitable magnitude of extra random disturbances to the training data.

In this work, the system configurations and simulation conditions are listed in Tab.
5-1. When the packet data length is equal to 10° bits, the PER performance for different
types of equalizers is shown in Fig. 5-6. As compared with the conventional
MLP/BP-based DFE and the soft output MLP/BP-based DFE, the proposed
MLP/BP-based soft DFE under multi-path fading channels with AWGN can improve over
3.0dB and 0.6dB at PER=10"". When the packet data length is set to 8x10° bits, the PER
performance for different types of equalizers is shown in Fig. 5-7. The proposed approach
improves 0.4dB over the soft output MLP/BP-based DFE and 3.4dB over the

conventional MLP/BP-based DFE at PER=10". Fig. 5-8 shows the PER performance for
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different types of equalizers with different packet data length at Eb/Ny = 7.5dB and
10.0dB. We can observe the large packet size results in poor performance. Since the
multi-path fading channels are time varying, we select a smaller packet size for faster
channel variant rate. Also, a smaller packet size is selected for large background noise.
For data communications, we focus on the PER performance, whereas the BER
performance is the major concern for audio or multi-media communications. When the
packet data length is equal to 10° bits, the BER performance for different types of
equalizers is shown in Fig. 5-9. As compared with the conventional MLP/BP-based DFE
and the soft output MLP/BP-based DFE, the proposed MLP/BP-based soft DFE under
multi-path fading channels with AWGN can improve over 3.6dB and 0.9dB at BER=10",
When the packet data length is 8x10° bits, the BER performance for different equalizer
types is shown in Fig. 5-10. As compared with the.conventional MLP/BP-based DFE and
the soft output MLP/BP-based DFE, the proposed MLP/BP-based soft DFE under
multi-path fading channels withZAWGN-cansimprove over 3.3dB and 0.8dB at BER=10"°.
The BER performance for different types:of equalizers with different packet data length at
Eb/No = 7.5dB and 10.0dB is shown in Fig. 5-11. The PER performance improvement at

PER=10" and the BER performance improvement at BER=10" are listed in Tab. 5-2.
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Table 5-1: System configurations and simulation conditions.

MLP/BP-based DFE

MLP/BP-based Soft DFE

Type Without With
Hard Output | Soft Output | Scaling factor| Scaling Factor
adjustment adjustment
Forward Length 17 symbols
Feedback Length 8 symbols
Input Tap Number 25 symbols
Input Neuron Numbers 50 (25%2)
Hidden Neuron Number 25
Output Neuron Number 2 (1x2)
Training Symbol Number 128 symbols
Training Epochs 40 cycles
Packet Data Length 1K, 2K, 4K, and 8K
Test Packet Number 1000 packets
Learning Rate 20 _ o3
Searching Range
Most Suitable 1 2 2 1
Learning Rate 2 2 2 2
Scaling Factor D
Searching Range
Most Suitable o

Scaling Factor

Test Eb/Ng

5dB — 13 dB (Step=0.5dB)
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Fig. 5-6: PER Performance for different types of equalizers
when packet data length is equal to 10°.
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Fig. 5-7: PER Performance for different types of equalizers
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Fig. 5-8: PER Performance for different types of equalizers with different
packet data length at Eb/No = 7.5dB and 10.0dB.
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Fig. 5-9: BER Performance for different types of equalizers
when packet data length is equal to 10°.
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BER Performance (Packet Data Size = 8000)
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Fig. 5-10: BER Performance for different types of equalizers
when packet data ‘Iength is equal to 8x10°.
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Table 5-2: The PER and BER performance improvement.

MLP/BP-based DFE MLP/BP-based Soft DFE
With
Scaling Factor
Type .. .
Original Adjustment
Hard Output | Soft Output Setting and Extra
Random
Disturbances
Packet Data Length Eb/No Improvement at PER=10""
1K >2.3dB >2.6dB >3.0dB
2K >25dB >2.7dB >3.0dB
4K >2.3dB >2.6 dB >2.8dB
8K >3.0dB >3.2dB >3.4dB
Packet Data Length Eb/Ng Improvement at BER=10"
1K >2.7dB >3.2dB > 3.6 dB
2K >2.7dB >3.1dB >3.4dB
4K >2.6dB >3.1dB >3.4dB
8K >25dB >3.0dB >3.3dB

5-5 Summary

With the soft output and the soft decision, the MLP/BP-based channel equalizers can
offer more information for the soft decision channel decoding. Moreover, the system
performance is further improved by searching the most suitable scaling factor for the
transfer function in the output neurons and adding the suitable magnitude of extra small
random disturbances to the training data. The proposed approach is applied to compensate
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for the distorted QPSK signals in multi-path fading channels with AWGN and results in a
significant performance improvement. In conclusion, the proposed MLP/BP-based soft

