B 3t COTS 2 Zacdl ~ 3 4% 2 H351 8 fen
%Efﬁﬁifiﬁg,ﬁ,ﬁi

OpenDReaMS: Policy Controlled Digital Rights Management

Wrapper for COTS

oy o4 R i

R g g4

a2 COTS 2 Kty ~ M3 R 2R3 Efpen
R IE kA
OpenDReaMS: Policy Controlled Digital Rights Management

Wrapper for COTS

P A N Student: Tsue-Yi Huang
R e B4 Advisor: Dr. Shih-Kun Huang

B oo+ F
CARC S I S R S A

JEET

=~

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
In Partial Fulfillment of the Requirements

For the Degree of

Master
In
Computer Science

June 2006

Hsinchu Taiwan, Republic of China

PER R LT S

J~4

).3

Bt ¥ COTS 3 258088 ~ 1= 442 2 831 T fmeh
%%'ﬁﬂﬁ‘éfu

(R g e s

Rl ~FFAfEE 128 (P97 AL

&

REFATPRAREE Y F) M ST o P R0 =058 KL RE St -
PR » G R [~ KR PRI R R - A e - Y
TR > FEBT st A P IR IIC A P |~ 2R P IR B AR e
(DRM)ESfl. = S 775 - = [FUA 12) DRM SIS i i s) 5!
DRM FEATIOF = 19t 25 PHRH LR DGR b= fio T SRUs e
ot o SRR BT AT - R IR B RO 15047 SR 9
%%ﬂ’éﬁﬁﬁﬁﬂn'*T%@%Wﬁ%wﬂﬂba%m%’gaumf@
= el gﬂilﬁa%ﬁ‘fﬁu Y PIR E ER) (IRt
w2 %ﬁme#%wwy%@m%ﬁb“*Io SR
AR B TR R [R SRR S I

OpenDReaMS: Policy Controlled Digital Rights Management

wrapper for COTS

Student: Tsue-Yi Huang Advisor: Shih-Kun Huang

Department (Institute) of Computer Science and Engineering
National Chaio Tung University

Abstract

With the fast development and increasing use of the Internet, it has been a major
trend to distribute content in digital form. At the same time, how to protect the
copyright of digital content is getting more important. In this thesis, we develop an
open-source system that offers digital rights management (DRM) capability to the
rendering software. It can be used:for commercial off the shelf (COTS) software
without source code. Through our systém, we ¢an introduce DRM to the non-DRM
rendering software. Besides, we can adjust the control policy of rendering software
and protect the digital content withoutconsidering the restriction of content format for
wider applications. Since the source.code of COTS is not available, we use the
approach of software plug-in to detect, analyze and intercept the control and
information flow of the rendering software, and implement the protection for digital
content in client side. We also design a simple and complete DRM workflow which
encompasses the management process of the server and client side. The system has
been tested by wrapping popular COTS readers that are commonly used and prove the

applicability and feasibility of our system.

e

PRGSO C R o~ RN RATS) > L ESS s R
[AL et | U frony SBURL e 1S PSRRI S o - 25 o 4R -

R I M3 PSS RL SR SO S
s ﬁ AR EUD o HF T [”’T F”* Y o fl %7t meeting fIOfE (5 -
7 AT BT debug e s f o A T A -

Pl CRIRBIURRA PRI ISR O F R s SE T F g
R H D S ORI RI@@7 » SuPELE P o T Y RS G
R 251 SRR BTV RL 0 R S HIED

—fi

Table of Contents

T B s iii
N o111 - Tod RSP PRPRS PSRRI iv
P v
Table Of CONIENES........oiieice et nne e Vi
LISt Of TADIES ..o viii
LISt OFf FIQUIE oottt ettt re e te e nneas iX
Lo INEFOTUCTION ..ttt bbb 1
1.1. Problem deSCriPtiONc.ooviiiiiiieceee e 1

1.2. BaCKGIOUNG ... 1
1.2.1. Digital Rights Managementcocovvrerininenene s, 2

1.21.1. CONTENT SENVEL ... 2

1.2.1.2. LICENSE SEIVEN ..o 3

1.2.1.3. CoNteNt REATEY ..o 3

1.2.14. WOrking fIoOW........ccooveiiiece e 3

1.2.2. Rights EXpression LanQUAGE.ccevvvveereerieseeieeieseeseeee s 4

1.3. MOTIVALION.........c i b i s 5

1.4. Objective.......... ¥, putumbe M Bcoeeeeeerennnenennnesnesneenes 6

1.5. SYNOPSIS e Sk drai ek b antanbe e At ee et ebe bt e se e et e bbbt b e ene s 8

2. Related WOKK ... i B i it 9
2.1. DRM A CNI e TUNES i i iiismmnsssitte e et ste sttt eneas 9

2.2. System Call Intercepting TeChNIQUES..........cccevveieveeiesiieieere e 12

2.3. Rights EXPression LanQUAagEScccocveververieeieseeseeeesieesieeiessaeseens 13

2.4, EXiSting DRIM SYSTEMISciieiieiecieeiii e e e 14

3. Research MEethodcoooiiiiii s 16
3.1. System ArChITECTUNE........ccviieieece e 16
3.1.1. CONTENT SEIVET .o 17

3.1.2. LICENSE SEIVET ..c.viiiiiiiiieiieiee et 17

3.1.3. LICENSE PIrOXY .vveiiieieiieeie sttt se e sre e sna e 17

3.14. [1| 1< ST 17

3.1.5. USEE WIFAPPET ...ttt 18

3.1.6. Encrypted, Decrypted and Scrambled Data..............c.ccecueee. 19

3.1.7. COTS REAUET ..o s 19

3.2. WOTKING FIOW.....ccoiiiicic e 19

O 1001 0] (=10 g T=T] 7 U Lo] o IS SSPSPR 21
4.1. USEE WIFAPPET ...ttt 21
4.1.1. INTErCEPLiON STEPS ...oovveieie e 23

Vi

4.1.2. Function INterceptionccceveeieieeie e 24

4.1.2.1. RENAEN ... s 24

4.1.2.2. PrINT. s 27

4.1.2.3. Copy, Cut, Paste.......cccceiviiiiiiiiee e 27

4.1.2.4. Print Screen (in the keyboard)...........cc.cccoeverienen, 27

4.1.2.5. SAVE. ettt 28

4.1.3. Security INtErceptioncccccvvieeieeiesiese e 29

4.1.3.1. Drag-Drop.....ccccviiiiiiiiie i 29

4.1.3.2. View Source Code (inweb page) ...ccccceevvevvevveeneenne. 29

4.2. [1| 1= SR OPSRTPSN 29

4.3. LICENSE SEIVEY ..ottt et 32

4.4. LICENSE PIrOXY ..uviiuiiiieiie ettt sttt st 34

4.5. Experience and DiSCUSSIONSccccovieeiieiieeie e se e 34
45.1. =T 0o (=T T o OSSR 34

45.2. DiIalog DOX ... e 36

45.3. ClIPboard...........cooiee e 37

45.4. Other Experiences @ndiDiSCUSSIONS............ccccoveveeveseereeseene 38

5. ResUlts and ASSESSMENT ...l ... wrsrmssesieeessots svessessessensesessesseessessessessesesessesnes 40
6. Conclusion and FUture WK L. i e e e 46
References.ccovveevvvcvrveenn il P B ... s 47

vii

List of Tables

Table 2-1 A comparison between WebGuard, SUMMER and our wrapper12
Table 5-1 Comparison between our work and other DRM systems............ 44
Table 5-2 Experimental COTS ReAdErSccccveveiveiireie e 45

viii

List of Figure

Figure 1-1 Basic DRM architeCture...........ccccevvivveiveiesic e 2
Figure 1-2 Basic DRM working FIOWcccoveiiiiiiiciecc e 4
Figure 1-3 The difference between our work and the basic DRM
ATCNITECTUNE. ... e 7
Figure 3-1 System arChiteCturecccoeceveeie i 16
Figure 3-2 The working flow of our DRM architectureccccuvnee.e. 20
Figure 4-1 The logging file of the traceapi.........cccccvvvevviveiievrce e, 21
Figure 4-2 The basic algorithm of our implementation...............c............ 22
Figure 4-3. The control flow of rendering the protected content.............. 25
Figure 4-4 The algorithm of implementation the ‘render’ functionality ..26
Figure 4-5 The algorithm of implementing the “print’ functionality........ 27
Figure 4-6 The algorithm of implementing the ‘PrtScrn’ function key....28
Figure 4-7 The algorithm of implementing the Helper.........c...ccccccevvni..n. 31
Figure 4-8 The situation that IE plays the multimedia files...................... 32
Figure 4-9 Simple license fileiiita . oo, 33
Figure 4-10 The thread Problem .. .coifiveveieerice e 36
Figure 4-11 The clipboard problem:in.our Workcccccoeeevveveivenenn, 37
Figure 4-12 view saurce working flow in 1E and firefoxccccco...... 39
Figure 5-1 Log-in web page inTliCENSe SEIVEN........c.cccvevveierverieeiesieeneenns 40
Figure 5-2 The license"page in liCENSE SEIVErc.ccoveviviieieeresiesieenens 41
Figure 5-3 The page to openthe COTS Reader.........cccccvvvevverveinesinennnn, 42
Figure 5-4 Denying rendering.........cccovveverieesieereseeseeseeseese e see e e 43
Figure 5-5 Protection Of VIEWING SOUICE........ccuevuveeeiieriecieseesie e 43

