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Abstract

Semiconductor technology and micro-architecture evolutions are driving micro-
processors toward higher clock frequencies. Meanwhile; main memories hadn’t significantly
reduced access time. To prevent large performance losses caused by long main memory
latencies, micro-processors rely heavily on cache memories. Unfortunately, cache memories
are not always effective due to the various cache misses. To overcome cache memories’
limitations, there are several cache-based architectural optimizations which can reduce the
miss penalty when cache misses. But some Optimizations cannot handle all types of misses
well.

In this thesis, we improve existing static time cache miss type identification scheme by
using finite look-ahead replacement policy in the pseudo-cache to make identification results
more accurate. We also propose two low hardware cost, low complexity cache miss type
identification approaches which achieve more than 93% average identification accuracy. Then,
we demonstrate the application of run time cache miss type identification by applying it to
several cache-based architectural optimizations. In each case, the architecture benefits from
applying different policies to different types of misses. In addition, we combine several cache
optimizations to cover 89% of cache misses with a sixteen-entry buffer, called PV buffer. By
using cache miss type information, we can reduce unnecessary memory traffic and fetch

operations to increase effectiveness of this cache-assist buffer.
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Chapter 1 Introduction

Semiconductor technology and micro-architecture evolutions are driving micro-
processors toward higher clock frequencies and higher integration scale. Meanwhile, the
technology trend in main memories has been a move toward higher densities rather than
significantly reduced access time. Combines together, these trends have relative increased
main memory latencies as measured in processor clock cycles. To prevent large performance
losses caused by long main memory latencies, micro-processors rely heavily on hierarchies of

cache memories.

But cache memories are not always effective, either because they are not large enough to
hold a program’s working set, or because too many memory blocks in reference stream map
to a certain set. But we can’t'simply increase cache size, nor use more set-associative cache,
because these would increase the processor clock period, leading to lower overall

performance.

To partially overcome cache memories’ limitations, the cache memory controller can
predict memory addresses likely to be accessed soon and determine that the data of those
addresses are in the cache memory or not. If not, the cache controller can prefetch those
blocks which likely to be used soon from lower level of memory hierarchies into the cache. If
we can let the prediction precise, we can hide the main memory latencies well. However, we
shouldn’t do the prediction and prefetching every time we access the cache, it would cause
too much time and energy. We should do the prediction only when a cache miss occurs and

predict what blocks may cause next cache miss.

As we know, there are three main kinds of cache misses. The fourth type of cache miss

called the coherence misses will be discussed in Chapter 5. Each cache miss type has different



miss address patterns and has proper way to predict the next cache miss address. If we can
identify the miss type when a cache miss occurred, and activate the suitable prediction

mechanisms based on that miss type, the prediction results would be more accurate.



1.1 The Three C’s cache misses

To gain better insights into the causes of misses, [Hennessy et a. 2003] sorts all

misses into three categories:

n Compulsory — The very first access to a block cannot be in the cache, so the block
must be brought into the cache. These are also called cold misses or first-reference

Mi SSes.

n Capacity — If the cache cannot contain all the blocks needed during execution of a
program, capacity misses will occur because the cache size is not sufficient to hold

data between references.

n Conflict — If the block placement strategy is set associative or direct mapped, conflict
misses will occur because a block may be evicted and retrieved if too many blocks

map to its set.

Because compulsory and capacity misses have very similar reference patterns and
since we identify miss types for miss address prediction, we group compulsory and
capacity misses together to the same type of miss for smplicity. That means misses are

classified to fallowing two types in this thesis. Conflict miss and Non-conflict miss



1.2 Identification of Conflict misses

Although textbook had a definition of conflict misses, we still hard to determined a

miss is a conflict miss or not by above definition.

Norman Jouppi, [Jouppi 1995] who proposed a scheme to identify conflict misses
(which is very similar to the [Hill 1987]’s definition), said conflict misses are misses that
would not occur if the cache was fully-associative and had LRU replacement. So, a
particular miss is considered a conflict miss if it would have been a hit in a fully

associative cache of the same size.

Figure 1-1 gives a overview that how this scheme works. when a cache miss occursin
the real cache but the virtual fully-associative cache hit, that means the real cache misses
because its own organization can’t hold the requested block but the fully-associative cache
can. In other words; that is a conflict miss. If a requested block couldn’t be found in both
caches, which have the same size, means it’s a very first access or the cache size is not

sufficient to hold data between references. |n other words, that is a non-conflict miss.

Processor Processor
Core Core
11 cache access 11 Cache access
Virtual L1 Virtual L1
FA cache Cache FA cache Cache
hit MIsS miss miss
N N J N\ N J
Conflict miss Non-conflict miss

Figure 1-1: Norman Jouppi’s scheme to identify conflict misses.



However, Jouppi’s conflict miss identification method shouldn't be done in run-time. It
needs an extra fully-associative cache working together with original cache, causes longer
cache access time and more energy consumption. The cost of run-time method needs to be

lower, and the timing is critical.

Besides, Jouppi used LRU because it is the best-known fully-associative cache
replacement policy. But sometimes, a fully-associative with LRU replacement cache may
have its own problems. For example: Assume the real cache is a four blocks,
direct-mapped cache, and use a four-entries, fully-associative, LRU replacement cache to
identify conflict misses. The accessed memory addresses are sequential, five addresses per

iteration. Figure 1-2 shows the detail.

Timestamp Accegee - | g Direct-mapped Cache
memory address LRU Cache

1 1
2 2
3 3 2
4 4 2| 3
5 5 2 3 4
6 1 2| 3] 4
7 2 2| 3| 4
8 3 21 3] 4
9 4 2| 3[4
10 5 2 3 4
11 1 2 3 4
12 2 2 3 4
13 3 2 3 4
14 4 2 3 4
15 5 2 3 4
16 1 2 3 4

Figure 1-2: An example of the worst case of LRU replacement policy.
A red block means that access was a miss in that cache. A green block
means that access was a hit in that cache.



