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ㄧ個基於平行處理的高速 IPv6位址查表機制 

 

學生：洪立哲                                     指導教授：陳耀宗 

 

國立交通大學資訊工程學系 

 

摘要 

 

網際網路協定第四版（Internet Protocol version 4）早在七零年代末期就被發表出

來，並且是目前在網際網路上被廣泛使用的通訊協定。但是隨著網際網路使用者的迅速

增加，IPv4 的位址數量早已不敷使用。下一代的網際網路通訊協定，也就是 IPv6，在

1996年左右被發展出來以解決位址短缺的問題。IPv6將位址的長度從 32 bits 擴展到 

128 bits。 

IP位址查表是基於最長字首比對（Longest prefix matching）。在 IPv6將位址格式

擴展到 128 bits的情況下，大部分現有的查表方法難以延伸至 IPv6。本篇論文提出ㄧ

個基於二元搜尋字首長度（Binary search among prefix lengths） [1] 和平行處理的 IPv6

查表方法來改善查表效能。首先我們合併 [1] 中的 hash tables來改善在最糟情況（Worst 

case）下所需的查表時間。然後我們利用管線（Pipeline）和多執行緒（Multi-threading）

的技巧來改善平均情況（Average case）下的流通量（Throughput）。我們將所提出的查

表方法在 Intel IXP2400 network processor上實作。IXP2400的平行處理架構幫助我們實

現管線和多執行緒的設計。模擬結果顯示最大產出可達平均 100個 cycles完成一個查表

結果，這也表示，在 600 MHz處理器速度下，我們提出之方法每秒可完成 6百萬個 IPv6

封包查表。相較於現有之高檔商用產品，我們的方法有明顯較佳的性能改進。 
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Abstract 

 

Internet Protocol version 4 (IPv4) was devised in late 70’s and is widely used in Internet 

nowadays. However, the rapidly increasing number of Internet users leads to the insufficiency 

of IPv4 addresses. The next generation IP protocol, IPv6, was proposed around 1996 to solve 

the problem of address shortage. IPv6 extends the IP address length from 32 bits to 128 bits. 

IP address lookup is based on longest prefix matching. Most of the existing lookup 

algorithms scale poorly as IP addresses move to 128 bit addresses. This thesis proposes a 

table lookup scheme for IPv6 based on binary search among prefix lengths [1] and parallel 

processing to improve the lookup performance. First, we merge the hash tables in [1] to 

reduce the lookup complexity of the worst case. Then, we apply the techniques of pipeline 

and multi-threading to improve the throughput of the average case. We implement our 

proposed lookup scheme on Intel IXP2400 network processor. The parallel processing 

architecture of IXP2400 helps us realize the design of pipeline and multi-threading. The 

simulation results show that the maximum throughput is one lookup result every 100 cycles in 

average. This means that, under 600 MHz clock rate, our proposed scheme is able to 

accomplish 6 million table lookups of IPv6 packets. Our proposed method demonstrates 

better performance obviously comparing with existing high end commercial products.  
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Chapter 1 Introduction 
 

Both traffic and users on the Internet have been growing exponentially and continuously. 

As a consequence, the 32-bit addresses of IPv4 are consumed rapidly and will be exhausted 

soon. The next generation IP protocol, IPv6, was proposed around 1996 to solve the problem 

of address shortage. In IPv6, the address format is 128 bits long. 

Because Classless Inter-Domain Routing (CIDR) [3] was deployed to allow for arbitrary 

aggregation of networks, the process of packet forwarding becomes complicated. When a 

router receives an IP packet, it performs the operation of Longest Prefix Matching (LPM) to 

decide the output port to forward the packet. A router has a lookup table (or called forwarding 

table). Each entry in the lookup table is a 2-tuple (prefix, output port). A prefix is a bit string 

whose length is between 1 and 128 in IPv6. It represents an aggregation of networks. The 

operation of LPM is finding the longest prefix that match the destination IP address, so-called 

the best matching prefix (BMP). Then, the router forwards the IP packet to the output port 

associated with that BMP. Figure 1.1 shows the concept of LPM： 

 

Figure 1.1 The concept of LPM. 

The link speed, the router data throughput, and the packet forwarding rate are the three 

01* 
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110111* 

Prefix Output port 
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A destination IP address The BMP and output port 
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key factors influencing the transmission rate of the Internet links. The high-speed fiber-optic 

link and the switching technology are good enough to solve the problem of first two factors. 

