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Abstract

Recently there has been a growing interest in using Java on embedded portable
devices such as cellular phones,and, PDAs. With the popularization of deploying
Java applications on these'devices increases, performance will become an important
issue. To achieve highef performance, embedded JVMs are usually enhanced with a
lightweight just-in-time “(JIT) compiler, embedded JIT compiler, instead of
incorporating a full-fledged Il -eompiler: as high performance JVM. For fast
compilation and low code size expansion, an embedded JIT compiler usually
compiles simple bytecode instructions and lets interpreter handle method calls, but it
results in poor performance on method calls. In this thesis, we design and implement
a method inlining mechanism that is suitable for embedded JIT compiler to improve

speed performance while keeping the code size expansion in a reasonable size.

In addition to inlining conventional static methods, our method inlining
mechanism can also inline virtual methods and make use of monomorphic property
to further improve performance. Even when this monomorphic property is violated
by dynamic class loading, the inlined code can still have chances to be executed by
our recovery mechanism. As a whole, our method inlining mechanism demonstrates

1.43 speedup with only about 3% code size expansion (if 512Kbytes memory).

il



FARRHADA > - 5 AR DGR OAFRN - FF SN
B s iPpalE s AT USRI R ALY o L REH
Achip - E AR R AP RERGR S 2 Binfp 2 T o A
Erzdtme BALFES G5 TR

SRR HEZOMBLEL S F VLA -2 FF L L84
Fo T B LA ARG R ALY F
Jlj ﬁ_, °

CR IR E RN ) S R T LR N Nk )
PLAR o PHAIE ]

ke
2007.4.19

il



Contents

F A ST T I A O TR i
= OO USROS USRI iii
OO ]\ I = AN I IS TR iv
LIST OF FIGURES ...ttt ettt e ettt e ettt e e st e e s sbb e e e s sabbe s e sbaaeessbbaeessbbneesan \%
(I S IO L AN = I TR Vi
CHAPTER 1 INTRODUCTION ..ottt ettt ettt e st sbaa s e s st e e e s st ae s e srana s s sabaneas 1
1.1 EMBEDDED JAVA ENVIRONMENT ......uuviiiiiiiiiiiieeeeeeeeeeititeeeeeeeeeesaaeeeeeeeseesaaeeseeesssensaseeseesssssnseeeees 2
1.2 EMBEDDED JUST-IN-TIME COMPILER......cooiiieeeieoeeeeeeeeeeeeeeeeeeeeeeeeieeeeeeeeeseenaaneeeeeessennnreeeeeeeas 3
1.3 MIETHOD INLINING .00t xscsssnnnsonssinsninsnnnsin snsstnnnnnnnnnnnnnnnnsnnnnnnnnnnssnnnnnsnsnnnnnsnsssnsnnnnssssnsnsnsnnnnnnnns 4
1.4 RESEARCH MOTIVATION AND OBTECTIVE ... e eeeeieeeeeeeeeieeeeeeeeeeeeieeeeeeeeeseenaaseeeeeessennsreeeeeeens 5
1.5 THESIS ORGANIZATION .4t itieeeuuueeeeeeeeesiistiassbeeeeeeeesuereeeseessessasseeesesssssssseeesesssssissseeseesssssssseeeeesss 6
CHAPTER 2 BACKGROUND .......ooi ittt ettt et eaaee e sabe e e s aabae s e sraee e s enaeeean 7
2.1 JAVA TECHNOLOGY ..vveeieeeieitureeeeeeeeeeiitreeeeeeeeeeeitaeeeeeeeeesestssseseseeeaeasssseseeseeesisssseseeeeesassssseeeeeesasnses 7
22 JVIMIINTERNALS ...ovvtiiieeeeeeititeeee e e eeeettee e e e e eeeetaaeeeeeeeeeetaaaeeeeeeeeeetssseeseeeeeestassseeeeeeeesasssseeeeeeeanses 8
2.2.1 Class Loader and MethOT ATBa..........ccoocuuiiiieeiie ittt stie et e s stte s sae e e s sb e e e s eabae e sares 9
2.2.2 PC RegiSter and JAVa SLACK ..........ccoeiririini e 9
2.2.3JAVA HBAP ... e 10
2.2.4 EXECULION ENQINE ..ottt bbbt 1

2.3 OVERVIEW OF OUR EMBEDDED JIT COMPILER —KJITC ........cooiiiiiiiiiiiiiiiiieeeee e 12
CHAPTER 3 RELATED WORK ...ttt ettt ettt ettt sttt et eatt s sta e e s ebba e s s aatan e sares 15
3.1 THE DIFFICULTIES OF INLINING IN JAVA ... .uuuiiiiiiiiiiiiiieeeee ettt eeaaaee e e e e eeaaanees 15
3.2 INLINING OF VIRTUAL METHODS ....evviiiiiiiiiiieieeeeeeeeiiaeeeeeeeeeesiaeeeeeessesssaaseeseesssessssesssesssssssssnees 17

v



A R TN o N =T 18

3.2.2 Direct Inlining with RecOmMPilation ..........ccoveieiinie i 19
3.2.3 Direct Inlining with Code PatChing .........ccevveiiiinieie e 22

3.3 SUMMARY ...otittieeeee ettt et e e et e e e e e ee et et e e e sees sttt e e e e eeeeenaataaaeeeeseeaataaseeeeeeeantaareeeeeeeannraarees 24
CHAPTER 4 DESIGN AND IMPLEMENTATION .....oooiiiiiie sttt 26
4.1 DESIGN AND IMPLEMENTATION ISSUES .....coiiitiiiiiiiieieiieeeeteeeeeeeiieee e e e e e eenaaaeeeeesesensaaseeeesesnnnes 26
4.2 SYSTEM OVERVIEW......cciitiutiiiieeeieeietieeteeeeeeeeeiateeeeeessasasssesessssessssseseesssesssssessesssssssssseseeessessnnnes 29
4.2.1 DESIGN OVEIVIBW .....viviieiieeteeteiestestestesteetessaesaesaestestesaestesseeseesensesaessessesaeasaeseeseeseensessessens 29
4.2.2 Interactions between COMPONENTS........ciiiiiirieieiie ettt se e sne s 31

4.3 METHOD INLINER ......ccciittiiittiieeeeeeeeeteeee e e eeeeetaeeeeeeeeeeataeeeeeeeeesesaeeeseeeeessnsasseeeeeeesasraseseeeenanses 32
4.3.1 Code Expansion Control MEChANISIM .........couriiiiiriie e 33
4.3.2 Callsite SEIECION ...t e 34
TR 1] 10 T=T e SRR 36

4.4 CLASS HIERARCHY ANALYSIS MANAGER ... ...ieiteeeeeieiiireeieeeeeeeiireeeeeeeeesstaereeeeeeesnsssereseseeennnns 46
CHAPTER 5 EXPERIMENITS ... .ot ettt ettt sttt s sba e sba s sba s sba s s sbas s sbaessrae e 52
5.1 EXPERIMENT ENVIRONMENT ... ..coouiiiiiiitieiteeetieeeeeeateeeaeesaeeeesaeesaeeesaseeesseesnsessnssesssesssssesnsesanns 52
5.2 BENCHMAREKS ...vvvvieieeeiiiieeteeeeeeeeee et e e e e eeeaaeeeeeeesesaaaaeeeeesseessaaaeeseesssassaaaesseesseasarsseeeesseennreenes 53
5.3 EXPERIMENT RESULTS ..euvtvviiiiiiiiitiieeee e e ettt e e e e ettt e e e e eeaaaae e e e e e s eenaaaaeeseeeseenaaaeeeeessennnnnaneens 54
5.3.1 Program BERAVIOr .........cccviieice sttt nne s 55
5.3.2 Effects of our EXpansion CONLIOl...........cociviieieiine e 57
5.3.3 PErfOrmManCe RESUILS .......ccviiieiiiiie ettt ettt st st s s e sab e s ae s srbe s s ressabesans 59
5.3.4 SPEEAUP ANAIYSIS......civiiieitieieieie ettt st re et a ettt e be e aeete e et e srenrenrenre s 60
5.3.5 COMPATISON .....ouviiiiteitieie st eee it e e ste st e te s beete e e et e e et e s besbesbeeseesee e esbeseesbestesaeetaeseeneeseenbesrenrens 65
CHAPTER 6 CONCLUSION AND FUTURE WORK ......oooiiii ittt 67
L o N L 68



List of Figures

FIGURE 1-1. JAVA2 PLATFORM (EXTRACTED FROM SUN)......ciiiuiiiiiiieiieeniieenireenieesieeesseesseeeseessnessseenns 2
FIGURE 1-2. METHOD INLINING DIAGRAM ......cccoouiiiieiiieiiietiecieesie ettt et steesteesveesseessesssesasesseesseennas 5
FIGURE 2.1. THE INTERNAL ARCHITECTURE OF JAVA VIRTUAL MACHINE .........cocvevveerieerenrrerieenneeneennes 8
FIGURE 2-2. PC REGISTERS AND JAVA STACK OF EACH THREAD ........cccoviiuieitieieereeeeeeeeeseesseesseenseennens 10
FIGURE 2-3. ALTERNATIVES TO EXECUTING JAVA PROGRAMS ........eeivieeiieeiieeiieeieeereesreesveesveeneneas 11
FIGURE 2-4. SYSTEM COMPONENTS AND THEIR INTERACTIONS IN KJITC ......cccooeviiiiiiiieeie e, 12
FIGURE 2-5. KJITC COMPILER ARCHITECTURE .....ccc0eeeiuiietieeieeeteesreeeseessseessseesseesssesssessssessseesssens 13
FIGURE 3-1. DYNAMIC DISPATCHING OF VIRTUAL METHOD ......cccvtiiiieeiieeieeereeereeereesseeseveesnveesnnens 15
FIGURE 3-2. DYNAMIC CLASS LOADING EXAMPLES .......ccooiiiiiieeiiectieeteecreeereeeveesvessveesveesveenaneas 17
FIGURE 3-3. GUARD TEST MECHANISM 55555 110 veevtesseesseesseessesssesseesseessesssesssesssesssesseesseessesssesssessesseens 19
FIGURE 3-4. DIRECT INLININGWITH RECOMPIEATION—DIRECT INLINING .....ccveeevviieiiieiieeiee e 21
FIGURE 3-5. DIRECT INLINING!WITH RECOMPILATION-—=RECOVERY ......cc0cesrurerrirerrreenrreerrreenneeensneennes 22
FIGURE 3-6. DIRECT INLINING WITH CODE PATCHING=—DIRECT INLINING......cc.0ceovvreerrrerieereeerreennen. 23
FIGURE 3-7. DIRECT INLINING WITH CODE PATCHING—RECOVERY ......cccvevierieiieieeieeieenreesieeieennens 24
FIGURE 4-1. DIRECT INLINING WITH GUARD TEST CODE PATCHING—DIRECT INLINING .................... 27
FIGURE 4-2. DIRECT INLINING WITH GUARD TEST CODE PATCHING—RECOVERY .........cccveeererereennen. 28
FIGURE 4-3. SYSTEM COMPONENTS OF OUR INLINING SYSTEM .....cccoeevuiiuierrienreereeeeeeeeseesseesseesseenens 30
FIGURE 4-4. INTERACTIONS BETWEEN COMPONENTS.......cccctttitreeteesreeeseessseesseesseesssessssessssesssesssses 31
FIGURE 4-5. OVERVIEW OF CALLSITE SELECTOR AND INLINER .......cccitteiiieeitieeiienieeeieesreesneesveesnnens 33
FIGURE 4-6. CODE EXPANSION CONTROL MECHANISM ......ccvievierieirresieereeneeseereesseesseesseesesssesssesseens 33
FIGURE 4-7. FLOW CHART OF OUR SELECTION ALGORITHM ......cccutiiiuieeiieeieeereesreesreesseesseesseesnnens 36
FIGURE 4-8. OVERVIEW OF INLINER .......ciiittieitieiiieeteeeiteeeteeeteeeteessseeesseesseesssesssseesssessssessssessseenssens 38
FIGURE 4-8. INLINING PATTERNS AND THE DESIGN OF TWO PSEUDO BYTECODE ...........cccveeeveeenrrennen. 39
FIGURE 4-9. ILLUSTRATION OF APPENDING LOCAL VARIABLES ......ccccvteitiieitieeiieeireeieeesereeneeeeseneenenns 40
FIGURE 4-10. INLINING EXAMPLE .......coiiiitiiieiie ettt e e aessesneesneesseenseenseensesnsenseens 45
FIGURE 4.11. A SNAPSHOT OF INLINING TABLE.......cccteitteiieiieieeiieniiesteeieeiesre e sneeseeenseenseensesnnenseens 46