The fully-associative cache misses all the time in this example, because the LRU
always replaces the block which will be used in next access. This example is the worst
case of LRU replacement policy. In that situation, it can’t classify miss types accurately

because it will consider all cache misses are capacity misses.



1.3 Research Motivation

Jouppi’s conflict miss identification method shouldn't be done in run-time. The cost of
run-time method needs to be lower, and the timing is critical. We need to find a more

practical and more efficiency scheme to identify conflict misses.

Although Jouppi’s scheme is too expensive in run time, it should work fine in
simulation time. The worst case mentioned in last section is due to the LRU replacement
policy. So, using a finite look-ahead replacement rather than LRU in the virtual

fully-associative cache can make the identification more accurate in static time.

Once we have the static miss classification result, we can do some analysis to find the
characteristics of each miss type. If each cache miss type has a unique characteristic, we
can simply compare the characteristic of misses and classify them. In other words, we
want to develop hardware approaches to capture those characteristics to classify missesin

run-time.



1.4 Research Goal

There are three main goals in this research:

1. To classify cache misses accurately at static time with low overhead. On one hand, the
static time classification results would be used as reference answers compared to the
run-time scheme’s results. Therefore, the satic time results should be the more
accurate the better. On the other hand, benchmark problems we used in this thesis
would occur more than billions of cache misses. An efficient implementation in

simulation time is necessary to classify that huge amount of misses.

2. To develop some run-time practicable miss type classification schemes to approximate

static-time cache miss results using low computing and space complexity.

3. To identify possible applications of run-time miss type identification. There are not
many previous works on the run-time miss type identification. Therefore, the

exploration of possible applications is an essential work.

For example, the run-time cache miss type can be used as a parameter to decide which

cache block should be replaced.

Another possible application is using miss type to enhance the performance or
efficiency of memory hierarchies. Cache-based architectural optimizations are aimed at
particular types of cache misses. Some Optimizations can’t handle all types of misses well.
If we can identify the cache miss type at run time and activate the proper cache-based
architectural optimizations which handle this miss type well. In this research, we chose
three different kinds of cache-based architectural optimizations and tried to cooperate with

our cache miss type classifier for the example.



1.5 Organization of thisthess

The remaining chapters of this thesis are organized as follows. In the next chapter, we
provide the related work of runtime conflict misses identification and necessary background
for cache miss address prediction. In Chapter 3, we present the ideas, designs and evaluations
of static time and run time cache miss type identification. We demonstrate how the run time
miss type identification cooperates with several cache optimizations by using cache assist
buffersin Chapter 4. Finally, in Chapter 5, we summarize our major contributions and give an

outline of future research on this topic.



Chapter 2 Backgrounds and Related Works

In this chapter, we present previous works of run-time cache miss type classification. In
fact, there are not many researches about run-time cache miss type classification. In Nov 2001,
Collins and Tullsen introduced a runtime identification of cache conflict misses. Their ideal

and motivation are very similar to us.

We also provide the necessary background for cache miss address prediction in this
chapter. Because we want to use run-time miss type classification to enhance the cache miss

address prediction, we have to introduce some predicting scheme first.
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2.1 Related Works - Runtime |dentification of Cache Conflict

Misses. The Adaptive Miss Buffer

This paper presents a technique to classify misses as either conflict misses or capacity
misses at runtime. They use a Miss Classification Table (MCT) which may separate from the

cache to storethe extratags.

2.1.1 Using MCT to classify misses

On the subsequent miss to this cache set, the tag of the newly accessed line is
compared the tags of the most recently evicted lines from that set. If they are identical, it

identifies this miss as a conflict miss.

Processor Processor
Core Core
11 cache access J_l.cache access
MCT = MCT =
Cache Cache
hit MmISS MmISS MmISS
N J N J
Y Y
Conflict miss Non-conflict miss

Figure 2-1: MCT gtores old tags which were evicted form L1 cache recently.

2.1.2 Multiple tags per entry

Storing one old tag per MCT entry, MCT is able to identify short term conflict

behavior by identifying cache misses which would have been hits if the cache had an
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additional level of associativity. This simple scheme, however, fails to identify complex
conflict patterns, such as those involving more than 2 cache lines. By saving multiple old
tags per MCT entry they can detect misses which would have been hits in an arbitrarily
associative cache, enabling MCT to identify these more complex patterns. For example,
with a direct-mapped cache, if MCT stores 2 old tags per MCT entry, misses which would

have been hits in a 3-way associative cache will be identified
2.1.3 Applications of conflict missfiltering

This knowledge can be used in various ways to improve the performance of the cache
hierarchy. For example, it could be used to restrict the misses that can write into a victim
buffer. This potentially protects two critical resources, the entries themselves, hopefully
leaving high probability entries in the buffer longer, and the buffer access ports, increasing

its availability.

They demonstrate the utility of this information by applying it to victim cache design,
cache pre-fetching, cache exclusion‘mechanisms, and pseudo-associative caches. In each
case, the architecture benefits from applying different policiesto different types of misses.
It does so in some cases by ignoring accesses unlikely to benefit from the particular
architecture. Three of these techniques can be combined into a single architecture, which
we call the adaptive miss buffer. The adaptive miss buffer uses the victim/prefetch/
exclusion buffer in a different way depending on the classification of each miss. This uses
a single structure to optimize buffer performance for the elimination of both conflict and
capacity misses. This greatly increases the effectiveness of a cache-assist buffer, providing

twice the performance gain of any single optimization using the same size buffer.

-12-



2.2 Backgrounds - Cache Prefetch M ethods

Hardware cache prefetching predicts future memory access patterns based on current or
past access patterns, and attempts to move data likely to be accessed in the near future closer

to the processor.