The third factor, the packet forwarding rate is the bottleneck because the operation of LPM is 

complicated. 

Many fast lookup schemes [6] have been proposed, but they almost focus on the 

processing of IPv4. Their performance degrades when they are scaled to provide lookup for 

the 128-bit IPv6 addresses. Three scalable lookup schemes [1] [4] [5] were proposed, but they 

still focus on the processing of IPv4 primarily. We propose a lookup scheme for IPv6 based 

on [1] and parallel processing to improve the lookup performance of IPv6. In our proposed 

scheme, the maximum throughput for a lookup result is about 100 cycles in average, which 

turns out to be 6 million lookups per second. 

The rest of this thesis is organized as follows. In Chapter 2, we present the related works. 

The proposed scheme is discussed in Chapter 3. We discuss the implementation details and 

show the experiment results in Chapter 4. Finally, the conclusion and future works are 

presented in Chapter 5. 
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Chapter 2 Related Work 
 

We discuss some important table lookup schemes in this chapter. First we discuss some 

important table lookup scheme for IPv4 in section 2.1. The schemes we discuss in section 2.2 

are primarily those can be scaled up to IPv6. 

 

2.1 Table Lookup Schemes for IPv4 

 

2.1.1 Path-Compressed trie 

 

A path-compressed trie was originally proposed in [9], but it doesn’t support longest 

prefix matching. Sklower proposed a scheme with modifications for longest prefix matching 

in [10]. A path-compressed trie is similar to a binary trie. But it removes one-way branch 

nodes by collapsing them. Figure 2.1 shows an example of the path-compressed trie： 

 
Figure 2.1 A path-compressed trie 

The prefix in a node represents the best matching prefix with this node. The number beside a 

1 
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f  1100* 
g  1101* 
h  1110* 
i  1111* 
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node represents the bit position in the destination IP address. We check whether the bit in that 

bit position of the destination IP address is 0 or 1 to decide the branching direction. The 

search process is as follows. We inspect the bit position of the destination IP address indicated 

by the number beside the node traversed to decide the branching direction. If the node is with 

a prefix, we need to compare it with the destination IP address. We record the prefix as the 

BMP so far if getting matched. We traverse the trie until a leaf is encounter or we fail to get 

matched. 

 

2.1.2 Controlled Prefix Expansion 

 
Srinivasan et al. presented a data structure [7] based on multibit trie. The first idea of the 

scheme is to reduce a set of prefixes of arbitrary lengths to a predefined set of lengths by 

using a technique called “controlled prefix expansion”. Figure 2.2 shows an example of the 

original prefixes and the expanded prefixes. Applying dynamic programming can do this, but 

it also makes the trie construction more time consuming. As Figure 2.3 shows, the 1-bit trie 

has been divided into three levels, and the expanded trie only has maximum path length of 

two compared to the 1-bit trie that has maximum path length of 7. Thus the search time can be 

reduced significantly, and the memory requirement is also smaller than the 1-bit trie. By using 

the standard trie representation with arrays of children pointers, insertions and deletions can 

be supported in the scheme. 
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Figure 2.2 Controlled prefix expansion with the original prefixes and the expanded prefixes. 
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Figure 2.3 Expanded trie corresponding to the database of Figure 2.2. 

 

2.1.3 Variants of Multibit Trie 

 

The basic scheme of Gupta et al. [11] uses a two-level multibit trie with fixed strides 

similar to the one in Figure 2.3. The first level corresponds to a stride of 24 bits and the 

second level to a stride of 8 bits. So we at most take two memory accesses to find the BMP. 

Nilsson et al. [12] recursively transform a binary trie with prefixes into a multibit trie. 

Starting at the root, they replace a nearly full binary subtrie with a corresponding one-level 

multibit subtrie. This process is repeated recursively with the children of the multibit subtrie 

obtained. Actually, they replace a nearly full binary subtrie with a multibit subtrie of stride k 
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if the nearly full binary subtrie has a sufficient fraction of the 2k nodes at level k, where a 

sufficient fraction of nodes is defined using a single parameter called fill factor x, with 0 ＜ x 

≦ 1. 

