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摘要 

近來有越來越多將 Java 應用於嵌入式系統上的趨勢，例如應用

於手機和個人數位助理(PDA)等。而隨者這些智慧型裝置中使用 
Java 應用程式的普及，效能就成為很重要的議題。為了達到更佳的

執行速度，嵌入式 Java 虛擬機器使用了輕量化的即時編譯器，稱

為嵌入式即時編譯器。嵌入式即時編譯器只編譯了簡單的位元組

碼，而複雜的運算例如: 方法呼叫等，則交由直譯器執行。而此設

計方式導致執行方法呼叫的效能低落。本論文中，我們設計並實作

一方法展開的機制，來提高程式執行效能，且讓程式空間的的擴張

在一個合理的範圍內。 
 
我們的方法展開機制除了可以展開傳統的靜態方法外，也結合

了在高效能即時編譯器中的方法展開機制使得虛擬方法也可以被展

開，以利用虛擬方法中單型的特性來提高效能。此外，在單型的假

設被動態類別載入破壞時，我們的回覆機制也使得後續的執行還有

機會重新利用展開過的方法。整體而言，我們的方法展開機制使程

式執行效能增進了 1.43 倍，而只增加少量的系統動態記憶體使用空

間。 
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Abstract 

Recently there has been a growing interest in using Java on embedded portable 
devices such as cellular phones and PDAs. With the popularization of deploying 
Java applications on these devices increases, performance will become an important 
issue. To achieve higher performance, embedded JVMs are usually enhanced with a 
lightweight just-in-time (JIT) compiler, embedded JIT compiler, instead of 
incorporating a full-fledged JIT compiler as high performance JVM. For fast 
compilation and low code size expansion, an embedded JIT compiler usually 
compiles simple bytecode instructions and lets interpreter handle method calls, but it 
results in poor performance on method calls. In this thesis, we design and implement 
a method inlining mechanism that is suitable for embedded JIT compiler to improve 
speed performance while keeping the code size expansion in a reasonable size. 

 
In addition to inlining conventional static methods, our method inlining 

mechanism can also inline virtual methods and make use of monomorphic property 
to further improve performance. Even when this monomorphic property is violated 
by dynamic class loading, the inlined code can still have chances to be executed by 
our recovery mechanism. As a whole, our method inlining mechanism demonstrates 
1.43 speedup with only about 3% code size expansion (if 512Kbytes memory). 
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Chapter 1  Introduction 

Recently there has been a growing interest in using Java on embedded portable 

devices such as cellular phones and PDAs. With the popularization of deploying 

Java applications on these devices increases, performance will become an important 

issue. To achieve higher performance, embedded JVMs are usually enhanced with a 

lightweight just-in-time (JIT) compiler, embedded JIT compiler, instead of 

incorporating a full-fledged JIT compiler as high performance JVM. For fast 

compilation and low code size expansion, an embedded JIT compiler usually 

compiles simple bytecode instructions and lets interpreter handle method calls, but it 

results in poor performance on method calls. Method inlining is a well-known and 

effective solution to the problem but entails large code expansion if excessive 

inlining. On another hand, embedded applications are often amenable to inlining due 

to relative small call sites that could be inlined compared to large applications. In 

this thesis, we design a method inlining mechanism that is suitable for embedded 

JIT compiler and can make full use of method properties to reduce method call 

overhead and keeps code size expansion in a reasonable size, and implement it in 

our embedded JIT compiler – KJITC.  

In this chapter, we introduce some essential materials to help readers 

understand the concepts behind and the terms in our research. First, we give an 

overview of the current states of the Java technology in embedded environment. 

Second, we introduce more features of embedded JIT compiler and its interactions 

with embedded JVM. Third, we introduce the concept of method inlining with pro 

and con. After the introduction comes our research motivation and objectives. 

Finally, organization of this thesis is provided. 
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1.1 Embedded Java Environment 

Java Technology is developed by Sun in 1991 and becomes popular rapidly in 

all application fields, such as powerful large-scale server, desktop PCs, or even in 

small portable devices. To meet the demands of different application fields with 

different characteristics, Sun in 1999 has grouped Java technologies into the Java 2 

platform [1], which consists of three editions as Figure 1-1. Each edition is 

specialized for a specific area:  

 Java 2 Enterprise Edition (J2EE) - targeted at scalable, transactional, and 

database-centered enterprise applications with an emphasis on server-side 

development. 

 Java 2 Standard Edition (J2SE) - targeted at conventional desktop applications. 

 Java 2 Micro Edition (J2ME) - targeted at embedded and consumer devices, 

such as wireless handhelds, TV set-top boxes, PDAs, and other devices that 

lack the resources to support full J2SE implementation. 

 

Figure 1-1. Java2 Platform (extracted from Sun) 
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To address the diversity of embedded devices with different memory footprint 

and network connectivity, J2ME specifies two configurations: Connected Device 

Configuration (CDC) and Connected Limited Device Configuration (CLDC). Each 

configuration targets at different types of embedded devices and therefore provides 

different class libraries and APIs. Table 1-1 gives an overview of the two 

configurations.  

Table 1-1.  J2ME Configuration 

 

1.2 Embedded Just-In-Time Compiler 

Although the JVM can be easily realized by an interpreter, its slow 

performance is a concern in performance-aware system. To solve the problem, some 

compilation technologies must be applied. For example, ahead-of-time (AOT) 

compilers [2] allow offline compilation, so no run-time compilation overhead is 

needed. Conventional JIT compilers translate bytecode into machine code on the fly 

before execution with the expense of code size increase and run-time compilation 

overhead. However, embedded JVM with footprint memory and low performance 

CPU can tolerate neither the static compiled code size expansion imposed by AOT 

compilers nor the code size/compilation overhead imposed by conventional JIT 

compilers. 

In order to let embedded JVM take advantage of executing compiled code to 
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improve performance without too much size/compilation overhead, a lightweight 

JIT compiler which is highly customized for an embedded JVM– embedded JIT 

compiler – is adapted ([3] [4] [5]). For fast compilation and low code size expansion, 

an embedded JIT compiler usually compiles only simple bytecode instructions and 

incorporates simple optimization techniques (such as constant folding). Hence, the 

other part of the program without compiled will be handled by the interpreter. This 

kind of execution model letting interpreting and native executing co-exist is called 

mixed mode execution ([6] [7]) and here are its principles:  

 Performance-critical parts (Hot Spot) of the program are compiled by 

embedded JIT compiler, and then natively executed. 

 Non-performance-critical parts of the program are interpreted by an interpreter. 

 Close interactions between the JIT compiler and interpreter is necessary. 

Generally, for keeping itself compact, an embedded JIT compiler regard 

method invocation bytecode instructions (such as INVOKEVIRTUAL) as complex 

and delegates the interpreter to handle the heavy task involving pushing and 

popping frame, passing arguments and etc. Hence, method call overhead in 

embedded JVM is costly even if enhanced with an embedded JIT compiler. 

1.3 Method Inlining 

Method inlining is an important compilation optimization technique ([8] [9]) 

that replaces a method call site with the body of the method. A simple illustration is 

given in figure 1-2. This technique reduces the overhead resulting from method calls. 

The savings are especially pronounced for applications where only a few call sites 

are responsible for the bulk of the method calls. Inlining also expands the context of 

analysis and the wider scoped analysis introduces opportunities for further 

optimization techniques (such as constant propagation and etc). 

Unfortunately, inlining also has negative effects. Excessive inlining increases 
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the code size, cache miss rate, register pressure and dynamic compilation cost (if in 

dynamic compilation environment). Therefore, finding the best tradeoff among these 

benefits and costs becomes an important issue of method inlining. 

Method Inlining 

call 

caller 

callsite  
callee 

Inlined 

return 

Callee 
Inlined 

Body  

callee 

 

Figure 1-2. Method Inlining Diagram 
 

1.4 Research Motivation and Objective 

In our survey, we found that small applications are usually more amenable to 

aggressive inlining and the experiment results in [10] show that aggressive inlining 

of small applications not only improves performance well but also increases little 

code size. We also observed that most applications running on embedded systems 

are small ([11] [12]) and suitable for inlining. Motivated by [10] and our observation 

of embedded applications, the objective of this thesis is to design and implement a 

method inlining mechanism that is suitable for embedded JIT compiler and can 

make full use of method properties to improve speed performance while keeping the 

code expansion within a reasonable size. 