DFE with bit-interleaved TCM provides a potential solution for wireless communications.
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CHAPTER 6

Conclusion and Future Works

6-1 Conclusion

In this study, we propose -a new neural network model that applies a multivariate
power series as the summation function of the MLP/BP neural networks. Compared to the
conventional approach using a first.order-multivariate polynomial, the boundaries
separating the pattern space change from piecewise linear into piecewise nonlinear. In
addition, when deduced by the gradient steepest descent method, the corresponding
training algorithm is a gradient method; consequently, the convergence solutions exist.
Therefore, this new model is a generalized MLP/BP neural network (GMLP/BP) that is
more flexible than other piecewise linear approaches because of the nonlinear separating
pattern space. The traditional MLP/BP neural network is a special case of the proposed
generalized MLP/BP neural network.

As the channel equalization schemes can be thought of a mapping from the received
waveform to the transmitted data. The pattern recognition techniques have been used to

identify the severely distorting date. Having the capability of classifying the sampling
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pattern and fault tolerance, artificial neural networks are very suitable for the channel
equalizers. As a result, we apply the traditional and the generalized MLP/BP neural
networks to channel equalization designs. From the simulation results, the proposed
neural-based channel equalization schemes can outperform the conventional LEs and
LMS DFEs.

For wireline communications, we apply the MLP/BP-based channel equalization
schemes to different applications. In the wireline band-limited channels that the data rate
is about ten times as much as the channel bandwidth, the MLP/BP-based DFEs provide
better performance, tolerate sampling clock skew, and permit channel response variance.
However, the traditional MLP/BP-based DFEs are not good enough for the severe ISI
channels with nonlinear distortions. In such channels, the GMLP/BP-based DFEs can
outperform the traditional MLP/BP-based DFEs that do better than the LMS DFEs. In
wireline band-limited parallel channels, the MIMO MLP/BP-based DFEs and the MIMO
GMLP/BP-based DFEs can suppress ISE-CCl and AWGN, simultaneously. By the
computer simulations, the MIMO: GMLP/BP-based DFEs can vyield a substantial
improvement over the MIMO MLP/BP-based DFEs that perform better than a set of the
LMS DFEs.

For wireless communications, a modified approach, which is also based on the
MLP/BP neural network, is presented. We apply the soft output and the soft decision
feedback structure to the MLP/BP-based channel equalization scheme that concatenates
with the soft decision channel decoder to improve whole performance on multi-path
fading channels. Moreover, the performance of the MLP/BP-based soft DFE is also
increased with the optimal scaling factor searching of the transfer function in the output
layer of the MLP/BP neural networks and extra small random disturbances added to the

training data. By the simulations, the MLP/BP-based soft DFEs with bit-interleaved TCM
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outperform the MLP/BP-based DFEs with bit-interleaved TCM and the soft output

MLP/BP-based DFEs with bit-interleaved TCM in multi-path fading channels.

6-2 Future Works

In this thesis, we have proposed the generalized MLP/BP-based DFEs and applied to
wireline communications. Moreover, we also apply the MLP/BP-based soft DFEs with
bit-interleaving soft decision channel coding to wireless communications. For further
improvements, we are deducing a general form of MLP/BP neural networks in the
complex domain. It should be applied to wireless communications.

Now, we are tuning the trainipg:parameters of the GMLP/BP-based soft DFEs to
solve the overfitting problemfor wireless. communications. Moreover, the MIMO
MLP/BP-based soft DFEs and the MIMQ GMLP/BPbased soft DFEs will be developed
for wireless communications.

To realize the proposed neural-based equalization schemes for different applications,
several hardware designs are currently under investigation. The MLP/BP-based DFEs and
the GMLP/BP-based DFEs can be applied to wireline high-speed peripheral interface.
The MIMO MLP/BP-based DFEs and the MIMO GMLP/BP-based DFEs should be
applied to high-speed system bus. The MLP/BP-based soft DFEs with bit-interleaving
TCM are possible solutions in wireless communications. Although the architecture of the
proposed equalization schemes is more complex than that of the conventional methods,
we think that the rapid progress of VLSI technology will afford more complex approaches
for better performance. Also, we can use digital signal processors to realize the proposed
neural-based equalization schemes as soft-define radios (SDR). The implementations of
the proposed neural-based channel equalization schemes are our research activities in the
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future.

Our approaches show very good results for channel equalization applications.
Further research activities have been initiated to explore how to improve and implement
such techniques for wireline and wireless communications. Still, there are many open

problems for further research activities.
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