 

2.2 Scalable Table Lookup Schemes 

 

2.2.1 Multiway and Multicolumn Search 

 

By encoding a prefix as the starting point and the end point of a range and precomputing 

the best matching prefix associated with a range, the scheme proposed in [4] does a binary 

search in a sorted array for the longest prefix matching problem. They also use an initial 

precomputed 16-bit array to reduce the number of required memory accesses. The 

multicolumn search exploits the fact that most processors prefetch an entire cache line when 

doing a memory access. By using six way branching search, the worst case is five cache line 

fills in a Pentium Pro with a 32-byte cache line. However, the insertion/deletion of prefixes 

may result in a table reconstruction due to the recalculation of the pre-computed information. 

 

2.2.2 Multiway Range Tree 
 

This lookup algorithm [5] is the improved one of that described in section 2.2.1 It has 

faster update speed by using address span. Same as the scheme in section 2.2.1, it encodes 

each prefix as the start point and the end point of a range. Then it uses the data structure, 

B-tree, to store these points. So it is called a multiway range tree. It defines the address span 

of a node in the multiway range tree as the range of addresses that can be reached through the 
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node. Finally, we can find the smallest range covering the destination IP address by traversing 

the multiway range tree using the destination IP address as the search key. Figure 2.4 shows 

an example of a multiway range tree. The address spans of those nodes in the same level of 

the B-tree form a partition of the range of total addresses. When we want to insert or delete a 

prefix, we only need to modify the address spans of those nodes in the tree path of the prefix. 

The lookup complexity is O(logkN), the space complexity is O(kNlogkN), and the update 

complexity is O(klogkN). 

 

Figure 2.4 An example of a multiway range tree. 
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Chapter 3 Proposed Scheme 

 

Our proposed scheme is based on the binary search among prefix lengths in [1]. In [1], it 

primarily focuses on the processing of IPv4. We modify the lookup scheme of [1] to fit IPv6, 

and we propose three techniques to improve the lookup performance, one is to reduce the 

lookup time for the worst case, the other two are to improve the throughput for the average 

case. 

 

3.1 Binary Search among Prefix Lengths  
 

We address the lookup scheme of [1] in this section. For each possible prefix length, we 

use a corresponding hash table to store prefixes with that length. We use the notation Tablei to 

represent the hash table of prefixes of length i. Figure 3.1 shows a simple example：

 

Figure 3.1 Classifying prefixes to different hash tables. 

Then, we perform binary search among prefix lengths. It means that we first perform lookup 

in a hash table of a specific length. According to the lookup result, we decide whether a hash 

prefixes： 
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P2：0101011* 
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P4：011011010101* 
 

stored in corresponding 
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P4 
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table of shorter length or of longer length we need to do lookup next. The binary search tree 

for IPv4 is like that in Figure 3.2： 

 

Figure 3.2 The binary search tree for IPv4. 

Note that, in Figure 3.2, each node in the binary search tree represents a hash table. Also note 

that the number in each node of the binary search tree represents the corresponding prefix 

length of that hash table. For example, the root of the binary search tree in Figure 3.2 means a 

hash table of prefixes of length 16, i.e. Table16. In the binary sea rch tree, the path from the 

root to a certain node represents a possible lookup order of hash tables. According to the 

binary search tree, we perform lookup in Table16 first. Then, according to the lookup result, 

we decide whether Table8 or Table24 is the next hash table we need to do lookup and so on. 

One characteristic in the problem of longest prefix matching is, if we know that a 

destination IP address of the destination matches a prefix of a certain length, we only need to 

look for those matching prefixes of longer length. But if the IP address of the destination does 

not match any prefix of a certain length, it doesn’t mean that we only need to look for those 

matching prefixes of shorter length. The author of [1] proposed a feature to make binary 

search work accurately. That feature is so-called a marker. A marker is an even shorter prefix 
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of a prefix. For example, the prefix 10010* has four possible markers of different lengths： 1, 

10, 100 and 1001. We don’t need all possible markers for a prefix. For a prefix, we know the 

lookup order of hash tables according to the binary search tree. We pick those markers whose 

lengths have appeared in the lookup order. It means that we insert markers into those hash 

tables in the search path of binary search tree. The meaning of the marker is that we should 

have a matched prefix longer than this marker. Having the feature of marker, we can 

guarantee that if an IP address matches nothing in a hash table of a certain length, it won’t 

match anything in the hash tables of longer lengths. In other words, it only possibly has 

matching prefix of shorter length. Let’s take a small binary search tree as an example. See the 

binary search tree in Figure 3.3： 

 
Figure 3.3 A small binary search tree. 

