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摘 要 
在實際的通訊系統中需要以資料等化器來回復一個失真信號的原始波形，近來

許多以類神經網路為基礎的等化器設計被應用在嚴重失真的信號回復。在本文，我

們提出了一個新的類神經網路模式，使用一個多變數冪級數函數做為人工神經元的

集成函數，應用於多層認知器結構倒傳遞類神經網路，由於對應的訓練演算法是以

最陡坡降法推導，故收斂解存在。與使用一階多變數多項式當集成函數的傳統方法

相比較，這個新方法的樣本空間分割邊界，將由傳統的片段線性分割變成片段非線

性分割，傳統的多層認知器結構倒傳遞類神經網路可視為這個新方法的一個線性特

別解。因此，可說這個新的模式是一般化的多層認知器結構倒傳遞類神經網路，與

其他的片段線性分割的方法相比較，這個新方法因為具有片段非線性分割樣本空間

的能力，所以在應用上有更大的彈性。 

在有線通訊系統中，我們將以多層認知器結構倒傳遞類神經網路為基礎的通道

等化方法應用於不同的地方，在資料速率大於通道頻寬十倍左右的有線頻寬受限通

道上，與傳統上使用最小均方誤差演算法為基礎的決策回授等化器相比較，以多層

認知器結構倒傳遞類神經網路為基礎的決策回授等化器可提供比較好的效能、容忍

比較多的取樣時脈歪斜和允許比較大的通道嚮應變異。然而對於具有非線性失真的

嚴重碼際干擾通道來說，以多層認知器結構倒傳遞類神經網路為基礎的決策回授等

化器還有改善的空間，使用一般化的多層認知器結構倒傳遞類神經網路為基礎的決

策回授等化器可以提供更好的效能。在多條平行的有線頻寬受限通道上，我們採用

多輸入多輸出的以多層認知器結構倒傳遞類神經網路為基礎的決策回授等化器和多

輸入多輸出的以一般化多層認知器結構倒傳遞類神經網路為基礎的決策回授等化

器，同時抑制碼際干擾、串音干擾和背景雜訊。同樣的，多輸入多輸出的以一般化

多層認知器結構倒傳遞類神經網路為基礎的決策回授等化器優於多輸入多輸出的以

多層認知器結構倒傳遞類神經網路為基礎的決策回授等化器，而且多輸入多輸出的
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以多層認知器結構倒傳遞類神經網路為基礎的決策回授等化器又優於使用最小均方

誤差演算法為基礎的決策回授等化器。 

對於無線通訊系統，我們提出一個以多層認知器結構倒傳遞類神經網路為基礎

的改進方法。在多路徑平坦衰減通道中，我們應用軟性輸出和軟性決策回授的結構

於一個以多層認知器結構倒傳遞類神經網路為基礎的通道等化器，並於其後串接一

個軟性決策通道解碼器以改進整體的效能。此外，利用輸出層神經元的轉移函數尺

度因子的最佳化，以及在訓練型樣加入少量的隨機擾動，可以進一步的改善以多層

認知器結構倒傳遞類神經網路為基礎的軟性決策回授等化器的效能。由模擬結果，

在多路徑平坦衰減通道中，使用包含位元交錯的軟性決策通道解碼器時，以多層認

知器結構倒傳遞類神經網路為基礎的軟性決策回授等化器的效能優於以多層認知器

結構倒傳遞類神經網路為基礎的決策回授等化器和軟性輸出的以多層認知器結構倒

傳遞類神經網路為基礎的決策回授等化器。 
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Abstract 

In practical communication systems, it is necessary to apply data equalizers to 

recover the original waveform from the distorted one. Recently, various equalizer designs 

based on artificial neural networks have been studied to the severely distorting signal 

recoveries. In this study, we propose a new neural network model that applies a 

multivariate power series as the summation function of the MLP/BP neural networks. The 

corresponding training algorithm is deduced by the gradient steepest descent method; 

consequently, the convergence solutions exist. Compared to the conventional approach 

using a first order multivariate polynomial, the boundaries separating the pattern space 

change from piecewise linear into piecewise nonlinear. The traditional method is a special 

case of the proposed model. Therefore, this new model is a generalized MLP/BP neural 

network that is more flexible than other piecewise linear approaches because of the 

nonlinear separating pattern space. 

For wireline communications, we apply the MLP/BP-based channel equalization 

schemes to different applications. In wireline band-limited channels that the data rate is 

about ten times as much as the channel bandwidth, the MLP/BP-based DFEs provide 

better performance, tolerate more sampling clock skew, and permit larger channel 

response variance than LMS DFEs. However, the BER performance of the traditional 

MLP/BP-based DFEs is not good enough for the severe ISI channels with nonlinear 

distortions. In such channels, the generalized MLP/BP-based DFEs can outperform the 

 -iii-



traditional MLP/BP-based DFEs that do better than the LMS DFEs. In wireline 

band-limited parallel channels, the MIMO MLP/BP-based DFEs and the MIMO 

GMLP/BP-based DFEs can suppress ISI, CCI and AWGN, simultaneously. By the 

simulation results, the MIMO GMLP/BP-based DFE can yield a substantial improvement 

over the MIMO MLP/BP-based DFE that perform better than the LMS DFEs in such 

channels. 

For wireless communications, a modified approach, which is also based on the 

MLP/BP neural network, is presented. We apply the soft output and the soft decision 

feedback structure to the MLP/BP-based channel equalization scheme that concatenates 

with the soft decision channel decoder to improve whole performance on multi-path 

fading channels. Moreover, the performance of the MLP/BP-based soft DFE is also 

increased with the optimal scaling factor searching of the transfer function in the output 

layer of the MLP/BP neural networks and extra small random disturbances added to the 

training data. By the simulations, the MLP/BP-based soft DFEs with bit-interleaved TCM 

outperform the MLP/BP-based DFEs with bit-interleaved TCM and the soft output 

MLP/BP-based DFEs with bit-interleaved TCM in multi-path fading channels. 
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CHAPTER 1 

Introduction 

 

1-1 Thesis Motivation 

In a digital communication system, the source signal is transmitted over an 

intersymbol interference (ISI) channel, corrupted by noise, and then received as a 

distorted signal. In most cases, the additive white Gaussian noise (AWGN) can be used to 

model the background noise; however, the noise includes not only ISI and AWGN but the 

nonlinear distortion as well. If the channel response introduces both intersymbol 

interference and nonlinear distortions, transmitted signal will be corrupted nonlinearly, 

leading to worse performance. For example, the saturation of non-ideal amplifier and 

automatic gain control (AGC) loss in transceivers will produce nonlinear distortions that 

further degrade the performance of equalizers. Therefore, it is necessary to apply data 

equalizers to recover the original waveform from the distorted one in practical 

communication systems [1], [2]. A good equalization design can enhance the whole 

system performance with an acceptable cost. 

Conventionally, the NRZ signal recovery is based on either linear equalizers (LEs) 
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[1], [3], or decision feedback equalizers (DFEs) [1], [2], [3]. A linear equalizer can restore 

the original transmitted signal in a wireline band-limited channel, where the channel 

distortion is linear without spectral nulls in the channel frequency response. Nevertheless, 

as the channel frequency response has spectral nulls, the received noise will be enhanced 

in the process of compensating these nulls, resulting in degraded performance. For linear 

equalization scheme, such channels that lead to malfunctions of equalizers have been 

termed “severe” ISI channels [4]. 

The decision feedback equalizer employing previous decisions to remove the ISI on 

the current symbol has been extensively exploited to serve intersymbol interference 

rejection. The least mean squares (LMS) algorithm is used to estimate the coefficients of 

the equalizer [1], [2], [3] whose accuracy determines the system performance. 

For wireline high data rate applications, timing uncertainly degrades the system 

performance [5]. The channel response variance that is caused by manufacturing 

deviation makes the worse situation. It is necessary that using an equalizer to overcome 

clock skew and channel response variance. In addition, interconnect paths of parallel data 

I/O would cause the co-channel interference (CCI) [6]. The transmitted signals are tainted 

by the intersymbol interference that caused by the band-limited channel, the co-channel 

interference that caused by crosstalk between different channels, and background white 

noise. For recover the distorted data as well as suppress ISI, CCI and AWGN, a 

multi-input multi-output (MIMO) channel equalizer is essential. 

Error control codes (ECC) are applied to enhance the accuracy of the transmitted 

data in wireless applications. The channel decoder with soft information inputs is widely 

employed to improve the error correction capability [7], and the bit interleaving is 

included [8] in wireless fading channels. With the soft output [9] and soft feedback [10] 

channel equalizers, the soft decision channel decoder will receive more information from 
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the channel and therefore precisely decode the data sequence, leading to better BER 

performance. 

Besides, the equalization schemes can be thought of a mapping from the received 

waveform to the transmitted data. The pattern recognition techniques have been used to 

identify the severely distorting date. Having the capability of classifying the sampling 

pattern and fault tolerance, artificial neural networks are very suitable for the channel 

equalizations. Recently, various equalizer designs based on artificial neural networks have 

been studied to the severely distorting signal recoveries [11]. Neural-based approaches 

have more flexibility and better performance than conventional equalization techniques. 

The proposed approaches are based on the most popular multi-layer perceptron neural 

network with backpropagation algorithm (MLP/BP) [12], [13], [14], [15], [16]. As well, 

the MLP architecture can be regarded as a separateness-summation modus operandi in 

separating pattern space. 

For wireline applications, we apply the MLP/BP-based channel equalization schemes 

to different applications. In the wireline band-limited channel that the data rate is ten 

times as much as the channel bandwidth, the MLP/BP-based feedforward equalizer (FFE) 

can recover the distorted data [17]. The MLP/BP-based DFE provide better performance, 

tolerate sampling clock skew, and permit channel response variance [18]. In wireline 

parallel I/O channels, the MIMO MLP/BP-based DFE can suppress ISI, CCI and AWGN, 

simultaneously [19]. However, the traditional MLP/BP-based DFEs are not good enough 

for the severe ISI channels with nonlinear distortions. We present a new neural network 

model, which is based on the MLP/BP neural network. This model utilizes a multivariate 

power series for the summation function of the MLP/BP neural networks [20], [21]. The 

corresponding training algorithm is deduced by the gradient steepest descent method; 

consequently, the convergence solutions exist. Compared to the conventional approach 
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using a first order multivariate polynomial, the boundaries separating the pattern space 

change from piecewise linear into piecewise nonlinear. Therefore, this novel model is a 

generalized MLP/BP neural network (GMLP/BP) that is more flexible than other 

piecewise linear approaches because of the nonlinear separating pattern space. In such 

channels, the GMLP/BP-based DFE can outperform the traditional MLP/BP-based 

equalization schemes [22]. Also, the performance of the MIMO GMLP/BP-based DFE is 

better than that of the MIMO MLP/BP-based DFE in wireline parallel channels that 

contain ISI, CCI, and background white noise [23]. 

For wireless applications, a modified approach, which is also based on the most 

popular MLP/BP neural network, is presented. We apply the soft output and the soft 

decision feedback structure to the MLP/BP-based channel equalizer that concatenates 

with the soft decision channel decoder to improve whole performance on multi-path 

fading channels. Moreover, the performance of the MLP/BP-based soft DFE is also 

increased with the optimal scaling factor searching of the transfer function in the output 

layer of the MLP/BP neural networks and extra small random disturbances added to the 

training data [24]. 

 

 

1-2 Paper Survey 

There are various channel equalization schemes that are applied to different channel 

conditions. We survey the representative equalization approaches for wireline and 

wireless communications in these few years. These papers treat of different channel 

equalization schemes for wireline band-limited channels, wireline severe ISI channels, 

and wireless fading channels, respectively. 

The linear equalizers can recover the distorted data in wireline band-limited channels 
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[1], [2], [3]. For wireline severe ISI channels or wireless fading channels, the linear 

equalization schemes are unsuitable [4], [5]. 

In serve ISI channels, the DFEs [1], [2], [3], [5] can avoid the influence of the 

spectral nulls and outperform the LEs. For wireline high data rate communications, DFEs 

are applied to improve the data rate or reduce the error rate [25], [26], [27]. In practice 

circuits, the channel responses of different interconnect paths of parallel data I/O are 

different. The receiver must tolerate channel responses variance and sampling clock skew. 

Besides, CCI makes the problem more severely. 

The most popular training algorithm of DFEs is the least mean squares (LMS) 

algorithm, which is a minimum mean square error (MMSE) solution. One of the great 

methods for improving DFEs, support vector machines (SVM) based DFEs [28], [29], [30] 

uses the minimum bit error rate (MBER) solution instead of the MMSE solution to 

enhance system performance, but requires the estimation of channel impulse response 

(CIR) to compute the weighting vectors. Although the performance of SVM DFE is better 

than LMS DFE, the complexity of SVM DFE is much higher due to the additional 

channel estimator. 

The Viterbi Equalizer (VE) [31] that requires CIR estimation can also be used in 

severe ISI channels and achieve much better performance. However, the accuracy of CIR 

dominates the performance particularly, and a nonlinear distortion of received signal will 

cause significant performance degradation to VE. 

Because feed-forward neural network based channel equalization schemes are the 

most suitable architectures for very large-scale integration (VLSI) implementation, we 

survey the several well-liked neural network models that contain single layer perceptron 

(SLP) neural networks [13], [14], [16], polynomial perceptron (PP) neural network [14], 

[16], functional-link (FL) neural networks [14], [16], [32], radial basis function (RBF) 

 -5-



neural networks [14], [15], [16], counterpropagation (CP) neural networks [14], [16], [33], 

and MLP/BP neural networks [12], [13], [14], [15], [16]. 

The single layer perceptron neural network is the simplest neural network model, but 

it can’t solve the linear non-separable problem. In wireline applications, SLP-based 

channel equalizers [34] are better than LMS-based linear equalizers. 

The polynomial perceptron neural network uses a polynomial function to represent 

the input data and then a SLP neural network to combine these represented data and 

generate the output. By the input data represented, PP neural networks can solve linear 

non-separable problems. In severe ISI channels, PPNN-based channel equalizers 

outperform linear equalizers [35]. In multi-path fading channels, PPNN-based channel 

equalizers can suppress ISI and CCI [36], [37], simultaneously. The complexity of the 

PPNN-based channel equalization schemes is depended on tap number and polynomial 

degree. 

Based on the same concept, the functional-link neural networks are proposed. The 

higher-order input terms of the FL neural networks can be generated by the expanded 

functions, which comprise polynomial functions, trigonometric functions, signum 

functions and other nonlinear functions. The PP neural network is a special case of FL 

neural network. In severe ISI channels, FLNN-based channel equalizers can recover 

severe distorted data [38], [39], [40]. In multi-path fading channels, FLNN-based channel 

equalizers can suppress ISI and CCI with better performance than LEs and DFEs [41], 

[42], [43]. 