Hardware prefetchers range from very simple next-line prefetchers to more sophisticated
stride or even repeated-pattern based predictors. Those more advanced prefetch methods use
tables to record history information related to data accesses. We present several common
prefetch methods in this section. And in chapter 4, we choose both a smple sequential
prefetcher and a modified correlation prefetcher to cooperate with our cache miss type

classifier.
2.2.1 Sequential prefetching

The simplest prefetch methods are sequential prefetching. They access cache lines that
immediately follow the current cache line. The sequential prefetch is also called next-line
prefetch. Early sequential methods always prefetch after each cache miss, while more
recent sequential methods wait to issue prefetching until a sequential access pattern is
detected. Once sequential prefetching is issued and turns out to be correct, the degree of
the prefetching is increased until the prefetch can completely hide the latency of a missto
main memory. Prefetch degree is the maximum number of cache lines prefetched in
response to a single prefetch request. For longer memory latencies, a higher degree is

reguired in order for prefetched datato be returned in time to avoid a cache miss.

2.2.2 Table-Based Prefetching

There are two main kinds of table-based prefetching, Stride Prefetching and

Correction Prefetching. Stride Prefetching uses a table (Figure 2-2) to store stride-related

13-



local history information. The program counter (PC) of aload instruction indexes the table.
Each table entry holds the load’s most recent stride (the difference between the two most
recently preceding load addresses), last address (to allow computation of the next local
stride), and state information describing the stability of the load’s recent stride behavior.
When a prefetch is triggered, addresses a+s, at+2s, ..., at+ds are prefetched — where a is
the load’s current target address, s is the detected stride and d is the prefetch degree, an
implementation dependent prefetch look-ahead distance; more aggressive prefetch
implementations will use a higher value for d. Originally Stride Prefetching used a

look-ahead PC (LA-PC) to prefetch ahead.

Stride Prefetching Table
Tag Last Address = Stride  State

Prefetch
Address

Figure 2-2: The structure of Stride Prefetching table

Markov Prefetching is an example of a correlation prefetching method. Correlation
prefetching uses a history table to record consecutive address pairs. When a cache miss
occurs, the miss address indexes the correlation table, Figure 2-3. Each entry in the
Markov correlation table holds a list of addresses that have immediately followed the
current miss address in the past. When a table entry is accessed, the members of its
address list are prefetched, with the most recent miss address first. The left side of Figure
2-3 illustrates the state of the correlation table after processing the miss address stream
shown at the top of the figure Markov prefetching models the miss address stream as a

Markov graph — informally, a probabilistic state machine. Each node in the Markov graph

-14-



is an address and the arcs between nodes are labeled with the probabilities that the arc’s
source node address will be immediately followed by the target node address. Each entry
in the correlation table represents a node in an associated Markov graph, and its list of
memory addresses represents arcs with the highest probabilities. Hence, the table
maintains only a very crude approximation to the actual Markov probabilities. The right

side of Figure 2-3 is the Markov transition graph that corresponds to the example miss

address stream.
Miss Address Stream
ABCDOCACDBCA
“iss  Correlation Table Markov Graph
Address Tag 1st 2nd a5

et S
cC| A | D /5"
sriref et
S, R

Figure 2-3: Markov Prefetching a

2.2.3 Cache Prefetching using a Global History Buffer

In general, prefetch tables store prefetch history inefficiently. First, table data can
become stale, and consequently reduce prefetch accuracy (the percent of prefetches that
are actualy used by the program before being evicted). Second, tables suffer from
conflicts that occur when multiple access keys map to the same table entry. The most
common solution for reducing table conflicts is to increase the number of table entries.
However, this approach increases the table’s memory requirements, and increases the
percentage of stale data held in the table. Third, tables have a fixed (and usually a small)
amount of history per entry. Adding more prefetch history per entry creates new
opportunities for effective prefetching, but the additional prefetch history also increases
the table’s memory requirements and its percentage of stale data, which together can

negate the advantages.

-15-



To provide more efficient prefetchers we propose an alternative prefetching structure
that decouples table key matching from the storage of prefetch-related history information.

The overall prefetching structure has two levels (Figure 2-4).

« AnIndex Table (IT) that is accessed with a key as in conventional prefetch tables. The
key may be a load instruction’s PC, a cache miss address, or some combination. The

entries in the Index Table contain pointers into the Global History Buffer.

The Global History Buffer (GHB) is an n-entry FIFO table (implemented as a circular
buffer) that holds the n most recent L2 miss addresses. Each GHB entry stores a global
miss address and a link pointer. The link pointers are used to chain the GHB entries
into address lists. Each address list is the time-ordered sequence of addresses that have

the same Index Table key.

Depending on the key that is used for indexing the Index Table, any of a number of
history-based prefetch methods can be implemented. In the following subsections we
illustrate how the GHB can be used to implement correlation and stride prefetching. In

addition, we illustrate more general forms of each (atotal of eight prefetching methods).

‘ Index Global
Miss History
Address Table Buffer
A A §
B \ B Y
C \ C /
D \ D Y
1 C
Head | O
Pointer _ G “*;
[:(_] | D |
8 \ B 4
" . [T 7
N\ ...’I-I A .
e

Figure 2-4: GHB Global / Address Correlation
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2.3 Backgrounds - Victim cache

The victim cache is a small buffer that holds cache lines recently evicted from the cache.
The victim cache is probed when the main cache misses, and when the data is found it can be
returned much more quickly than a full cache miss. It targets conflict misses, and is most

effective when just afew cache sets are heavily contended for.

Normally, a victim cache hit requires a swap of the two affected lines, the newly evicted
line now becoming the first entry in the victim buffer (thus the last to be evicted from the
victim cache). The victim cache can be organized as a FIFO from which entries can be taken
out of the middle. This provides LRU eviction because lines are consumed out of the victim

cache as soon as they are accessed.
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Chapter 3 How to Better Identify Cache Miss Types

In this chapter, we present the static time and run time designs of cache miss type
identification. Because we also show the evaluations after each design, we have to introduce

the methodology of our experiments first.

After introducing of our ideas and designs, we compare the accuracy of our run-time

approaches with the related works, The MCT. We also compare the hardware cost of each

approach.

3.1 Simulation methodology

The Simulation methodology includes the experimental flow, the benchmark programs

and simulators we used in this thesis.