In addition, the embedded JIT compiler we choose to implement is developed 

by [6]. The embedded JIT compiler, named KJITC, is combined with a mixed mode 

JVM modified from Sun’s CLDC KVM 1.0.4 and the KJITC generates ARM 

instructions in its current implementation. 
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1.5 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 provides more detailed 

background knowledge on JVM internals and an overview of our embedded JIT 

compiler - KJITC. Chap 3 describes the problem of method inlining in Java and 

introduces current common solutions. In Chap 4, the design and implementation of 

our method inlining mechanism is presented. Chap 5 exhibits and analyze the 

experiment results. In the end we make a brief summary in Chap 6. 
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Chapter 2  Background 

This chapter provides more background details on JVM and an overview of our 

embedded JIT compiler - KJITC. Readers who are already familiar with these two 

topics can skim over them. 

2.1 Java Technology 

Generally, Java is refer to a computer language, but it more that that. In reality, 

Java is rather a complete architecture consisting of four components [13]. 

 Java programming language 

 Java class file format 

 Java Application Programming Interface (Java API) 

 Java Virtual Machine (JVM) 

A Java program is written in Java programming language, and then compiled 

into Java class files which conform to Java class file format by a Java source 

compiler (such as javac compiler in Sun JDK). Java class files can be executed on 

any environment with JVM, the core of Java technology. The Java program can also 

access predefined libraries or system resources (such as I/O and Network, for 

example) by calling methods in the classes implementing the Java API. And during 

program execution, JVM loads and executes user-written class files as system 

classes that Java API defines. 
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2.2 JVM Internals 

Java Virtual Machine, the core of Java technology, is definitely the key 

component among the all and it is responsible for the well-known advantages of 

Java comparing to traditional native execution systems. Those advantages include 

cross-platform portability, security of the execution environment and small size of 

compiled code etc. 

 
Figure 2.1. The Internal Architecture of Java Virtual Machine 

 
 

To realize the JVM, the functionality of a real processor must be provided that 

adhere to the Java virtual machine specification [14], which describes the behaviors 

of a JVM instance in terms of subsystems, runtime data areas, and instructions. 

These components are described as an abstract inner architecture instead of detail 

implementation of each. Figure 2-1 shows a block diagram of Java virtual machine 

including the major subsystems and runtime data areas described in JVM 

specification. Next we will simply describe those components. 
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2.2.1 Class Loader and Method Area 

In Java virtual machine, static information about each class is loaded by a class 

loader and stored in method area. The class loader loads Java class files and 

converts to corresponding run time data structure in JVM and store it into method 

area. The information in method area contains bytecode instructions that are 

associated with the methods in the compiled code and the symbol table, named 

constant pool, needed for dynamic linkage. All threads in a JVM instance share the 

same method area, so access to the method area’s data structures must be designed 

to be threadsafe.  

Furthermore, class loader presents the dynamic class loading feature of JVM, 

which provides the Java platform with the ability to install software components at 

run-time and has a number of characteristics such as lazy loading, type-safe linking 

and user-definable class loading policy. 

2.2.2 PC Register and Java Stack 

When each new thread comes into existence, it receives its own PC registers 

and Java Stack. If the thread is executing a Java method, the PC registers contain the 

current state of JVM and the next instruction to execute.  

The Java stack is composed of stack frames, each of which contains the 

execution state of its corresponding invoked method, including its own local 

variables, parameters, return values (if any) and intermediate calculations on 

operand stack. When a thread invokes a Java method, the JVM pushes a new stack 

frame onto the Java stack of the thread. When the method completes and returns, the 

JVM pops the frame for that method. The state of native method invocations is 

stored in an implementation-dependent way in native method stacks, such as in 
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registers or other implementation-dependent memory areas.  

Figure 2-2 shows the memory areas that JVM creates for each thread. These 

areas are private to their owning thread, and there is no thread that can access the PC 

register or Java Stack of another. At the figure, thread 1 and thread 2 are executing 

Java methods while thread 3 is executing a native method. 

 
Figure 2-2. PC registers and Java Stack of each thread 

 
 

2.2.3 Java Heap 

The Java heap is the dynamic memory of JVM, and it usually contains a 

collection of objects. When an object is created with the “NEW” bytecode 

instruction, a reference to the object is returned. The reference can be used 

subsequently, or stored in the current stack frame. An object is live in heap until 

there are no references to it. An object becomes garbage when there are no such 

references, and a garbage collector will reclaim its resources.  
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2.2.4 Execution Engine 

Execution engine is the kernel of execution in Java virtual machine, and it is 

also the critical section affecting performance of JVM. The execution engine is not 

restricted to software interpreter implementation. There are other alternatives such 

as JIT and Java processor, as depicted in figure 2-3. Interpreting the bytecode has 

the advantage of fast JVM porting but makes the execution of Java programs 

relatively slow. One solution to improve performance is to use a bytecode compiler 

which is responsible for translating bytecode into native machine code to substitute 

interpreter. While ahead-of-time (AOT) compilers performs offline compilation as 

conventional compilers, just-in-time (JIT) compilers performs on-the-fly 

compilation at run-time. Both of them have pros and cons, but it seems that JIT 

compilers are more appealing to most researchers. Another solution is to implement 

directly on silicon such as picoJava [15], which is a Java processor that supports 

bytecode execution completely. 

 
Figure 2-3. Alternatives to Executing Java Programs 
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Recently, an interpreter can still coexist and cooperate with a JIT compiler in 

JVM, mixed-mode execution JVM. As well, a mixed software/hardware approach 

comes to exist; ARM has introduced its own Java instruction extension – Jazzle [16]. 

A subset of bytecode instructions can be directly executed when the ARM processor 

is executed in Java mode while the remaining bytecode instructions are still handled 

in software (interpreted or compiled).  

2.3 Overview of our embedded JIT compiler – 

KJITC 

Our embedded JIT compiler, KJITC, is applied on an embedded mixed-mode 

JVM based on Sun’s CLDC KVM. Figure 2.5 simply illustrated the main system 

components and their interactions 

 
Figure 2-4. System Components and Their Interactions in KJITC 

 

Now we respectively describe each component (include our target embedded 

 12



 

JIT) as follows: 

 Interpreter-based JVM (KVM)  

The interpreter-based JVM provides a JVM infrastructure that performs 

method invocation, garbage collection, exception handling, synchronization and etc. 

For mixed-mode execution, the interpreter is also responsible for invoking the hot 

spot detector and switching to and from compiled code in addition to interpreting of 

those bytecode that have not been compiled or will not be compiled. 

 Hot Spot Detector 

Due to the memory constraints, only valuable parts of the program are selected 

for compilation. The responsibility of the hot spot detector is to discover 

performance-critical part of program and then invoke JIT compiler for hot 

compilation. The basic unit of hot spot is a method. When a method is invoked 

frequently or contains at least one loop that iterates many times, it is regarded as a 

hot spot and invokes KJITC to compile it.  

 KJITC 

The KJIT is divided into the Intermediate Representation (IR) generator and 

the native code generator. The IR generator is mainly responsible for translating 

bytecode into three-address IR. And then code generator translates IR, generated by 

IR generator, into targeted native code to be executive in a native way dependent on 

the target processor. A simple illustration is given in Figure 2-6.  

 
Figure 2-5. KJITC Compiler Architecture 
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In order to reduce compilation cost and to keep the KJITC small footprint, 

several design decisions are made. 

1. Only Local optimization Within an Extended Basic Block 

No global optimization is performed because of the potential high 

compilation cost of control and data flow analysis. However, the maximum 

optimization range was extended to an extended basic block rather than a 

basic block. 

2. No Support for Complex Bytecode 

Complex bytecode refers to those bytecode instructions that involve 

complicated operations, such as method invocation, synchronization, object 

construction, and etc, that suit for interpreter handling. As result these 

complex bytecode instructions are regarded as non-compile-able in the 

KJIT. 

 Compiled Code Buffer 

The compiled code buffer holds all compiled code. During native execution, 

the machine program counter points to native code that resides in the buffer. The 

compiled code buffer is allocated statically and its size is also predetermined in 

current implementation. 

  In addition to the four components above, the switching mechanism between 

the interpreter and the compiled native code is described here. Similar to a function 

call, the switch from the interpreter to the compiled native code includes spilling 

register into memory and then transfer execution by a branch; and the switch from 

the compiled native code to the interpreter includes restoring registers from memory, 

transferring execution by a branch, and updating Java PC (program counter) and 

Java SP (stack pointer). 
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Chapter 3  Related Work 

In this chapter, we describe the difficulties in inlining of Java’s virtual methods 

and discuss three common approaches that make it possible to virtual inlining. 

Section 3.1 explains the difficultly in inlining of virtual methods with some 

examples. Section 3.2 introduces the three common approaches. Finally the three 

approaches are summarized in section 3.3  

3.1 The difficulties of Inlining in Java 

Generally, there are two kinds of methods in Java - static method and virtual 

method. Static method can be statically bound at compile time and virtual method 

can only be resolved at run time depending on the actual instance of the method, 

known as dynamic dispatch. Figure 3.1 gives a simple example for illustration. 

