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快取誤失類型辨認及其在動態預測快取誤失位置之用途 

學生：葉文涵                              指導教授：鍾崇斌  博士 

國立交通大學資訊科學學系(研究所)碩士班 

摘     要 

微處理器的時脈隨著半導體製程與微架構技術的進步快速增加的同時，主記憶體的

時脈卻無法以相同的幅度進展，唯一的辦法是使用快取記憶體來填補兩者間越來越大的

時脈差距。因此快取記憶體的誤失(cache miss)影響系統的效能甚巨。各種快取架構加

速機制雖然能降低快取誤失造成的延遲時間，但通常一種快取架構加速機制只能針對某

種特定的快取誤失類型。在本篇論文，我們改進現有靜態(static time)辨認快取誤失

類型的機制：將虛擬快取的置換策略改為有限預知置換法，使辨認結果更加正確。同時，

我們也利用不同誤失類型具有不同的誤失長度與頻率的特性，提出適合在執行時期(run 

time)辨認快取誤失類型的新方法，其正確性與 static time相比，達到 93%的正確性，

並且較之前相關研究之方法更省硬體資源，也更正確。 

此外，我們也示範如何利用快取誤失類型來改善快取的效率，並以動態預測快取誤

失做為例子：當我們使用一種對於特定的快取誤失類型較為有效的加速機制時，可以針

對此種快取誤失類型再啟動此加速機制；最後，我們整合數種快取加速機制並將它們所

預測的快取區塊放入一個共享的緩衝區，稱之為 PV buffer。在我們的實驗中它能有效

改善 89%的快取誤失造成的延遲。我們並利用執行時期快取誤失類型辨認的結果，來改

善其緩衝區的使用效率，以及降低多種加速機制所造成的記憶體階層流量增加的問題。 
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Its Use in Dynamic Miss Address Prediction 

Student：Wen-Han Yeh             Advisor：Chung-Ping Chung 

 

Department of Computer Science 

National Chiao Tung University 

Abstract 
Semiconductor technology and micro-architecture evolutions are driving micro- 

processors toward higher clock frequencies. Meanwhile, main memories hadn’t significantly 

reduced access time. To prevent large performance losses caused by long main memory 

latencies, micro-processors rely heavily on cache memories. Unfortunately, cache memories 

are not always effective due to the various cache misses. To overcome cache memories’ 

limitations, there are several cache-based architectural optimizations which can reduce the 

miss penalty when cache misses. But some Optimizations cannot handle all types of misses 

well.  

In this thesis, we improve existing static time cache miss type identification scheme by 

using finite look-ahead replacement policy in the pseudo-cache to make identification results 

more accurate. We also propose two low hardware cost, low complexity cache miss type 

identification approaches which achieve more than 93% average identification accuracy. Then, 

we demonstrate the application of run time cache miss type identification by applying it to 

several cache-based architectural optimizations. In each case, the architecture benefits from 

applying different policies to different types of misses. In addition, we combine several cache 

optimizations to cover 89% of cache misses with a sixteen-entry buffer, called PV buffer. By 

using cache miss type information, we can reduce unnecessary memory traffic and fetch 

operations to increase effectiveness of this cache-assist buffer. 
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Chapter 1  Introduction 

Semiconductor technology and micro-architecture evolutions are driving micro- 

processors toward higher clock frequencies and higher integration scale. Meanwhile, the 

technology trend in main memories has been a move toward higher densities rather than 

significantly reduced access time. Combines together, these trends have relative increased 

main memory latencies as measured in processor clock cycles. To prevent large performance 

losses caused by long main memory latencies, micro-processors rely heavily on hierarchies of 

cache memories. 

But cache memories are not always effective, either because they are not large enough to 

hold a program’s working set, or because too many memory blocks in reference stream map 

to a certain set. But we can’t simply increase cache size, nor use more set-associative cache, 

because these would increase the processor clock period, leading to lower overall 

performance. 

To partially overcome cache memories’ limitations, the cache memory controller can 

predict memory addresses likely to be accessed soon and determine that the data of those 

addresses are in the cache memory or not. If not, the cache controller can prefetch those 

blocks which likely to be used soon from lower level of memory hierarchies into the cache. If 

we can let the prediction precise, we can hide the main memory latencies well. However, we 

shouldn’t do the prediction and prefetching every time we access the cache, it would cause 

too much time and energy. We should do the prediction only when a cache miss occurs and 

predict what blocks may cause next cache miss. 

As we know, there are three main kinds of cache misses. The fourth type of cache miss 

called the coherence misses will be discussed in Chapter 5. Each cache miss type has different 
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miss address patterns and has proper way to predict the next cache miss address. If we can 

identify the miss type when a cache miss occurred, and activate the suitable prediction 

mechanisms based on that miss type, the prediction results would be more accurate. 
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1.1 The Three C’s cache misses 

To gain better insights into the causes of misses, [Hennessy et al. 2003] sorts all 

misses into three categories: 

n Compulsory – The very first access to a block cannot be in the cache, so the block 

must be brought into the cache. These are also called cold misses or first-reference 

misses. 

n Capacity – If the cache cannot contain all the blocks needed during execution of a 

program, capacity misses will occur because the cache size is not sufficient to hold 

data between references. 

n Conflict – If the block placement strategy is set associative or direct mapped, conflict 

misses will occur because a block may be evicted and retrieved if too many blocks 

map to its set. 

Because compulsory and capacity misses have very similar reference patterns and 

since we identify miss types for miss address prediction, we group compulsory and 

capacity misses together to the same type of miss for simplicity. That means misses are 

classified to fallowing two types in this thesis: Conflict miss and Non-conflict miss 
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1.2 Identification of Conflict misses 

Although textbook had a definition of conflict misses, we still hard to determined a 

miss is a conflict miss or not by above definition. 

Norman Jouppi, [Jouppi 1995] who proposed a scheme to identify conflict misses 

(which is very similar to the [Hill 1987]’s definition), said conflict misses are misses that 

would not occur if the cache was fully-associative and had LRU replacement. So, a 

particular miss is considered a conflict miss if it would have been a hit in a fully 

associative cache of the same size. 

Figure 1-1 gives a overview that how this scheme works: when a cache miss occurs in 

the real cache but the virtual fully-associative cache hit, that means the real cache misses 

because its own organization can’t hold the requested block but the fully-associative cache 

can. In other words, that is a conflict miss. If a requested block couldn’t be found in both 

caches, which have the same size, means it’s a very first access or the cache size is not 

sufficient to hold data between references. In other words, that is a non-conflict miss. 