vi



FIGURE 4-12. INLINING TABLE CONSTRUCTION .....uuuuiiiiiieiiiiiiieeeeeeeeeesneeeeeeessesssnsessessssssnssssseessssssnnes 47

FIGURE 4-13. RECOVERY INFORMATION RECORDING........cccttiitieeiieirieeriesreeereesveeeveesseesssessnseessnens 48
FIGURE 4-14. GUARD TEST CODE PATCHING.........cccittiiitieeiieeieeetiesreeeteesreesseesseesssesssseesssessssessssens 50
FIGURE 4-15. SNAPSHOT OF INLINING TABLE — AFTER RECOVERY .....cccciiiiiiiieiiieiieeiie e e 51
FIGURE 5-1. PROGRAM BEHAVIOR OF BENCHMARKS........ccctiiitieetieirieereeeseeeseesseesressseessesssseesanens 56
FIGURE 5-2. EFFECT OF EXPANSION FACTOR —A ON PERFORMANCE .......ccveeeiuiierieeieeereeenireenseeeneneennnes 58
FIGURE 5-3. EFFECT OF INLINE CACHE SIZE ON PERFORMANCE ........c.cceoiieitieeiieeieeeieeeeireensseeseneenenes 59
FIGURE 5-4. INLINING EFFECT ON PROGRAM BEHAVIOR ........cceceitiiiiieeiieiieeeree e ereeereeeeveeevee s 62
FIGURE 5-5. SPEEDUP ANALY SIS ....uteitteittetteteeteestesttesseesseesseesseassesssesssessessseessesssesssesssessesssesssesssesssens 63
FIGURE 5-6. COMPARE WITH OTHER MECHANISMS .......cccvievierieieenieesteeseeseesesseesseesseessesssessessesseens 66

vii



List of Tables

TABLE 1-1. J2IME CONFIGURATION. .....uuuteiiiiiiiiiitteeieeeeeeiiarereeeeeeeesssanseeeeeessnsassesssesssnsssssssssessemssssesees 3

TABLE 3-1. COMPARING AMONG THE THREE APPROACHES - GUARD TEST, DIRECT INLINING WITH

RECOMPILATION (RECOMPILATION) AND CODE PATCHING MECHANISM ......ccccoevvenueneennee. 25
TABLE 4-1. COMPARING TO CODE PATCHING MECHANISM ......cceeiiieiieererienieesereesreeseseessseessseesseesssens 28
TABLE 5-1: EMBEDDED CAFFEINEMARK 3.0.....cuuiiiiiiiiieiiiesie et eeie et esveeseveesaeesiveeseseesaseesssaenssens 53
TABLE 5-2: CLDC HOTSPOT™ IMPLEMENTATION EVALUATION KIT VERSION 1.0.1 ...ovovnn 54
TABLE 5-3. INVOCATION COUNTS ON VARIOUS TYPES ....uvteitiierieesiieesieesireesseessreesseeseseessseesssesssesssses 57
TABLE 5-4. PERFORMANCE RESULTS ......oetiiiiiiiiciieciieieeie ettt esesnaesneesneenseenes 60
TABLE 5-5. INLINE COUNTS OF DIFFERENTEYPE ......ooviiiiiieieiesiieeieie e eeee e siee e seeee e seeesneeseenes 63
TABLE 5-6. METHOD CALL REDUCTION I i, ittt see s 64

viii



Chapter 1 Introduction

Recently there has been a growing interest in using Java on embedded portable
devices such as cellular phones and PDAs. With the popularization of deploying
Java applications on these devices increases, performance will become an important
issue. To achieve higher performance, embedded JVMs are usually enhanced with a
lightweight just-in-time (JIT) compiler, embedded JIT compiler, instead of
incorporating a full-fledged JIT compiler as high performance JVM. For fast
compilation and low code size expansion, an embedded JIT compiler usually
compiles simple bytecode instructions and lets interpreter handle method calls, but it
results in poor performance onymethod calls. Method inlining is a well-known and
effective solution to th¢ problem but entails large code expansion if excessive
inlining. On another hand; embedded applications are often amenable to inlining due
to relative small call sites that:could be inlined compared to large applications. In
this thesis, we design a method. inlining mechanism that is suitable for embedded
JIT compiler and can make full use of method properties to reduce method call
overhead and keeps code size expansion in a reasonable size, and implement it in

our embedded JIT compiler — KJITC.

In this chapter, we introduce some essential materials to help readers
understand the concepts behind and the terms in our research. First, we give an
overview of the current states of the Java technology in embedded environment.
Second, we introduce more features of embedded JIT compiler and its interactions
with embedded JVM. Third, we introduce the concept of method inlining with pro
and con. After the introduction comes our research motivation and objectives.

Finally, organization of this thesis is provided.



1.1 Embedded Java Environment

Java Technology is developed by Sun in 1991 and becomes popular rapidly in
all application fields, such as powerful large-scale server, desktop PCs, or even in
small portable devices. To meet the demands of different application fields with
different characteristics, Sun in 1999 has grouped Java technologies into the Java 2
platform [1], which consists of three editions as Figure 1-1. Each edition is

specialized for a specific area:

e Java 2 Enterprise Edition (J2EE) - targeted at scalable, transactional, and
database-centered enterprise applications with an emphasis on server-side

development.

e Java 2 Standard Editi seted at conventional desktop applications.

Figure 1-1. Java2 Platform (extracted from Sun)



To address the diversity of embedded devices with different memory footprint
and network connectivity, J2ME specifies two configurations: Connected Device
Configuration (CDC) and Connected Limited Device Configuration (CLDC). Each
configuration targets at different types of embedded devices and therefore provides
different class libraries and APIs. Table 1-1 gives an overview of the two

configurations.

Table 1-1. J2ME Configuration

Connected Device Connected Limited Device
Configurations Name Configuration (CDC) Configuration (CLDC)
Target Devices high-end PDAs, set-top boxes, |cell phones, taro-way pagers,
screen phones, and et low-end PDAs, and etc,
System Memory Constraints 2ME ~ 16ME 128ERB ~ 512KE
Target Processor Type 32-hat 16-kbat, 32-tat
Feference Virtual Machine C EVId
Other Features hugh bandwidth network brrated, low bandwidth network
connechon, most often based on|connection
TCE/IP

1.2 Embedded Just-In-Time Compiler

Although the JVM can be easily realized by an interpreter, its slow
performance is a concern in performance-aware system. To solve the problem, some
compilation technologies must be applied. For example, ahead-of-time (AOT)
compilers [2] allow offline compilation, so no run-time compilation overhead is
needed. Conventional JIT compilers translate bytecode into machine code on the fly
before execution with the expense of code size increase and run-time compilation
overhead. However, embedded JVM with footprint memory and low performance
CPU can tolerate neither the static compiled code size expansion imposed by AOT
compilers nor the code size/compilation overhead imposed by conventional JIT

compilers.

In order to let embedded JVM take advantage of executing compiled code to



improve performance without too much size/compilation overhead, a lightweight
JIT compiler which is highly customized for an embedded JVM— embedded JIT
compiler — is adapted ([3] [4] [5]). For fast compilation and low code size expansion,
an embedded JIT compiler usually compiles only simple bytecode instructions and
incorporates simple optimization techniques (such as constant folding). Hence, the
other part of the program without compiled will be handled by the interpreter. This
kind of execution model letting interpreting and native executing co-exist is called

mixed mode execution ([6] [7]) and here are its principles:

*  Performance-critical parts (Hot Spot) of the program are compiled by
embedded JIT compiler, and then natively executed.

*  Non-performance-critical parts of the program are interpreted by an interpreter.

*  Close interactions between, the JIT compiler and interpreter is necessary.
Generally, for keeping itself.compact, an embedded JIT compiler regard

method invocation bytécode instructions (such as INVOKEVIRTUAL) as complex

and delegates the interpreter to-handle /the heavy task involving pushing and

popping frame, passing ‘arguments-and etc. Hence, method call overhead in

embedded JVM is costly even if enhanced with an embedded JIT compiler.

1.3 Method Inlining

Method inlining is an important compilation optimization technique ([8] [9])
that replaces a method call site with the body of the method. A simple illustration is
given in figure 1-2. This technique reduces the overhead resulting from method calls.
The savings are especially pronounced for applications where only a few call sites
are responsible for the bulk of the method calls. Inlining also expands the context of
analysis and the wider scoped analysis introduces opportunities for further

optimization techniques (such as constant propagation and etc).

Unfortunately, inlining also has negative effects. Excessive inlining increases



the code size, cache miss rate, register pressure and dynamic compilation cost (if in
dynamic compilation environment). Therefore, finding the best tradeoff among these

benefits and costs becomes an important issue of method inlining.

