

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

嵌入式即時編譯器中方法展開之設計與實

作

Design and Implementation of Method Inlining in

Embedded Just-In-Time Compiler

研 究 生：唐心磊

指導教授：單智君 博士

中 華 民 國 九 十 六 年 四 月

嵌入式即時編譯器中方法展開之設計與實作

學生：唐心磊 指導教授：單智君 博士

國立交通大學資訊工程學系碩士班

摘要

近來有越來越多將 Java 應用於嵌入式系統上的趨勢，例如應用

於手機和個人數位助理(PDA)等。而隨者這些智慧型裝置中使用
Java 應用程式的普及，效能就成為很重要的議題。為了達到更佳的

執行速度，嵌入式 Java 虛擬機器使用了輕量化的即時編譯器，稱

為嵌入式即時編譯器。嵌入式即時編譯器只編譯了簡單的位元組

碼，而複雜的運算例如: 方法呼叫等，則交由直譯器執行。而此設

計方式導致執行方法呼叫的效能低落。本論文中，我們設計並實作

一方法展開的機制，來提高程式執行效能，且讓程式空間的的擴張

在一個合理的範圍內。

我們的方法展開機制除了可以展開傳統的靜態方法外，也結合

了在高效能即時編譯器中的方法展開機制使得虛擬方法也可以被展

開，以利用虛擬方法中單型的特性來提高效能。此外，在單型的假

設被動態類別載入破壞時，我們的回覆機制也使得後續的執行還有

機會重新利用展開過的方法。整體而言，我們的方法展開機制使程

式執行效能增進了 1.43 倍，而只增加少量的系統動態記憶體使用空

間。

 i

Design and Implementation of Method Inlining

in Embedded Just-In-Time Compiler

Student：Shin-Lei Tang Advisor：Dr. Jean Jyh-Jiun Shann

Department of Computer Science and Information Engineering

National Chiao-Tung University

Abstract

Recently there has been a growing interest in using Java on embedded portable
devices such as cellular phones and PDAs. With the popularization of deploying
Java applications on these devices increases, performance will become an important
issue. To achieve higher performance, embedded JVMs are usually enhanced with a
lightweight just-in-time (JIT) compiler, embedded JIT compiler, instead of
incorporating a full-fledged JIT compiler as high performance JVM. For fast
compilation and low code size expansion, an embedded JIT compiler usually
compiles simple bytecode instructions and lets interpreter handle method calls, but it
results in poor performance on method calls. In this thesis, we design and implement
a method inlining mechanism that is suitable for embedded JIT compiler to improve
speed performance while keeping the code size expansion in a reasonable size.

In addition to inlining conventional static methods, our method inlining

mechanism can also inline virtual methods and make use of monomorphic property
to further improve performance. Even when this monomorphic property is violated
by dynamic class loading, the inlined code can still have chances to be executed by
our recovery mechanism. As a whole, our method inlining mechanism demonstrates
1.43 speedup with only about 3% code size expansion (if 512Kbytes memory).

 ii

誌謝

首先要感謝我的父母，一直在我身邊關心我鼓勵我，常常為我

擔心，有了他們的支持，我才可以全心全意投入研究中。再來感謝

我的指導老師 單智君教授。在老師諄諄教誨、辛勤的指導之下，我

得以完成此論文，讓我在學業方面有所精進。

也感謝實驗室的陳裕生學長，常常給我一些寶貴的意見與指

導。另外也感謝一些朋友、隊友還有教練的鼓勵，讓我能繼續有學

習的動力。

謹向所有支持我、勉勵我的師長與親友，奉上最誠摯的感謝的

祝福。謝謝你們！

唐心磊

2007. 4.19

 iii

Contents

摘要 ... i

ABSTRACT... ii

誌謝 ...iii

CONTENTS.. iv

LIST OF FIGURES .. v

LIST OF TABLES..vi

CHAPTER 1 INTRODUCTION ... 1

1.1 EMBEDDED JAVA ENVIRONMENT.. 2

1.2 EMBEDDED JUST-IN-TIME COMPILER... 3

1.3 METHOD INLINING ... 4

1.4 RESEARCH MOTIVATION AND OBJECTIVE... 5

1.5 THESIS ORGANIZATION .. 6

CHAPTER 2 BACKGROUND.. 7

2.1 JAVA TECHNOLOGY .. 7

2.2 JVM INTERNALS .. 8

2.2.1 Class Loader and Method Area.. 9

2.2.2 PC Register and Java Stack ... 9

2.2.3 Java Heap .. 10

2.2.4 Execution Engine ... 11

2.3 OVERVIEW OF OUR EMBEDDED JIT COMPILER – KJITC ... 12

CHAPTER 3 RELATED WORK .. 15

3.1 THE DIFFICULTIES OF INLINING IN JAVA.. 15

3.2 INLINING OF VIRTUAL METHODS ... 17

 iv

3.2.1 Guard Test .. 18

3.2.2 Direct Inlining with Recompilation .. 19

3.2.3 Direct Inlining with Code Patching ... 22

3.3 SUMMARY .. 24

CHAPTER 4 DESIGN AND IMPLEMENTATION .. 26

4.1 DESIGN AND IMPLEMENTATION ISSUES .. 26

4.2 SYSTEM OVERVIEW.. 29

4.2.1 Design Overview .. 29

4.2.2 Interactions between Components.. 31

4.3 METHOD INLINER... 32

4.3.1 Code Expansion Control Mechanism... 33

4.3.2 Callsite Selector ... 34

4.3.3 Inliner... 36

4.4 CLASS HIERARCHY ANALYSIS MANAGER .. 46

CHAPTER 5 EXPERIMENTS.. 52

5.1 EXPERIMENT ENVIRONMENT.. 52

5.2 BENCHMARKS .. 53

5.3 EXPERIMENT RESULTS ... 54

5.3.1 Program Behavior.. 55

5.3.2 Effects of our Expansion Control ... 57

5.3.3 Performance Results .. 59

5.3.4 Speedup Analysis.. 60

5.3.5 Comparison.. 65

CHAPTER 6 CONCLUSION AND FUTURE WORK.. 67

REFERENCE.. 68

 v

List of Figures

FIGURE 1-1. JAVA2 PLATFORM (EXTRACTED FROM SUN)... 2

FIGURE 1-2. METHOD INLINING DIAGRAM ... 5

FIGURE 2.1. THE INTERNAL ARCHITECTURE OF JAVA VIRTUAL MACHINE... 8

FIGURE 2-2. PC REGISTERS AND JAVA STACK OF EACH THREAD .. 10

FIGURE 2-3. ALTERNATIVES TO EXECUTING JAVA PROGRAMS... 11

FIGURE 2-4. SYSTEM COMPONENTS AND THEIR INTERACTIONS IN KJITC.. 12

FIGURE 2-5. KJITC COMPILER ARCHITECTURE .. 13

FIGURE 3-1. DYNAMIC DISPATCHING OF VIRTUAL METHOD ... 15

FIGURE 3-2. DYNAMIC CLASS LOADING EXAMPLES ... 17

FIGURE 3-3. GUARD TEST MECHANISM .. 19

FIGURE 3-4. DIRECT INLINING WITH RECOMPILATION—DIRECT INLINING ... 21

FIGURE 3-5. DIRECT INLINING WITH RECOMPILATION—RECOVERY ... 22

FIGURE 3-6. DIRECT INLINING WITH CODE PATCHING—DIRECT INLINING.. 23

FIGURE 3-7. DIRECT INLINING WITH CODE PATCHING—RECOVERY ... 24

FIGURE 4-1. DIRECT INLINING WITH GUARD TEST CODE PATCHING—DIRECT INLINING 27

FIGURE 4-2. DIRECT INLINING WITH GUARD TEST CODE PATCHING—RECOVERY 28

FIGURE 4-3. SYSTEM COMPONENTS OF OUR INLINING SYSTEM .. 30

FIGURE 4-4. INTERACTIONS BETWEEN COMPONENTS.. 31

FIGURE 4-5. OVERVIEW OF CALLSITE SELECTOR AND INLINER... 33

FIGURE 4-6. CODE EXPANSION CONTROL MECHANISM .. 33

FIGURE 4-7. FLOW CHART OF OUR SELECTION ALGORITHM ... 36

FIGURE 4-8. OVERVIEW OF INLINER.. 38

FIGURE 4-8. INLINING PATTERNS AND THE DESIGN OF TWO PSEUDO BYTECODE 39

FIGURE 4-9. ILLUSTRATION OF APPENDING LOCAL VARIABLES .. 40

FIGURE 4-10. INLINING EXAMPLE... 45

FIGURE 4.11. A SNAPSHOT OF INLINING TABLE... 46

 vi

FIGURE 4-12. INLINING TABLE CONSTRUCTION .. 47

FIGURE 4-13. RECOVERY INFORMATION RECORDING.. 48

FIGURE 4-14. GUARD TEST CODE PATCHING... 50

FIGURE 4-15. SNAPSHOT OF INLINING TABLE – AFTER RECOVERY ... 51

FIGURE 5-1. PROGRAM BEHAVIOR OF BENCHMARKS... 56

FIGURE 5-2. EFFECT OF EXPANSION FACTOR –Α ON PERFORMANCE... 58

FIGURE 5-3. EFFECT OF INLINE CACHE SIZE ON PERFORMANCE ... 59

FIGURE 5-4. INLINING EFFECT ON PROGRAM BEHAVIOR... 62

FIGURE 5-5. SPEEDUP ANALYSIS ... 63

FIGURE 5-6. COMPARE WITH OTHER MECHANISMS .. 66

 vii

List of Tables

TABLE 1-1. J2ME CONFIGURATION... 3

TABLE 3-1. COMPARING AMONG THE THREE APPROACHES - GUARD TEST, DIRECT INLINING WITH

RECOMPILATION (RECOMPILATION) AND CODE PATCHING MECHANISM 25

TABLE 4-1. COMPARING TO CODE PATCHING MECHANISM.. 28

TABLE 5-1: EMBEDDED CAFFEINEMARK 3.0... 53

TABLE 5-2: CLDC HOTSPOTTM IMPLEMENTATION EVALUATION KIT VERSION 1.0.1 54

TABLE 5-3. INVOCATION COUNTS ON VARIOUS TYPES .. 57

TABLE 5-4. PERFORMANCE RESULTS... 60

TABLE 5-5. INLINE COUNTS OF DIFFERENT TYPE .. 63

TABLE 5-6. METHOD CALL REDUCTION .. 64

 viii

Chapter 1 Introduction

Recently there has been a growing interest in using Java on embedded portable

devices such as cellular phones and PDAs. With the popularization of deploying

Java applications on these devices increases, performance will become an important

issue. To achieve higher performance, embedded JVMs are usually enhanced with a

lightweight just-in-time (JIT) compiler, embedded JIT compiler, instead of

incorporating a full-fledged JIT compiler as high performance JVM. For fast

compilation and low code size expansion, an embedded JIT compiler usually

compiles simple bytecode instructions and lets interpreter handle method calls, but it

results in poor performance on method calls. Method inlining is a well-known and

effective solution to the problem but entails large code expansion if excessive

inlining. On another hand, embedded applications are often amenable to inlining due

to relative small call sites that could be inlined compared to large applications. In

this thesis, we design a method inlining mechanism that is suitable for embedded

JIT compiler and can make full use of method properties to reduce method call

overhead and keeps code size expansion in a reasonable size, and implement it in

our embedded JIT compiler – KJITC.