 

 

Processor  
Core 

 
L1 

Cache 
Virtual  

FA cache 

 Cache access 

miss hit 

Conflict miss Non-conflict miss 

 
L1 
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Virtual  
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Cache access 

miss miss 

Processor  
Core 

 

Figure 1-1: Norman Jouppi’s scheme to identify conflict misses. 
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However, Jouppi’s conflict miss identification method shouldn't be done in run-time. It 

needs an extra fully-associative cache working together with original cache, causes longer 

cache access time and more energy consumption. The cost of run-time method needs to be 

lower, and the timing is critical.  

Besides, Jouppi used LRU because it is the best-known fully-associative cache 

replacement policy. But sometimes, a fully-associative with LRU replacement cache may 

have its own problems. For example: Assume the real cache is a four blocks, 

direct-mapped cache, and use a four-entries, fully-associative, LRU replacement cache to 

identify conflict misses. The accessed memory addresses are sequential, five addresses per 

iteration. Figure 1-2 shows the detail. 

Timestamp 
Accessed 

memory address 
Fully-associative  

LRU Cache 
Direct-mapped Cache 

1 1 1    1    

2 2 1 2   1 2   

3 3 1 2 3  1 2 3  

4 4 1 2 3 4 1 2 3 4 

5 5 5 2 3 4 5 2 3 4 

6 1 5 1 3 4 1 2 3 4 

7 2 5 1 2 4 1 2 3 4 

8 3 5 1 2 3 1 2 3 4 

9 4 4 1 2 3 1 2 3 4 

10 5 4 5 2 3 5 2 3 4 

11 1 4 5 1 3 1 2 3 4 

12 2 4 5 1 2 1 2 3 4 

13 3 3 5 1 2 1 2 3 4 

14 4 3 4 1 2 1 2 3 4 

15 5 3 4 5 2 5 2 3 4 

16 1 

 

3 4 5 1 

 

1 2 3 4 

 Figure 1-2: An example of the worst case of LRU replacement policy. 
A red block means that access was a miss in that cache. A green block 
means that access was a hit in that cache. 
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The fully-associative cache misses all the time in this example, because the LRU 

always replaces the block which will be used in next access. This example is the worst 

case of LRU replacement policy. In that situation, it can’t classify miss types accurately 

because it will consider all cache misses are capacity misses.  
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1.3 Research Motivation 

Jouppi’s conflict miss identification method shouldn't be done in run-time. The cost of 

run-time method needs to be lower, and the timing is critical. We need to find a more 

practical and more efficiency scheme to identify conflict misses. 

Although Jouppi’s scheme is too expensive in run time, it should work fine in 

simulation time. The worst case mentioned in last section is due to the LRU replacement 

policy. So, using a finite look-ahead replacement rather than LRU in the virtual 

fully-associative cache can make the identification more accurate in static time.  

Once we have the static miss classification result, we can do some analysis to find the 

characteristics of each miss type. If each cache miss type has a unique characteristic, we 

can simply compare the characteristic of misses and classify them. In other words, we 

want to develop hardware approaches to capture those characteristics to classify misses in 

run-time. 
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1.4 Research Goal 

There are three main goals in this research: 

1. To classify cache misses accurately at static time with low overhead. On one hand, the 

static time classification results would be used as reference answers compared to the 

run-time scheme’s results. Therefore, the static time results should be the more 

accurate the better. On the other hand, benchmark problems we used in this thesis 

would occur more than billions of cache misses. An efficient implementation in 

simulation time is necessary to classify that huge amount of misses. 

2. To develop some run-time practicable miss type classification schemes to approximate 

static-time cache miss results using low computing and space complexity. 

3. To identify possible applications of run-time miss type identification. There are not 

many previous works on the run-time miss type identification. Therefore, the 

exploration of possible applications is an essential work. 

For example, the run-time cache miss type can be used as a parameter to decide which 

cache block should be replaced.  

Another possible application is using miss type to enhance the performance or 

efficiency of memory hierarchies. Cache-based architectural optimizations are aimed at 

particular types of cache misses. Some Optimizations can’t handle all types of misses well. 

If we can identify the cache miss type at run time and activate the proper cache-based 

architectural optimizations which handle this miss type well. In this research, we chose 

three different kinds of cache-based architectural optimizations and tried to cooperate with 

our cache miss type classifier for the example.  
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1.5 Organization of this thesis 

The remaining chapters of this thesis are organized as follows. In the next chapter, we 

provide the related work of runtime conflict misses identification and necessary background 

for cache miss address prediction. In Chapter 3, we present the ideas, designs and evaluations 

of static time and run time cache miss type identification. We demonstrate how the run time 

miss type identification cooperates with several cache optimizations by using cache assist 

buffers in Chapter 4. Finally, in Chapter 5, we summarize our major contributions and give an 

outline of future research on this topic. 
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Chapter 2 Backgrounds and Related Works 

In this chapter, we present previous works of run-time cache miss type classification. In 

fact, there are not many researches about run-time cache miss type classification. In Nov 2001, 

Collins and Tullsen introduced a runtime identification of cache conflict misses. Their ideal 

and motivation are very similar to us. 

We also provide the necessary background for cache miss address prediction in this 

chapter. Because we want to use run-time miss type classification to enhance the cache miss 

address prediction, we have to introduce some predicting scheme first. 
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2.1 Related Works - Runtime Identification of Cache Conflict 

Misses: The Adaptive Miss Buffer 

This paper presents a technique to classify misses as either conflict misses or capacity 

misses at runtime. They use a Miss Classification Table (MCT) which may separate from the 

cache to store the extra tags. 

2.1.1 Using MCT to classify misses 

On the subsequent miss to this cache set, the tag of the newly accessed line is 

compared the tags of the most recently evicted lines from that set. If they are identical, it 

identifies this miss as a conflict miss. 

