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Abstract

Steganography is a well-known topiegin Information Security. In Steganography,
how to embed a data into host file without being .detected is the most important
issue. Unfortunately, embedding process will make some modification in host file.
For a digital image, pixél modification. makes distortion and more distortion makes
the embedded data be detected easily. Sos;“we propose a scheme that can reduce
pixel modification efficiently to decrease distortion caused by embedding process.
By a tree structure and Majority Parity Check(MPC), to reduce pixel modification
when hiding a data. Our scheme is a plug-in linear process to help most existing

data hiding algorithms.
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Chapter 1

Introduction

In this chapter, we introduce the motivation of our research, and we give an

overview about data-hiding and prévieus works.

1.1 Motivation

In this paper, we describe.an algorithm that helps most data-hiding algo-
rithms to reduce pixel modification:-In-recent years, there were many papers
about data hiding. Most of them discussed about how to hide some infor-
mation into some kind of objects. Especially, when we try to hide data into
a picture file, there are two kinds of argument, reversible and un-reversible
data-hiding algorithm.

TBPCI1] is the first paper that discussed about reduction of pixel modifi-
cation, but there is still some problems in TBPC. The algorithm in TBPC,
it can not efficiently reduce pixel modification when we hide too much in-

formation into a digital image. The rate of reduction for TBPC, it is not



a stable one. So our purpose in this paper is to proposed an efficient and

stable algorithm to reduce the rate of pixel modification.

1.2 Overview

Steganography is an issue that discuss how to hide information into a host
multimedia. A digital image, an mp3 music file, or a movie file can be as a
host file for data hiding algorithms. In steganography, the most issue is how
to hide information without being detected. Somehow, digital image files are
the most convenient file for hiding information.

Watermark is the most well-known.topic. In & wateemarking algorithm, a dig-
ital logo is embedded into a-digital image file to prove the ownership.[2-4] are
watermarking algorithms for embedding a logo image. into a vector-quantized
image, and [5-7] are algerithms' for JEPGfiles.. Some kinds of algorithm are
lossy. During embedding information into host image by lossy watermark-
ing algorithms, distortion is introduced and result in Peak Signal-to-Noise
Ratio(PNSR) loss, but permanent loss of signal is not allowed in military
or medical images. In lossy data hiding algorithms, we discussed how to
reduce distortion during embedding information in the past. Besides, loss-
less/Reversible data hiding algorithms [4][23] can recover the original host
image perfectly after the watermark is extracted, but the disadvantage in
lossless/reversible data hiding algorithms are that we just can hide much

lesser information into host image than lossy ones.



TBPCJ1] is the first paper which presented this idea that we can reduce dis-
tortion by decreasing pixel modification. In data hiding algorithm, each pixel
can be treated as an information-bit, ”70” or ”1”. If information-bit was not
the same as logo-bit, pixel modification would come up, and then distortion
was occurred. TBPCJ1] presents a tree based data-coding method with parity

check to reduce pixel modification with existing data hiding algorithms.

1.3 Synopsis

We organized the rest of this thesis as following.

In Chapter 2, we first talk about. the relative background: Lossy/Lossless
data hiding algorithmg; Stege-codes, and. Tree Based' Parity Check (TBPC).
We discuss some kinds of lossy data-hiding algorithms in several image format
and a data coding theorem named Stego-codes. Finally, TBPC algorithm will
be discussed in this chapter. In-Chapter 3, we propose our new reduction
of pixel modification scheme, majority parity check(MPC). In Chapter 4,
we provide the analysis for our scheme that is a linear Stego-code model,
and analyze the efficiency of our scheme. In Chapter 5, simulation of MPC
is performed, and we compare the result of MPC with TBPC. Finally, in

Chapter 6, we make a conclusion and discuss the future work.



Chapter 2

Background

In this chapter, we introduce dossy /lessless ‘data-hiding algorithms. We dis-
cuss several exiting schemes in watermarking domain. Then, we introduce
Stego-codes, a codingsproblem-in steganography[12}. At last, we introduce
However TBPC algorithm work and help data-hidifng algorithms to reduce

pixel modification.

2.1 Steganography

Steganography is the art and science of hiding information by embedding
messages within others, seemingly harmless messages. Steganography means
"covert writing” in Greek. A famous illustration of steganography is Sim-
mons’ ”Prisoners’ Problem” [24], so as the goal of steganography is to create
a covert channel in common object, and to hide information without being
detected. The major difference between steganography and cryptography is

that cryptography obscures hidden messages by encryption and steganogra-



phy aims at concealing the existence of hidden information.