3.1.1 Experimental flow

In this section, we present our simulation methodology. The whole experimental can be
divided into follow parts: 1. a benchmarks set. 2. An instruction driven simulator to
execute the benchmark programs and produce some trace files. 3 atrace driven simulator
to simulate the hardware operation of run time cache miss type identification. Figure 3.X

shows the experimental flow of this thesis and following sessions will explain the details

of each part.
Instrutcion
Benchmark 4\ ]
Programs —V Driven
Simulator
I 4

» | TraceFiles )

Trace driven
Simulator

Figure 3-1: Experimental flow
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3.1.2 Experimental benchmar ks

We chose the SPEC INT 2000 to be our benchmark set. The benchmark programs

were complied as Alpha binaries to fit the simulator. But some benchmarks in the sets

were not used in the experiment because our simulator lacked for support of necessary

system calls. The Table 3.1 shows the details and descriptions of the benchmark we used.

to the combinatoria optimization class of programs.

Benchmark . Number
Description
name of Instr.
bzip2 is based on Julian Sewards bzip2 verson 0.1. All compresson and 8.8
bzip2 decompression happens entirely in memory. This is to help isolate the work done to biII.ion
only the CPU and memory subsystem.
crafty is a high-performance Computer Chess program that is designed around a 64 bit
craft word. It runs.on 32 bit machines using the "long long" data type. It is primarily an 4.2
y integer code, with a significant number. of logical operations such as and, or, exclusive | billion
or and shift.
gap implements a language and library designed mostly for computing in groups (GAP 11
9ap is an acronym for Groups, Algorithms and Programming). billion
oc gcc is based on gec version 2.7.2.2. The benchmark runs as a compiler with many of its 2.0
9 optimization flags enabl ed. billion
gzip is a popular data compression program written by Jean-Loup. Gailly for the GNU
7i project. gzip uses Lempel-Ziv coding (LZ77) as its compression agorithm. SPEC's 3.3
9zIp version of gzip performs no file I/O other than reading the input. All compression and | billion
decompression happens entirely in memory.

p—— The Link Grammer Parser is a syntactic parser of English, based on link grammer, an 4.2
P original theory of English syntax. billion
erlbmk perlbmk is a cut-down version of Perl v5.005_03, the popular scripting language. 2.0

P SPEC's version of Perl has had most of OS-specific features removed. billion
The TimberWolfSC placement and globa routing package is used in the process of
creating the lithography artwork needed for the production of microchips. The 0.9
twolf placement problem is a permutation. Therefore, a smple or brute force exploration of biII.i on
the state space would take an execution time proportional to the factoria of the input
size.
VPR is a placement and routing program; it automatically implements a technol ogy-
vor mapped circuit in a Fied- Programmable Gate Array (FPGA) chip. VPR is an example 15
P of an integrated circuit computer-aided design program, and agorithmicaly it belongs | billion

Table 3-1: The Benchmark programs we used form SPEC INT 2000
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3.1.3 Theinstruction driven simulator

The next part is an instruction driven simulator. We modified the Simplescaler 3.0
simulator to log the information of each cache miss. The Table 3.2 and 3.3 shows the

CPU and memory hierarchies configuration of the simulator.

Simulation Parameter Value
Instruction fetch queue size 4
Branch predictor type bimod
Instruction fetch width 4 (instr./cycle)
Instruction decode width 4 (ingtr./cycle)
Instruction issue width 4 (instr./cycle)
Instruction commit width 4 (instr./cycle)
RUU size 16
LSQ size 8

Table 3-2: The processor configuration of Simplescaler 3.0 in our experiment

Cache Number Number Block Replacement
Cachename _ . .
Size of set of way sze policy
Instruction L1 16K 512 1 32Bytes LRU
DatalLl 16K 128 4 32Bytes LRU
Unified L2 M 2048 4 32Bytes LRU

Table 3-3: The memory configuration of Simplescaler 3.0 in our experiment

During the simulation, we saved the information of each cache miss including cache
name, timestamp, miss address, memory operation (read/write), and the static time cache
miss type identification result. In this thesis, we used the cache miss from L1 instruction
cache for example. Although our experiment doesn’t include other caches like L1 data

cache or L2 cache, we believe that our designs can be used on them by change some
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parameter. The producing of static time cache miss type identification result will be

described in next session. All information was saved into trace files.

3.1.4. Tracedriven simulator

Thefinal part of simulation is a trace driven simulator. It handles every cache miss from trace
files one after one. The purpose of the second simulator is to simulate the hardware behaviors of
run-time cache miss type identification approach which will show be introduced in Chapter 3.3. In
the end, we have the run-time cache miss type identification results and we can compare them to
the static-time results. Because we assume the static-time results are 100% correct, we can get the

run timeidentification accuracy after comparing.

Our trace driven simulator also simulates the behaviors of cache prefetching and victim cache.

Designs and evaluations of the cache miss address prediction will be introduced in Chapter 4.
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3.2 Using FL A Replacement in Pseudo Cacheto Identify Cache

MissTypein Satic Time

As mentioned in Chapter 1.2, conflict misses would not occur if the cache is
fully-associative. Therefore, to implement Jouppi’s conflict miss identification scheme, we
added a pseudo fully- associative cache which has the same size as original cache into the
Simplescaler simulator. This pseudo cache only needs the tag part and work together with the

original cache.