 

 

Class Hierarchy  

 
A.f() 

or 

B.f() 

Pseudo Code

B   f()  

A    f()   

     g() 
A o = getObject(); 
o.f(); 
o.g(); 

A.g() 

 

dynamic dispatching

Figure 3-1. Dynamic Dispatching of Virtual Method 

 

In figure 3.1, the left side is class hierarchy graph (CHG), which represents the 

inheritance relationship between classes and their methods; and the right exhibits the 
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pseudo code that invokes virtual methods. From the CHG, we know that there are 

two classes – class A with method f() and class B with methods f() and g() – in the 

current execution. Class B inherits class A and method f() in B (B.f()) overrides 

method f() in A (A.f()). It is not known which versions (A.f() or B.f()) o.f() would 

invoke until the statement “ A o = getObject(); “ is executed. Hence, we can’t 

directly inline virtual method because the caller may invoke different version of 

callees through dynamic dispatching if there are at least two versions existing in the 

CHG. 

In closed world language, like C++, classes are prohibited from being loaded 

after compilation. [17] exploits this property to inline monomorphic virtual methods, 

only one version in CHG, by class hierarchy analysis that analyzes the class 

hierarchy graph and decides whether a method is monomorphic. For example, the 

method g() in figure 3.1 is monomorphic because only A.g() version exists. 

However, Java supports dynamic class loading that enables new classes to be 

loaded by JVM at run time (such as Class.forName()). The support for dynamic 

class loading impedes inlining of monomorphic virtual methods. According to class 

hierarchy graph in figure 3.1, for example, we know that method g() is 

monomorphic and the call site “o.g();” always invokes A.g(). But as the time goes 

by, JVM loads new class C dynamically that inherits class A and its method g() 

overrides method A.g(), as shown in figure 3.2. If A.g() is inlined before class C is 

loaded, it may leads to error because now there are two versions of g(). 
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     g() 
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Figure 3-2. Dynamic Class Loading Examples 

 

Due to the two features of Java described above - dynamic dispatching and 

dynamic class loading, a given virtual call site may invoke several different actual 

methods over the course of a program execution. Thus, it is impossible to uniquely 

identify method to be inlined at a virtual callsite. But on one hand, virtual methods 

are heavily presented in Java applications in object-oriented design. On the other 

hand, in many applications some virtual call sites actually execute only one method, 

that is, are monomorphic though the program execution rather than polymorphic; 

some call sites are “almost monomorphic”, in that several methods might be 

executed, but one is executed much more frequently than the others. Therefore, it is 

worthy of investigating mechanisms to virtual inlining. 

Some approaches ([17] [18] [19]) have been proposed to make inlining of 

virtual methods possible with some side effect. Next section we will introduce three 

common approaches to inlining of virtual methods. 

3.2 Inlining of Virtual Methods 

In order to inline virtual methods, mechanism that handles “wrong inlining” 
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must be implemented. Guard test mechanism [17] employs a test to guard the 

inlined code to ensure correctness, while direct inlining with recompilation 

mechanism [18] and direct inlining with code patching mechanism (code patching 

mechanism) [19] directly inline monomorphic method without guard test code and 

the inlined code is executed until the monomorphic assumption about the method 

becomes invalidated, at which time the compiler recompiles or performs code 

patching to make original normal dispatch code executed subsequently. A point 

should be noted that the three approaches are not individually adopted and can be 

used interchangeably. 

3.2.1 Guard Test 

When a virtual method is selected to be inlined, the compiler with this 

mechanism generates a test code along with the inlined code to ensure that it is valid 

to enter the inlined callee body. If the test fails, the normal virtual call mechanism, 

dynamic dispatch, is applied. Figure 3-3 gives an example about how the guard test 

mechanism works. 
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Pseudo Code 

B     f()   

A    f()   

     g() 

A o = getObject(); 
o.f(); 

Before Inlining 

A o = getObject(); 
if (class(o) == A ) 
{ 
  { // inlined A.f()  } 
}else{ 
  o.f(); 
} 

After Inlining 

A test is generated to guard the 

inlined code to ensure that it is valid 

to enter the inlined callee body. 

Figure 3-3. Guard Test Mechanism 

 

In Figure 3-3, the version A.f() is inlined along with a test code –“class(o) == 

A”– that guards the inlined A.f(). Before entering into the inlined A.f(), the test code 

checks if the class of the instance o is equal to class A.1 If they are equal, it means 

that our inlining assumption is valid and the inlined A.f() is executed; otherwise, the 

normal virtual dispatch, o.g(), is applied to invoke the actual method.   

3.2.2 Direct Inlining with Recompilation 

This mechanism only allows monomorphic methods 2  to be inlined, by 

analyzing the current class hierarchy. When a monomorphic callee is selected to be 
                                                 

1 In recent studies, there are two kinds of guard test – class test and method test. Class test guards the 
inlined code by testing the receiver of the class while method test guards that by testing the method 
address. In this thesis we see class test as our guard test mechanism. The detail can be found in [17]. 
2 We say the method is “monomorphic” in the thesis is based on the class hierarch graph at that time, and 
it may becomes polymorphic by dynamic class loading. 
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inlined, the JIT compiler with this mechanism generates the inlined code directly 

(without test code) and records the fact that the inlining of the monomorphic callee 

depends on the monomorphic assumption about the callee. Then the inlined code is 

executed until the assumption monomorphic becomes invalidated by dynamic class 

loading. When it happens, the JIT compiler is responsible for recompiling the 

inlined caller and let it work as original dynamic dispatch. In case that when the 

monomorphic assumption about callee is violated, an invocation of the inlined caller 

is being executed, the JIT compiler is responsible for adjusting the state of the 

corresponding methods on the stack (called on-stack replacement) [17].  

Figure 3.4 and figure 3-5 illustrate how this mechanism works. By class 

hierarchy analysis, method g() is known monomorphic. Then the JIT compiler 

directly inlines A.g() and records information about the monomorphic assumption 

for recovery (figure 3-4). As the time goes by, a new class C is loaded and overrides 

A.g(). At the moment, the JIT compiler recompiles the inlined caller and because the 

inlined caller is being executed, on-stack replacement is applied to correct the state 

on the stack for subsequent execution (figure 3-5). 
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     g() 
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Replacement 
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Adjusting the state on 

stack for subsequent for 
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Figure 3-5. Direct Inlining with Recompilation—Recovery 
 

3.2.3 Direct Inlining with Code Patching 

This mechanism (code patching mechanism), as well as direct inlining with 

recompilation, only allows monomorphic methods to be inlined and the difference is 

that when a monomorphic method is selected to be inlined, the JIT compiler with 

code patching mechanism generates the inlined callee code together with the back 

up code for original normal dispatch. At the beginning, only the inlined code is 
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executed and when the monomorphic assumption is violated by dynamic class 

loading, the JIT compiler adjusts the first instruction of the inlined callee code and 

let it jump to the backup code rather than recompilation. As a consequence, the 

backup code is executed afterward. 

See figure 3.6 and figure 3.7 for illustration. By class hierarchy analysis, the 

method g() is known to be monomorphic. And the compiler generates inlined A.g() 

together with its backup code o.g() and records information about the monomorphic 

assumption for recovery (figure 3-6). As the time goes by, a new class C is loaded 

and overrides A.g(). At the moment, the compiler patches the code of the inlined 

A.g() and let it jump to the backup code o.g() for original dynamic dispatch 

subsequently (figure 3.7). 

 

Class Hierarchy Pseudo Code

B   f()   

A    f()   

     g() 

Before Inlining 

A o = getObject(); 
{  // inlined A.g();  } 
goto aftercall; 
o.g();  

After Inlining 

backup: 

aftercall: 

 
A o = getObject(); 
o.g(); 

Class Hierarchy Analysis 

g() 

monomorphic? 

Inlining with normal 

dispatch backup code 

and using a jump 

instruction to avoid 

executing it. 

 

Figure 3-6. Direct Inlining with Code Patching—Direct Inlining 
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Class Hierarchy  Pseudo Code 

 

Figure 3-7. Direct Inlining with Code Patching—Recovery 

 

3.3 Summary 

We have described the reason why it is difficult to inline virtual methods and 

introduced three common approaches to virtual inlining. Table 3-1 summarizes the 

three approaches. From the table, we can see that guard has the least space overhead 

but entails the run time test overhead every time when entering the inlined code; 

although direct inlining with recompilation seems to increase the speedup most from 

inlining, it has the highest space overhead and a high recompilation cost if the 

monomorphic assumption violated; at least, code patching mechanism has the 

advantage of fast entering the inlined code and recovery, but still costs space to 

maintain inlining information.  