1. Introduction

1.1. Problem description

Digital rights management (DRM) is an important issue in today’s e-business
world. Digital rights management is the aggregative term referring to any of
technologies used to enforce various policies, controlling access to software, music,
movies, pictures, or other digital content and hardware including the revising,
accessing, transferring to others...etc[1]. The content owner can take advantage of it
to achieve his goal about business behavior, protecting contents, or other purpose, but
there are some problems within it.

One of the major problems in Digital rights management system is the need for
installing dedicated software for each content format. DRM-aware client systems are
often expensive and vendor-dependent, hard.to.maintain the inter-operability between
each content format. Due to variations of rights constraints and different requirements
of rights enforcement, we cannot easily develop a generic DRM system for most of
the Commercial off-the-shelf (COTS) readers. It’s a time-consuming process to
develop such a client side DRM wrapper.

Most of the existing DRM systems develop their own server, content player for
their own content format or some specific content format, so they almost can’t
communicate with each other. In this kind of the circumstance, it will increase the

cost and the difficulty to popularize the DRM system.

1.2. Background
First of all, we need to know what is the inter-operations in the Digital
Rights Management and the important item, Rights Expression Language in order to

help to understand our research work.

1.2.1. Digital Rights Management

DRM is a well-known and important system for digital contents. A DRM system
generally contains three components DRM content server, License server for DRM,
DRM-aware content reader [2]. Figure 1-1 descripts the basic components of the

DRM.

Content server =

DRM-aware
Content Reader

4F

License server

Figure 1-1 Basic DRM architecture

1.2.1.1. Content server

The Content Server is responsible for content processing about receiving content
from content producer (owner), protecting content by cipher technologies,
watermarking or other content protecting technologies and delivering the content to
the client-side Content Reader.

The Content Server is also responsible for granting the client-side Content Reader,
granting the License Server and delivering the necessary information to License

Server for generating license.

1.2.1.2. License server

The License Server is responsible for license processing about license generating
from the information receiving from the content server by some license generating
algorithms such as XrML, ODRL, MPEG-21 REL...etc and processing the requests
receiving from the Content Reader by checking the generated license. The License

Server is often outsourcing to be the third-party certification.

1.2.1.3. Content Reader

The Content Reader is the content rendering application at the client side. This
application can be the normal rendering application in the world such as Internet
Explorer browser, Mozilla Firefox,'Windows Media Player, Winnamp, Adobe Reader,
ACDSee, Djview...etc and the special rendering -application designed for some
special purpose such as decrypting:the-ciphered content, getting grants from the

License Server, etc. It’s all depending on.the design of the DRM system.

1.2.1.4. Working flow

The Content Server gets the content from content owner (producer),
authenticating the Content Reader, ciphering and delivering content to Content
Reader and sends the necessary information for license generating to License Server.
A user gets digital contents from the Content Sever. Following that, the DRM-aware
content reader receives the user’s requests and gathers the necessary information for
authorization, and then sends it to the license server. Finally, the license sever
authorizes the requests and gives the information for DRM-aware content reader
executing the requests back to client. Figure 1-2 shows the basic working flow of the

DRM system.

User
Content Server Rendering Application License Server

1. Get_Content()
L

2. Deliver_Information()

3. Deliver_Content()

4, Do DRM_Operations

.
L

5. Check Rights()

Y

6. Reply()

Iy

FoPresent()

o
=

L J ¥ - v

Figure 1-2 Basic DRM working Flow

1.2.2. Rights Expression Language
The commerce transaction of the multimedia content through the network today

is based on the exchange of the rights. But, this situation is exactly one of the
limitations of the Digital Rights Management (DRM) due to that the rights description
must be machine-readable and can fit various business models. It is hard to express a
complex and unambiguous rights permission to fit in with the requirements.

The main mission of the Rights Expression Language (REL) is the rights
expression, which describes a permission to allow a user to use the content to achieve

the protection purpose. The Rights Expression Language must be based on a syntax

that is recognized in order to reach the goal, machine-readable [3].
There are several Rights Expression Language have been proposed to describe
the license. The famous two Rights Expression Languages are ODRL and MPEG-21

REL. Both of them are based on the XML format.

1.3. Motivation

The employees let out the business secrets. The staffs of the bank steal and sell
the personal information of the consumer. There are many leaking out secret
occurrences in quick succession to tell us that you can stop the hacker but the thieves
within a household are difficult to guard against even if you have the conscientious
and careful firewall. The digital rights management is becoming more and more
important in today’s network environments.

Following that the digital rights-management has bee applied to many kinds of
the file formats, you can find that the digital rights management system is everywhere
within the movies, music, documents:..etc, and the number of the corporations that
invest in the research of the digital content protection technology is also increasingly.
At present, many famous companies, such as, Microsoft, Apple, Real Network,
Adobe...etc, has been developing and selling their own digital rights management
technologies. However, these technologies can’t understand each other because of that
all of they have their own standards, so there is a vast requirement which is the
common standard of the digital rights management no matter the structure, working
flow, Rights Expression Language...etc, or the translating frame of reference in the
market and the sun corporation is developing an open-source project, called DReaM
[4], to endeavor to achieve this goal through the open-source model.

We realize that the hardest and complicated part is DRM-aware content reader

because of its functions such as rights constraints and rights enforcing, such that this

part often wastes a lot of time and money (the order of hundred thousands) during
developing a DRM system. (For example, DJViewer)

Besides, most of the existing DRM systems are vertical-integration, that is, the
content which they can process is a specific format or created by them. This kind of
DRM system is designed for some special content format from server to client side
software. If you want to view or use more than one DRM contents, then you must
install or buy different kinds of DRM software for client side and these software
systems are often expensive.

For this situation, we will design an open-source Policy Controlled DRM
wrapper for COTS that can apply to most existing COTS Readers and can process all

existing content format that the COTS Reader supports.

1.4. Objective
We develop a flexible DRM wrapper-for COTS:readers. One of the features of

this flexible DRM wrapper is that it can be policy controlled by configuring for rights
enforcement in any COTS readers instead of hard-coding policy in the program. By
this way, we can configure client-side wrapper and helper easily by modifying the
configuration files, similar to a DRM firewall for COTS readers. The other feature is
that the policy controlled DRM wrapper can communicate with other DRM or
non-DRM server and we also demo some security-protection functionality.

This wrapper will monitor the running COTS reader and perform the detection
mechanism to analyze the rendering application’s behavior. For the content protection
and rights enforcement, this wrapper will uses the interception mechanism to achieve
the content protection and indirect the target parameters and codes into the running
memory ordered by the license from the license server in order for various rights

enforcement.

Moreover, we design a flexible structure that can communicate with other existing
non-DRM or DRM functionality servers in order for integration with existing DRM
systems.

With this tools, we don’t need to consider that whether the COTS-reader having
DRM functionality or not when we render a digital content protected by a DRM
system. For the content owner (producer), we don’t need to consider that if the
content server having DRM functionality or not when we using the server to store and
protect our content. Figure 1-3 show the differences of our work based on the

traditional DRM architecture.

Content server

DRM-aware
Content Reader

W

License server

Our research

Figure 1-3 The difference between our work and the basic DRM architecture

1.5. Synopsis
In Section 2, we present the related work. The research method is explained in

Section 3. The detailed ideas and implementation will be described in Section 4. The
experimental results are in Section 5. We apply our system to an existing COTS
Reader, IE, as an example to elaborate our research results. Finally, the conclusions

are in Section 6.

