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ABSTRACT

In this paper, we consider a map labeling problem where the anchors to be labeled are

restricted on a line. It is known that the 1d4P rectangle label, the 1d4S square label and

the Slope4P fixed height (width) label placement problems can all be solved in linear time

provided that the anchors are in sorted order [2,3]. We extend the decision version results

to the maximization version: Max-1d4P label placement problem, which is to maximize

the number of labels that can be placed on a given set of anchors on a horizontal line. We

present an O(n log n) time algorithm solution, where n is the input size.
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Chapter 1 Introduction

In cartographic literature, the main approach to letting people know what is on the map is

attaching texts or labels to geographic features on the map. Automated label placement

subject to the constraint that the labels are pairwise disjoint is a well-known important

problem in geographic information systems (GIS). In the ACM Computational Geometry

Impact Task Force report [1] the map label placement is listed as an important research

area. Since this problem in general is known to be NP-complete, many heuristics or

special cases for which polynomial time algorithms are given have been presented. For

instance, there are many algorithms that have been developed for labeling points that are

on lines [2–6] or in a region [7–16].

Let A denote a set of points {A1, A2, . . . , An} in the plane, called anchors. Asso-

ciated with each anchor there is an axis-parallel rectangle, called label. The point-feature

label placement problem or simply point labeling problem, is to determine a placement

of these labels such that the anchors coincide with one of the corners of their associated

labels and no two labels overlap. The point labeling problem for labeling an arbitrary set

of points has been shown to be NP-complete [8,10,11,14] and some heuristic algorithms

were presented in [8,16,17].

There are many variations of the point labeling problem, including shapes of the

labels, locations of the anchors to be labeled and where the labels are placed. Consider

the case that the placement of the labels are restricted. For instance, one is fixed-position

model, denoted 4P model, in which a label must be placed so that the anchor coincides

with one of its four corners; and another is slider model, denoted 4S model, in which a

label can be placed so that the anchor lies on one of the four boundary edges of the label.

Figure 1.1 shows these two point labeling models. The positions {1, 2, 3, 4} in 4P model

shown in Figure 1.1 denote the corner positions of labels coincident with the anchor, and

the arrows in 4S model indicate the directions along which the label can slide, maintaining

contact with the anchor. Moreover, if we restrict the number of fixed positions to be 2, and

horizontal or vertical direction in which fixed-position labels are arranged, the problem

will be denoted 2PH or 2PV model respectively.
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Figure 1.1: Illustration of 2PV, 2PH, 4P, and 4S models.

In this paper we consider the case when the anchors lie on a line and are to be labeled

with rectangular labels. This problem has been studied previously [2,3,6,12]. The prefix

1d or Slope refers to the problem in which the anchors lie on a horizontal or a sloping line,

respectively. Garrido et al. [3] gave linear time algorithms for 1d4P rectangle label, 1d4S

square label, and Slope4P square label models, and a quadratic time algorithm for Slope4S

square label model as well. They also showed 1d4S rectangle label is NP-complete and

consider the maximization version to maximize the size of labels. Chen et al. [2] further

provided linear time algorithms for Slope4P fixed height(or width) rectangle label and

elastic rectangular label (of a given area) models. They also presented a lower bound

Ω(n log n) time and a different method to maximize the label size for 1d4S square label

model. In addition, in order to produce map labeling of maximum legibility in automatic

label placement, certain optimization versions of the problem were considered. The two

most common optimization criteria are the number of labels and the size of labels, for

which feasible solutions can be obtained. In 1998, Agarwal et al. [18] provided a PTAS

(1+1/k) algorithm in O(n log n+n2k−1) time, for any integer k ≥ 1, for 4P fixed-height

rectangle label model and an O(log n) factor approximation algorithm in O(n log n) time

for 4P arbitrary rectangle labels. Poon et al. [6] further considered the weighted case in

which each label is associated with a given weight and provided the same approximation

result for 4P fixed-height weighted rectangle model. They also gave a (2 + ε) factor

approximation algorithm in O(n2/ε) time for 1d4S weighted rectangle label. As for 4P

arbitrary rectangle label, Berman et al. [19] presented a dO(logk n)e factor approximation

algorithm in O(nk+1) time, for any integer k ≥ 2. In 2004, Chan [20] improved the

previous results to give a PTAS (1 + 1/k) algorithm in O(n log n + n∆k−1) time, where

∆ ≤ n denotes the maximum number of rectangles whose intersection is nonempty, for

4P fixed-height rectangle label model and a dO(logk n)e factor approximation algorithm
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in nO(k/ log k) time for 4P arbitrary rectangle label.

We investigate the maximization version of the feasible number of labels when the

anchors lie on a horizontal line. That is, we want to maximize the number of labels for

which a feasible placement exists that no two labels overlap. As a contrast to the previous

results in which they all employed the line stabbing technique, we describe a different

approach to solving this model, referred to as Max-1d4P rectangle label model, or Max-

1d4P for short, in O(n log n) time. This paper is organized as follows. In Section 2,

we introduce some definitions and our R-map method. Then we present in Section 3 an

intuitive method to solve Max-1d2PH, Max-1d2PV models and point out the difference

between Max-1d2P and Max-1d4P models. We also consider the intricate Max-1d4P

model and provide an O(n log n) time algorithm. Then we extend it to an O(kn log kn)

solution for Max-1d2kP model, which is a generalization of Max-1d4P model. Finally

we conclude in Section 4 with some discussions of future work.
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Chapter 2 Preliminaries

Consider a set of anchors A = {A1, A2, . . . , An} on a horizontal line, and each anchor

Ak is associated with its position (in x-coordinate) xk and label size lk. The aim is to

maximize the number of feasible labels so that they do not overlap with each other.

