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A High Performance Table Lookup Scheme for IPv6 based on Parallel

Processing

Student : Li-Che Hung Adivisor : Yaw-Chung Chen

Department of Computer Science
National Chiao Tung University

Abstract

Internet Protocol version 4 (IPv4) was devised in late 70’s and is widely used in Internet
nowadays. However, the rapidly increasing number-of Internet users leads to the insufficiency
of 1Pv4 addresses. The next generation | P protecol, IPv6, was proposed around 1996 to solve
the problem of address shortage. |Pv6.extends the | P address length from 32 bits to 128 bits.

IP address lookup is based ‘on:longest prefix matching. Most of the existing lookup
algorithms scale poorly as IP addresses move to 128 bit addresses. This thesis proposes a
table lookup scheme for IPv6 based on binary search among prefix lengths [1] and parall€el
processing to improve the lookup performance. First, we merge the hash tables in [1] to
reduce the lookup complexity of the worst case. Then, we apply the techniques of pipeline
and multi-threading to improve the throughput of the average case. We implement our
proposed lookup scheme on Intel 1XP2400 network processor. The parallel processing
architecture of 1XP2400 helps us realize the design of pipeline and multi-threading. The
simulation results show that the maximum throughput is one lookup result every 100 cyclesin
average. This means that, under 600 MHz clock rate, our proposed scheme is able to
accomplish 6 million table lookups of IPv6 packets. Our proposed method demonstrates
better performance obviously comparing with existing high end commercia products.
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Chapter 1 Introduction

Both traffic and users on the Internet have been growing exponentially and continuously.
As a consequence, the 32-bit addresses of 1Pv4 are consumed rapidly and will be exhausted
soon. The next generation |P protocol, 1Pv6, was proposed around 1996 to solve the problem
of address shortage. In IPv6, the address format is 128 bits long.

Because Clasdess Inter-Domain Routing (CIDR) [3] was deployed to alow for arbitrary
aggregation of networks, the process of packet forwarding becomes complicated. When a
router receives an |P packet, it performs the operation of Longest Prefix Matching (LPM) to
decide the output port to forward the packet. A router has alookup table (or called forwarding
table). Each entry in the lookup table'is a 2-tuple (prefix, output port). A prefix is a bit string
whose length is between 1 and:128 in |Rv6: It represents an aggregation of networks. The
operation of LPM is finding the'longest prefix that match the destination | P address, so-called
the best matching prefix (BMP).«Then, the router-forwards the IP packet to the output port

associated with that BMP. Figure 1.1 shows the concept of LPM

Lookup table

A destination | P address , The BMP and output port
Prefix Output port

10110101... o (10110*, P3)

PL

" [T1017 P2 >
101107 P3
110111 P4

Figure 1.1 The concept of LPM.

The link speed, the router data throughput, and the packet forwarding rate are the three



key factors influencing the transmission rate of the Internet links. The high-speed fiber-optic
link and the switching technology are good enough to solve the problem of first two factors.
The third factor, the packet forwarding rate is the bottleneck because the operation of LPM is
complicated.

Many fast lookup schemes [6] have been proposed, but they almost focus on the
processing of IPv4. Their performance degrades when they are scaled to provide lookup for
the 128-bit IPv6 addresses. Three scalable lookup schemes [1] [4] [5] were proposed, but they
still focus on the processing of IPv4 primarily. We propose a lookup scheme for 1Pv6 based
on [1] and paralel processing to improve the lookup performance of IPv6. In our proposed
scheme, the maximum throughput for a lookup result is about 100 cycles in average, which
turns out to be 6 million lookups per second.

Therest of thisthesisis organized as follows. In Chapter 2, we present the related works.
The proposed scheme is discussed.in Chapter~3. We discuss the implementation details and
show the experiment results in Chapter_4. Finaly,-the conclusion and future works are

presented in Chapter 5.



Chapter 2 Related Work

We discuss some important table lookup schemes in this chapter. First we discuss some
important table lookup scheme for IPv4 in section 2.1. The schemes we discuss in section 2.2

are primarily those can be scaled up to IPv6.