Excluding above definitely defined functions, a set of radial basis functions, which 

paves the input space with overlapping receptive fields, can be taken as the functional 

expander of the RBF neural networks. The most frequently used radial basis function is 

the Gaussian function. The output of the radial basis function is maximized by minimized 
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the Euclidean distance between the input vector and the centroid. To find the correct 

centers of the radial basis functions is very important. Thus, the clustering technique is the 

key issue [44]. The RBF-based channel equalization schemes [45], [46], [47], [48], [49] 

can be applied to wireline band-limited channels, severe ISI channels with or without 

nonlinearity, severe ISI channels with CCI, and wireless fading channels. 

Overall, the architecture of PP neural networks, FL neural networks, and RBF neural 

networks consists of two main parts, the functional expander and the linear combiner. The 

functional expander, which performs nonlinear mapping for the input data, and make the 

linear non-separable problem become linear separable. Afterward, a SLP neural network, 

which is trained by the simple delta-learning rule, is taken as the linear combiner to 

associate the represented input data with the desired outputs. The pattern space separating 

boundaries of such neural networks are nonlinear. 

The counterpropagation neural network is two-layer structure. The first layer is a 

winner-take-all network, and the second layer is perceptron-based architecture. The 

learning speed of CP neural networks is faster than MLP/BP neural networks, but the 

accuracy is worse. The CP-based channel equalizers outperform LEs under nonlinear 

channel characteristics [50]. 

Since late 1980s, the MLP/BP neural network is the most important and most 

popular neural network model [12], [13], [14], [15], [16]. The MLP neural network can be 

regarded as a separateness-summation modus operandi. Because the summation function 

of the MLP/BP neural network is a first order multivariable polynomial function, the 

boundaries of neighbors are linear or piecewise linear. Also, it is treated as continuous 

linear mapping processes. 

In severe ISI channels, the MLP/BP-based feedforward equalizers [51], [52], and the 

MLP/BP-based decision feedback equalizers [53], [54], [55] have been widely used to 
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distorted signal recovery. The MLP/BP neural network combined decoder and equalizer 

[4] merges forward equalization and data decoder in an MLP/BP neural network. It can 

offer higher system integration and better performance than the traditional separate 

solutions. The MLP/BP DFE with lattice filter [56] uses a lattice filter to whiten its input 

signal. The lattice filter can reject a quantity of the noise and make the signal clear. The 

convergence rate of the neural network, the steady state mean square error, and the bit 

error rate of whole system can be improved in chorus. 

For constant envelope signal processing, we can separate in-phase and 

quadrature-phase components and then the real-value activation functions can handle this 

problem. Besides, there are two main approaches for the development of a complex neural 

network. One looks for fully complex activation function [57], [58], and has been applied 

to distorted QPSK signal recovery [59]. Another has used split complex activation 

function [60], [61], and has been also employed to channel equalization [62]. 

For wireless communications, the MLP/BP-based DFEs are applied to indoor radio 

channels [63] and digital satellite channels [64]. In wireless applications, the length of the 

training symbols and the number of the training epochs are sternly limited. As well, the 

MLP/BP-based DFEs can be used to suppress not only ISI but also CCI that is due to 

other co-channel users [65], [66]. 

The MLP neural network with hierarchical backpropagation algorithm (HBP) 

combines the hierarchical approach and BP algorithm [67]. It can solve some problems of 

the local minimum in the BP algorithm and improve the system performance. Except 

MMSE based learning rule, the least relative entropy (LRE) [68], [69] based learning 

algorithm has been applied to SLP neural network based equalizers and MLP neural 

network based equalizers. The dynamics of the LRE based algorithm is better than that of 

the MMSE based learning rule. It means that the learning speed of the LRE based 
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algorithm is faster than the MMSE based one. Moreover, neural networks can be trained 

by fuzzy if-then rules [16]. For nonlinear channel equalization applications, an adaptive 

neural fuzzy filter provides good performance [70]. 

 

 

1-3 Thesis Organization 

The rest of this thesis is organized as follows. The traditional MLP/BP neural 

networks and the generalized MLP/BP neural networks are first addressed in chapter 2. 

The detail of proposed neural-based channel equalization schemes for wireline SISO 

applications, wireline MIMO applications, and wireless applications are described in 

chapters 3, 4, and 5, respectively. Some conclusions and future works of the proposed 

methods are made in chapter 6. Brief description of each chapter is given below: 

 

 In chapter 2, the brief review of the multi-layer perceptron neural networks with 

backpropagation algorithm is introduced at first. Subsequently, the generalized 

multi-layer perceptron neural networks and corresponding backpropagation 

algorithm is proposed. At last, the comparison of computational complexity is 

made. 

 In chapter 3, the MLP/BP-based DFEs with high skew tolerance for wireline 

band-limited channels are presented at the beginning. Afterward, the generalized 

MLP/BP-based DFEs for wireline severe ISI channels are proposed. 

 In chapter 4, the MIMO MLP/BP-based DFEs and the MIMO generalized 

MLP/BP-based DFEs for overcoming ISI and CCI in wireline band-limited 

channels are given. 
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 In chapter 5, the MLP/BP-based soft decision feedback equalizers for wireless 

communications are delivered. 

 In chapter 6, some concluding remarks will be derived from this research. Then 

briefly discussions illustrate our research activities in the future. 
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CHAPTER 2 

Generalized MLP/BP Neural Networks 

 

Artificial neural networks are systems that are deliberately constructed to make use 

of some organizational principles resembling those of the human brain. In 1943, 

McCulloch and Pitts proposed a simple mathematical model of the biological neuron, 

usually called an M-P neuron. The generalizations or variations of the M-P neuron are the 

basic component of artificial neural networks. An artificial neural network consists of a 

set of highly interconnected neurons such that each neuron output is connected to other 

ones or/and to itself through weights, which with or without lag. In 1957, Rosenblatt 

created the perceptron neural networks that include single-layer feedforward networks, 

which without hidden layers; and multi-layer feedforward networks, which with a hidden 

layer or more. But there is no suitable training algorithm for multi-layer perceptron neural 

networks until the backpropagation algorithm [12] had been proposed. Today, there are 

many different artificial neural networks had been proposed, but the multi-layer 

perceptron neural network with backpropagation algorithm is the most important and 

most popular one [13], [14], [15], [16]. 

In this work, we treat the MLP/BP neural network model and make a key 
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modification to offer a new approach, the generalized MLP/BP neural network. At the 

beginning of this chapter, we make a review for the traditional MLP/BP neural network. 

Afterward, a detail arrangement of the generalized MLP/BP neural network is given. 

 

 

2-1 Traditional MLP/BP Neural Networks 

Although the MLP neural network had been treated in late 1950s, the suitable 

training algorithm wasn’t appeared until the backpropagation algorithm [12] presented. 

Bryson and Ho in 1969, Werbos in 1974, LeCun in 1985, Parker in 1985, and Rumelhart 

in 1986 proposed the backpropagation algorithm. The most influential publication of the 

backpropagation algorithm is Rumelhart’s contribution. Since late 1980s, the MLP/BP 

neural network has been widely used to pattern recognition, and signal processing [13], 

[14], [15], [16]. 

In this section, we treat the MLP/BP neural network because it is the basis of our 

proposed model. At first, we show the detail of the MLP neural network architecture. 

Subsequently, the deduced process of the backpropagation algorithm is presented. 

 

 

2-1-1 Architecture 

The architecture of a multi-layer perceptron neural network [12], [13], [14], [15], [16] 

is shown in Fig. 2-1. The neurons are arranged into several layers. The first layer is the 

input layer, the final layer is the output layer, and other in-between layers are hidden 

layers. The neuron number of each layer could be singular form or plural form. In the 

input layer, each neuron includes a single input and a single output. In other layers, there 
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are several inputs and one output in each neuron. The different neurons, which situate in 

neighbor layers, connect together through respective weights without lag. 

A neuron, the processing unit, of the MLP neural networks [12], [14], [16] is shown 

in Fig. 2-2. The output of a neuron is the value obtained from applying a transfer function 

to a weighted sum of its inputs, where each input is the output of a neuron situated in the 

previous layer. The weighted sum of the inputs can be described as a first order 

polynomial function. As well, commonly used transfer functions include hard limit 

functions (step functions), ramp functions (linear functions), unipolar sigmoid functions 

(log-sigmoid functions), bipolar sigmoid functions (tan-sigmoid functions), and so on. For 

different purposes, we can select dissimilar transfer functions to meet the requirement or 

constraint. In this work, we choose the unipolar sigmoid function as the transfer function 

of a neuron.  

 

Input Layer Output Layer

Hidden Layer  
 

Fig. 2-1: MLP Neural Network Architecture. 
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Fig. 2-2: Neuron of MLP Neural Networks. 
 

 

2-1-2 Backpropagation Algorithm 

The MLP/BP neural networks are supervised learning. It means that a training set 

includes an input vector and a desired output vector. Using the MLP/BP neural networks 

to solve problems includes two phases, one is training procedure and another is testing 

procedure. In the training phase, we base on the gradient steepest descent method to 

minimize the error function for updating the weights. After that we apply the training 

result to obtain the network response in testing phase. Now, a mathematical description of 

backpropagation algorithm [12], [15] is shown as follows: 

)f(netAOutput njnj == ,           (2-1) 

where Anj is the output of neuron j in the n-th layer, f(.) is the transfer function obtaining 

the output of a neuron, and netnj is the output of the summation function of neuron j in the 

n-th layer. Furthermore, 

∑ −== −
j

ji1njinj AWFunctionSummationnet θ)(_ ,     (2-2) 

where Wji represents the weight of the connection between neuron j in the n-th layer and 

neuron i in the (n-1)-th layer, and θj is the threshold (bias) of neuron j. The Wjim should be 

 -14-



trained to minimize the error function 

∑ −⋅==
j

njj ATFunctionErrorE 2)(
2
1_ ,       (2-3) 

where Tj is the desired output of neuron j in the output layer. 

By the gradient steepest descent method, the error function (2-3) can be minimized by 
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the update quantity for Wji, and η is the learning rate. 

By chain rule, 
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Let nk
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Furthermore, according to (2-7), the deviation in (2-5) can be rewritten as 
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By (4) and (12), 
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Similarly, the following equation can be obtained 

njj δηΔθ ⋅−= ,             (2-14) 

where Δθj is the update quantity of θj. 

From the above deductions, there are two possible cases: 

(1) If  is between the output layer and its anterior layer (a hidden layer), (2-7), (2-8), 

and (2-9) can be applied to (2-6), 
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After comparing (2-12) and (2-15), we can obtain 

)(')( njnjjnj netfATδ ⋅−=    (for output layer).     (2-16) 

(2) If  is between a hidden layer and its anterior layer (a hidden layer or the input 

layer), (2-7), (2-8), and (2-11) can be applied to (2-6), 
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The following equation can be obtained from comparing equations (2-12) and (2-17) 
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)('][ )1( nj
k

kjknnj netfWδδ ⋅⋅= ∑ +    (for hidden layer).    (2-18) 

 

In this work, a unipolar sigmoid function is used to the transfer function of a neuron. 

The first derivative of the unipolar sigmoid function can be represented as the terms of 

itself, as shown in (2-19) and (2-20). 
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By such representation, (2-16) and (2-18) can be rewritten as (2-21) and (2-22). 

)1()( njnjnjjnj AAAT −⋅⋅−=δ    (for output layer),     (2-21) 

)1(][ )1( njnj
k

kjknnj AAW −⋅⋅⋅= ∑ +δδ    (for hidden layer).    (2-22) 

 

In each iteration, the weights and thresholds are updated. When the whole set of 

training data has been cycled once, calculate mean square error (MSE) of this training 

epoch. We repeat such epoch and record the best result, which consists of weights and 

thresholds and leads to the minimal MSE among past training epochs. Check whether the 

current MSE is smaller than the maximum tolerable error, which the result meets the 

training object, and the entire training epochs have been completed, which stands for the 

maximum patient training time. If the alternative conditions have been reached, the 

training process is terminated. At this moment, the training result is harvested. In general, 

reduce training time and enhance system performance are certain exclusive property. [14], 

[15], [16] 
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Because the MLP/BP neural network is an MMSE approach, the training results will 

converge on local optima. Using different network configurations, different initial 

condition and different learning rate, will conduce to different performance [13], [14], 

[16]. In general, could perform quite a few independent training runs and choose the most 

suitable result as the final solution. 

Moreover, the MLP/BP neural network can be regarded as a separateness-summation 

modus operandi in separating pattern space. Because the summation function of the 

MLP/BP neural network is linear, the boundaries of neighbors are linear or piecewise 

linear. [14], [16] For a complex system, the number of neurons should increase for better 

approximation. 

 

 

2-2 Generalized MLP/BP Neural Networks 

To achieve more flexibility and better performance, a multivariate power series is 

used to replace a first order multivariate polynomial as the summation function of the 

MLP/BP neural networks, leading to a significant modification for the traditional 

MLP/BP neural network. Therefore, regarded as a general form of the MLP/BP neural 

network, the proposed model can be termed as a generalized MLP/BP neural network. 

This key modification comes from the previous study of speech recognition where a better 

performance can be attained by using the multivariate power series [20], [21]. In this 

work, this new method is applied to the waveform equalization and results in a significant 

improvement in performance. 

In this section, we show the architecture of the generalized MLP/BP neural network 

at first. Subsequently, the deduced process of the corresponding backpropagation 

algorithm is presented. Referring to the traditional MLP/BP neural network and the 
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generalized MLP/BP neural network, we find that the traditional method is a special case 

of the proposed model. 

 

 

2-2-1 Architecture 

The network architecture of our proposition is the same as the traditional MLP/BP 

neural networks. That has been shown in Fig. 2-1. However, the construction of neurons 

of the both is different. A neuron of this new approach is shown in Fig. 2-3. The output of 

a neuron of the proposed scheme is the value obtained from applying a transfer function 

to a weighted sum of the power terms of its inputs, where each input is the output of a 

neuron situated in the previous layer. The weighted sum of the power terms of the inputs 

can be represented as a multivariate power series. On the other word, the summation 

function of the generalized MLP/BP neural networks is a multivariate power series that 

substitute for the first order multivariate polynomial. Similarly, we can select dissimilar 

transfer functions to meet the requirements of different purposes. 
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Fig. 2-3: Neuron of Generalized MLP/BP Neural Networks. 
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2-2-2 Corresponding Backpropagation Algorithm 

In this subsection, we present the training algorithm for the generalized MLP/BP 

neural network. It is similar to the traditional training algorithm. Diversely, the 

multivariate power series is used to replace the first order multivariate polynomial as the 

summation function of the MLP/BP neural networks. The corresponding backpropagation 

algorithm of the proposed approach is deduced by the gradient steepest descent method 

and is shown as follows: 

)( njnj netfAOutput == ,           (2-1) 

where Anj is the output of neuron j in the n-th layer, f(.) is the transfer function obtaining 

the output of a neuron, and netnj is the output of the summation function of neuron j in the 

n-th layer. Furthermore, 

j
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where m is the order of the summation function, Wjim represents the weight of the 

connection between neuron j in the n-th layer and neuron i in the (n-1)-th layer 

corresponding to order m, and θ  is the threshold (bias) of neuron j. The Wj jim should be 

trained to minimize the error function 

∑ −⋅==
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1_ ,       (2-3) 

where T  is the desired output of neuron j in the output layer. j

By the gradient steepest descent method, the error function (2-3) can be minimized by 
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jim W

EW
∂
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the update quantity for Wjim, and η is the learning rate. 