Nowadays, there are many steganographic tools to hide information into
many kinds of objects. We focus on digital images in our paper. In the
past, many schemes use uncompressed images as cover objects. Due to the
convenience of transmission and storage, compressed images are popularly
discussed in recently years. For Both uncompressed and compressed images,
a digital image can be seen as an array of pixels. To hide information into a
digital image, pixel modification must be handled. But in most steganogra-
phy algorithms, the original pixel value cafinot be recovered after modifica-
tion. This kinds of algorithms, we gall-them, "Lossy Data Hiding”. On the
other hand, if the algorithms that can recover the original pixel value after

extracting informations we call them:” Lossless Data-Hiding”.
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In most data hiding algorithms, the common flows showed in figure 2.1 involve
the following four steps, when we try to hide information into a host-image.
The first step is to search embeddable locations in host-image. For different
data hiding algorithm, different amount of embeddable locations will be de-
cided and distinguished the value for each embeddable location as 70" or 71”.
The second step is to compare the value of embeddable location with infor-
mation that needs to be embedded and the third step is to make decision on

which embeddable location needs modification to hold information bit. The



last step is to modify locations which are decided in the third step and obtain
the final stego-image. There are many kinds of data hiding algorithms, but
these four steps are the common flows in steganography. Most papers discuss
how to search embeddable locations and how to modify to hold information
bit with few visual artifacts. The common flow diagram could be used in

un-reversible or reversible data hiding algorithms.

2.1.2 Relative Works

With developing in steganograpgy, several different kinds of domain have
been discussed extensively to hide datainto!different image file format. Last
significant bit is one "of the simplest:méthod and wused for un-compressed
image. Those algorithms. with' LiSBrhave been detected [16-18] in recent
years. As the technique of image compressing being used widely, like vector
quantization and JPEG, [5-7] are proposed for VQ based images and [3][19-
22] are proposed for JPEG images. For these existing algorithms, all of them
are lossy. To avoid distortion in embedding process, reversible data hiding
algorithms [4][23] are proposed which can perfectly recover the original host
image after extraction. But reversible data hiding algorithm can not embed

a long data into a host image.



2.2 Stego-codes

Steganography is the scheme to communicate hidden messages between the
sender and the receiver such that no other people can detect the existence of
the message. A common strategy for steganography is to embed the message
by slightly distorting the cover object to the stego object. If the distortion
is small enough, the stego object will be undistinguishable from the noised

cover object.

2.2.1 Matrix Embedding

Matrix Embedding[9,10} also. called Syndrome Coding[11], or Coset Encod-
ing [8], is a steganogradphysmethod using (7, k) lineat codes. In advance the
sender and the receiver agree an g X (n — k) parity check matrix H of an
(n, k) linear code. The €over ‘6bject is'representedras a vector n € FJ' (e.g.
for an image, take the least significant-bitsof‘all pixels) and the message is a
binary vector M with length (n — k). When embedding, the sender identifies
a vector 2’ € FJ such that Hx' = M. When extracting, the receiver extracts
the hidden message M from the stego object x’ by computing Hx' = M. Let
0 = 2’ — x be the distortion between the cover object x and the stego object
x’. The Hamming weight of §, denoted by wt(¢), is generally the measure-
ment of quality of 2’. The sender will always choose the lowest weight of § of
to ensure the smallest distortion on the cover object. Therefore, the sender

should resolve that H6 = M — Hx such that wt(J) is minimum. The set of



0 satisfying Hé = M — Hx is the coset of the linear code with respect to the
parity check matrix H. Finding the lowest weight of 9 is the well known coset

leader problem.

2.2.2 Steganography Codes

Matrix embedding embeds and extracts messages by using a parity check
matrix H. W. Zhang and S. Li[12] generalized the idea of matrix embedding
and define the codes with the matrix H as.steganography codes(abbreviated
stego-codes). An (n — k) % mn matrix H over GF(n) is called an (n,n — k,t)
stego-coding matrix if for any-given-y € GFlh ~ k)(q), there exists an v €
GF™(q) such that wt(v) <t and Hu = y. In ¢émparison with matrix
embedding, v is the distortion and grisrequivalent.to M — Hx where M is
the message and z is the éover.object. Let Sy=w : Hv =y. An (n,n —k,t)
linear stego-code is defined by S'= S, -y € GFn — k)(q)andS, #.