Method Inlining

—_—

caller Inlined

callee callee

T - -

return

Figure 1-2. Method Inlining Diagram

1.4 Research-Motivat’i,oh-,and Objective

]

In our survey, we "fpund-,‘tlvlr;t 'sfﬁ'aﬂ zipplications are usually more amenable to
aggressive inlining and thé‘ éxperiment fésults in [10] show that aggressive inlining
of small applications not only improves performance well but also increases little
code size. We also observed that most applications running on embedded systems
are small ([11] [12]) and suitable for inlining. Motivated by [10] and our observation
of embedded applications, the objective of this thesis is to design and implement a
method inlining mechanism that is suitable for embedded JIT compiler and can
make full use of method properties to improve speed performance while keeping the

code expansion within a reasonable size.

In addition, the embedded JIT compiler we choose to implement is developed
by [6]. The embedded JIT compiler, named KJITC, is combined with a mixed mode
JVM modified from Sun’s CLDC KVM 1.0.4 and the KJITC generates ARM

instructions in its current implementation.



1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides more detailed
background knowledge on JVM internals and an overview of our embedded JIT
compiler - KJITC. Chap 3 describes the problem of method inlining in Java and
introduces current common solutions. In Chap 4, the design and implementation of
our method inlining mechanism is presented. Chap 5 exhibits and analyze the

experiment results. In the end we make a brief summary in Chap 6.



Chapter 2 Background

This chapter provides more background details on JVM and an overview of our
embedded JIT compiler - KJITC. Readers who are already familiar with these two

topics can skim over them.

2.1 Java Technology

Generally, Java is refer to a computer language, but it more that that. In reality,

Java is rather a complete architecture consisting of four components [13].

*  Java programming language
*  Java class file format
*  Java Application Programming Interface (Java API)

e Java Virtual Machine (JVM)

A Java program is written in Java programming language, and then compiled
into Java class files which conform to Java class file format by a Java source
compiler (such as javac compiler in Sun JDK). Java class files can be executed on
any environment with JVM, the core of Java technology. The Java program can also
access predefined libraries or system resources (such as I/O and Network, for
example) by calling methods in the classes implementing the Java API. And during
program execution, JVM loads and executes user-written class files as system

classes that Java API defines.



2.2 JVM Internals

Java Virtual Machine, the core of Java technology, is definitely the key
component among the all and it is responsible for the well-known advantages of
Java comparing to traditional native execution systems. Those advantages include
cross-platform portability, security of the execution environment and small size of

compiled code etc.

class
class files loader
subsystem
____________________________________________________________________________________ .
i
method Java pe nanve
heap : method
area stacks registers
stacks
runtime data areas
___________/_/\_\_ ____________________________________ \ __________________________________
P b
y
\V/ ¥ .
: native
s 4 native method method
i interface . .
engine /e libraries

Figure 2.1. The Internal Architecture of Java Virtual Machine

To realize the JVM, the functionality of a real processor must be provided that
adhere to the Java virtual machine specification [14], which describes the behaviors
of a JVM instance in terms of subsystems, runtime data areas, and instructions.
These components are described as an abstract inner architecture instead of detail
implementation of each. Figure 2-1 shows a block diagram of Java virtual machine
including the major subsystems and runtime data areas described in JVM

specification. Next we will simply describe those components.



2.2.1 Class Loader and Method Area

In Java virtual machine, static information about each class is loaded by a class
loader and stored in method area. The class loader loads Java class files and
converts to corresponding run time data structure in JVM and store it into method
area. The information in method area contains bytecode instructions that are
associated with the methods in the compiled code and the symbol table, named
constant pool, needed for dynamic linkage. All threads in a JVM instance share the
same method area, so access to the method area’s data structures must be designed

to be threadsafe.

Furthermore, class loader presents the dynamic class loading feature of JVM,
which provides the Java platform withsthe ability to install software components at
run-time and has a number of ¢haracteristics such as lazy loading, type-safe linking

and user-definable class loading policy.

2.2.2 PC RegisterandiJava Stack

When each new thread comes into existence, it receives its own PC registers
and Java Stack. If the thread is executing a Java method, the PC registers contain the

current state of JVM and the next instruction to execute.

The Java stack is composed of stack frames, each of which contains the
execution state of its corresponding invoked method, including its own local
variables, parameters, return values (if any) and intermediate calculations on
operand stack. When a thread invokes a Java method, the JVM pushes a new stack
frame onto the Java stack of the thread. When the method completes and returns, the
JVM pops the frame for that method. The state of native method invocations is

stored in an implementation-dependent way in native method stacks, such as in



registers or other implementation-dependent memory areas.

Figure 2-2 shows the memory areas that JVM creates for each thread. These
areas are private to their owning thread, and there is no thread that can access the PC
register or Java Stack of another. At the figure, thread 1 and thread 2 are executing

Java methods while thread 3 is executing a native method.

thread 1
]

thread 2
]

thread 3
O

pc registers

thread 1 | thread 2 | thread 3

thread 3

Java stacks

stack stack stack
frame firame frame
v v v
stack stack stack
frame frame frame
i i
stack stack
frame frame
v
stack
frame

native
method
stacks

Figure 2-2. PC registers and Java Stack of each thread

2.2.3 Java Heap

The Java heap is the dynamic memory of JVM, and it usually contains a
collection of objects. When an object is created with the “NEW” bytecode
instruction, a reference to the object is returned. The reference can be used
subsequently, or stored in the current stack frame. An object is live in heap until

there are no references to it. An object becomes garbage when there are no such

references, and a garbage collector will reclaim its resources.

10




2.2.4 Execution Engine

Execution engine is the kernel of execution in Java virtual machine, and it is
also the critical section affecting performance of JVM. The execution engine is not
restricted to software interpreter implementation. There are other alternatives such
as JIT and Java processor, as depicted in figure 2-3. Interpreting the bytecode has
the advantage of fast JVM porting but makes the execution of Java programs
relatively slow. One solution to improve performance is to use a bytecode compiler
which is responsible for translating bytecode into native machine code to substitute
interpreter. While ahead-of-time (AOT) compilers performs offline compilation as
conventional compilers, just-in-time (JIT) compilers performs on-the-fly
compilation at run-time. Both of them have pros and cons, but it seems that JIT
compilers are more appealing to_most.researchers. Another solution is to implement
directly on silicon such as.picoJava-{15], which is a Java processor that supports

bytecode execution cornpletely:

Java Program

/ Java Compiler \

Bytecode

Machine
Binarv

General CPU

An Executable Form

Figure 2-3. Alternatives to Executing Java Programs
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Recently, an interpreter can still coexist and cooperate with a JIT compiler in
JVM, mixed-mode execution JVM. As well, a mixed software/hardware approach
comes to exist; ARM has introduced its own Java instruction extension — Jazzle [16].
A subset of bytecode instructions can be directly executed when the ARM processor
is executed in Java mode while the remaining bytecode instructions are still handled

in software (interpreted or compiled).

2.3 Overview of our embedded JIT compiler —

KJITC

Our embedded JIT compiler, KJITC, is, applied on an embedded mixed-mode
JVM based on Sun’s CLDC KVM. Figure 2.5 simply illustrated the main system

components and their interactions

Time
Interpreter:
interpret Java invoke hot spot
bytecode detector ‘
Hot Spot Detector:
detect a hotspot invoke KIITC
- KIITC:
. . perform hotspot
_________ . - compilation
Interpreter:
interpret Java
bytecode | -
switch between interpreter .
and compiled code Compiled Code
Interpreter: A
interpret Java
 J bytccodc

Figure 2-4. System Components and Their Interactions in KJITC

Now we respectively describe each component (include our target embedded
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JIT) as follows:

* Interpreter-based JVM (KVM)

The interpreter-based JVM provides a JVM infrastructure that performs
method invocation, garbage collection, exception handling, synchronization and etc.
For mixed-mode execution, the interpreter is also responsible for invoking the hot
spot detector and switching to and from compiled code in addition to interpreting of

those bytecode that have not been compiled or will not be compiled.

*  Hot Spot Detector

Due to the memory constraints, only valuable parts of the program are selected
for compilation. The responsibility of the hot spot detector is to discover
performance-critical part of program and then invoke JIT compiler for hot
compilation. The basic unitiof hot spot_is a method. When a method is invoked
frequently or contains at least one loop:that iterates many times, it is regarded as a

hot spot and invokes KJITC to compile 1t.

e KIITC

The KJIT is divided into the Intermediate Representation (IR) generator and
the native code generator. The IR generator is mainly responsible for translating
bytecode into three-address IR. And then code generator translates IR, generated by
IR generator, into targeted native code to be executive in a native way dependent on

the target processor. A simple illustration is given in Figure 2-6.

IR Generator Native Code Generator
(1st Pass) (Ind Pass)
Function: Function:
translation of Java bytecode 1. register allocationfassigment
Java jm xf-ﬁ:jmh:aW Iy equivalent 3-addresg | 7. s ruc?ar selection/ Targeted Native Code
Bytecode ™1 3 address IR IR generation ! (ea. ARM)

Optimizations:
instruction folding for stack
operations

, constant propagation

. constant folding

Optimizalions:

1. rule-based null pointer check
elimination

2, strength reduction

[

)

Figure 2-5. KJITC Compiler Architecture
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In order to reduce compilation cost and to keep the KJITC small footprint,

several design decisions are made.

1. Only Local optimization Within an Extended Basic Block

No global optimization is performed because of the potential high
compilation cost of control and data flow analysis. However, the maximum
optimization range was extended to an extended basic block rather than a

basic block.

2. No Support for Complex Bytecode

Complex bytecode refers to those bytecode instructions that involve
complicated operations, such as method invocation, synchronization, object
construction, and _ete; that ‘suit_for interpreter handling. As result these
complex bytecode instructions. are. regarded as non-compile-able in the

KIJIT.

*  Compiled Code Buffer

The compiled code buffer holds all compiled code. During native execution,
the machine program counter points to native code that resides in the buffer. The
compiled code buffer is allocated statically and its size is also predetermined in

current implementation.

In addition to the four components above, the switching mechanism between
the interpreter and the compiled native code is described here. Similar to a function
call, the switch from the interpreter to the compiled native code includes spilling
register into memory and then transfer execution by a branch; and the switch from
the compiled native code to the interpreter includes restoring registers from memory,
transferring execution by a branch, and updating Java PC (program counter) and

Java SP (stack pointer).
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Chapter 3 Related Work

In this chapter, we describe the difficulties in inlining of Java’s virtual methods
and discuss three common approaches that make it possible to virtual inlining.
Section 3.1 explains the difficultly in inlining of virtual methods with some
examples. Section 3.2 introduces the three common approaches. Finally the three

approaches are summarized in section 3.3
3.1 The difficulties of Inlining in Java

Generally, there are two kinds of methods in Java - static method and virtual
method. Static method can be statically bound at compile time and virtual method
can only be resolved atruntime depending on the actual instance of the method,

known as dynamic dispatch. Figure 3:1.gives a simple example for illustration.