If we have a prefix 1001011* in Table7, we insert its marker of length 6 into Table6. It means 

that we insert 100101 into Table6. We also need to insert the marker of length 4 into Table4. It 

means that we need to insert 1001 into Table4. Now, each element in the hash tables may be a 

prefix or a marker. Note that the element may be both a prefix and a marker.  

The other feature in [1] is that we record with a marker the best matching prefix (BMP) 

of that marker. It means that if the element in the hash table is a marker, the element has to 

record the information of the BMP of that marker. Consider Figure 3.3 again. If we have only 

two prefixes in the forwarding table, say, 1001011* and 10*. The former is in Table7 and the 

latter is in Table2. For the prefix 1001011*, we need two markers, 1001 and 100101. Both of 
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them have to record the information of the BMP, that is 10* for both markers. In order to 

avoid backtracking, the marker is recorded with BMP. 

 

Figure 3.4 Binary search among prefix lengths. 

Figure 3.4 shows the whole lookup algorithm of binary search among prefix lengths in 

[1]. Note that in the second line of Figure 3.4, the whole array L means that we have an array 

of hash tables. Each element in that array is a hash table of a specific length. Also note that in 

the sixth line, L[i].length means the corresponding prefix length of that hash table, and in the 

algorithm, searching the upper half of a range means to search the hash tables of shorter 

lengths, and searching the lower half of a range means searching the hash tables of longer 

lengths. 

This lookup scheme is scalable, and it’s complexity is O(log2W). W is the length of the 

IP address. In IPv4, we only need to perform lookup of 5 different hash tables in the worst 

case. Assuming that we have a perfect hash function, we only need to do lookup for each hash 

table only one time. So the total number of times of table lookup is 5. 

 

3.2 Merging Hash Tables 
 

We apply the lookup scheme described in section 3.1 and do some modification to 
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improve the performance for the worst case. When we deal with IPv6, the range of binary 

search has to do lookup of 128 hash tables instead of 32 because the IP address in IPv6 is 128 

bits long. We need to perform lookup of 7 different hash tables in the worst case because the 

lookup complexity is O(log2128). The main idea of modification is merging two hash tables 

into one. Actually, we merge a hash table of prefixes with even number of bits, say 2n (n=1, 2, 

3, 4, etc), with the hash table of prefixes of length 2n+1 (2n+1 is odd). The hash tables of 

prefixes of odd length are the last one in all possible lookup order, so they do not have any 

marker. Consider the relation between the elements in Table2n and the elements in Table2n+1. 

Assuming we have either prefix P･0 or prefix P･1 in Table2n+1 (P is a bit string of length 2n, 

and P･0 means P followed by a bit 0, and the dot means the operation of concatenation), we 

should have a marker P in Table2n. Note that we may have both P･0 and P･1 in Table2n+1. 

From the discussion above, we associate a marker P in Table2n with P･0 and P･1. Figure 3.5 

shows the concept： 

 

Figure 3.5 Merging two hash tables into one. 

In Figure 3.5, Table(2n, 2n+1) denotes the hash table after merging Table2n and Table2n+1. And in 

Table(2n, 2n+1), the subscript m/p of P denotes that P is either a marker or a prefix. P is 

P 

Table2 

P･0 
P･1 

Table2n+1 

Pm/p 
0p 
1p 

Table(2n, 2n+1) Table2n 

Table4 
Table6 

･ 
･ 
･ ･ 
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associated with two prefixes, P･0 and P･1, and we use arrows to represent the associations. 

So P has two arrows：one point to 0 representing P･0, and the other point to 1 representing P

･1. The subscript p of 0 denotes that 0 is a prefix, and the subscript p of 1 denotes that 1 is a 

prefix too. 

By merging two hash tables into one, the total number of distinct hash tables is reduced 

from 128 to 64. Now, we only need to lookup 6 instead of 7 different hash tables in the worst 

case. 