 

 

 

2.1.2 Multiple tags per entry 

Storing one old tag per MCT entry, MCT is able to identify short term conflict 

behavior by identifying cache misses which would have been hits if the cache had an 

Processor  
Core 

 
L1 

Cache 
MCT 

 

 Cache access 

miss hit 

Conflict miss Non-conflict miss 

Processor  
Core 

 
L1 

Cache 
MCT 

 Cache access 

miss miss 

Figure 2-1: MCT stores old tags which were evicted form L1 cache recently.  
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additional level of associativity. This simple scheme, however, fails to identify complex 

conflict patterns, such as those involving more than 2 cache lines. By saving multiple old 

tags per MCT entry they can detect misses which would have been hits in an arbitrarily 

associative cache, enabling MCT to identify these more complex patterns. For example, 

with a direct-mapped cache, if MCT stores 2 old tags per MCT entry, misses which would 

have been hits in a 3-way associative cache will be identified 

2.1.3 Applications of conflict miss filtering 

This knowledge can be used in various ways to improve the performance of the cache 

hierarchy. For example, it could be used to restrict the misses that can write into a victim 

buffer. This potentially protects two critical resources, the entries themselves, hopefully 

leaving high probability entries in the buffer longer, and the buffer access ports, increasing 

its availability. 

They demonstrate the utility of this information by applying it to victim cache design, 

cache pre-fetching, cache exclusion mechanisms, and pseudo-associative caches. In each 

case, the architecture benefits from applying different policies to different types of misses. 

It does so in some cases by ignoring accesses unlikely to benefit from the particular 

architecture. Three of these techniques can be combined into a single architecture, which 

we call the adaptive miss buffer. The adaptive miss buffer uses the victim/prefetch/ 

exclusion buffer in a different way depending on the classification of each miss. This uses 

a single structure to optimize buffer performance for the elimination of both conflict and 

capacity misses. This greatly increases the effectiveness of a cache-assist buffer, providing 

twice the performance gain of any single optimization using the same size buffer. 
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2.2 Backgrounds - Cache Prefetch Methods 

Hardware cache prefetching predicts future memory access patterns based on current or 

past access patterns, and attempts to move data likely to be accessed in the near future closer 

to the processor.  

Hardware prefetchers range from very simple next-line prefetchers to more sophisticated 

stride or even repeated-pattern based predictors. Those more advanced prefetch methods use 

tables to record history information related to data accesses. We present several common 

prefetch methods in this section. And in chapter 4, we choose both a simple sequential 

prefetcher and a modified correlation prefetcher to cooperate with our cache miss type 

classifier. 

2.2.1 Sequential prefetching 

The simplest prefetch methods are sequential prefetching. They access cache lines that 

immediately follow the current cache line. The sequential prefetch is also called next-line 

prefetch. Early sequential methods always prefetch after each cache miss, while more 

recent sequential methods wait to issue prefetching until a sequential access pattern is 

detected. Once sequential prefetching is issued and turns out to be correct, the degree of 

the prefetching is increased until the prefetch can completely hide the latency of a miss to 

main memory. Prefetch degree is the maximum number of cache lines prefetched in 

response to a single prefetch request. For longer memory latencies, a higher degree is 

required in order for prefetched data to be returned in time to avoid a cache miss. 

2.2.2 Table-Based Prefetching 

There are two main kinds of table-based prefetching, Stride Prefetching and 

Correction Prefetching. Stride Prefetching uses a table (Figure 2-2) to store stride-related 
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local history information. The program counter (PC) of a load instruction indexes the table. 

Each table entry holds the load’s most recent stride (the difference between the two most 

recently preceding load addresses), last address (to allow computation of the next local 

stride), and state information describing the stability of the load’s recent stride behavior. 

When a prefetch is triggered, addresses a+s, a+2s, …, a+ds are prefetched – where a is 

the load’s current target address, s is the detected stride and d is the prefetch degree, an 

implementation dependent prefetch look-ahead distance; more aggressive prefetch 

implementations will use a higher value for d. Originally Stride Prefetching used a 

look-ahead PC (LA-PC) to prefetch ahead. 

 

 

Markov Prefetching is an example of a correlation prefetching method. Correlation 

prefetching uses a history table to record consecutive address pairs. When a cache miss 

occurs, the miss address indexes the correlation table, Figure 2-3. Each entry in the 

Markov correlation table holds a list of addresses that have immediately followed the 

current miss address in the past. When a table entry is accessed, the members of its 

address list are prefetched, with the most recent miss address first. The left side of Figure 

2-3 illustrates the state of the correlation table after processing the miss address stream 

shown at the top of the figure Markov prefetching models the miss address stream as a 

Markov graph – informally, a probabilistic state machine. Each node in the Markov graph 

Figure 2-2: The structure of Stride Prefetching table 



 

 

-15-

is an address and the arcs between nodes are labeled with the probabilities that the arc’s 

source node address will be immediately followed by the target node address. Each entry 

in the correlation table represents a node in an associated Markov graph, and its list of 

memory addresses represents arcs with the highest probabilities. Hence, the table 

maintains only a very crude approximation to the actual Markov probabilities. The right 

side of Figure 2-3 is the Markov transition graph that corresponds to the example miss 

address stream.  

  

 

 

 

 

 

2.2.3 Cache Prefetching using a Global History Buffer 

In general, prefetch tables store prefetch history inefficiently. First, table data can 

become stale, and consequently reduce prefetch accuracy (the percent of prefetches that 

are actually used by the program before being evicted). Second, tables suffer from 

conflicts that occur when multiple access keys map to the same table entry. The most 

common solution for reducing table conflicts is to increase the number of table entries. 

However, this approach increases the table’s memory requirements, and increases the 

percentage of stale data held in the table. Third, tables have a fixed (and usually a small) 

amount of history per entry. Adding more prefetch history per entry creates new 

opportunities for effective prefetching, but the additional prefetch history also increases 

the table’s memory requirements and its percentage of stale data, which together can 

negate the advantages. 

Figure 2-3: Markov Prefetching 
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To provide more efficient prefetchers we propose an alternative prefetching structure 

that decouples table key matching from the storage of prefetch-related history information. 

The overall prefetching structure has two levels (Figure 2-4). 

• An Index Table (IT) that is accessed with a key as in conventional prefetch tables. The 

key may be a load instruction’s PC, a cache miss address, or some combination. The 

entries in the Index Table contain pointers into the Global History Buffer. 

• The Global History Buffer (GHB) is an n-entry FIFO table (implemented as a circular 

buffer) that holds the n most recent L2 miss addresses. Each GHB entry stores a global 

miss address and a link pointer. The link pointers are used to chain the GHB entries 

into address lists. Each address list is the time-ordered sequence of addresses that have 

the same Index Table key. 