Class Hierarchy Pseudo Code

A 10
90

A o = getObject();

o.f();
/ 0.9(); dynamic (dispatching

B Af

Ag()

or

B.f0

Figure 3-1. Dynamic Dispatching of Virtual Method

In figure 3.1, the left side is class hierarchy graph (CHG), which represents the

inheritance relationship between classes and their methods; and the right exhibits the
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pseudo code that invokes virtual methods. From the CHG, we know that there are
two classes — class A with method () and class B with methods () and g() — in the
current execution. Class B inherits class A and method f() in B (B.f()) overrides
method f() in A (A.f()). It is not known which versions (A.f() or B.f()) o0.f() would
invoke until the statement “ A 0 = getObject(); ““ is executed. Hence, we can’t
directly inline virtual method because the caller may invoke different version of
callees through dynamic dispatching if there are at least two versions existing in the

CHG.

In closed world language, like C++, classes are prohibited from being loaded
after compilation. [17] exploits this property to inline monomorphic virtual methods,
only one version in CHG, by class hierarchy analysis that analyzes the class
hierarchy graph and decides whether a method is monomorphic. For example, the

method g() in figure 3.1 is monomerphic because only A.g() version exists.

However, Java supports dynamic class-loading that enables new classes to be
loaded by JVM at run time (such as Class.forName()). The support for dynamic
class loading impedes inlining 6f monomorphic virtual methods. According to class
hierarchy graph in figure 3.1, for example, we know that method g() is
monomorphic and the call site “0.g();” always invokes A.g(). But as the time goes
by, JVM loads new class C dynamically that inherits class A and its method g()
overrides method A.g(), as shown in figure 3.2. If A.g() is inlined before class C is

loaded, it may leads to error because now there are two versions of g().
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Class Hierarchy Pseudo Code

A f
0 A 0 = getObject();
90 0.10);

/ \ 0.90);
B f( c 90 e

A.g0
dynamic class loading or

C.90

A£()

or

B.f0

Figure 3-2. Dynamic Class Loading Examples

Due to the two features of Java described above - dynamic dispatching and
dynamic class loading, a given virtual call site may invoke several different actual
methods over the course,of a program ‘execution. Thus, it is impossible to uniquely
identify method to be inlined at a virtual callsite. But on one hand, virtual methods
are heavily presented in Jaya applications in object-oriented design. On the other
hand, in many applications some virtual call sites actually execute only one method,
that is, are monomorphic though the program execution rather than polymorphic;
some call sites are “almost monomorphic”, in that several methods might be
executed, but one is executed much more frequently than the others. Therefore, it is

worthy of investigating mechanisms to virtual inlining.

Some approaches ([17] [18] [19]) have been proposed to make inlining of
virtual methods possible with some side effect. Next section we will introduce three

common approaches to inlining of virtual methods.

3.2 Inlining of Virtual Methods

In order to inline virtual methods, mechanism that handles “wrong inlining”
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must be implemented. Guard test mechanism [17] employs a test to guard the
inlined code to ensure correctness, while direct inlining with recompilation
mechanism [18] and direct inlining with code patching mechanism (code patching
mechanism) [19] directly inline monomorphic method without guard test code and
the inlined code is executed until the monomorphic assumption about the method
becomes invalidated, at which time the compiler recompiles or performs code
patching to make original normal dispatch code executed subsequently. A point
should be noted that the three approaches are not individually adopted and can be

used interchangeably.

3.2.1 Guard Test

When a virtual method is selected to be inlined, the compiler with this
mechanism generates a test code along with-the inlined code to ensure that it is valid
to enter the inlined callee body. If the test fails, the normal virtual call mechanism,
dynamic dispatch, is applied: Figure-3-3 gives an example about how the guard test

mechanism works.
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Class Hierarchy Pseudo Code

A 10
90

i' A o = getObject();

0.f();
B 10

Before Inlining

After Inlining

A o = getObject();
if (class(0) ==A)

v

A test is generated to guard the

inlined code to ensure that it is valid {

{/l'inlined A.f() }
telsef
0.f();

to enter the inlined callee body.

Figure 3-3.-Guard Test Mechanism

In Figure 3-3, the version A.f()iS inlined along with a test code —“class(0) ==
A”— that guards the inlined A.f(). Before entering into the inlined A.f(), the test code
checks if the class of the instance o is equal to class A.' If they are equal, it means
that our inlining assumption is valid and the inlined A.f() is executed; otherwise, the

normal virtual dispatch, 0.g(), is applied to invoke the actual method.

3.2.2 Direct Inlining with Recompilation

This mechanism only allows monomorphic methods® to be inlined, by

analyzing the current class hierarchy. When a monomorphic callee is selected to be

" In recent studies, there are two kinds of guard test — class test and method test. Class test guards the
inlined code by testing the receiver of the class while method test guards that by testing the method
address. In this thesis we see class test as our guard test mechanism. The detail can be found in [17].

* We say the method is “monomorphic” in the thesis is based on the class hierarch graph at that time, and
it may becomes polymorphic by dynamic class loading.
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inlined, the JIT compiler with this mechanism generates the inlined code directly
(without test code) and records the fact that the inlining of the monomorphic callee
depends on the monomorphic assumption about the callee. Then the inlined code is
executed until the assumption monomorphic becomes invalidated by dynamic class
loading. When it happens, the JIT compiler is responsible for recompiling the
inlined caller and let it work as original dynamic dispatch. In case that when the
monomorphic assumption about callee is violated, an invocation of the inlined caller
is being executed, the JIT compiler is responsible for adjusting the state of the

corresponding methods on the stack (called on-stack replacement) [17].

Figure 3.4 and figure 3-5 illustrate how this mechanism works. By class
hierarchy analysis, method g() is known monomorphic. Then the JIT compiler
directly inlines A.g() and records, information about the monomorphic assumption
for recovery (figure 3-4):As the;time goes-by, a new class C is loaded and overrides
A.g(). At the moment, the JIT compiler recompiles the inlined caller and because the
inlined caller is being executed;-on-stack veplacement is applied to correct the state

on the stack for subsequent.execution (figure 3-5).
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Class Hierarchy

A 10
90
/ v
B 10

Using class hierarchy analysis to
determine if a selected callee is

monormophic.

After Inlining

Pseudo Code

Before Inlining

A o = getObject();
0.9();

90

A

Class Hierarchy Analysis

¢ monomorphic?

N

A o = getObject();
{ /inlined A.g(); }

i
X

Figure 3-4. Direct Inlining with Recompilation—Direct Inlining
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Class Hierarchy Pseudo Code

A f() Inlined Caller

90 .
A o = getObject();

/ \ { /Minlined A.g(); }

B 10 C 90

Recompilation

\ 4

A o = getObject();

Recompiling the inlined caller to

0.9();
original normal dispatching. g()
Inlined Recompiled
Caller Frame Caller Frame
On Stack
Replacement
Other Other
Method Frame Adjusting the state on Method Frame
stack for subsequent for
subsequent execution.

Stack Stack

Figure 3-5. Direct Inlining with Recompilation—Recovery

3.2.3 Direct Inlining with Code Patching

This mechanism (code patching mechanism), as well as direct inlining with
recompilation, only allows monomorphic methods to be inlined and the difference is
that when a monomorphic method is selected to be inlined, the JIT compiler with
code patching mechanism generates the inlined callee code together with the back

up code for original normal dispatch. At the beginning, only the inlined code is
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executed and when the monomorphic assumption is violated by dynamic class
loading, the JIT compiler adjusts the first instruction of the inlined callee code and
let it jump to the backup code rather than recompilation. As a consequence, the

backup code is executed afterward.

See figure 3.6 and figure 3.7 for illustration. By class hierarchy analysis, the
method g() is known to be monomorphic. And the compiler generates inlined A.g()
together with its backup code 0.g() and records information about the monomorphic
assumption for recovery (figure 3-6). As the time goes by, a new class C is loaded
and overrides A.g(). At the moment, the compiler patches the code of the inlined
A.g() and let it jump to the backup code o.g() for original dynamic dispatch

subsequently (figure 3.7).

Class Hierarchy Pseudo Code
A 0 Before Inlining
90
f A o = getObject();
0.9();
B f(0

g0

A

Class Hierarchy Analysis

¢ monomorphic?

Inlining  with  normal After Inlining \/ l

dispatch backup code

and using a jump

A o = getObject(); ><
{ /inlined A.g(); }
goto aftercall;

instruction to avoid

executing it.

backup: | 0.9();

aftercall:

Figure 3-6. Direct Inlining with Code Patching—Direct Inlining
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Class Hierarchy Pseudo Code
A 10 Inlined Caller
g0 A o = getObject();
/4 v\ { /inlined A.g(); }
goto aftercall;
B f c .
Y Y backup: 0.90);
aftercall:
Code Patching
A o = getObject();
Adjusting the first instruction of { goto backup;
the inlined callee code and let /linlined A.g(); }
it jump to the backup code goto aftercall;
0.9();
backup: 90
aftercall:

Figure 3-7. Direct Inlining with'Code Patching—Recovery

3.3 Summary

We have described the reason why it is difficult to inline virtual methods and
introduced three common approaches to virtual inlining. Table 3-1 summarizes the
three approaches. From the table, we can see that guard has the least space overhead
but entails the run time test overhead every time when entering the inlined code;
although direct inlining with recompilation seems to increase the speedup most from
inlining, it has the highest space overhead and a high recompilation cost if the
monomorphic assumption violated; at least, code patching mechanism has the
advantage of fast entering the inlined code and recovery, but still costs space to

maintain inlining information.
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The three approaches have their pros and cons and there is no one that

always outperforms the others. In reality, the actual speed performance depends on

the behavior of the application. If the dynamic class loading happens frequently, the

direct inlining with recompilation may become most slow.

Table 3-1. Comparing among the three approaches - Guard Test, Direct Inlining with

Recompilation (Recompilation) and Code Patching mechanism

Guard Test

Recompilation

Code Patching

Selected callee
to be inlined

Polymorphic

Monomorphic only

Monomorphic only

Entering the

Through a test

Before recovery: direct enter

Before recovery: through a direct

inlined callee jump instruction
After recovery: no inlined code | After recovery: no inlined code
Recovery No 1. recompile Adjust inlined code to normal
2. may need on-stack
replaéement dynamic dispatch
Main Runtime guard 1. rClass-hierarchy analysis 1. Class hierarchy analysis
Time 2.~ Recompilation cost 2. Dynamic dispatch after
Overhead test Dymnamic dispatch after recovery
recovery
Main Little 1. Class hierarchy graph 1. Class hierarchy graph
Space 2: U Recovery information 2. Recovery information
Overhead maintenance (relative high) maintenance (relative low)

25




Chapter 4 Design and Implementation

In this chapter, we present the overall design and implementation of our
method inlining mechanism in KJITC. In section 4.1, we discuss some design and
implementation issues. Section 4.2 introduces an overview of our design and then

section 4.3 to section 4.4 details the internal components.