By chain rule, 
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(2) When the n-th layer is a hidden layer, 
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be deduced and (2-30) can be rewritten as 
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Furthermore, according to (2-27), the deviation in (2-25) can be rewritten as 

m
innj

jim

A
W

E
)1( −⋅−= δ

∂
∂ .           (2-32) 

 -21-



By (2-24) and (2-32), 
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Similarly, the following equation can be obtained 

njj δηΔθ ⋅−= ,             (2-34) 

where Δθ  is the update quantity of θ . j j

From the above deductions, there are two possible cases: 

(1) If  is between the output layer and its anterior layer (a hidden layer), (2-27), 

(2-28), and (2-29) can be applied to (2-26), 

jimW

m
innjnjj

jim

AnetfAT
W

E
)1()(')( −⋅⋅−−=

∂
∂ .       (2-35) 

After comparing (2-32) and (2-35), we can obtain 

)(')( njnjjnj netfATδ ⋅−=    (for output layer).     (2-36) 

(2) If  is between a hidden layer and its anterior layer (a hidden layer or the input 

layer), (2-27), (2-28), and (2-31) can be applied to (2-26), 
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The following equation can be obtained from comparing equations (2-32) and (2-37) 
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+    (for hidden layer). (2-38) 

 

In this work, a unipolar sigmoid function is used to the transfer function of a neuron. 

The first derivative of the unipolar sigmoid function can be represented as the terms of 

itself, as shown in (2-19) and (2-20). 
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By such representation, (2-36) and (2-38) can be rewritten as (2-39) and (2-40). 

)1()( njnjnjjnj AAAT −⋅⋅−=δ    (for output layer),     (2-39) 
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Referring to the traditional MLP/BP neural network and the generalized MLP/BP 

neural network, we make comparisons between (2-16) and (2-36); (2-18) and (2-38); 

(2-21) and (2-39); (2-22) and (2-40). The generalized MLP/BP neural network is actually 

equivalent to the traditional MLP/BP neural network when m=1, indicating that the 

traditional method is a special case of the proposed model. Thus the new approach being 

presented is a generalized model. Moreover, the network configuration of this scheme has 

more degrees of freedom than the traditional one. 

Because the summation function of the GMLP/BP neural networks is a multivariate 

power series (nonlinear function), the boundaries of neighbors become either nonlinear or 

piecewise nonlinear. As the nonlinear summation function within each neuron is 

materialization in each layer of the GMLP/BP neural networks, the proposed approaches 

present continuous nonlinear pattern space mapping potential. Theoretically, increases of 

the summation function order and the number of neurons can achieve better 

approximation to fit a nonlinear system. Therefore, the proposed scheme will have more 

flexibility and better performance than traditional MLP/BP neural networks do. 

Similar to the traditional approach, the training procedure of this GMLP/BP neural 

network attains different performance by varying initial conditions, learning rates, 
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network parameters or summation function orders. Moreover, designers could perform 

numerous independent training runs and select the most suitable result as the final 

solution. 

Generally, the order of the fitting function is equal to or less than that of the target 

function. In most cases, the target function is complex or even unknown, and the best 

fitting function order is determined by experimentation or experience. To simplify the 

problem, the fitting function order is selected as low as possible while the error is set to be 

less than the maximum tolerable bound. In general, the order of the most approximation 

system is equal to or less than three; however, in high performance systems or special 

applications, the order may be higher. In algebraic, this new approach extends the 

traditional scheme from the first order approximation to infinity. The most suitable 

summation function order of this scheme can be determined by computer simulations for 

different applications. 

 

 

2-3 Complexity Analysis 

Because the order of the neuron of the generalized MLP/BP neural networks is more 

than one, it is necessary to generate the power terms for the inputs in each layer. In 

addition, the training algorithm of the generalized MLP/BP neural networks is modified 

from “generalized delta-learning rule”. The complexity and cost of the generalized 

MLP/BP neural networks will be higher than the traditional MLP/BP neural networks but 

the former results in better pattern space separability and better performance. The 

comparison of computational complexity in terms of additions, multiplications and 

sigmoid function substitution between the traditional MLP/BP neural networks and the 

generalized MLP/BP neural networks is shown in Table 2-1. 
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Table 2-1: The comparison of computational complexity. 

 
 

MLP/BP neural networks GMLP/BP neural networks 
Operation 

(Single Hidden Layer) (Single Hidden Layer) 
 
 

Addition  (Ni + 1) · Nh + (Nh + 1) · No (m · Ni + 1) · Nh + (m · Nh + 1) · No
 
 

Multiplication  Ni · Nh + Nh · No (2m - 1) · Ni · Nh + m · Nh · No 
 
 

Function Substitution Nh + No Nh + No 
 

 
Notations: 

Input Neuron Number = Ni 
Hidden Neuron Number = Nh 
Output Neuron Number = No 
Summation Function Order = m 
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CHAPTER 3 

SISO GMLP/BP-based DFEs  

for Wireline Applications 

 

For wireline communications, we apply the GMLP/BP-based channel equalization 

schemes to different applications. In wireline band-limited channels that the data rate is 

about ten times as much as the channel bandwidth, the traditional MLP/BP-based DFEs 

provide better performance, tolerate more sampling clock skew, and permit larger channel 

response variance than LMS DFEs. Because the frequency response of a wireline 

band-limited channel is without spectral nulls, the high order approximation has no 

benefit. The first order ones can satisfy the system requirements. However, the traditional 

MLP/BP-based DFEs are not good enough for the severe ISI channels with nonlinear 

distortions. The frequency responses of severe ISI channels contain spectral nulls and 

nonlinear distortions lead to worse situations. In such channels, the generalized 

MLP/BP-based DFEs can outperform the traditional MLP/BP-based DFEs that do better 

than the LMS DFEs. 

This chapter is organized as follows. The traditional MLP/BP-based DFEs with high 
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skew tolerance for wireline band-limited channels are presented at the beginning. 

Afterward, the GMLP/BP-based DFEs for wireline severe ISI channels are proposed. 

 

 

3-1 MLP/BP-based DFEs with High Skew Tolerance  

for Band-limited Channels 

A traditional MLP/BP neural network is realized as a waveform equalizer for 

distorted nonreturn-to-zero (NRZ) data recovery in band-limited channels. Moreover, the 

proposed approach can tolerate sampling clock skew and channel response variance. 

According to simulation results, the proposed design can recover severe distorted NRZ 

data with better performance than LMS DFEs in the band-limited channel that the data 

rate is about ten times as much as the channel bandwidth. Under the 20% channel 

response variance and the 30% sampling clock skew, the MLP/BP-based DFE can provide 

an acceptable performance. By fixed-point simulations, the proposed scheme is realizable 

and outperforms the LMS DFE. Further, the internal resolution enhancement technique 

provides a better compromise between cost and performance. 

This section is organized as follows. The system overview is presented in subsection 

1 while subsection 2 shows the MLP/BP-based DFEs. Afterward, the simulation results 

show in subsection 3. Finally, we make a brief summary in subsection 4. 

 

 

3-1-1  System Overview 

 In practice circuits of wireline communications, the channel characteristic of 

different interconnect paths of parallel data I/O channels are different but analogous. 

 -28-



Besides, sampling clock skew makes the problem more severely. In such conditions, the 

received signal is deteriorated substantially by intersymbol interference, clock skew and 

background noise. The system diagram of a single clock source is shown in Fig. 3-1. 

If the data rate of transmitted signals is higher than the channel capacity, the received 

signal pulse is unable to complete its transition within a symbol interval. The equivalent 

model for the wireline band-limited channels is shown in Fig. 3-2 where a finite impulse 

response (FIR) filter is used to model the ISI channel response with the AWGN as the 

background noise. 

The ISI channel response with AWGN can be written as follows: 

L
L zf...zfzffH(z) −−− ⋅++⋅+⋅+= 2

2
1

10 ,       (3-1) 

∑
=

−⋅=
L

i
ikik xfy

0
,            (3-2) 

nyy kk +=ˆ ,             (3-3) 

where H(z) is the transfer function of the ISI channel; L is the length of the channel 

response; xk is the input sequence; yk is the channel output which is warped by ISI only; nk 

is the AWGN; ŷk is the received signal which is distorted by both ISI and AWGN. 

In this work, several wireline band-limited parallel I/O channels that consist of 

analogous channel responses and different sampling clock skews are used to verify the 

proposed approaches. Their transfer functions with different F3dB/F ratio are shown in 

Table 3-1. The frequency responses of these channels are illustrated in Fig. 3-3. These 

frequency responses are without spectral nulls. Base on foregoing channels, clock skews 

between +/- 30% are considered to represent a worse situation of the practical wireline 

high-speed communications. 
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Fig. 3-1: System diagram. 
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Fig. 3-2: Equivalent model for the band-limited channels. 
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Table 3-1: Transfer functions of several wireline band-limited channels. 

 

ID F3dB/F Channel Impulse Response 

1 0.08 [0.3951 0.2390 0.1446 0.0875 0.0529] 

2 0.09 [0.4319 0.2454 0.1394 0.0792 0.0450] 

3 0.10 [0.4665 0.2489 0.1328 0.0708 0.0378] 

4 0.11 [0.4990 0.2500 0.1252 0.0627 0.0314] 

5 0.12 [0.5295 0.2491 0.1172 0.0551 0.0259] 

 

 

 

 
 

Fig. 3-3: Frequency responses of several similar wireline band-limited channels. 
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3-1-2  MLP/BP-based DFEs 

The block diagram of the MLP/BP-based DFEs is shown in Fig. 3-4. This 

MLP/BP-based DFE is the single hidden layer MLP architecture. The inputs of the 

MLP/BP-based DFE consist of feed-forward signals, which come from the input symbols 

by a tapped-delay-line register, and feedback signals, which come from previous 

decisions by another tapped-delay-line register. 

We evaluate different tap numbers in the forward part and the feedback part of the 

equalization schemes and select the most suitable arrangement. In this work, all 

equalization schemes have 11 symbols in the forward part and 5 symbols in the feedback 

part. The number of neurons in the input layer is equal to 16. The MLP/BP-based DFEs 

uses the single hidden layer MLP architecture. The number of neurons in the hidden layer 

is 2 times of that in the input layer. Since all the proposed equalization schemes have a 

single output, the number of neurons in the output layer is equal to 1. 

 

Z-1 Z-1 Z-1Input

X-1 X0 XnX-n

Z-1

Y1Y2Ym

Z-1 Z-1

Output

Input Layer

Hidden Layer

Output LayerMLP/BP Neural Network

Threshold

 
 

Fig. 3-4: MLP/BP-based DFEs. 
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3-1-3  Simulation Results 

The performance of the MLP/BP-based DFE is evaluated through the simulations for 

the distorted NRZ signal recovery in the band-limited channel that the data rate is ten 

times of the channel bandwidth. In this section, a regular input pattern configuration of 

the equalization schemes is presented first followed by the modified configuration. At last, 

the fixed-point simulations and its enhancement are discussed in detail. 

 

3-1-3-1  Regular Configuration 

Because the MLP/BP neural networks are supervised learning, a training set includes 

an input vector and a desired output vector. The training patterns must represent the 

system characteristic as exact as possible. Suitable training patterns can improve the 

training quality. In wireline applications, we can select a longer training set to achieve 

better performance. 

In the training procedure, the length of the training set is equal to 104 symbols and 

the total training epochs are 102. The two-phase learning is used with the learning rate of 

0.5 when the mean square error of the training set is larger than 10-3, and the learning rate 

of 0.125, otherwise. When the training epochs exceed eighty percent of the total epochs, 

the best parameters will be recorded to achieve the lowest mean square error of the 

training set in the last twenty percent of the training epochs. Hence the steady-state 

training results can be recognized. In fact, the simulations indicate no unstable problems 

as all training processes are converged. 

Because different initial conditions lead to different effects, the non-training 

evaluation set that has 105 symbols is used to examine the training quality of numerous 

independent simulation outcomes. After numerous independent training and evaluation 
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runs, those yielding better outcomes will be chosen to perform a long trial with the test set, 

and then the best one will be the final test result. We execute fifty independent runs and 

select the best one as the final result. The length of the test set is 106 symbols, and the 

evaluation set is a subset of it. 

At first, we follow the regular input pattern configuration of the equalizers. A 

band-limited channel (Channel 3) described by the transfer function, H3=0.4665 + 

0.2489z-1 + 0.1328z-2 + 0.0708z-3 + 0.0378z-4, is used to estimate the system performance 

of the LMS DFE and the MLP/BP-based DFE, where the training noise and the evaluation 

noise are assumed to be SNR=20dB, and SNR of the test signal is between 10dB and 

25dB. This channel response indicates that the data rate is ten times of the channel 

bandwidth. 

Subsequently, several different band-limited ISI channels (Channels 1, 2, 4, and 5) 

are used to describe different channel bandwidth vs. data rate ratios that the data rates are 

eight, nine, eleven, and twelve times the channel bandwidth, respectively. The training 

result of Channel 3 is applied to these channels, directly. These experiments are used to 

evaluate the tolerance under different channel response variances. The BER performance 

for the LMS DFE and the MLP/BP-based DFE in different channels is shown in Fig. 3-5. 

The proposed approach can outperform the LMS DFE. 

At last, -30%, -20%, -10%, +10%, +20%, and +30% sampling clock skews are 

considered, respectively. Similarly, the training result of Channel 3 is applied to these 

situations, directly. The comparisons of the BER performance for the LMS DFE and the 

MLP/BP-based DFE in different channels with different clock skews are shown in Fig. 

3-6, Fig. 3-7 and Fig. 3-8, respectively. 

The advantage of the proposed approach can be represented in Fig. 3-9. In view of 

different channel response variances without sampling clock skew at SNR=20dB, the 
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BER performance of the LMS DFE and the BPN DFE is shown in Fig. 3-9 (a). 