To avoid the worst case of the LRU replacement policy, we use a finite look-ahead (FLA)
replacement in this pseudo fully-associative cache. FLA checks future memory access
information and decides which block should be evicted to minimize cache miss rate.
Checking the future access information would take alot of time and space if we simply do the
linear search in program traces. Instead, we want to use the FLA on the fly. When the pseudo
cache encounters a miss, it won’t decide which block will be evicted immediately. We delay
the decision until we know which block will be used in the latest future. In fact, all memory
accesses are delayed in the pseudo cache. That means we actually maintain a psuudo cache in

the status of n-cycle ago (n isthe delay cycle).
The algorithm below is the FL A replacement policy we used in this thesis:

Save the address of memory access of cycle i
If the memory access of cycle (i - n) missed in the pseudo cache then

Evicted block set ={ For All blocks weren’t used in cycle (i—n) to cycle i }
If Evicted block set is not empty then

Evicted block = the least recently used block in Evicted block set

Else
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Evicted block = the least recently used block in the pseudo cache

Figure 3.1 shows the results of static time identification, we experimented both two

replacement policies. After we ran the SPEC INT 2000 benchmarks, we compared three kind

of misses occurred in the benchmark programs. The cream-color parts mean the misses were

not occurred in both FA-FLA (fully-associative using Finite Look-Ahead replacement policy)

and FA-LRU (fully-associative using Least Recently Used replacement policy) caches but

only in real cache (in this experiment is a direct-mapped cache). The purple parts mean those

cache accesses hit in FA-FLA cache but: missed in both FA-LRU and real caches. The blue

ones mean those cache accesses were missed in all three cache configurations.
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Figure 3-2: Static time identification results

To explain further, the cream-color part of misses will be identified as conflict misses if

we use LRU as the replacement policy of pseudo cache. The cream-color part combines with

the purple parts of misses will be identified as conflict misses if we change the replacement
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policy to FLA. After changing replacement policy of pseudo cache, amost 5% more of
misses were identified as conflict misses. Because finite look-ahead replacement policy
doesn’t have the problem which we mentioned at section 1.2, we can make our identification

results more accurate with little overhead.

We had run lots of programs of SPEC INT 2000 benchmarks on the modified
Simplescaler simulator. It logged essential information of every miss occurred in instruction
cache. The information include time stamp, miss address, operation, and miss type we
identified by FA-FLA pseudo cache. All those information were saved into one trace files

which will be used in next section.
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3.3 Run time Approach 1 - Miss Frequency Spectrum

Before we descript our first approach, we have to define some symbols and terms

using in following sections.

1. We use M(s, t) as the symbol for a cache miss occurred in cache set s at time t. The

timet is not corresponding to the real time, but the index of all misses.

2. Set miss frequency, notated as MF(s, t, N), is the number of misses occurred in cache
set s during time period from t-N+1 to t. Finally, N is a constant. The value of N will
discuss later. For example: MF (50, 10000, 1000) = 10 means there are 10 misses
occurred in the cache set 50 during the time period from the 9001 miss to the 10000™

miss of the whole cache.

3. Set miss distance, notated as MD(s, t). When a miss occurred in cache set s at time t,
and Set miss distance is the number of misses occurred in the whole cache during time
period from the last one miss of cache set s to this miss. To speak more precisaly, if
M(s, to) is the last one miss occurred in cache set s and M(s, t;) is the new one, MD(s,

t)=t;—to— 1

In last section we had logged cache miss statistics into trace files. Hence, we can do

some analysis to find the characteristics of each miss type.

According to the gatistics, we had found the cache misses which were classified as
conflict misses usually have higher set miss frequency than the misses which were
classified as capacity misses. Figure 3-3 shows two frequency spectrums. The blue one is
measured by the cache misses which occurred in benchmark programs and were classified

as conflict misses. The purple one is similar but classified as capacity misses.

25



80

70

60

50

40

30
20 (
10

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
cache set miss frequency

million misses

Figure 3-3:Cache miss frequency spectrums

It is obvious that most of conflict misses have higher cache set miss frequency. That is
means cache misses occur in a cache sets which have high miss frequency usually are
conflict misses, and vice versa. We may use this characteristic to classify cache misstypes
in run time. But there are still two challenges to overcome. First, how we know the cache
set miss frequency in run time. Second, ‘what number of cache set miss frequency is

“high” enough to make a cache miss become a conflict miss.

For the first challenge, we add a 3-bits counter to count the set miss frequency for
each set. The counter increases when its cache set miss. When the counter reaching the
maximum value that it can represent, it will maintain the saturated value. All counters’
value cut down to half every N misses by shifting right the counters 1 bit. The number N
is the same as last page one and we call this N miss period Cool-down period. By
combining above operation, we can get the approximate cache set miss frequency easily

and efficiently.
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For the second challenge, we have set the value of base frequency. When a cache
miss occurs, we compare the miss frequency of the cache set (which miss occurs) and the
base frequency. If the set’s frequency is higher than the base frequency, we identify this
cache miss a conflict miss. The value of base frequency will affect miss type classification
accuracy. If we set base frequency higher, more cache miss will be classified as capacity
miss, and vice versa. To make this approach accurate, the proper value of base frequency

will be determined by experiment and shows in following session.

Base frequency v.s Cooldown period
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Cooldown period

Figure 3-4: Identification accuracy in different base frequencies and cooldown periods

As mentioned, we set the value of base frequency and cooldown period by experiment.
In another words, we tried a lots of values and picked the pair which have the highest
identification accuracy. The definition of identification accuracy is simple, the percentage

of cache miss which have the same result as the static time identification scheme. We

-27-



show the experiment results below: different color lines represent different base frequency;
and the X-axis represent the cooldown period. As the Figure 3.6 shows, if we set the base
frequency to 2 and set the cooldown period to 864 would get the highest accuracy, which

is about 92.05%.

Because the idea of this approach was formed from Figure 3-3 which is a graph of

frequency spectrums, we called this approach Miss Frequency Spectrum.
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3.4 Run time Approach 2 - Miss Distance

In addition to cache miss frequency, we want to use more characteristics of cache miss
to classify different types of them. In this approach, we though miss distance would be
useful. If every cache miss is non-conflict miss, a cache set will not have a miss again
until all others cache set had encountered one cache miss. Base on this theory, every cache
set has the same set miss distance MD(s, t) = the number of cache sets if there is no
conflict miss occurred. If one conflict miss occurred, the corresponding cache set will
have shorter set miss distance than other sets. Like approach 1, we have to find a way to

get the set miss distance in run time and set a threshold distance.

To get the set miss distance in-run time, we need a FIFO queue called cache miss
history table to store the information of each cache miss. And set the size of time
windows. The size of time windows is equal to the threshold distance and the number of
entries of this table. When a cache miss occurs, we search the history table to find the
lines which have the same set index. We don’t search the entire history table but only
within the time window. I hit, we assume this cache miss is a conflict miss because that
means there was a cache miss occurred in the same cache set within the time window. In

other words, this cache miss has shorter set miss distance.