Depending on the key that is used for indexing the Index Table, any of a number of 

history-based prefetch methods can be implemented. In the following subsections we 

illustrate how the GHB can be used to implement correlation and stride prefetching. In 

addition, we illustrate more general forms of each (a total of eight prefetching methods). 

 
Figure 2-4: GHB Global / Address Correlation 
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2.3 Backgrounds – Victim cache 

The victim cache is a small buffer that holds cache lines recently evicted from the cache. 

The victim cache is probed when the main cache misses, and when the data is found it can be 

returned much more quickly than a full cache miss. It targets conflict misses, and is most 

effective when just a few cache sets are heavily contended for. 

Normally, a victim cache hit requires a swap of the two affected lines, the newly evicted 

line now becoming the first entry in the victim buffer (thus the last to be evicted from the 

victim cache). The victim cache can be organized as a FIFO from which entries can be taken 

out of the middle. This provides LRU eviction because lines are consumed out of the victim 

cache as soon as they are accessed.
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Chapter 3 How to Better Identify Cache Miss Types 

In this chapter, we present the static time and run time designs of cache miss type 

identification. Because we also show the evaluations after each design, we have to introduce 

the methodology of our experiments first.  

After introducing of our ideas and designs, we compare the accuracy of our run-time 

approaches with the related works, The MCT. We also compare the hardware cost of each 

approach. 

3.1 Simulation methodology 

The Simulation methodology includes the experimental flow, the benchmark programs 

and simulators we used in this thesis.  

3.1.1 Experimental flow 

In this section, we present our simulation methodology. The whole experimental can be 

divided into follow parts: 1. a benchmarks set. 2. An instruction driven simulator to 

execute the benchmark programs and produce some trace files. 3 a trace driven simulator 

to simulate the hardware operation of run time cache miss type identification. Figure 3.X 

shows the experimental flow of this thesis and following sessions will explain the details 

of each part. 
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Figure 3-1: Experimental flow 
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3.1.2 Experimental benchmarks 

We chose the SPEC INT 2000 to be our benchmark set. The benchmark programs 

were complied as Alpha binaries to fit the simulator. But some benchmarks in the sets 

were not used in the experiment because our simulator lacked for support of necessary 

system calls. The Table 3.1 shows the details and descriptions of the benchmark we used. 

Benchmark 
name 

Description 
Number 
of Instr. 

bzip2 
bzip2 is based on Julian Seward's bzip2 version 0.1. All compression and 
decompression happens entirely in memory. This is to help isolate the work done to 
only the CPU and memory subsystem. 

8.8 
billion 

crafty 

crafty is a high-performance Computer Chess program that is designed around a 64 bit 
word.  It runs on 32 bit machines using the "long long" data type.  It is primarily an 
integer code, with a significant number of logical operations such as and, or, exclusive 
or and shift.  

4.2 
billion 

gap gap implements a language and library designed mostly for computing in groups (GAP 
is an acronym for Groups, Algorithms and Programming). 

1.1 
billion 

gcc gcc is based on gcc version 2.7.2.2. The benchmark runs as a compiler with many of its 
optimization flags enabled. 

2.0 
billion 

gzip 

gzip is a popular data compression program written by Jean-Loup Gailly for the GNU 
project. gzip uses Lempel-Ziv coding (LZ77) as its compression algorithm. SPEC's 
version of gzip performs no file I/O other than reading the input. All compression and 
decompression happens entirely in memory.  

3.3 
billion 

parser The Link Grammer Parser is a syntactic parser of English, based on link grammer, an 
original theory of English syntax. 

4.2 
billion 

perlbmk perlbmk is a cut-down version of Perl v5.005_03, the popular scripting language. 
SPEC's version of Perl has had most of OS-specific features removed. 

2.0 
billion 

twolf 

The TimberWolfSC placement and global routing package is used in the process of 
creating the lithography artwork needed for the production of microchips. The 
placement problem is a permutation. Therefore, a simple or brute force exploration of 
the state space would take an execution time proportional to the factorial of the input 
size. 

0.9 
billion 

vpr 

VPR is a placement and routing program; it automatically implements a technology- 
mapped circuit in a Field- Programmable Gate Array (FPGA) chip. VPR is an example 
of an integrated circuit computer-aided design program, and algorithmically it belongs 
to the combinatorial optimization class of programs. 

1.5 
billion 

Table 3-1: The Benchmark programs we used form SPEC INT 2000 
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3.1.3 The instruction driven simulator 

The next part is an instruction driven simulator. We modified the Simplescaler 3.0 

simulator to log the information of each cache miss. The Table 3.2 and 3.3 shows the 

CPU and memory hierarchies configuration of the simulator.  

Simulation Parameter Value 

Instruction fetch queue size 4 

Branch predictor type bimod 

Instruction fetch width 4 (instr./cycle) 

Instruction decode width 4 (instr./cycle) 

Instruction issue width 4 (instr./cycle) 

Instruction commit width 4 (instr./cycle) 

RUU size 16 

LSQ size 8 

Table 3-2: The processor configuration of Simplescaler 3.0 in our experiment 

Cache name 
Cache 
Size 

Number 
of set 

Number 
of way 

Block 
size 

Replacement 
policy 

Instruction L1 16K 512 1 32Bytes LRU 

Data L1 16K 128 4 32Bytes LRU 

Unified L2 2M 2048 4 32Bytes LRU 

Table 3-3: The memory configuration of Simplescaler 3.0 in our experiment 

During the simulation, we saved the information of each cache miss including cache 

name, timestamp, miss address, memory operation (read/write), and the static time cache 

miss type identification result. In this thesis, we used the cache miss from L1 instruction 

cache for example. Although our experiment doesn’t include other caches like L1 data 

cache or L2 cache, we believe that our designs can be used on them by change some 
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parameter. The producing of static time cache miss type identification result will be 

described in next session. All information was saved into trace files. 

3.1.4. Trace driven simulator 

The final part of simulation is a trace driven simulator. It handles every cache miss from trace 

files one after one. The purpose of the second simulator is to simulate the hardware behaviors of 

run-time cache miss type identification approach which will show be introduced in Chapter 3.3. In 

the end, we have the run-time cache miss type identification results and we can compare them to 

the static-time results. Because we assume the static-time results are 100% correct, we can get the 

run time identification accuracy after comparing. 