The steganography problem is that for any given message M € Fln — k),
and any given cover object x € Fy', find the vector v € FJ such that wt(v)
is minimum and H(z 4+ v) = y. Applying an (n,n — k,t) linear stego-code,
the steganography method can guarantee that the distortion for any given
message and cover object is at most ¢ bits. The coset leader problem is
equivalent to the nearest codeword problem(NCP) for binary linear codes.
NCP is the problem that given a k X n matrix A over GF(2) and a vector

y € GF"(2), find a codeword ¢ such that wt(y — ¢) is minimum. For the



nearest-codeword decoding in coding theory, finding the nearest codeword
for a given vector y is to identify the lowest weight vector(i.e. the coset
leader) in the coset containing y as the error pattern of y[15]. NCP has been
proved that Approximating NCP within any constant factor is NP-Hard|[13].
In some special cases (e.g. F5[14]), a constructive method can efficiently

obtain a proper solution.

2.3 'Tree Based Parity Check

[1] is the first paper presentsia data-coding mapping to reduce pixel mod-
ification. It is a plug-ingprocess for exiting data hiding algorithms. TBPC
algorithm increases three steps into common flow that we discussed in 2.1.1.
they are namely ”Tree Formation” ;" Parity Calculation”, and ” Fountain In-
vestigation”. The flow diagram' of data‘hiding pro¢ess with TBPC is shown

in Figure 2.2.

10
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to length of information L and the ber of embeddable locations M in host
image. Fach node in Master Tree is set as an information bit in host image
that decided by some data hiding algorithm such as LSB. The relationship
between L, M and N is as bellow.

We assume that we have to construct an z-level N-ary Master Tree. So the

number of nodes we need in Master tree is as following equation.

nNodes =1+ N+ N'+ N? + ...+ N% z = logyL

NL—-1
N -1

nNodes =Y N'= L =N*"
1=0

11



The number of embeddable locations M must be larger than nNodes, so we

can obtain the following relationship.

M>NL—1
- N-1

= MN-NL>M-1

:Nz(j\\j:i} (2.1)

From equation (2.1), we can choose a suitable N to construct the Master Tree
to embedding a L-bits data into ahestgdmage with M embeddable locations.
In Parity Calculation, wescan get an ”Info™array by calculating parity for
each leaf in Master Tree. In this-step, we calculate the number of 71”7 from
root to each leaf. If the number of ”1”is odd, thesinformation bit of leaf
node is set as ”1”7. Otherwise, thesinfermation bit' of leaf node is set as 70”.
After Parity Calculation, swve:can get ” Toggle Array” by performing bitwise
logical exclusive-OR(XOR) operation bétween information and Info array
that we got in Parity Calculation step. Every 71”7 in ” Toggle Array” means to
need one time of pixel modification. In Fountain Investigation, we construct
a Toggle that the structure is the same as Master Tree and leafs is filled
up with "Toggle Array”. From bottom to top, if all the children are 717,
we make a change from 71”7 to 70” for all children and set the parent as
717, After Fountain Investigation, we can obtain the result Toggle Tree.
Each node in Toggle Tree that contains information bit ”1” means to need

a pixel modification on interrelated location in Master Tree. By data hiding

12



algorithm, like LSB, we modify 70" to ”1” or ”1” to ”0” according to Toggle
Tree, and we can obtain the final stego image. When receiver gets the stego
image from sender, because of keeping the same key for both sides, receiver
can reconstruct the same structure of Master Tree. By parity calculating the
Master Tree constructed from stego image, receiver can get the information
sent by sender.

TBPC is the first paper that presents this idea, but it can not work efficiently
when there is a long information need to be embedded. The Master tree is
a N-ary tree and the value of N'is.according to L and M.Thus the larger L
makes larger N, as a result, when &ris-darger, TBPC is less efficiency. This

is the most important problem that we try to solve in our scheme.

13



Chapter 3

The Proposed Scheme

In this chapter, we detail to describe our scheme. Our scheme has the same
flow diagram as TBPC. We will deseribe how the MPC model works in each
step. There are three steps in out model that is named ”Tree Formulation”,
"Parity Check”, and ?Fountain Investigation”.  Afterword we will use LSB

data hiding algorithm as a, example to-plug.in.