 

3.2.1 Data Structure 

 
Figure 3.6 and 3.7 illustrate the data structure of the node in the hash table： 

 

Figure 3.6 Structure of a hash node. 

flag P･0 P･1 pointer length 

prefix (1 to 64 bit) 

prefix (65 to 128 bit) 

1 byte 1 byte 2 byte 2 byte 2 byte 

BMP_length BMP_port 

1st 8 bytes 

2nd 8 bytes 

3rd 8 bytes 

Last 4 bytes 

Structure of a hash node 

2 byte 2 byte 
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Figure 3.7 Details of a flag field. 

The length field indica tes the length of this prefix (or this marker). The pointer field records 

the memory location of the next node that has the same hash value. The prefix field records 

this prefix (or this marker). The P･0 field records the information of the output port 

associated with the prefix prefix･0. The P･1 field records the information of the output port 

associated with the prefix prefix･1. The BMP_length field records the length of the BMP of 

this marker. Note that the BMP of a prefix is the prefix itself. Whether this node is a marker 

or not, BMP_length equals to length if this node is a prefix. The BMP_port field records the 

output port associated with the BMP of this marker (or this prefix). The flag field of the hash 

node includes all flags we used. Now, we illustrate those flags in Figure 3.7. The usage flag 

indicates that this node is in use. The reserved part is not used. The zero flag indicates that 

whether this node has the prefix prefix･0 or not. The one flag indicates whether this node has 

the prefix prefix･1 or not. The marker flag indicates that this node is a marker. The prefix flag 

indicates that this node is a prefix. 

 

3.2.2 Lookup Algorithm 
 

In addition to merging the hash tables and modifying the data structure of the node, we 

also need to modify the lookup algorithm. We address the modified lookup algorithm and 

flag 

usage zero one marker prefix reserved 

Details of a flag field 

1 bit 3 bit 1 bit 1 bit 1 bit 1 bit 
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then give the pseudo procedure. We perform lookup in some hash table, say Table(2i, 2i+1). We 

retrieve the first 2i bits of the destination IP address as the hash key to calculate the hash 

value, then we use the hash value as the index of Table(2i, 2i+1). We check whether the hash 

node of that index in Table(2i, 2i+1) is null, if the hash node is null, it will be failed to get 

matched in Table(2i, 2i+1) and then we look for those matching prefixes shorter than 2i. 

Otherwise the IP address of the destination get matched in Table(2i, 2i+1), we record the 

BMP_port field of that node as the BMP so far. Now, we know the BMP whose length is 

equal or shorter than 2i. Then we try if we can match one more bit. If the 2i+1-th bit of the 

destination IP address is 0 and the zero flag is set, we record the P･0 field as the BMP so far. 

If the 2i+1-th bit of the destination IP address is 1 and the one flag is set, we record the P･1 

field as the BMP so far. Now, we know the BMP whose length is equal to or shorter than 

2i+1. Finally, we check whether the flag marker is set or not and decide if we need to look for 

those matching prefixes longer than what we have found so far. Note that we skip the issue of 

hash collision because we assume a perfect hash function. Actually, we use the conventional 

method of chaining to resolve the problem of hash collision, and we address the details in 

section 4.2.2. Figure 3.8 shows the pseudo procedure of lookup： 

 

Function ModifiedLookup (D) /*lookup for address D*/ 

Let L be the array of hash tables of all distinct lengths; 

Initialize search range R to cover the whole array L; 

Initialize BMP found so far to null string; 

While R is not empty do 

    Let n corresponds to the middle level in range R; 

    Extract the first n bits of D into D’ and let B be the n+1-th bit; 

    M := Hash(D’, L[n]); /*use D’ to be the key, then do hash in L[n]*/ 

    If M is nil 
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Then set R := upper half of R; /*not found*/ 

    Else 

        Then BMP := M.BMP_port; 

             If B is 0 and M.zero is TRUE 

                 Then BMP := M.P･0; 

             Elseif B is 1 and M.one is TRUE 

                 Then BMP := M.P･1; 

             Endif 

             If M.marker is TRUE 

                 Then R := lower half of R; 

             Else 

                 Then break; /*exit loop*/ 

Endif 

    Endif 

Endwhile 

Figure 3.8 Modified lookup algorithm. 

