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摘要 

 

 

這篇論文提出一建構在隱藏式馬可夫模型的動作辨識方法，此方法使用星狀

骨架來對人類的姿勢做出代表性的描述。星狀骨架是一種藉由連結物件中心到物

件輪廓突出點的快速骨架技巧。為了使用星狀骨架作為動作辨識的特徵，我們明

確地定義星狀骨架如何作為辨識的特徵。因為頭和四肢經常是人形狀的突出點，

所以辨識的特徵被定義為星狀的五維向量。 

此辨識方法將人的動作視為沿著時間的一連串星狀骨架，因此，表示人類動

作的時間序列影像被轉換成特徵向量序列。接著，特徵向量序列必須轉換成符號

序列使得隱藏式馬可夫模型可以為動作建立模型。我們設計一本包含每一類動作

星狀骨架的姿勢編碼書並且為特徵向量定義距離來量測特徵向量間的相似度。姿

勢序列中的每個特徵向量會和編碼書中的特徵向量做比對，並會被編碼成編碼書

中與自己最為相似的特徵向量所代表的符號。因此時間序列的姿勢影像被轉換成

符號序列。 

我們以隱藏式馬可夫模型為每種被辨識的動作建立模型。在訓練模型的階

段，每個動作模型的參數皆最佳化以適當地描述訓練的符號序列。在動作辨識的

階段，與測試符號序列最相配的動作模型即為所辨識出的動作。 
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我們建立一個可以自動地辨識出十種不同動作的系統，這個系統分成兩種情

況對人類動作影片作測試。第一種情況是我們對一百個包含單一動作的影片作分

類，此系統達到了百分之九十八的辨識率。另一種是比較實際的情況，由一個人

做出一連串不同的動作，系統即時的辨識出目前的動作。實驗的結果顯現出大有

可為的效果。 

 

檢索詞：動作辨識、星狀骨架、隱藏式馬可夫模型循序樣式 
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Abstract 

 

 
This paper presents a HMM-based methodology for action recognition using star 

skeleton as a representative descriptor of human posture. Star skeleton is a fast 

skeletonization technique by connecting from centroid of target object to contour 

extremes. To use star skeleton as feature for action recognition, we clearly define the 

feature as a five-dimensional vector in star fashion because the head and four limbs 

are usually local extremes of human shape. In our proposed method, an action is 

composed of a series of star skeletons over time. Therefore, time-sequential images 

expressing human action are transformed into a feature vector sequence. Then the 

feature vector sequence must be transformed into symbol sequence so that HMM can 

model the action. We design a posture codebook, which contains representative star 

skeletons of each action type and define a star distance to measure the similarity 

between feature vectors. Each feature vector of the sequence is matched against the 

codebook and is assigned to the symbol that is most similar. Consequently, the 
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time-sequential images are converted to a symbol posture sequence. We use HMMs to 

model each action types to be recognized. In the training phase, the model parameters 

of the HMM of each category are optimized so as to best describe the training symbol 

sequences. For human action recognition, the model which best matches the observed 

symbol sequence is selected as the recognized category. We implement a system to 

automatically recognize ten different types of actions, and the system has been tested 

on real human action videos in two cases. One case is the classification of 100 video 

clips, each containing a single action type. A 98% recognition rate is obtained. The 

other case is a more realistic situation in which human takes a series of actions 

combined. An action-series recognition is achieved by referring a period of posture 

history using a sliding window scheme. The experimental results show promising 

performance. 

 

Index Terms: Action recognition, star skeleton, star distance, HMM 
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Chapter 1  

Introduction 

 
Vision-based human motion recognition is currently one of the most active research 

areas in the domain of computer vision. It is motivated by a great deal of applications, 

such as automated surveillance system, smart home application, video indexing and 

browsing, virtual reality, human-computer interface and analysis of sports events. 

Unlike gesture and sign language, there is no rigid syntax and well-defined structure 

that can be used for action recognition. This makes human activity recognition a more 

challenging task. 

Several human action recognition methods were proposed in the past few years. 

A detailed survey can be found in [1, 2]. Most of the previous methods can be 

classified into two classes: model-based methods [3, 4, 5] and training-based learning 

methods [6-24]. 

    It is natural to think that human recognized action using the structure of human 

posture. The fundamental strategy of model-based methods achieves human action 

recognition by using estimated or recovered human posture. Hogg [3] recovered 

pedestrian’s posture from a monocular camera by using a cylinder model. Wren et al. 

[4] estimated human pose by using a color based body parts tracking technique. In [5], 

a learning-based method for recovering 3D human body pose from single images and 

monocular image sequences is presented. Recovering human posture is an efficient 

method for motion recognition since the human action and its posture are highly 

related. However, a large amount of computation cost is required for pose estimation. 