Considering different clock skews in different channels at SNR=20dB, the comparisons of 

the BER performance for the LMS DFE and the BPN DFE are shown in Fig. 3-9 (b) to 

Fig. 3-9(f). 

From these simulation results, the proposed approach reports better BER 

performance under +/- 20% channel response variances and +/- 30% sampling clock 

skews. With F3db/F=0.08 at BER=10-3, the LMS DFE endure about +5% / -8% sampling 

clock skews and the proposed approach can tolerate over +/- 15%. With F3db/F=0.10, the 

LMS DFE endure about +13% / -20% and the proposed approach tolerate over +/- 20%. 

With F3db/F=0.12, the LMS DFE endure about +15% / -25% and the proposed approach 

tolerate over +20 % / -25%. As the variances increase, the proposed approach achieves 

more improvement over the LMS DFEs. 

 

 

 
 

Fig. 3-5: BER performance for different types of equalizers in different channels. 
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Fig. 3-6: BER performance for different types of equalizers  
with different clock skews in Channel 1. 

 
 

 

 
 

Fig. 3-7: BER performance for different types of equalizers  
with different clock skews in Channel 3. 

 

 -36-



 

 

 
 

Fig. 3-9: BER performance for different channel conditions  
with regular input pattern configuration at SNR=20dB. 

 

 

 
 

Fig. 3-8: BER performance for different types of equalizers  
with different clock skews in Channel 5. 
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3-1-3-2  Modified Configuration 

Because the input patterns relate with the training quality and the overall 

performance, we modify the input pattern configuration that contains more variance by 

using Channel 1, Channel 3, and Channel 5 with and without +/- 10 percent sampling 

clock skews to generate the training patterns. By this way, the MLP/BP neural network 

can provide better fault tolerant capability. The simulation results are shown in Fig. 3-10. 

From Fig. 3-9 and Fig. 3-10, the modified input pattern configuration can improve the 

overall performance. 

 

 

 

 

 

 
 

Fig. 3-10: BER performance for different channel conditions  
with modified input pattern configuration at SNR=20dB. 
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3-1-3-3  Fixed-Point Simulations 

 In this subsection, the fixed-point simulations and its enhancement of the 

MLP/BP-based DFE are presented. In general, higher ADC resolution leads to better 

performance and higher cost. It is a trade-off problem. We consider that added internal 

resolution to increase the performance under the same ADC resolution. By this way, we 

can use a lower resolution ADC to replace a higher resolution one and obtain a similar 

performance. 

 In the fixed-point simulations, we use a hard limiter to replace the log-sigmoid 

function for low cost consideration. The performance of the MLP/BP neural network 

should be decreased. The training results of the modified configuration are applied to the 

fixed-point simulations. 

The BER performance for different ADC resolution at SNR=15, SNR=18, and 

SNR=20 are shown in Fig. 3-11. A BER performance comparison with different ADC 

resolution is shown in Fig. 3-12. The BER performance for different ADC resolution and 

different internal resolution at SNR=20 are shown in Fig. 3-13. 

The BER performance for the LMS DFE and the MLP/BP-based DFE in different 

channels is shown in Fig. 3-14. The fixed-point simulation comparison for the 

MLP/BP-based DFE in Channel 3 with different clock skews is shown in Fig. 3-15. The 

BER performance for different channel conditions with modified input pattern 

configuration under different resolution at SNR=20dB is shown in Fig. 3-16. 

From Fig. 3-11, the acceptable ADC resolution is five or six bits. From Fig. 3-13, the 

most suitable combination is five bits ADC with ten bits internal resolution. This internal 

resolution enhancement technique can provide better performance under the same ADC 

resolution. In the fixed-point simulations, the performance of the proposed equalizer is 

better than the LMS DFE. 
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Fig. 3-11: BER performance for different ADC resolution  
at SNR=15, SNR=18, and SNR=20. 

 
 

 

 

 
 

Fig. 3-12: BER performance with different ADC resolution. 
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Fig. 3-13: BER performance for different ADC resolution  
with internal resolution enhancement. 

 
 

 

 

 
 

Fig. 3-14: BER performance for different types of equalizers  
in different channels. 

 

 -41-



 

 

 

 
 

Fig. 3-15: BER performance for different types of equalizers  
with different clock skews in Channel 3. 

 

 

 
 

Fig. 3-16: BER performance for different channel conditions  
with modified input pattern configuration at SNR=20dB. 
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3-1-3  Summary 

The simulation results show that the proposed approach reports better BER 

performance under +/- 20% channel response variances with +/- 30% sampling clock 

skews in the band-limited channels that the data rate is about ten times of the channel 

bandwidth. With different channel responses at BER=10-3, the comparison of sampling 

clock skew tolerance between the LMS DFEs and the MLP/BP-based DFEs is shown in 

Tab. 3-2. Because the proposed approach can tolerate more clock skews and large channel 

response variances, the clock tree design and data interconnection planning can be 

simplified. For low cost considerations, we can use a preset equalizer to replace an 

adaptive one. 

In the fixed-point simulations, the proposed equalizer is realizable and outperforms 

the LMS DFE. Further, the internal resolution enhancement technique makes the 

proposed scheme with a better compromise between cost and performance. By the 

fixed-point simulations, the most suitable combination is five bits ADC with ten bits 

internal wordlength. 

However, the performance of the traditional MLP/BP-based DFEs is not good 

enough for the severe ISI channels with nonlinear distortions. The frequency responses of 

severe ISI channels contain spectral nulls and nonlinear distortions lead to worse 

situations. For such channels, we propose the generalized MLP/BP-based DFEs for better 

performance and show the details in next section. 
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Table 3-2: The comparison of sampling clock skew tolerance. 

 

ID F3dB/F LMS DFEs MLP/BP-based DFEs 

1 0.08 +5% / -8% +11% / -12% 

2 0.09 +11% / -18% +17% / -18% 

3 0.10 +13% / -20% +20% / -20% 

4 0.11 +14% / -22% +20% / -23% 

5 0.12 +15% / -25% +20% / -25% 

 
Simulation Conditions for MLP/BP-based DFEs: 
  Input Neural Number = 16 (Forward part: 11, and Feedback part: 5), 
  Hidden Neural Number = 32 (Hx=2), 
  Output Neural Number = 1, 
  Training Set = 104 symbols, 
  Evaluation Set = 105 symbols, 
  Test Set = 106 symbols, 
  Training Epoch = 102, 

Learning Rate = 0.5 / 0.125 (Two Phase Learning, MSE Bound = 10-3), 
Re-training Times = 10 Independent Runs. 

 
 

 

 

3-2 GMLP/BP-based DFEs for Severe ISI Channels 

Based on the MLP/BP neural network, we suggest a general model that uses a 

multivariate power series as the summation function of the MLP/BP neural networks. For 

more effective data transmissions, this new neural-based channel equalizer is proposed to 

compensate for severe ISI and nonlinear distortions in wireline applications. As compared 

with LMS DFE and the traditional MLP/BP-based DFE under the severe ISI channel, 

simulation results show that the GMLP/BP-based DFE can improve about 2dB and 1dB 

without nonlinearity at BER=10-4, and improve about 4dB and 1dB with 30% signal 

 -44-



truncation at BER=10-3. 

This section is organized as follows. The severe ISI channels with nonlinearity are 

presented in subsection 1. Subsection 2 shows the proposed GMLP/BP-based DFEs. 

Afterward, the simulation results show in subsection 3. Finally, we make a summary in 

subsection 4. 

 

3-2-1  Severe ISI Channels and Nonlinear Distortions 

In wireline band-limited channels, the traditional MLP/BP-based DFEs provide 

better performance, tolerate sampling clock skew, and permit channel response variance. 

However, the traditional MLP/BP-based DFEs are not good enough for the severe ISI 

channels with nonlinear distortions. In this work, we consider the possible situation in 

wireline applications, for example ATA-like interface, USB-like interface, Ethernet, etc. 

Such applications use pulse amplitude modulation schemes that may suffer severe ISI 

channels with nonlinearity. Therefore, we simulate the practical wireline environments. 

The description of the equivalent channel model for wireline digital transmission 

systems is shown in Fig. 3-17. In this model, a finite impulse response (FIR) filter is used 

to model the ISI channel response with the AWGN as the background noise. When a 

nonlinear distortion is introduced, a piecewise linear approximation or a Volterra series 

will be utilized to represent the nonlinearity. 

The severe ISI channel response with AWGN can be written as follows: 

L
L zf...zfzffH(z) −−− ⋅++⋅+⋅+= 2
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10 ,       (3-1) 
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where H(z) is the transfer function of the ISI channel; L is the length of the channel 
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response; xk is the input sequence; yk is the channel output which is warped by ISI only; nk 

is the AWGN; ŷk is the received signal which is distorted by both ISI and AWGN. 

 The mathematical describe of the severe ISI channels are same to that of the 

band-limited channels. Moreover, a piecewise linear approximation is used to represent 

the nonlinear distortion. In a receiver, the output saturation characteristics of non-ideal 

amplifiers due to the AGC loss, can be expressed by: 

 ,         (3-4) 
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where VH and VL represent the saturation values and are considered to be equal because of 

the symmetrical characteristics of most real amplifiers. 

In practical communication circuits, the accuracy of AGC relates to the problem of 

nonlinearity. If the AGC is perfect, the nonlinear distortion due to non-ideal amplifiers 

will not occur. Under this ideal condition, the circuits work at the linear region of the 

characteristic curve of practical amplifiers and the amplifiers can be regarded as ideal 

ones. However, in practical situations, the AGC is not perfect. When the AGC loss 

presents, the gain of amplifiers becomes too large, and the output signal is truncated. In 

this work, we use the hard-limiter to model the output characteristic of real amplifiers. 

This corresponds to the worst situation of practical communication circuits. 

In this section, several different ISI channels, with or without deep nulls of frequency 

response, are used to verify the proposed approaches. These channels are practical in 

many wireline communication systems, whose transfer functions of ISI channels with 

normalized power are shown in Table 3-3. Their frequency responses are illustrated in Fig. 

3-18. The transmitted signal is expected to be deteriorated substantially by the ISI channel, 

the AWGN, and the nonlinearity. The comparison of the transmitted data and the received 

waveform is shown in Fig. 19. 
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Fig. 3-17: Equivalent model for the severe ISI channels. 
 

 

 

 
Table 3-3: Transfer functions of different wireline severe ISI channels. 

 

Channel 
ID Transfer Function 

I 
H1(z) = 0.4575 + 0.7625z-1 + 0.4575z-2  

(0.6, 1.0, 0.6) 

II 
H2(z) = 0.408 + 0.816z-1 + 0.408z-2 

(0.5, 1.0, 0.5) 

III 
H3(z) = 0.3482 + 0.8704z-1 + 0.3482z-2 

(0.4, 1.0, 0.4) 

IV 
H4(z) = 0.227 + 0.460z-1 + 0.688z-2 + 0.460z-3 + 0.227z-4 

(0.33, 0.67, 1.0, 0.67, 0.33) 

V 
H5(z) = 0.108 + 0.215 z-1 + 0.430 z-2 + 0.717 z-3 + 0.430 z-4 -5 + 0.215 z  + 0.108z-6  

(0.15, 0.3, 0.6, 1.0, 0.6, 0.3, 0.15) 

VI 
H6(z) = 0.147 + 0.295 z-1 + 0.590 z-2 + 0.295 z-3 + 0.590 z-4 -5 + 0.295 z  + 0.147z-6 

(0.25, 0.5, 1.0, 0.5, 1.0, 0.5, 0.25) 

VII 
H7(z) =0.226 + 0.516 z-1 + 0.645 z-2 + 0.516 z-3

(0.35, 0.8, 1.0, 0.8) 
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Fig. 3-18: Frequency responses of different severe ISI channels. 
 

 

 

 
 

Fig. 3-19: The comparison of the transmitted data and the received waveform. 
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3-2-2  GMLP/BP-based DFEs 

The block diagram of the generalized MLP/BP-based DFEs is shown in Fig. 3-20. 

The inputs of the generalized MLP/BP-based DFE consist of feed-forward signals, which 

come from the input symbols by a tapped-delay-line register, and feedback signals, which 

come from previous decisions by another tapped-delay-line register. Because the order of 

the neuron of the generalized MLP/BP neural networks is more than one, it is necessary to 

generate the power terms for the inputs in each layer. 

We evaluate different symbol numbers in the forward part and the feedback part of 

the equalization schemes and select the most suitable arrangement. In this work, all 

equalization schemes have 5 symbols in the forward part and the feedback part, 

respectively. Both the MLP/BP-based DFEs and the GMLP/BP-based DFEs use the single 

hidden layer MLP architecture. The number of neurons in the input layer is equal to 10. 

For different MLP neural network configurations, the number of neurons in the hidden 

layer is 0.5, 1, 2, or 4 times of that in the input layer, and denoted by “Hx=0.5”, “Hx=1”, 

“Hx=2”, and “Hx=4”, respectively. Since all the proposed equalization schemes have a 

single output, the number of neurons in the output layer is equal to 1. The summation 

function order of the generalized MLP/BP-based DFEs is restricted to 1-6 that is denoted 

by “Order 1” to “Order 6”. Furthermore, total 24 different configurations need to be 

evaluated. 

For practical issues, the summation function order should be minimized. First, the 

order of the approximation function needs not to be larger than that of the real separating 

boundary of pattern space. The critical order is regarded as the point where the system 

performance has only slight improvement when the summation function order increases 

further as shown in simulation results. Second, a high order approximation leads to a 

complex and impractical architecture for current very large scale integration (VLSI) 
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technology. However, in light of the rapid progress of VLSI technology, more complex 

approaches could potentially be introduced for better performance with acceptable cost. 
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Fig. 3-20: Generalized MLP/BP-based DFEs. 
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3-2-3  Simulation Results 

The performance of the generalized MLP/BP-based DFEs is evaluated through the 

simulations for the (2-PAM sequences) NRZ signal recovery in a severe ISI channel 

(Channel 1). The training stability for different configurations of the traditional and the 

generalized MLP/BP neural networks is analyzed by the standard deviation (Std) of the 

mean square errors (MSE) of the training and the evaluation sets in numerous independent 

simulations with different random initiations. In addition, different levels of the nonlinear 

distortions in the channel that model the circuit saturation characteristics have been 

considered. These include the 0%, 10%, 20%, and 30% truncations of the output swing, 

denoted by “Sx=1.0”, “Sx=0.9”, “Sx=0.8”, and “Sx=0.7”, respectively. Furthermore, the 

proposed approach is applied to compensate the distorted NRZ signals in the several 

different ISI channels (Channels 2, 3, 4, 5, 6 and 7) and results in a significant 

performance improvement. 