2. Related Work
2.1. DRM Architectures

A basic DRM reference architecture is presented in [2]. There are three major
components: the content server, the license server, and the client. These major
components are consisting of many sub-components. It not only describes the detail
working flow of the DRM system, but also compares many methods and techniques to
explain the reason why this paper chooses its method. Furthermore, it introduces and
discusses the two most prevalent core technologies involved in DRM implementation:
encryption and water marking.

[5] presents an open and secure DRM solution which is named Open SDRM. It
deploys the traditional DRM architecture and is based on open-source components. Its
architecture is started from the OPIMA“international specifications, the MPEG-4
IPMP Extensions and the emerging MPEG-21 IPMP-architecture.

A careful idea about the flexible management.control flow of certificates and
authorities is proposed in [6]. There are two innovations here. 1) It combines the
identity, attribute and rights to allow for maximum flexibility. 2) The digital licenses
are generated on demand after the identity and the security attributes have been
verified. It also explains the difference between the public key certificate, attribute
certificate and digital license by mapping them into the relations among the passport,
visa and residence permit in the work flow of the immigration. There two features in
this security attribute based digital rights management system. 1) It use the public key
certificate, attribute certificate, content identification and a secure of randomness to
generate a secret, unique, personalized content key. 2) A hierarchy of authorities, for
example, JI (identity) is a computer engineer (attribute) and he is only allowed to
enter the system by a dedicate computer (attribute) and he can modify the source code

(rights) and print (rights) it. It develops a prototype which is called SUMMER, a

secure distributed multimedia database management system, and the future work in
the client-side component of this architecture is to build an independent application in
order to interface to arbitrary Render Application via smaller plug-ins. It plans to
solve the problem that the Renders and plug-ins run in an unsafe environment by
using tamper resistant hardware with watermarking techniques. It uses a SPIN model
to test their prototype against the ability that can prevent digital content from super
re-distribution and find that the drawback of this work to catch the thief is the high
price of caching all license keys. It may use an appropriate hashing technique to solve
this problem, but the falls positives problems will be induced. A web content
protection system, WebGuard, is proposed in [7]. It provides the digital rights
management for off-the-shelf Web browsers and browser plug-ins by a serious of
verification process to trust an application at call-time, a trusted content handler and a
user interface control module.

The secure architecture that is. allowing-digital rights management in home
networks which is consisting of consumer electronic devices is described in [8]. The
main idea is that allows devices to establish dynamic groups, so called “Authorized
Domains”, in order to allow the acquired rights content legally can move from device
to seamlessly. This “Authorized Domain” is consisting of licensing organization,
manufacturers, content providers, compliant devices, authorized domain manager
device, and content manager devices. The security architecture is based on a novel
compliance checking protocol which allows relying on public key certificates issued
by a license organization. The great advantage of this architecture is that the public
key operation is required seldom. Another advantage is that only the device that stores
the device master key need tamper-resistant memory. One limitation of this
architecture is that it still needs the public key authentication for device registration.

Another limitation is that the size of the authentication credential set is proportional to

10

the maximum number of the devices in the domain. The maximum domain size is
restricted by the given storage constraints with devices.

There is a different view point of the DRM system proposed by [9]. It divides the
DRM system into three blocks of layers like that the OSI layered model and the
TCP/IP protocol divide the process of the data communications into layers. It
indicates that the Rights Expression and Interpretation is the key node when
communicating upper with lower layers by mapping the DRM system into an
hourglass structure like the IP in the TCP/IP protocol. The advantage of this layered
approach is that it separates rights enforcements from services. Thus it allows
development separately and independently in these areas. Furthermore, the effect that
it will not disturb other layers when changing or adding functions into some layers is
happened. The work in [10] is adding the communications between layers. It also
proves that this layered approach is.a helpful method-to analyze the interoperability in
a DRM system by mapping the Microsoft DRM.10 architecture into the layered DRM
framework.

The sun’s corporation is developing an open DRM system which is called
DReaM [4]. This architecture is based on open-standards-based-solutions and
supports both of the Conditional Access System (CAS) and the Digital Rights
Management (DRM) models. The goals of this DReaM are that it wishes to work with
any content type, multiple file formats and codec and can work cross the device types
and operation systems. It also wishes to control the access to content regardless of the
delivery media, whether it is a physical or a digital medium and can support
widespread business models to provider the flexibility.

[11] describes a case study that incorporates an effective DRM system with
previously deployed DRM system at the Greek Orthodox Archdiocese of America

(GOA). Here also describes that how the Elisar’s MediaRights technology protects

11

content and the container using encryption, watermarking, specific file format, time

lock, tamper proofing, obfuscation and implementing itself in kernel level and how to

incorporate with previously DRM systems at the GOA.

Our main ideas is that we wish our User Wrapper can work without considering

the types of content and the COTS Readers via small DLL plug-ins. This combines

the goals of the DReaM, the future work in client side of SUMMER and concept of

the verifying the rendering applications.

WebGuard (2001)

SUMMER(2002)

OpenDReaMS Wrapper

Rights implementation

Windows message

Windows message

Win32 API function

Conditions No No Yes

policy dynamie Unknown dynamic
Type Plug-in Plug-in Plug-in
Apply scope Web browser Adobe Acrobat COTS Reader

Table 2-1 A comparison between WebGuard, SUMMER and our wrapper

2.2. System Call Intercepting Techniques

[12] proposes a generic software wrapper system for hardening COTS software.
It implements this wrapper in kernel level by a loadable kernel module and designing
a Wrapper Definition Language (WDL) to listen for specified events to wrapper the
specified system calls. The key element of the WDL is to augment the system call
API with semantic information by using tag process. It can allow wrappers to refer to
the system calls easily and isolate the wrapper writer from low-level details. This
wrapper is efficient and protected because of no context-switch overhead and

executing in kernel space. The limitation is that events occurs at the application level,

12

at the system call level, are difficult to sense in the low-level system calls stream. [13]
inherits and extends this work. It improves the Software wrapper and makes use of it
to do intrusion detection by using the Generic Software Wrapper Toolkit (GSWTK).
If this kind of software wrapper be compromised, it will cause devastating damages
because that it is implemented in kernel space.

An open-source binary interception tool, detours, that has been developed by
Microsoft Research is a library for instrumenting Win32 functions on x86 machines
[14]. It can monitor the target function and replace the first instruction of it with
unconditional jump, which points to the detour functions that the user provides. Users
can do their works in these detour functions. The instructions replaced from the target
function are keep in a corresponding trampoline function. If the target function is
called, the control of this process -will jump to:the user-provided detour function.

Finally, the detour function can-recall the trampoline function or return to the caller.

2.3. Rights Expression Languages

The MPEG-21 REL [15] developed by the standardization committee, the
Moving Picture Experts Group, is designed for content owners to specify the usage
grants for consumers, that is, the content owner can limit his content used by someone
with some rights, restrictions or conditions using the functions supported by the
MPEG-21 REL. It also allows consumers to set up secure personal parameters to
protected individual privacy. The Open Digital Rights Language (ODRL) [16] is
designed for the DRM to provide flexible and interoperable mechanisms to support
clear and creative usage of digital resources. This is also based on XML grammar. It
focuses on the definition of elements in the data dictionary and the semantics of using
these elements. [3] introduces the REL, MPEG-21 REL and the ODRL and proposes

an analysis of the similarities and the interoperability of both RELs. It is also

13

developing a tool, Distributed Multimedia Application Group (DMAG), to generate
and check licenses describing by both RELs. Our License Server is based on this tool.

The rights expression language of the Rights Enforcing Access Protocol (REAP)
[17] is generated from modifying the ODRL. It needs the entire ODRL language as
input leading to two situations. It is aimed to demonstrate that how to publish the
intellectual property in the Internet by digital libraries according to the copyrights
laws. It is able to interpret all rights expressions in ODRL or to ignore parts of rights
expressions in ODRL that it could not interpret correctly. The REAP rights language
only can describe the usage rights like print, execute and play and the language
doesn’t have a security model. It is not as flexible as the ODRL language, but it is
easier to understand.

An open-source PARMA .is proposed in [18] for network and mobile
applications based on ODRL. The. PARMA REL.is an extension of ODRL designed
by them, so it is compatible with OMA-REL-which is used in mobile applications
because that the OMA REL is also based on ODRL. Therefore, PARMA REL is
compatible with current DRM system integrated with mobile phones. There is an
issue that when we want to add a new rights specific call to specify the rights object,
we need to modify the source code traditional, but this way of doing is inflexible and
will increase the working load of the application developers. It solves this issue by the
concept of Aspect-Oriented using an Aspect Oriented Software Development (AOSD)

tool.