3.1 Tree Formulation

When we try to hide information into a host image, we can generate a loca-
tion sequence by a key that is held on sender and receiver. By data hiding
algorithms, each location could be seen as information bit, 70” or ”1”. For
example, information bit is 71”7 when the pixel value is odd in LSB algorithm,
and on the other hand, the information bit is 70”. If we try t o hide L-bits
information into a M-pixel image, we have M embeddable locations by LSB

algorithm. By equation (2.1), a suitable N could be chosen and we construct

14



a N-ary tree named ”Master Tree”. We fill up each node from top to bottom
by the bit information of embeddable locations sequence. Here is a simple

example.

Embedding 4%4
Data=[011010010] [— | Host
Image

Figure 3.1: Embedding Diagram

By equation (1), we choose N is equal t6/3,and the tree-level z is 2. So,
we need 13 embeddable locations toreonstriict Méaster Tree. Supposedly, an
embeddable sequence is chosen and the information.bit is [1011100101001].

The 2-level 3-ary Master Tree is constructed as bellow.

23124 |25] 25

25|24 |26 26

371353433

48 | 46 | 46 | 51

Figure 3.2: The Chosen Embeddable Locations

As we obtain the embeddable sequence, we fill the Master Tree up with em-

beddable sequence in order. It is shown as following.

15



Master Tree

Figure 3.3: Example of Master Tree

3.2 Parity Check

After we construct Master tree, we calculate information bit for each leaf in
Master Tree. We visit each leaf up to root, and count the number of 71" for

s odd, the information bit is

717, and on the other i5¢”0”. After this step, we

get a "Info Array” w ée. A simple example is

as bellow.

0000000100

Figure 3.4: Result of Parity Check
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3.3 Fountain Investigation

As we obtain Info Array and Data, we execute bitwise Exclusive-OR logical
operation between Info Array carried by Master and Data, and we obtain a
Toggle Array. As an example showing in (), the Info Array carried by Mas-
ter Tree is [011101001], and Data is [110110111]. We obtain a Toggle Array

which is [101011110] by performing bitwise Exclusive-OR operation.

nfe @OOOOOOOO®
bata HOO@OOOOO®

rggle DOOOOOOOO

| Figure 3.5: Toggie Array

In Toggle Array, each b represents as a téggle that is needed one pixel
modification in original image. However; more médiﬁcation makes more dis-
tortion. Visual artifacts are introduced by any single modification in original
image. To achieve better visual quality of stego-image, the number of 71”7 in
Toggle array must be minimized.

Take an observation for Master Tree. We can find that a simple change in
any node either from ”70” to 71”7 or ”1” to 70", will result in a change in the
parity of its descendant leaf nodes. In other word, changing N sibling nodes
is not as good as changing the parent node.

In TBPC, a Toggle Tree is built with the same structure as the Master Tree,

17



and the leaf nodes are filled up by Toggle Array with the same order. The
other nodes in Toggle Tree are set the value as ”0”. The Fountain Investiga-
tion process is started from bottom of the Toggle Tree. For any node with all
N of its child nodes are with the value of 717, all the child node are updated
with the value of ”0” and the examined node is set to ”1”. Otherwise, the
examined node has no change. After investigating all nodes in Toggle Tree
from bottom leafs to root, we obtain a final Toggle Tree that represents the
Toggle Array.

In our scheme, we lead majority into the original scheme of TBPC. We as-
sume that N is 2k or 2k+1 for Nzary-1rtee. For any node in Toggle Tree
with t of its child nodes are with the value of ”1” ) if ¢t k, the examined node
is set as 717 and all the child nodes are'changed from:”0” to ”1” or from ”1”
to 70”. By our schemej we can obtain-a-better Toggle Tree that represents
the same Toggle Array, and it means that we make less pixel modification in
original image to hide the same data. The example being discussed is shown

in Figure. 3.6 and 3.7.

Toggle Tree

Toggle DOQOO@OOOOO®

Figure 3.6: Initial of Toggle Tree
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Toggle Tree

modification at this corresponding pixel on original image. After the pixel
modification on host image, we obtain a stego-image that is embedded a

secret message.