2.1 Table Lookup Schemes for IPv4

2.1.1 Path-Compressed trie

A path-compressed trie was:originaly proposed in [9], but it doesn’t support longest
prefix matching. Sklower propoesed.a scheme with.modifications for longest prefix matching
in [10]. A path-compressed trie is similar_to a binary trie. But it removes one-way branch
nodes by collapsing them. Figure 2:1 shows an example of the path-compressed trie :

@F
3(a) %
® OO @L

Prefixes / \

a 0o* 4 4
b 01000*

c 011*

d 1*

e 100*

f 1100*

ﬂ 1101*

h 1110*

I 1111*

Figure 2.1 A path-compressed trie

The prefix in a node represents the best matching prefix with this node. The number beside a



node represents the bit position in the destination 1P address. We check whether the bit in that
bit position of the destination IP address is O or 1 to decide the branching direction. The
search processis as follows. We inspect the bit position of the destination | P address indicated
by the number beside the node traversed to decide the branching direction. If the node is with
a prefix, we need to compare it with the destination IP address. We record the prefix as the
BMP so far if getting matched. We traverse the trie until a leaf is encounter or we fail to get

matched.

2.1.2 Controlled Prefix Expansion

Srinivasan et al. presented a data structure [7]. based on multibit trie. The first idea of the
scheme is to reduce a set of prefixes of arbitrary lengths to a predefined set of lengths by
using a technique called “controlled prefix-expansion”. Figure 2.2 shows an example of the
original prefixes and the expanded prefixes. Applying dynamic programming can do this, but
it also makes the trie construction more time consuming. As Figure 2.3 shows, the 1-hit trie
has been divided into three levels, and the expanded trie only has maximum path length of
two compared to the 1-bit trie that has maximum path length of 7. Thus the search time can be
reduced significantly, and the memory requirement is also smaller than the 1-hit trie. By using
the standard trie representation with arrays of children pointers, insertions and deletions can

be supported in the scheme.



Original Expanded (3 levels)

P1=0* 00* (P1)
P2 = 01* 01* (P2)
Length =2
P3=101* 10* (P5)
P4 = 10101* 11* (P5)
P5=1* - 10100% (P3)
P6 = 0100* 10101* (P4)
P7 = 010001* 10110* (P3)
P8 = 1010000* 10111* (P3) Length=5
01000* (P6)
01001* (P6)
~0100010* (P7) ,
0100011* (P7)
Length=7
1010000* (P8)

Figure 2.2 Controlled prefix expansion with the.original prefixes and the expanded prefixes.



P1 0O
- P2 D1
P5 -
PS5 1
000 P6 — 000
001 P6 001
010 010
011 011
100 100, P3
101 101 P4
110 110 P3
111 111 P3
00 P8 PO
01 01
P7 [0 10
P7 1 11

Figure 2.3 Expanded trie eorresponding to the database of Figure 2.2.

2.1.3 Variants of Multibit Trie

The basic scheme of Gupta et al. [11] uses a two-level multibit trie with fixed strides
similar to the one in Figure 2.3. The first level corresponds to a stride of 24 bits and the
second level to a stride of 8 bits. So we at most take two memory accesses to find the BMP.

Nilsson et al. [12] recursively transform a binary trie with prefixes into a multibit trie.
Starting at the root, they replace a nearly full binary subtrie with a corresponding one-level
multibit subtrie. This process is repeated recursively with the children of the multibit subtrie

obtained. Actually, they replace a nearly full binary subtrie with a multibit subtrie of stridek



if the nearly full binary subtrie has a sufficient fraction of the 2 nodes at level k, where a

sufficient fraction of nodesis defined using a single parameter called fill factor x, with0 < x

IA

1.

2.2 Scalable Table Lookup Schemes

2.2.1 Multiway and Multicolumn Search

By encoding a prefix as the starting point and the end point of a range and precomputing
the best matching prefix associated with @& range, the scheme proposed in [4] does a binary
search in a sorted array for the:longest ‘prefix matching problem. They also use an initia
precomputed 16-bit array to- reduce the ‘number “of required memory accesses. The
multicolumn search exploits thefact that mest.processors prefetch an entire cache line when
doing a memory access. By using six way branching search, the worst case is five cache line
fills in a Pentium Pro with a 32-byte cache line. However, the insertion/deletion of prefixes

may result in atable reconstruction due to the recal culation of the pre-computed information.