Our trace driven simulator also simulates the behaviors of cache prefetching and victim cache. 

Designs and evaluations of the cache miss address prediction will be introduced in Chapter 4. 
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3.2 Using FLA Replacement in Pseudo Cache to Identify Cache 

Miss Type in Static Time  

As mentioned in Chapter 1.2, conflict misses would not occur if the cache is 

fully-associative. Therefore, to implement Jouppi’s conflict miss identification scheme, we 

added a pseudo fully- associative cache which has the same size as original cache into the 

Simplescaler simulator. This pseudo cache only needs the tag part and work together with the 

original cache.  

To avoid the worst case of the LRU replacement policy, we use a finite look-ahead (FLA) 

replacement in this pseudo fully-associative cache. FLA checks future memory access 

information and decides which block should be evicted to minimize cache miss rate. 

Checking the future access information would take a lot of time and space if we simply do the 

linear search in program traces. Instead, we want to use the FLA on the fly. When the pseudo 

cache encounters a miss, it won’t decide which block will be evicted immediately. We delay 

the decision until we know which block will be used in the latest future. In fact, all memory 

accesses are delayed in the pseudo cache. That means we actually maintain a psuudo cache in 

the status of n-cycle ago (n is the delay cycle).  

The algorithm below is the FLA replacement policy we used in this thesis: 

Save the address of memory access of cycle i 

If the memory access of cycle (i - n) missed in the pseudo cache then 

Evicted block set = { For All blocks weren’t used in cycle (i – n) to cycle i } 

If Evicted block set is not empty then 

Evicted block = the least recently used block in Evicted block set 

Else 
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Evicted block = the least recently used block in the pseudo cache 

 

Figure 3.1 shows the results of static time identification, we experimented both two 

replacement policies. After we ran the SPEC INT 2000 benchmarks, we compared three kind 

of misses occurred in the benchmark programs. The cream-color parts mean the misses were 

not occurred in both FA-FLA (fully-associative using Finite Look-Ahead replacement policy) 

and FA-LRU (fully-associative using Least Recently Used replacement policy) caches but 

only in real cache (in this experiment is a direct-mapped cache). The purple parts mean those 

cache accesses hit in FA-FLA cache but missed in both FA-LRU and real caches. The blue 

ones mean those cache accesses were missed in all three cache configurations.  

 

  

Figure 3-2: Static time identification results 

To explain further, the cream-color part of misses will be identified as conflict misses if 

we use LRU as the replacement policy of pseudo cache. The cream-color part combines with 

the purple parts of misses will be identified as conflict misses if we change the replacement 
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policy to FLA. After changing replacement policy of pseudo cache, almost 5% more of 

misses were identified as conflict misses. Because finite look-ahead replacement policy 

doesn’t have the problem which we mentioned at section 1.2, we can make our identification 

results more accurate with little overhead. 

We had run lots of programs of SPEC INT 2000 benchmarks on the modified 

Simplescaler simulator. It logged essential information of every miss occurred in instruction 

cache. The information include time stamp, miss address, operation, and miss type we 

identified by FA-FLA pseudo cache. All those information were saved into one trace files 

which will be used in next section. 
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3.3 Run time Approach 1 – Miss Frequency Spectrum 

Before we descript our first approach, we have to define some symbols and terms 

using in following sections. 

1. We use M(s, t) as the symbol for a cache miss occurred in cache set s at time t. The 

time t is not corresponding to the real time, but the index of all misses. 

2. Set miss frequency, notated as MF(s, t, N), is the number of misses occurred in cache 

set s during time period from t-N+1 to t. Finally, N is a constant. The value of N will 

discuss later. For example: MF (50, 10000, 1000) = 10 means there are 10 misses 

occurred in the cache set 50 during the time period from the 9001th miss to the 10000th 

miss of the whole cache. 

3. Set miss distance, notated as MD(s, t). When a miss occurred in cache set s at time t, 

and Set miss distance is the number of misses occurred in the whole cache during time 

period from the last one miss of cache set s to this miss. To speak more precisely, if 

M(s, t0) is the last one miss occurred in cache set s and M(s, t1) is the new one, MD(s, 

t1) = t1 – t0 – 1 

In last section we had logged cache miss statistics into trace files. Hence, we can do 

some analysis to find the characteristics of each miss type.  

According to the statistics, we had found the cache misses which were classified as 

conflict misses usually have higher set miss frequency than the misses which were 

classified as capacity misses. Figure 3-3 shows two frequency spectrums. The blue one is 

measured by the cache misses which occurred in benchmark programs and were classified 

as conflict misses. The purple one is similar but classified as capacity misses. 
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 Figure 3-3: Cache miss frequency spectrums 

It is obvious that most of conflict misses have higher cache set miss frequency. That is 

means cache misses occur in a cache sets which have high miss frequency usually are 

conflict misses, and vice versa. We may use this characteristic to classify cache miss types 

in run time. But there are still two challenges to overcome. First, how we know the cache 

set miss frequency in run time. Second, what number of cache set miss frequency is 

“high” enough to make a cache miss become a conflict miss. 

For the first challenge, we add a 3-bits counter to count the set miss frequency for 

each set. The counter increases when its cache set miss. When the counter reaching the 

maximum value that it can represent, it will maintain the saturated value. All counters’ 

value cut down to half every N misses by shifting right the counters 1 bit. The number N 

is the same as last page one and we call this N miss period Cool-down period. By 

combining above operation, we can get the approximate cache set miss frequency easily 

and efficiently. 
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For the second challenge, we have set the value of base frequency. When a cache 

miss occurs, we compare the miss frequency of the cache set (which miss occurs) and the 

base frequency. If the set’s frequency is higher than the base frequency, we identify this 

cache miss a conflict miss. The value of base frequency will affect miss type classification 

accuracy. If we set base frequency higher, more cache miss will be classified as capacity 

miss, and vice versa. To make this approach accurate, the proper value of base frequency 

will be determined by experiment and shows in following session. 
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 Figure 3-4: Identification accuracy in different base frequencies and cooldown periods 

As mentioned, we set the value of base frequency and cooldown period by experiment. 

In another words, we tried a lots of values and picked the pair which have the highest 

identification accuracy. The definition of identification accuracy is simple, the percentage 

of cache miss which have the same result as the static time identification scheme. We 
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show the experiment results below: different color lines represent different base frequency; 

and the X-axis represent the cooldown period. As the Figure 3.6 shows, if we set the base 

frequency to 2 and set the cooldown period to 864 would get the highest accuracy, which 

is about 92.05%.  