In a training procedure, the length of the training set is equal to 104 symbols and the 

total training epochs are 103. The two-phase learning is used with the learning rate of 0.5 

when the mean square error of the training set is larger than 10-4, and the learning rate of 

0.1, otherwise. When the training epochs exceed ninety percent of total epochs, the best 

parameters will be recorded to achieve the lowest mean square error of the training set in 

the last ten percent of training epochs. Hence the steady-state training results can be 

recognized. In fact, the simulations indicate no unstable problems as all training processes 

are converged. 

Because different initial conditions lead to different effects, the non-training 

evaluation set that has 105 symbols is used to examine the training quality of numerous 

independent simulation outcomes. After numerous independent training and evaluation 

runs, those yielding better outcomes will be chosen to perform a long trial with the test set, 
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and then the best one will be the final test result. The length of the test set is 107 symbols, 

and the evaluation set is a subset of it. 

At first, a severe ISI channel (Channel 1) described by the transfer function, 

H -1 -2=0.4575 + 0.7625z  + 0.4575z1 , is used to estimate the system performance of 

different equalization schemes, where the training noise and the evaluation noise are 

assumed to be SNR=15dB, and SNR of the test signal is between 10dB and 20dB. 

Considering the distortions due to ISI and AWGN only, the training stability of 

different configurations is estimated by the standard deviation of MSEs of both the 

training and the evaluation sets. For each configuration, the results are analyzed according 

to 50 independent simulation outcomes. 

Fig. 3-21 and Fig. 3-22 show the minimum MSE and the standard deviation of MSEs 

of the training and the evaluation sets for different hidden neuron multipliers and different 

summation function orders at SNR=15dB. Note that the increase of the neuron numbers in 

the hidden layer can decrease both the training error and the standard deviation of MSEs 

of the training set which can also be improved by increasing the summation function order. 

Further improvements can be achieved by increasing both the neuron numbers in the 

hidden layer and the summation function order. However, the reciprocal advance for the 

evaluation set is difficult to obtain. An increase in the neuron numbers in the hidden layer 

can also lead to a decrease in both the training error and the standard deviation of MSEs 

of the evaluation set. When the summation function order is equal to 2 or 3, the evaluation 

error can be reduced efficiently. Beyond the order of 3 very little improvement can be 

observed. Therefore, the critical order can be defined as the order where the system has 

little enhancement with higher orders. 

Although larger neuron number in the hidden layer increases the complexity, both 

the training error and the standard deviation of MSEs can be improved. In this work, we 
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select a larger scale MLP/BP neural network for better training stability and higher 

performance. However, in practical applications, a smaller size can be selected while 

considering the trade-off between performance and complexity. 

In addition, there are no obvious improvements for the standard deviation of MSEs 

of the evaluation set with a larger summation function order. Since the training results 

may be located on a local minimum that leads to a limited performance, in most 

neural-based applications many independent runs are regularly carried out in search of the 

best outcomes. This demonstrates the reason for using non-training data to evaluate the 

training quality. 

Fig. 3-23 illustrates the BERs of both the evaluation set and the test set for different 

hidden neuron multipliers and different summation function orders at SNR=15dB. The 

analogous trend in Fig. 3-23 that confirms our simulation assumption implies the 

estimation of training results with the evaluation set is feasible. 

The BER performance for different levels of the nonlinearity with different hidden 

neuron multipliers at SNR=15dB is shown in Fig. 3-24. The critical order of the system 

with the nonlinearity is higher than the one without the nonlinearity. For “Sx=1.0” and 

“Sx=0.9” with “Hx=4”, the critical order is 3, while for “Sx=0.8 and “Sx=0.7” with 

“Hx=4”, the critical order increases to 4. This appearance is reasonable and confirms our 

expectation. 

Based on the aforementioned results, the summation function order of the 

generalized MLP/BP-based DFEs is set to 3, and the hidden neuron multiplier is set to 4. 

A comparison with the LMS DFEs, the ideal VE, the traditional MLP/BP-based DFEs and 

the generalized MLP/BP-based DFEs is shown in Fig. 3-25. With channel 1 and Sx=1.0, 

the proposed approach at BER=10-4 improves 0.8dB over the traditional MLP/BP-based 

DFE and 1.9dB over the LMS DFE. The proposed approach performs better than LMS 
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DFE and the traditional MLP/BP-based DFE in the severe ISI channel without the 

nonlinearity, but degrades 1.7dB as compared to the ideal VE. Nevertheless, at Sx=0.7 

(30% truncations) with the BER is 10-3, the proposed scheme improves the traditional 

MLP/BP-based DFE by 0.8dB, the ideal VE by 2.2dB, and the LMS DFE by 4.4dB. As 

the distortions increase in the received signal, the proposed approaches achieve more 

improvement over the others. 

Subsequently, several different ISI channels are described by transfer functions, 

which are H -1 -2 -1 -2(z) = 0.408 + 0.816z  + 0.408z (z) = 0.3482 + 0.8704z  + 0.3482z, H2 3 , 

H -1 -2 -3 -4
4(z) = 0.227 + 0.460z  + 0.688z  + 0.460z  + 0.227z (z) = 0.108 + 0.215 z-1, H5  + 

0.430 z-2 -3 -4 -5 -6 -1 -2 + 0.717 z  + 0.430 z  + 0.215 z  + 0.108z (z) = 0.147 + 0.295 z  + 0.590 z, H6  

+ 0.295 z-3 + 0.590 z-4 + 0.295 z-5 -6 -1 -2  + 0.147z (z) =0.226 + 0.516 z  + 0.645 z, and H7 + 

0.516 z-3, respectively. The time domain responses of these channels are symmetric, 

except that of channel 7 is asymmetric. The lengths of channel response in channels 1, 2 

and 3 are the same, but the influences of ISI are different — channel 1 is the worst case, 

channel 2 is a better one and channel 3 is with the least interference. Moreover, channel 4, 

5, 6, and 7 with longer ISI and lower signal-to-interference ratio results in a worse signal 

quality compared to others. Specially, the channel response of channel 7 is not symmetric. 

These channels will be further used to evaluate the system performance of the 

equalization schemes. 

The simulation results based on channels 2 and 3, where the simulation conditions 

are identical to those of channel 1, are shown in Fig. 3-26 and Fig. 3-27, respectively. 

Note that the proposed approaches result in a better improvement over the LMS DFE and 

the traditional MLP/BP-based DFE in the severer ISI channel. In these three channels 

without nonlinearity, the ideal VE appear to outperform the traditional MLP/BP-based 

DFEs and the generalized MLP/BP-based DFEs. However, the accuracy of the CIR 
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estimator dominates the performance particularly, and thus the improvement of VE may 

be lower in real cases. Furthermore, the nonlinear distortions of the received signal will 

compromise the VE performance significantly. In the severer ISI channel with more 

nonlinearity, the traditional MLP/BP-based DFEs and the generalized MLP/BP-based 

DFEs outperform VE. The BER vs. SNR performance comparison with different 

equalizers for channels 1, 2, and 3 without truncations at BER=10-4 is illustrated in Tab. 

3-4. That with 30% truncations at BER=10-3 is presented in Tab. 3-5. 

Fig. 3-28 shows the simulation results with channel 4, where the training noise and 

the evaluation noise are assumed to be SNR=20dB and the SNR of the test signal is 

between 10dB and 25dB. Fig. 3-29, Fig. 3-30, and Fig. 3-31 show the simulation results 

with channel 5, 6, and 7, where the training noise and the evaluation noise are assumed to 

be SNR=15dB and the SNR of the test signal is between 10dB and 20dB. For these 

channels, the ideal VE is still the best method without nonlinear distortion in the received 

signal. Similarly, the performance of the LMS DFE and the ideal VE is limited due to 

large truncations. In these severe ISI channels, the MLP/BP-based DFEs and the 

GMLP/BP-based DFEs provide better robustness when large truncations present. 

By above simulation results, the proposed GMLP/BP-based DFEs can yield a 

substantial improvement over the traditional MLP/BP-based DFE that performs better 

than the LMS DFE. In such applications, the proposed schemes can provide more 

improvement when larger truncation occurred. The proposed schemes present better 

capability of classifying the sampling patterns, and tolerate distortions. 
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Fig. 3-21: Minimum MSE and standard deviation of MSEs of the training set in Channel 
1 at SNR=15dB: (a) Minimum MSE for different hidden neuron multipliers (Hx) and 
different summation function orders (Order), (b) Minimum MSE for different orders, (c) 
Minimum MSE for different multipliers, (d) Standard deviation of MSEs for different 
multipliers and different orders, (e) Standard deviation of MSEs for different orders, (f) 
Standard deviation of MSEs for different multipliers. 

 

 
Fig. 3-22: Minimum MSE and standard deviation of MSEs of the evaluation set in 
Channel 1 at SNR=15dB: (a) Minimum MSE for different hidden neuron multipliers (Hx) 
and different summation function orders (Order), (b) Minimum MSE for different orders, 
(c) Minimum MSE for different multipliers, (d) Standard deviation of MSEs for different 
multipliers and different orders, (e) Standard deviation of MSEs for different orders, (f) 
Standard deviation of MSEs for different multipliers. 
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Fig. 3-23: BER of the evaluation set and the test set in Channel 1 at SNR=15dB: (a) BER 
of the evaluation set for different hidden neuron multipliers (Hx) and different summation 
function orders (Order), (b) BER of the evaluation set for different orders, (c) BER of the 
evaluation set for different multipliers, (d) BER of the test set for different multipliers and 
different orders, (e) BER of the test set for different orders, (f) BER of the test set for 
different multipliers. 

 
 

 

 
Fig. 3-24: BER performance for different levels of the nonlinearity (Sx) with different 
hidden neuron multipliers (Hx) in Channel 1 at SNR=15dB. 
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Fig. 3-25: Channel 1 test results: (a) BER performance for different levels of the 
nonlinearity (Sx) at SNR=15dB, (b) BER performance for different summation function 
orders at SNR=15dB, (c) BER performance for different types of equalizers under 
training at SNR=15dB. 

 
 

 

 
Fig. 3-26: Channel 2 test results: (a) BER performance for different levels of the 
nonlinearity (Sx) at SNR=15dB, (b) BER performance for different summation function 
orders at SNR=15dB, (c) BER performance for different types of equalizers under 
training at SNR=15dB. 
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Fig. 3-27: Channel 3 test results: (a) BER performance for different levels of the 
nonlinearity (Sx) at SNR=15dB, (b) BER performance for different summation function 
orders at SNR=15dB, (c) BER performance for different types of equalizers under 
training at SNR=15dB. 

 
 

 

 
Fig. 3-28: Channel 4 test results: (a) BER performance for different levels of the 
nonlinearity (Sx) at SNR=18dB, (b) BER performance for different summation function 
orders at SNR=18dB, (c) BER performance for different types of equalizers under 
training at SNR=20dB. 
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Fig. 3-29: Channel 5 test results: (a) BER performance for different levels of the 
nonlinearity (Sx) at SNR=15dB, (b) BER performance for different summation function 
orders at SNR=15dB, (c) BER performance for different types of equalizers under 
training at SNR=15dB. 

 
 

 

 
Fig. 3-30: Channel 6 test results: (a) BER performance for different levels of the 
nonlinearity (Sx) at SNR=15dB, (b) BER performance for different summation function 
orders at SNR=15dB, (c) BER performance for different types of equalizers under 
training at SNR=15dB. 
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Fig. 3-31: Channel 7 test results: (a) BER performance for different levels of the 
nonlinearity (Sx) at SNR=15dB, (b) BER performance for different summation function 
orders at SNR=15dB, (c) BER performance for different types of equalizers under 
training at SNR=15dB. 

 
 

 
Table 3-4: The BER vs. SNR performance comparison with different equalizers  

for Channel 1, 2, and 3 without truncations at BER=10-4. 
 

Channel 
ID 

MLP/BP-based 
DFEs 

GMLP/BP-based 
DFEs (Order=3)Sx Ideal VE LMS DFEs 

1 1.0 14.0 dB 17.6 dB 16.5 dB 15.7 dB 

2 1.0 13.8 dB 16.3 dB 15.9 dB 15.7 dB 

3 1.0 12.9 dB 14.7 dB 14.7 dB 14.5 dB 

 
Simulation Conditions for Neural-based Schemes: 
  Input Neural Number = 10 (Forward part: 5, and Feedback part: 5), 
  Hidden Neural Number = 40 (Hx=4), 
  Output Neural Number = 1, 
  Training Set = 104 symbols, 
  Evaluation Set = 105 symbols, 

7  Test Set = 10  symbols, 
  Training Epoch = 103, 

-3Learning Rate = 0.5 / 0.1 (Two Phase Learning, MSE Bound = 10 ), 
Re-training Times = 50 Independent Runs. 
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Table 3-5: The BER vs. SNR performance comparison with different equalizers  

-3for Channel 1, 2, and 3 with 30% truncations at BER=10 . 
 

Channel 
ID 

MLP/BP-based 
DFEs 

GMLP/BP-based 
DFEs (Order=3)Sx Ideal VE LMS DFEs 

1 0.7 17.0 dB 19.2 dB 15.6 dB 14.8 dB 

2 0.7 15.0 dB 17.9 dB 14.9 dB 14.6 dB 

3 0.7 12.5 dB 14.6 dB 13.6 dB 13.3 dB 

 
Simulation Conditions for Neural-based Schemes: 
  Input Neural Number = 10 (Forward part: 5, and Feedback part: 5), 
  Hidden Neural Number = 40 (Hx=4), 
  Output Neural Number = 1, 
  Training Set = 104 symbols, 
  Evaluation Set = 105 symbols, 

7  Test Set = 10  symbols, 
  Training Epoch = 103, 

-3Learning Rate = 0.5 / 0.1 (Two Phase Learning, MSE Bound = 10 ), 
Re-training Times = 50 Independent Runs. 
 

 

3-2-4  Summary 

With multivariate power series as the summation function, the generalized MLP/BP 

neural network based decision feedback equalizer has been developed to compensate the 

distorted NRZ signal for severe ISI channels in wireline applications. In addition, the 

proposed approaches present continuous nonlinear pattern space mapping potential, 

leading to a better space mapping capability than the traditional MLP/BP neural networks 

in nonlinear applications. The simulation results show that the proposed equalizer can 

provide a significant improvement over the other schemes such as the LMS DFEs, the 

ideal VE, and the traditional MLP/BP-based DFEs when the received signal contains 

more distortions caused by ISI, AWGN and the nonlinearity. 
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CHAPTER 4 

MIMO GMLP/BP-based DFEs  

for Wireline Applications 

 

Interconnect paths of parallel data I/O would cause the co-channel interference. The 

transmitted signals are tainted by the intersymbol interference that caused by the 

band-limited channel, the co-channel interference that caused by crosstalk between 

different channels, and background white noise. For recover the distorted data as well as 

suppress ISI, CCI and AWGN, a multi-input multi-output (MIMO) channel equalizer is 

essential. In wireline band-limited parallel channels, the MIMO MLP/BP-based DFEs and 

the MIMO GMLP/BP-based DFEs can suppress ISI, CCI and AWGN, simultaneously. By 

the simulations, the MIMO GMLP/BP-based DFEs can yield a substantial improvement 

over the MIMO MLP/BP-based DFEs that perform better than a set of the LMS DFEs. 