 

 
B   f()  

A    f()   

     g() 

Inlined Caller 

A o = getObject(); 
{  // inlined A.g();  } 
goto aftercall; 
o.g(); backup: 

aftercall: 

C   g() 

Code Patching 

A o = getObject(); 
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// inlined A.g();  } 
goto aftercall; 
o.g(); 

backup: 

aftercall: 

goto backup; Adjusting the first instruction of 

the inlined callee code and let 

it jump to the backup code 
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    The three approaches have their pros and cons and there is no one that 

always outperforms the others. In reality, the actual speed performance depends on 

the behavior of the application. If the dynamic class loading happens frequently, the 

direct inlining with recompilation may become most slow. 

Table 3-1. Comparing among the three approaches - Guard Test, Direct Inlining with 
Recompilation (Recompilation) and Code Patching mechanism 

 Guard Test Recompilation Code Patching 

Selected callee 
to be inlined 

Polymorphic Monomorphic only Monomorphic only 

Before recovery:  direct enter Before recovery:  through a direct 
jump instruction 

Entering the 
inlined callee 

 

Through a test  

After  recovery:  no inlined code After  recovery:  no inlined code 

Recovery No 1. recompile 
2. may need on-stack 

replacement 

Adjust inlined code to normal 

dynamic dispatch 

Main 
Time 
Overhead 

Runtime guard 

test 

1. Class hierarchy analysis 
2. Recompilation cost 
3. Dynamic dispatch after 

recovery 

1. Class hierarchy analysis 
2. Dynamic dispatch after 

recovery 

Main 
Space 
Overhead 

Little 1. Class hierarchy graph 
2. Recovery information 

maintenance (relative high) 

1. Class hierarchy graph 
2. Recovery information 

maintenance (relative low) 
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Chapter 4  Design and Implementation 

In this chapter, we present the overall design and implementation of our 

method inlining mechanism in KJITC. In section 4.1, we discuss some design and 

implementation issues. Section 4.2 introduces an overview of our design and then 

section 4.3 to section 4.4 details the internal components.  

4.1 Design and Implementation Issues 

The goal of this research is to design a method inlining mechanism that can be 

implemented in Embedded JIT compiler, and to improve speed performance while 

keeping code expansion within a reasonable size. 

In order to speedup performance, more method calls should be eliminated, 

which means that mechanisms for virtual inlining should be adopted. And on one 

hand, we don’t want to entail the test overhead if encountering monomorphic 

method and the high recompilation overhead; on the other hand, we hope that after 

recovery, the inlined code still has chances to be executed. Thus, a revised code 

patching mechanism – guard test code patching mechanism – is employed. The 

guard test code patching mechanism generates inlined code along with “guard teat 

backup code” which acts the same as guard test mechanism rather than normal 

backup code (dynamic dispatch). When the monomorphic assumption is violated, 

the JITC compiler then made guard test back up code executed subsequently, so the 

inlined code could be re-entered after recovery. Figure 4-1 and figure 4-2 illustrate 

how this mechanism works and Table 4-1 make a comparison to the code patching 

mechanism. 
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     g() 

A o = getObject(); 
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Figure 4-1. Direct Inlining with Guard Test Code Patching—Direct Inlining 

 

Since the property of monomorphic method is exploited, the inlining 

information (such as class hierarchy graph and recovery information) should be 

maintained. Because of memory constraint, an embedded JVM can not afford to 

maintain full class hierarchy information. Instead, we design an inlining table that 

provides only monomorphic information about a method for class hierarchy analysis 

and recovery information for patching code to guard test backup code. Thus, an 

embedded JIT compiler can use inlining information without constructing full class 

hierarchy. 
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A o = getObject(); 
goto inlinedcode; 
{  // gurad test code  } 
goto aftercall; 
{  // inlined A.g();  } 
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Figure 4-2. Direct Inlining with Guard Test Code Patching—Recovery 
 

 

Table 4-1. Comparing to Code Patching Mechanism 

 Code Patching Guard Test Code Patching 

Selected callee 
to be inlined 

Monomorphic only Monomorphic only 

Before recovery:  through a direct jump 
instruction 

Before recovery:  through a direct jump 
instruction 

Entering the 
inlined callee 
 After  recovery:  no inlined code After  recovery:  through a test 

Recovery Adjust inlined code to normal dynamic 
dispatch 

Adjust inlined code to guard test 
backup code 

Main 
Time 
Overhead 

1. Class hierarchy analysis 
4. Dynamic dispatch after recovery 

1. Class hierarchy analysis 

Main 
Space 
Overhead 

1. Class hierarchy graph 
2. Recovery information maintenance 

1. Class hierarchy graph 
2. Recovery information maintenance 

 

 goto guardtest; 
A o = getObject(); 

{  // gurad test code  } 
goto aftercall; 
{  // inlined A.g();  } 
 

guardtest: 

guardtest: 

inlinedcallee: 

aftercall: 

A    f()   

     g() 

Class Hierarchy 

B    f()   C   g()  

Patching the “goto 

inlinedcallee” instruction 

and let it jump to guard 

test backup code.  
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On another hand, KJITC only compiles simple bytecode such as IADD, ILOAD, 

and ISTORE. If a selected callee contains complex bytecode, KJIC cannot generate 

the inlined callee code in IR level. To increase opportunity for inlining, we do 

method inlining optimization before delivering to KJIC. That is, we implement 

method inlining at bytecode level. Hence, the embedded JIT compiler is only 

responsible for adjusting the PC (program counter) and corresponding execution 

state (Java stack frames) after inlining, so that the inlined code can be executed 

correctly after compilation. 

Last but no least, to solve the code expansion problem, actually the most 

critical issue, we provide an inline cache and a code expansion control mechanism 

for our inlining mechanism to limit the code expansion (detailed in section 4.3.1). 

 

4.2 System Overview 

In this section, we first introduce our inlining system and then discuss 

interactions between its components. The inlining system is buildt on our 

mixed-mode JVM with KJIC described in section 2.3. 

4.2.1 Design Overview 

Figure 4.3 illustrates our inlining system components and their interactions. In 

the figure, components are showed as rectangle while data structures (such as 

bytecode, compiled code and inlining table) are show as ellipse. And the 

components and data structures in light blue represent the original while the others 

in light red are imposed for method inlining optimization. The red italic words 

represent the interactions between components about inlining and we will explain 
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latter. 

    There are two main components - method inliner and CHA manager, and a 

data structure- inlining table imposed on the system. Method inliner selects and 

inlines suitable callee methods into its caller which is detected by hot spot detector 

while CHA manager provides an interface for accessing inlining information from 

inlining table which records monomorphic and recovery information. 

bytecode 
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Method

Inliner 
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Manager
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Guard Test Code Patching 
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Figure 4-3. System Components of our Inlining System 
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4.2.2 Interactions between Components 
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Figure 4-4. Interactions between Components 
 
 

When the mixed-mode embedded JVM starts execution, it loads system classes, 

such as Object, Array etc. After loading each method of a class, CHA manager will 

construct inlining table and record monomorphic information into inlining table. 

Then mixed-mode interpreter is invoked to execute bytecode. After a period of time, 

the hot spot detector detects hot spot and delivers the hot spot to method inliner to 
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do method inlining, and then the hot spot goes through KJITC to be compiled to 

target machine code. During method inlining process, the method inliner request 

CHA manager to do class hierarchy analysis to determine monomorphic when 

encountering virtual callee method to be inlined and if the callee is monomorphic, 

CHA manager will record recovery information into inlining table. Once dynamic 

class loading occurs and it results in the monomorphic assumption violated, the 

CHA manger is responsible for detecting this violation and recovering by our guard 

code patching mechanism. After recovery, the recovered method can still enter 

inlined callee through a test (by guard test backup code). 

4.3 Method Inliner 

Method inliner consists of three parts – callsite selector, inliner and code 

expansion control. Callsite selector selects the suitable callee methods to be inlined 

from its caller and marks their corresponding call sites. Then, the caller with marked 

callsites is delivered to the inliner to replace those call sites with their corresponding 

method bodies. Figure 4-5 gives a simple illustration. The third part, code expansion 

control, is a mechanism to avoid inlining too much. Figure 4-6 shows an overview 

of this mechanism. Next we will detail the mechanism and two components in 

method inliner. 
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Figure 4-5. Overview of Callsite Selector and Inliner 

 

 
Figure 4-6. Code Expansion Control Mechanism 

 

4.3.1 Code Expansion Control Mechanism 

inline cache and an

In this mechanism, two parameters are employed to control code expansion, 

 expansion factor- α. Inline cache provides the limit of total 

code size expansion, while α constrains the code expansion withinα times the 

original caller per inlining. For example, “ α = 1.5 ” means that after inlining, the 
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code expansion cannot exceed the original code size of the caller times 1.5.  