19



Master Tree Toggle Tree

24125
26
34|34

.| 48|46 | 46|50

25

Figure 3.9: Final Stego-image
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3.4 Extraction

Receiver receives a stego-image that is sent from sender, because they both
have the same secret key and know the length of the secret message. Receiver
can re-build a Master Tree with same structure as that is built by sender.
Master Tree is filled up with the sequence that is generated by the key. After
Party Calculation, the Information Array of Master Tree would be exactly

the same as the information being embedded.

2224125 25

25125126 26

3713413433

48 | 46| 46 | 50

Master Tree

e Aray J OO O©OOOOOO®

Figure 3.10: Step of Extraction
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Chapter 4

Analysis

In this chapter, the performancé of our scheme will be discussed. The main-
concerns in data hiding process are maximum péayload, visual quality and
complexity. Section 4sl describes the proof of Linear Stego-code. Section
4.2 shows the maximum payload of MPC as a funétion of N. Section 4.3
describes the accuracy “of MPC:. Section 4.4 shows, the percentage of MPC

saving. Section 4.5 shows the complexity of MPC.

4.1 Proof of Linear Stego-codes

In [12], W. Zhang and S. Li proposed linear (m,k,t) stego-code, There are
several advantages in some model with the property of linear stego-code. In
practically, we can use a generator to handle the mapping from GF"(q) to
GF*(q) in very short time. Second, it can guarantee that the worst distortion

is ¢, wt(x — ') < t. At the last, it is a effective method for embedding and

22



extracting.

L
4.1.1 (M, L, §)Stego — codes

Definition 1 An (n,k,t)Stego-code is satisfying the following condition. For
any given x € GF"™(q) and y € GF*(q), there exists a ¥’ € GF"™(q) such that
wt(x — ') and H(z') = y.

By Definition 1, we assume
n = M : Misthenumberefnodeinthetree (4.1)

k =L Listhenumberoflea frodes (4.2)

Then, we map GF"(2)to GF¥(2) by trée based MPC. In Fountain Investi-
gation, we obtain a finaliToggle Free and the number of 71”7 in Toggle Tree
means the quantity of medification. By observing the Toggle Tree, the num-
ber of 71”7 in parent and children must, be‘less than or equivalent to half

number due to MPC. A simple example is shown as following Figure.

N
Containsz1s' and z < ?

Figure 4.1: The Number of 71”7 in sub-tree
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We can discover that the worst case is every sub-tree, between level 0 and
N
level 1, with 5 717s’. In this case, inverse process will never be processed.

So we can defined wt(xz — z’) as following equation.

N
wt(z — ) :t:E-L(i—l)
=—  LlE—-1)=N"1

L ,

— 2 [ =N (4.3)
2

. ) L
By equation (4.1), (4.2) and (4.3), our scheme can be said as a (M, L, 5)

Stego-code.

4.1.2 Property ‘of Linear

In [12],W. Zhang and'S. Li defined-linear stego-code, as following.

Definition 2 An (n,k,t)Linear Stego-code is satisfying the following condi-
tion. A kxn matrix H over GEF"(q) 1s called an (n, k,t) Stego-coding matriz
if for any given y € GF*(q), there exists an y € GF"(q) such that wt(x) <t
and Hx'r = y'r.

We have proved that our scheme is a (M, L, §> Stego-code model in 4.1.1.

If we could find or construct the generating matrix for our scheme, we can

L
said our pro- posed scheme is a (M, L, 5) linear Stego-code model.
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Master Tree

Figure 4.2: Example of Master Tree

In Figure 4.2, it is a simple example for a 2-level 2-ary tree. First of all, we
label every node in ordering from root to leaf, and then we have to construct
a 4 x 7 generating matrix. Each column,is set as a relation according to the
path from root to leaf insrdering. In this way,swe can simply construct a

generating matrix H for the tree-shown.as following matrix.

110100 0

110 0100
H:

101 001 0

1 01 0001

Figure 4.3: Generating Matrix

If we assume z = [1,0,0,1,0,1,1], then we can obtain y as following equation.

1

0
1,1,0,1,0,0,0\ | 0
1,1,0,0,1,0,0 1

t. y Ly Yy Yy Ly Uy _ b
Her= 11010010 (1) “lof=Y"

170717070707]‘ 1 O

1
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4.2 Maximum Payload

By any data hiding algorithm, the number of embeddable locations is limited
in a host image, so the size of Master Tree formed in Tree Formulation step is
limited. In Tree Formulation step, we construct a z-level N-ary tree named
Master Tree and the maximum payload of MPC is according to the degree
N of Master Tree.