 

3.3 Making Lookup Algorithm Pipelined 
 

We apply the pipeline technique to the lookup algorithm. The pipeline technique helps us 

improve the lookup performance of the average case. After merging hash tables, the binary 

search tree is changed. Figure 3.9 shows the binary search tree for IPv6 without merging hash 

tables. Figure 3.10 shows the modified binary search tree for IPv6 after merging hash tables： 
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Figure 3.9 The binary search tree for IPv6 without merging hash tables. 
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Figure 3.10 The modified binary search tree for IPv6. 
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In Figure 3.10, each node is a hash table containing the information of prefixes of two 

consecutive lengths. The modified binary search tree has 6 levels. Considering the lookup 

algorithm in Figure 3.8, the loop in the lookup algorithm will be executed 6 times at most. We 

perform lookup in the hash table in different levels of the binary search tree for each iteration 

of the loop. If we have 6 processing units, we can assign each one to do lookup of the hash 

table in one level. So the pipeline has 6 stages. When a processing unit has finished a lookup 

operation, the lookup result will be passed to the next processing unit. The next processing 

unit then uses the received results to decide what to do. The lookup results include the BMP 

so far, the hash table that should be searched next, and the skip flag. The skip flag tells the 

next processing unit that we have already found the BMP, so the next processing unit does not 

have to do anything. The meaning of the skip flag is same as the operation of break from the 

loop in the lookup algorithm of Figure 3.8. Figure 3.11 shows the concept of the pipelined 

lookup： 

 
Figure 3.11 The concept of pipelined architecture. 

By making the lookup algorithm pipelined, we can get one complete lookup result per 

processing cycle of a stage. A processing cycle of a stage includes three parts. First we use the 

destination IP address as the key to do hash. Second we lookup the hash table using the hash 

value as the index of the hash table. Finally, we do some computation according to the lookup 
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result. Figure 3.12 shows the processing cycle of a stage： 

 

Figure 3.12 The processing cycle of a stage. 

We should note one thing, using the pipeline technique, we increase the throughput of IP 

lookup, but we don’t reduce the lookup time for each destination IP address. 

 

3.4 Using Multi-Threading in the Pipeline Stage 

 
We use the technique of multi-threading to further improve the lookup performance for 

the average case. Observing the processing cycle in Figure 3.12, when the processing unit 

does a lookup on the hash table, it needs to access the memory and waits the memory access 

to finish because the hash tables are stored in the memory. In the waiting period, the 

processing unit is idle. We can use a thread to do an IP lookup. When the thread is waiting the 

memory access to finish, it swaps out, so the next thread can utilize the computing resource to 

do hash for another destination IP address. Suppose we have 8 threads, the executing order of 

the 8 threads is like that in Figure 3.13. By using the technique of multi-threading, we can 

save some latency caused by the memory access. Same as the pipeline technique, we only 

increase the throughput of IP lookup, but we still don’t reduce the lookup time for each 

destination IP address. 
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Figure 3.13 The executing order of the 8 threads. 
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Chapter 4 Implementation and 
Performance Evaluation 
 

4.1 Implementation Platform 
 

We implement our proposed scheme on Intel IXP2400 network processor [2]. The 

parallel processing architecture of IXP2400 helps us to realize the design of pipeline and 

multi-threading. IXP2400 has one Intel XScale core processor and eight co-processors called 

microengins. Figure 4.1 shows the hardware architecture of IXP2400： 

 

Figure 4.1 The hardware architecture of IXP2400. 

The Intel XScale core is just like other embedded general-purpose processors. We can run the 

ordinary embedded operating system on the Intel XScale core, and then we can run the 
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ordinary applications on the operating system. The hardware architecture of the microengine 

is different from the Intel XScale core. The microengine doesn’t have the hardware assistance 

for a stack. So we only use macros instead of functions in the programs running on the 

microengine because the ability of the microengine is restricted. The program running on the 

microengine can not be too big or too complicated. However, the microengine supports 

multi-threading with maximum of 8 threads. The overhead of context switching between two 

threads is zero because each thread has its own resources such as registers and the program 

counter. The microengine has special hardware designed for processing the network data, 

such as the CRC unit doing cyclic redundancy check. And the microengine has an instruction 

set specifically tuned for processing the network data. So we can utilize the special hardware 

to speed up processing the network data. Figure 4.2 shows the hardware architecture of the 

microengine： 

 

 

Figure 4.2 The hardware architecture of the microengine. 
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Due to the differences between the microengines and the Intel XScale core, the microengines 

handle basic packet processing tasks such as IP lookup. The Intel XScale core acts as a 

control point managing the microengines and handles the processing tasks of exceptions 

caused by the network data. 