Because the idea of this approach was formed from Figure 3-3 which is a graph of 

frequency spectrums, we called this approach Miss Frequency Spectrum. 

 



 

 

-29-

3.4 Run time Approach 2 – Miss Distance 

In addition to cache miss frequency, we want to use more characteristics of cache miss 

to classify different types of them. In this approach, we though miss distance would be 

useful. If every cache miss is non-conflict miss, a cache set will not have a miss again 

until all others cache set had encountered one cache miss. Base on this theory, every cache 

set has the same set miss distance MD(s, t) = the number of cache sets if there is no 

conflict miss occurred. If one conflict miss occurred, the corresponding cache set will 

have shorter set miss distance than other sets. Like approach 1, we have to find a way to 

get the set miss distance in run time and set a threshold distance. 

To get the set miss distance in run time, we need a FIFO queue called cache miss 

history table to store the information of each cache miss. And set the size of time 

windows. The size of time windows is equal to the threshold distance and the number of 

entries of this table. When a cache miss occurs, we search the history table to find the 

lines which have the same set index. We don’t search the entire history table but only 

within the time window. If hit, we assume this cache miss is a conflict miss because that 

means there was a cache miss occurred in the same cache set within the time window. In 

other words, this cache miss has shorter set miss distance. 

 

Cache miss addaddre 
set index 

    …. 
 

Time window search 

Cache miss history table 

Figure 3-5: Structure of Miss Distance approach 
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But there is a drawback of above scheme. The operation of searching the history table 

must be in time. Implementing the cache miss history table by using Content Addressable 

Memory (CAM) is a possible solution. But the cost of CAM will be too high if we have a 

large history table. 

  

Figure 3-6: Structure of improved Miss Distance approach 

So we have to improve the scheme to lower the hardware cost. Instead of parallel 

searching the history table, we can maintain a Miss Count Table to count the number of 

miss times in the time window of each cache set. The Figure 3.6 shows the idea. Each 

cache set has a Miss Counter. For example, a cache miss occurs in cache set “A”. Then 

we push the set index into the cache miss history table and increase corresponding miss 

counter by one. At the same time, another set index “B” has been pushed out from the 

history table and corresponding miss counter decreased by one. We can know how many 

number of certain set in the FIFO queue by check the value of corresponding miss counter 
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instead of parallel searching the whole cache miss history table. The Overhead of 

Maintaining the Miss Count Table is quite low, only two counter have to be updated per 

cache miss. This improvement effectively lower the hardware cost of this approach. 

To make this approach accurate, we have to set two parameters proper. The first one is 

the size of cache miss history table, i.e. the time window size. Bigger size means more old 

cache misses can be recorded, and longer set miss distance can be measured. Therefore, 

bigger size also means more cache misses would be identified as conflict miss by this 

approach. 
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 Figure 3-7: Identification accuracy in different time window sizes and hit numbers  

 

The second parameter is due to the improvement of this approach. Because we use 

miss counters instead of parallel searching, the output of this approach is the number of 
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miss times in the time window instead of hit or not hit. Therefore, we also have to 

determine the threshold value to identify the coming cache miss is a conflict miss or not.  

Just like the approach 1, we tested many different combination value of time window 

size and miss counter threshold. Figure 3.7 shows part of our results. Different colors of 

lines represent different value of miss counter threshold. For example, the yellow line, 

“Hit_3”, means setting the threshold to 3 and a conflict miss must have more than three 

entries of the coming cache miss in the cache miss history table. The X-axis represents the 

value of time window size. You can see the trends of “Hit_3”, “Hit_4”, and “Hit_5” are 

not going down at the time window size 800. But other results which not presented here 

show that the peak values of those three lines don’t exceed the first one. Therefore, if we 

set the threshold to 1 and set time window size to 400 will get the highest accuracy, which 

is about 92.86%.  
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3.5 Evaluation of Run Time Cache Miss Type Identification 

In this session, we compare our run time cache miss identification approaches to 

related works, the Miss Classification Table. We used the trace driven simulator to 

simulate our two run-time cache miss type identification approaches and the MCT 

approach. Figure 3.8 shows the results. The MCT1 to MCT4 represent the Miss 

Classification Table uses one to four old tags, respectively. You can see that not the more 

MCT entries the better, MCT3 has the best average accuracy among them. But even 

MCT3 isn’t as good as our approaches. Our Miss Distance approach has the best average 

accuracy among all the run time cache miss type identification.  
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Figure 3-8: Identification accuracy using different run time approaches 

If you back to the previous session and check Figure 3.1, you can find that cache 

misses form benchmark programs like gzip, perlbmk, twolf, and vpr are almost conflict 
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misses. All approaches have no problem to identify them. Cache misses form gcc are not 

very easy to identify them in run time, all approaches have lower accuracy in that 

benchmark because the program complexity of gcc is higher than others. 

Table 3-4: table size comparison for related works and our approaches 

The accuracy differences between our approaches and MCT are not large. But if we 

consider the hardware cost, especially the table size needed, our approaches are much 

lower.  Table 4.x show the table size needed in different cache configuration. IF MCT 

simply store the full-length tags, it needs 18~20 bits per tag. They also proposed that 

saving only the lower bits of the evicted tag can reduce the table size, but also reduce the 

identification accuracy at the same time. Our Miss Frequency Spectrum approach only 

needs a 3-bits counter per cache set. Besides the 3-bits counter per cache set, our Miss 

Distance approach needs another table - cache miss history table. And the size of cache 

miss history table depends on the cache configuration. But the total table size needed by 

Miss Distance approach is still smaller than the MCT1. 