2.2.2 Multiway Range Tree

This lookup algorithm [5] is the improved one of that described in section 2.2.1 It has
faster update speed by using address span. Same as the scheme in section 2.2.1, it encodes
each prefix as the start point and the end point of a range. Then it uses the data structure,
B-tree, to store these points. So it is called a multiway range tree. It defines the address span

of anode in the multiway range tree as the range of addresses that can be reached through the



node. Finally, we can find the smallest range covering the destination |P address by traversing
the multiway range tree using the destination |P address as the search key. Figure 2.4 shows
an example of a multiway range tree. The address spans of those nodes in the same level of
the B-tree form a partition of the range of total addresses. When we want to insert or delete a
prefix, we only need to modify the address spans of those nodes in the tree path of the prefix.
The lookup complexity is O(logkN), the space complexity is O(kNlogkN), and the update

complexity is O(klogkN).
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Figure 2.4 An example of a multiway range tree.



Chapter 3 Proposed Scheme

Our proposed scheme is based on the binary search among prefix lengthsin [1]. In[1], it
primarily focuses on the processing of IPv4. We modify the lookup scheme of [1] to fit IPv6,
and we propose three techniques to improve the lookup performance, one is to reduce the
lookup time for the worst case, the other two are to improve the throughput for the average

case.

3.1 Binary Search among Prefix Lengths

We address the lookup scheme;of {1] inthissection. For each possible prefix length, we
use a corresponding hash table to store prefixeswith that length. We use the notation Table to

represent the hash table of prefixes of length i. Figure 3.1 shows a simple example :

prefixes : o1
P1 : 01010* T
P2 : 0101011* stored in corresponding
P3 : 0110110* hash table R o
P4 : 011011010101* P
Table,
P4
Table,

Figure 3.1 Classifying prefixes to different hash tables.
Then, we perform binary search among prefix lengths. It means that we first perform lookup

in a hash table of a specific length. According to the lookup result, we decide whether a hash



table of shorter length or of longer length we need to do lookup next. The binary search tree

for IPv4islikethat in Figure 3.2 :

Figure 3:2 The binary search tree for 1Pv4.

Note that, in Figure 3.2, each node in the binary search tree represents a hash table. Also note
that the number in each node of the binary. search tree represents the corresponding prefix
length of that hash table. For example, the root of the binary search tree in Figure 3.2 means a
hash table of prefixes of length 16, i.e. Tables. In the binary sea rch tree, the path from the
root to a certain node represents a possible lookup order of hash tables. According to the
binary search tree, we perform lookup in Tabless first. Then, according to the lookup result,
we decide whether Tableg or Tabley is the next hash table we need to do lookup and so on.

One characteristic in the problem of longest prefix matching is, if we know that a
destination |P address of the destination matches a prefix of a certain length, we only need to
look for those matching prefixes of longer length. But if the | P address of the destination does
not match any prefix of a certain length, it doesn’t mean that we only need to look for those
matching prefixes of shorter length. The author of [1] proposed a feature to make binary

search work accurately. That feature is so-called a marker. A marker is an even shorter prefix

10



of a prefix. For example, the prefix 10010* has four possible markers of different lengths: 1,
10, 100 and 1001. We don’t need all possible markers for a prefix. For a prefix, we know the
lookup order of hash tables according to the binary search tree. We pick those markers whose
lengths have appeared in the lookup order. It means that we insert markers into those hash
tables in the search path of binary search tree. The meaning of the marker is that we should
have a matched prefix longer than this marker. Having the feature of marker, we can
guarantee that if an |P address matches nothing in a hash table of a certain length, it won’t
match anything in the hash tables of longer lengths. In other words, it only possibly has
matching prefix of shorter length. Let’s take a small binary search tree as an example. See the

binary search treein Figure 3.3 :

Binary search
on lengths

“\,

3/

‘.

Figure 3.3 A small binary search tree.
If we have a prefix 1001011* in Table;, we insert its marker of length 6 into Tables. It means
that we insert 100101 into Table;. We also need to insert the marker of length 4 into Table. It
means that we need to insert 1001 into Table;,. Now, each element in the hash tables may be a
prefix or amarker. Note that the element may be both a prefix and a marker.

The other feature in [1] is that we record with a marker the best matching prefix (BMP)
of that marker. It means that if the element in the hash table is a marker, the element has to
record the information of the BMP of that marker. Consider Figure 3.3 again. If we have only
two prefixes in the forwarding table, say, 1001011* and 10*. The former isin Table; and the
latter isin Table,. For the prefix 1001011*, we need two markers, 1001 and 100101. Both of

11



them have to record the information of the BMP, that is 10* for both markers. In order to

avoid backtracking, the marker is recorded with BMP.