2.4. Existing DRM systems
Microsoft Windows Rights Management consists of three components, Windows
Rights Management (RM) technology, Windows Rights Management Services (RMS),

Windows RMS Software Development Kit (SDK), and Windows RM Client SDK

14

[19]. It provides a complete rights management system for the enterprise. [20]
explains the Rights Management Add-on (RMA) for Internet Explorer, the .rmh
(RMH) file format, and the Rights-Managed HTML (RMH) SDK and specifies how
an organization can protect their sensitive information by using these technologies
and the Microsoft Windows rights management technologies. The major differences
between our DRM system and the Microsoft RMA/RMH is that the Microsoft
RMA/RMH can only controls the specific file format but our DRM system will
control the COTS Readers, that is, we can do the rights enforcement independent of
the file formats.

TrustView developed by [21] is a powerful DRM system. It supports the content
protection, security policy classification, using RSA 256-bit AES encryption, and can
trace and control the content event if it obtained.by some other people. Now it can
support for Pro/E, PDF, Office and.\Web.

SecureAttachment [22] is an on-line-service with the Adobe DRM for securing
the Distribution Chain of Digital”Documents In e-mail. It supports various rights
protection policy consisted of rights and conditions. If a document, for example
Office Word, is created, the owner can configure its DRM-policy when he wants to
email it to other people. If the receiver has rights to view this attached document, then
this file will be opened in Acrobat.

Windows Media DRM is a DRM service for securing delivery of audio and/or
video content. It was using a combination of elliptic curve cryptography key exchange,
DES block cipher, a custom block cipher, RC4 stream cipher and the SHA-1 hashing
function in early version. It is designed to be renewable on-line based on the

important assumption that it will be cracked [23].

15

3. Research Method

Our research uses the

following architectures and approaches to accomplish this

policy controlled DRM system.

3.1. System Architecture

Content Server

Get ciphered content

Encrypted Data

Check rights

Get license file

License Server

Authentication/
Check personal data/
Rights reader

|T'Iput_"' HEIPEr —D‘@Cl’)’pt Decrypted Data

Xor
Authorization/
Configure the User Wrapper
Xor Data
User wrapper
Send grants
Input
COTS-Reader

|
Render

¥

Figure 3-1 System architecture

16

Figure 3-1 shows that what are the components within our architecture and how
these components are deployed in our architecture. Following this architecture, we

will discuss the functions of each component in our research.

3.1.1. Content Server

This server maintains the digital content including documents, movies,
music...etc. It receives the raw content from the content owner (producer) and
protects the content by cipher mechanisms. It also processes the requests from clients

to download the digital content regardless of the client having license or not.

3.1.2. License Server

This server maintains the digital license-about the personal data and relative rights
and limitation. It receives the user’s requests to-set up and configure the personal data
and the rights to generate the individual license: It'may offer a friendly user interface

to serve user, for example, a log-in web page and a web page for configuring.

3.1.3. License Proxy

This component is responsible for reading rights from License Server and
processing the authenticating requests, such as, authenticating the rights holder, the
COTS-Reader and the DRM actions it wants to execute from Helper. Furthermore, it
performs in the role of communicating with other DRM or non-DRM license server
by a license translator, it can translate XML-based license to our rights format as long

as we know their standards.

3.1.4. Helper

17

This component is an important part of our research. The job of the Helper layer is
to decrypt the encrypted digital contents received from Content Server and to function
as a coordinator between content viewers and user wrapper by communicating with
the License Proxy through sending the configure data about the user and
un-authenticating actions information for authentication. Furthermore, the Helper will
make a decision that if there is a requirement to do exclusive-or on the decrypted
content or not by judging the content information which is sent from the User

Werapper. Then, it will instruct the User Wrapper to enforce the legal DRM actions.

3.1.5. User Wrapper

This component is the core part of our research. The User wrapper layer is
responsible for content protection;and rights enforcement. In order to archive these
objectives, the first work is to do application layer interception. We do coding
operations with certificate by creating-built-in control policies in associated code
segment for rights enforcement and proegram.-built-in methods, that is, we inject with
source codes through complier support or inject from COTS wrapper. For example,
we can restrict any operations pertained to ‘render’, ‘save’,
‘copy’, ’paste’, ’print’...etc by intercepting the Win32 API functions and then
injecting generic codes for enforcing rights. So, we can apply the generic code
segments with rights policies to enforce complicated rights, for example, we can add
some restriction like render number of times or the date into the rights. The second
work of this layer is to adapt for various content viewers. For this objective, we
analyze many applications for viewing systematically, including the control flow
monitor and the dataflow monitor to realize that which kind of the operations is the
DRM operation and the DRM operation will call which Win32 API functions. Then,

we can apply the information to operate in coordination with the configuration to

18

achieve various combinations to let User wrapper fit various COTS readers.

3.1.6. Encrypted, Decrypted and Scrambled Data

Here we will introduce the meaning and usage of these items at our research.
Obviously, the encrypted and decrypted data is the production of the ciphering
processing and all of them are in the client-side computer. There is an ordinary thing
that using cipher mechanism in the DRM system and doing this will let the raw
content lie in the client computer based on our implementation restriction (it will state
later), but we think that is very dangerous, so we add a new state called Scrambled
Data, that is, after decrypting, we will do exclusive-or operation on the raw content to

let the raw content lie in the computer is more secret.

3.1.7. COTS Reader
This component represents the existing-COTS rendering application. Unlike some
DRM system, we don’t need to develop.a dedicated content viewer, because of that

we use the plug-in scheme so that we don’t need the source code’s support.

3.2. Working Flow

Our working flow scenery is that a user gets the encrypted digital content from the
Content Server and sets up or configures his license (rights) at the License Server.
When the user does some DRM operations such as print and copy/paste, it will trigger
the User Wrapper starting to work. The User Wrapper will detect and intercept any
DRM operations immediately and get the information about each DRM operation for
authenticating through communicating with the Helper. The procedure of the Helper
processing the User Wrapper’s requests is that the Helper will request the DRM

operation’s rights from the License Server. As long as the Helper gets the rights, it

19

will reserve the rights as a cache rights and the Helper can’t change it. The Helper
changes this cache rights only when the user changes his license and the Helper will
re-request the rights from the License Server. When the Helper gets the reply message
from License Server, it will decrypt the encrypted content and pass the rights
checking message to the User Wrapper to enforce or deny the DRM operation’s
requests. Finally, the COTS reader can show the digital content to the user. Figure 3-2

shows the all working flow we descript above.

20
= =

o
S
-
Shy %

Llser Wrapper COYTS Reader

Content éer\-'er License Server Licensz F;i'oxy User
1. Get Content(),
2. Reply() K T
: ETE)
= .]
3. Register(f | :
L — | J
4. Reacl_[iigl;-ﬁ;(l_') -
‘. ‘5, DRM_Opefetions() L .
16' Detour()
'2. Check Righis()
g, Check Rights()
9. Reply() L N
10. Reply() .
11, Operate() >
12, Presentation()
< M
v \ L v v v ¥

Figure 3-2 The working flow of our DRM architecture

20

4. Implementation

For our research, we implement four components, Helper, User Wrapper,

License Proxy and License Server to complete our architecture and objectives.

4.1. User Wrapper

This User Wrapper is the most important part of our research. It controls the

digital content and the COTS Reader directly. This component implementation is

based on the detours [14]. Since that we want to apply this Wrapper to any existing

COTS Readers that without source code support, we will implement it as the dynamic

link library (DLL) file to attach to the existing COTS Readers by the function

supported by the detours. First, we make use of the sample program, which is called

traceapi, appended to the detours project to log the control flow and the data flow that

are composed of the Win32 APL-functions| of a rendering application. Following is an

example of the control flow log: Figure 4-1'shows one section of the log file produced

by intercepting and logging Win32 API functions called by the IE using the traceapi

program.