Total table size for following cases 

Approach Size per cache set 
A 16KB, 32 
bytes line size, 
Direct- Mapped 
cache 

A 16KB, 32 
bytes line size, 
4-way set- 
associative cache 

MCT 
1 ~ 4 tags per cache set, 
18~20 bits per tag 

9 ~ 36 Kbits 2.5 ~ 10 Kbits 

MFS 3 bits per cache set 1.5 Kbits 0.3 Kbits 

MD 

Cache miss history table: 
time window size * width 
of set index 
Miss Counter: 3 bits per 
cache set 

5 Kbits 1.74 Kbits 
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Chapter 4 Dynamic Cache Miss Address Prediction    

and PV Buffer 

In this thesis, we treat cache-based architectural optimizations such as cache prefetching, 

and victim cache as cache miss address predictors. When cache encounters a miss, those 

optimizations predict memory addresses which would be used in near future. Those cache 

optimizations are aimed at particular types of cache misses. Some Optimizations can’t handle 

all types of misses well. For example, victim cache serves conflict misses almost exclusively; 

next-line prefetching works for compulsory and capacity misses. Correlation prefetching 

handles capacity and conflict misses mixed pattern well. Therefore, if we can combine several 

cache optimizations to predict miss addresses, the prediction accuracy will higher than just 

using one kind of cache optimizations. All cache optimizations will fetch predicted blocks 

into a single small buffer, called PV buffer (Prefetching and Victim buffer). 

But, using more cache optimizations means fetching more cache blocks per cache miss. 

That means more bandwidth and energy consumption. By using the cache miss type 

identification results as a filter or a parameter to cache optimizations, we can reduce the 

unnecessary traffic of the memory hierarchy and make buffer entries more efficiency. 

This Chapter first demonstrates how the run time miss type identification cooperates with 

those cache optimizations by using the cache assist buffer. Then we present the usage of miss 

type on each miss address prediction. We evaluate the benefits of PV buffer at the end of this 

chapter. 
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4.1 Cooperating the Cache miss type identification and miss 

address prediction 

In next sections, we will model several kinds of cache assist buffer, which will serve at 

different times as a prefetch buffer, victim buffer, or PV buffer. In each case, the structure 

is very similar. In most cases it will have four to sixteen fully-associative entries. Each 

entry has the same size as the cache block size. The purpose of the cache assist buffer is to 

fill the latency gap between two levels of cache hierarchy. 

 

 

 

 

 

 

 

Figure 4-1: Block Diagram of our dynamic cache miss address prediction 

We demonstrate how the run time miss type identification cooperates with miss 

address prediction by using the PV buffer (Figure 4-1). When a miss occurs in the upper 

level cache, the miss address would be sent to both miss type identification unit and miss 

address prediction unit. In last chapter, we had introduced our two run time cache miss 

type identification approaches. Both approaches use counters to determine the miss type. 

After the miss type determined, it will be sent to the miss address prediction unit. The 
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prediction unit activates appropriate optimization by the miss type, and sends the 

predicted addresses to the PV buffer. Finally, the predicted blocks will be fetched from 

lower level cache into the PV buffer. All actions should be done before the next upper 

level cache miss. 

Before we introduce the applications of cache miss type, we have to define the 

prediction accuracy first. That is the probability of requested cache block can be found in 

the cache assist buffer on a cache miss. (Although victim cache is not actually predicting 

anything, we can consider that victim cache predicts the evicted block which will be 

requested again in near future.) The evaluation environment of this chapter is the same as 

Chapter 3, so we don’t have to describe again. 
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4.2 Filtering Victim Cache with cache miss type 

As we mentioned, victim cache serves conflict misses almost exclusively, and is most 

effective when just a few cache sets are heavily contended for. We can use the cache miss 

type identification result as a filter. That means we put the evicted block into the victim buffer 

only if a miss was identified as a conflict miss. There are two possible benefits of this filtering: 

first, we can remove unnecessary fetching operations when a non-conflict miss occurs; second, 

the entries of victim buffer can be saved for conflict miss only, that may increase the hit rate. 
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Figure 4-2: Filtering Victim Cache with cache miss type. 

In this experiment, we use sixteen entries of victim buffer on L1 Instruction cache. 

Normally, a victim buffer hit requires a swap of the two affected blocks. To simplify, we 

decide not to swap the two blocks and use the FIFO as replacement policy. Figure 4-2 shows 

the experiment results. The Different color bars represent the prediction accuracy of victim 
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buffer (from left to right, respectively) using no filter, using MFS results as the filter, using 

MCT2 results as the filter, and using MD results as the filter. (The definition of prediction 

accuracy had shown in last section.) In fact, the difference between no filtering and filtering 

by the results of all cache miss type identification is quite small. Although there is no 

performance gain, there is no performance loss either. The Different color lines represent the 

fetch rate of victim buffer using different filtering policy. No_filter policy always put the 

evicted block into the victim buffer unless the block is already there. This situation is possible 

when we use No_Swap and FIFO replacement policy and cause the low fetch rate in gzip, 

parser, perlbmk, and vpr. That’s because in those benchmarks there are only a few cache sets 

heavily contending for. Use cache miss type to filter victim buffer can lower the fetch rate. In 

average, our approaches have the lowest fetch rate with similar prediction accuracy. 
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4.3 Cache Prefetching with cache miss type 

4.3.1 Sequential Prefetching 

The sequential prefetch simply pre-fetch the next cache line on a cache miss. It always 

prefetch one block per cache miss. Therefore, the prefetch buffer only needs one entry if 

we using sequential prefetch. While all misses can benefit from next line prefetching, we 

expect non-conflict misses to be more amenable to predict via pattern analysis than 

conflict misses. On that assumption, we can activate the sequential prefetching only when 

encountering a non-conflict miss. But after experiment, we found that sequential 

prefetching predicts well both on conflict and non-conflict misses for a direct-mapped L1 

Instruction cache (Figure 4-3). That is because the nature of program execution, which is 

sequential. Even when two code blocks conflict in a direct-mapped cache, the cache miss 

address patterns were still sequential. Therefore, we suggest that always do sequential 

prefetching whatever the type of cache miss is on a direct-mapped L1 Instruction cache. 
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Figure 4-3: Sequential Prefetching accuracy on a direct-mapped L1 instruction cache 

But on a 4-way set-associative L1 data cache (Figure 4-4), we did found the 

prediction accuracy of non-conflict misses is much higher than conflict ones. In that 
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situation, we can activate the sequential prefetching only when encountering a 

non-conflict miss. 
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Figure 4-4: Sequential Prefetching accuracy on a 4-way set-associative L1 data cache 

 

4.3.2 Correlation Prefetching 

We use a simplified correction prefetching which has a single Miss Address History 

Table (MAHT) to record consecutive miss addresses rather than build a Markov graph and 

multiple tables. When a cache miss occurs, correction prefetcher index MAHT by miss 

address and put the following blocks into prefetching buffer. For example (Figure 4-5), 

there were three consecutive cache misses which were recorded into the MAHT. The 

addresses are 0100, 0120, and 0140, respectively. When cache block ‘0100’ misses again, 

we use the miss address index the table, and fetch cache blocks 0120, 0140, … into the 

prefetching buffer. The number of block is depended on prefetch degree d. If d =2, the 

prefetcher will prefetch two blocks on a single miss. 
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Figure 4-5: Simplified Correlation Prefetching  

If memory bandwidth and prefetching buffer are large enough, higher prefetching 

degree generally has higher prediction accuracy. That is because the cache miss stream is 

filled by mixed miss types. Our experiment result shows that point of view (Figure 4-6a). 