    An eigenspace technique [6] is one of the learning based recognition techniques 

and it is also used in the action recognition field [7]. An action given by successive 
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video frames is expressed as a curve (called a motion curve) in an eigenspace, and, by 

adopting a similarity measure, it can be used in judging if an unknown action is 

similar to any of the memorized motion curves. In [8], two kinds of superposed 

images are used to represent a human action: a motion history image (MHI) and a 

superposed motion image (SMI). Employing these images, a human action is 

described in an eigenspace as a set of points, and each SMI plays a role of reference 

point. An unknown action image is transformed into the MHI and then a match is 

found with images described in the eigenspace to realize action recognition. The 

eigenspace technique achieves high speed human action recognition. However, the 

recognition rate is not good enough. 

Hidden Markov Model (HMM) which has been used successfully in speech 

recognition is also one of the learning based recognition techniques, and Yamato et al. 

[17] are the first researchers who applied it for action recognition. They use HMM to 

recognize six different tennis strokes among three players. Some of the recent works 

[18, 19, 20, 21, 22, 23, 24] have shown that HMM performs well in human action 

recognition as well. A HMM is built for each action. Given an unknown human action 

sequence, features are extracted and then mapped into symbols. The action 

recognition is done by choosing the maximal likelihood from the trained HMM action 

models. 

Human actions can be viewed as continuous sequences of discrete postures, 

including key postures and transitional postures. Key postures uniquely belong to one 

action so that people can recognize the action from a single key posture. Transitional 

postures are interim between two actions, and even human cannot recognize the 

action from a single transitional posture. Therefore, human action can not be 

recognized from a single frame. Due to robustness, rich mathematical structure and 

great capability in dealing with time-sequential data, HMM is chosen as the technique 
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for action recognition. 

To recognize human action, features must be extracted. Shape information is an 

important clue to represent postures since we regard an action as a sequence of 

discrete postures. Width [18] or horizontal and vertical histograms [21] of the binary 

shapes associated to humans are too rough to represent the shape information due to 

great loss of data. On the other hand, it is not efficient to use the whole human 

silhouettes. Although Principle Component Analysis (PCA) can be used to reduce the 

redundancy [9, 22], the computational cost is high due to matrix operations. To find a 

good balance of the tradeoff, we must best describe the distribution of human shape 

with minimal expenses. Since a posture can be deemed as silhouettes of a torso and 

protruding limbs, a star skeleton technique [26], which is built by connecting the 

center of human body to protruding limbs, is adopted to best describe the shape 

information. 

    In our proposed algorithm, time-sequential images expressing human action are 

transformed to an image feature vector sequence by extracting a feature vector from 

each image. Each feature vector of the sequence is assigned a symbol which 

corresponds to a codeword in the codebook created by Vector Quantization [27]. 

Consequently, the time-sequential images are converted to a symbol sequence. In the 

learning phase, the model parameters of the HMM of each category are optimized so 

as to best describe the training symbol sequences from the categories of human action 

to be recognized. For human recognition, the model which best matches the observed 

symbol sequence is selected as the recognized category. 

The paper is organized as follows. In chapter 2, we introduce the concept of 

HMM and how to use it for recognition. In chapter 3 we present the proposed 

algorithm with a detailed description of each step and some examples. Then 

experimental results and discussion are reported in chapter 4. Finally conclusion and 
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future work are outlined in chapter 5. 
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Chapter 2  

Hidden Markov Model 

 
Real-world processes generally produce observable outputs which can be 

characterized as signals. The signals can be discrete in nature (e.g., characters from a 

finite alphabet, quantized vectors from a codebook, etc.), or continuous in nature (e.g., 

speech samples, temperature measurements, music, etc.). 

    A problem of fundamental interest is characterizing such real-world signals in 

terms of signal models. There are several reasons why one is interested in applying 

signal models. First of all, a signal model can provide the basis for a theoretical 

description of a signal processing system which can be used to process the signal so 

as to provide a desired output. A second reason why signal models are important is 

that they are potentially providing us a great deal of information about the signal 

source without having to have the source available. Finally, the most important reason 

is that they often work extremely well in practice, and can be realized into important 

practical systems － e.g. prediction systems, recognition systems, identification 

systems, etc., in a very efficient manner. 

    There are several possible choices for signal models to characterize the 

properties of a given signal source. Broadly one can dichotomize the types of signal 

models into the class of deterministic models, and the class of statistical models. 

Deterministic models generally exploit some known specific properties of the signal, 

e.g., the signal is a sine wave, or a sum of exponentials, etc. In these cases, 

specification of the signal model is generally straightforward; all that is required is to 

determine (estimate) the values of the parameters of the signal model (e.g., amplitude, 

frequency, phase of a sine wave, amplitudes and rates of exponentials). The second 
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broad class of signal models is the set of statistical properties of the signal. Examples 

of such statistical models include Gaussian processes, Poisson processes, Markov 

processes, and hidden Markov processes, among others. The underlying assumption 

of the statistical model is that the signal can be well characterized as a parametric 

random process, and that the parameters of the stochastic process can be determined 

or estimated in a precise, well-defined manner. 