Craceapi:
craceapi:
Craceapi:
Craceapi:
craceapi:
craceapi:
Craceapi:
Craceapi:
craceapi:
Craceapi:
Craceapi:
craceapi:
Craceapi:
Craceapi:
craceapi:
craceapil:
Craceapi:
Lraceapi:
craceapi:
Craceapi:
Craceapi:
craceapi:
Craceapi:
Craceapi:

ool
ool
o001
ool
ool
ool
ool
ool
ool
ool
ool
ool
o001
ool
ool
ool
ool
ool
ool
ool
ool
ool
ool
ool

SendMessageW(2106e5,443 .5, 12d46c)
GetPropW(2106ed, <C0O195)
GetPropWi,] -> 16a638
IsWindow(2106e8)

IsWindow() -> 1
GetPropW(2106ed, <C0O195)
GetPropW(,] ->» 16a635
GetCurrentThreadId()
GetCurrentThreadId () -> 11f3
CallWindowProcW(?71£433b,2106:258,443,5,12d46c)
GetWindowLongl (210625,0)
GetWindowLongli,] -> laadcO
LocalRedlloc (16a8360,a5, 42
LocalRedlloc(,,] -> 16a920
lstrlenW(?(&H))
lstrlenW() -> &
Localilloc (40, &)
Localdilloc(,) —-» 1léa360
InvalidateRect (2106e5,0,1)
InvalidateRecti(,,1 -> 1
CallWindowProcW (i, ,,,) -= 1
IsWindow(2106e3)
IsWindow() -> 1
SendMessageW(,,,] -= 1

Figure 4-1 The logging file of the traceapi

21

We wish to achieve one of our objectives that the User Wrapper can apply to any
COTS Readers. We assume that every COTS Reader will call identical function call
when executing an identical DRM operation, so we need to analyze the log file to find
out the key function call sequence that every COTS Reader will call when executing a
DRM operation and plays a critical role of this DRM operation.

We log the control flow of the same application twice when doing two different
DRM operations in order to reduce the searching range to find out the critical function
call sequence. Then, we need to understand the meaning of the remaining function
call sequence by referring to the MSDN [24], a Microsoft online library, to help and
speed us to perform the examination. We have implemented seven base functions
about DRM operation, ‘render content’, ‘print’, “copy/cut/paste’, ‘PrintScreen’, ‘save’,
‘drag-drop’, ‘view source’. We-will introduce the implement detail and issues about

the functions we implement.

If (detect the DRM operation)

{
Get rights grants from Helper

If (grants)

{
Do the DRM operations (the seven DRM operations)

Show the deny message to user

}

Figure 4-2 The basic algorithm of our implementation

22

Figure 4-2 shows the basic algorithm we used when implementing our research.

All of our implementation functions are based on this simple algorithm.

4.1.1. Interception Steps

We will introduce how to intercept the software function calls using the detours

and the hook hardware function calls.

Intercept Hardware Event:

HHOOK hhkLowLeve1Kybd=0;

hhkLowLevelKybd = SetWindowsHookEx(WH_KEYBOARD LL,LowLevelKeyboardProc, hinst,
0);
UnhookWindowsHookEx (hhkLowLeve1Kybd) ;

LRESULT CALLBACK LowLevelKeyboardProcCint :nCode, WPARAM wParam, LPARAM 1Param)
{

BOOL fEatKeystroke = FALSEj

//do something hete

return(fEatKeystroke 71 #CallNextHookEx (NULL, nCode, wParam, 1Param));

We call the function call, SetWindowsHookEx(), to install an
application-defined hook procedure into the hook chain. It can monitor the
events of certain types. The above example is to install the low level keyboard
hook to monitor the events produced by the keyboard and an example of the

application-defined hook procedure to process the events.

Intercept Software Function:
First, we must put the function call that we want to intercept into the trampoline.

And rename it as Real_function().

23

DETOUR_TRAMPOLINE(HRESULT _ stdcall Real DoDragDrop(IDataObject * a0,
IDropSource * al, DWORD a2, DWORD * a3), DoDragDrop);

The above sample code is to put the function call, DoDragDrop(), into the
trampoline and the return type of the trampoline is HRESULT.
Then, we declare a function to be enforced when the detours detect that the

called function call is in the trampoline.

DetourFunctionWithTrampoline((PBYTE)Real DoDragDrop, (PBYTE)Mine_DoDragDrop);
DetourRemove((PBYTE)Real_DoDragDrop, (PBYTE)Mine_DoDragDrop);

The above sample code is to declare the function, Mine_DoDragDrop, that will
be executed when the detours detect the, DobragDrop() function.
Finally, we can program any thing we want to do in the Mine_function() and we

can make use of the parameters.in the Real_function().

HRESULT Mine_DoDragDropA(IDataObject * a0, IDropSource * al, DWORD a2, DWORD *
al3)
{

//do something here
return DRAGDROP_S_CANCEL;

4.1.2. Function Interception

4.1.2.1. Render

24

A
request

L
Encrypted COTS Delete the

. Input Render decrypted/X
Content ’ Reader ar (%'Emem
T *
|
| o - - Input
i User Wrapper P
: L - ~Input
|
| F
|
|
| s
| reduest ¥ XOI
| Content
|
|
| Y
|
|
Input—-———————————————— | Helper
8 / Decrypted

/ Content

Figure 4-3. The control flow of rendering the protected content.

Figure 4-3 show that the ideas and-the algorithm we use when implementing the
‘render’” functionality and figure 8 shows this concept. We intercept the system call,
createfile(), because that windows will-call"createfile() when rendering contents.

Since we make use of the existing COTS Reader, we need to consider the normal
use of the COTS Reader to render the digital content. When detecting the action that
the COTS Reader will do is a DRM operation, we will send a message to Helper to
get the grants. If the rights enforcement requests are allowed, then we will check the
digital content that will be rendered is encrypted or not. If yes, then we send a
message to the Helper to ask it to decrypt this content, else we just render it. If the
reply message is Xor_content, it denotes that the Helper have done exclusive-or to the
decrypted content in order to protect the digital content which is in the client-side
computer. When we want to render it, we will need to do exclusive-or to this content
again to recover its data, so we intercept the function call, ReadFile(), that read data

from a file to get the exclusive-or data and process it. After completing rendering, the

25

wrapper will delete the decrypted or exclusive-or content automatically when the
handle to the content is no more used by replacing the file flag parameter in

CreateFile function with FILE_FLAG_DELETE_ON_CLOSE.

If (detect the Render operation)
{
Get rights grants from Helper
If (grants)
{
If (encrypted_content)
{
Send a request to Helper to ask to decrypted the content
While ('receive_message) //wait for receiving reply message
If (receive_message == Xor_content)
{
Intercept the Readfile() to Xor the Xor_content in the
memory
}
Render the decrypted_content
}
Else
{
Render this content
}
}
Else
{
Show the deny message to user
Return 0
}
}

Figure 4-4 The algorithm of implementation the ‘render’ functionality

26

4.1.2.2. Print

If (detect the Print operation)

{
Get rights grants from Helper

If (grants)

{
Return Real_StartDoc()

Show the deny message to user and return 0

Figure 4-5 The algorithm of implementing the ‘print” functionality

StartDoc(), this function call starts a print job.=The print job will start behind
calling this function call, so we intercept-this function call in order to judge that
whether let the print procedure work or-net-by.getting rights from the Helper. Figure

4-5 shows the algorithm we used here.

4.1.2.3. Copy, Cut, Paste

Here we intercept the function call, openclipboard(), because that these DRM
operations are using the clipboard to process the requests. They do the jobs about
getting the data in the clipboard or storing it into the clipboard. We intercept this
function in order to achieve the goal that disable or enable these DRM operations and

the judge rules are the same as the 1.2.

4.1.2.4. Print Screen (in the keyboard)

27

If (detect the PrintScreen operation)
{
Get rights grants from Helper
If (grants)
{
Return 1
}
Else
{
OpenClipboard(NULL)
EmptyClipboard()
CloseClipboard()
Show the deny message to user and return 0
Return CallNextHookEXx()
}
}

Figure 4-6 The algorithm of implementing.the ‘PrtScrn’ function key

This part is also relative to the clipboard. 1f'the DRM operation’s request is denied,
we call OpenClipboard() to open the"clipboard preventing other applications from
modifying the clipboard and then we clean the handle to the data in the clipboard.
Finally, we close the clipboard by calling CloseClipboard() to let other application to
access the clipboard. Figure 4-6 shows the basic ideas when implementing this

functionality.

4.1.2.5. Save
We think that the function, save as a new file, is always need a dialog box to
communicate with the user, so we intercept the dialog box to cut down the control

flow of the “‘save as’ function. We intercept the function call,

DialogBoxIndirectParam(), because of all of the dialog box is relative to this function.

28

Return zero indicates that this DRM operation’s request is denied.

4.1.3. Security Interception
4.1.3.1. Drag-Drop

All the message passing job of the drag-drop actions is done by the function,
DoDragDrop(), and analyze the return value of DoDragDrop() to judge that what
actions are request, so we intercept this function call and return
DRAGDROP_S CANCEL, the cancel message in the DoDragDrop(), to refuse to do

the operation to protect the digital content.