In this chapter, we introduce some essential materials to help readers

understand the concepts behind and the terms in our research. First, we give an

overview of the current states of the Java technology in embedded environment.

Second, we introduce more features of embedded JIT compiler and its interactions

with embedded JVM. Third, we introduce the concept of method inlining with pro

and con. After the introduction comes our research motivation and objectives.

Finally, organization of this thesis is provided.

 1

1.1 Embedded Java Environment

Java Technology is developed by Sun in 1991 and becomes popular rapidly in

all application fields, such as powerful large-scale server, desktop PCs, or even in

small portable devices. To meet the demands of different application fields with

different characteristics, Sun in 1999 has grouped Java technologies into the Java 2

platform [1], which consists of three editions as Figure 1-1. Each edition is

specialized for a specific area:

 Java 2 Enterprise Edition (J2EE) - targeted at scalable, transactional, and

database-centered enterprise applications with an emphasis on server-side

development.

 Java 2 Standard Edition (J2SE) - targeted at conventional desktop applications.

 Java 2 Micro Edition (J2ME) - targeted at embedded and consumer devices,

such as wireless handhelds, TV set-top boxes, PDAs, and other devices that

lack the resources to support full J2SE implementation.

Figure 1-1. Java2 Platform (extracted from Sun)

 2

To address the diversity of embedded devices with different memory footprint

and network connectivity, J2ME specifies two configurations: Connected Device

Configuration (CDC) and Connected Limited Device Configuration (CLDC). Each

configuration targets at different types of embedded devices and therefore provides

different class libraries and APIs. Table 1-1 gives an overview of the two

configurations.

Table 1-1. J2ME Configuration

1.2 Embedded Just-In-Time Compiler

Although the JVM can be easily realized by an interpreter, its slow

performance is a concern in performance-aware system. To solve the problem, some

compilation technologies must be applied. For example, ahead-of-time (AOT)

compilers [2] allow offline compilation, so no run-time compilation overhead is

needed. Conventional JIT compilers translate bytecode into machine code on the fly

before execution with the expense of code size increase and run-time compilation

overhead. However, embedded JVM with footprint memory and low performance

CPU can tolerate neither the static compiled code size expansion imposed by AOT

compilers nor the code size/compilation overhead imposed by conventional JIT

compilers.

In order to let embedded JVM take advantage of executing compiled code to

 3

improve performance without too much size/compilation overhead, a lightweight

JIT compiler which is highly customized for an embedded JVM– embedded JIT

compiler – is adapted ([3] [4] [5]). For fast compilation and low code size expansion,

an embedded JIT compiler usually compiles only simple bytecode instructions and

incorporates simple optimization techniques (such as constant folding). Hence, the

other part of the program without compiled will be handled by the interpreter. This

kind of execution model letting interpreting and native executing co-exist is called

mixed mode execution ([6] [7]) and here are its principles:

 Performance-critical parts (Hot Spot) of the program are compiled by

embedded JIT compiler, and then natively executed.

 Non-performance-critical parts of the program are interpreted by an interpreter.

 Close interactions between the JIT compiler and interpreter is necessary.

Generally, for keeping itself compact, an embedded JIT compiler regard

method invocation bytecode instructions (such as INVOKEVIRTUAL) as complex

and delegates the interpreter to handle the heavy task involving pushing and

popping frame, passing arguments and etc. Hence, method call overhead in

embedded JVM is costly even if enhanced with an embedded JIT compiler.

1.3 Method Inlining

Method inlining is an important compilation optimization technique ([8] [9])

that replaces a method call site with the body of the method. A simple illustration is

given in figure 1-2. This technique reduces the overhead resulting from method calls.

The savings are especially pronounced for applications where only a few call sites

are responsible for the bulk of the method calls. Inlining also expands the context of

analysis and the wider scoped analysis introduces opportunities for further

optimization techniques (such as constant propagation and etc).

Unfortunately, inlining also has negative effects. Excessive inlining increases

 4

the code size, cache miss rate, register pressure and dynamic compilation cost (if in

dynamic compilation environment). Therefore, finding the best tradeoff among these

benefits and costs becomes an important issue of method inlining.

Method Inlining

call

caller

callsite
callee

Inlined

return

Callee
Inlined

Body

callee

Figure 1-2. Method Inlining Diagram

1.4 Research Motivation and Objective

In our survey, we found that small applications are usually more amenable to

aggressive inlining and the experiment results in [10] show that aggressive inlining

of small applications not only improves performance well but also increases little

code size. We also observed that most applications running on embedded systems

are small ([11] [12]) and suitable for inlining. Motivated by [10] and our observation

of embedded applications, the objective of this thesis is to design and implement a

method inlining mechanism that is suitable for embedded JIT compiler and can

make full use of method properties to improve speed performance while keeping the

code expansion within a reasonable size.

In addition, the embedded JIT compiler we choose to implement is developed

by [6]. The embedded JIT compiler, named KJITC, is combined with a mixed mode

JVM modified from Sun’s CLDC KVM 1.0.4 and the KJITC generates ARM

instructions in its current implementation.

 5

1.5 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 provides more detailed

background knowledge on JVM internals and an overview of our embedded JIT

compiler - KJITC. Chap 3 describes the problem of method inlining in Java and

introduces current common solutions. In Chap 4, the design and implementation of

our method inlining mechanism is presented. Chap 5 exhibits and analyze the

experiment results. In the end we make a brief summary in Chap 6.

 6

Chapter 2 Background

This chapter provides more background details on JVM and an overview of our

embedded JIT compiler - KJITC. Readers who are already familiar with these two

topics can skim over them.

2.1 Java Technology

Generally, Java is refer to a computer language, but it more that that. In reality,

Java is rather a complete architecture consisting of four components [13].

 Java programming language

 Java class file format

 Java Application Programming Interface (Java API)

 Java Virtual Machine (JVM)

A Java program is written in Java programming language, and then compiled

into Java class files which conform to Java class file format by a Java source

compiler (such as javac compiler in Sun JDK). Java class files can be executed on

any environment with JVM, the core of Java technology. The Java program can also

access predefined libraries or system resources (such as I/O and Network, for

example) by calling methods in the classes implementing the Java API. And during

program execution, JVM loads and executes user-written class files as system

classes that Java API defines.

 7

2.2 JVM Internals

Java Virtual Machine, the core of Java technology, is definitely the key

component among the all and it is responsible for the well-known advantages of

Java comparing to traditional native execution systems. Those advantages include

cross-platform portability, security of the execution environment and small size of

compiled code etc.

Figure 2.1. The Internal Architecture of Java Virtual Machine

To realize the JVM, the functionality of a real processor must be provided that

adhere to the Java virtual machine specification [14], which describes the behaviors

of a JVM instance in terms of subsystems, runtime data areas, and instructions.

These components are described as an abstract inner architecture instead of detail

implementation of each. Figure 2-1 shows a block diagram of Java virtual machine

including the major subsystems and runtime data areas described in JVM

specification. Next we will simply describe those components.

 8

2.2.1 Class Loader and Method Area

In Java virtual machine, static information about each class is loaded by a class

loader and stored in method area. The class loader loads Java class files and

converts to corresponding run time data structure in JVM and store it into method

area. The information in method area contains bytecode instructions that are

associated with the methods in the compiled code and the symbol table, named

constant pool, needed for dynamic linkage. All threads in a JVM instance share the

same method area, so access to the method area’s data structures must be designed

to be threadsafe.

Furthermore, class loader presents the dynamic class loading feature of JVM,

which provides the Java platform with the ability to install software components at

run-time and has a number of characteristics such as lazy loading, type-safe linking

and user-definable class loading policy.

2.2.2 PC Register and Java Stack

When each new thread comes into existence, it receives its own PC registers

and Java Stack. If the thread is executing a Java method, the PC registers contain the

current state of JVM and the next instruction to execute.

The Java stack is composed of stack frames, each of which contains the

execution state of its corresponding invoked method, including its own local

variables, parameters, return values (if any) and intermediate calculations on

operand stack. When a thread invokes a Java method, the JVM pushes a new stack

frame onto the Java stack of the thread. When the method completes and returns, the

JVM pops the frame for that method. The state of native method invocations is

stored in an implementation-dependent way in native method stacks, such as in

 9

registers or other implementation-dependent memory areas.

Figure 2-2 shows the memory areas that JVM creates for each thread. These

areas are private to their owning thread, and there is no thread that can access the PC

register or Java Stack of another. At the figure, thread 1 and thread 2 are executing

Java methods while thread 3 is executing a native method.

Figure 2-2. PC registers and Java Stack of each thread

2.2.3 Java Heap

The Java heap is the dynamic memory of JVM, and it usually contains a

collection of objects. When an object is created with the “NEW” bytecode

instruction, a reference to the object is returned. The reference can be used

subsequently, or stored in the current stack frame. An object is live in heap until

there are no references to it. An object becomes garbage when there are no such

references, and a garbage collector will reclaim its resources.

 10

2.2.4 Execution Engine

Execution engine is the kernel of execution in Java virtual machine, and it is

also the critical section affecting performance of JVM. The execution engine is not

restricted to software interpreter implementation. There are other alternatives such

as JIT and Java processor, as depicted in figure 2-3. Interpreting the bytecode has

the advantage of fast JVM porting but makes the execution of Java programs

relatively slow. One solution to improve performance is to use a bytecode compiler

which is responsible for translating bytecode into native machine code to substitute

interpreter. While ahead-of-time (AOT) compilers performs offline compilation as

conventional compilers, just-in-time (JIT) compilers performs on-the-fly

compilation at run-time. Both of them have pros and cons, but it seems that JIT

compilers are more appealing to most researchers. Another solution is to implement

directly on silicon such as picoJava [15], which is a Java processor that supports

bytecode execution completely.

Figure 2-3. Alternatives to Executing Java Programs

 11

Recently, an interpreter can still coexist and cooperate with a JIT compiler in

JVM, mixed-mode execution JVM. As well, a mixed software/hardware approach

comes to exist; ARM has introduced its own Java instruction extension – Jazzle [16].

A subset of bytecode instructions can be directly executed when the ARM processor

is executed in Java mode while the remaining bytecode instructions are still handled

in software (interpreted or compiled).

2.3 Overview of our embedded JIT compiler –

KJITC

Our embedded JIT compiler, KJITC, is applied on an embedded mixed-mode

JVM based on Sun’s CLDC KVM. Figure 2.5 simply illustrated the main system

components and their interactions

Figure 2-4. System Components and Their Interactions in KJITC

Now we respectively describe each component (include our target embedded

 12

JIT) as follows:

 Interpreter-based JVM (KVM)

The interpreter-based JVM provides a JVM infrastructure that performs

method invocation, garbage collection, exception handling, synchronization and etc.