Cache miss addaddre

| | set index | |

search l >~ Time window

~/

Cache miss history table

Figure 3-5: Structure of Miss Distance approach
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But there is a drawback of above scheme. The operation of searching the history table
must be in time. Implementing the cache miss history table by using Content Addressable

Memory (CAM) is a possible solution. But the cost of CAM will be too high if we have a

large history table.
Miss
Cache miss address Count
Set# Table
tag SetA
p ey Y
SetA
Cache
miss 11
history< 8
table
Bl -1
L SetB
Set B

Figure 3-6: Structure of improved Miss Distance approach

So we have to improve the scheme to lower the hardware cost. Instead of parallel
searching the history table, we can maintain a Miss Count Table to count the number of
miss times in the time window of each cache set. The Figure 3.6 shows the idea. Each
cache set has a Miss Counter. For example, a cache miss occurs in cache set “A”. Then
we push the set index into the cache miss history table and increase corresponding miss
counter by one. At the same time, another set index “B” has been pushed out from the
history table and corresponding miss counter decreased by one. We can know how many

number of certain set in the FIFO queue by check the value of corresponding miss counter
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instead of parallel searching the whole cache miss history table. The Overhead of
Maintaining the Miss Count Table is quite low, only two counter have to be updated per

cache miss. Thisimprovement effectively lower the hardware cost of this approach.

To make this approach accurate, we have to set two parameters proper. The first oneis
the size of cache miss history table, i.e. the time window size. Bigger size means more old
cache misses can be recorded, and longer set miss distance can be measured. Therefore,
bigger size also means more cache misses would be identified as conflict miss by this

approach.
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Figure 3-7: Identification accuracy in different time window sizes and hit numbers

The second parameter is due to the improvement of this approach. Because we use

miss counters instead of parallel searching, the output of this approach is the number of
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miss times in the time window instead of hit or not hit. Therefore, we aso have to

determine the threshold value to identify the coming cache missis a conflict miss or not.

Just like the approach 1, we tested many different combination value of time window
size and miss counter threshold. Figure 3.7 shows part of our results. Different colors of
lines represent different value of miss counter threshold. For example, the yellow line,
“Hit_3”, means setting the threshold to 3 and a conflict miss must have more than three
entries of the coming cache miss in the cache miss history table. The X-axis represents the
value of time window size. You can see the trends of “Hit_3”, “Hit_4”, and “Hit_5” are
not going down at the time window size 800. But other results which not presented here
show that the peak values of those three lines don’t exceed the first one. Therefore, if we
set the threshold to 1 and set time window size to 400 will get the highest accuracy, which

is about 92.86%.
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3.5 Evaluation of Run Time Cache Miss Type I dentification

In this session, we compare our run time cache miss identification approaches to

related works, the Miss Classification Table. We used the trace driven simulator to

simulate our two run-time cache miss type identification approaches and the MCT

approach. Figure 3.8 shows the results. The MCT1 to MCT4 represent the Miss

Classification Table uses one to four old tags, respectively. Y ou can see that not the more

MCT entries the better, MCT3 has the best average accuracy among them. But even

MCT3 isn’t as good as our approaches. Our Miss Distance approach has the best average

accuracy among all the run time cache miss type identification.
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Figure 3-8: Identification accuracy using different run time approaches

If you back to the previous session and check Figure 3.1, you can find that cache

misses form benchmark programs like gzip, perlbmk, twolf, and vpr are almost conflict
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misses. All approaches have no problem to identify them. Cache misses form gcc are not
very easy to identify them in run time, all approaches have lower accuracy in that

benchmark because the program complexity of gcc is higher than others.

Total table size for following cases
_ A 16KB, 32 A 16KB, 32
AETEEE SHE[PEr RS bytes line size, bytes line size,
Direct- Mapped 4-way set-
cache associative cache
1 ~ 4 tags per cache set, . .
MCT ag P 9 ~ 36 Khits 2.5~ 10Kbhits
18~20 hits per tag
MFS 3 bits per cache set 1.5Kbhits 0.3 Kbits
Cache miss history table:
time window size * width
MD of set index 5 Khits 1.74 Kbits
Miss Counter: 3 bits per
cache set

Table 3-4: table size comparison for related works and our approaches

The accuracy differences between our approaches and MCT are not large. But if we
consider the hardware cost, especially the table size needed, our approaches are much
lower. Table 4.x show the table size needed in different cache configuration. IF MCT
simply store the full-length tags, it needs 18~20 bits per tag. They also proposed that
saving only the lower bits of the evicted tag can reduce the table size, but also reduce the
identification accuracy at the same time. Our Miss Fregquency Spectrum approach only
needs a 3-hits counter per cache set. Besides the 3-bits counter per cache set, our Miss
Distance approach needs another table - cache miss history table. And the size of cache
miss history table depends on the cache configuration. But the total table size needed by

Miss Distance approach is still smaller than the MCT1.



Chapter 4 Dynamic Cache Miss Address Prediction
and PV Buffer

In this thesis, we treat cache-based architectural optimizations such as cache prefetching,
and victim cache as cache miss address predictors. When cache encounters a miss, those
optimizations predict memory addresses which would be used in near future. Those cache
optimizations are aimed at particular types of cache misses. Some Optimizations can’t handle
all types of misses well. For example, victim cache serves conflict misses almost exclusively;
next-line prefetching works for compulsory and capacity misses. Correlation prefetching
handles capacity and conflict misses mixed pattern well. Therefore, if we can combine several
cache optimizations to predict miss-addresses, the prediction accuracy will higher than just
using one kind of cache optimizations. All cache optimizations will fetch predicted blocks

into asingle small buffer, called PV buffer (Prefetching and Victim buffer).

But, using more cache optimizations means fetching more cache blocks per cache miss.
That means more bandwidth and energy consumption. By using the cache miss type
identification results as a filter .or a parameter to cache optimizations, we can reduce the

unnecessary traffic of the memory hierarchy and make buffer entries more efficiency.