    Since an action is composed of postures, it can be viewed as a signal by mapping 

a distinct posture to a symbol or vector. Therefore a signal model can be applied to 

describe an action. We compute the probabilities (or likelihood) that the observed 

signal (action) was produced by each signal (action) model. Recognition can be done 

by choosing the model which best matches the observations. Because of the great 

success in speech recognition and fine mathematical structure, HMM is used to model 

an action. 

2.1 Elements of an HMM 

An HMM consists of a number of states each of which is assigned a probability of 

transition from one state to another state. With time, state transitions occur 

stochastically. Like Markov models, states at any time depend only on the state at the 

preceding time. One symbol is yielded from one of the HMM states according to the 

probabilities assigned to the states. HMM states are not directly observable, and can 

be observed only through a sequence of observed symbols. To describe a discrete 

HMM, the following notations are defined. 

T = length of the observation sequence. 

Q = },,,{ 21 Nqqq L : the set of states. 

N = the number of states in the model. 

V = },,,{ 21 Mvvv L : the set of possible output symbols. 
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M = the number of observation symbols. 

A = )}|(|{ 1 itjtrijij qsqsPaa === + : state transition probability, where 

ija is the probability of transiting from state iq to state jq . 

B = )}|()(|)({ jtkrjj qsvPkbkb == : symbol output probability, where 

)(kb j  is the probability of output symbol kv at state jq . 

π = )}(|{ 1 irii qsP ==ππ initial state probability. 

},,{ πλ BA= Complete parameter set of the model 

Using this model, transitions are described as follows: 

).(:,,2,1},{ leunobservabstatethttheissStateTtsS tt L==  

O ).(:,,, 21 TlengthsequencesymbolObservedOOO T == L  

 

11a 13a31a

12a 23a

)1(1b

)( observablenonHidden −

21a 32a

33a

1v

22a

)3(1b)2(1b )1(2b )3(2b)2(2b )1(3b )2(3b )3(3b

1v1v2v 2v 2v3v 3v 3v

TOOOOOO K,,,,, 54321

SequenceeSymbolObserved

tTime  

Figure 2-1  HMM Concept 
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    Figure 2-1 illustrates the concept of a HMM with a transition graph. There are 

three states in this example indicated as circles. Each directed line is a transition from 

one state to another, where the transition probability from state iq  to state jq  is 

indicated by the character ija  alongside the line. 

    Note that there are also transition paths from states to themselves. These paths 

can provide the HMM with time-scale invariability because they allow the HMM to 

stay in the same state for any duration. 

    Each state of the HMM stochastically outputs a symbol. In state jq , symbol kv  

is output with a probability of )(kb j . If there are M kinds of symbols, )(kb j  become 

N×M matrix. The HMM output the symbol sequence O TOOO ,,, 21 K=  from time 1 

to T. We can observe the symbol sequences output by the HMM but we can not 

observe the HMM states. The initial state of the HMM is also determined 

stochastically by the initial state probabilityπ . A HMM is characterized by three 

matrices: state transit probability matrix A, symbol output probability matrix B, and 

initial state probability matrixπ . 

    The parameters of A, B, and π  are determined during the learning process 

described in section 2.3. As described in section 2.2, one HMM is created for each 

category to be recognized. Recognizing time-sequential symbols is equivalent to 

determining which HMM produced the observed symbol sequence. In section 2.2 and 

2.3, the recognition and learning procedures are explained respectively. 

 

2.2 Recognition Process Of HMM 

To recognize observed symbol sequences, we create one HMM for each category. For 
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a classifier of C categories, we choose the model which best matches the observations 

from C HMMs, where .,,2,1},,,{ CiBA iiii L== πλ  This means that when a 

sequence of unknown category is given, we calculate |( irP λ O), O TOOO K21= for 

each HMM iλ and select oc
λ , where 

|((maxarg iri
Pc λ=o O)) 

 

Given the observation sequence O TOOO K21=  and the HMM iλ , Ci ,,2,1 L= . 

According to the Bayes rule, the problem is how to evaluate )|( ir OP λ , the probability 

that the sequence was generated by HMM iλ . 

 

The probability of the observations O for a specific state sequence Q is: 

(P O )()()(),|(),| 2211
1

TqTqq

T

t
tt obobobqoPQ L×==∏

=

λλ         (1) 

and the probability of the state sequence is: 

qTqTqqqqq aaaQP 132211)|( −= Lπλ                    (2) 

so we can calculate the probability of the observations given the model as: 

)()()()|(),|()|( 1
1

2121111 TqTqTqT
qTq

qqqqq
Q

obaobaobQPQOPQP −∑∑ == L
L

πλλλ  (3) 

This result allows the evaluation of the probability of O, but to evaluate it directly 

would be exponential in T. 