For mixed-mode execution, the interpreter is also responsible for invoking the hot

spot detector and switching to and from compiled code in addition to interpreting of

those bytecode that have not been compiled or will not be compiled.

 Hot Spot Detector

Due to the memory constraints, only valuable parts of the program are selected

for compilation. The responsibility of the hot spot detector is to discover

performance-critical part of program and then invoke JIT compiler for hot

compilation. The basic unit of hot spot is a method. When a method is invoked

frequently or contains at least one loop that iterates many times, it is regarded as a

hot spot and invokes KJITC to compile it.

 KJITC

The KJIT is divided into the Intermediate Representation (IR) generator and

the native code generator. The IR generator is mainly responsible for translating

bytecode into three-address IR. And then code generator translates IR, generated by

IR generator, into targeted native code to be executive in a native way dependent on

the target processor. A simple illustration is given in Figure 2-6.

Figure 2-5. KJITC Compiler Architecture

 13

In order to reduce compilation cost and to keep the KJITC small footprint,

several design decisions are made.

1. Only Local optimization Within an Extended Basic Block

No global optimization is performed because of the potential high

compilation cost of control and data flow analysis. However, the maximum

optimization range was extended to an extended basic block rather than a

basic block.

2. No Support for Complex Bytecode

Complex bytecode refers to those bytecode instructions that involve

complicated operations, such as method invocation, synchronization, object

construction, and etc, that suit for interpreter handling. As result these

complex bytecode instructions are regarded as non-compile-able in the

KJIT.

 Compiled Code Buffer

The compiled code buffer holds all compiled code. During native execution,

the machine program counter points to native code that resides in the buffer. The

compiled code buffer is allocated statically and its size is also predetermined in

current implementation.

 In addition to the four components above, the switching mechanism between

the interpreter and the compiled native code is described here. Similar to a function

call, the switch from the interpreter to the compiled native code includes spilling

register into memory and then transfer execution by a branch; and the switch from

the compiled native code to the interpreter includes restoring registers from memory,

transferring execution by a branch, and updating Java PC (program counter) and

Java SP (stack pointer).

 14

Chapter 3 Related Work

In this chapter, we describe the difficulties in inlining of Java’s virtual methods

and discuss three common approaches that make it possible to virtual inlining.

Section 3.1 explains the difficultly in inlining of virtual methods with some

examples. Section 3.2 introduces the three common approaches. Finally the three

approaches are summarized in section 3.3

3.1 The difficulties of Inlining in Java

Generally, there are two kinds of methods in Java - static method and virtual

method. Static method can be statically bound at compile time and virtual method

can only be resolved at run time depending on the actual instance of the method,

known as dynamic dispatch. Figure 3.1 gives a simple example for illustration.

Class Hierarchy

A.f()

or

B.f()

Pseudo Code

B f()

A f()

 g()
A o = getObject();
o.f();
o.g();

A.g()

dynamic dispatching

Figure 3-1. Dynamic Dispatching of Virtual Method

In figure 3.1, the left side is class hierarchy graph (CHG), which represents the

inheritance relationship between classes and their methods; and the right exhibits the

 15

pseudo code that invokes virtual methods. From the CHG, we know that there are

two classes – class A with method f() and class B with methods f() and g() – in the

current execution. Class B inherits class A and method f() in B (B.f()) overrides

method f() in A (A.f()). It is not known which versions (A.f() or B.f()) o.f() would

invoke until the statement “ A o = getObject(); “ is executed. Hence, we can’t

directly inline virtual method because the caller may invoke different version of

callees through dynamic dispatching if there are at least two versions existing in the

CHG.

In closed world language, like C++, classes are prohibited from being loaded

after compilation. [17] exploits this property to inline monomorphic virtual methods,

only one version in CHG, by class hierarchy analysis that analyzes the class

hierarchy graph and decides whether a method is monomorphic. For example, the

method g() in figure 3.1 is monomorphic because only A.g() version exists.

However, Java supports dynamic class loading that enables new classes to be

loaded by JVM at run time (such as Class.forName()). The support for dynamic

class loading impedes inlining of monomorphic virtual methods. According to class

hierarchy graph in figure 3.1, for example, we know that method g() is

monomorphic and the call site “o.g();” always invokes A.g(). But as the time goes

by, JVM loads new class C dynamically that inherits class A and its method g()

overrides method A.g(), as shown in figure 3.2. If A.g() is inlined before class C is

loaded, it may leads to error because now there are two versions of g().

 16

A.f()

or

B.f()

Pseudo Code

B f()

A f()

 g()
A o = getObject();
o.f();
o.g();

A.g()

or

C.g()

C g()

Class Hierarchy

dynamic class loading

Figure 3-2. Dynamic Class Loading Examples

Due to the two features of Java described above - dynamic dispatching and

dynamic class loading, a given virtual call site may invoke several different actual

methods over the course of a program execution. Thus, it is impossible to uniquely

identify method to be inlined at a virtual callsite. But on one hand, virtual methods

are heavily presented in Java applications in object-oriented design. On the other

hand, in many applications some virtual call sites actually execute only one method,

that is, are monomorphic though the program execution rather than polymorphic;

some call sites are “almost monomorphic”, in that several methods might be

executed, but one is executed much more frequently than the others. Therefore, it is

worthy of investigating mechanisms to virtual inlining.

Some approaches ([17] [18] [19]) have been proposed to make inlining of

virtual methods possible with some side effect. Next section we will introduce three

common approaches to inlining of virtual methods.

3.2 Inlining of Virtual Methods

In order to inline virtual methods, mechanism that handles “wrong inlining”

 17

must be implemented. Guard test mechanism [17] employs a test to guard the

inlined code to ensure correctness, while direct inlining with recompilation

mechanism [18] and direct inlining with code patching mechanism (code patching

mechanism) [19] directly inline monomorphic method without guard test code and

the inlined code is executed until the monomorphic assumption about the method

becomes invalidated, at which time the compiler recompiles or performs code

patching to make original normal dispatch code executed subsequently. A point

should be noted that the three approaches are not individually adopted and can be

used interchangeably.

3.2.1 Guard Test

When a virtual method is selected to be inlined, the compiler with this

mechanism generates a test code along with the inlined code to ensure that it is valid

to enter the inlined callee body. If the test fails, the normal virtual call mechanism,

dynamic dispatch, is applied. Figure 3-3 gives an example about how the guard test

mechanism works.

 18

Class Hierarchy

Pseudo Code

B f()

A f()

 g()

A o = getObject();
o.f();

Before Inlining

A o = getObject();
if (class(o) == A)
{
 { // inlined A.f() }
}else{
 o.f();
}

After Inlining

A test is generated to guard the

inlined code to ensure that it is valid

to enter the inlined callee body.

Figure 3-3. Guard Test Mechanism

In Figure 3-3, the version A.f() is inlined along with a test code –“class(o) ==

A”– that guards the inlined A.f(). Before entering into the inlined A.f(), the test code

checks if the class of the instance o is equal to class A.1 If they are equal, it means

that our inlining assumption is valid and the inlined A.f() is executed; otherwise, the

normal virtual dispatch, o.g(), is applied to invoke the actual method.

3.2.2 Direct Inlining with Recompilation

This mechanism only allows monomorphic methods 2 to be inlined, by

analyzing the current class hierarchy. When a monomorphic callee is selected to be

1 In recent studies, there are two kinds of guard test – class test and method test. Class test guards the
inlined code by testing the receiver of the class while method test guards that by testing the method
address. In this thesis we see class test as our guard test mechanism. The detail can be found in [17].
2 We say the method is “monomorphic” in the thesis is based on the class hierarch graph at that time, and
it may becomes polymorphic by dynamic class loading.

 19

inlined, the JIT compiler with this mechanism generates the inlined code directly

(without test code) and records the fact that the inlining of the monomorphic callee

depends on the monomorphic assumption about the callee. Then the inlined code is

executed until the assumption monomorphic becomes invalidated by dynamic class

loading. When it happens, the JIT compiler is responsible for recompiling the

inlined caller and let it work as original dynamic dispatch. In case that when the

monomorphic assumption about callee is violated, an invocation of the inlined caller

is being executed, the JIT compiler is responsible for adjusting the state of the

corresponding methods on the stack (called on-stack replacement) [17].

Figure 3.4 and figure 3-5 illustrate how this mechanism works. By class

hierarchy analysis, method g() is known monomorphic. Then the JIT compiler

directly inlines A.g() and records information about the monomorphic assumption

for recovery (figure 3-4). As the time goes by, a new class C is loaded and overrides

A.g(). At the moment, the JIT compiler recompiles the inlined caller and because the

inlined caller is being executed, on-stack replacement is applied to correct the state

on the stack for subsequent execution (figure 3-5).

 20

Class Hierarchy Pseudo Code

B f()

A f()

 g()

A o = getObject();
o.g();

Before Inlining

A o = getObject();
{ // inlined A.g(); }

After Inlining

Class Hierarchy Analysis

g()

monomorphic?

Using class hierarchy analysis to

determine if a selected callee is

monormophic.

Figure 3-4. Direct Inlining with Recompilation—Direct Inlining

 21

Class Hierarchy Pseudo Code

B f()

A f()

 g()

A o = getObject();
o.g();

Inlined Caller

A o = getObject();
{ // inlined A.g(); }

C g()

Stack

Inlined

Caller Frame

Other

Method Frame

Stack

Other

Method Frame

Recompiled

Caller Frame

On Stack

Replacement

Recompilation

Recompiling the inlined caller to

original normal dispatching.

Adjusting the state on

stack for subsequent for

subsequent execution.

Figure 3-5. Direct Inlining with Recompilation—Recovery

3.2.3 Direct Inlining with Code Patching

This mechanism (code patching mechanism), as well as direct inlining with

recompilation, only allows monomorphic methods to be inlined and the difference is

that when a monomorphic method is selected to be inlined, the JIT compiler with

code patching mechanism generates the inlined callee code together with the back

up code for original normal dispatch. At the beginning, only the inlined code is

 22

executed and when the monomorphic assumption is violated by dynamic class

loading, the JIT compiler adjusts the first instruction of the inlined callee code and

let it jump to the backup code rather than recompilation. As a consequence, the

backup code is executed afterward.

See figure 3.6 and figure 3.7 for illustration. By class hierarchy analysis, the

method g() is known to be monomorphic. And the compiler generates inlined A.g()

together with its backup code o.g() and records information about the monomorphic

assumption for recovery (figure 3-6). As the time goes by, a new class C is loaded

and overrides A.g(). At the moment, the compiler patches the code of the inlined

A.g() and let it jump to the backup code o.g() for original dynamic dispatch

subsequently (figure 3.7).

Class Hierarchy Pseudo Code

B f()

A f()

 g()

Before Inlining

A o = getObject();
{ // inlined A.g(); }
goto aftercall;
o.g();

After Inlining

backup:

aftercall:

A o = getObject();
o.g();

Class Hierarchy Analysis

g()

monomorphic?