This Chapter first demonstrates how the run time miss type identification cooperates with
those cache optimizations by using the cache assist buffer. Then we present the usage of miss
type on each miss address prediction. We evaluate the benefits of PV buffer at the end of this

chapter.
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4.1 Cooper ating the Cache misstype identification and miss

address prediction

In next sections, we will model several kinds of cache assist buffer, which will serve at
different times as a prefetch buffer, victim buffer, or PV buffer. In each case, the structure
is very similar. In most cases it will have four to sixteen fully-associative entries. Each
entry has the same size as the cache block size. The purpose of the cache assist buffer isto
fill the latency gap between two levels of cache hierarchy.

set
counter

U pper L a/el set miss
Tdex iype”|
Cache
s ]
PV Buffer } predicted address
L ower Level
Cache

Figure 4-1: Block Diagram of our dynamic cache miss address prediction

We demonstrate how the run time miss type identification cooperates with miss
address prediction by using the PV buffer (Figure 4-1). When a miss occurs in the upper
level cache, the miss address would be sent to both miss type identification unit and miss
address prediction unit. In last chapter, we had introduced our two run time cache miss
type identification approaches. Both approaches use counters to determine the miss type.

After the miss type determined, it will be sent to the miss address prediction unit. The
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prediction unit activates appropriate optimization by the miss type, and sends the
predicted addresses to the PV buffer. Finally, the predicted blocks will be fetched from
lower level cache into the PV buffer. All actions should be done before the next upper

level cache miss.

Before we introduce the applications of cache miss type, we have to define the
prediction accuracy first. That is the probability of requested cache block can be found in
the cache assist buffer on a cache miss. (Although victim cache is not actually predicting
anything, we can consider that victim cache predicts the evicted block which will be
reguested again in near future.) The evaluation environment of this chapter is the same as

Chapter 3, so we don’t have to describe again.
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4.2 Filtering Victim Cachewith cache misstype

As we mentioned, victim cache serves conflict misses almost exclusively, and is most
effective when just a few cache sets are heavily contended for. We can use the cache miss
type identification result as afilter. That means we put the evicted block into the victim buffer
only if amisswas identified as a conflict miss. There are two possible benefits of this filtering:
first, we can remove unnecessary fetching operations when a non-conflict miss occurs; second,

the entries of victim buffer can be saved for conflict miss only, that may increase the hit rate.
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Figure 4-2: Filtering Victim Cache with cache miss type.
In this experiment, we use sixteen entries of victim buffer on L1 Instruction cache.
Normally, a victim buffer hit requires a swap of the two affected blocks. To simplify, we
decide not to swap the two blocks and use the FIFO as replacement policy. Figure 4-2 shows

the experiment results. The Different color bars represent the prediction accuracy of victim
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buffer (from left to right, respectively) using no filter, usng MFS results as the filter, using
MCT2 results as the filter, and using MD results as the filter. (The definition of prediction
accuracy had shown in last section.) In fact, the difference between no filtering and filtering
by the results of all cache miss type identification is quite small. Although there is no
performance gain, there is no performance loss either. The Different color lines represent the
fetch rate of victim buffer using different filtering policy. No_filter policy always put the
evicted block into the victim buffer unless the block is already there. This situation is possible
when we use No_Swap and FIFO replacement policy and cause the low fetch rate in gzip,
parser, perlomk, and vpr. That’s because in those benchmarks there are only a few cache sets
heavily contending for. Use cache miss type to filter victim buffer can lower the fetch rate. In

average, our approaches have the lowest fetch rate with similar prediction accuracy.
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4.3 Cache Prefetching with cache misstype

4.3.1 Sequential Prefetching

The sequential prefetch simply pre-fetch the next cache line on a cache miss. It aways
prefetch one block per cache miss. Therefore, the prefetch buffer only needs one entry if
we using sequential prefetch. While all misses can benefit from next line prefetching, we
expect non-conflict misses to be more amenable to predict via pattern analysis than
conflict misses. On that assumption, we can activate the sequential prefetching only when
encountering a non-conflict miss. But after experiment, we found that sequential
prefetching predicts well both on conflict and non-conflict misses for a direct-mapped L1
Instruction cache (Figure 4-3). That is because the nature of program execution, which is
sequential. Even when two code blocks conflict in a direct-mapped cache, the cache miss
address patterns were still sequential. Therefore, we suggest that aways do sequential

prefetching whatever the type of cache missis on adirect-mapped L1 Instruction cache.
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Figure 4-3: Sequential Prefetching accuracy on a direct-mapped L1 instruction cache

But on a 4-way set-associative L1 data cache (Figure 4-4), we did found the

prediction accuracy of non-conflict misses is much higher than conflict ones. In that
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situation, we can activate the sequential prefetching only when encountering a

non-conflict miss.
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Figure 4-4: Sequential Prefetching accuracy on a 4-way set-associative L1 data cache

4.3.2 Correlation Prefetching

We use a simplified correction prefetching which has a single Miss Address History
Table (MAHT) to record consecutive miss addresses rather than build a Markov graph and
multiple tables. When a cache miss occurs, correction prefetcher index MAHT by miss
address and put the following blocks into prefetching buffer. For example (Figure 4-5),
there were three consecutive cache misses which were recorded into the MAHT. The
addresses are 0100, 0120, and 0140, respectively. When cache block ‘0100* misses again,
we use the miss address index the table, and fetch cache blocks 0120, 0140, ... into the
prefetching buffer. The number of block is depended on prefetch degree d. If d =2, the

prefetcher will prefetch two blocks on a single miss.
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Figure 4-5: Simplified Correlation Prefetching