But when the size of prefetching buffer is smaller, setting prefetching degree too high 

would not be always good. That is because the buffer is too small to let the blocks stay 

long enough to be used. Figure 4-6b shows average prediction accuracy decreased when 

we increased prefetching degree from two to three. Therefore, we introduce the Selective 

3 prefetching policy: we add an additional field which records the miss type at each 

MAHT entry; when predicting, the prefetcher checks miss types of incoming and 

following misses; if they are the same type, we set prefetching degree to 2; otherwise, we 

set prefetching degree to 3. As results show at Figure 4-6b, our Selective 3 policy avoid 

the decreasing accuracy in benchmarks like gap, gcc, perlbmk, and have the highest 

overall prediction accuracy.  
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 Figure 4-6: a. Correlation Prefetching using 16 entries on a 16KB direct-mapped L1 
instruction cache. b. Correlation Prefetching using 4 entries on the same cache. 
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4.4 Put it all together – PV Buffer 

In this session, we combine three cache optimizations above mentioned. All cache 

optimizations will fetch predicted blocks into a single small buffer, called PV buffer. We use 

two kinds of allocation policies to allocate buffer entries: Separated and Mixed policy. 

• Separated policy: each cache optimizations fixed number of buffer entries. For 

example: sequential prefetching has one buffer entry. Correction prefetching has four 

entries. Victim cache has eleven entries. Each optimization can only replace its own 

entries. And it’s possible that different optimizations fetch the same block into their 

own entries.  

• Mixed Policy: All three cache optimizations share 16 buffer entries. When a cache 

optimization wanted to fetch a block into PV buffer and found the block was already 

there (possibly fetched by other cache optimizations), it won’t fetch again. 
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Figure 4-7: Prediction Accuracy of PV buffer 
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Figure 4-7 shows the prediction accuracy of PV buffer. The left two bars are results of 

using cache miss type as filtering on victim cache and Selective 3 policy on correlation 

prefetching. The right two bars are results without using any filtering and prefetching degree 3 

on correlation prefetching. Our separated policy has average 89.2% prediction accuracy with 

sixteen buffer entries. No single cache optimizations can reach that accuracy with the same 

size of buffer.  
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Figure 4-8: Fetching rate of PV buffer 

Although separated policy has higher prediction accuracy, mixed policy has similar 

prediction accuracy with much lower fetching rate. Figure 4-8 shows the numbers of fetched 

blocks per cache miss. Using cache miss type to filtering fetching operations, both policies 

can reduce about 0.2 blocks per miss. The reason that mixed policy having lower fetching rate 

is because all cache optimizations use the same buffer entries and they won’t fetch a block if 

it was fetched by other cache optimizations. 
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Chapter 5 Conclusion and Future Works 

 In this thesis, we explored many issues of cache miss type identification, including 

modified Jouppi’s conflict miss identification scheme, which is suitable for static-time miss 

type identification, by changing the replacement policy of pseudo cache to the on-the-fly 

finite look-ahead replacement policy. This modification avoids the worst case of LRU and 

makes the identification results more accurate.  

For run-time miss type identification, we proposed two low hardware costs, low 

complexity cache miss type identification approaches which categorize cache miss types 

according to its frequency and distance. Both approaches achieve more than 93% average 

identification accuracy. 

We also demonstrated the application of this information by applying it to victim cache 

design, sequential prefetching, and correlation prefetching. In each case, the architecture 

benefits from applying different policies to different types of misses. In addition, we 

combined several cache optimizations to cover 89% of cache misses with a sixteen-entry 

buffer, called PV buffer. No single cache optimization can do that with the same number of 

buffer entries. This design uses a single structure to optimize buffer performance for the 

elimination of both conflict and capacity misses. Although multiple cache optimizations need 

fetching multiple cache blocks to PV buffer, by using cache miss type information, we can 

reduce unnecessary memory traffic and fetch operations to increase effectiveness of this 

cache-assist buffer. 
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This work can be extended in multiple ways: 

• Use miss type information to determine cache replacement policy: different types of 

cache misses occur at different frequencies. We log cache miss types to each cache 

block, and we can explore a new cache replacement policy which selects replacement 

scheme base on the miss types. 

For Example: Conflict misses generally have shorter Miss Distance than other types 

of cache misses. A cache block which was marked as conflict miss has less chance to 

be used again if its cache set has a long miss distance at that moment. Therefore, we 

can increase the replacement priority of this cache block. 

• Reduce miss address history table size by not saving consecutive miss addresses: both 

Miss Distance approach and simplified correlation prefetching use a large miss 

address history table. But lots of miss addresses are sequential. We can reduce miss 

address history table size by not saving consecutive miss addresses, and just saving 

first and the last one of a consecutive address stream for instead. 

• Explore the way to identify coherence misses: coherence misses are misses that occur 

as a result of invalidation to preserve multiprocessor cache coherence. The most 

common way to preserve multiprocessor cache coherence is by adding some states at 

each cache block and changing states by cache coherence protocols (Figure 5-1). We 

can probably identify coherence misses by cache block state checking. But accurately 

predicting when and where another processor modifies a data line is a very difficult 

problem. It requires a complete understanding of the communication and 

synchronization patterns of an application. 

But still, we can improve cache performance using cache miss type information. If 

coherence miss is detected, we can only invalid the sub-block which was written by 
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another processor. The sub-block mechanism could decrease the false sharing miss 

ratio and miss stall time. Another possible approach is cooperating with cache 

replacement policy we mentioned above. A cache block marked as coherence miss has 

different priority to be replaced. 

 

 

 

 

 

 

 

 

 

Figure 5-1: an example of cache coherence protocols 
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