This chapter is organized as follows. The MIMO MLP/BP-based DFEs are presented 

at the beginning. Afterward, the MIMO GMLP/BP-based DFEs are proposed. 

 

 

 -63-



4-1 MIMO MLP/BP-based DFEs for Overcoming ISI and 

CCI in Wireline Band-limited Parallel Channels 

An MIMO MLP/BP neural network is realized as a waveform equalizer for distorted 

nonreturn-to-zero data recovery in band-limited channels with co-channel interference. 

From the simulation results, we note that the proposed design can recover severe distorted 

NRZ data as well as suppress ISI and CCI. As a result, the better performance as 

compared to a set of LMS DFEs is achieved in the band-limited channels where the data 

rate is ten times as much as the channel bandwidth. By fixed-point simulations, the 

proposed scheme outperforms a set of LMS DFEs. Further, the internal resolution 

enhancement technique provides a better compromise between cost and performance. 

This section is organized as follows. The MIMO system is presented in subsection 1 

while subsection 2 shows the MIMO MLP/BP-based DFE. Afterward, the simulation 

conditions and results show in subsection 3. Finally, we make a summary in subsection 4. 

 

 

4-1-1 Multi-channel Environment 

If the data rate of transmitted signals is higher than the channel capacity, the received 

signal pulse is unable to complete its transition within a symbol interval. Moreover, 

interconnect paths of parallel data I/O would cause the co-channel interference and taint 

the received signals. The equivalent model for the band-limited channels with co-channel 

interference is shown in Fig. 4-1 where FIR filters are used to model the ISI channel 

responses and the CCI responses with the AWGN as the background noise. 

The ISI channel responses and CCI responses with AWGN can be written as follows: 
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where H0(z) is the transfer function of the ISI channel responses; L is the length of the ISI 

channel response; Cr(z) is the transfer function of the CCI responses; M is the length of 

the CCI response; xk
o is the input sequence of ISI response; xk

r is the input sequence of 

r-th CCI response; yk is the channel output which is warped by ISI only; ck is the sum of 

co-channel interference; nk is the AWGN; ŷk is the received signal which is distorted by 

ISI, CCI and AWGN. 

 In this work, we assume that the transfer function of the band-limited channels is 

H0(z) = 0.4665 + 0.2489z-1 + 0.1328z-2 + 0.0708z-3 + 0.0378z-4 and the transfer function of 

the co-channel interference is Cr(z) = 0.408 + 0.816z-1  + 0.408z-2. Such channel 

condition is practical in many wireline communication systems. The frequency responses 

of the ISI and CCI are illustrated in Fig. 4-2. Moreover, we use uniform distribution 

random values to build an N-by-N matrix A. We also construct a symmetric matrix  

(A+AT) and normalize this matrix to make the sum of squares of all elements be N. The 

weighting of co-channel interference between different channels is shown in Table 4-1 

where N is equal to 8. Table 4-1 represents the co-channel interference of parallel I/O 

channels in space. For example, a cable includes several parallel I/O wires. 

The received signals include the intersymbol interference that caused by the 

band-limited channel, and the co-channel interference that caused by crosstalk between 
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different channels. The transmitted signal is expected to be deteriorated substantially by 

ISI, CCI, and AWGN. 
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Fig. 4-1: Equivalent model for the band-limited channels with co-channel interference. 
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Table 4-1: Weighting of co-channel interference between different channels in space. 

 
 1 2 3 4 5 6 7 8 

1 0.2253 0.5402 0.3404 0.3298 0.4465 0.2831 0.4023 0.3974

2 0.5402 0.0944 0.4480 0.2017 0.4642 0.5114 0.3507 0.4017

3 0.3404 0.4480 0.0822 0.4380 0.4010 0.2750 0.3313 0.3290

4 0.3298 0.2017 0.4380 0.1737 0.2754 0.1670 0.2886 0.4169

5 0.4465 0.4642 0.4010 0.2754 0.1135 0.2877 0.3738 0.4772

6 0.2831 0.5114 0.2750 0.1670 0.2877 0.1451 0.0898 0.1779

7 0.4023 0.3507 0.3313 0.2886 0.3738 0.0898 0.3009 0.5230

8 0.3974 0.4017 0.3290 0.4169 0.4772 0.1779 0.5230 0.0227

 

 
 

 

 

 
 

Fig. 4-2: Frequency responses of the ISI and the CCI responses. 
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4-1-2 MIMO MLP/BP-based DFE 

The block diagram of the MIMO MLP/BP-based DFE is shown in Fig. 4-3. This 

MIMO MLP/BP-based DFE is the single hidden layer MLP architecture. The inputs of the 

MIMO MLP/BP-based DFE consist of feed-forward signals, which come from the input 

symbols by tapped-delay-line registers, and feedback signals, which come from previous 

decisions by another tapped-delay-line registers. 

Based on the results of chapter 3, all equalization schemes in this work have 11 

symbols per channel in the forward part and 5 symbols per channel in the feedback part. 

We assume there are 8 parallel channels in this system. The number of neurons in the 

input layer is equal to 128 (16-by-8). The MLP/BP-based DFEs uses the single hidden 

layer MLP architecture. The number of neurons in the hidden layer is 16. Since all the 

proposed equalization schemes have a single output per channel, the number of neurons in 

the output layer is equal to 8 (1-by-8). 
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Fig. 4-3: MIMO MLP/BP-based DFEs. 
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4-1-3 Simulation Results 

The performance of the MIMO MLP/BP-based DFE is evaluated through the 

simulations for the distorted NRZ signal recovery in the band-limited channels with 

co-channel interference. The data rate is ten times of the channel bandwidth. In this 

section, floating-point simulations of the equalization schemes are presented first 

followed by the fixed-point simulations. Finally, the internal resolution enhancement 

technique is discussed in detail. 

 

4-1-3-1  Floating-Point Simulations 

In this work, we apply the MIMO MLP/BP-base DFE to recover the distorted NRZ 

data in the band-limited channels with CCI. It is also a wireline application so we select a 

longer training set to achieve better performance. 

In the training procedure, the length of the training set is equal to 104 symbols and 

the total training epochs are 102. The two-phase learning is used with the learning rate of 

0.5 (2-1) when the mean square error of the training set is larger than 10-3, and the learning 

rate of 0.125 (2-3), otherwise. When the training epochs exceed eighty percent of the total 

epochs, the best parameters will be recorded to achieve the lowest mean square error of 

the training set in the last twenty percent of the training epochs. Hence the steady-state 

training results can be recognized. In fact, the simulations indicate no unstable problems 

as all training processes are converged. 

Because different initial conditions lead to different effects, the non-training 

evaluation set that has 105 symbols is used to examine the training quality of numerous 

independent simulation outcomes. After numerous independent training and evaluation 

runs, those yielding better outcomes will be chosen to perform a long trial with the test set, 
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and then the best one will be the final test result. The length of the test set is 107 symbols, 

and the evaluation set is its subset. In this work, we execute ten independent runs and 

select the best one as the final result. 

In this work, we compare the performance of our proposed approach with that of a 

set of LMS DFEs. We use a LMS DFE without cross inputs for a channel among these 

parallel channels. The simulation conditions are listed in Tab. 4-2. 

The band-limited channel described by the transfer function, H0(z) =0.4665 + 

0.2489z-1 + 0.1328z-2 + 0.0708z-3 + 0.0378z-4, with the co-channel interference described 

by the transfer function, Cr(z) = 0.408 + 0.816z-1  + 0.408z-2, is used to estimate the 

system performance of the LMS DFE and the MLP/BP-based DFE. This ISI channel 

response indicates that the data rate is ten times of the channel bandwidth. The training 

noise and the evaluation noise are assumed to be SNR=20dB, and SNR of the test signal 

is between 10dB and 25dB. The signal to co-channel interference ratio (SIR) is equal to 

10, 12.5, 15, 17.5, and 20, respectively. 

Fig. 4-4 shows the comparisons of the BER performance vs. SNR for the LMS DFE 

and the MIMO MLP/BP-based DFE in the band-limited channels with different SIR. The 

MIMO MLP/BP-based DFE outperform a set of LMS DFEs. Considering different SIR in 

the band-limited channels at SNR = 15dB and 20dB, Fig. 4-5 also shows the comparisons 

of the BER performance vs. SIR between a set of the LMS DFEs and the MIMO 

MLP/BP-based DFE. At SNR = 20dB, the BER performance vs. SIR for the MIMO 

MLP/BP-based DFE can improve about 2.4dB over that for a set of LMS DFEs. From Fig. 

4-4 and Fig. 4-5, the MIMO MLP/BP-based DFE reports better performance under larger 

intersymbol interference and larger co-channel interference. 
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Table 4-2: Simulation conditions for MIMO MLP/BP-based DFE. 

 

Simulation Conditions LMS DFEs MIMO MLP/BP-based DFE

Input Channel Number 1 8  

Forward Length 11 symbols 

Feedback Length 5 symbols 

Input Number per Channel 16 symbols 

Input Numbers 16 128 (16x8) 

Hidden Neuron Number --- 16 

Output Number 1 8 

4Training Set 10  symbols 

5Evaluation Set 10  symbols 

Test Set 106 symbols 

Training Epochs 100 cycles 

Re-training Times 1 10 

Learning Rate  
Searching Range 20 -10 ~ 2 20 -4 ~ 2  / 20 -4 ~ 2

Most Suitable Learning Rate 2-8
2-1 / 2-3  

(Two phase learning,  
-3MSE Bound=10 ) 

Training SNR 20 dB 

Test SNR 10 to 25 dB (Step = 1 dB) 

SIR 10, 12.5, 15, 17.5, and 20 dB 

Equalizer Number  8 1 for 8 channels 
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Fig. 4-4: BER vs. SNR for different types of equalizers in the band-limited channels  
with co-channel interference at SIR=10, 15 and 20dB. 

 
 

 

 

 
 

Fig. 4-5: BER vs. SIR for different types of equalizers in the band-limited channels  
with co-channel interference at SNR= 15 and 20dB. 
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4-1-3-2  Fixed-Point Simulations 

Based on the above floating-point simulation results, the fixed-point simulations of 

the MIMO MLP/BP-based DFEs are presented. Also, we use a hard limiter to replace the 

log-sigmoid function for low cost, leading to decreased system performance. The best 

weighting parameters yielded by the floating-point simulations are applied to the 

fixed-point simulations. In the fixed-point simulations, the test symbol number per 

channel is equal to 106. 

The BER performance under SIR=15dB, 17.5dB, and 20dB for different ADC 

resolution at SNR=15dB, 17.5dB, and 20dB are shown in Fig. 4-6. A comparison of BER 

performance versus SNR for different ADC resolution is shown in Fig. 4-7. 

From Fig. 4-6, the acceptable ADC resolution is ten bits. Unfortunately, suitable ten 

bits ADCs are too expensive for such high-speed applications. Based on the results of 

chapter 3, we also increase the internal wordlength instead of ADC resolution to achieve 

acceptable performance with a reasonable cost. The detail of the internal resolution 

enhancement technique is shown in next subsection. 
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(a) SIR = 15.0dB 

 

 
(b) SIR = 17.5dB 

 

 
(c) SIR = 20.0dB 

 
Fig. 4-6: BER performance under SIR=15dB, 17.5dB, and 20dB  
for different ADC resolution at SNR=15dB, 17.5dB, and 20dB. 
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(a) SIR = 15.0dB 

 

 
(b) SIR = 17.5dB 

 

 
(c) SIR = 20.0dB 

 
Fig. 4-7: BER performance vs. SNR for different ADC resolution  

at SIR=15dB, 17.5dB, and 20dB. 
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4-1-3-3  Internal Resolution Enhancement 

 For sensible cost consideration, the internal resolution enhancement technique has 

been applied to the proposed equalizer. We consider adding internal resolution to increase 

the performance under low ADC resolution. Thus, we can use lower resolution ADCs to 

obtain a similar performance. 

 The BER performance under SIR=15dB, 17.5dB, and 20dB for different ADC 

resolution with different internal resolution at SNR=20dB is shown in Fig. 4-8. The 

comparisons of BER performance versus SNR under SIR=15dB, 17.5dB, and 20dB with 

different ADC resolutions and different internal resolutions are shown in Fig. 4-9. 

From Fig. 4-8 and Fig. 4-9, we suggest the most suitable wordlength configuration is 

five bits ADC with ten bits internal resolution. The internal resolution enhancement 

technique can significantly improve BER performance and achieves a better compromise 

between cost and performance. 

Finally, we summarize the simulation results that apply the suggested wordlength 

configuration for the LMS DFEs and the MIMO MLP/BP-based DFEs. A comparison of 

BER performance versus SNR for the referred and the proposed equalizers at 

SIR=15.0dB, 17.5dB, and 20.0dB is shown in Fig. 4-10. The proposed scheme 

significantly outperforms the LMS DFE when large CCI presents. By this approach, we 

can realize the MIMO MLP/BP-based DFEs with reasonable cost. 
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(a) SIR = 15.0dB 

 

 
(b) SIR = 17.5dB 

 

 
(c) SIR = 20.0dB 

 
Fig. 4-8: BER performance under SIR=15dB, 17.5dB, and 20dB for different ADC 

resolution with internal resolution enhancement technique at SNR=20dB. 
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(a) SIR = 15.0dB 

 

 
(b) SIR = 17.5dB 

 

 
(c) SIR = 20.0dB 

 
Fig. 4-9: BER performance vs. SNR with different ADC resolution and different internal 

resolution at SIR=15dB, 17.5dB, and 20dB. 
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Fig. 4-10: BER performance vs. SNR for the LMS DFEs and MIMO MLP/BP-based 
DFEs at SIR=15.0dB, 17.5dB, and 20.0dB. 

 
 

 

4-1-4 Summary 

The proposed scheme can overcome ISI while suppress CCI. According to the 

simulation results, the MIMO MLP/BP-based DFE can recover severe distorted NRZ 

signals and suppress CCI to achieve better BER performance than LMS DFEs in the 

band-limited channels in which the data rate is ten times as much as the channel 

bandwidth. Because the proposed equalizer is a multi-input multi-output architecture, we 

can extend the input and output number for more complex system. 