    When the hot spot detector sends a hot spot to method inliner, inline cache 

will 

if ( (Inline Cache - codesize(hot spot) * α ) > 0 ).3  (Enough Inline Cache Space?) 

This formula estimates if the remaining size of inline cache is enough for 

inlin

Inline Cache := Inline Cache – actual code expansion.  (Inline Cache Compution) 

This formula subtracts the actual inlining cost from inline cache.   

With this mechanism, we can limit the code size overhead resulting from 

inlin

4.3.2 Callsite Selector 

Callsite selector selects the suitable callsites from the hot spot and marks their 

corre

1. hot spot frequently called by other methods:  

Because the hot spot is called frequently by other method, each callsite in 

                                                

be checked first: 

ing. If there is not enough space for inlining, the hot spot is refused to do 

inlining and be directly sent to KJIT; otherwise, the hot spot will go through callsite 

selector and inliner, and then inline cache actually used is computed: 

4

ing within a size that we can tolerate and prevent the code size from increasing 

too much through a one-time inlining process. 

sponding callsites. There are two kinds of hot spot: one is frequently called by 

other methods and the other is self-containing loops and iterates many times, 

mentioned in section 2.3. According to the two kinds, we give different selection 

ranges to select callsites to be inlined: 

 
3 ‘codesize(hot spot)’ represents the code size of the hot spot.  
4 The actual code expansion involves bytecode, constant pool (option), stackmap and compiled code. 
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the hot spot may execute many times and it means that each callsite may 

worth being inlined, so entire selection range is given and callsites are 

selected from the whole method. 

2. hot spot containing loop with many iterations: 

As the hot spot contains at least one loop and iterates many times, it is 

After determining the selection range, it starts to select the suitable callee 

meth

1. Each callsite is given a benefit value and a cost size: 

benefit value := execution_count (callee method) / codesize( callee method )5

       cost size := codesize(callee method). 

2. A budget is used to limit the expansion: 

      budget :=  α* codesize( caller method). 

3. Selecting as many as possible callsites from which with the highest 

                                                

inferred that the callsites outside the loop was infrequently executed 

compared to those within the loop; and the benefits from inlining may be 

overwhelmed by overhead of inlining effort, if the callsites outside the loop 

are inlined. Therefore, selection range within the loop is set to avoid inlining 

methods outside the loop that may hurt performance. 

ods. By our code expansion control mechanism, an code expansion budget - 

“codesize(hot spot) * α” is given to prevent the callsite selector from selecting too 

many callee methods. This is similar to the Knapsack problem. Hence, a selection 

algorithm based on greedy approximation to Knapsack problem is used to select the 

callsites to be inlined: 

 
5 ‘execution_count (callee method)’ represents the executing count of the callee method corresponding to 
its callsite. 
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ben it value until the budget is not enough. ef

The benefit value is determined on the assumption that the higher execution 

coun

 

4.3.3 Inliner 

The inliner inlines the corresponding callee methods of the callsites marked by 

calls

ts the more benefits would be from inlining, and the lower code size the less 

overhead of inlining effort. Figure 4.7 illustrates the flow chart of our selection 

algorithm. 

Figure 4-7. Flow Chart of our Selection Algorithm 

ite selector. In addition to replacing each callsite with its corresponding callee 

method body, other method information used by interpreter should be revised (such 

as local variables size, max operand stack, and etc); if encountering virtual call site, 

extra mechanism like guard test or guard test code patching is applied to ensure 

correctness. Figure 4.8 gives an overflow of the flow chart of the inliner. Next we 

will demonstrate our mechanism to inline virtual method and briefly describe how 

Initialization involves computing budget and 

assigning benefit value and cost size to each 

callsite. 
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to inline a callee into its caller with some discussion. 

 Implementation of Inlining of Virtual Methods 

For aggressive inlining and exploiting the monomorphic property, we use guard 

test a

In order to implement our virtual inlining mechanism, two new bytecode are 

creat

_TEST: It is used to implement guard test code patching mechanism and 

    2. EST: It is used to implement guard test mechanism and make use 

nd guard test code patching mechanism to present inlining of virtual methods. 

When the Inliner encounters a callsite, it checks if its corresponding callee is a 

virtual method. If so, then run time monomorphic is checked through class hierarchy 

analysis provided by CHA manager. If the method is monomorphic, then guard test 

code patching mechanism is applied and if the method is virtual method and is not 

monomorphic, then guard test mechanism is applied; otherwise, the method is static 

method and delivered to callsite replacement directly. Figure 4.8 illustrates inlining 

patterns with each mechanism. 

ed – NO_TEST and GUARD_TEST, both of which have the same instruction 

format and regard “method”, which is a direct reference to a method, as their 

operand: 

1. NO

merely jumps to the start of inlined callee body without referring to its 

operand. 

 GUARD_T

of its operand, method pointer, to verify that the receiver has the proper class. 

If the test success, it jumps to the start of inlined callee body as NO_TEST; 

otherwise, it uses method pointer to do normal dispatching. This 

implementation makes it easy to record recovery information and do 

recovery. As guard test code patching is applied, we merely record the 

address of NO_TEST to its corresponding in the inlining table (section 4.4). 

And when the monomorphic assumption is violated, all we have to do is 

 37



 

replace NO_TEST with GUARD_TEST where we recorded before; then the 

patched method is executed in guard test way subsequently.  

 

Figure 4-8. Overview of Inliner 
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pc: 

goto aftercall 

no_test method 

Callee Body  

Guard Test Code Patching Guard Test Static  

pc: guard_test method

goto aftercall

Callee Body 

Callee Body 

inlincedcode: 

aftercall: aftercall:

aftercall: 
inlinedcode:

NO_TEST  methodpointer 

  goto inlinecode; 

GUARD_TEST  methodpointer 

  if ( class(method) == class(instance) )  goto inlinecode; 
  else                               normal_dispatch(method) 

Design Two Pseudo Bytecodes to implement inlining of virtual methods: 

inlinedcode: 

methodpointer is the operand of bytecode 

instructions NO_TEST and GUARD_TEST. It 

is a 4-bytes method pointer referencing to 

method information in our target environment 

based on KVM.  

 

Figure 4-8. Inlining Patterns and the Design of Two Pseudo Bytecode 

 

 Callsite Replacement 

The callsite replacement procedure replaces a marked callsite with its 

corresponding callee body with the following adjustments.  

 Argument passing 

Argument passing is originally handled by interpreter and obeys the calling 

convention of JVM. The interpreter pops the arguments on the operand stack and 

stores them into their corresponding local variables of callee method. Therefore, the 

inliner has to insert bytecode instructions which pop the arguments from the stack 
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and store them into the corresponding local variables (we will discuss latter) in front 

of the callee body. See Figure 4.10 for example: “ASTORE 1”, line 23 in the inline 

caller, is inserted which can pop the argument (this pointer) from the operand stack 

and store it to the corresponding local variable, “local variable 1”.    

 Local variable operand renumbering 

Because caller and callee have its own local variables, it would lead to 

confliction if the inlined callee body has the same local variable operand as the 

caller. The inliner grows the local variables for inlined callee and renumbers the 

local variable operand in the inlined callee body. A simple illustration is given in 

Figure 4.9 and 4.10. In Figure 4.10: “ALOAD 1”, line 25 in the inlined caller, is 

renumbered from 0 (line 0 in the callee) to 1. 

 

caller local variables: 
0 1 2 3 4 5

callee local variables: 
0 1 2 3

callee-part local variables: 

Figure 4-9. Illustration of Appending Local Variables 
 
 

 Constant pool operand renumbering 

Sometimes the caller and callee may belong to different classes and it would 

lead to constant pool reference confliction. To fix the problem, we have to adjust the 

caller’s constant pool and renumber the constant pool operand in the inlined callee 

body. Intuitively, we can append the whole callee’s constant pool to the caller’s and 

6 7 8 9 0 1 2 3 4 5
inlined caller local variables: 
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add an offset to the constant pool operands in the inlined callee as local variables 

operand renaming. However, this solution wastes the space - average 52 entries (215 

bytes) - for each class from Caffeine Benchmark. In fact, only several entries (2~10) 

are referenced from a method for the most part and it means that a large part of 

constant pool entries appended to the caller’s are useless and results in space 

overhead.  

Therefore, we use another solution – just appending the necessary constant 

pool entries to the caller’s constant pool and renumber the constant pool operands in 

the inlined callee body. That is, only constant pool entries used by the callee are 

appended to the caller’s constant pool. This approach saves space and reduces 

constant pool movement compared with the intuitive approach. 