 

A better approach is to recognize that many redundant calculations would be made by 

directly evaluating equation 3, and therefore caching calculations can lead to reduced 

complexity. We implement the cache as a trellis of states at each time step, calculating 

the cached valued (calledα ) for each state as a sum over all states at the previous 

time step.α is the probability of the partial observation sequence tooo L21 , and 
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state is at time t. This can be visualized as in Figure 2-2. We define the forward 

probability variable: 

)|,,,,()( 21 λα iitrt sqOOOPi =≡ K                  (4) 

 

Figure 2-2 Illustration of the forward algorithm 

so if we work through the trellis filling in the values ofα the sum of the final column 

of the trellis will equal the probability of the observation sequence. The algorithm for 

this process is called the forward algorithm and is as follows: 

1. Initialization: 

.1),()( 11 Niobi ii ≤≤= πα                      (5) 

2. Induction: 

NjTtobaij tj

N

i
ijtt ≤≤−≤≤= +

=
+ ∑ 1,11),(])([)( 1

1
1 αα        (6) 

3. Termination: 

P(O λ| ∑
=

=
N

i
T i

1

).() α                      (7) 

The induction step is the key to the forward algorithm and is depicted in Figure 

2-3. For each state js , )(tjα stores the probability of arriving in that state having 

observed the observation sequence up until time t. 
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Figure 2-3  The induction step of the forward algorithm 

    We can calculate the likelihood of each HMM using the above equation and 

select the most likely HMM as the recognition result. 

 

2.3 Learning Process Of HMM 

    The most difficult problem of HMMs is to determine a method to adjust the 

model parameters ),,( πBA to maximize the probability of the observation sequence 

given the model. There is no known way to analytically solve for the model which 

maximizes the probability of the observation sequence. In fact, given any finite 

observation sequence as training data, there is no optimal way of estimating the model 

parameters. We can, however, choose ),,( πλ BA= such that P O( )| λ is locally 

maximized using an iterative procedure such as the Baum-Welch method. 
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In the learning phase, each HMM must be trained so that it is most likely to generate 

the symbol patterns for its category. Training an HMM means optimizing the model 

parameters ),,( πBA  to maximize the probability of the observation 

sequence rP O( )| λ . The Baum-Welch algorithm is used for these estimations. 

Define: 

),|,,()( 1 λβ itTtt qsOOPi =≡ + K , i.e., the probability of the partial observation 

sequence from t+1 to the end, given state iS at time t and the modelλ . 

)(itβ  is called the backward variable and can also be solved inductively in a manner 

similar to that used for the forward variable )(itα , as follows: 

(1) Initialization: 

NiiT ≤≤= 1,1)(β                    (8) 

(2) Induction: 

.1,1,,2,1),()()( 1
1

1 NiTTtjObai t

N

j
tjijt ≤≤−−== +

=
+∑ Lββ    (9) 

The initialization step (1) arbitrary defines )(iTβ to be 1 for all i. Step (2), which is 

illustrated in Figure 2-4, shows that in order to have been in state iS at time t, and to 

account for the observation sequence from time t+1 on, you have to consider all 

possible states jS at time t+1, accounting for the transition from iS to jS (the ija term), 

as well as the observation 1+tO in state j (the )( 1+tj Ob term), and then account for the 

remaining partial observation sequence from state j ( the )(1 it+β term). 
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Figure 2-4  Illustration of the sequence of operations required for the computation of 
the backward variable )(itβ  

We define the variable 

.
)|(
)()(

),,,|()( 1

λ
βα

λγ

OP
ii

OOqsPi

tt

Titt

=

=≡ K

              (10) 

i.e., the probability of being in state iS at time t, given the observation sequence O, and 

the modelλ . 

 

In order to describe the procedure for re-estimation (iterative update and improvement) 

of HMM parameters, we first define ),( jitε , the probability of being in state iS at time 

t, and state jS at time t+1, given the model and the observation sequence, i.e. 

).,|,(),( 1 λε OqqsqPji jtitt ==≡ +           (11) 

The sequence of events leading to the conditions required by (10) is illustrated in 

Figure 2-5. It should be clear, from the definitions of the forward and backward 

variables, that we can write ),( jitε in the form 

∑∑
= =

++

++

++

=

=

N

i

N

j
ttjijt

ttjijt

ttjijt
t

jObai

jObai
OP

jObai
ji

1 1
11

11

11

)()()(

)()()(
)|(

)()()(
),(

βα

βα
λ
βα

ε

          (12) 

where the numerator term is just )|,,( 1 λOSqSqP jtit == + and the division 
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by )|( λOP gives the desired probability measure. 