Inlining with normal

dispatch backup code

and using a jump

instruction to avoid

executing it.

Figure 3-6. Direct Inlining with Code Patching—Direct Inlining

 23

Class Hierarchy Pseudo Code

Figure 3-7. Direct Inlining with Code Patching—Recovery

3.3 Summary

We have described the reason why it is difficult to inline virtual methods and

introduced three common approaches to virtual inlining. Table 3-1 summarizes the

three approaches. From the table, we can see that guard has the least space overhead

but entails the run time test overhead every time when entering the inlined code;

although direct inlining with recompilation seems to increase the speedup most from

inlining, it has the highest space overhead and a high recompilation cost if the

monomorphic assumption violated; at least, code patching mechanism has the

advantage of fast entering the inlined code and recovery, but still costs space to

maintain inlining information.

B f()

A f()

 g()

Inlined Caller

A o = getObject();
{ // inlined A.g(); }
goto aftercall;
o.g(); backup:

aftercall:

C g()

Code Patching

A o = getObject();
{

// inlined A.g(); }
goto aftercall;
o.g();

backup:

aftercall:

goto backup; Adjusting the first instruction of

the inlined callee code and let

it jump to the backup code

 24

 The three approaches have their pros and cons and there is no one that

always outperforms the others. In reality, the actual speed performance depends on

the behavior of the application. If the dynamic class loading happens frequently, the

direct inlining with recompilation may become most slow.

Table 3-1. Comparing among the three approaches - Guard Test, Direct Inlining with
Recompilation (Recompilation) and Code Patching mechanism

 Guard Test Recompilation Code Patching

Selected callee
to be inlined

Polymorphic Monomorphic only Monomorphic only

Before recovery: direct enter Before recovery: through a direct
jump instruction

Entering the
inlined callee

Through a test

After recovery: no inlined code After recovery: no inlined code

Recovery No 1. recompile
2. may need on-stack

replacement

Adjust inlined code to normal

dynamic dispatch

Main
Time
Overhead

Runtime guard

test

1. Class hierarchy analysis
2. Recompilation cost
3. Dynamic dispatch after

recovery

1. Class hierarchy analysis
2. Dynamic dispatch after

recovery

Main
Space
Overhead

Little 1. Class hierarchy graph
2. Recovery information

maintenance (relative high)

1. Class hierarchy graph
2. Recovery information

maintenance (relative low)

 25

Chapter 4 Design and Implementation

In this chapter, we present the overall design and implementation of our

method inlining mechanism in KJITC. In section 4.1, we discuss some design and

implementation issues. Section 4.2 introduces an overview of our design and then

section 4.3 to section 4.4 details the internal components.

4.1 Design and Implementation Issues

The goal of this research is to design a method inlining mechanism that can be

implemented in Embedded JIT compiler, and to improve speed performance while

keeping code expansion within a reasonable size.

In order to speedup performance, more method calls should be eliminated,

which means that mechanisms for virtual inlining should be adopted. And on one

hand, we don’t want to entail the test overhead if encountering monomorphic

method and the high recompilation overhead; on the other hand, we hope that after

recovery, the inlined code still has chances to be executed. Thus, a revised code

patching mechanism – guard test code patching mechanism – is employed. The

guard test code patching mechanism generates inlined code along with “guard teat

backup code” which acts the same as guard test mechanism rather than normal

backup code (dynamic dispatch). When the monomorphic assumption is violated,

the JITC compiler then made guard test back up code executed subsequently, so the

inlined code could be re-entered after recovery. Figure 4-1 and figure 4-2 illustrate

how this mechanism works and Table 4-1 make a comparison to the code patching

mechanism.

 26

Class Hierarchy Pseudo Code

B f()

A f()

 g()

A o = getObject();
goto inlinedcode;
{ // gurad test code }
goto aftercall;
{ // inlined A.g(); }

After Inlining

aftercall:
inlinedcallee:

guardtest:

A o = getObject();
o.g();

Before Inlining

Class Hierarchy Analysis

g()

monomorphic?

Inlining with guard test

backup code and using a

jump instruction to avoid

executing it.

Figure 4-1. Direct Inlining with Guard Test Code Patching—Direct Inlining

Since the property of monomorphic method is exploited, the inlining

information (such as class hierarchy graph and recovery information) should be

maintained. Because of memory constraint, an embedded JVM can not afford to

maintain full class hierarchy information. Instead, we design an inlining table that

provides only monomorphic information about a method for class hierarchy analysis

and recovery information for patching code to guard test backup code. Thus, an

embedded JIT compiler can use inlining information without constructing full class

hierarchy.

 27

Pseudo Code
Inlined Caller

A o = getObject();
goto inlinedcode;
{ // gurad test code }
goto aftercall;
{ // inlined A.g(); }

Guard Test Code Patching

aftercall:

inlinedcallee:

Figure 4-2. Direct Inlining with Guard Test Code Patching—Recovery

Table 4-1. Comparing to Code Patching Mechanism

 Code Patching Guard Test Code Patching

Selected callee
to be inlined

Monomorphic only Monomorphic only

Before recovery: through a direct jump
instruction

Before recovery: through a direct jump
instruction

Entering the
inlined callee
 After recovery: no inlined code After recovery: through a test

Recovery Adjust inlined code to normal dynamic
dispatch

Adjust inlined code to guard test
backup code

Main
Time
Overhead

1. Class hierarchy analysis
4. Dynamic dispatch after recovery

1. Class hierarchy analysis

Main
Space
Overhead

1. Class hierarchy graph
2. Recovery information maintenance

1. Class hierarchy graph
2. Recovery information maintenance

 goto guardtest;
A o = getObject();

{ // gurad test code }
goto aftercall;
{ // inlined A.g(); }

guardtest:

guardtest:

inlinedcallee:

aftercall:

A f()

 g()

Class Hierarchy

B f() C g()

Patching the “goto

inlinedcallee” instruction

and let it jump to guard

test backup code.

 28

On another hand, KJITC only compiles simple bytecode such as IADD, ILOAD,

and ISTORE. If a selected callee contains complex bytecode, KJIC cannot generate

the inlined callee code in IR level. To increase opportunity for inlining, we do

method inlining optimization before delivering to KJIC. That is, we implement

method inlining at bytecode level. Hence, the embedded JIT compiler is only

responsible for adjusting the PC (program counter) and corresponding execution

state (Java stack frames) after inlining, so that the inlined code can be executed

correctly after compilation.

Last but no least, to solve the code expansion problem, actually the most

critical issue, we provide an inline cache and a code expansion control mechanism

for our inlining mechanism to limit the code expansion (detailed in section 4.3.1).

4.2 System Overview

In this section, we first introduce our inlining system and then discuss

interactions between its components. The inlining system is buildt on our

mixed-mode JVM with KJIC described in section 2.3.

4.2.1 Design Overview

Figure 4.3 illustrates our inlining system components and their interactions. In

the figure, components are showed as rectangle while data structures (such as

bytecode, compiled code and inlining table) are show as ellipse. And the

components and data structures in light blue represent the original while the others

in light red are imposed for method inlining optimization. The red italic words

represent the interactions between components about inlining and we will explain

 29

latter.

 There are two main components - method inliner and CHA manager, and a

data structure- inlining table imposed on the system. Method inliner selects and

inlines suitable callee methods into its caller which is detected by hot spot detector

while CHA manager provides an interface for accessing inlining information from

inlining table which records monomorphic and recovery information.

bytecode

 Compiled

Code

Mixed-Mode

Interpreter

Hot Spot

Detector

KITC

Class

Loader

Method

Inliner

CHA

Manager

Inlining

Table
Guard Test Code Patching

Dynamic Class Loading Inlining Table Construction

Monomorphic Violation Detection

Class Hierarchy Analysis

Recovery Information Recording

Figure 4-3. System Components of our Inlining System

 30

4.2.2 Interactions between Components

Time

Mix-Mode

Interpreter

Hot Spot

Detector

Method

Inliner KJITC

Class

Loader

CHA

Manager

 Hot Spot
Detection

Inlining

Compilation

Class
Loading

Inlining Table
Construction

Class Hierarchy
Analysis

Recovery Information
Recording

Guard Test
Code Patching

Class
Loading

Inlining Table
Construction
Monomorphic Violation
Detection

Figure 4-4. Interactions between Components

When the mixed-mode embedded JVM starts execution, it loads system classes,

such as Object, Array etc. After loading each method of a class, CHA manager will

construct inlining table and record monomorphic information into inlining table.

Then mixed-mode interpreter is invoked to execute bytecode. After a period of time,

the hot spot detector detects hot spot and delivers the hot spot to method inliner to

 31

do method inlining, and then the hot spot goes through KJITC to be compiled to

target machine code. During method inlining process, the method inliner request

CHA manager to do class hierarchy analysis to determine monomorphic when

encountering virtual callee method to be inlined and if the callee is monomorphic,

CHA manager will record recovery information into inlining table. Once dynamic

class loading occurs and it results in the monomorphic assumption violated, the

CHA manger is responsible for detecting this violation and recovering by our guard

code patching mechanism. After recovery, the recovered method can still enter

inlined callee through a test (by guard test backup code).

4.3 Method Inliner

Method inliner consists of three parts – callsite selector, inliner and code

expansion control. Callsite selector selects the suitable callee methods to be inlined

from its caller and marks their corresponding call sites. Then, the caller with marked

callsites is delivered to the inliner to replace those call sites with their corresponding

method bodies. Figure 4-5 gives a simple illustration. The third part, code expansion

control, is a mechanism to avoid inlining too much. Figure 4-6 shows an overview

of this mechanism. Next we will detail the mechanism and two components in

method inliner.

 32

Figure 4-5. Overview of Callsite Selector and Inliner

Figure 4-6. Code Expansion Control Mechanism

4.3.1 Code Expansion Control Mechanism

inline cache and an

In this mechanism, two parameters are employed to control code expansion,

 expansion factor- α. Inline cache provides the limit of total

code size expansion, while α constrains the code expansion withinα times the

original caller per inlining. For example, “ α = 1.5 ” means that after inlining, the

 Hot Spot
Detector

KJITC

 Callsite
Selector

Inliner Inline Cache

Computation

Enough Expansion Space?

Method Inliner

callsite 1

callsite 2

callsite 3

Hot Spot Hot Spot with

callsite 2

Inlined Hot Spot

Inliner Callsite
Selector

 Hot Spot
Detector

Method Inliner

KJITC

callsite 1

callsite 2

callsite 3

Callee Body
of callsite 1

Callee Body
of callsite 3

Selected Callsite

 33

code expansion cannot exceed the original code size of the caller times 1.5.

 When the hot spot detector sends a hot spot to method inliner, inline cache

will

if ((Inline Cache - codesize(hot spot) * α) > 0).3 (Enough Inline Cache Space?)

This formula estimates if the remaining size of inline cache is enough for

inlin

Inline Cache := Inline Cache – actual code expansion. (Inline Cache Compution)

This formula subtracts the actual inlining cost from inline cache.