In the Master Tree, there are L leaf nodes. To form an N-ary complete tree
with L leaf nodes, the total number of nodes, nNodes, can be found by the

following equation.

nNodes =f + N =NEE(N2 S N ¢ = logy L

_ZNI NL—l &y -

N
L), - NL>1 4.4
1), NL (14)

= (
From the equation (4.4), we can conclude that when N increase, the number
of nodes in Master Tree decreases under the same L leaf nodes. In other
words, the larger N is chosen, the higher payload can be embedded. The
percentage of data that can be embedded in a host image, pHidden, can be

found by the following equation.

L
pHidden = = (4.5)
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For fixed data size L and the number of embeddable location M, the limit of

N can be found by equation (4.6).

NL -1 M-1
>

— >M—-1= N >
M_N_1:>MN NL > = _[M—L

1 (4.6)

From equation (4.6), we can conclude that the minimum N should be chosen
in Tree Formulation step and the maximum percentage of payload will be

defined as equation (4.5).

4.3 Accuracy of MPC

In TBPC, Toggle Tree.is formed in Fowurntain Invest}gation step. A simple

majority checking enters into this.step in MPC. This section will discuss

that the Toggle Tree formed by MPC.can work as the Toggle Tree formed by
TBPC. Here is a simple example-in TBPC-with a] 2-ary tree and the Toggle

Array is [11010010].

OOOOOOOO®

Figure 4.4: Toggle Tree
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Take an observation on Toggle Tree in Figure 4.4. We can find that if the
according toggle bit of leaf node is 717, there must be one node that contains
”1” in the path from leaf to the root. In the other words, there is odd number
of 717 in the path from leaf to the root if the toggle bit is ”1”7. Otherwise,
there is even number of 71”7 in the path. We have to ensure the concern of
Toggle Tree when majority checking enters into.

Fountain Investigation step is a process that constructs Toggle Tree from
bottom to root. In the process of constructing, we observe the sub tree in
Toggle Tree and find the foupwiﬂlgjcondi'ﬁibns.j

1

=lp

@

o ~®.0
®.0N_ ©
®.0

©
@/@O

@O\@
©.0

Figure 4.5: Change of Majority Checking
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By induction, if the level of tree is 1, the number of ”1” in the path from leaf
to root is according to toggle bit, odd for ”1” and even for ”0”. Assume that
-1 level ary-tree is correct, there are k nodes contains ”1” in children, and
the number of 71”7 in -1 level path is n. We conclude the following table of

these four conditions.

m=k m=k
Node m i-1 . - -
Level Toggle bit Nodeini | Numberof | Nodeini | Number of

Level =17 Level “17

0 0 0 n 1 n+2

0 1 0 n 1 n+2

1 0 0 n 1 n

1 1 0 n 1 n

Figure 4:6:Truth-Table of MPC

In this table, if the océurrence of #17"in4-1 level path is odd, the occurrence
of 717 in i level path will'be odd. Otherwise, theroccurrence of 71”7 will be

even. So we can ensure the accuracy of MPC.

29



4.4 Percentage of MPC Saving

In most existing data hiding algorithms, the expected percentage of toggling
the value in an embeddable location is 50%. In other words, if we try to
embed L-bits data into host image, 0.5L times of modifications will occur in
process. The percentage of modification, pToggle, is defined as the following

equation.

numbers of modi fication
length of data

pToggle = (4.7)

In this section, we consider pToggle and Toggle Tree with the help of MPC.
First, we give some definitions to be-used in the calculation of pToggle with
i-levels N-ary complete tree. An i-level tree-consists of one root and N
(¢ — 1)-level trees. Fortan i-level'treesthe-snumber of leaf nodes is defined as
L(7). In Fountain Investigation, each node ofleats is 70" or ”1” according
to Toggle Array before investigating the Toggle Tree. The total different
combinations of leaf nodes is defined as C(i). The properties of L(i) and

C'(7) are shown in equation (4.8)-(4.11).

L(i) = N* (4.8)
L(i) = NL(i — 1) (4.9)
C(i) = 2L (4.10)
C@) =[Ca—-1]" (4.11)
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Because of Fountain Investigation, we define leaf nodes are 0-th level and the
root is i-th level. For an i-level tree, we define R(i) as the total modifications
can be reduced in whole combinations from (i — 1)-th level to i-th level with
MPC. In other words, from (i — 1)-th level to i-th level, the total number of
71”7 can be reduced in all combinations. Here is a simple example shown in

Figure 4.7.