 

 

Figure 2-5  Illustration of the sequence of operations required for the computation of 

the joint event that the system is in state iS at time t and state jS at time t+1 

  We have previously defined )(itγ as the probability of being in state iS at time t, 

given the observation sequence and the model; hence we can relate )(itγ to ),( jitε by 

summing over j, giving 

∑
=

=
N

j
tt jii

1
).,()( εγ                       (13) 

If we sum )(itγ over the time index t, we get a quantity which can be interpreted as the 

expected (over time) number of times that state iS is visited, or equivalently, the 

expected number of transitions made from state iS (if we exclude the time slot t = T 

from the summation). Similarly, summation of ),( jitε over t (from t = 1 to t = T-1) can 

be interpreted as the expected number of transitions from state iS to state jS . That is 

∑
−

=

=
1

1
)(

T

t
t iγ expected number of transitions from iS .          (14) 

∑
−

=

=
1

1
),(

T

t
t jiε expected number of transitions from iS to jS .  (15) 

 

Using the above formulas (and the concept of counting event occurrences) we can 

give a method for re-estimation of the parameters of an HMM. A set of reasonable 
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re-estimation formulas forπ , A, and B are 

=iπ expected frequency (number of times) in state iS at time(t = 1) = )(1 iγ .  (16) 

∑

∑
−

=

−

==

=

1

1

1

1

)(

),(

exp
exp

T

t
t

T

t
t

i

ji
ij

i

ji

Sstatefromstransitionofnumberected
SstatetoSstatefromstransitionofnumberected

a

γ

ε             (17) 

∑

∑

=

=
=

=

=

T

t
t

T

vOts
t

t

k
j

j

j

jstateintimesofnumberected
vsymbolobservingandjstateintimesofnumberected

kb

kt

1

..
1

)(

)(

exp
exp

)(

γ

γ       (18) 

 

  If we define the current model as ),,( πλ BA= , and use that to compute the right 

hand sides of (16)-(18), and we define the re-estimated model as ),,( πλ BA= , as 

determined from the left-hand sides of (16)-(18), then it has been proven by Baum 

and his colleagues that either (1) the initial modelλ defines a critical point of the 

likelihood function, in which case λλ = ; or (2) model λ is more likely than 

modelλ in the sense that )|()|( λλ OPOP 〉 , i.e. we have found a new modelλ from 

which the observation sequence is more likely to have been produced. 

  Based on the above procedure, if we iteratively useλ in place ofλ and repeat the 

re-estimation calculation, we then can improve the probability of O being observed 

from the model until some limiting point is reached. The final result of this 

re-estimation procedure is called a maximum likelihood estimate of the HMM. 
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Chapter 3  

Proposed Action Recognition Algorithm 

3.1 System Overview 

The system architecture consists of three parts, including feature extraction, mapping 

features to symbols and action recognition as shown in Figure 3-1. 

For feature extraction, we use background subtraction and threshold the difference 

between current frame and background image to segment the foreground object. After 

the foreground segmentation, we extract the posture contour from the human 

silhouette. As the last phase of feature extraction, a star skeleton technique is applied 

to describe the posture contour. The extracted star skeletons are denoted as feature 

vectors for latter action recognition. The process flow of feature extraction is shown 

in Figure 3-1 (a). 

After the feature extraction, Vector Quantization (VQ) is used to map feature vectors 

to symbol sequence. We build a posture codebook which contains representative 

feature vectors of each action, and each feature vector in the codebook is assigned to a 

symbol codeword. An extracted feature vector is mapped to the symbol which is the 

codeword of the most similar (minimal distance) feature vector in the codebook. The 

output of mapping features to symbols module is thus a sequence of posture symbols. 

The action recognition module involves two phase: training and recognition. We use 

Hidden Markov Models to model different actions by training which optimizes model 

parameters for training data. Recognition is achieved by probability computation and 

selection of maximum probability. The process flows of both training and recognition 

are shown in Figure 3-1 (b) and (c).  
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Border
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Star
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(a) Process flow of feature extraction 

 

(b) Process flow of training 

 

(c) Process flow of recognition 

Figure 3-1  Illustration of the system architecture 
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Figure 3-2  A walk action is a series of postures over time 

 

3.2 Feature Extraction 

Human action is composed of a series of postures over time as shown in Figure 3-2. 

A good way to represent a posture is to use its boundary shape. However, using the 

whole human contour to describe a human posture is inefficient since each border 

point is very similar to its neighbor points. Though techniques like Principle 

Component Analysis are used to reduce the redundancy, it is computational expensive 

due to matrix operations. On the other hand, simple information like human width and 

height may be rough to represent a posture. Consequently, representative features 

must be extracted to describe a posture. Human skeleton seems to be a good choice. 

There are many standard techniques for skeletonization such as thinning and distance 

transformation. However, these techniques are computationally expensive and 

moreover, are highly susceptible to noise in the target boundary. Therefore, a simple, 

real-time, robust techniques, called star skeleton [26] was used as features of our 

action recognition scheme. 
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3.3  Feature Definition 

Vectors from the centroid of human body to local maximas are defined as the feature 

vector, called star vector. The head, two hands, and two legs are usually outstanding 

parts of extracted human contour, hence they can properly characterize the shape 

information. As they are usually local maximas of the star skeleton, we define the 

dimension of the feature vector five. For postures such as the two legs overlap or one 

hand is covered, the number of protruding portion is below five. Zero vectors are 

added. In the same way, we can adjust the low-pass filter to reduce the number of 

local maximas for postures with more than five notable parts. 