With this mechanism, we can limit the code size overhead resulting from

inlin

4.3.2 Callsite Selector

Callsite selector selects the suitable callsites from the hot spot and marks their

corre

1. hot spot frequently called by other methods:

Because the hot spot is called frequently by other method, each callsite in

be checked first:

ing. If there is not enough space for inlining, the hot spot is refused to do

inlining and be directly sent to KJIT; otherwise, the hot spot will go through callsite

selector and inliner, and then inline cache actually used is computed:

4

ing within a size that we can tolerate and prevent the code size from increasing

too much through a one-time inlining process.

sponding callsites. There are two kinds of hot spot: one is frequently called by

other methods and the other is self-containing loops and iterates many times,

mentioned in section 2.3. According to the two kinds, we give different selection

ranges to select callsites to be inlined:

3 ‘codesize(hot spot)’ represents the code size of the hot spot.
4 The actual code expansion involves bytecode, constant pool (option), stackmap and compiled code.

 34

the hot spot may execute many times and it means that each callsite may

worth being inlined, so entire selection range is given and callsites are

selected from the whole method.

2. hot spot containing loop with many iterations:

As the hot spot contains at least one loop and iterates many times, it is

After determining the selection range, it starts to select the suitable callee

meth

1. Each callsite is given a benefit value and a cost size:

benefit value := execution_count (callee method) / codesize(callee method)5

 cost size := codesize(callee method).

2. A budget is used to limit the expansion:

 budget := α* codesize(caller method).

3. Selecting as many as possible callsites from which with the highest

inferred that the callsites outside the loop was infrequently executed

compared to those within the loop; and the benefits from inlining may be

overwhelmed by overhead of inlining effort, if the callsites outside the loop

are inlined. Therefore, selection range within the loop is set to avoid inlining

methods outside the loop that may hurt performance.

ods. By our code expansion control mechanism, an code expansion budget -

“codesize(hot spot) * α” is given to prevent the callsite selector from selecting too

many callee methods. This is similar to the Knapsack problem. Hence, a selection

algorithm based on greedy approximation to Knapsack problem is used to select the

callsites to be inlined:

5 ‘execution_count (callee method)’ represents the executing count of the callee method corresponding to
its callsite.

 35

ben it value until the budget is not enough. ef

The benefit value is determined on the assumption that the higher execution

coun

4.3.3 Inliner

The inliner inlines the corresponding callee methods of the callsites marked by

calls

ts the more benefits would be from inlining, and the lower code size the less

overhead of inlining effort. Figure 4.7 illustrates the flow chart of our selection

algorithm.

Figure 4-7. Flow Chart of our Selection Algorithm

ite selector. In addition to replacing each callsite with its corresponding callee

method body, other method information used by interpreter should be revised (such

as local variables size, max operand stack, and etc); if encountering virtual call site,

extra mechanism like guard test or guard test code patching is applied to ensure

correctness. Figure 4.8 gives an overflow of the flow chart of the inliner. Next we

will demonstrate our mechanism to inline virtual method and briefly describe how

Initialization involves computing budget and

assigning benefit value and cost size to each

callsite.

 Initialization

yes

 Get Callsite
with the Highest
Benefit Value

no
yes

 Inliner

 Budget Computation

Mark the Callsite

unmarked callsites?

Budget enough?

 36

to inline a callee into its caller with some discussion.

 Implementation of Inlining of Virtual Methods

For aggressive inlining and exploiting the monomorphic property, we use guard

test a

In order to implement our virtual inlining mechanism, two new bytecode are

creat

_TEST: It is used to implement guard test code patching mechanism and

 2. EST: It is used to implement guard test mechanism and make use

nd guard test code patching mechanism to present inlining of virtual methods.

When the Inliner encounters a callsite, it checks if its corresponding callee is a

virtual method. If so, then run time monomorphic is checked through class hierarchy

analysis provided by CHA manager. If the method is monomorphic, then guard test

code patching mechanism is applied and if the method is virtual method and is not

monomorphic, then guard test mechanism is applied; otherwise, the method is static

method and delivered to callsite replacement directly. Figure 4.8 illustrates inlining

patterns with each mechanism.

ed – NO_TEST and GUARD_TEST, both of which have the same instruction

format and regard “method”, which is a direct reference to a method, as their

operand:

1. NO

merely jumps to the start of inlined callee body without referring to its

operand.

 GUARD_T

of its operand, method pointer, to verify that the receiver has the proper class.

If the test success, it jumps to the start of inlined callee body as NO_TEST;

otherwise, it uses method pointer to do normal dispatching. This

implementation makes it easy to record recovery information and do

recovery. As guard test code patching is applied, we merely record the

address of NO_TEST to its corresponding in the inlining table (section 4.4).

And when the monomorphic assumption is violated, all we have to do is

 37

replace NO_TEST with GUARD_TEST where we recorded before; then the

patched method is executed in guard test way subsequently.

Figure 4-8. Overview of Inliner

 38

pc:

goto aftercall

no_test method

Callee Body

Guard Test Code Patching Guard Test Static

pc: guard_test method

goto aftercall

Callee Body

Callee Body

inlincedcode:

aftercall: aftercall:

aftercall:
inlinedcode:

NO_TEST methodpointer

 goto inlinecode;

GUARD_TEST methodpointer

 if (class(method) == class(instance)) goto inlinecode;
 else normal_dispatch(method)

Design Two Pseudo Bytecodes to implement inlining of virtual methods:

inlinedcode:

methodpointer is the operand of bytecode

instructions NO_TEST and GUARD_TEST. It

is a 4-bytes method pointer referencing to

method information in our target environment

based on KVM.

Figure 4-8. Inlining Patterns and the Design of Two Pseudo Bytecode

 Callsite Replacement

The callsite replacement procedure replaces a marked callsite with its

corresponding callee body with the following adjustments.

 Argument passing

Argument passing is originally handled by interpreter and obeys the calling

convention of JVM. The interpreter pops the arguments on the operand stack and

stores them into their corresponding local variables of callee method. Therefore, the

inliner has to insert bytecode instructions which pop the arguments from the stack

 39

and store them into the corresponding local variables (we will discuss latter) in front

of the callee body. See Figure 4.10 for example: “ASTORE 1”, line 23 in the inline

caller, is inserted which can pop the argument (this pointer) from the operand stack

and store it to the corresponding local variable, “local variable 1”.

 Local variable operand renumbering

Because caller and callee have its own local variables, it would lead to

confliction if the inlined callee body has the same local variable operand as the

caller. The inliner grows the local variables for inlined callee and renumbers the

local variable operand in the inlined callee body. A simple illustration is given in

Figure 4.9 and 4.10. In Figure 4.10: “ALOAD 1”, line 25 in the inlined caller, is

renumbered from 0 (line 0 in the callee) to 1.

caller local variables:
0 1 2 3 4 5

callee local variables:
0 1 2 3

callee-part local variables:

Figure 4-9. Illustration of Appending Local Variables

 Constant pool operand renumbering

Sometimes the caller and callee may belong to different classes and it would

lead to constant pool reference confliction. To fix the problem, we have to adjust the

caller’s constant pool and renumber the constant pool operand in the inlined callee

body. Intuitively, we can append the whole callee’s constant pool to the caller’s and

6 7 8 9 0 1 2 3 4 5
inlined caller local variables:

 40

add an offset to the constant pool operands in the inlined callee as local variables

operand renaming. However, this solution wastes the space - average 52 entries (215

bytes) - for each class from Caffeine Benchmark. In fact, only several entries (2~10)

are referenced from a method for the most part and it means that a large part of

constant pool entries appended to the caller’s are useless and results in space

overhead.

Therefore, we use another solution – just appending the necessary constant

pool entries to the caller’s constant pool and renumber the constant pool operands in

the inlined callee body. That is, only constant pool entries used by the callee are

appended to the caller’s constant pool. This approach saves space and reduces

constant pool movement compared with the intuitive approach.

See figure 4.10 for illustration: the number of constant pool entries is increased

by 1 in the inlined caller because the inliner appended the callee’s second constant

entry to the caller’s; and “GETFIELD 39”, line 27 in the inlined caller, is

renumbered from 2 (line 1 in the callee) to 39 so the instruction can refer to the right

entry and get what it want.

 Return Substitution

Executing “RETURN” bytecode instructions causes the interpreter to pop the

stack frame of the callee from the Java Stack and gives execution control back to its

caller. The inliner uses the bytecode, “GOTO”, to substitute “RETURN” lest

popping the caller, and let “GOTO” jumps to the next instruction of the inlined

callee to give execution control to the caller.

Consider the “RETURN” instruction which is the last instruction in the call

code, the substituted “GOTO” just jumps to the next instruction of inlined call- the

next instruction. It is a redundancy so when “RETURN” appears in the end, empty

substitution is applied instead.

 41

Figure 4.10 illustrate that the “RETURN”, line 4 in the callee, was eliminated

in the inlined callee (empty substitution).

 Synchronization and Exception Handling

If the callee method is a synchronization method, inliner should insert the

instruction to lock object. For callee method with exception handling, the handle

range and address for exception routine should be adjusted and a call stack

recording the calling list without inlining is maintained to conform the semantic of

exception. For example, if we inlined B to A, we need to main a call stack which

records A calls B while executing the inlined B so that if the exception happens at

inlined B, we can report correctly by using the call stack. Currently, we do not inline

these callee methods, and we will implement in the future.

 Method Information Revision

After replacing all the callsites through the callsite replacement procedure

which replaces the callsite with its corresponding callee body and do local

adjustments within the inlined callee described above, the inlined caller should

further go through method information revision procedure to do global adjustments

(ranged in whole inlined caller). The method information revision procedure does

the following global adjustments to revise method information so that the interpreter

can work with the inlined version:

 Branch Offset Adjustment

The branch instructions in bytecodes use relative addressing instead of direct

addressing and the operands of branch instructions are called branch offset. After

replacing all the callsites, the relative addresses between instructions may change in

the inlined caller. The inliner should fix those offsets and let the branch instructions

jump right.

 42

See Figure 4.10 for illustration: the branch offset of “IFEQ 26”, line 11 in the

inlined caller, was adjusted from 21, line 4 in the caller, to 26, and the adjustment

makes the “IFEQ” in the inlined caller jump to line 37, “ICONST_0” as the caller

does.

 Growth of the size of Local Variables, Operand Stack

These records should be adjusted to let the interpreter push the stack frame

with proper size. To decide the size of local variables for inlined caller, the max size

local variables among inlined callees is chosen to be added to the caller’s and so as

the size of operand stack. It is based on that the live ranges of local variables among

callees don’t overlap at one time so different inlined callees share the same

appending local variables instead of appending all callee’s local variables. See

Figure 4.10 illustrate the growth.