In the fixed-point simulations, the proposed equalizer also outperforms the LMS 

DFE. Since suitable high-speed ADCs are expensive, the internal resolution enhancement 

technique has been applied to the LMS DFEs and the MIMO MLP/BP-based DFEs to 

provide acceptable performance with lower resolution ADCs. This method will results in 
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a better compromise between cost and performance. Moreover, the proposed scheme 

significantly outperforms the LMS DFE when large CCI presents. 

However, the performance of the MIMO MLP/BP-based DFEs is not good enough 

under small background noise with large co-channel interference conditions. For such 

situations, the MIMO GMLP/BP-based DFEs can provide better performance. The detail 

of the GMLP/BP-based DFEs is shown in next section. 

 

 

4-2 MIMO GMLP/BP-based DFEs for Overcoming ISI and 

CCI in Wireline Band-limited Parallel Channels 

Referring to the MIMO MLP/BP-based DFEs and the GMLP/BP-based DFEs, the 

MIMO GMLP/BP neural networks are realized as waveform equalizers for distorted 

nonreturn-to-zero data recovery in band-limited channels with co-channel interference. 

From the simulation results, we note that the proposed design can recover severe distorted 

NRZ data as well as suppress ISI, CCI and AWGN. As a result, the better performance as 

compared to the LMS DFEs and the MIMO MLP/BP-based DFEs is achieved in the 

wireline band-limited channels with co-channel interference. In this work, we assume that 

the parallel interconnection paths lay on a plane within a chip or within a printed circuit 

board (PCB). 

This section is organized as follows. The equivalent channel model is presented in 

subsection 1 while subsection 2 shows the proposed architecture. Afterward, the 

simulation conditions and results show in subsection 3. Finally, we make a summary in 

subsection 4. 
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4-2-1 Multi-channel Environment within a Plane 

In this work, the channel characteristics are same as those in the previous section 

except the weighting of co-channel interference between different channels. We assume 

that the parallel interconnection paths lay on a plane within a chip or within a PCB. 

Because the effect of CCI should be proportional to the distance with an inverse ratio, it is 

a worse case that uses sorted uniform distribution random values between 1 and 0 to 

simulate the effects between different channels. By this way, we construct an N-by-N 

symmetric matrix and normalize this matrix to make the sum of squares of all elements be 

N. The weighting of co-channel interference between different channels is shown in Table 

4-3 where N is equal to 8. 

 

 

 
Table 4-3: Weighting of co-channel interference between different channels on a plane. 

 
 1 2 3 4 5 6 7 8 

0 0.7070 0.5984 0.3760 0.3112 0.1641 0.1576 0.13381 
0.7070 0 0.4131 0.3155 0.2690 0.1800 0.1398 0.02152 
0.5984 0.4131 0 0.5883 0.4451 0.3705 0.2296 0.03533 
0.3760 0.3155 0.5883 0 0.6650 0.4303 0.4189 0.00024 
0.3112 0.2690 0.4451 0.6650 0 0.5375 0.2003 0.11605 
0.1641 0.1800 0.3705 0.4303 0.5375 0 0.3726 0.14206 
0.1576 0.1398 0.2296 0.4189 0.2003 0.3726 0 0.63197 
0.1338 0.0215 0.0353 0.0002 0.1160 0.1420 0.6319 0 8 
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4-2-2 MIMO GMLP/BP-based DFE 

In this work, the I/O format is same as that in section 4-1. The neural network 

architecture is similar to that in section 3-2. The block diagram of the MIMO generalized 

MLP/BP-based DFE is shown in Fig. 4-11. This MIMO generalized MLP/BP-based DFE 

is the single hidden layer MLP architecture. The inputs of the MIMO generalized 

MLP/BP-based DFE consist of feed-forward signals, which come from the input symbols 

by tapped-delay-line registers, and feedback signals, which come from previous decisions 

by another tapped-delay-line registers. Because the order of the neuron of the generalized 

MLP/BP neural networks is more than one, it is necessary to generate the power terms for 

the inputs in each layer. Although the complexity of the MIMO GMLP/BP-based DFE is 

higher than that of the MIMO MLP/BP-based DFE, the MIMO GMLP/BP-based DFE 

provide better performance. 

Same as the previous configurations, all equalization schemes in this work have 11 

symbols per channel in the forward part and 5 symbols per channel in the feedback part. 

We also assume there are 8 parallel channels in this system. The number of neurons in the 

input layer is equal to 128 (16-by-8). The MLP/BP-based DFEs uses the single hidden 

layer MLP architecture. The number of neurons in the hidden layer is 16. Since all the 

proposed equalization schemes have a single output per channel, the number of neurons in 

the output layer is equal to 8 (1-by-8). The summation function order of the generalized 

MLP/BP-based DFEs is restricted to 1, 2, and 3 that is denoted by “Order 1”, “Order 2”, 

and “Order 3”, respectively. 
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Fig. 4-11: The MIMO generalized MLP/BP-based DFEs. 
 

 

 

4-2-3 Simulation Results 

The performance of the MIMO generalized MLP/BP-based DFE is evaluated 

through the simulations for the distorted NRZ signal recovery in the band-limited 

channels with co-channel interference. The data rate is ten times of the channel bandwidth. 

It is a wireline application so we can select a longer training set to achieve better 

performance. 

In the training procedure, the length of the training set is equal to 104 symbols and 

the total training epochs are 102. The two-phase learning is used with the learning rate of 

0.5 (2-1) when the mean square error of the training set is larger than 10-3, and the learning 

rate of 0.125 (2-3), otherwise. When the training epochs exceed eighty percent of the total 

epochs, the best parameters will be recorded to achieve the lowest mean square error of 

the training set in the last twenty percent of the training epochs. Hence the steady-state 
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training results can be recognized. In fact, the simulations indicate no unstable problems 

as all training processes are converged. 

Because different initial conditions lead to different effects, the non-training 

evaluation set that has 105 symbols is used to examine the training quality of numerous 

independent simulation outcomes. After numerous independent training and evaluation 

runs, those yielding better outcomes will be chosen to perform a long trial with the test set, 

and then the best one will be the final test result. The length of the test set is 107 symbols, 

and the evaluation set is its subset. In this work, we execute fifty independent runs and 

select the best one as the final result. 

Similarly, we compare the performance of our proposed approach with that of a set 

of LMS DFEs. We use a LMS DFE without cross inputs for a channel among these 

parallel channels. The simulation conditions are listed in Tab. 4-4. 

The band-limited channel described by the transfer function, H0(z) =0.4665 + 

0.2489z-1 -2 -3 -4 + 0.1328z  + 0.0708z  + 0.0378z , with the co-channel interference described 

by the transfer function, Cr(z) = 0.408 + 0.816z-1 -2  + 0.408z , is used to estimate the 

system performance of the LMS DFEs, the MIMO MLP/BP-based DFE, and the MIMO 

generalized MLP/BP-based DFE. This ISI channel response indicates that the data rate is 

ten times of the channel bandwidth. The training noise and the evaluation noise are 

assumed to be SNR=20dB, and SNR of the test signal is between 10dB and 25dB. The 

signal to co-channel interference ratio (SIR) is equal to 10, 12.5, 15, 17.5, and 20, 

respectively. 

Fig. 4-12 shows the comparisons of the BER performance vs. SNR for the LMS 

DFEs, the MIMO MLP/BP-based DFE, and the MIMO GMLP/BP-based DFE in the 

band-limited channels with different SIR. In this figure, we find that the MIMO 

GMLP/BP-based DFE outperform the MIMO MLP/BP-based DFE under small 
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background noise with large co-channel interference. Considering different SIR in the 

band-limited channels at SNR=15dB and 20dB, Fig. 4-13 also shows the comparisons of 

the BER performance vs. SIR for the LMS DFEs, the MIMO MLP/BP-based DFE, and 

the MIMO GMLP/BP-based DFE. As compared with LMS DFEs and the MIMO 

MLP/BP-based DFE, the MIMO GMLP/BP-based DFE can improve the SIR performance 

about 2.5dB and 0.3dB at BER=10-3. Moreover, we can find that the suitable summation 

function order is equal to two when small interference presented, or three when large 

distortion appeared. 

 

 

 
 

Fig. 4-12: BER vs. SNR for different types of equalizers in the wireline band-limited  
channels with co-channel interference at SIR=10, 15 and 20dB. 
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Table 4-4: Simulation conditions for MIMO GMLP/BP-based DFE. 

 
MIMO GMLP/BP-based 

DFE Simulation Conditions LMS DFEs 

Input Channel Number 1 8 channels 

Forward Length 11 symbols 

Feedback Length 5 symbols 

Input Number per Channel 16 symbols 

Input Numbers 16 128 (16x8) 

Hidden Neuron Number --- 16 

Output Number 1 8 

Summation Function Order --- 1, 2, and 3 

4Training Set 10  symbols 

5Evaluation Set 10  symbols 

Test Set 106 symbols 

Training Epochs 100 cycles 

Re-training Times 1 50 

Learning Rate 
Searching Range 20 -10 ~ 2 20 -4 ~ 2  / 20 -4 ~ 2

Most Suitable Learning Rate 2-8
2-1 / 2-3  

(Two phase learning,  
-3MSE Bound=10 ) 

Training SNR 20 dB 

Test SNR 10 to 25 dB (Step = 1 dB) 

SIR 10, 12.5, 15, 17.5, and 20 dB 

Equalizer Number  8 1 for 8 channels 
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Fig. 4-13: BER vs. SIR for different types of equalizers in the wireline band-limited  
channels with co-channel interference at SNR= 15 and 20dB. 

 
 

 

4-2-4 Summary 

According to the simulation results, the MIMO GMLP/BP-based DFE can recover 

severe distorted NRZ signals and suppress CCI to achieve better BER performance than 

LMS DFEs and the MIMO MLP/BP-based DFE in wireline band-limited channels in 

which the data rate is ten times as much as the channel bandwidth. Also the proposed 

scheme is a multi-input multi-output architecture, we can extend the input and output 

number for more complex system. Overall, the MIMO GMLP/BP-based DFE can yield a 

substantial improvement over the MIMO MLP/BP-based DFE that performs better than 

the LMS DFEs. 
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CHAPTER 5 

MLP/BP-based Soft DFEs with TCM  

for Wireless Communications 

 

For more efficient data transmissions, a new MLP/BP-based channel equalizer is 

proposed to compensate for multi-path fading in wireless applications. In this chapter, for 

better system performance, we apply the soft output and the soft feedback structure as 

well as the soft decision channel decoding. Moreover, to improve packet error rate (PER) 

and bit error rate (BER), we search for the optimal scaling factor of the transfer function 

in the output layer of the MLP/BP neural networks and add small random disturbances to 

the training data. As compared with the conventional MLP/BP-based DFEs and the soft 

output MLP/BP-based DFEs, the proposed MLP/BP-based soft DFEs under multi-path 

fading channels can improve over 3dB ~ 0.6dB at PER=10-1 and over 3.3dB ~ 0.8dB at 

BER=10-3. 

The system diagram of wireless digital communication systems is shown in Fig. 5-1. 

This chapter is organized as follows. The wireless channel environment is presented in 

section 1. Section 2 makes a discussion for the error control coding while section 3 shows 
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the architecture of the MLP/BP-based soft DFEs with bit-interleaved TCM. Afterward, 

the simulation results show in section 4. Finally, we make a summary in section 5. 
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Fig. 5-1: System Diagram. 
 

 

5-1 Wireless Channel Environment 

The description of the equivalent channel model for wireless digital transmission 

systems is shown in Fig. 5-2. In this model, a finite impulse response (FIR) filter is used 

to model the ISI channel response and the AWGN is used to model the background noise. 

The equivalent FIR filters of the multi-path fading channels are time varying. In this work, 

we assume the FIR filter coefficients constant within a packet interval. Nevertheless, in 

the fast channel variation, we can select a smaller packet to avoid this problem. 

The ISI channel response with AWGN can be written as follows: 

L
L zh...zhzhhH(z) −−− ⋅++⋅+⋅+= 2

2
1

10 ,       (5-1) 

mj
mm eAh ϕ⋅= ,             (5-2) 
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where H(z) is the transfer function of the ISI channel; hm is the coefficient of the channel 

response that is a complex value; L is the length of the channel response; Am is the 

magnitude of hm; φm is the phase of hm; xk is the input sequence; yk is the channel output 

which is warped by ISI only; nk is the AWGN; ŷk is the received signal which is distorted 

by both ISI and AWGN. 

 In this work, we assume that the channel length is six, and the transmission 

modulation is QPSK. In (5-2), we generate the magnitude by uniform distribution random 

values between 0 to 1 and the phase by different uniform distribution random values from 

0 to 2π. The filter responses are normalized to unity. The channel responses of the 

multi-path fading channels are shown in Fig. 5-3 and their frequency responses are 

illustrated in Fig. 5-4. 
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Fig. 5-2: The Equivalent Model for the Multi-path Fading Channels. 
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Fig. 5-3: Channel Responses of Multi-path Fading Channels. 
 

 

 

 

 
 

Fig. 5-4: Frequency Responses of Multi-path Fading Channels. 
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5-2 Error Control Coding 

Error control coding is often applied in a communication system to enhance the error 

performance. Among the well-known coding techniques, the convolutional code would be 

the most popular one that provides the superior error correction capacity and has 

reasonable decoding complexity. The Viterbi algorithm [7] is a maximum likelihood 

decoding for convolutional codes. With the probabilistic soft inputs, the Viterbi decoder 

can optimally decode the received codeword. In the present wireless system, the bit 

interleaved 64 states convolutional codes is adopted while considering the system 

complexity and the error performance. 

The bit interleaving is included for the fading channel to achieve a decoding 

performance close to that in the AWGN channel [8]. A larger convolutional code can 

further provide better error resistance; however, the decoding complexity increases 

exponentially as the constraint length increases, and the decoder would be unacceptable in 

real applications. 

 

 

5-3 Architecture 

In this section, the MLP/BP-based soft DFE with bit-interleaved trellis coded 

modulation (TCM) is presented for the distorted QPSK signal recovery in multi-path 

fading channels under different AWGN power. For better performance, we select the 

unipolar sigmoid function with the scaling adjustment as the transfer function of the 

MLP/BP neural networks and show as below. 

njnetKnj e
netf ⋅−+

=
1

1)( ,            (5-5) 

where K is the scaling factor. 
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 As compared with the conventional hard output MLP/BP-based DFE, we apply the 

soft decision channel decoding to the soft output MLP/BP-based equalization schemes for 

better performance. The soft output features of the equalizer are quite suitable for the soft 

decision channel decoding and work much better than the conventional hard output one. 

Moreover, we apply not only the soft output but also the soft decision to the 

MLP/BP-based DFE to further advance the decoding performance of the soft decision 

channel decoder. 