4.1.3.2. View Source Code (in web page)

The function of the “view source’ will get the absolute path in the input text of the
network position to read the source file. But-in our-architecture, the Helper will put
the decrypted content with exclusive=or effect-into a-secret place in the computer and
tell the User Wrapper the place to get the.contentto process. At this time, the absolute
path in the input text of the network position still point to the ciphered file such that
the ‘view source’ function will read the encrypted file to achieve the protection
purpose.

Finally, we compile this program to a dynamic link library file and use the sample
program which is called ‘withdll’ that creates a process and inject a named DLL into

the new process to inject this .DLL file into the target COTS Reader.

4.2. Helper
The jobs of this component are content decryption and rights checking. We use C#
to implement here because of the convenient function call about decryption and

network. The cipher mechanism we choose here is the Data Encryption Standard

29

(DES). The inter-process communication (IPC) mechanism we use is the TCP-IP
standard. Figure 4-7 shows our ideas when implementing the Helper.

The Helper will classify the messages that receive from the User Wrapper into
two cases. If the request is ‘get_rights’, then the Helper will check the rights_cache to
see that if the right is in it or not. If the right is not in the cache, then the Helper will
update the rights_cache by communicating with the License Proxy. If the request is
the “decrypt’, then the Helper will get the decrypted key from License Proxy and the
content by the absolute path receiving from the User Wrapper. If the content is
prepared for the plug-in, for example, when IE wants to render the media content
like .mp3 and .mid file, IE will call the Windows Media Player to play this content,
then we don’t do exclusive-or on the content because that if we do exclusive-or on the
content and then IE will send the absolute path.of the exclusive-or content to the
plug-in for rendering and this will.cause the.plug-in-render error. Finally, return the
content place to the User Wrapper: Figure-4-8 shows that what IE will do when

playing the compound web file consisted.of the text, picture and media files.

30

Listen (ip, port)
While (true)
{
While ('get message) //wait for message coming
Switch (message)
{
Case get_rights:
If (rights_cache contain this right)
{

Return request_accept

Else

Send the message to the License Proxy
If (reply_message)
{

Add this right into the rights_cache

Else

Return request_fail

}
Case decrypt:

Get the content_place from User Wrapper
Get the decrypted key from License Proxy
Decrypted the content
If ('plug-in content)
{
Xor the content
}
Content_place = (Save it at another secret place)

Return Content_place

Figure 4-7 The algorithm of implementing the Helper

31

SN

Cynaric web page
with muliimedia files

IE

e

WMPlaver

multimedia Text

Picture

Figure 4-8 The situation that IE plays the multimedia files

4.3. License Server

This Server will provide many web pages for use log in, set up and configure his
license. Then, it will transfer the user’s setup into the XML-based license file that

includes user id, password, COTS Reader (we have implemented), rights and

restrictions. For example:

32

<?xml version="1.0" encoding="UTF-8"?>
<r:license xmins:con="rights_conditions"
xmlins:uip="use_id_password" xmlns:mx="rights_enforcement
xmlins:o="render_application" xmlIns:r="rights">
<r:Personal>
<uip:id>JI</uip:id>
<uip:pwd>1234</uip:pwd>
<r:Rights>
<mx:render>
<con:numbers>10</con:numbers>
</mx:render>
<mx:ccp>
<con:numbers>2</con:numbers>
</mx:ccp>
<mx:print>
<con:numbers>4</con:numbers>
</mx:print>
</r:Rights>
<r:RenderAP>
<o:lE/>
<o:Firefox/>
<o0:WMPlayer/>
<0:Adobe/>
</r:RenderAP>

</r:license>

Figure 4-9 Simple license file

Figure 4-9 shows the sample license file. This license file is denoted

the license created or/and changed every time. We implement this

33

that the user
id is “JI’ and his password is ‘1234’, and the rights he can enforce are that he can
render this content ten times, do ‘copy, cut, paste’ operations two times and print it
four times at IE, Firefox, Windows Media Player and Adobe. Finally, it will trigger
the License Proxy to read the configured license file by sending message to it when

server using

JavaScrip and Java Servlet on Tomcat based on [3].

4.4. License Proxy

In this part, we implement a program as a license handler. There are two jobs of
this program. One is that it will read the license file triggered by the License Server
and put it into a ‘rights_cache’. The Proxy will change the content in this cache only
when the user changes his license and it will announce the Helper to update the rights

synchronization. Another is that it is responsible for license transformation.

4.5. Experience and Discussions
When implement this DRM Wrapper, we encounter some issues that are not easy
to overcome because of our methed of the work."We address these issues below and

bring up our solutions and experiences.

4.5.1. Rendering

Because of the method of the work that inject a DLL into the process, we need to
know that the working flow of the process in order to make the execution of the
process normal when we modify the parameters of some function call and return then
to the process. Unfortunately, we can’t understand the work flow of a process because
that the COTS Reader is commercial without source code and won’t release its detail
implementation.

When implementing the ‘Render’ functionality, we decide to intercept the
function, CreateFile(), and this function can creates or opens a file, directory, physical
disk, volume, console buffer, tape drive, communications resources, mailslot, or
named pipe, but we must fit in with the control flow of the process, so we must

conform the object type that the function original opens.

34

With our example of IE rendering web pages, the object type we need is file, so
there are many restrictions on the decision of the protection methods. When deciding
the cipher algorithm, the streaming cipher is more secret than the block cipher
because that there are no entity files existing in the computer, but we can not choose it
because of the requirement we mentioned that “the object type we need is file’. So we
use block cipher and store an entity file into a secret place in the computer.

But we think this method is not secret enough, we add a simple method on the
file to increase the level of secret. We do exclusive-or on this entity file after
decrypting because we need to fit in with the working flow of IE, that is, the object
type and size are must identical with them after doing the exclusive-or method. Here
we encounter two issues that how to do exclusive-or on the data in the memory
because that the IE doesn’t read these data in the memory at a time and the rendering

problems with the dynamic pages with other plug-in programs.

BOOL ReadFile(Handle hFile, LPVOID lpBuffer, DIWORD nNumberOfBytesToRead, LPDWORD
IpNumberOfBytesRead, LPOVERLAPPED IpOverlapped)

The ReadFile function will read the data in the memory that pointed by hFile
witch gets from the return value of the CreateFile() into IpBuffer. IE calls this
function to read the content into memory after a lot of setting steps after calling
Createfile(). Our solution is to intercept this function and does exclusive-or on the
IpBuffer, but the problem is how to know that what data are we want. We store and
assign the return value of the CreateFile() to a global variable because that there are
may many threads executing and we just have a shared source code and this situation
will cause that a handle in a thread will be covered by the handle in another thread if

we don’t store it as a global type and check the hFile of the ReadFile function with it

35

to see that if they are equal or not to overcome this problem. Figure 4-10 shows this

problem. If they are equal, then we do exclusive-or on the IpBuffer, else we don’t.

Thread A Thread A Thread B Thread B Thread A
Set handle Set handle Use handle
v v
Handle = A Handle = B Handle =B

Figure 4-10 The thread problem

We have mentioned the situation in 2 that the-rendering problem of IE rendering
a dynamic page using JavaScrip with multimedia contents. We don’t propose a useful
solution to solve it. We just make a‘deciston-by judging that if this file is need a
plug-in application to render or not./New-we only implement the decision rule of

the .mid and the .mp3 files in the Helper.

4.5.2. Dialog box

We have mentioned inl1.5 that we intercept the DialogBoxIndirectParam function.
This way of making this functionality is not good because that all functionalities
relative to dialog box such as ‘save as’ and ‘open old file” will be locked. We have no
idea to solve this situation except that we take some redeeming actions in IE. We
observe that there is a different part between the ‘save as’ and ‘open old file’ in IE.
The “save as’ function call DialogBoxIndirectParam() immediately, but the *open old

file” will call DialogBoxParam() before calling DialogBoxIndirectParam(). We can

36

make use of this divergence to distinguish them, but this is a special case. When
working with other applications like Adobe or Windows Media Player, this method is

still not working.

4.5.3. Clipboard

We encounter some issues when we implement the “print screen’ function. As
we mentioned in 1.4, the User Wrapper opens the clipboard preventing other
applications from modifying the data in the clipboard, empties and close the clipboard
to release the use right of the clipboard. The algorithm we mentioned in 1.4 seems

workable, but there will be some problems happened when work with other

applications that will use the clipboard such as the Microsoft Office Word. Figure
+ 11 7

4-11 is an example.