Function BinarySearch(D) (* search for address D *)
Initialize search range R to cover the whole array L;
Initialize BM P found so far to null string;
While R is not empty do
Let { correspond to the middle Ievel in range R;
Extract the first L(i].length bits of D into D";
M :=Search(D', L(i).hash); (* search hash for D' *)
If M is nil Then set R :=upper half of R; (* not found ¥)
Elseff M is a prefix and not a marker
Then BM P := M.bmp; break; (* exit loop *)
Else (* M is a pure marker, or marker and prefix *)
BMP := M.bmp; (* update best matching prefix so far *)
R :=lower half of R,
Endif
Endwhile

Figure 3.4 Binary search among prefix lengths.

Figure 3.4 shows the whole lookup: @lgorithm of binary search among prefix lengths in
[1]. Note that in the second line of Figure 34, the whole array L means that we have an array
of hash tables. Each element in‘that array is.a hash table of a specific length. Also note that in
the sixth line, L[i].length means'the corresponding prefix length of that hash table, and in the
algorithm, searching the upper half ‘of a range means to search the hash tables of shorter
lengths, and searching the lower half of a range means searching the hash tables of longer
lengths.

This lookup scheme is scalable, and it’s complexity is O(log,W). W is the length of the
IP address. In IPv4, we only need to perform lookup of 5 different hash tables in the worst
case. Assuming that we have a perfect hash function, we only need to do lookup for each hash

table only one time. So the total number of times of table lookup is 5.

3.2 Merging Hash Tables

We apply the lookup scheme described in section 3.1 and do some modification to

12



improve the performance for the worst case. When we deal with IPv6, the range of binary
search has to do lookup of 128 hash tables instead of 32 because the IP address in IPv6 is 128
bits long. We need to perform lookup of 7 different hash tables in the worst case because the
lookup complexity is O(l0og,128). The main idea of modification is merging two hash tables
into one. Actually, we merge a hash table of prefixes with even number of bits, say 2n (n=1, 2,
3, 4, etc), with the hash table of prefixes of length 2n+1 (2n+1 is odd). The hash tables of
prefixes of odd length are the last one in all possible lookup order, so they do not have any
marker. Consider the relation between the elements in Table,, and the elements in Tablesnss.
Assuming we have either prefix P -0 or prefix P -1 in Tablexns (P is abit string of length 2n,
and P -0 means P followed by a bit O, and the dot means the operation of concatenation), we
should have a marker P in Tabley,. Note that we may have both P -0 and P -1 in Tableyn.s.

From the discussion above, we associate a marker P in Tabley, with P-0 and P -1. Figure 3.5

shows the concept :
P P-0 P %
m/p<: 1,
Tabl €n Tabl €n+1 Tabl e(2n, 2n+1)
Table,
Tabley
Tables

Figure 3.5 Merging two hash tables into one.
In Figure 3.5, Tablegn, 2n+1) denotes the hash table after merging Tabley, and Tablex1. Andin
Tablepn, 2n+1), the subscript m/p of P denotes that P is either a marker or a prefix. P is

13



associated with two prefixes, P -0 and P -1, and we use arrows to represent the associations.
So P has two arrows : one point to O representing P -0, and the other point to 1 representing P
-1. The subscript p of 0 denotes that O is a prefix, and the subscript p of 1 denotes that 1 is a
prefix too.

By merging two hash tables into one, the total number of distinct hash tables is reduced

from 128 to 64. Now, we only need to lookup 6 instead of 7 different hash tables in the worst

case.

3.2.1 Data Structure

Figure 3.6 and 3.7 illustrate the data structure of the node in the hash table :

Structure of a hash node

1% 8 bytes flag |length| pointer P-0 P-1
A A . A _/
1 byte 1 byte 2 byte 2 byte 2 byte
2" 8 bytes prefix (1 to 64 bit)
3“8 bytes prefix (65 to 128 bit)

Last 4 bytes BMP_length BMP_port

. DA /
2 byte 2 byte

Figure 3.6 Structure of a hash node.