 Stackmap Reconstruction

Stackmap defined is a data structure exploited by garbage collector to speed up

marking the object pointer in the Java Stack at runtime. Each method has its own

stackmap with entries corresponding to branch targets. Each stackmap entry records

branch target address and bitmaps of local variables and operand stack. A bitmap

uses ‘1’ and ‘0’ to distinguish that if the corresponding field of local variables or

operand stack is an object pointer or not. See Figure 4.10 for illustration, at the

bottom of the caller, there are two stackmap entries corresponding two branch target,

line 25 and line 26. Thus when executing line 25, the local variable 0 is an object

pointer and there is no operand on operand stack. When executing line 26, the same

as line 25 but now there is one operand on operand stack which is not an object

pointer.

Inlining results in variations of branch target, local variables and operand stack

and a new branch target may be created, for example: a new branch target is created,

line 30 in the inlined caller in Figure 4.10, resulting from “GOTO 20” at line 20, so

 43

a new stackmap should be reconstructed for the inlined caller lest garbage collector

would mark wrong objects. See Figure 4.10 for illustration, the reconstructed

stackmap in the inlined caller responds to the changes in branch targets, local

variables and operand stack.

The implementation of stackmap reconstruction may use data flow analysis to

generate all stackmap entries for branch targets, but it takes times. Alternatively, we

reuse the original caller and callee stackmap information to speedup the

reconstruction and only when encountering stackmap entry for new create branch

target, data flow analysis is applied.

 44

caller:

class : A

method : f()

local vairable: 1

operand stack:1

constant pool : 38 entries

 0 ALOAD_0

 1 INVOKEVIRTUAL 21

 4 IFEQ 21

 7 ALOAD_0

 8 INVOKEVIRTUAL 22

 11 IFEQ 14

 14 ALOAD_0

 15 INVOKEVIRTUAL 23

 18 IFNE 7

 21 ICONST_1

 22 GOTO 4

 25 ICONST_0

 26 IRETURN

stackmap: lv op

25: 1 //

 26: 1 // 0

callee:

class : B

method : g()

local vairable: 1

operand stack:1

constant pool : 40 entries

0 ALOAD_0

 1 GETFIELD 2

 4 IRETURN

stackmap: null

inlined caller:

class : A

method : f()

local vairable: 2

local variable: 2

constant pool : 39 entries

 0 ALOAD_0

 1 INVOKEVIRTUAL 21

 4 IFEQ 33

 7 ALOAD_0

 8 INVOKEVIRTUAL 22

 11 IFEQ 26

 14 ALOAD_0

 15 NOTEST 'B g()'

 20 GOTO 10

 23 ASTORE 1

 25 ALOAD 1

 27 GETFIELD 39

 30 IFNE 7

 33 ICONST_1

 34 GOTO 4

 37 ICONST_0

 38 IRETURN

Stackmap: lv op

30: 1 0 // 0

 37: 1 0 //

 38: 1 0 // 0

Figure 4-10. Inlining Example

 45

4.4 Class Hierarchy Analysis Manager

The CHA Manager provides an interface for other components accessing

inlining information in our inlining system, see figure 4.3. The tasks of CHA

manager include inlining table construction, monomorphic violation detection, class

hierarchy analysis, recovery information recording and guard test code patching, as

mention in section 4.2.2.

Inlining table is a data structure used to maintain inlining information and each

entry in the table consists of method identification, monomorphic information, and a

list of recovery information; and for fast access, the table is implemented in hash

way. This kind of design make it possible to provide information without

constructing the whole class hierarchy and can be implemented in memory

constrained JVM. Figure 4.11 depicts the table.

1

2

3

4

5

Inlining Table

31

32

f ()

0

null

g ()

0

null

h ()

1
pc

4

Inlining

Method ID

Monomorphic Info.

Recovery List
1 monomorphic

0 polymorphic

pc denotes the address of bytecode

“no_test”

used for Code Patching mechanism

Entry Count

Figure 4.11. A Snapshot of Inlining Table

Now we detail how the CHA manager deals with the five tasks and interacts

 46

with inlining table:

 Inlining Table Construction

Entry Count

1

2

3

4

5

Inlining Table

31

32

f ()
0

null

g ()
0

null

h ()

1

3 Inlining Entry

null

Class Hierarchy

B f()

A f()

 g()

C g()

D h()
new class

Figure 4-12. Inlining Table Construction

When a new class is loaded, the class loader requests the CHA manager to

record inlining entry relative to each method of the loaded class to the inlining table.

If a method is not appeared in the inlining table, then the new inlining entry is added

and marked monomorphic. Otherwise the inlining entry with the same method id is

marked polymorphic. Figure 4.12 illustrates that a new class C with a method h()

was loaded by class loader and the CHA manager found that there was no method id

the same as h() at that time, so a inlining entry standing for h() was added to inlining

table and marked as polymorphic.

 Class Hierarchy Analysis

When the inliner starts inlining a virtual callee, it will first request CHA

manager to do class hierarchy analysis to decide if the callee is monomorphic, as

illustrated in figure 4.8. Then the CHA manager will look for the inlining entry

standing for the callee method and report its monomorphic information. For

 47

example: figure 4.13 illustrates that the inliner start inlining h() at callsite 1, then

that h() is monomorphic was reported back according to the monomorphic

information of inlining entry, h().

 Recovery Information Recording

After getting the monomorphic information about the callee to be inlined and if

the callee is monomorphic, the callee is inlined in “guard test code patching” style

and the recovery information- the address of “NO_TEST” bytecode- is recorded by

CHA manager. Figure 4.13 illustrates that address of “NO_TEST”, pc, was

recorded in the inlining entry h() for recovery.

1

2

3

4

5

Inlining Table

31

32

f ()

0

null

g ()

0

null

h ()

1

3 Inlining Entry

Hot Spot with

callsite 1

callsite 2

Selected Callsite

h ()

g ()

h ()

pc

no_testpc:

Inlined CallerOriginal Caller

callsite 2

goto aftercall
inlinedcode:

aftercall:

Callee Body

Entry Count

g ()

Figure 4-13. Recovery Information Recording

 Monomorphic Violation Detection

When a new class is loaded, the CHA manager not only adds inlining

information to inlining table but also check the table to detect if the monomorphic

assumption to those inlined method is violated. The detection is simply checking the

recovery lists corresponding to the added methods of the new class. If there is a

corresponding inlining entry in the inlining table and the recovery list of the entry is

 48

not empty, then the monomorphic is detected and it needs to do recovery. Figure

4.13 illustrates that a new class E with method h() was loaded and CHA manager

detected that the recovery list of inlining entry- h() is not empty, which means that

another method h() had been inlined into its caller.

 Guard Test Code Patching

While the monomorphic violation is detected, CHA manager must to do

recovery as mention in section 4.1 which patches the inlined callee code and let it

execute in guard test way subsequently. Since the recovery information is

maintained in a recovery list, all we have to do is replace the “NO_TEST” with

“GUARD_TEST” addressed by the recovery list. Figure 4.13 illustrates that the

address pc of the recovery list in inlining entry h() was used to do the recovery.

Figure 4.14 illustrates that after recovery, the “NO_TEST” was replaced with

“GUARD_TEST” so the recovered callee would execute in guard test way

subsequently, which can reuse the inlined code made before.

 49

1

2

3

4

5

Inlining Table

31

32

f ()

0

null

g ()

0

null

h ()

1

3 Inlining Entry

pc

h ()no_test

aftercallgoto

Callee Body

pc:

inlinedcode:

aftercall:

g ()callsite 2

Class Hierarchy Entry Count

A f()

 g()

C g() B f()

D h() E h()
new class

Guard Test Code Patching

Figure 4-14. Guard Test Code Patching

 50

1

2

3

4

5

Inlining Table

31

32

f ()

0

null

g ()

0

null

h ()

0

3 Inlining Entry

h ()guard_test

aftercallgoto

Callee Body

pc:

inlinedcode:

aftercall:

g ()callsite 2

Guard Test Code Patching

Class Hierarchy Graph

B f()

A f()

 g()

C g()

D h() E h()

null

Entry Count

Figure 4-15. Snapshot of Inlining Table – After Recovery

 51

Chapter 5 Experiments

This chapter is devoted to experiments. We first describe our set-up

environment for experiments. Next, appropriate benchmarks are chosen for

performance evaluation and analysis. Finally, we present our experiment results

including speed performance and memory usage, and further analyze the factors that

affect our results.

5.1 Experiment Environment

Our method inlining mechansim is designed and implemented on an Embedded

JIT, KJIT, which is based on version 1.0.4 of Sun’s KVM, the reference

implementation of J2ME CLDC. For our research usage, the KVM is ported to

ARM’s ADS 1.2, a development environment which includes compiler, assembler,

debugger, and instruction set simulator. For recording inlining information system

classes of KVM, we turned the class preloading/prelinking option off, an option

which is detailed on “KVM Porting Guide”, to load system classes at run time. For

compiling Java benchmark programs and KVM’s class libraries, the version of the

Java compiler adopted is Sun’s J2SDK1.4.2_03. For compiling KVM and our

KJITC with method inlining optimization, maximum optimization is specified

with –O2 option. Last, our target architecture is ARM7TDMI, and uncached

Harvard architecture which supports both ARM/Thumb instruction sets.

 52

5.2 Benchmarks

Due to the limited APIs that J2ME CLDC specifies, common Java benchmarks

can not be applied in our experiment. By referring to related researches, we choose

Embedded CaffeineMark 3.0 [11] and CLDC HotSpotTM Implementation Evaluation

Kit [12] for our experiments.

The Embedded CaffeineMark 3.0 (CaffeineMark) uses 6 tests to measure

embedded JVM performance in various aspects, excluding the floating point test

which is not supported in CLDC 1.0, the remaining 5 tests are adopted; while the

CLDC HotSpotTM Implementation Evaluation Kit (CLDC_HI) uses 4 benchmarks

that are more close to real applications in embedded environment. Table 5-1 and

table 5-2 depict the two benchmark suites.

Table 5-1: Embedded CaffeineMark 3.0
Name Brief Description

Sieve The classic sieve of Erastosthenes finds prime

numbers.

Loop The loop test uses sorting and sequence generation as

to measure compiler optimization of loops.

Logic Tests the speed with which the virtual machine

executes decision-making instructions.

Method The Method test executes recursive functional calls to

see how well the VM handles method calls.

String String comparison and concatenation.

 53

Table 5-2: CLDC HotSpotTM
 Implementation Evaluation Kit Version 1.0.1

Name Brief Description

Richards Richards is a benchmark that simulates the task

dispatcher in the kernel of an operating system.

DeltaBlue DeltaBlue solves one-way constraint systems.(See

"The DeltaBlue Algorithm: An Incremental Constraint

Hierarchy Solver" by Bjorn N. Freeman-Benson and

John Maloney, Communications of the ACM, January

1990.

Image The Image Processing benchmark reads an image file

(Sun raster image format) and performs various

transformations on it, such as Sobel, threshold, 3x3

convolver, and so forth. After each transformation, it

compares the result with an expected result to confirm

that the transformation was done properly.

Queens Queens is a solver of the n-queens problem, where

the objective is to place n queens in a chess board so

that no queen can attack another. It is a classical

problem used to illustrate several techniques such as

general search and backtracking.

5.3 Experiment Results

The objective of our design is to improve performance by exploiting our

method inlining mechanism while keeping the code expansion in a tolerable size.