4.1 Design and Implementation Issues

The goal of this research is to design a method inlining mechanism that can be
implemented in Embedded JIT compiler, and to improve speed performance while

keeping code expansion within a-reasonable size.

In order to speedup performance, mote method calls should be eliminated,
which means that mechanisms ‘for virtual inlining should be adopted. And on one
hand, we don’t want to entail the “test overhead if encountering monomorphic
method and the high recompilation overhead; on the other hand, we hope that after
recovery, the inlined code still has chances to be executed. Thus, a revised code
patching mechanism — guard test code patching mechanism — is employed. The
guard test code patching mechanism generates inlined code along with “guard teat
backup code” which acts the same as guard test mechanism rather than normal
backup code (dynamic dispatch). When the monomorphic assumption is violated,
the JITC compiler then made guard test back up code executed subsequently, so the
inlined code could be re-entered after recovery. Figure 4-1 and figure 4-2 illustrate
how this mechanism works and Table 4-1 make a comparison to the code patching

mechanism.
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Class Hierarchy Pseudo Code

A 10O Before Inlining

90

A o = getObject();
0.9();

90

Class Hierarchy Analysis

Inlining with guard test
backup code and using a monomorphic?

jump instruction to avoid \/
After Inlining

executing it.

A o = getObject();
goto inlinedcode; ><
guardtest: | { //gurad test code }
goto aftercall;

inlinedcallee: {_/linlinedA.g(); }

aftercall:

Figure 4-1. Direct Inlining with Guard Test Code Patching—Direct Inlining

Since the property of monomorphic method is exploited, the inlining
information (such as class hierarchy graph and recovery information) should be
maintained. Because of memory constraint, an embedded JVM can not afford to
maintain full class hierarchy information. Instead, we design an inlining table that
provides only monomorphic information about a method for class hierarchy analysis
and recovery information for patching code to guard test backup code. Thus, an
embedded JIT compiler can use inlining information without constructing full class

hierarchy.
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Class Hierarchy

and let it jump to guard

guardtest:| { //gurad test code }
test backup code.
goto aftercall;
inlinedcallee: { /linlined A.g(); '}
aftercall:

Pseudo Code

Inlined Caller
A f
v A o = getObject();
a0 goto inlinedcode;
/ \ guardtest: | { //gurad testcode }
B £ c g0 goto-af'fercall;
inlinedcallee: | { //inlined A.g(); }
aftercall:
Guard Test Code Patching
N
Patchi h “
atching the goto A 0 = getObject();
inlinedcallee” instruction

goto guardtest;

Figure 4-2. Direct Inlining with Guard Test Code Patching—Recovery

Table 4-1. Comparing to Code PatchingMechanism

Code Patching

Guard Test Code Patching

Selected callee
to be inlined

Monomorphic only

Monomorphic only

Entering the

Before recovery: through a direct jump

Before recovery: through a direct jump

inlined callee instruction instruction
After recovery: no inlined code After recovery: through a test
Recovery Adjust inlined code to normal dynamic | Adjust inlined code to guard test
dispatch backup code
Main 1. Class hierarchy analysis 1. Class hierarchy analysis
Time 4. Dynamic dispatch after recovery
Overhead
Main 1. Class hierarchy graph 1. Class hierarchy graph
Space 2. Recovery information maintenance | 2. Recovery information maintenance
Overhead
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On another hand, KJITC only compiles simple bytecode such as IADD, ILOAD,
and ISTORE. If a selected callee contains complex bytecode, KJIC cannot generate
the inlined callee code in IR level. To increase opportunity for inlining, we do
method inlining optimization before delivering to KJIC. That is, we implement
method inlining at bytecode level. Hence, the embedded JIT compiler is only
responsible for adjusting the PC (program counter) and corresponding execution
state (Java stack frames) after inlining, so that the inlined code can be executed

correctly after compilation.

Last but no least, to solve the code expansion problem, actually the most
critical issue, we provide an inline cache and a code expansion control mechanism

for our inlining mechanism to limit the code expansion (detailed in section 4.3.1).

4.2 System Qverview

In this section, we first introduce our inlining system and then discuss
interactions between its components. The inlining system is buildt on our

mixed-mode JVM with KJIC described in section 2.3.

4.2.1 Design Overview

Figure 4.3 illustrates our inlining system components and their interactions. In
the figure, components are showed as rectangle while data structures (such as
bytecode, compiled code and inlining table) are show as ellipse. And the
components and data structures in light blue represent the original while the others
in light red are imposed for method inlining optimization. The red italic words

represent the interactions between components about inlining and we will explain
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latter.

There are two main components - method inliner and CHA manager, and a
data structure- inlining table imposed on the system. Method inliner selects and
inlines suitable callee methods into its caller which is detected by hot spot detector
while CHA manager provides an interface for accessing inlining information from

inlining table which records monomorphic and recovery information.

Class

Loader

Dynamic Class Loading Inlining Table Construction

Monomorphic Violation Detect

on

1

1

!

|

1
A 4

Mixed-Mode Hot Spot Method CHA
bytecode v I >
Interpreter Detector Inliner Manager
A Class Hierarchy Anglysis f
1

1
Recovery Information Recbrding
1

Inlining

Table
Guard Test Code Patching

Figure 4-3. System Components of our Inlining System
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4.2.2 Interactions between Components

Mix-Mode Hot Spot Method Class CHA
Time Interpreter Detector Inliner KJITC Loader Manager
/\/ Class
Loading >
/\/ Inlining Table
Construction
4. ___________________________________________
Hot Spot
Detection
"""""""""" P Class Hierarchy
@~ - m e Analysis
Inlining [ __________________ > _
Recovery Information
€= Recording
N Compilation
4 ________________________
/\/ Class
Loading >
Inlining Table
Construction
Monomorphic Violation
Detection
Guard Test
Code Patching
4. ___________________________________________
v

Figure 4-4. Interactions between Components

When the mixed-mode embedded JVM starts execution, it loads system classes,
such as Object, Array etc. After loading each method of a class, CHA manager will
construct inlining table and record monomorphic information into inlining table.
Then mixed-mode interpreter is invoked to execute bytecode. After a period of time,

the hot spot detector detects hot spot and delivers the hot spot to method inliner to
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do method inlining, and then the hot spot goes through KJITC to be compiled to
target machine code. During method inlining process, the method inliner request
CHA manager to do class hierarchy analysis to determine monomorphic when
encountering virtual callee method to be inlined and if the callee is monomorphic,
CHA manager will record recovery information into inlining table. Once dynamic
class loading occurs and it results in the monomorphic assumption violated, the
CHA manger is responsible for detecting this violation and recovering by our guard
code patching mechanism. After recovery, the recovered method can still enter

inlined callee through a test (by guard test backup code).

4.3 Method Inliner

Method inliner consists of three parts — callsite selector, inliner and code
expansion control. Callsite selector selects'the suitable callee methods to be inlined
from its caller and marks their corresponding call sites. Then, the caller with marked
callsites is delivered to the inliner to replace those call sites with their corresponding
method bodies. Figure 4-5 gives a simple illustration. The third part, code expansion
control, is a mechanism to avoid inlining too much. Figure 4-6 shows an overview
of this mechanism. Next we will detail the mechanism and two components in

method inliner.
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Method Inliner

Hot Spot Callsite Inliner KJITC
Detector Selector
callsite 1 callsite 1
callsite 2 callsite 2
callsite 2
callsite 3 callsite 3
Hot Spot Hot Spot with
Selected Callsite Infined Hot Spot

Figure 4-5. Overview of Callsite Selector and Inliner
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Figure 4-6. Code Expansion Control Mechanism

4.3.1 Code Expansion Control Mechanism

In this mechanism, two parameters are employed to control code expansion,
inline cache and an expansion factor- ¢ . Inline cache provides the limit of total
code size expansion, while a constrains the code expansion withina times the

original caller per inlining. For example, “ a = 1.5 ” means that after inlining, the
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code expansion cannot exceed the original code size of the caller times 1.5.

When the hot spot detector sends a hot spot to method inliner, inline cache

will be checked first:

if ((Inline Cache - codesize(hot spot) * @ )>0).> (Enough Inline Cache Space?)

This formula estimates if the remaining size of inline cache is enough for
inlining. If there is not enough space for inlining, the hot spot is refused to do
inlining and be directly sent to KJIT; otherwise, the hot spot will go through callsite

selector and inliner, and then inline cache actually used is computed:
Inline Cache := Inline Cache — actual code expansion. (Inline Cache Compution)
This formula subtracts the actual inlining cost from inline cache.’

With this mechanism, we can limit the code size overhead resulting from
inlining within a size that we can tolerate and prevent the code size from increasing

too much through a one-tim¢e inlining process.

4.3.2 Callsite Selector

Callsite selector selects the suitable callsites from the hot spot and marks their
corresponding callsites. There are two kinds of hot spot: one is frequently called by
other methods and the other is self-containing loops and iterates many times,
mentioned in section 2.3. According to the two kinds, we give different selection

ranges to select callsites to be inlined:
1. hot spot frequently called by other methods:

Because the hot spot is called frequently by other method, each callsite in

3 “codesize(hot spot)’ represents the code size of the hot spot.
* The actual code expansion involves bytecode, constant pool (option), stackmap and compiled code.
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the hot spot may execute many times and it means that each callsite may
worth being inlined, so entire selection range is given and callsites are

selected from the whole method.

2. hot spot containing loop with many iterations:

As the hot spot contains at least one loop and iterates many times, it is
inferred that the callsites outside the loop was infrequently executed
compared to those within the loop; and the benefits from inlining may be
overwhelmed by overhead of inlining effort, if the callsites outside the loop
are inlined. Therefore, selection range within the loop is set to avoid inlining

methods outside the loop that may hurt performance.

After determining the selection range, it starts to select the suitable callee

methods. By our code expansionjcontrol mechanism, an code expansion budget -

“codesize(hot spot) * «”’Zisygiven to ptevent the callsite selector from selecting too

many callee methods. This is Similar-to the Knapsack problem. Hence, a selection
algorithm based on greedy approximation to Knapsack problem is used to select the

callsites to be inlined:

1. Each callsite is given a benefit value and a cost size:

benefit value := execution_count (callee method) / codesize( callee method )°

cost size := codesize(callee method).

2. Abudget is used to limit the expansion:

budget := @™ codesize( caller method).