In this section, we first report the proposed MLP/BP-based soft DFE architecture. 

Subsequently, the solution for the soft decision channel decoding and the interleaving is 

presented – Combine this neural-based soft equalization scheme and bit-interleaved trellis 

coded modulation to achieve better system performance in wireless applications. 

 

5-3-1 The MLP/BP-based Soft DFEs 

We apply the soft output and the soft decision feedback structure to MLP/BP-based 

channel equalizers for the soft decision channel decoding and improve whole performance 

on multi-path fading channels. The block diagram of the MLP/BP-based soft DFEs is 

shown in Fig. 5-5. We use a single-hidden-layer MLP/BP neural network architecture, 

where the log-sigmoid function is used as the transfer function of the neurons. There are 

four tapped delay line registers for I-channel input, I-channel feedback, Q-channel input, 

and Q-channel feedback, respectively. The MLP/BP neural network has two output 

neurons that correspond to I-channel output and Q-channel output. 

In order to increase the performance, we find the optimal scaling factor for the 

transfer function in the output layer of the MLP/BP neural networks and add extra small 

random disturbances to the training data. The scaling factor adjustment enlarges the 

mapping range of the output of the MLP/BP-based soft DFEs and improves the soft 
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decision channel coding. With the extra small random disturbances in the training data, 

the training results are able to avoid the local minimum of the cost function, achieving 

better training quality. The suitable scaling factor and the disturbance magnitudes are 

selected by experiences and experiments. 

In this work, we search the most suitable input configuration by assuming different 

forward taps and feedback taps of the equalizers. As a result, all neural-based equalization 

schemes have 17 symbols in the forward part and 8 symbols in the feedback part. Because 

the signal includes real part and imaginary part, we separate the input symbols to 

I-channel and Q-channel. Accordingly, the number of neurons in the input layer is equal 

to 50 (25×2). All of the neural-based equalizers in this work use the single hidden layer 

MLP architecture. The number of neurons in the hidden layer is equal to 25. Since all of 

the equalization schemes produce the detection of a QPSK symbol each time, the number 

of neurons in the output layer is equal to 2 (1×2), corresponding to the outputs of 

I-channel and Q-channel. 
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Fig. 5-5: MLP/BP-based Soft DFEs for Wireless Applications. 
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5-3-2 Soft Decision Channel Coding and Interleaving 

Based on the soft outputs from the equalization, we use the soft inputs Viterbi 

decoder to improve the decoding performance. As compared with the hard-decision 

decoding algorithm, about 2dB-3dB improvement in SNR can be achieved [10]. The 

survivor memory is also truncated to be five times the constraint length for negligible 

truncation error. 

Besides, the bit interleaving is integrated to increase the decoding performance. The 

size of the bit interleaving relates to the channel response length, the frame size of 

equalizers, and the decoding complexity, a trade-off between the performance and the cost. 

We decide the bit interleaving size from the channel models as well as the experiments. 

In this work, the coding rate of the TCM is equal to 1/3, and the size of the block 

interleaver is equal to 1024 (32×32). By combining this neural-based soft equalization 

scheme and bit-interleaved trellis coded modulation, we can enhance whole system 

performance in wireless communications. 

 

 

5-4 Simulation Results 

The overall performance of the MLP/BP-based soft DFEs with bit-interleaved TCM 

is evaluated through the simulations for the distorted QPSK signal recovery in multi-path 

fading channels under different AWGN power. In these simulations, we apply the 

proposed architecture to different packet size and prove the proposed scheme with better 

performance. 

The length of the training symbols within a packet is equal to 128 symbols and the 

total training epochs are 40. When the training epochs exceed fifty percent of total epochs, 
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the best parameters will be recorded to achieve the lowest mean square error of the 

training set. The length of transmitted data within a packet is 103, 2×103, 4×103, and 

8×103 bits, respectively. There are 103 packets tested in different configurations. 

In this work, different learning rates, equal to 1, 0.5, 0.25, and 0.125, have been 

evaluated for all of the equalization schemes. For the conventional MLP/BP-based DFE, 

the soft output MLP/BP-based DFE, the MLP/BP-based soft DFE, and the 

MLP/BP-based soft DFE with transfer function scaling factor adjustment, the most 

suitable learning rate is equal to 0.5, 0.25, 0.25, and 0.5, respectively. 

For the MLP/BP-based soft DFEs, different scaling factor of the transfer function in 

the output layer of the MLP/BP neural networks, equal to 1, 0.5, 0.25, and 0.125, have 

been evaluated. For this application, the most suitable scaling factor is 0.5. Moreover, 

different magnitudes of extra small random disturbances have been added to the training 

data to improve the training quality. From experiments, the most suitable magnitude is 

about 10% of the training signal. Thus, the proposed MLP/BP-based soft DFEs has 

included the suitable scaling factor to the transfer function of the output neurons and 

added the suitable magnitude of extra random disturbances to the training data. 

In this work, the system configurations and simulation conditions are listed in Tab. 

5-1. When the packet data length is equal to 103 bits, the PER performance for different 

types of equalizers is shown in Fig. 5-6. As compared with the conventional 

MLP/BP-based DFE and the soft output MLP/BP-based DFE, the proposed 

MLP/BP-based soft DFE under multi-path fading channels with AWGN can improve over 

3.0dB and 0.6dB at PER=10-1. When the packet data length is set to 8×103 bits, the PER 

performance for different types of equalizers is shown in Fig. 5-7. The proposed approach 

improves 0.4dB over the soft output MLP/BP-based DFE and 3.4dB over the 

conventional MLP/BP-based DFE at PER=10-1. Fig. 5-8 shows the PER performance for 
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different types of equalizers with different packet data length at Eb/N0 = 7.5dB and 

10.0dB. We can observe the large packet size results in poor performance. Since the 

multi-path fading channels are time varying, we select a smaller packet size for faster 

channel variant rate. Also, a smaller packet size is selected for large background noise. 

For data communications, we focus on the PER performance, whereas the BER 

performance is the major concern for audio or multi-media communications. When the 

packet data length is equal to 103 bits, the BER performance for different types of 

equalizers is shown in Fig. 5-9. As compared with the conventional MLP/BP-based DFE 

and the soft output MLP/BP-based DFE, the proposed MLP/BP-based soft DFE under 

multi-path fading channels with AWGN can improve over 3.6dB and 0.9dB at BER=10-3. 

When the packet data length is 8×103 bits, the BER performance for different equalizer 

types is shown in Fig. 5-10. As compared with the conventional MLP/BP-based DFE and 

the soft output MLP/BP-based DFE, the proposed MLP/BP-based soft DFE under 

multi-path fading channels with AWGN can improve over 3.3dB and 0.8dB at BER=10-3. 

The BER performance for different types of equalizers with different packet data length at 

Eb/N0 = 7.5dB and 10.0dB is shown in Fig. 5-11. The PER performance improvement at 

PER=10-1 and the BER performance improvement at BER=10-3 are listed in Tab. 5-2. 
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Table 5-1: System configurations and simulation conditions. 

 

MLP/BP-based DFE MLP/BP-based Soft DFE 

Type 
Hard Output Soft Output

Without 
Scaling factor 

adjustment 

With  
Scaling Factor 

adjustment 

Forward Length 17 symbols 

Feedback Length 8 symbols 

Input Tap Number 25 symbols 

Input Neuron Numbers 50 (25×2) 

Hidden Neuron Number 25 

Output Neuron Number 2 (1×2) 

Training Symbol Number 128 symbols 

Training Epochs 40 cycles 

Packet Data Length 1K, 2K, 4K, and 8K 

Test Packet Number 1000 packets 

Learning Rate  

 

Searching Range 20 -3 ~ 2

Most Suitable  
Learning Rate 2-1 2-2 2-2 2-1

Scaling Factor  
Searching Range --- --- --- 20 -3 ~ 2

Most Suitable  
Scaling Factor --- --- --- 2-1

Test Eb/N 5dB – 13 dB (Step=0.5dB) 0
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Fig. 5-6: PER Performance for different types of equalizers  
when packet data length is equal to 103. 

 
 

 

 

 
 

Fig. 5-7: PER Performance for different types of equalizers  
when packet data length is equal to 8×103. 
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Fig. 5-8: PER Performance for different types of equalizers with different  
packet data length at Eb/N  = 7.5dB and 10.0dB. 0

 
 

 

 

 
 

Fig. 5-9: BER Performance for different types of equalizers  
when packet data length is equal to 103. 
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Fig. 5-10: BER Performance for different types of equalizers  
when packet data length is equal to 8×103. 

 
 

 

 

 
 

Fig. 5-11: BER Performance for different types of equalizers with different  
packet data lengths at Eb/N  = 7.5dB and 10dB. 0
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Table 5-2: The PER and BER performance improvement. 

 

MLP/BP-based DFE MLP/BP-based Soft DFE 

With  
Scaling Factor 

Adjustment 
and Extra 
Random 

Disturbances 

Type Original 
Setting Hard Output Soft Output

 

 

5-5 Summary 

With the soft output and the soft decision, the MLP/BP-based channel equalizers can 

offer more information for the soft decision channel decoding. Moreover, the system 

performance is further improved by searching the most suitable scaling factor for the 

transfer function in the output neurons and adding the suitable magnitude of extra small 

random disturbances to the training data. The proposed approach is applied to compensate 

Packet Data Length Eb/N  Improvement at PER=10-1
0

1K --- > 2.3 dB > 2.6 dB > 3.0 dB 

2K --- > 2.5 dB > 2.7 dB > 3.0 dB 

4K --- >2.3 dB >2.6 dB > 2.8 dB 

8K --- > 3.0 dB > 3.2 dB > 3.4 dB 

Packet Data Length Eb/N  Improvement at BER=10-3
0

1K --- > 2.7 dB > 3.2 dB > 3.6 dB 

2K --- > 2.7 dB >3.1 dB > 3.4 dB 

4K --- > 2.6 dB > 3.1 dB > 3.4 dB 

8K --- > 2.5 dB > 3.0 dB > 3.3 dB 
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for the distorted QPSK signals in multi-path fading channels with AWGN and results in a 

significant performance improvement. In conclusion, the proposed MLP/BP-based soft 

DFE with bit-interleaved TCM provides a potential solution for wireless communications. 
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CHAPTER 6 

Conclusion and Future Works 

 

6-1 Conclusion 

In this study, we propose a new neural network model that applies a multivariate 

power series as the summation function of the MLP/BP neural networks. Compared to the 

conventional approach using a first order multivariate polynomial, the boundaries 

separating the pattern space change from piecewise linear into piecewise nonlinear. In 

addition, when deduced by the gradient steepest descent method, the corresponding 

training algorithm is a gradient method; consequently, the convergence solutions exist. 

Therefore, this new model is a generalized MLP/BP neural network (GMLP/BP) that is 

more flexible than other piecewise linear approaches because of the nonlinear separating 

pattern space. The traditional MLP/BP neural network is a special case of the proposed 

generalized MLP/BP neural network. 

As the channel equalization schemes can be thought of a mapping from the received 

waveform to the transmitted data. The pattern recognition techniques have been used to 

identify the severely distorting date. Having the capability of classifying the sampling 
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pattern and fault tolerance, artificial neural networks are very suitable for the channel 

equalizers. As a result, we apply the traditional and the generalized MLP/BP neural 

networks to channel equalization designs. From the simulation results, the proposed 

neural-based channel equalization schemes can outperform the conventional LEs and 

LMS DFEs. 

For wireline communications, we apply the MLP/BP-based channel equalization 

schemes to different applications. In the wireline band-limited channels that the data rate 

is about ten times as much as the channel bandwidth, the MLP/BP-based DFEs provide 

better performance, tolerate sampling clock skew, and permit channel response variance. 

However, the traditional MLP/BP-based DFEs are not good enough for the severe ISI 

channels with nonlinear distortions. In such channels, the GMLP/BP-based DFEs can 

outperform the traditional MLP/BP-based DFEs that do better than the LMS DFEs. In 

wireline band-limited parallel channels, the MIMO MLP/BP-based DFEs and the MIMO 

GMLP/BP-based DFEs can suppress ISI, CCI and AWGN, simultaneously. By the 

computer simulations, the MIMO GMLP/BP-based DFEs can yield a substantial 

improvement over the MIMO MLP/BP-based DFEs that perform better than a set of the 

LMS DFEs. 

For wireless communications, a modified approach, which is also based on the 

MLP/BP neural network, is presented. We apply the soft output and the soft decision 

feedback structure to the MLP/BP-based channel equalization scheme that concatenates 

with the soft decision channel decoder to improve whole performance on multi-path 

fading channels. Moreover, the performance of the MLP/BP-based soft DFE is also 

increased with the optimal scaling factor searching of the transfer function in the output 

layer of the MLP/BP neural networks and extra small random disturbances added to the 

training data. By the simulations, the MLP/BP-based soft DFEs with bit-interleaved TCM 
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outperform the MLP/BP-based DFEs with bit-interleaved TCM and the soft output 

MLP/BP-based DFEs with bit-interleaved TCM in multi-path fading channels. 

 

 

6-2 Future Works 

In this thesis, we have proposed the generalized MLP/BP-based DFEs and applied to 

wireline communications. Moreover, we also apply the MLP/BP-based soft DFEs with 

bit-interleaving soft decision channel coding to wireless communications. For further 

improvements, we are deducing a general form of MLP/BP neural networks in the 

complex domain. It should be applied to wireless communications. 

Now, we are tuning the training parameters of the GMLP/BP-based soft DFEs to 

solve the overfitting problem for wireless communications. Moreover, the MIMO 

MLP/BP-based soft DFEs and the MIMO GMLP/BP-based soft DFEs will be developed 

for wireless communications. 

To realize the proposed neural-based equalization schemes for different applications, 

several hardware designs are currently under investigation. The MLP/BP-based DFEs and 

the GMLP/BP-based DFEs can be applied to wireline high-speed peripheral interface. 

The MIMO MLP/BP-based DFEs and the MIMO GMLP/BP-based DFEs should be 

applied to high-speed system bus. The MLP/BP-based soft DFEs with bit-interleaving 

TCM are possible solutions in wireless communications. Although the architecture of the 

proposed equalization schemes is more complex than that of the conventional methods, 

we think that the rapid progress of VLSI technology will afford more complex approaches 

for better performance. Also, we can use digital signal processors to realize the proposed 

neural-based equalization schemes as soft-define radios (SDR). The implementations of 

the proposed neural-based channel equalization schemes are our research activities in the 
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future. 

Our approaches show very good results for channel equalization applications. 

Further research activities have been initiated to explore how to improve and implement 

such techniques for wireline and wireless communications. Still, there are many open 

problems for further research activities. 
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