; () Waite-N-Cite !

~ B1224 - SRS v x

F(L) LB

SHEE R Ve

YemonE @ - H-LJIE

AL (&1 htp stwew gpogle com twi v BeE =g ?E—TEEJ:_EEJEE
Google - | v [Cles - Sisome Y pE - Elgm o z)| l'-‘.—--
L
gﬁfg
FH#RE 5P ErmE EEHE Desklop
\ RS
R

wE: O pEw T bme O senwEs

IE Mo rights to Print Screen.

) .] e

|. Wrap the 'PrtSern’ function key

2. The functionality 1s still working

Figure 4-11 The clipboard problem in our work

37

When we test this functionality together with the Microsoft Office Word, the intercept
functionality sometimes works successfully but sometimes is not. We believe that this
is a timing problem, that is, the system puts the picture into the clipboard after
executing our program. We even try to intercept the key down and key up separately
in order to fit in with the time difference, but still not work. Finally, we implement
successful by disabling the warning message box we prompt because that we have
observed that IE will call the warning message box many times since IE will re-call
the same function many times when calling fail and the delay time needed by the
warning message box is about five seconds (depend on the speed of the testing

computer). We think that this is a very possible reason causing the time difference.

4.5.4. Other Experiences and Discussions

There are some limitations ,in our work. We-can’t judge that the rendering
content is protected or not in wrapped. functionsjust in time because of the restrictions
of applying the detours. Although we.can access and change the parameters in the
target functions, but we are still restricted by the information provided by the
parameters. For example, we can’t get the URL from the parameters in ReadFile(),
but we only can get the handle to the createfile() and the URL we needed is one of the
parameters in createfile(). We can’t intercept the ‘view source’ functionality in
FireFox. We suppose that the reason is that FireFox reads the decrypted content into
memory and it will get the content in memory when doing the functionality, view
source, but IE will send URL referring to the encrypted file to notepad for viewing
source. Figure 4-12 shows this concept.

We also find out some issues when OpenDReaMS Worapper works with the
Acrobat 7.0 professional but it will work well with Acrobat 7.0 Reader. The

‘drag-drop’ function can not work well in Acrobat professional. It will crash it, but it

38

can work in IE. If the non-wrapped Acrobat is opened first, and then we will fail to
wrap another one whether professional version or reader version, but IE does. We
guess the reason is that the Acrobat will work as one daemon and IE works as a single
instance, so there is one Acrobat daemon at a time and there can be many IE existing
at the same time. This may need further work to understand it. Moreover, if we wrap
IE, the any other IE opened by this wrapped IE are still under control of our User

Wrapper.

FireFox

Protected URL

Createfile() Createfile()

Read
from
memory

; '

Figure 4-12 view source working flow in IE and firefox

39

5. Results and Assessment

We have implemented many functions about the DRM protection system. We
can protect our content from render, print, copy, cut, paste with conditions such as the
number of using times by our work. Moreover, we have considered some security
problems. We can disable the view source functionality in IE preventing the rendering
content from stealing from the source code. When rendering the content, the exposed
content in the client side is also protected by simple exclusive-or method. After
rendering, the User Wrapper will delete the content just in time for no content leaving
in the end-user’s computer even if the temporary files. Furthermore, the most different
thing between our work and other existing DRM systems is that our work can apply to
many kinds of COTS Readers no matter what kinds of content type and render
applications such as IE explorer, Windows Media Player, Acrobat...etc. For proving
our key idea, we also design and:implement.a complete DRM control flow.

Following, we will apply our system to the Web browser, IE, as an example to
show our experiments.

Firstly, we need connect to the license server to configure our license (rights).

'3 MyLicenseServlet - Microsoft Intermet Explorer
RO REE HEO BEHsEe TAOD SREAdE

press Submit to invoke servlet My LicenseServlet

&1 = T

Qix- - © NRAG Owe eoors @ 2-2 @ -JE

#E4ED) [http:#locelhost BOB0/M yL isense WebhModule/mylicensessrvlet html v | Bz mw 2
Google - [~ |Gl - SeoimEs | % wE - BElEE S & -
USTIAME |

password |

Figure 5-1 Log-in web page in license server

40

After logging, we can configure the individual license including the COTS
Reader that we will use to render, rights and the cooperating conditions. For example,
we can restrict the agreement numbers of executing each function. Figure 5-2 shows

these attributes.

3 MyLicenseServlet - Microsoft Internet Explorer

wBEE REED HR0 HEEEW IO RAD &
Qi%-O HNEAG Pmedrmnr @ 3% @-J¢@ M
#BUED) [{€] hitp #ocalhostB0B0MyLicense WebModule lizensepmeess him - v BnE me
Google - | v [C ez - Doomg % wE - RdEE o & -
Enter values to create a new license
Rendering Application
IE Firefox [PCman
[adobe [Windows Media Flaver
Rights
Render Copy/Cut/Paste PrintScin
|10 numbers |0 _numbers |10 numbers
Print Save As [Drag-Drop
7 numbers |8 _numbers
Create License H Feset License form]
e O AR

Figure 5-2 The license page in license server

Then, we can use the User Wrapper to protect the target content as well as the
normal content depend on your policies, that is, we can control the whole activities of
the application and the protection policy design is freedom. For convenient to
demonstrate, we integrate the User Wrapper and the Helper into a simple
user-interface application.

We start to use the protected content after input the user id and password for

authenticating. Then, we can arbitrary choose the COTS Reader that you want to use.

41

Figure 5-3 shows the form to open COTS Readers arbitrary. There are some default
icons in common use and other two ways to open the COTS Reader. We can type the
absolute path in the input text and click the Browse button to choose the executive file

of the COTS Reader.

Open |

Yes ‘ Back ‘ Browse ‘ Emit

Figure 5-3 The page to open the COTS Reader.

When we open the protected digital content using the wrapped IE, the User
Wrapper will check the rights just in time. Figure 5-4 shows that no rights to render
the protected digital content and figure 5-5 shows that we protect the digital content

from viewing source functionality.

42

¥ D:\Course\lab\DR Miuser-wapper\ecryption one s

BEO EHEE HHD BSEW IO AW i
Q:ix- O HEG Ow ke @35 @ UdH
HEHET ‘@ DAV ourstlab DR Minser-wapperid ecryption one at & time--version\Encrypted Datatindex hin V| @E EE ?

Google - v (Gl w2 - Deomm ¥ vE - fum o &

Acceﬂ Denial |Z|

1 : No rights to rendex!!
FEE |

[
)
B

[_:i FhEERE

Figure 5-4 Denylng rendering

¥ 58 - Microsoft Internet Explorer

BWEE REE R ENSEW IO A o
Qin- O KB G Ame frawer @35 @- @ H
HEHET ‘@ DAV ourstlab DR Miuser-wapperid ecryption one at & time--version\Encrypted Datatind e hin V| f8E EE 7

@v

WEE EHE EEO wRin A

FETMEIE cc WEYT?3 ThON?EEmMixbEUIIZE??8p,nRefIE=E]2o\220"20HxU @ A
EPEEE ARG _6\-?HEEE M RET 07| v EANTTEEiciE? b HETE
RTD:E: & nm3FExFe nN?QE?;5, 7 7Es?T = witii|0%a z& smififiE7esEs
rM-f§o?=~ql?-[§ndlv ?ll§?§l§§ uz.y THE?HEE 7ulenN? {7 % x<GnreEE [O
FETemMmERT? CARTUTEZIE-T 1 ~J EEN? NPTENRTLEGCTEp 7iEevediewa T
R|Jsﬁlgsxa;g&vadwn?w}mwﬁuﬁnw NFY?ERE? ro?lPiREETTT THiE
n ?i‘?‘?ﬁlSGIIIZ‘?‘?IIquIIII%ul‘?u@Z‘? EE SETRERL.N muc?EEvEngre(E n

fura N NGTHE OMr Ra@XISUZIVETEE Nigevm) Xn?x?IN-
fﬂlmlL%lZ;‘%?ﬂﬂ%DKlﬁEx FEEE[?iE UlEem BEEYD RS [8 L fEH%
THTETegE >7 gER?? 93E S >envhgrreTE?e eB7m??m ?7{E3E2 ;AKKRR 7N | 3
BE_TYNfRAEEAHIgN: W- PET2TRaAMTZLe;NAE™ N [Ejeivvfll Eidireontaz)
TR E K 1797 R CTHT TIERERNP AS3RIE:] ehE(3 xT?? [|
ic[mf 2?-JE{IH??DHNTLTEN?+ " }M2EN? 2 fEn-q?r7mEieseeys FHl7-72vXefifivsD
E=EhBECR 7iE HSEM)ZEznm?m{ 71.>R 77 2 Z=7fif u\?PEN THYIUD +EP
ME=0iis? GSEFE?EeE?b? J2GENERLIS[N R VYRTWIERTELEED
fEzTeNR<? IHiTki[L7pq = ?HCHAG_ iE?jemdEiOtho)ch EfIptiEN 8
H=] $Z_77Ew) 7, tEfA(H|VERa=Q7H IR D07 7R SLEIE7p ENNTSET TFTTEETE
TREINTHFIER fEfY -uth O (RL1SEIEnEE ERr 7 cifRTETOmMukifiErvaETH
BEIETS /6 a_WSENEfo O 7{F7eNERTEF) IFRNTIERIESNE -EiiE. Wizl
FETXT0TUTSEE TS0 [7TENTRT_; MEMTEATITIBgIECLTE vilEY meiErerac.isjt ﬁ@