14



Details of a flag field

flag
usage reserved zero | one |marker |prefix
/ NI A Y A/
1 bit 3 hit 1bit 1bit 1bit 1bit

Figure 3.7 Details of aflag field.
The length field indica tes the length of this prefix (or this marker). The pointer field records
the memory location of the next node that has the same hash value. The prefix field records
this prefix (or this marker). The P -0 field records the information of the output port
associated with the prefix prefix -0..Fhe P -1 field records the information of the output port
associated with the prefix prefix-1. The BMP length'field records the length of the BMP of
this marker. Note that the BMP of a prefixis the prefix itself. Whether this node is a marker
or not, BMP_length equals to length if'this node is a prefix. The BMP_port field records the
output port associated with the BMP of this marker (or this prefix). The flag field of the hash
node includes all flags we used. Now, we illustrate those flags in Figure 3.7. The usage flag
indicates that this node is in use. The reserved part is not used. The zero flag indicates that
whether this node has the prefix prefix -0 or not. The one flag indicates whether this node has
the prefix prefix -1 or not. The marker flag indicates that this node is a marker. The prefix flag

indicates that this node is a prefix.

3.2.2 Lookup Algorithm

In addition to merging the hash tables and modifying the data structure of the node, we
also need to modify the lookup algorithm. We address the modified lookup agorithm and

15



then give the pseudo procedure. We perform lookup in some hash table, say Tabley, 2i+1). We
retrieve the first 2i bits of the destination IP address as the hash key to calculate the hash
value, then we use the hash value as the index of Tabley 2i+1). We check whether the hash
node of that index in Tabley; 2i+1) is null, if the hash node is null, it will be failed to get
matched in Tablepyi 2+1) and then we look for those matching prefixes shorter than 2i.
Otherwise the IP address of the destination get matched in Tabley, 2i+1, we record the
BMP_port field of that node as the BMP so far. Now, we know the BMP whose length is
equal or shorter than 2i. Then we try if we can match one more bit. If the 2i+1-th bit of the
destination 1P address is 0 and the zero flag is set, we record the P -0 field as the BMP so far.
If the 2i+1-th bit of the destination IP address is 1 and the one flag is set, we record the P -1
field as the BMP so far. Now, we know the BMP whose length is equal to or shorter than
2i+ 1. Finally, we check whether the flag marker is set or not and decide if we need to look for
those matching prefixes longer than.what we have found so far. Note that we skip the issue of
hash collision because we assume a perfect hash function. Actually, we use the conventional
method of chaining to resolve the‘problem of. hash collision, and we address the details in

section 4.2.2. Figure 3.8 shows the pseudo procedure of lookup :

Function ModifiedLookup (D) /*lookup for address D*/
Let L bethe array of hash tables of al distinct lengths;
Initialize search range R to cover the whole array L;
Initialize BMP found so far to null string;
While Ris not empty do
Let n corresponds to the middle level in range R;
Extract the first n bits of D into D’ and let B be the n+1-th bit;
M :=Hash(D’, L[n]); /*use D’ to be the key, then do hash in L[n]*/

If Misnil

16




Then set R := upper half of R; /*not found*/
Else
Then BMP := M.BMP_port;
If BisOand M.zerois TRUE
Then BMP := M.P -0;
Elseif Bis1 and M.oneis TRUE
Then BMP :=M.P -1,
Endif
If M.marker is TRUE
Then R:=lower half of R;
Else
Then break; /£exit logp*/
Endif
Endif

Endwhile

Figure 3.8 Modified lookup algorithm.

3.3 Making Lookup Algorithm Pipelined

We apply the pipeline technique to the lookup agorithm. The pipeline technique helps us
improve the lookup performance of the average case. After merging hash tables, the binary
search tree is changed. Figure 3.9 shows the binary search tree for |Pv6 without merging hash

tables. Figure 3.10 shows the modified binary search tree for |Pv6 after merging hash tables :
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Figure 3.9 The binary search tree for IPv6 without merging hash tables.
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In Figure 3.10, each node is a hash table containing the information of prefixes of two
consecutive lengths. The modified binary search tree has 6 levels. Considering the lookup
algorithm in Figure 3.8, the loop in the lookup algorithm will be executed 6 times at most. We
perform lookup in the hash table in different levels of the binary search tree for each iteration
of the loop. If we have 6 processing units, we can assign each one to do lookup of the hash
table in one level. So the pipeline has 6 stages. When a processing unit has finished a lookup
operation, the lookup result will be passed to the next processing unit. The next processing
unit then uses the received results to decide what to do. The lookup results include the BMP
so far, the hash table that should be searched next, and the skip flag. The skip flag tells the
next processing unit that we have already found the BMP, so the next processing unit does not
have to do anything. The meaning of the skip flag is same as the operation of break from the

loop in the lookup algorithm of Figure 3.8. Figure 3.11 shows the concept of the pipelined

lookup :