3.3.1 Star Skeletonization 

The concept of star skeleton is to connect from centroid to gross extremities of a 

human contour. To find the gross extremities of human contour, the distances from the 

centroid to each border point are processed in a clockwise or counter-clockwise order. 

Extremities can be located in representative local maximum of the distance function. 

Since noise increases the difficulty of locating gross extremes, the distance signal 

must be smoothed by using smoothing filter or low pass filter in the frequency domain. 

Local maximum are detected by finding zero-crossings of the smoothed difference 

function. The star skeleton is constructed by connecting these points to the target 

centroid. The star skeleton process flow of an example human contour is shown in 

Figure 4 and points A, B, C, D and E are local maximum of the distance function. The 

details of star skeleton are as follows: 

Star skeleton Algorithm(As described in [26]) 

Input: Human contour 

Output: A skeleton in star fashion 
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1. Determine the centroid of the target image border ),( cc yx  
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where bN is the number of border pixels, and ),( cc yx is a pixel on the border of the 

target. 

2. Calculate the distances id  from the centroid ),( cc yx  to each border point ),( ii yx  

22 )()( cicii yyxxd −+−=                (21) 

These are expressed as a one dimensional discrete function idid =)( . 

3. Smooth the distance signal )(id  to )(
^

id  for noise reduction by using linear 

smoothing filter or low pass filter in the frequency domain. 

4. Take local maximum of )(
^

id  as extremal points, and construct the star skeleton by 

connecting them to the centroid ),( cc yx . Local maximum are detected by finding 

zero-crossings of the difference function 

                         )1()()(
^^

−−= ididiδ                (22) 

 

Figure 3-3  Process flow of star skeletonization 
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3.3.2 Feature Definition 

One technique often used to analyze the action or gait of human is the motion of 

skeletal components. Therefore, we may want to find which part of body (e.g. head, 

hands, legs, etc) the five local maximum represent. In [26], angles between two legs 

are used to distinguish walk from run. However, some assumptions such as feet locate 

on lower extremes of star skeleton are made. These assumptions can not fit other 

different actions, for example, low extremes of crawl may be hands. Moreover, the 

number of extremal points of star skeleton varies with human shape and the low pass 

filter used. Gross extremes are not necessarily certain part of human body. Because of 

the difficulty in finding which part of body the five local maximum represent, we just 

use the distribution of star skeleton as features for action recognition. 

As a feature, the dimension of the star skeleton must be fixed. The feature vector is 

then defined as a five dimensional vectors from centroid to shape extremes because 

head, two hands, two legs are usually local maximum. For postures with more than 

five contour extremes, we adjust the low pass filter to lower the dimension of star 

skeleton to five. On the other hand, zero vectors are added for postures with less than 

five extremes. 

Since the used feature is vector, its absolute value varies for people with different size 

and shape, normalization must be made to get relative distribution of the feature 

vector. This can be achieved by dividing vectors on x-coordinate by human width, 

vectors on y-coordinate by human height. 

3.4  Mapping features to symbols 

To apply HMM to time-sequential video, the extracted feature sequence must be 

transformed into symbol sequence for latter action recognition. This is accomplished 

by a well-known technique, called Vector Quantization [27]. 
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3.4.1 Vector Quantization 

For vector quantization, codewords n
j Rg ∈ , which represent the centers of the 

clusters in the feature nR  space, are needed. Codeword jg  is assigned to symbol 

jv . Consequently, the size of the code book equals the number of HMM output 

symbols. Each feature vector if  is transformed into the symbol which is assigned to 

the codeword nearest to the vector in the feature space. This means if  is transformed 

into symbol jv  if ),(minarg jij gfdj =  where ),( yxd is the distance between 

vectors x and y. 

 

Figure 3-4  The concept of vector quantization in action recognition 

 

For action recognition, we select m feature vectors of representative postures from 

each action as codewords in the codebook. And an extracted feature would be mapped 

to a symbol, which is the codeword of the most similar (minimal distance) feature 

vector in the codebook. The concept of the mapping process is shown in Figure 3-4. 

The codebook in the figure contains only some representative star skeletons of walk 

to explain the mapping concept. In the mapping process, similarity between feature 

vectors needs to be determined. Therefore we define distance between feature vectors, 

called star distance, to decide the similarity between feature vectors. 
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3.4.2 Star Distance 

Since the star skeleton is a five-dimensional vector, the star distance between two 

feature vectors S and T is first defined as the sum of the Euclidean distances of the 

five sub-vectors. 