3. Selecting as many as possible callsites from which with the highest

> “execution_count (callee method)’ represents the executing count of the callee method corresponding to
its callsite.
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benefit value until the budget is not enough.

The benefit value is determined on the assumption that the higher execution
counts the more benefits would be from inlining, and the lower code size the less
overhead of inlining effort. Figure 4.7 illustrates the flow chart of our selection

algorithm.

Initialization Initialization involves computing budget and

& unmarked callsites? assigning benefit value and cost size to each
es ’

Y callsite.

y

Get Callsite
with the Highest
Benefit Value

ves & Budget enough?
+ no

Mark the Callsite

v

Budget Computation

A

Inliner

Figure 4-7. Flow Chart of our Selection Algorithm

4.3.3 Inliner

The inliner inlines the corresponding callee methods of the callsites marked by
callsite selector. In addition to replacing each callsite with its corresponding callee
method body, other method information used by interpreter should be revised (such
as local variables size, max operand stack, and etc); if encountering virtual call site,
extra mechanism like guard test or guard test code patching is applied to ensure
correctness. Figure 4.8 gives an overflow of the flow chart of the inliner. Next we

will demonstrate our mechanism to inline virtual method and briefly describe how
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to inline a callee into its caller with some discussion.

Implementation of Inlining of Virtual Methods

For aggressive inlining and exploiting the monomorphic property, we use guard
test and guard test code patching mechanism to present inlining of virtual methods.
When the Inliner encounters a callsite, it checks if its corresponding callee is a
virtual method. If so, then run time monomorphic is checked through class hierarchy
analysis provided by CHA manager. If the method is monomorphic, then guard test
code patching mechanism is applied and if the method is virtual method and is not
monomorphic, then guard test mechanism is applied; otherwise, the method is static
method and delivered to callsite replacement directly. Figure 4.8 illustrates inlining

patterns with each mechanism.

In order to implement our vittual inlining mechanism, two new bytecode are
created — NO_TEST and GUARD_TEST, both of which have the same instruction
format and regard “method”, which is a direct reference to a method, as their
operand:

1. NO_TEST: It is used to implement guard test code patching mechanism and
merely jumps to the start of inlined callee body without referring to its
operand.

2. GUARD_TEST: It is used to implement guard test mechanism and make use
of its operand, method pointer, to verify that the receiver has the proper class.
If the test success, it jumps to the start of inlined callee body as NO_TEST;
otherwise, it uses method pointer to do normal dispatching. This
implementation makes it easy to record recovery information and do
recovery. As guard test code patching is applied, we merely record the
address of NO_TEST to its corresponding in the inlining table (section 4.4).

And when the monomorphic assumption is violated, all we have to do is
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replace NO_TEST with GUARD_TEST where we recorded before; then the

patched method is executed in guard test way subsequently.

Callsite Selector

Remaining Marked Callsite?
ng.

Class Hierarchy Analysis

| ® v |

Guard Test Code Guard Test
Patching

v

Recovery Information
Recording

i

|

: Method Information
i Revision

i

i

Figure 4-8. Overview of Inliner
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Guard Test Code Patching Guard Test Static

pc: |no_test method PC: | guard_test method inlincedcode:
goto aftercal goto aftercall Callee Body
inlinedcode: inlinedcode:
aftercall:
Callee Body Callee Body
aftercall: aftercall:

Design Two Pseudo Bytecodes to implement inlining of virtual methods:
methodpointer is the operand of bytecode

NO_TEST methodpointer instructions NO_TEST and GUARD_TEST. It

o is a 4-bytes method pointer referencing to
goto inlinecode;
method information in our target environment

based on KVM.

GUARD_TEST methodpointer

if ( class(method) == class(instanee)) goto inlinecode;
else normal: dispatch(method)

Figure 4-8. Inlining Patterns and the Design of Two Pseudo Bytecode

Callsite Replacement

The callsite replacement procedure replaces a marked callsite with its

corresponding callee body with the following adjustments.

*  Argument passing

Argument passing is originally handled by interpreter and obeys the calling
convention of JVM. The interpreter pops the arguments on the operand stack and
stores them into their corresponding local variables of callee method. Therefore, the

inliner has to insert bytecode instructions which pop the arguments from the stack
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and store them into the corresponding local variables (we will discuss latter) in front
of the callee body. See Figure 4.10 for example: “ASTORE 17, line 23 in the inline
caller, is inserted which can pop the argument (this pointer) from the operand stack

and store it to the corresponding local variable, “local variable 1.

*  Local variable operand renumbering

Because caller and callee have its own local variables, it would lead to
confliction if the inlined callee body has the same local variable operand as the
caller. The inliner grows the local variables for inlined callee and renumbers the
local variable operand in the inlined callee body. A simple illustration is given in
Figure 4.9 and 4.10. In Figure 4.10: “ALOAD 17, line 25 in the inlined caller, is

renumbered from O (line 0 in the callee) to 1.

caller local variables:

callee local variables:

inlined caller local variables:

callee-part local variables:

Figure 4-9. Illustration of Appending Local Variables

*  Constant pool operand renumbering

Sometimes the caller and callee may belong to different classes and it would
lead to constant pool reference confliction. To fix the problem, we have to adjust the
caller’s constant pool and renumber the constant pool operand in the inlined callee

body. Intuitively, we can append the whole callee’s constant pool to the caller’s and
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add an offset to the constant pool operands in the inlined callee as local variables
operand renaming. However, this solution wastes the space - average 52 entries (215
bytes) - for each class from Caffeine Benchmark. In fact, only several entries (2~10)
are referenced from a method for the most part and it means that a large part of
constant pool entries appended to the caller’s are useless and results in space

overhead.

Therefore, we use another solution — just appending the necessary constant
pool entries to the caller’s constant pool and renumber the constant pool operands in
the inlined callee body. That is, only constant pool entries used by the callee are
appended to the caller’s constant pool. This approach saves space and reduces

constant pool movement compared with the intuitive approach.

See figure 4.10 for illustration: the number of constant pool entries is increased
by 1 in the inlined caller because|the inliner appended the callee’s second constant
entry to the caller’s;=and “GETFIELD 397, line 27 in the inlined caller, is
renumbered from 2 (line'1 in the callee) to 39 so the instruction can refer to the right

entry and get what it want.

*  Return Substitution

Executing “RETURN” bytecode instructions causes the interpreter to pop the
stack frame of the callee from the Java Stack and gives execution control back to its
caller. The inliner uses the bytecode, “GOTO”, to substitute “RETURN” lest
popping the caller, and let “GOTO” jumps to the next instruction of the inlined

callee to give execution control to the caller.

Consider the “RETURN” instruction which is the last instruction in the call
code, the substituted “GOTO” just jumps to the next instruction of inlined call- the
next instruction. It is a redundancy so when “RETURN” appears in the end, empty

substitution is applied instead.
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Figure 4.10 illustrate that the “RETURN?”, line 4 in the callee, was eliminated

in the inlined callee (empty substitution).

*  Synchronization and Exception Handling

If the callee method is a synchronization method, inliner should insert the
instruction to lock object. For callee method with exception handling, the handle
range and address for exception routine should be adjusted and a call stack
recording the calling list without inlining is maintained to conform the semantic of
exception. For example, if we inlined B to A, we need to main a call stack which
records A calls B while executing the inlined B so that if the exception happens at
inlined B, we can report correctly by using the call stack. Currently, we do not inline

these callee methods, and we will implement in the future.

Method Information Revision

After replacing all the 'callsites through the callsite replacement procedure
which replaces the callsite. with its-corresponding callee body and do local
adjustments within the inlined callee described above, the inlined caller should
further go through method information revision procedure to do global adjustments
(ranged in whole inlined caller). The method information revision procedure does
the following global adjustments to revise method information so that the interpreter

can work with the inlined version:

*  Branch Offset Adjustment

The branch instructions in bytecodes use relative addressing instead of direct
addressing and the operands of branch instructions are called branch offset. After
replacing all the callsites, the relative addresses between instructions may change in
the inlined caller. The inliner should fix those offsets and let the branch instructions

jump right.

42



See Figure 4.10 for illustration: the branch offset of “IFEQ 267, line 11 in the
inlined caller, was adjusted from 21, line 4 in the caller, to 26, and the adjustment
makes the “IFEQ” in the inlined caller jump to line 37, “ICONST 0 as the caller

does.

*  Growth of the size of Local Variables, Operand Stack

These records should be adjusted to let the interpreter push the stack frame
with proper size. To decide the size of local variables for inlined caller, the max size
local variables among inlined callees is chosen to be added to the caller’s and so as
the size of operand stack. It is based on that the live ranges of local variables among
callees don’t overlap at one time so different inlined callees share the same
appending local variables instead of appending all callee’s local variables. See

Figure 4.10 illustrate the growth.

*  Stackmap Reconsttuction

Stackmap defined-is a data structure exploited by garbage collector to speed up
marking the object pointer in‘the Java Stack at runtime. Each method has its own
stackmap with entries corresponding to branch targets. Each stackmap entry records
branch target address and bitmaps of local variables and operand stack. A bitmap
uses ‘1’ and ‘0’ to distinguish that if the corresponding field of local variables or
operand stack is an object pointer or not. See Figure 4.10 for illustration, at the
bottom of the caller, there are two stackmap entries corresponding two branch target,
line 25 and line 26. Thus when executing line 25, the local variable 0 is an object
pointer and there is no operand on operand stack. When executing line 26, the same

as line 25 but now there is one operand on operand stack which is not an object

pointer.

Inlining results in variations of branch target, local variables and operand stack
and a new branch target may be created, for example: a new branch target is created,

line 30 in the inlined caller in Figure 4.10, resulting from “GOTO 20” at line 20, so
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a new stackmap should be reconstructed for the inlined caller lest garbage collector
would mark wrong objects. See Figure 4.10 for illustration, the reconstructed
stackmap in the inlined caller responds to the changes in branch targets, local

variables and operand stack.