-0

fffyE3Re El7E01TFx?RpREEY e K-fha L?EEIE Tr oiff|7T207BS.IE MR

[
)
B

J HanEm

Figure 5-5 Protection of viewing source

43

DRM ||OpenDReaMS"OpenIPMP Media-S |Adobe DRM

Characteristics \wrapper |(demo)

Price Free Free Free Unknown

Install requirement No Yes Yes Yes

Open source Yes Yes Yes No

Rights enforcement Yes* Play Play Yes**

Constraint enforcement [Number of |Date time [Date time [Yes***

usage times

Mouse protection Yes*rr* No N/A Unknown

Exposed content Yes N/A No Yes

protection

Support content type N/A Mpeg4 .009 pdf

Apply scope COTS Reader|Dedicated |Dedicated |Dedicated
Reader Reader Reader

* copy, cut, paste, print, PrintScreen, save as, open old file, view source when
opening encrypted content using IE

** print, copy/paste, save, file copy

*** data time, expiry after x hours of reading, allow x sections copied/printed

every y days

**** drag/drop, functions related to * in “right click”

Table 5-1 Comparison between our work and other DRM systems

This table shows that the main differences between OpenlPMP, Media-S, Adobe

DRM and our work. Our system is free, open-source and doesn’t need to do

installation steps. We just need to execute the executive file. Obviously, the best

advantage of our research is that we don’t need to consider the content type that we

44

want to protect and we can protect it as long as we can wrap the COTS Reader, that is,

we make COTS Readers to be Dedicated Readers as long as we can wrap them.

IE |Firefox [PCman [Adobe 7.0 ReaderleVuViewerWMPIayer |ReaIPIayer \Winamp
Render \ \Y \ \ \2 \ \Y \%
Print \% \% \% \% \% N/A N/A N/A
Copy/
Cut/ \% \% \% \% N/A N/A N/A N/A
Paste
Save as \% A \% \ \% \% N/A N/A
PrintScreen \ \ \" \ \2 \ \Y Vv
Drag-Drop v v v N/A N/A N/A N/A N/A
\View source \% X \% N/A N/A N/A N/A N/A

Table 5-2 Experimentall COTS Readers

45

6. Conclusion and Future Work

In this thesis, we propose a digital content protection scheme in the client side of
the DRM system. We analyze and intercept the generic system call of the rendering
applications at execution time to protect the digital content with various policies. We
apply the protection mechanism to different COTS readers without considering the
content format on the platform of proprietary Microsoft Windows. We also implement
a complete DRM flow to prove that we can protect the digital content with various
rights and restrictions by the policy configuration. Our contribution lies in that with
the proposed mechanism, the end-user needs only for one installation of the DRM
wrapper for all rendering software. This can eliminate the cost and promote the use of
DRM system. With open-source distribution, it is helpful to advance the spread of the
DRM system.

Beside the issues and preblems discussed in-the thesis, the shortcoming of
current implementation is the need to manually analyze the generic system calls. We
log the system call sequence and the'caller-callee relation between them, but we can’t
exactly figure out which functions of the software will induce a certain series of
system call sequence. It is a lengthy process to find out the relations and not an easy
task to automatically analyze the semantic relation between functions and system calls.
Moreover, it is hard to test if the parameters in the system call fit for the policy we
need, even if the relations have been clarified. Some COTS Readers such as IE may
have different architectures (for example, calling different system calls when doing
the same functionalities) across the versions. If we can achieve the goal of automatic
analysis, we can develop a new wrapper with associated configuration to fit the COTS

Reader of the new version.

46

References

[1] WEKIPEDIA, "http://en.wikipedia.org/wiki/Digital_rights_management,”

[2] Bill Rosenblatt, Bill Trippe and Stephen Mooney, DRM Building Blocks: Protecting and Tracking
Content. 2002,

[3] J. Polo, J. Prados and J. Delgado, "Interoperability between ODRL and MPEG-21 REL." in ODRL
Workshop, 2004, pp. 65-76 ee = {http://odr.net/workshop2004/paper/odr-poo-paper.pdf.

[4] F. Gerard, J. Tom and S. Vishy, "Project DReaM-an architectural overview," September, 2005.

[5] C. SerrAfo and D. c. =. {. Neves, "Open SDRM -“ An open and secure digital rights management
solution,” 1ADIS'03, June. 2003.

[6] C. N. Chong, R. van Buuren, P. H. Hartel and G. E. -. Kleinhuis, Security Attributes Based Digital
Rights Management. , vol. 2515, 2002, pp. 339-352.

[7]". Mourad, J. Munson, T. Nadeem, G. Pacifici, M. Pistoia and A. Youssef", ""WebGuard: A system
for web content protection”," in "{WWW?} Posters", 2001,

[8] B. C. Popescu, B. Crispo, A. S. Tanenbaum and F. L. A. J. Kamperman, "A DRM security
architecture for home networks," in DRM '04: Proceedings of the 4th ACM Workshop on Digital
Rights Management, 2004, pp. 1-10.

[9] P. A. Jamkhedkar and G. L. Heileman, "DRM as a layered system," in DRM '04: Proceedings of the
4th ACM Workshop on Digital Rights' Management, 2004, pp. 11-21.

[10] G. L. Heileman and P. A. Jamkhédkar, :DRM interoperability analysis from the perspective of a
layered framework," in DRM '05%Proceedings-of:the 5th-ACM Workshop on Digital Rights
Management, 2005, pp. 17-26.

[11] T. Nicolakis, C. E. Pizano, B. Prumo and M. Webb, "Protecting digital archives at the greek
orthodox archdiocese of america," in DRM '03: Proceedings of the 3rd ACM Workshop on
Digital Rights Management, 2003, pp. 13-26.

[12] ". Fraser, L. Badger and M. Feldman", ""Hardening COTS software with generic software

wrappers"," in "{IEEE} Symposium on Security and Privacy", 1999, pp. 16.

[13] ". Ko, T. Fraser, L. Badger and D. Kilpatrick", ""Detecting and countering system intrusions using
software wrappers"," in "{USENIX} Security Symposium", 2000, pp. 17.

[14] G. Hunt and D. Brubacher, "Detours: Binary Interception of Win32 Functions,” In Proceedings
of the 3rd USENIX Windows NT Symposium, July. 1999.

[15] Rightscom Ltd, "The MPEG-21 rights expression language. A white paper,” 2003.
[16] I. R, Open Digital Rights Language (ODRL) Version 1.1. 2002,

[17] O. Vestavik, "REAP: A system for rights management in digital libraries." in ODRL Workshop,
2004, pp. 79-85 ee = {http://odr.net/workshop2004/paper/odr-estak-paper.pdf.

[18] Dominik Dahlem, Ivana Dusparic and Jim Dowling, "A Pervasive application rights Management
Architecture (PARMA) based on ODRL," Proceedings of the First ODRL International
Workshop, April 22-23. 2004.

[19] C. Microsoft, "Technical Overview of Microsoft Windows Rights Management in the Enterprise,”

47

June. 2003.

[20] Microsoft Corporation, "Rights Management Add-on for Microsoft Internet Explorer,"
September. 2003.

[21] I. TrustView. Http://www.trustview.com.tw/. Available: http://www.trustview.com.tw/
[22] D Soft, "http://www.secureattachment.com/index.htm,"
[23] Anonymous "http://en.wikipedia.org/wiki/Windows_Media_ DRM,"

[24] Microsoft coporatoin, "MSDN,http://msdn.microsoft.com/library/,"

48