From the discussion above, we use 6 microengines to implement our design of pipeline. 

And we run 8 threads on each microengine for realizing the design of multi-threading. 

 

4.2 Some Implementation Issues 
 

4.2.1 Simultaneous Memory Accesses 
 

Considering the hardware architecture of IXP2400 shown in Figure 4.1, IXP2400 has 

three separate memories： DRAM, channel 1 of SRAM and channel 2 of SRAM. We need to 

know the sizes and the latencies of these memories because we want to distribute the hash 

tables in our proposed scheme to the three separate memories. Distributing the hash tables to 

separate memories is to alleviate the heavy load of accessing only one memory. Table 4.1 

shows the maximum sizes of three separate memories： 

 

Memory Maximum size 

DRAM 1GB 

Channel 1 of SRAM 64MB 

Channel 2 of SRAM 64MB 

Table 4.1 The maximum size of three separate memories. 

Now, we examine the access latencies of these memories. Intel provides a development 
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toolkit called IXA SDK 4.1. IXA SDK 4.1 provides a complete IDE including an editor, a 

compiler, an assembler, a simulator and a debugger. IXA SDK 4.1 also provides a lot of 

libraries for developers. The simulator in IXA SDK 4.1 can simulate the environment of 

IXP2400. We use the simulator in IXA SDK 4.1 to run some test programs and observe the 

simulation results. Table 4.2 shows the average latencies of reading 8 words (a word is 4 

bytes long) from SRAM and DRAM respectively： 

 

Memory Latency 

DRAM 137 cycles 

SRAM 117 cycles 

Table 4.2 The latency of SRAM and DRAM. 

We didn’t distinguish channel 1 of SRAM from channel 2 of SRAM in Table 4.2 because 

they are the same kind of memory, SRAM. Note that the results in Table 4.2 are in the 

circumstance of only one microengine trying to access the memories. According to Table 4.2, 

we can know that the average latency of SRAM is not much different from that of DRAM. 

Intuitively, we can have three simultaneous memory accesses if three different 

microengines access the three separate memories respectively. The simulation indeed shows 

the same result of memory latency as that in Table 4.2 when three different microengines 

access the three separate memories respectively. Figure 4.3 shows the average latencies of 

reading 8 words from a certain channel of SRAM when different numbers of microengines try 

to contend for accessing that channel of SRAM. We still don’t need to distinguish channel 1 

of SRAM from channel 2 of SRAM in Figure 4.3. Figure 4.4 shows the average latencies of 

reading 8 words from DRAM when different numbers of microengines try to contend for 

accessing DRAM. The number of simultaneous memory accesses is more than what we 

imagine, three. We can have 8 simultaneous SRAM accesses (4 from channel 1 of SRAM and 
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4 from channel 2 of SRAM) without increasing the average memory latency. In addition, we 

can have 3 simultaneous DRAM accesses without increasing the average memory latency.  
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Figure 4.3 The memory latency of SRAM. 
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Figure 4.4 The memory latency of DRAM. 

Now, we extend Figure 3.11 and show the arrangement of those distinct hash tables in the 

three separate memories. Figure 4.5 is the extension of Figure 3.11. Those hash tables 

accessed by processing unit 1 and processing unit 2 are put in channel 1 of SRAM. Those 
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hash tables accessed by processing unit 3 and processing unit 4 are put in channel 2 of SRAM. 

Those hash tables accessed by processing unit 5 and processing unit 6 are put in DRAM. A 

processing unit means a microengine. Those hash tables accessed by certain processing units 

are in the corresponding level of the binary search tree as shown in Figure 4.5. 

 

Figure 4.5 The arrangement of hash tables in the three separate memories. 

 

4.2.2 Transferring Multiple Words from Memory 
 

Each time we access SRAM or DRAM, we can transfer multiple words instead of only 

one word. The maximum number of words we can transfer is 16. Figure 4.6 shows the 

average latencies of SRAM when we read different numbers of words. Figure 4.7 shows the 

average latencies of DRAM when we read different numbers of words.  
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Figure 4.6 The average latencies of SRAM. 
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Figure 4.7 The average latencies of DRAM. 