The implementation of stackmap reconstruction may use data flow analysis to
generate all stackmap entries for branch targets, but it takes times. Alternatively, we
reuse the original caller and callee stackmap information to speedup the
reconstruction and only when encountering stackmap entry for new create branch

target, data flow analysis is applied.
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caller:
class A
method : f()

local vairable: 1

operand stack:1

constant pool : 38 entries
0 ALOAD_O

1 INVOKEVIRTUAL 21

4 IFEQ 21
7 ALOAD_O
8 INVOKEVIRTUAL 22
11 IFEQ 14
14 ALOAD_O

15 INVOKEVIRTUAL 23

18 IFNE 7
21 ICONST_1
22 GOTO 4

25 ICONST_O

26 IRETURN
stackmap: v op
25: 1 1

26: 1 110

callee:

class :B

method : g()

local vairable: 1

operand stack:1

constant pool : 40 entries

0 ALOAD_O
1 GETFIELD 2
4 IRETURN

stackmap:  null

inlined caller:
class @A
method : ()
local vairable: 2
local variable: 2

constant pool : 39 entries

0 ALOAD 0
1 INVOKEVIRTUAL 21
4 IFEQ 33
7 ALOAD_O
8 INVOKEVIRTUAL 22
11 IFEQ 26
14 ALOAD_O
15 NOTEST "B g()'
20 GOTO 10
23 ASTORE 1
25 ALOAD 1
27 GETFIELD 39
30 IFNE 7
33 ICONST_1
34 GOTO 4
37 ICONST_O
38 IRETURN
Stackmap: Iv op
30: 10//0
37: 101/
38: 10//0

Figure 4-10. Inlining Example

45




4.4 Class Hierarchy Analysis Manager

The CHA Manager provides an interface for other components accessing
inlining information in our inlining system, see figure 4.3. The tasks of CHA
manager include inlining table construction, monomorphic violation detection, class
hierarchy analysis, recovery information recording and guard test code patching, as

mention in section 4.2.2.

Inlining table is a data structure used to maintain inlining information and each
entry in the table consists of method identification, monomorphic information, and a
list of recovery information; and for fast access, the table is implemented in hash
way. This kind of design make it possible to provide information without
constructing the whole .¢lass hierarchy. and can be implemented in memory

constrained JVM. Figure 4.11 depicts.the table.

Inlining Table
Inlining
Entry Count 4 Method ID
Monomorphic Info. [€---1 _
1 fQ 1 monomorphic
Recovery List
2 0 0 polymorphic
null
3
4 g0
0
5
: null
31
32 » h( _-’| pcdenotes the address of bytecode
1 ’ “no_test”
»{ PC . .
used for Code Patching mechanism

Figure 4.11. A Snapshot of Inlining Table

Now we detail how the CHA manager deals with the five tasks and interacts
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with inlining table:

* Inlining Table Construction

Inlining Table Class Hierarchy

E C
ntry Count 3 Inlining Entry g N
1 0 90
, 0 / \
null
3 B f( C 40
. g0
0
5
null
Cij ol new class
31
32 »_ "0

1
null

Figure 4-12. Inlining Table Construction

When a new class is loaded, the class loader requests the CHA manager to
record inlining entry relative to.each method of the loaded class to the inlining table.
If a method is not appeared in the inlining table, then the new inlining entry is added
and marked monomorphic. Otherwise the inlining entry with the same method id is
marked polymorphic. Figure 4.12 illustrates that a new class C with a method h()
was loaded by class loader and the CHA manager found that there was no method id
the same as h() at that time, so a inlining entry standing for h() was added to inlining

table and marked as polymorphic.

*  Class Hierarchy Analysis

When the inliner starts inlining a virtual callee, it will first request CHA
manager to do class hierarchy analysis to decide if the callee is monomorphic, as
illustrated in figure 4.8. Then the CHA manager will look for the inlining entry

standing for the callee method and report its monomorphic information. For
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example: figure 4.13 illustrates that the inliner start inlining h() at callsite 1, then
that h() is monomorphic was reported back according to the monomorphic

information of inlining entry, h().

*  Recovery Information Recording

After getting the monomorphic information about the callee to be inlined and if
the callee is monomorphic, the callee is inlined in “guard test code patching” style
and the recovery information- the address of “NO_TEST” bytecode- is recorded by
CHA manager. Figure 4.13 illustrates that address of “NO_TEST”, pc, was

recorded in the inlining entry h() for recovery.

Inlining Table

Original Caller Inlined Caller
Entry Count 3 Inlining-Entry:
1 f() callsited | h( pc: |no_test| NO
0
2 goto aftercall
null inlinedcode:
3 callsite2 |90
Callee Bod
4 g0 y
0
5 i Hot Spot with aftercall:
Qj Selected Callsite
31 callsite 2 | g0
32 » hO
1
»{ pC

Figure 4-13. Recovery Information Recording

*  Monomorphic Violation Detection

When a new class is loaded, the CHA manager not only adds inlining
information to inlining table but also check the table to detect if the monomorphic
assumption to those inlined method is violated. The detection is simply checking the
recovery lists corresponding to the added methods of the new class. If there is a

corresponding inlining entry in the inlining table and the recovery list of the entry is
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not empty, then the monomorphic is detected and it needs to do recovery. Figure
4.13 illustrates that a new class E with method h() was loaded and CHA manager
detected that the recovery list of inlining entry- h() is not empty, which means that

another method h() had been inlined into its caller.

*  QGuard Test Code Patching

While the monomorphic violation is detected, CHA manager must to do
recovery as mention in section 4.1 which patches the inlined callee code and let it
execute in guard test way subsequently. Since the recovery information is
maintained in a recovery list, all we have to do is replace the “NO_TEST” with
“GUARD_TEST” addressed by the recovery list. Figure 4.13 illustrates that the
address pc of the recovery list in inlining entry h() was used to do the recovery.
Figure 4.14 illustrates that after, recovery, the “NO_TEST” was replaced with
“GUARD_TEST” so the recevered. callee would execute in guard test way

subsequently, which can reuse the inlined code made before.
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Inlining Table

Entry Count 3 Class Hierarchy
Inlining Entry
1 f0 A 0
0
2 90
null
3 \
g0
4 B 10 c g0
0
5
: null
31
D h() E h(
32 > h( new class
1
» pC
1
1
1
1
]
]
|
|
1
Guard Test Code;Paiching X
)
1
o ___ > PC:| no_test h ()

goto | aftercall

inlinedcode:

Callee Body

aftercall:

callsite 2 g()

Figure 4-14. Guard Test Code Patching
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Inlining Table

Entry Count 3
Inlining Entry

1 f0

2 0
null

3

4 g0
0

5

31

32 o NO
0
null

Guard Test Code Patching

pc:

guard_test | h ()

goto | aftercall

inlinedcode:

Callee Body

aftercall:

callsite 2

Figure 4-15. Snapshot of Inlining Table — After Recovery

g0
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Chapter 5 Experiments

This chapter is devoted to experiments. We first describe our set-up
environment for experiments. Next, appropriate benchmarks are chosen for
performance evaluation and analysis. Finally, we present our experiment results
including speed performance and memory usage, and further analyze the factors that

affect our results.

5.1 Experiment Environment

Our method inlining mechansim is designed and implemented on an Embedded
JIT, KJIT, which is based on,.version: 1.0.4 of Sun’s KVM, the reference
implementation of J2ME-CLDC. Eor our tesearch usage, the KVM is ported to
ARM’s ADS 1.2, a development-envitonment which includes compiler, assembler,
debugger, and instruction ‘set simulatet. .For recording inlining information system
classes of KVM, we turned the class preloading/prelinking option off, an option
which is detailed on “KVM Porting Guide”, to load system classes at run time. For
compiling Java benchmark programs and KVM’s class libraries, the version of the
Java compiler adopted is Sun’s J2SDK1.4.2 03. For compiling KVM and our
KJITC with method inlining optimization, maximum optimization is specified
with —O2 option. Last, our target architecture is ARM7TDMI, and uncached

Harvard architecture which supports both ARM/Thumb instruction sets.
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5.2 Benchmarks

Due to the limited APIs that 2ME CLDC specifies, common Java benchmarks
can not be applied in our experiment. By referring to related researches, we choose
Embedded CaffeineMark 3.0 [11] and CLDC HotSpot™ Implementation Evaluation

Kit [12] for our experiments.

The Embedded CaffeineMark 3.0 (CaffeineMark) uses 6 tests to measure
embedded JVM performance in various aspects, excluding the floating point test
which is not supported in CLDC 1.0, the remaining 5 tests are adopted; while the
CLDC HotSpot™ Implementation Evaluation Kit (CLDC_HI) uses 4 benchmarks
that are more close to real applications in embedded environment. Table 5-1 and

table 5-2 depict the two benchmark suites:

Table 5-1: Embedded CaffeineMark 3.0

|Name |Brief Description |

Sieve The classic sieve of Erdstosthenes finds prime
numbers.

Loop The loop test uses sorting and sequence generation as
to measure compiler optimization of loops.

Logic Tests the speed with which the virtual machine
executes decision-making instructions.

Method The Method test executes recursive functional calls to
see how well the VM handles method calls.

String String comparison and concatenation.
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Table 5-2: CLDC HotSpot™ Implementation Evaluation Kit Version 1.0.1

|Name |Brief Description |

Richards Richards is a benchmark that simulates the task
dispatcher in the kernel of an operating system.
DeltaBlue |DeltaBlue solves one-way constraint systems.(See
"The DeltaBlue Algorithm: An Incremental Constraint
Hierarchy Solver" by Bjorn N. Freeman-Benson and
John Maloney, Communications of the ACM, January
1990.

Image The Image Processing benchmark reads an image file
(Sun raster image format) and performs various
transformations on it, such as Sobel, threshold, 3x3
convolver, and so forth. After each transformation, it
compares the result with an expected result to confirm
that the transformation was done properly.

Queens Queens 1s a solver of the n-queens problem, where
the objective 1s to placen'queens in a chess board so
that no queen can attack another:It 1s a classical
problem used:to illustrate sevieral techniques such as
general search and backtracking.

5.3 Experiment Results

The objective of our design is to improve performance by exploiting our
method inlining mechanism while keeping the code expansion in a tolerable size.
We use our code expansion control mechanism, mentioned in 4.3.1 to prevent code
bloats. In the mechanism, two parameters - inline cache and « - are used to control
the code expansion. First, we assume that inline cache was enough and different «
values were measured and then the suitable a were chosen to observed the
relations between inline cache size and performance. Second, we analyze the factors
affecting performance about inlining. Finally, different configurations of inlining

mechanisms are compared in our system.
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5.3.1 Program Behavior

Figure 5-1 shows the program behavior of each benchmark. It contains two
pictures, each of which corresponds to its benchmark suite — CaffeineMark and
CLDC HI. According to their execution behavior, the execution time is classified

into six parts:

e Compilation — The time spent on compilation by KJITC.
*  Compiled — The time spent on compiled target machine code produced by
KIJIT.

* Interpreter-other — The time spent on interpreter except handling method

invocation.
* Invoke — The time spent'on invoking method, i.e., pushing frames into Java
Stack.

*  Return - The time spent on method return, i.e., popping frames from Java

Stack.

e Dispatch — The time spent on dispatching, i.e., finding the actual methods to
invoke.