Stagel Stage? Stage3 Staged Stageb Stage6
Y Y Y Y Y Y
o o o o o o
> > g > g > g > g >
« lookup result @ lookup result @ lookup result @ lookup result @ lookup result @
c c c c c c
3. 3. =3 3. =3 =3
= N w BN &) o

Figure 3.11 The concept of pipelined architecture.
By making the lookup algorithm pipelined, we can get one complete lookup result per

processing cycle of astage. A processing cycle of a stage includes three parts. First we use the
destination |P address as the key to do hash. Second we lookup the hash table using the hash

value as the index of the hash table. Finally, we do some computation according to the lookup
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result. Figure 3.12 shows the processing cycle of a stage :

A processing cycle of a stage

Do hash Lookup hash table Compute

Figure 3.12 The processing cycle of a stage.
We should note one thing, using the pipeline technique, we increase the throughput of 1P

lookup, but we don’t reduce the lookup time for each destination |P address.

3.4 Using Multi-Threading in the Pipeline Stage

We use the technique of multi-threading to; further improve the lookup performance for
the average case. Observing the processing cycle in Figure 3.12, when the processing unit
does a lookup on the hash table, it needs to access the memory and waits the memory access
to finish because the hash tables are stored in the memory. In the waiting period, the
processing unit isidle. We can use athread to do an IP lookup. When the thread is waiting the
memory access to finish, it swaps out, so the next thread can utilize the computing resource to
do hash for another destination IP address. Suppose we have 8 threads, the executing order of
the 8 threads is like that in Figure 3.13. By using the technique of multi-threading, we can
save some latency caused by the memory access. Same as the pipeline technique, we only
increase the throughput of IP lookup, but we still don’t reduce the lookup time for each

destination |P address.
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Figure 3.13 The executing order of the 8 threads.
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Chapter 4 Implementation and
Performance Evaluation

4.1 Implementation Platform

We implement our proposed scheme on Intel 1XP2400 network processor [2]. The
parallel processing architecture of 1XP2400 helps us to realize the design of pipeline and
multi-threading. 1XP2400 has one Intel XScale core processor and eight co-processors called

microengins. Figure 4.1 shows the hardware architecture of 1XP2400 :

T2

1 18 1 |18
Intel® |¥PZa00 Network Processar Block Diagram

Figure 4.1 The hardware architecture of 1XP2400.
The Intel XScale coreisjust like other embedded general -purpose processors. We can run the

ordinary embedded operating system on the Intel XScale core, and then we can run the
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ordinary applications on the operating system. The hardware architecture of the microengine
is different from the Intel XScale core. The microengine doesn’t have the hardware assistance
for a stack. So we only use macros instead of functions in the programs running on the
microengine because the ability of the microengine is restricted. The program running on the
microengine can not be too big or too complicated. However, the microengine supports
multi-threading with maximum of 8 threads. The overhead of context switching between two
threads is zero because each thread has its own resources such as registers and the program
counter. The microengine has special hardware designed for processing the network data,
such as the CRC unit doing cyclic redundancy check. And the microengine has an instruction

set specifically tuned for processing the network data. So we can utilize the special hardware

to speed up processing the network data. Figure 4.2 shows the hardware architecture of the

T
,l',__.,l_‘,

o

microengine :

WA HipE
Ti-bit Executive
Firne first tir Ditia Padh

B shif, logeoal

To bzt Maignber

- Pl B &Pl R
Wicroengine

Figure 4.2 The hardware architecture of the microengine.
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Due to the differences between the microengines and the Intel XScale core, the microengines
handle basic packet processing tasks such as IP lookup. The Intel XScale core acts as a
control point managing the microengines and handles the processing tasks of exceptions
caused by the network data.

From the discussion above, we use 6 microengines to implement our design of pipeline.

And we run 8 threads on each microengine for realizing the design of multi-threading.

4.2 Some Implementation Issues

4.2.1 Simultaneous Memory Accesses

Considering the hardware architectureof IXP2400 shown in Figure 4.1, 1XP2400 has
three separate memories : DRAM, channel 1 of SRAM and channel 2 of SRAM. We need to
know the sizes and the latencies-of . these memories because we want to distribute the hash
tables in our proposed scheme to the three separate memories. Distributing the hash tables to
Separate memories is to alleviate the heavy load of accessing only one memory. Table 4.1

shows the maximum sizes of three separate memories :

Memory Maximum size
DRAM 1GB

Channel 1 of SRAM 64MB

Channdl 2 of SRAM 64MB

Table 4.1 The maximum size of three separate memories.