When we read more than one word from the memory, either SRAM or DRAM, the memory 

latency increases only a little bit. It is not multiple increasing in memory latency. We can 

utilize this characteristic to alleviate the penalty of hash collision. In section 3.2.2, we skipped 

the issue of hash collision and assumed a perfect hash function. Actually, we do not have a 

perfect hash function. We use the special hardware in the microengine, the CRC unit, and use 
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CRC32 built in the CRC unit as the hash function. As mentioned in section 3.2.2, we use the 

method of chaining to resolve the problem of hash collision. Figure 4.8 shows the concept of 

chaining： 

 

Figure 4.8 The concept of chaining. 

 

Figure 4.9 The concept of two contiguous nodes. 

In Figure 4.8, Table(2i, 2i+1) is a hash table. P1, P2, P3 and P4 are prefixes that have the same 

hash value in Table(2i, 2i+1). So we use a chain to link these four prefixes. If a destination IP 

address matches P4, it will need to perform lookup 4 times in Table(2i, 2i+1). It means that we 
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traverse the chain and then find that P4 is a matching prefix. So we need 4 memory accesses 

in this case. We can put P2 and P3 together. It means that we put P2 and P3 at a contiguous 

memory location. So when we read the node of P2, we can read the node of P3 together by 

utilizing the characteristic of transferring multiple words. Figure 4.9 shows the concept. Each 

time we encounter a hash collision, we read two contiguous nodes. So the number of lookup 

times will be reduced by half when hash collision is happened. But this method wastes the 

memory space. For each chain, the memory space we may waste is the size of a hash node. 

Assuming that the probability of wasting memory space of a chain is 50%, the expected 

memory space we waste is the number of chains multiplying the size of a hash node. 

 

4.3 Performance Evaluation 
 

We use the simulator in IXA SDK 4.1 to run the program of our proposed scheme, and 

then get the simulation results. We use a random number generator to generate prefixes, then 

we use the random number generator to generate destination IP addresses to perform IP 

lookup. To get the maximum throughput, we ensure that we won’t have any hash collision by 

letting the number of prefixes be small. We generate 10,000 random IP addresses, and then 

calculate the number of total cycle counts which they need to perform lookup. Now, we can 

get the maximum throughput by dividing the number of total cycle counts by 10,000. The 

maximum throughput for a lookup result is about one per 100 cycles, i.e. 167 ns, in average. 

In [8], the author picks four router products and tests their performances. Table 4.3 

shows the information of the routers and Figure 4.10 shows the results. We are interested in 

the circumstance that the packet size is 64 bytes. In this circumstance, three of them can not 

achieve the line rate, OC48. So we can calculate their forwarding rates. For the other one, we 

can only know its minimum forwarding rate. Table 4.4 shows their forwarding rates and ours. 
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The performance of our proposed scheme can compete against that of these routers. 

 

 

Company Model Operating System 

Version 

Fujitsu Geostream R920 E10V02L03C44 

Hitachi GR2000-20H S-9181-61 07-01 

Juniper M20 5.5R1.2 

NEC CX5210 -------------------- 

Table 4.3 The information of the tested routers. 
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Figure 4.10 The performance of several routers. 
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 Maximum forwarding rate 

(Million packets per second) 

Hitachi 2.82 

NEC 4.81 

Fujistu 3.45 

Juniper Exceed 4.86 

Our proposed scheme Up to 6 

Table 4.4 The comparison of the maximum forwarding rates. 
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Chapter 5 Conclusion and Future Works 
 

In this thesis, we propose a lookup scheme for IPv6. This scheme is based on binary 

search among prefix length and parallel processing. We propose three techniques, merging 

hash tables, pipeline and multithreading to improve the lookup performance. The maximum 

throughput is about one lookup result per 100 cycles, i.e. 167 ns, in average. 

The performance of our proposed scheme depends on the hash function we use. In the 

proposed scheme, we use CRC32 as the hash function. But we can not guarantee the number 

of hash collision in the worst case. We only alleviate the penalty of hash collision by using the 

technique of transferring multiple words from the memory. So doing a more complete 

experiment to find a good and general hash function is what we need to do in the future. 

We lack a fast update method to the lookup table. Doing insertions or deletions may 

cause the reconstruction of the lookup table. So we need to develop a fast update scheme in 

the future work. 
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