We use our code expansion control mechanism, mentioned in 4.3.1 to prevent code

bloats. In the mechanism, two parameters - inline cache and α- are used to control

the code expansion. First, we assume that inline cache was enough and different α

values were measured and then the suitable α were chosen to observed the

relations between inline cache size and performance. Second, we analyze the factors

affecting performance about inlining. Finally, different configurations of inlining

mechanisms are compared in our system.

 54

5.3.1 Program Behavior

Figure 5-1 shows the program behavior of each benchmark. It contains two

pictures, each of which corresponds to its benchmark suite – CaffeineMark and

CLDC_HI. According to their execution behavior, the execution time is classified

into six parts:

 Compilation – The time spent on compilation by KJITC.

 Compiled – The time spent on compiled target machine code produced by

KJIT.

 Interpreter-other – The time spent on interpreter except handling method

invocation.

 Invoke – The time spent on invoking method, i.e., pushing frames into Java

Stack.

 Return – The time spent on method return, i.e., popping frames from Java

Stack.

 Dispatch – The time spent on dispatching, i.e., finding the actual methods to

invoke.

From the figure, we can see that the Compilation is too small to be aware of,

which echoes the feature of Embedded JIT compiler, while the Compiled and the

Interpreter-other play an important role in the execution time but the ratios change

from benchmark to benchmark. As for the Invoke, Return, and Dispatch, causing

the overhead of method invocation, we can see that in some benchmarks –Sieve,

Loop and Image – there is little time spent on them while in the others –String,

Method, Richards, DeltaBlue and Queens – the costs are huge and some even take

up half of the execution time. The averages of invocation overhead from the two

benchmark suites are about 8.5% and 37.4% in CaffeineMark and CLDC_HI

respectively.

 55

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
im

e
D

is
tr

ib
ut

io
n

Si
ev

e
Loo

p
Log

ic

St
rin

g

M
eth

od

Ave
ra

ge

CaffeineMark

Compilation Compiled Interpreter-other Call Return Dispatch

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
im

e
D

is
tr

ib
ut

io
n

Si
ev

e
Loo

p
Log

ic

St
rin

g

M
eth

od

Ave
ra

ge

CaffeineMark

Compilation Compiled Interpreter-other Call Return Dispatch

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
im

e
D

is
tr

ib
ut

io
n

Rich
ar
ds

Delt
aB

lu
e

Que
en

s

Ave
ra
ge

CLDC_HI

Compilation Compiled Interpreter-other Call Return Dispatch

Im
ag

e
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
im

e
D

is
tr

ib
ut

io
n

Rich
ar
ds

Delt
aB

lu
e

Que
en

s

Ave
ra
ge

CLDC_HI

Compilation Compiled Interpreter-other Call Return Dispatch

Im
ag

e

Figure 5-1. Program behavior of Benchmarks

Table 5-3 gives the method invocation counts on various types respectively–

monomorphic virtual, polymorphic virtual, and static – for each benchmark.

According to the table, we can see that the time spent on method is roughly

proportion to the invocation counts. It is worth noting that while the ratio of the

 56

Invoke to the Return roughly remains the same, the time spent on the Dispatch is

proportion to the virtual method execution count, i.e., the sum of monomorphic and

polymorphic invocation count. For example, Richards spent a lot of time on

dispatching, about 22.6%, whereas Queens just took about 4.7%. Both of them have

high invocation counts but the distribution of virtual methods and static methods

differs. This indicates that dynamic dispatch of virtual method is expansive and

especially in embedded JIT compiler (contrast to high performance JIT compiler).

Table 5-3. Invocation counts on various types

80494,97145,90549906,56438136,61138,5434288,9391,2291,2671,966Total

804720978186505543713426760641286,349645627871Static

9263741125312149146905324522,103457497861Poly.

219483081953897810019319384341487127143234Mono.

QueensImageDeltaBlueRichardsMethod String Logic LoopSieveBenchmarks

80494,97145,90549906,56438136,61138,5434288,9391,2291,2671,966Total

804720978186505543713426760641286,349645627871Static

9263741125312149146905324522,103457497861Poly.

219483081953897810019319384341487127143234Mono.

QueensImageDeltaBlueRichardsMethod String Logic LoopSieveBenchmarks

5.3.2 Effects of our Expansion Control

First, we measured the speedup over original KJITC without inlining by giving

different expansion factor –α. (Suppose that the inline cache size is large enough.)

The results are shown in Figure 5-2. We can see that the speedup generally increased

withα , but sometimes on the contrary it decreased; for example, DeltaBlue

decreases its performance by 1% from “α=3.5” to “α=4”. This might because that

when we raise the budget for one-time inlining, the additional inlined callees might

not be hot. We can also see that the best α varies among benchmarks. On average,

the speedup increases until “α=2.5” (8.2%) in CaffeineMark and “α=3”(46.4%) in

CLDC_HI, and then remains steady.

Then, we measured the effect of the size of the inline cache, and for unity, we

fixed “α=2.5” to constrain each one-time inlining. Figure 5-2 shows that the

speedup increases with the inline cache size. We can see that at the peak

performance the code expansions of all benchmarks are below 32 Kbytes - 28.2

 57

Kbytes in Richards, 12.7 Kbytes in DeltaBlue, and below 3 Kbytes in others. This

indicates that the embedded applications are usually small and amenable to inlining

due to the low code expansion overhead, echoing our assumption.

Effect of α on Performance - CaffeineMark

1.082

0.9

1

1.1

1.2

1.3

1.4

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

expansion factor - α

#
Sp

ee
d
up

Sieve Loop Logic String Method Average

Effect of α on Performance - CLDC_HI

1.464

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

expansion factor - α

#S
p
ee

du
p

Richards DeltaBlue Image Queens Average

Figure 5-2. Effect of expansion factor –α on performance

 58

Effect of Inline Cache - CaffeineMark

1.082

0.9

1

1.1

1.2

1.3

1.4

1k 2k 4k 8k 16k 32k 64k

Inline Cache Size (bytes)

#S
pe

ed
up

Sieve Loop Logic String Method Average

Effect of Inline Cache - CLDC_HI

1.432

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

1k 2k 4k 8k 16k 32k 64k

Inline Cache Size (bytes)

#S
p
ee

du
p

Richards DeltaBlue Image Queens Average

Figure 5-3. Effect of Inline Cache Size on Performance

5.3.3 Performance Results

Table 5-4 lists performance results with code expansion and inlining table

overhead (Configuration: Inline Cache Size = 32KB , α = 2.5). From the table, we

 59

can see the speedup and code expansion vary widely from benchmark to benchmark,

by different program behaviors; while the inlining table size is range from 3.1

Kbytes to 5.1 Kbytes, a large portion of which is owing to system class (2.5Kbytes).

The inlining table size is relative high (but still be tolerable) compared to the code

expansion except for Richard and Deltablue, which have many callees to be inlined,

133 and 60, respectively. On average, we can improve performance by a factor of

1.08 with 4.4 Kbytes space overhead in CaffeineMark and 1.43 with 15.1 Kbytes in

CLDC_HI. (The space overhead is low enough to be put up with in embedded

environment, for example the space cost grows 3% in CLDC_HI if 512 Kbytes

memory.)

Table 5-4. Performance Results

4.436 3.548 0.888 108.22%Average

5.0193.5641.455132.42%Method

5.9553.5482.407108.63%String

3.6673.5400.127100.05%Logic

3.6693.5400.12999.99%Loop

3.8723.5480.324100.00%Sieve

Total (Kbytes)Inlining Table (Kbytes)Code Expansion (Kbytes)SpeedupCaffeineMark

4.436 3.548 0.888 108.22%Average

5.0193.5641.455132.42%Method

5.9553.5482.407108.63%String

3.6673.5400.127100.05%Logic

3.6693.5400.12999.99%Loop

3.8723.5480.324100.00%Sieve

Total (Kbytes)Inlining Table (Kbytes)Code Expansion (Kbytes)SpeedupCaffeineMark

15.0953.84011.255143.55%Average

4.6503.1161.534221.35%Queens

5.7743.2522.522100.00%Image

16.6193.90812.711124.84%DeltaBlue

33.3375.08428.253128.57%Richards

Total (Kbytes)Inlining Table (Kbytes)Code Expansion (Kbytes)SpeedupCLDC_HI

15.0953.84011.255143.55%Average

4.6503.1161.534221.35%Queens

5.7743.2522.522100.00%Image

16.6193.90812.711124.84%DeltaBlue

33.3375.08428.253128.57%Richards

Total (Kbytes)Inlining Table (Kbytes)Code Expansion (Kbytes)SpeedupCLDC_HI

5.3.4 Speedup Analysis

Figure 5-4 shows the inlining effect on program behavior of each benchmark.

Each benchmark has two bars: the left presents original behavior and the right

presents the behavior inlined. From the figure, we can see that inlining effectively

reduced the invocation overhead, for the reduction of the Invoke, Return, and

Dispatch. (Table 5-6 lists the reductions of each type of method call due to inlining.)

 60

We know that one reason for the increased speed is the reduced call overhead; and

we also want to know how much of the speedup is obtained by just eliminating call

overhead, and how much is due to other factors (such as more chances for further

optimization and reducing interpreter’s switching overhead). For example, in

Queens, not only is the invocation overhead reduced but also the Interpreter-other

(reducing switching overhead) and compiled (compiled code quality improved).

Figure 5-5 shows the ratio of the reasons contributing to speedup. We can see

that the factor reducing invocation overhead dominates the speedup, 74.1% in

CaffeineMark and 78.9% in CLDC_HI on average. This is because in our current

implementation, the “GUARD_TEST” and “NO_TEST” are regard as complex

bytecode, leading to the constraint on enlarging the basic block size and reducing

the interpreter’s switching overhead. That is, inlining static callees might contribute

more to speedup due to having no “GUARD_TEST” or “NO_TEST” bytecodes.

Table 5-5 proves our inference by seeing that the benchmark with more ratio of

other factor usually inlines more static callees such as String and Queens: the ratios

are 49.5% and 30.4% and the static inlined callees take 75% and 66.7%.