From the figure, we can see that the Compilation is too small to be aware of,
which echoes the feature of Embedded JIT compiler, while the Compiled and the
Interpreter-other play an important role in the execution time but the ratios change
from benchmark to benchmark. As for the Invoke, Return, and Dispatch, causing
the overhead of method invocation, we can see that in some benchmarks —Sieve,
Loop and Image — there is little time spent on them while in the others —String,
Method, Richards, DeltaBlue and Queens — the costs are huge and some even take
up half of the execution time. The averages of invocation overhead from the two
benchmark suites are about 8.5% and 37.4% in CaffeineMark and CLDC HI

respectively.
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8 Compilation® Compiledd Interpreter-othe®  Call O Returnl Dispatchl

Figure 5-1. Program behavior of Benchmarks

Table 5-3 gives the method invocation counts on various types respectively—
monomorphic virtual, polymorphic virtual, and static — for each benchmark.
According to the table, we can see that the time spent on method is roughly

proportion to the invocation counts. It is worth noting that while the ratio of the
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Invoke to the Return roughly remains the same, the time spent on the Dispatch is
proportion to the virtual method execution count, i.e., the sum of monomorphic and
polymorphic invocation count. For example, Richards spent a lot of time on
dispatching, about 22.6%, whereas Queens just took about 4.7%. Both of them have
high invocation counts but the distribution of virtual methods and static methods
differs. This indicates that dynamic dispatch of virtual method is expansive and

especially in embedded JIT compiler (contrast to high performance JIT compiler).

Table 5-3. Invocation counts on various types

Benchmarks Sieve Loop Logic String Method Richards DeltaBlue Image Queens

Mono. 234 143 127 487 384341 10019319 19538978 308 21948
Poly. 861 497 457 2,103 452 14690532 25312149 37411 926
Static 871 627 645 286,349 641 13426760 5055437 8186 80472097
Total 1,966 1,267 1,229 288,939 38,5434 | 38136,611 49906,564 | 45,905 80494,971

5.3.2 Effects of our Expansion Control

First, we measured the speedup ovet original KJITC without inlining by giving
different expansion factor —a . (Suppose that the inline cache size is large enough.)
The results are shown in Figure 5-2. We can see that the speedup generally increased
with @, but sometimes on the contrary it decreased; for example, DeltaBlue
decreases its performance by 1% from “ a =3.5" to “ @ =4”. This might because that
when we raise the budget for one-time inlining, the additional inlined callees might
not be hot. We can also see that the best a varies among benchmarks. On average,
the speedup increases until “ a =2.5" (8.2%) in CaffeineMark and “ a =3(46.4%) in

CLDC HI, and then remains steady.

Then, we measured the effect of the size of the inline cache, and for unity, we

fixed “a=2.5" to constrain each one-time inlining. Figure 5-2 shows that the
speedup increases with the inline cache size. We can see that at the peak

performance the code expansions of all benchmarks are below 32 Kbytes - 28.2
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Kbytes in Richards, 12.7 Kbytes in DeltaBlue, and below 3 Kbytes in others. This

indicates that the embedded applications are usually small and amenable to inlining

due to the low code expansion overhead, echoing our assumption.

#Speedup

Effect of @ on Performance - CaffeineMark

1.5 2 2.5 3 3.5

expansion factor - a

—— Sieve —*— Loop Logic —< String —%— Method —@— Average

#Speedup

Effect of @ on Performance - CLDC_HI

4 4.5 5

1.5 2 2.5 3 35

expansion factor - a

0.5 1

—e— Richards —=— DeltaBlue Image —< Queens —@— Average

Figure 5-2. Effect of expansion factor —a on performance
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Effect of Inline Cache - CaffeineMark
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#Speedup

Effect of Inline Cache - CLDC_HI
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—e— Richards —#*— DeltaBlue Image —<— Queens —@— Average

Figure 5-3. Effect of Inline Cache Size on Performance

5.3.3 Performance Results

Table 5-4 lists performance results with code expansion and inlining table

overhead (Configuration: Inline Cache Size =32KB, a =2.5). From the table, we



can see the speedup and code expansion vary widely from benchmark to benchmark,
by different program behaviors; while the inlining table size is range from 3.1
Kbytes to 5.1 Kbytes, a large portion of which is owing to system class (2.5Kbytes).
The inlining table size is relative high (but still be tolerable) compared to the code
expansion except for Richard and Deltablue, which have many callees to be inlined,
133 and 60, respectively. On average, we can improve performance by a factor of
1.08 with 4.4 Kbytes space overhead in CaffeineMark and 1.43 with 15.1 Kbytes in
CLDC HI. (The space overhead is low enough to be put up with in embedded
environment, for example the space cost grows 3% in CLDC HI if 512 Kbytes

memory.)

Table 5-4. Performance Results

CaffeineMark Speedup Code Expansion (Kbytes) | Inlining Table (Kbytes) | Total (Kbytes)

Sieve 100.00% 0.324 3.548 3.872
Loop 99.99% 0.129 3.540 3.669
Logic 100005% 0.127 3.540 3.667
String 108.63% 2.407 3.548 5.955
Method 132.42% 1.455 3.564 5.019
Average 108.22% 0.888 3.548 4.436
CLDC_HI Speedup Code Expansion (Kbytes) | Inlining Table (Kbytes) | Total (Kbytes)

Richards 128.57% 28.253 5.084 33.337
DeltaBlue 124.84% 12.711 3.908 16.619
Image 100.00% 2522 3.252 5.774
Queens 221.35% 1.534 3.116 4.650
Average 143.55% 11.255 3.840 15.095

5.3.4 Speedup Analysis

Figure 5-4 shows the inlining effect on program behavior of each benchmark.
Each benchmark has two bars: the left presents original behavior and the right
presents the behavior inlined. From the figure, we can see that inlining effectively
reduced the invocation overhead, for the reduction of the Invoke, Return, and

Dispatch. (Table 5-6 lists the reductions of each type of method call due to inlining.)
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We know that one reason for the increased speed is the reduced call overhead; and
we also want to know how much of the speedup is obtained by just eliminating call
overhead, and how much is due to other factors (such as more chances for further
optimization and reducing interpreter’s switching overhead ). For example, in
Queens, not only is the invocation overhead reduced but also the Interpreter-other

(reducing switching overhead) and compiled (compiled code quality improved).

Figure 5-5 shows the ratio of the reasons contributing to speedup. We can see
that the factor reducing invocation overhead dominates the speedup, 74.1% in
CaffeineMark and 78.9% in CLDC_HI on average. This is because in our current
implementation, the “GUARD_TEST” and “NO_TEST” are regard as complex
bytecode, leading to the constraint on enlarging the basic block size and reducing
the interpreter’s switching overhead. That is, inlining static callees might contribute
more to speedup due toshaving.no. “GUARD TEST” or “NO_TEST” bytecodes.
Table 5-5 proves our inference by seeing that the benchmark with more ratio of

other factor usually inlines more-statiescallees such as String and Queens: the ratios

are 49.5% and 30.4% and the static inlined callees take 75% and 66.7%.
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Inlining Effect on Program Behavior - CaffeineMark
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Figure 5-4. Inlining Effect on Program Behavior
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Speedup Analysis - CaffeineMark
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Figure 5-5. Speedup Analysis

Table 5-5. Inline Counts of Different Type

ICnéll?ri Sieve Loop | Logic String Method Richards DeltaBlue | Image Queens
Mono. 1 0 0 1 3 53 12 0

Poly. 1 1 1 1 1 29 29

Static 2 0 0 6 0 51 19 4

Total 4 1 1 8 4 133 60 10
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Table 5-6. Method Call Reduction

CaffeineMark Sieve Loop Logic String Method
Mono. with/no 287 143 127 788 760605
with 234 143 127 487 384341
Reduction 81.5% 100.0% 100.0% 61.8% 50.5%
Poly. with/no 891 525 485 2133 480
with 861 497 457 2103 452
Reduction 96.6% 94.7% 94.2% 98.6% 94.2%
Static with/no 969 677 645 360726 641
with 871 627 645 286349 641
Reduction 89.9% 92.6% 100.0% 79.4% 100.0%
Total with/no 2147 1345 1257 363647 761726
with 1966 1267 1229 288939 385434
Reduction 91.6% 94.2% 97.8% 79.5% 50.6%
CLDC_HI Richards DeltaBlue Image Queens
Mono. with/no 10019319 19538978 308 21948
with 5221981 13130431 308 21948
Reduction 52.12% 67.20% 100.00% 100.00%
Poly. with/no 14690532 25312149 37411 926
with 11463610 13064345 35317 833
Reduction 78.03% 51.61% 94.40% 89.96%
Static with/no 13426760 5055437 8186 80449223
with 8603106 3181726 8146 10469315
Reduction 64.07% 62.94% 99.51% 13.01%
Total with/no 38136611 49906564 45905 80472097
with 25288697 29376502 43771 10492096
Reduction 66.31% 58.86% 95.35% 13.04%
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5.3.5 Comparison

Figure 5-5 shows the results compared with the following configuration:

1. Original KJIT (Original)

2. Static Inlining (Static)

3. Guard Test Mechanism (Guard Test)

4. Code Patching Mechanism (Code Patching)

5. Guard Test Code Patching Mechanism (Guard Test Code Patching)

In generally, exploiting virtual inlining is much better than static inlining
except Queens, and exploiting monomorphic property also has an obvious
improvement over guard test'mechanism. Note that the speedups of Code Patching
Mechanism and Guard Test| Code Patching-Mechanism are almost the same except
for Richards (26.2% and 28.5%). This 1s, because in these benchmarks, only
Richards will result in menomorphic-assumption invalidated. Although this causes
our mechanism to outperform code: patching mechanism little, we can expect that
when encounter applications with many dynamic class loadings (such as embedded
Java web browser that can download classes from Internet), the improvement will

appear.
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Speed Performance Comparsion - CaffeineMark
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Chapter 6 Conclusion and Future Work

In this thesis, we design and implement a method inlining mechanism in our
Embedded JIT compiler which can fully exploiting method inlining could improve
speed performance (about 46% in CLDC HI) with small space overhead on
embedded application (about 15K in CLDC_HI). By using the inlining table (about
3~5K) that records the inlining information such as monomorphic and recovery
information without maintaining the whole class hierarchy, we can use the

monomorphic property to avoid testing before entering the inlined code.

We also analyze the effect of inlining on program behavior and find that the
factor which reduce method call overhead dominates the speedup (about 79%) due

to our current implementation of virtual inlining.

For future work; wei can—renhance our JIT compiler to compile the
“GUARD_TEST” and “NO_TEST” bytecode so that the switching overhead could
be saved a lot. Another interesting direction is partial compilation. Partial
compilation technique [21] [22] only compiles frequently parts of a compilation unit
which may be a method or an executing path across methods. This technique can
accelerate compilation speed and reduce compilation code size, which is attractive
to embedded JIT compiler. We can combine partial compilation technique with our

method inlining mechanism to inline more callees with low space overhead.
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