See figure 4.10 for illustration: the number of constant pool entries is increased 

by 1 in the inlined caller because the inliner appended the callee’s second constant 

entry to the caller’s; and “GETFIELD 39”, line 27 in the inlined caller, is 

renumbered from 2 (line 1 in the callee) to 39 so the instruction can refer to the right 

entry and get what it want. 

 Return Substitution  

Executing “RETURN” bytecode instructions causes the interpreter to pop the 

stack frame of the callee from the Java Stack and gives execution control back to its 

caller. The inliner uses the bytecode, “GOTO”, to substitute “RETURN” lest 

popping the caller, and let “GOTO” jumps to the next instruction of the inlined 

callee to give execution control to the caller.  

Consider the “RETURN” instruction which is the last instruction in the call 

code, the substituted “GOTO” just jumps to the next instruction of inlined call- the 

next instruction. It is a redundancy so when “RETURN” appears in the end, empty 

substitution is applied instead. 
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Figure 4.10 illustrate that the “RETURN”, line 4 in the callee, was eliminated 

in the inlined callee (empty substitution). 

 Synchronization and Exception Handling 

If the callee method is a synchronization method, inliner should insert the 

instruction to lock object. For callee method with exception handling, the handle 

range and address for exception routine should be adjusted and a call stack 

recording the calling list without inlining is maintained to conform the semantic of 

exception. For example, if we inlined B to A, we need to main a call stack which 

records A calls B while executing the inlined B so that if the exception happens at 

inlined B, we can report correctly by using the call stack. Currently, we do not inline 

these callee methods, and we will implement in the future. 

 Method Information Revision 

After replacing all the callsites through the callsite replacement procedure 

which replaces the callsite with its corresponding callee body and do local 

adjustments within the inlined callee described above, the inlined caller should 

further go through method information revision procedure to do global adjustments 

(ranged in whole inlined caller). The method information revision procedure does 

the following global adjustments to revise method information so that the interpreter 

can work with the inlined version: 

 Branch Offset Adjustment 

The branch instructions in bytecodes use relative addressing instead of direct 

addressing and the operands of branch instructions are called branch offset. After 

replacing all the callsites, the relative addresses between instructions may change in 

the inlined caller. The inliner should fix those offsets and let the branch instructions 

jump right. 
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See Figure 4.10 for illustration: the branch offset of “IFEQ 26”, line 11 in the 

inlined caller, was adjusted from 21, line 4 in the caller, to 26, and the adjustment 

makes the “IFEQ” in the inlined caller jump to line 37, “ICONST_0” as the caller 

does.   

 Growth of the size of Local Variables, Operand Stack 

These records should be adjusted to let the interpreter push the stack frame 

with proper size. To decide the size of local variables for inlined caller, the max size 

local variables among inlined callees is chosen to be added to the caller’s and so as 

the size of operand stack. It is based on that the live ranges of local variables among 

callees don’t overlap at one time so different inlined callees share the same 

appending local variables instead of appending all callee’s local variables. See 

Figure 4.10 illustrate the growth. 

 Stackmap Reconstruction 

Stackmap defined is a data structure exploited by garbage collector to speed up 

marking the object pointer in the Java Stack at runtime. Each method has its own 

stackmap with entries corresponding to branch targets. Each stackmap entry records 

branch target address and bitmaps of local variables and operand stack. A bitmap 

uses ‘1’ and ‘0’ to distinguish that if the corresponding field of local variables or 

operand stack is an object pointer or not. See Figure 4.10 for illustration, at the 

bottom of the caller, there are two stackmap entries corresponding two branch target, 

line 25 and line 26. Thus when executing line 25, the local variable 0 is an object 

pointer and there is no operand on operand stack. When executing line 26, the same 

as line 25 but now there is one operand on operand stack which is not an object 

pointer. 

Inlining results in variations of branch target, local variables and operand stack 

and a new branch target may be created, for example: a new branch target is created, 

line 30 in the inlined caller in Figure 4.10, resulting from “GOTO 20” at line 20, so 
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a new stackmap should be reconstructed for the inlined caller lest garbage collector 

would mark wrong objects. See Figure 4.10 for illustration, the reconstructed 

stackmap in the inlined caller responds to the changes in branch targets, local 

variables and operand stack. 

The implementation of stackmap reconstruction may use data flow analysis to 

generate all stackmap entries for branch targets, but it takes times. Alternatively, we 

reuse the original caller and callee stackmap information to speedup the 

reconstruction and only when encountering stackmap entry for new create branch 

target, data flow analysis is applied. 
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caller:  

class  : A    

method : f()     

local vairable: 1 

operand stack:1 

constant pool : 38 entries 

  0  ALOAD_0              

  1  INVOKEVIRTUAL    21 

  4  IFEQ                21       

  7  ALOAD_0              

  8  INVOKEVIRTUAL    22 

 11  IFEQ                14 

 14  ALOAD_0              

 15  INVOKEVIRTUAL    23 

 18  IFNE                 7        

 21  ICONST_1             

 22  GOTO                4 

 25  ICONST_0             

 26  IRETURN              

stackmap:         lv    op 

25:  1    // 

              26:  1    // 0 

callee: 

class  : B 

method : g() 

local vairable: 1 

operand stack:1 

constant pool : 40 entries 

0  ALOAD_0              

  1  GETFIELD           2 

  4  IRETURN              

stackmap:   null 

inlined caller:  

class  : A 

method : f() 

local vairable: 2 

local variable: 2 

constant pool : 39 entries 

  0  ALOAD_0              

  1  INVOKEVIRTUAL    21 

  4  IFEQ                33      

  7  ALOAD_0              

  8  INVOKEVIRTUAL    22 

 11  IFEQ                26        

 14  ALOAD_0              

 15  NOTEST            'B g()' 

 20  GOTO               10     

 23  ASTORE              1 

 25  ALOAD               1 

 27  GETFIELD           39 

 30  IFNE                 7        

 33  ICONST_1             

 34  GOTO                4 

 37  ICONST_0             

 38  IRETURN              

Stackmap:            lv   op 

30:  1 0 // 0 

                 37:  1 0 // 

                 38:  1 0 // 0 

Figure 4-10. Inlining Example  
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4.4 Class Hierarchy Analysis Manager 

The CHA Manager provides an interface for other components accessing 

inlining information in our inlining system, see figure 4.3. The tasks of CHA 

manager include inlining table construction, monomorphic violation detection, class 

hierarchy analysis, recovery information recording and guard test code patching, as 

mention in section 4.2.2.  

Inlining table is a data structure used to maintain inlining information and each 

entry in the table consists of method identification, monomorphic information, and a 

list of recovery information; and for fast access, the table is implemented in hash 

way. This kind of design make it possible to provide information without 

constructing the whole class hierarchy and can be implemented in memory 

constrained JVM. Figure 4.11 depicts the table.  

1 

2 

3 

4 

5 

Inlining Table 

31 

32 

f ()

0

null

g ()

0

null

h ()

1
pc

4 

Inlining 

Method ID

Monomorphic Info. 

Recovery List 
1 monomorphic 

0 polymorphic 

pc denotes the address of bytecode 

“no_test”  

used for Code Patching mechanism 

Entry Count 

 

Figure 4.11. A Snapshot of Inlining Table 

 

 

Now we detail how the CHA manager deals with the five tasks and interacts 
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with inlining table: 

 Inlining Table Construction 

Entry Count

1

2

3

4

5

Inlining Table 

31

32

f ()
0

null

g ()
0

null

h ()

1

3 Inlining Entry 

null

Class Hierarchy  

B   f()   

A    f()   

     g() 

C   g()  

D   h()  
new class 

Figure 4-12. Inlining Table Construction 

 

 

When a new class is loaded, the class loader requests the CHA manager to 

record inlining entry relative to each method of the loaded class to the inlining table. 

If a method is not appeared in the inlining table, then the new inlining entry is added 

and marked monomorphic. Otherwise the inlining entry with the same method id is 

marked polymorphic. Figure 4.12 illustrates that a new class C with a method h() 

was loaded by class loader and the CHA manager found that there was no method id 

the same as h() at that time, so a inlining entry standing for h() was added to inlining 

table and marked as polymorphic. 

 Class Hierarchy Analysis 

When the inliner starts inlining a virtual callee, it will first request CHA 

manager to do class hierarchy analysis to decide if the callee is monomorphic, as 

illustrated in figure 4.8. Then the CHA manager will look for the inlining entry 

standing for the callee method and report its monomorphic information. For 
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example: figure 4.13 illustrates that the inliner start inlining h() at callsite 1, then 

that h() is monomorphic was reported back according to the monomorphic 

information of inlining entry, h(). 

 Recovery Information Recording 

After getting the monomorphic information about the callee to be inlined and if 

the callee is monomorphic, the callee is inlined in “guard test code patching” style 

and the recovery information- the address of “NO_TEST” bytecode- is recorded by 

CHA manager. Figure 4.13 illustrates that address of “NO_TEST”, pc, was 

recorded in the inlining entry h() for recovery. 