 61

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
im

e
D

is
tr

ib
ut

io
n

Si
ev

e
Loo

p
Log

ic

St
rin

g

M
eth

od

Ave
ra
ge

Inlining Effect on Program Behavior - CaffeineMark

Compilation Compiled Interpreter-other Call Return Dispatch

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
im

e
D

is
tr

ib
ut

io
n

Si
ev

e
Loo

p
Log

ic

St
rin

g

M
eth

od

Ave
ra
ge

Inlining Effect on Program Behavior - CaffeineMark

Compilation Compiled Interpreter-other Call Return Dispatch

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
im

e
D

is
tr

ib
ut

io
n

Rich
ar
ds

Im
ag

e

Que
en

s

Ave
ra
ge

Inlining Effect on Program Behavior - CLDC_HI

Compilation Compiled Interpreter-other Call Return Dispatch

Delt
aB

lu
e

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T
im

e
D

is
tr

ib
ut

io
n

Rich
ar
ds

Im
ag

e

Que
en

s

Ave
ra
ge

Inlining Effect on Program Behavior - CLDC_HI

Compilation Compiled Interpreter-other Call Return Dispatch

Delt
aB

lu
e

Figure 5-4. Inlining Effect on Program Behavior

 62

0%

20%

40%

60%

80%

100%

#O
pt

im
iz

at
io

n
R

at
io

Si
ev

e
Lo

op
Log

ic

St
rin

g

M
eth

od

Ave
ra

ge

Speedup Analysis - CaffeineMark

Invocation Other

0%

20%

40%

60%

80%

100%

#O
pt

im
iz

at
io

n
R

at
io

Rich
ar

ds

Delt
aB

lue

Im
ag

e

Que
en

s

Ave
ra

ge

Speedup Analysis - CLDC_HI

Invocation Other

Figure 5-5. Speedup Analysis

Table 5-5. Inline Counts of Different Type

6106013348114Total

44195106002Static

16292911111Poly.

10125331001Mono.

QueensImageDeltaBlueRichardsMethod String Logic LoopSieve
Inline
Count

6106013348114Total

44195106002Static

16292911111Poly.

10125331001Mono.

QueensImageDeltaBlueRichardsMethod String Logic LoopSieve
Inline
Count

 63

Table 5-6. Method Call Reduction

50.6%79.5%97.8%94.2%91.6%Reduction

385434288939122912671966with

761726363647125713452147with/noTotal

100.0%79.4%100.0%92.6%89.9%Reduction

641286349645627871with

641360726645677969with/noStatic

94.2%98.6%94.2%94.7%96.6%Reduction

4522103457497861with

4802133485525891with/noPoly.

50.5%61.8%100.0%100.0%81.5%Reduction

384341487127143234with

760605788127143287with/noMono.

Method String Logic LoopSieveCaffeineMark

50.6%79.5%97.8%94.2%91.6%Reduction

385434288939122912671966with

761726363647125713452147with/noTotal

100.0%79.4%100.0%92.6%89.9%Reduction

641286349645627871with

641360726645677969with/noStatic

94.2%98.6%94.2%94.7%96.6%Reduction

4522103457497861with

4802133485525891with/noPoly.

50.5%61.8%100.0%100.0%81.5%Reduction

384341487127143234with

760605788127143287with/noMono.

Method String Logic LoopSieveCaffeineMark

13.04%95.35%58.86%66.31%Reduction

10492096437712937650225288697with

80472097459054990656438136611with/noTotal

13.01%99.51%62.94%64.07%Reduction

10469315814631817268603106with

804492238186505543713426760with/noStatic

89.96%94.40%51.61%78.03%Reduction

833353171306434511463610with

926374112531214914690532with/noPoly.

100.00%100.00%67.20%52.12%Reduction

21948308131304315221981with

219483081953897810019319with/noMono.

QueensImageDeltaBlueRichardsCLDC_HI

13.04%95.35%58.86%66.31%Reduction

10492096437712937650225288697with

80472097459054990656438136611with/noTotal

13.01%99.51%62.94%64.07%Reduction

10469315814631817268603106with

804492238186505543713426760with/noStatic

89.96%94.40%51.61%78.03%Reduction

833353171306434511463610with

926374112531214914690532with/noPoly.

100.00%100.00%67.20%52.12%Reduction

21948308131304315221981with

219483081953897810019319with/noMono.

QueensImageDeltaBlueRichardsCLDC_HI

 64

5.3.5 Comparison

Figure 5-5 shows the results compared with the following configuration:

1. Original KJIT (Original)

2. Static Inlining (Static)

3. Guard Test Mechanism (Guard_Test)

4. Code Patching Mechanism (Code_Patching)

5. Guard Test Code Patching Mechanism (Guard_Test_Code_Patching)

In generally, exploiting virtual inlining is much better than static inlining

except Queens, and exploiting monomorphic property also has an obvious

improvement over guard test mechanism. Note that the speedups of Code Patching

Mechanism and Guard Test Code Patching Mechanism are almost the same except

for Richards (26.2% and 28.5%). This is because in these benchmarks, only

Richards will result in monomorphic assumption invalidated. Although this causes

our mechanism to outperform code patching mechanism little, we can expect that

when encounter applications with many dynamic class loadings (such as embedded

Java web browser that can download classes from Internet), the improvement will

appear.

 65

Speed Performance Comparsion - CaffeineMark

0.9

1.0

1.1

1.2

1.3

1.4

Sieve Loop Logic String Method Average

pe
ed

up
#S

Original Static Guard_Test Code_Patching Guard_Test_Code_Patching

Speed Performance Comparsion - CLDC_HI

0.9

1.0

1.1
1.2

1.3
1.4

1.5
1.6

1.7

1.8
1.9

2.0
2.1

2.2
2.3

Richards DeltaBlue Image Queens Average

#S
pe

ed
up

Original Static Guard_Test Code_Patching Guard_Test_Code_Patching

Figure 5-6. Compare with Other Mechanisms

 66

Chapter 6 Conclusion and Future Work

In this thesis, we design and implement a method inlining mechanism in our

Embedded JIT compiler which can fully exploiting method inlining could improve

speed performance (about 46% in CLDC_HI) with small space overhead on

embedded application (about 15K in CLDC_HI). By using the inlining table (about

3~5K) that records the inlining information such as monomorphic and recovery

information without maintaining the whole class hierarchy, we can use the

monomorphic property to avoid testing before entering the inlined code.

We also analyze the effect of inlining on program behavior and find that the

factor which reduce method call overhead dominates the speedup (about 79%) due

to our current implementation of virtual inlining.

For future work, we can enhance our JIT compiler to compile the

“GUARD_TEST” and “NO_TEST” bytecode so that the switching overhead could

be saved a lot. Another interesting direction is partial compilation. Partial

compilation technique [21] [22] only compiles frequently parts of a compilation unit

which may be a method or an executing path across methods. This technique can

accelerate compilation speed and reduce compilation code size, which is attractive

to embedded JIT compiler. We can combine partial compilation technique with our

method inlining mechanism to inline more callees with low space overhead.

 67

Reference

[1] J2ME Building Blocks for Mobile Devices, Sun Microsystems, 2000

[2] G. Muller, B. Moura, F. Bellard, and C. Consel, “Harissa: A Flexible and Efficient
Java Environment Mixing Bytecode and Compiled Code,” Proc. of USENIX
COOTS’97, 1997

[3] Nik Shaylor, “A Just-In-Time compiler for memory constrained low-power devices,”
USENIX JVM'02, August 2002

[4] J. H. Huang, “Design and Implementation of Embedded Mixed-Mode JVM for
ARM/Thumb Dual Instruction Set Processor,” Master Thesis, CSIE, NCTU, 2004

[5] Chung-Ruei Huang, “A Java Just-In-Time Compiler for Embedded Systems,”
Master Theses, CSIE, NTU, 2003

[6] O.Agesen and D. Detlefs, “Mixed-mode Bytecode Execution,” TR-2000-87, Sun
Microsystems, June 2000

[7] V. Colin de Verdiere, Sebastien Cros, C. Fabre, R. Guider, S. Yovine, “Speedup
Prediction for Selective Compilation of Embedded Java Programs”, Proc. of
EMSOFT02, October 2002

[8] Wen-mei W. Hwu, Pohua P. Chang, “Inline Function Expansion for Compiling
Programs”, 1989

[9] Steven. S. Muchnick, Advanced Compiler Design and Inplementation, Morgan
Kaufmann, 1997

[10] Peng Zhao, Jose’s Nelson Amaral, “To Inline or Not to Inline? Enhanced Inline
Decisions”, 2004

[11] Pendragon Software Corporation, Embedded CaffeineMark 3.0 benchmark,
http://www.webfayre.com, 1997

 68

http://www.webfayre.com/

[12] Sun Microsystems, CLDC HotSpot TM Implementation Evalution Kit Version 1.0.1,
2003

[13] B.Venners, Inside the Java Virtual Machine, 2nd Edition, McGraw-Hill, 2000

[14] T. Lindolm, F.Yellin, The Java Virtual Machine specification, 2nd Edition, Addison
Wesley, 1999

[15] M. Tremblay, M. O’Connor, “PicoJava: A Hardware Implementation of the Java
Virtual Machine,” Sun Microsystems,” 1996

[16] ARM Jazelle Technology, http://www.arm.com/products/solution/Jazelle.html

[17]Jeffrey Dean, David Grove, and Craig Chambers, “Optimization of Object-Oriented
Programs Using Static Class Hierarchy Analysis,” 1995

[18] David Detlefs, Ole Agesen. “Inlining of Virtual Methods,” 1999

[19] Sunil Soman and Chandra Krintz, “Efficient On-Stack-Replacement for Aggressive
Specialization of Java programs,” 2004

[20] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki Komatsu, Toshio
Nakatani, “A Study of Devirtualization Techniques for a Java™ Just-In-Time
Compiler, “ 2000

[21] SUGANUMA Toshio, YASUE Toshiaki, NAKATANI Toshio, “A Region-Based
Compilation Technique for a Java Just-In-Time Compiler,” 2003

[22] Derek Bruening and Evelyn Duesterwald, “Exploring Optimal Compilation Unit
Shapes for an Embedded Just-In-Time Compiler,” 2000

 69

http://www.arm.com/products/solution/Jazelle.html

	封面.doc
	9317590_final.doc
	Chapter 1 Introduction
	1.1 Embedded Java Environment
	1.2 Embedded Just-In-Time Compiler
	1.3 Method Inlining
	1.4 Research Motivation and Objective
	1.5 Thesis Organization
	Chapter 2 Background
	2.1 Java Technology
	2.2 JVM Internals
	2.2.1 Class Loader and Method Area
	2.2.2 PC Register and Java Stack
	2.2.3 Java Heap
	2.2.4 Execution Engine

	2.3 Overview of our embedded JIT compiler – KJITC

	Chapter 3 Related Work
	3.1 The difficulties of Inlining in Java
	3.2 Inlining of Virtual Methods
	3.2.1 Guard Test
	3.2.2 Direct Inlining with Recompilation
	3.2.3 Direct Inlining with Code Patching

	3.3 Summary

	Chapter 4 Design and Implementation
	4.1 Design and Implementation Issues
	4.2 System Overview
	4.2.1 Design Overview
	4.2.2 Interactions between Components

	4.3 Method Inliner
	4.3.1 Code Expansion Control Mechanism
	4.3.2 Callsite Selector
	4.3.3 Inliner
	 Implementation of Inlining of Virtual Methods
	 Callsite Replacement
	 Method Information Revision

	4.4 Class Hierarchy Analysis Manager

	Chapter 5 Experiments
	5.1 Experiment Environment
	5.2 Benchmarks
	5.3 Experiment Results
	5.3.1 Program Behavior
	5.3.2 Effects of our Expansion Control
	5.3.3 Performance Results
	5.3.4 Speedup Analysis
	5.3.5 Comparison

	Chapter 6 Conclusion and Future Work
	Reference