@ Lewvel 2

R(2)

O] © @ =
OO OOO EOD-

Figure 4.7: Example of R(7)

For data hiding algorithms without MPC, pToggle equals to 0.5. For an i-
level N-ary tree, by MPC, the percentage of toggle saving from (i — 1)-th

level to i-th level can be defined as the following equation.

(4.12)

Considering with Fountain Investigation, we visit the Toggle Tree from bot-

tom to root. The percentage of modification with MPC for i-level N-ary
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complete tree is defined as following equation.

pToggle = 0.5 — — - == (4.13)

Before we consider pToggle, we give some definitions to be used in the calcu-
lation of R(i). In Fountain Investigation, we construct the Toggle Tree level
by level, from bottom to root, so we can consider the following equations
that have recursive relation between parent and children. First, we assume
that N equals to 2k or 2k+1. We define D(t) as the total number of ”1” that
can be reduced when there are t.717 it ¢hildren. If there are more than half
children containing the value of ”1”, the process*will inverse the parent and
children. In the other words, when the number.of 7 1” in parent and children
is more than k, the number of ”1” that can he reduced is defined as R(¢)
as inverse is performing. The total umber 6f combinations that can make
root equals to 71”7 in i-lévelV-ary complete tree is defined as P(i). The

properties of D(t) and P(i) are shown in equation (4.14) and (4.15).

Dit)=t—[(N+1)—t]=2t— N -1 (4.14)
P(j) = 'Z CN.P@i—1Y-[CGE—1)—P@E— 1N (4.15)

In equation (4.14), there are t children containing value of 1”7 and (N + 1)
nodes. When ¢ is more than k, inverse process will be performed. It will
decrease t 71”7 but increase [(IV + 1) —¢] 71”7 in Toggle Tree, and make root

contains the value ”1”. Each child of root is an 7 — 1 level sub-tree. To
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calculate the number of combinations that the value of root is 71”7, we have
to sum up the whole conditions from j =k +1to j = N.

To consider R(7) in i-level N-ary complete tree, each condition that j is more
than k& makes Toggle Tree save D(j) ”1”7. So R(i) can be defined as multi-

plication of D(t) and P(i), and shown in the following equation.

R(i) = Z D(j)-CY - P(i—1) -[C(i — 1) — P(i — 1)]" (4.16)

By equation (4.8)-(4.16), we can calculate the average p Toggle in whole com-
binations of Toggle Tree. Thete is a theoretic tesult in Chapter 5 for variable
N.

If N is an odd numbers 2k= 1, equation.(4.16)could be simplified. By ob-

serving P(i), we can find the following relation.

k N
Ly, e (4.17)
j=0 J=Ek+1

This discovery of P(i) makes every node in Toggle Tree have a property that
the probability of containing value ”1” is equal to the probability of contain-
ing value ”0”. For an i-level N-ary complete tree, P(i) can be simplified as
following equation.

1

P(i) =5 - oH) — oL()-1 (4.18)
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Let (4.18) substitute for P(i) in equation (4.16), and R(7) can be simpli-

fied as Following equation.

R(i) = Z D(j)-CN-P@i—1)-[C(i—1) = Pli—1)]"7  (4.19)

R(i) = P(i — 1)V E:CN

=R(1)- PG — 1)V (4.20)

Finally, let (4.22) substitute R(i) in equation (4.13) and simplify as following

equation.
- R(1) R(2) R(i)
ploggle =03 &N LMY E€@DLE =~ COLE)
Ri(t)=1 1 !
_05—2—N(ﬁ+m NGB )
3 R(1)
5. — m

In TBPC model, pToggle is a fast converging variable, so it can not work
efficiently when N is more than ”4”. In our scheme, majority checking ex-
tends the length of path that information contained by lead node could be
past down in Fountain Investigation step. Theoretically, we prove that MPC

is more efficient than TBPC on pToggle.
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4.5 Complexity

MPC and TBPC both work as a plug-in function for other existing data
hiding algorithm, so the complexity of them should be low. Thus, we com-
pare the complexity of MPC with TBPC. Tree Formulation step constructs a
Master Tree that is based on length of data L. It is reasonable to assume the
L is much larger than N, so the complexity of Tree Formulation can be said
to be O(L) for MPC and TBPC. In Parity Calculation step, we calculate
Info Array that is hidden in leaf nodes, so the complexity of Parity Calcula-
tion can be said to be O(LiogyL). In TBPC[1]; they presented a method to
make the complexity of-Parity Caleulation be O(L), and it also suits to our
proposed scheme.