                        ∑
=

−=
5

1
)(tan

i
ii TSceDis                    (23) 

However, consider the star skeletons S and T in Figure 3-5 (a). The two star skeletons 

are similar, but the distance between them is large due to mismatch. So we modify the 

distance measurement. Each sub-vector must find their closest mapping as shown in 

Figure 3-5 (b). The star distance is then defined as the sum of the Euclidean distance 

of the five sub-vectors under such greedy mapping. For simplicity, the star distance is 

obtained by minimal sum of the five sub-vectors in all permutation. Better algorithm 

to accelerate the star distance calculation can be found. 

Star Distance = ∑
==

−
5

1

!5

1
)(min

i
ii

k
TSArg            (24) 

                   

(a)                                        (b) 

Figure 3-5  Illustration of star distance (a) Mismatch (b) Greedy Match 

 

3.5 Action Recognition 

The idea behind using the HMMs is to construct a model for each of the actions that 

we want to recognize. HMMs give a state based representation for each action. The 

number of states was empirieally determined. After training each action model, we 

calculate the probability )|( iOP λ , the probability of model iλ generating the 
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observation posture sequence O, for each action model. We can then recognize the 

action as being the one, which is represented by the most probable model. 

3.6 Action Series Recognition 

What mentioned above are classification of single action. The following is a more 

complex situation. A man performs a series of actions, and we recognize what action 

he is performing now. One may want to recognize the action by classification of the 

posture at current time T. However, there is a problem. By observation we can classify 

postures into two classes, including key postures and transitional postures. Key 

postures uniquely belong to one action so that people can recognize the action from a 

single key posture. Transitional postures are interim between two actions, and even 

human cannot recognize the action from a single transitional posture. Therefore, 

human action can not be recognized from posture of a single frame due to transitional 

postures. So, we refer a period of posture history to find the action human is 

performing. A sliding-window scheme is applied for real-time action recognition as 

shown in Figure 7. At time current T, symbol subsequence between T-W and T, which 

is a period of posture history, is used to recognize the current action by computing the 

maximal likelihood, where W is the window size. In our implementation, W is set to 

thirty frames which is the average gait cycle of testing sequences. Here we recognize 

stand as walk. The unknown is due to not enough history. By the sliding window 

scheme, what action a man is performing can be realized. 
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Figure 3-6  Sliding-window scheme for action series recognition 
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Chapter 4  

Experiment Results and Discussion 
To test the performance of our approach, we implement a system capable of 

recognizing ten different actions. The system contains two parts: (1) Single Action 

Recognition (2) Recognition over a series of actions. In (1), a confusion matrix was 

used to present the recognition result. In (2), we compare the real-time recognition 

result to ground truth obtained by human. 

4.1 Single action recognition 

The proposed action recognition system has been tested on real human action videos. 

For simplicity, we assumed a uniform background in order to extract human regions 

with less difficulty. The categories to be recognized were ten types of human actions: 

‘walk’, ‘sidewalk‘, ‘pickup’, ‘sit’, ‘jump 1’, ‘jump 2’, ‘push up’, ‘sit up’, ‘crawl 1’, 

and ‘crawl 2’. 5 persons performed each type of the 10 actions 3 times. The video 

content was captured by a TV camera (NTSC, 30 frames / second) and digitized into 

352x240 pixel resolution. The duration of each video clip was from 40 to 110 frames. 

This number of frames is chosen experimentally: shorter sequences do not allow to 

characterize the action and, on the other side, longer sequences make the learning 

phase very hard. Figure 4-1 showed some example video clips of the 10 types of 

human actions. In order to calculate the recognition rate, we used the leave out 

method. All data were separated into 3 categories, each category containing 5 persons 

doing ten different actions one time. One category was used as training data for 

building a HMM for each action type, and the others were testing data. 
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(a) walk 

 
(b) sidewalk 

 

(c) sit 

 

(d) pick up 

 

(e) jump 1 

 

(f) jump2 

 

(g) push up 
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(h) sit up 

 

(i) crawl 1 

 

(j) crawl 2 

Figure 4-1  Example clips of each action type 

 

    The features of each action type extracted using star skeleton. Feature examples 

of each action are shown in Figure 4-2. For vector quantization, we manually selected 

m representative skeleton features for each action as codewords in the codebook for 

the experiment. In my implementation, for simple actions like sidewalk and jump2, m 

is set to five. Other eight actions m is set to ten. Thus, the total number of HMM 

symbols was 90. We build the codebook in one direct first and reverse all the features 

vectors for recognition of counter actions. 