Now, we examine the access latencies of these memories. Intel provides a development
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toolkit called IXA SDK 4.1. IXA SDK 4.1 provides a complete IDE including an editor, a
compiler, an assembler, a ssimulator and a debugger. IXA SDK 4.1 aso provides a lot of
libraries for developers. The simulator in IXA SDK 4.1 can simulate the environment of
I XP2400. We use the smulator in IXA SDK 4.1 to run some test programs and observe the
simulation results. Table 4.2 shows the average latencies of reading 8 words (a word is 4

byteslong) from SRAM and DRAM respectively :

Memory Latency
DRAM 137 cycles
SRAM 117 cycles

Table 4.2 Thelatency of 'SRAM and DRAM.

We didn’t distinguish channel 1 of SRAM from.channel 2 of SRAM in Table 4.2 because
they are the same kind of memory, SRAM. Note that the results in Table 4.2 are in the
circumstance of only one microengine trying to aceess the memories. According to Table 4.2,
we can know that the average latency of SRAM is not much different from that of DRAM.

Intuitively, we can have three simultaneous memory accesses if three different
microengines access the three separate memories respectively. The simulation indeed shows
the same result of memory latency as that in Table 4.2 when three different microengines
access the three separate memories respectively. Figure 4.3 shows the average latencies of
reading 8 words from a certain channel of SRAM when different numbers of microenginestry
to contend for accessing that channel of SRAM. We till don’t need to distinguish channel 1
of SRAM from channel 2 of SRAM in Figure 4.3. Figure 4.4 shows the average latencies of
reading 8 words from DRAM when different numbers of microengines try to contend for
accessing DRAM. The number of simultaneous memory accesses is more than what we

imagine, three. We can have 8 simultaneous SRAM accesses (4 from channel 1 of SRAM and
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4 from channel 2 of SRAM) without increasing the average memory latency. In addition, we

can have 3 simultaneous DRAM accesses without increasing the average memory latency.

SRAM

g 0 192
[&]
2 200 —
2 150 -
£ 100 [ SRAM
P
g 50 —
D
€ 0

1 2 3 4 5 6 7 8

number of microengines
Figure 4.3:The memory latency of SRAM.
DRAM

= 400 32
S 281
= 300 241 B
oy 201
j
£ 200 |37 137 137 O — | DRAM
- L
= 0 | | | |

1 2 3 4 5 6 7 8

number of microengines

Figure 4.4 The memory latency of DRAM.
Now, we extend Figure 3.11 and show the arrangement of those distinct hash tables in the
three separate memories. Figure 4.5 is the extension of Figure 3.11. Those hash tables

accessed by processing unit 1 and processing unit 2 are put in channel 1 of SRAM. Those
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hash tables accessed by processing unit 3 and processing unit 4 are put in channel 2 of SRAM.
Those hash tables accessed by processing unit 5 and processing unit 6 are put in DRAM. A
processing unit means a microengine. Those hash tables accessed by certain processing units

are in the corresponding level of the binary search tree as shown in Figure 4.5.

Stagel Stage? Stage3 Staged Stage5 Stage6
9 9 nY 9 nY nY
3 3 8 3 8 8

D D D
& & J & J g J & &
] ] ¢ > = ] o > = >
«Q lookup result @ lookup result @ lookup result @ lookup result @ lookup resulf @
c c c c c c
=3 =3 =3 =3 =3 =3
= N w B o1 )]

N/ N__/ ~__/

Hash t%les Hash t%les Hash t%les

Channdl 1 Channel.2 DRAM
of SRAM of SRAM

Figure 4.5 The arrangement of hash'tables in the three separate memories.