If memory bandwidth and prefetching buffer are large enough, higher prefetching
degree generally has higher prediction accuracy. That is because the cache miss stream is
filled by mixed misstypes. Our experiment result shows that point of view (Figure 4-6a).
But when the size of prefetching buffer is smaller, setting prefetching degree too high
would not be always good. That is because the buffer is too small to let the blocks stay
long enough to be used. Figure 4-6b shows average prediction accuracy decreased when
we increased prefetching degree from two to three. Therefore, we introduce the Selective
3 prefetching policy: we add an additional field which records the miss type a each
MAHT entry; when predicting, the prefetcher checks miss types of incoming and
following misses; if they are the same type, we set prefetching degree to 2; otherwise, we
set prefetching degree to 3. As results show at Figure 4-6b, our Selective 3 policy avoid
the decreasing accuracy in benchmarks like gap, gcc, perlbmk, and have the highest

overall prediction accuracy.
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Figure 4-6: a. Correlation Prefetching using 16 entries on a 16KB direct-mapped L1
instruction cache. b. Correlation Prefetching using 4 entries on the same cache.
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4.4 Put it all together — PV Buffer

In this session, we combine three cache optimizations above mentioned. All cache

optimizations will fetch predicted blocks into a single small buffer, called PV buffer. We use

two kinds of allocation policies to allocate buffer entries: Separated and Mixed policy.

Prediction Accuracy

Separated policy: each cache optimizations fixed number of buffer entries. For
example: sequential prefetching has one buffer entry. Correction prefetching has four
entries. Victim cache has eleven entries. Each optimization can only replace its own
entries. And it’s possible that different optimizations fetch the same block into their

own entries.

Mixed Policy: All three cache optimizations share 16 buffer entries. When a cache
optimization wanted to fetch a block into PV buffer and found the block was already

there (possibly fetched by other cache optimizations), it won’t fetch again.

100.0% —

95.0%

90.0%

85.0% — — — 5

80.0% | — L L L L L L s

75.0% | — — — — — L L L s

70.0% | — — — — — L L L s

65.0% |1 — — L L L L L L s

60.0% | — — L L L L L L s

55.0% || — — L L L L L L s

50.0% “

crafty gap gce gzip parser perlomk  twolf vpr average
SPECint 2000 ‘D Separated @ Mixed O Separated_Nold 0O Mixed_Nold

Figure 4-7: Prediction Accuracy of PV buffer



Figure 4-7 shows the prediction accuracy of PV buffer. The left two bars are results of
using cache miss type as filtering on victim cache and Selective 3 policy on correlation
prefetching. The right two bars are results without using any filtering and prefetching degree 3
on correlation prefetching. Our separated policy has average 89.2% prediction accuracy with
sixteen buffer entries. No single cache optimizations can reach that accuracy with the same

size of buffer.
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Figure 4-8: Fetching rate of PV buffer

Although separated policy has higher prediction accuracy, mixed policy has similar
prediction accuracy with much lower fetching rate. Figure 4-8 shows the numbers of fetched
blocks per cache miss. Using cache miss type to filtering fetching operations, both policies
can reduce about 0.2 blocks per miss. The reason that mixed policy having lower fetching rate
is because all cache optimizations use the same buffer entries and they won’t fetch a block if

it was fetched by other cache optimizations.
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Chapter 5 Conclusion and Future Works

In this thesis, we explored many issues of cache miss type identification, including
modified Jouppi’s conflict miss identification scheme, which is suitable for static-time miss
type identification, by changing the replacement policy of pseudo cache to the on-the-fly
finite look-ahead replacement policy. This modification avoids the worst case of LRU and

makes the identification results more accurate.

For run-time miss type identification, we proposed two low hardware costs, low
complexity cache miss type identification approaches which categorize cache miss types
according to its frequency and distance. Both approaches achieve more than 93% average

identification accuracy.

We also demonstrated the application of this information by applying it to victim cache
design, sequential prefetching, and correlation prefetching. In each case, the architecture
benefits from applying different policies to different types of misses. In addition, we
combined several cache optimizations to cover 89% of cache misses with a sixteen-entry
buffer, called PV buffer. No single cache optimization can do that with the same number of
buffer entries. This design uses a single structure to optimize buffer performance for the
elimination of both conflict and capacity misses. Although multiple cache optimizations need
fetching multiple cache blocks to PV buffer, by using cache miss type information, we can
reduce unnecessary memory traffic and fetch operations to increase effectiveness of this

cache-assist buffer.
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Thiswork can be extended in multiple ways.

Use miss type information to determine cache replacement policy: different types of
cache misses occur at different frequencies. We log cache miss types to each cache
block, and we can explore a new cache replacement policy which selects replacement

scheme base on the miss types.

For Example: Conflict misses generally have shorter Miss Distance than other types
of cache misses. A cache block which was marked as conflict miss has less chance to
be used again if its cache set has a long miss distance at that moment. Therefore, we

can increase the replacement priority of this cache block.

Reduce miss address history-table size by not saving consecutive miss addresses: both
Miss Distance approach and simplified correlation prefetching use a large miss
address history table. But lots of miss addresses are sequential. We can reduce miss
address history table size by not saving consecutive miss addresses, and just saving

first and the last one of a consecutive address stream for instead.

Explore the way to identify coherence misses. coherence misses are misses that occur
as a result of invalidation to preserve multiprocessor cache coherence. The most
common way to preserve multiprocessor cache coherence is by adding some states at
each cache block and changing states by cache coherence protocols (Figure 5-1). We
can probably identify coherence misses by cache block state checking. But accurately
predicting when and where another processor modifies a data line is a very difficult
problem. It requires a complete understanding of the communication and

synchronization patterns of an application.

But Hill, we can improve cache performance using cache miss type information. If

coherence miss is detected, we can only invalid the sub-block which was written by
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another processor. The sub-block mechanism could decrease the false sharing miss
ratio and miss stall time. Another possible approach is cooperating with cache
replacement policy we mentioned above. A cache block marked as coherence miss has

different priority to be replaced.

CPU read hit

Write miss for this block

Shared
(read only)

CPU read
miss

Place read
miss onbus

Invalid CPU read

»!

CPU write

Write miss for block
Wirité bagek block
Place write miss on bus

),

Exclusive
(read/write)

CPU read hit CPU write miss
CPU write hj
Write-back data

Place write miss on bus

Figure 5-1: an example of cache coherence protocols
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