1 

2 

3 

4 

5 

Inlining Table 

31 

32 

f ()

0

null

g ()

0

null

h ()

1

3 Inlining Entry 

Hot Spot with

callsite 1 

callsite 2

Selected Callsite

h ()

g ()

h ()

pc

no_testpc: 

Inlined CallerOriginal Caller

callsite 2

goto aftercall
inlinedcode: 

aftercall: 

Callee Body 

Entry Count 

g ()

 

Figure 4-13. Recovery Information Recording 

 

 

 Monomorphic Violation Detection 

When a new class is loaded, the CHA manager not only adds inlining 

information to inlining table but also check the table to detect if the monomorphic 

assumption to those inlined method is violated. The detection is simply checking the 

recovery lists corresponding to the added methods of the new class. If there is a 

corresponding inlining entry in the inlining table and the recovery list of the entry is 
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not empty, then the monomorphic is detected and it needs to do recovery. Figure 

4.13 illustrates that a new class E with method h() was loaded and CHA manager 

detected that the recovery list of inlining entry- h() is not empty, which means that 

another method h() had been inlined into its caller. 

 Guard Test Code Patching 

While the monomorphic violation is detected, CHA manager must to do 

recovery as mention in section 4.1 which patches the inlined callee code and let it 

execute in guard test way subsequently. Since the recovery information is 

maintained in a recovery list, all we have to do is replace the “NO_TEST” with 

“GUARD_TEST” addressed by the recovery list. Figure 4.13 illustrates that the 

address pc of the recovery list in inlining entry h() was used to do the recovery. 

Figure 4.14 illustrates that after recovery, the “NO_TEST” was replaced with 

“GUARD_TEST” so the recovered callee would execute in guard test way 

subsequently, which can reuse the inlined code made before. 
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3 

4 

5 

Inlining Table 

31 

32 

f ()

0

null

g ()

0

null

h ()

1

3 Inlining Entry 

pc

h ()no_test 

aftercallgoto 

Callee Body 

pc: 

inlinedcode: 

aftercall: 

g ()callsite 2 

Class Hierarchy Entry Count 

A    f()   

     g() 

C   g()  B   f()   

D   h()   E   h()  
new class

Guard Test Code Patching

 

Figure 4-14. Guard Test Code Patching 
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5 

Inlining Table 

31 

32 

f ()

0

null

g ()

0

null

h ()

0

3 Inlining Entry 

h ()guard_test

aftercallgoto

Callee Body 

pc: 

inlinedcode: 

aftercall:

g ()callsite 2

Guard Test Code Patching

Class Hierarchy Graph 

B   f()   

A    f()   

     g() 

C   g()  

D   h()   E   h()  

null

Entry Count 

 

Figure 4-15. Snapshot of Inlining Table – After Recovery 
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Chapter 5  Experiments 

This chapter is devoted to experiments. We first describe our set-up 

environment for experiments. Next, appropriate benchmarks are chosen for 

performance evaluation and analysis. Finally, we present our experiment results 

including speed performance and memory usage, and further analyze the factors that 

affect our results. 

5.1 Experiment Environment 

Our method inlining mechansim is designed and implemented on an Embedded 

JIT, KJIT, which is based on version 1.0.4 of Sun’s KVM, the reference 

implementation of J2ME CLDC. For our research usage, the KVM is ported to 

ARM’s ADS 1.2, a development environment which includes compiler, assembler, 

debugger, and instruction set simulator. For recording inlining information system 

classes of KVM, we turned the class preloading/prelinking option off, an option 

which is detailed on “KVM Porting Guide”, to load system classes at run time. For 

compiling Java benchmark programs and KVM’s class libraries, the version of the 

Java compiler adopted is Sun’s J2SDK1.4.2_03. For compiling KVM and our 

KJITC with method inlining optimization, maximum optimization is specified 

with –O2 option. Last, our target architecture is ARM7TDMI, and uncached 

Harvard architecture which supports both ARM/Thumb instruction sets. 
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5.2 Benchmarks 

Due to the limited APIs that J2ME CLDC specifies, common Java benchmarks 

can not be applied in our experiment. By referring to related researches, we choose 

Embedded CaffeineMark 3.0 [11] and CLDC HotSpotTM Implementation Evaluation 

Kit [12] for our experiments. 

The Embedded CaffeineMark 3.0 (CaffeineMark) uses 6 tests to measure 

embedded JVM performance in various aspects, excluding the floating point test 

which is not supported in CLDC 1.0, the remaining 5 tests are adopted; while the 

CLDC HotSpotTM Implementation Evaluation Kit (CLDC_HI) uses 4 benchmarks 

that are more close to real applications in embedded environment. Table 5-1 and 

table 5-2 depict the two benchmark suites.   

Table 5-1: Embedded CaffeineMark 3.0 
Name Brief Description

Sieve The classic sieve of Erastosthenes finds prime

numbers.

Loop The loop test uses sorting and sequence generation as

to measure compiler optimization of loops.

Logic Tests the speed with which the virtual machine

executes decision-making instructions.

Method The Method test executes recursive functional calls to

see how well the VM handles method calls.

String String comparison and concatenation.  
 

 

 

 

 

 

 

 

 

 

 

 53



 

Table 5-2: CLDC HotSpotTM
 Implementation Evaluation Kit Version 1.0.1 

  

Name Brief Description

Richards Richards is a benchmark that simulates the task

dispatcher in the kernel of an operating system.

DeltaBlue DeltaBlue solves one-way constraint systems.(See

"The DeltaBlue Algorithm: An Incremental Constraint

Hierarchy Solver" by Bjorn N. Freeman-Benson and

John Maloney, Communications of the ACM, January

1990.

Image The Image Processing benchmark reads an image file

(Sun raster image format) and performs various

transformations on it, such as Sobel, threshold, 3x3

convolver, and so forth. After each transformation, it

compares the result with an expected result to confirm

that the transformation was done properly.

Queens Queens is a solver of the n-queens problem, where

the objective is to place n queens in a chess board so

that no queen can attack another. It is a classical

problem used to illustrate several techniques such as

general search and backtracking.

 

 

5.3 Experiment Results 

The objective of our design is to improve performance by exploiting our 

method inlining mechanism while keeping the code expansion in a tolerable size. 

We use our code expansion control mechanism, mentioned in 4.3.1 to prevent code 

bloats. In the mechanism, two parameters - inline cache and α- are used to control 

the code expansion. First, we assume that inline cache was enough and different α 

values were measured and then the suitable α were chosen to observed the 

relations between inline cache size and performance. Second, we analyze the factors 

affecting performance about inlining. Finally, different configurations of inlining 

mechanisms are compared in our system. 
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5.3.1 Program Behavior 

Figure 5-1 shows the program behavior of each benchmark. It contains two 

pictures, each of which corresponds to its benchmark suite – CaffeineMark and 

CLDC_HI. According to their execution behavior, the execution time is classified 

into six parts: 

 Compilation – The time spent on compilation by KJITC. 

 Compiled – The time spent on compiled target machine code produced by 

KJIT. 

 Interpreter-other – The time spent on interpreter except handling method 

invocation. 

 Invoke – The time spent on invoking method, i.e., pushing frames into Java 

Stack. 

 Return – The time spent on method return, i.e., popping frames from Java 

Stack. 

 Dispatch – The time spent on dispatching, i.e., finding the actual methods to 

invoke. 

From the figure, we can see that the Compilation is too small to be aware of, 

which echoes the feature of Embedded JIT compiler, while the Compiled and the 

Interpreter-other play an important role in the execution time but the ratios change 

from benchmark to benchmark. As for the Invoke, Return, and Dispatch, causing 

the overhead of method invocation, we can see that in some benchmarks –Sieve, 

Loop and Image – there is little time spent on them while in the others –String, 

Method, Richards, DeltaBlue and Queens – the costs are huge and some even take 

up half of the execution time. The averages of invocation overhead from the two 

benchmark suites are about 8.5% and 37.4% in CaffeineMark and CLDC_HI 

respectively.  
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Figure 5-1. Program behavior of Benchmarks 

 

Table 5-3 gives the method invocation counts on various types respectively– 

monomorphic virtual, polymorphic virtual, and static – for each benchmark. 

According to the table, we can see that the time spent on method is roughly 

proportion to the invocation counts. It is worth noting that while the ratio of the 
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Invoke to the Return roughly remains the same, the time spent on the Dispatch is 

proportion to the virtual method execution count, i.e., the sum of monomorphic and 

polymorphic invocation count. For example, Richards spent a lot of time on 

dispatching, about 22.6%, whereas Queens just took about 4.7%. Both of them have 

high invocation counts but the distribution of virtual methods and static methods 

differs. This indicates that dynamic dispatch of virtual method is expansive and 

especially in embedded JIT compiler (contrast to high performance JIT compiler). 