The total number of nodes in, Toggle Tree is less than 2L. In Fountain In-
vestigation step, the worst ¢ase is that inverse process needs to be performed
in every majority checking, so the times of external nodes in the tree being
visited is twice and the times of internal nodes is thrice. Thus, we can say

the complexity of Fountain Investigation is O(L).
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Chapter 5

Experimental Results

In this chapter, we try to verify the calculation shown in Chapter 4. Theo-
retically, MPC is more efficient thair TBPE].s0 a set of experiment is carried
out in this chapter. In.5!1, we give a theoretical comparison between MPC
and TBPC. In 5.2, twé hundred random sequences @re generated as Toggle
Array, and using different values of N to-compare the efficiency between MPC

and TBPC.

5.1 pToggle

In TBPCJ1], they defined the pToggle of their scheme as following equation.

pToggle(i) = pToggle(i — 1) — % (5.1)

We compare the result between MPC and TBPC and it is shown in the

following Table.
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N pToggle of MPC pToggle of TBPC
2 0.3589 0.3389
3 0.373 0.4162
4 0.3833 0.4331
3 0.3906 0475
6 0.3967 0.4870

Figure 5.1: Table of pToggle Comparison

In Figure (5.1), we choose different N and compare the theoretical result.
We can easy find that if N is more, than 6, TBPC works un-efficiently. Even

we can say that TBPC issno hglp if N is yﬁofé'-ﬁhan 8. It is shown in the
[ | .

following Figure (52)7l = !7| 7:'} Y

It : - .

0.6

05 s % —
0.4 -ﬁ.—ﬁ#—

0.3

pTogole

—4—TEFC
——NPC

0.2

0.1

Figure 5.2: Comparison of pToggle
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5.2 Analysis of Experimental Results

The efficiency of MPC and TBPC is distinguished by structure of Toggle
Tree. So we choose random N and i to construct different size of Toggle
Tree and let the number of leaf node is more than 15000. In each case, N

and i, we carry out 200 times and the result is shown in following Figure

(5.3).
N 1 plogzlersec pTogglenm: plmprove
3 9 04164 0.3743 8.30%
4 7 0.4331 03840 13.81%
5 & 0.473 0.3908 16.83%
& 6 0.4869 0.3967 18.04%
7 5 0.4933 04007 18.81%
g 5 0.4974 0.4047 18.35%
9 5 0.499] 04071 18.39%
10 5 0.4999 04108 17.78%

Figure 5.3: Table of Experimental Result

In the following Figure (5.4) and (5.5), we show the experimental result as
a broken line graph, and the percentage of modification reduction is defined

as pReduce and shown as following equation.

the number of 1 being reduced in Toggle Tree
pReduce =

the original number of 1in Toggle Tree
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pToggle

0.&

03

9 W

0.z

=4—TEBPC

[

—W—rPC

Figure 5.4: Diagram of pToggle

pReduce

30.00%

25.00%

20.00%

15.00%

10.00%

5.00%

0.00%

——MPC

——-TBPC

4 5 3 7 8 9 10 11 12 13 14 15

Figure 5.5: Diagram of pReduce
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Chapter 6

Conclusion and Future Work

We have proposed an efficient ‘scheme to help other data hiding algorithm
to reduce pixel modification.” Our seéheme ean achieve less pixel modification
than TBPC in large N. We also prove that our scheme is a Linear Stego-
code. Our scheme provides an efficient’ way to find & mapping from z to z’.
According to these, our,scheme can reduce-distortion of host image and let
the data hidden in host image be discovered more hardly. Because of being
a plug-in process, it can be used extensively in steganography, not only for
digital image, but also for video, music, or text files.

In our scheme, we sacrifice some space by a tree structure to achieve the
main goal, reduction of modification, and lead a data coding concept into
our scheme to solve the problem. Perhaps we can use much less modification
to hide a same data by some other data coding method, and utilize idea of

error correcting in data coding to resist attacks in Steganography.
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