4.2.2 Transferring Multiple Words from Memory

Each time we access SRAM or DRAM, we can transfer multiple words instead of only
one word. The maximum number of words we can transfer is 16. Figure 4.6 shows the
average latencies of SRAM when we read different numbers of words. Figure 4.7 shows the

average latencies of DRAM when we read different numbers of words.
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Figure 4.6 The average latencies of SRAM.
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Figure 4.7 The average latencies of DRAM.
When we read more than one word from the memory, either SRAM or DRAM, the memory
latency increases only a little bit. It is not multiple increasing in memory latency. We can
utilize this characteristic to aleviate the penalty of hash collision. In section 3.2.2, we skipped
the issue of hash collision and assumed a perfect hash function. Actually, we do not have a

perfect hash function. We use the special hardware in the microengine, the CRC unit, and use
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CRC32 built in the CRC unit as the hash function. As mentioned in section 3.2.2, we use the

method of chaining to resolve the problem of hash collision. Figure 4.8 shows the concept of

chaining :
P1 »| P2 »| P3 »| P4
Tableyi 2i+1)
Figure 4.8 The concept of chaining.
P1 » P2 | P3 » P4
Tablegyi 2i+1

Figure 4.9 The concept of two contiguous nodes.
In Figure 4.8, Tableyi 2i+1)is a hash table. P1, P2, P3 and P4 are prefixes that have the same
hash value in Tabley, 2i+1). So we use a chain to link these four prefixes. If a destination IP

address matches P4, it will need to perform lookup 4 times in Tableyi zi+1). It means that we
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traverse the chain and then find that P4 is a matching prefix. So we need 4 memory accesses
in this case. We can put P2 and P3 together. It means that we put P2 and P3 at a contiguous
memory location. So when we read the node of P2, we can read the node of P3 together by
utilizing the characteristic of transferring multiple words. Figure 4.9 shows the concept. Each
time we encounter a hash collision, we read two contiguous nodes. So the number of lookup
times will be reduced by half when hash collision is happened. But this method wastes the
memory space. For each chain, the memory space we may waste is the size of a hash node.
Assuming that the probability of wasting memory space of a chain is 50%, the expected

memory space we waste is the number of chains multiplying the size of a hash node.

4.3 Performance Evaluation

We use the ssimulator in I XA 'SDK 4.1.to run the"program of our proposed scheme, and
then get the simulation results. We use a random number generator to generate prefixes, then
we use the random number generator. 10 generate destination IP addresses to perform IP
lookup. To get the maximum throughput, we ensure that we won’t have any hash collision by
letting the number of prefixes be small. We generate 10,000 random |P addresses, and then
calculate the number of total cycle counts which they need to perform lookup. Now, we can
get the maximum throughput by dividing the number of total cycle counts by 10,000. The
maximum throughput for alookup result is about one per 100 cycles, i.e. 167 ns, in average.

In [8], the author picks four router products and tests their performances. Table 4.3
shows the information of the routers and Figure 4.10 shows the results. We are interested in
the circumstance that the packet size is 64 bytes. In this circumstance, three of them can not
achieve the line rate, OC48. So we can calculate their forwarding rates. For the other one, we

can only know its minimum forwarding rate. Table 4.4 shows their forwarding rates and ours.
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The performance of our proposed scheme can compete against that of these routers.

Company Model Operating System
Version

Fujitsu Geostream R920 E10V02L03C44

Hitachi GR2000-20H S-9181-61 07-01

Juniper M20 5.5R1.2

NEC CX5210

Table 4.3 The information of the tested routers.

Sustainable Throughput of OC-48 POS Port
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64 256 1024 1500 O Juniper
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Test Packet Size

Figure 4.10 The performance of several routers.
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Maximum forwarding rate
(Million packets per second)
Hitachi 2.82
NEC 481
Fujistu 3.45
Juniper Exceed 4.86
Our proposed scheme Upto6

Table 4.4 The comparison of the maximum forwarding rates.




Chapter 5 Conclusion and Future Works

In this thesis, we propose a lookup scheme for IPv6. This scheme is based on binary
search among prefix length and parallel processing. We propose three techniques, merging
hash tables, pipeline and multithreading to improve the lookup performance. The maximum
throughput is about one lookup result per 100 cycles, i.e. 167 ns, in average.

The performance of our proposed scheme depends on the hash function we use. In the
proposed scheme, we use CRC32 as the hash function. But we can not guarantee the number
of hash collision in the worst case. We only alleviate the penalty of hash collision by using the
technique of transferring multiple words from the memory. So doing a more complete
experiment to find a good and general hashifunction is what we need to do in the future.

We lack a fast update method, to-the lookup table. Doing insertions or deletions may
cause the reconstruction of the-lookup table:"So we need to develop a fast update scheme in

the future work.
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