Table 5-3. Invocation counts on various types 

80494,97145,90549906,56438136,61138,5434288,9391,2291,2671,966Total

804720978186505543713426760641286,349645627871Static

9263741125312149146905324522,103457497861Poly.

219483081953897810019319384341487127143234Mono.

QueensImageDeltaBlueRichardsMethod String Logic LoopSieveBenchmarks

80494,97145,90549906,56438136,61138,5434288,9391,2291,2671,966Total

804720978186505543713426760641286,349645627871Static

9263741125312149146905324522,103457497861Poly.

219483081953897810019319384341487127143234Mono.

QueensImageDeltaBlueRichardsMethod String Logic LoopSieveBenchmarks

 

 

5.3.2 Effects of our Expansion Control 

First, we measured the speedup over original KJITC without inlining by giving 

different expansion factor –α. (Suppose that the inline cache size is large enough.) 

The results are shown in Figure 5-2. We can see that the speedup generally increased 

withα , but sometimes on the contrary it decreased; for example, DeltaBlue 

decreases its performance by 1% from “α=3.5” to “α=4”. This might because that 

when we raise the budget for one-time inlining, the additional inlined callees might 

not be hot. We can also see that the best α varies among benchmarks. On average, 

the speedup increases until “α=2.5” (8.2%) in CaffeineMark and “α=3”(46.4%) in 

CLDC_HI, and then remains steady. 

Then, we measured the effect of the size of the inline cache, and for unity, we 

fixed “α=2.5” to constrain each one-time inlining. Figure 5-2 shows that the 

speedup increases with the inline cache size. We can see that at the peak 

performance the code expansions of all benchmarks are below 32 Kbytes - 28.2 
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Kbytes in Richards, 12.7 Kbytes in DeltaBlue, and below 3 Kbytes in others. This 

indicates that the embedded applications are usually small and amenable to inlining 

due to the low code expansion overhead, echoing our assumption. 
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Effect of α on Performance - CLDC_HI
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Figure 5-2. Effect of expansion factor –α on performance 
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Effect of Inline Cache - CaffeineMark
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Effect of Inline Cache - CLDC_HI
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Figure 5-3. Effect of Inline Cache Size on Performance 

 

5.3.3 Performance Results 

Table 5-4 lists performance results with code expansion and inlining table 

overhead (Configuration: Inline Cache Size = 32KB , α = 2.5). From the table, we 
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can see the speedup and code expansion vary widely from benchmark to benchmark, 

by different program behaviors; while the inlining table size is range from 3.1 

Kbytes to 5.1 Kbytes, a large portion of which is owing to system class (2.5Kbytes). 

The inlining table size is relative high (but still be tolerable) compared to the code 

expansion except for Richard and Deltablue, which have many callees to be inlined, 

133 and 60, respectively. On average, we can improve performance by a factor of 

1.08 with 4.4 Kbytes space overhead in CaffeineMark and 1.43 with 15.1 Kbytes in 

CLDC_HI. (The space overhead is low enough to be put up with in embedded 

environment, for example the space cost grows 3% in CLDC_HI if 512 Kbytes 

memory.) 

Table 5-4. Performance Results 

4.436 3.548 0.888 108.22%Average

5.0193.5641.455132.42%Method 

5.9553.5482.407108.63%String 

3.6673.5400.127100.05%Logic 

3.6693.5400.12999.99%Loop

3.8723.5480.324100.00%Sieve

Total (Kbytes)Inlining Table (Kbytes)Code Expansion (Kbytes)SpeedupCaffeineMark

4.436 3.548 0.888 108.22%Average

5.0193.5641.455132.42%Method 

5.9553.5482.407108.63%String 

3.6673.5400.127100.05%Logic 

3.6693.5400.12999.99%Loop

3.8723.5480.324100.00%Sieve

Total (Kbytes)Inlining Table (Kbytes)Code Expansion (Kbytes)SpeedupCaffeineMark

 

15.0953.84011.255143.55%Average

4.6503.1161.534221.35%Queens

5.7743.2522.522100.00%Image

16.6193.90812.711124.84%DeltaBlue

33.3375.08428.253128.57%Richards

Total (Kbytes)Inlining Table (Kbytes)Code Expansion (Kbytes)SpeedupCLDC_HI

15.0953.84011.255143.55%Average

4.6503.1161.534221.35%Queens

5.7743.2522.522100.00%Image

16.6193.90812.711124.84%DeltaBlue

33.3375.08428.253128.57%Richards

Total (Kbytes)Inlining Table (Kbytes)Code Expansion (Kbytes)SpeedupCLDC_HI

 

 

5.3.4 Speedup Analysis 

Figure 5-4 shows the inlining effect on program behavior of each benchmark. 

Each benchmark has two bars: the left presents original behavior and the right 

presents the behavior inlined. From the figure, we can see that inlining effectively 

reduced the invocation overhead, for the reduction of the Invoke, Return, and 

Dispatch. (Table 5-6 lists the reductions of each type of method call due to inlining.) 

 60



 

We know that one reason for the increased speed is the reduced call overhead; and 

we also want to know how much of the speedup is obtained by just eliminating call 

overhead, and how much is due to other factors (such as more chances for further 

optimization and reducing interpreter’s switching overhead ). For example, in 

Queens, not only is the invocation overhead reduced but also the Interpreter-other 

(reducing switching overhead) and compiled (compiled code quality improved). 

Figure 5-5 shows the ratio of the reasons contributing to speedup. We can see 

that the factor reducing invocation overhead dominates the speedup, 74.1% in 

CaffeineMark and 78.9% in CLDC_HI on average. This is because in our current 

implementation, the “GUARD_TEST” and “NO_TEST” are regard as complex 

bytecode, leading to the constraint on enlarging the basic block size and reducing 

the interpreter’s switching overhead. That is, inlining static callees might contribute 

more to speedup due to having no “GUARD_TEST” or “NO_TEST” bytecodes. 

Table 5-5 proves our inference by seeing that the benchmark with more ratio of 

other factor usually inlines more static callees such as String and Queens: the ratios 

are 49.5% and 30.4% and the static inlined callees take 75% and 66.7%.  
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Figure 5-4. Inlining Effect on Program Behavior 
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Figure 5-5. Speedup Analysis 

 

Table 5-5. Inline Counts of Different Type 
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Table 5-6. Method Call Reduction 
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5.3.5 Comparison 

Figure 5-5 shows the results compared with the following configuration: 

1. Original KJIT (Original) 

2. Static Inlining (Static) 

3. Guard Test Mechanism (Guard_Test) 

4. Code Patching Mechanism (Code_Patching) 

5. Guard Test Code Patching Mechanism (Guard_Test_Code_Patching) 

 

In generally, exploiting virtual inlining is much better than static inlining 

except Queens, and exploiting monomorphic property also has an obvious 

improvement over guard test mechanism. Note that the speedups of Code Patching 

Mechanism and Guard Test Code Patching Mechanism are almost the same except 

for Richards (26.2% and 28.5%). This is because in these benchmarks, only 

Richards will result in monomorphic assumption invalidated. Although this causes 

our mechanism to outperform code patching mechanism little, we can expect that 

when encounter applications with many dynamic class loadings (such as embedded 

Java web browser that can download classes from Internet), the improvement will 

appear.   
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Figure 5-6. Compare with Other Mechanisms 
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Chapter 6  Conclusion and Future Work 

In this thesis, we design and implement a method inlining mechanism in our 

Embedded JIT compiler which can fully exploiting method inlining could improve 

speed performance (about 46% in CLDC_HI) with small space overhead on 

embedded application (about 15K in CLDC_HI). By using the inlining table (about 

3~5K) that records the inlining information such as monomorphic and recovery 

information without maintaining the whole class hierarchy, we can use the 

monomorphic property to avoid testing before entering the inlined code. 

We also analyze the effect of inlining on program behavior and find that the 

factor which reduce method call overhead dominates the speedup (about 79%) due 

to our current implementation of virtual inlining. 

For future work, we can enhance our JIT compiler to compile the 

“GUARD_TEST” and “NO_TEST” bytecode so that the switching overhead could 

be saved a lot. Another interesting direction is partial compilation. Partial 

compilation technique [21] [22] only compiles frequently parts of a compilation unit 

which may be a method or an executing path across methods. This technique can 

accelerate compilation speed and reduce compilation code size, which is attractive 

to embedded JIT compiler. We can combine partial compilation technique with our 

method inlining mechanism to inline more callees with low space overhead. 
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