 

(a) walk 
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(b) sidewalk 

 

(c) sit 

 

(d) pick up 

 

(e) jump 1 

 

(f) jump 2 

 
(g) push up 

 

(h) sit up 

 
(i) crawl 1 

 
(j) crawl 2 
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Figure 4-2  Features of each action type using star skeleton 

 

    We use a sit action video to explain the recognition process. The sit action is 

composed of a series or postures. Star skeleton are used for posture description, and 

map the sit action into feature sequence. The feature sequence is then transformed into 

symbol sequence O by Vector Quantization. Each trained action model compute the 

probability generating symbol sequence O, the log scale of probability are shown in 

Figure 4-3. The sit model has the max probability, so the video are recognized as sit. 

 

 

Figure 4-3  Complete recognition process of sit action 
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Table 1. Confusion matrix for recognition of testing data 

 
 

    Finally, Table 1 demonstrated the confusion matrix of recognition of testing data. 

The left side is the ground truth action type, the upper side is the recognition action 

type. The number on the diagonal is the number of each action which are correctly 

classified. The number which are not on the diagonal are misunderstand, and we can 

see which kind of action the system misjudge. From this table, we can see that most of 

the testing data were accurately classified. A great recognition rate of 98% was 

achieved by the proposed method. Only two confusions occurred only between sit and 

pick up. We check the two mistaken clips, they contain large portion of bending the 

body. And the bending does not uniquely belong to sit or pickup so that the two action 

models confuse. In my opinion, a transitional action, bending, must be added to better 

distinguish pickup and sit. 

4.2 Recognition over a series of actions 

In the experiment, human take a series of different actions, and the system will 

automatic recognize the action type in each frame. 3 different action series video clips 

are used to test the proposed system. We compare the recognition result to 

human-made ground truth to evaluate the system performance. 
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The first test sequence is “Sit up – get up – Jump 2 – turn about – Walk – turn 

about – Crawl 1”. The second test sequence is “Sidewalk – turn about – Walk – turn 

about – Pick up”. The third test sequence is “Crawl 2 – get up – turn about – Walk – 

turn about – Jump2”. Each sequence contains about 3-4 defined action types and 1-2 

undefined action types (transitional action). Figure 4-4, 4-5, 4-6 (a) shows the 

original image sequence (some selected frames) of the four action series respectively. 

The proposed system recognized the action type by the sliding window scheme. 

Figure 4-4, 4-5, 4-6 (b) shows the recognition result. The x-coordinate of the graph is 

the frame number, and the y-coordinate indicates the recognized action. The red line 

is the ground truth defined by human observation, and the blue line is the recognized 

action types. The unknown period is the time human performs actions that are not 

defined in the ten categories. The first period of unknown of ground truth is get up, 

and the second and third period are turn about. The unknown period of recognition 

result is due to the history of postures is not enough (smaller than the window size).  

By these graphs, we can see that the time human perform the defined actions can 

be correctly recognized. Some misunderstanding can be corrected by smoothing the 

recognition signal. A small recognition time delay occurs at the start of crawl due to 

not enough history for the sliding window scheme. However, the delay is very small 

that human can hardly feel. The time period human perform undefined action, the 

system choose the most possible action from ten defined actions. Therefore, more 

different actions must be added to enhance the system. 
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 (a) Some original image sequences of ‘sit up – jump2 – walk – crawl1’ 
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(b) Recognition result 

Figure 4-4  Recognition over a series of actions ‘sit up – jump2 – walk – crawl1’ 
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(a) Some original image sequences of ‘sidewalk – walk – pickup’ 
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(b) Recognition result 

 

Figure 4-5  Recognition over a series of actions ‘sidewalk – walk – pickup’ 
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(a) Some original image sequences of ‘crawl 2 – walk – jump 2’ 
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(b) Recognition result 

 

Figure 4-6  Recognition over a series of actions ‘crawl 2 – walk – jump 2’ 
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Chapter 5  

Conclusion and Future Work 
We have presented an efficient mechanism for human action recognition based on the 

shape information of the postures which are represented by star skeleton. We clearly 

define the extracted skeleton as a five-dimensional vector so that it can be used as 

recognition feature. A feature distance (star distance) is defined so that feature vectors 

can be mapped into symbols by Vector Quantization. Action recognition is achieved 

by HMM. The system is able to recognize ten different actions. For single action 

recognition, 98% recognition rate was achieved. The recognition accuracy could still 

be improved with intensive training. For recognition over a series of actions, the time 

human perform the defined ten actions can be correctly recognized. 

Although we have achieved human action recognition with high recognition rate, 

we also confirm some restrictions of the proposed technique from the experimental 

results. One limitation is that the recognition is greatly affected by the extracted 

human silhouette. We used a uniform background to make the foreground 

segmentation easy in our experiments. To build a robust system, a strong mechanism 

of extracting correct foreground object contour must be developed. Second, the 

representative postures in the codebook during Vector Quantization are picked 

manually, clustering algorithms can be used so that they can be extracted 

automatically for a more convenient system. Third, the viewing direction is somewhat 

fixed. In real world, the view direction varied for different locations of the cameras. 

The proposed method should be improved because the human shape and extracted 

skeleton would change from different views. 
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