Figure 2.1: Example of maximizing the number of labeled points.

Since we consider the problem on a horizontal line and put the label either above or

below the line, we can simply associate a 2-tuple, namely (a, b), to represent the current

labeling state of a realization R, with R.a = a and R.b = b. The first variable, a, shows

the coordinate of right edge of the rightmost label above the line; the second variable, b,

shows the rightmost one below the line. A realization R will also contain a specification of

the placement of feasible labels associated with a subset of anchors. To be more precise,

we can use Ai.` ∈ R, where ` ∈ {0, 1, 2, 3, 4} indicates the label position for anchor Ai

included in R, with ` = 0 representing anchor Ai is not labeled. If R contains k-feasible

labels, i.e., it contains k non-zero `’s associated with Ai.`, then R is called a k-realization,

and we use R.c to denote the cardinality of the subset of feasible labels represented by

the realization R. We shall use the notation R to represent not only a realization R of

A, which is a subset of feasible anchors, i.e., R ⊆ A, but also use R.a, R.b and R.c to

represent the state of its configuration and its size, respectively. Let us assume that the

set of anchors has been ordered so that their x-coordinates are in strictly increasing order.

That is, x1 < x2 < . . . < xn. Let Ai denote the subset of anchors {A1, A2, . . . , Ai}, for

i = 1, 2, . . . , n, and Ri denote a realization of Ai for some i. An optimal solution is a

realization Rn such that Rn.c is maximum among all possible realizations of An.

We shall process the anchors, and their associated labels, in ascending order of their

x-coordinates, i.e., in the order of A1, A2, . . . , An. Given a realization Ri−1 of Ai−1, and

the next anchor, Ai, i > 1, the placements of the label of Ai that do not overlap the last

4



label both above and below the line in Ri−1 are called feasible label placements. Before

proceeding we define the notion of equivalence of two realizations:

Definition 2.0.1 Given two realizations Ri
1 and Ri

2 of Ai such that Ri
1.c and Ri

2.c are

equal, if

{Ri
1.a, Ri

1.b} = {Ri
2.a, Ri

2.b}

we say that the two realizations are equivalent in size, or simply equivalent to each other.

Based on the above definition, for a realization Ri with Ri.a < Ri.b, we always swap

the upper and lower sides of the realization. That is, a realization will be represented in a

normal form in which the coordinate above the line is no less than the coordinate below

the line, i.e., Ri.a ≥ Ri.b without loss of generality. Here we define the comparability of

two realizations.

Definition 2.0.2 For any two realizations Rk
i and Rk

j , k = 1, 2, . . . , n, if the following

statements hold,

1. Rk
i .c = Rk

j .c, and

2. Rk
i .a ≤ Rk

j .a, and Rk
i .b ≤ Rk

j .b

then we say that the two realizations are comparable and Rk
i is better than Rk

j . Other-

wise, they are incomparable.

Lemma 2.0.3 Let R be an optimal realization of A. Suppose Rk
i and Rk

j are two compa-

rable realizations for Ak and Rk
i is better than Rk

j for some n ≥ k ≥ 1. If R contains Rk
j

as a subset, then there exists another optimal solution that contains Rk
i .

Proof: Since Rk
i .a ≤ Rk

j .a and Rk
i .b ≤ Rk

j .b, we can obtain R′ by replacing Rk
j in R with

Rk
i , so that R′.c = R.c. �

5



By using a 2-tuple to represent the labeling state of a realization, we can transform

it into a point in the 2-dimensional plane, which we call an R-map. To be more precise,

given a realization R represented by a 2-tuple (R.a,R.b), we transform it into a point

(x,y), where x = R.a and y = R.b, in the plane. The two equivalent realizations will

then be transformed into two points that are symmetric with respect to the line x = y.

From now on, we use P.x and P.y to represent the x and y coordinates of a point P on

the R-map, and P.c to represent its associated cardinality.

We assume the point labeling on a line starts at the origin without loss of generality,

which means the transformed points on the R-map are all in the first quadrant. Using the

normal form representation of a realization, all realizations will be mapped to points that

are all located in the first quadrant below the line x = y. More specifically, it is the area

generated by the following equations: x ≥ y, and y ≥ 0.

Based on the comparability definition between two realizations, if one is better than

the other, then the transformed points will carry the relationship of domination. That is,

if realization RA is better than realization RB , then point PB dominates1 point PA on the

R-map. On the other hand, if they are incomparable realizations, the transformed points

on the R-map do not dominate each other.

We shall also transform each anchor with its given label from the original representa-

tion into another term on the R-map. We use a cross on the R-map to stand for an anchor

with its label, and the length of each arrow shows its given label size. The center of every

cross is located on line x = y. The arrows are labeled from 1 to 4 for left, bottom, top and

right, corresponding to the numbering of original labels respectively. The label overlap-

ping situation is then transformed into arrows intersecting either the vertical line passing

through the x-coordinate or the horizontal line passing through y-coordinate of a point on

the R-map. We define the operations on the R-map as follows.

Definition 2.0.4 Given a point p(x, y) representing a realization and a cross C repre-

senting a new label i on the R-map, whose center is (C.x, C, y) and arrow length is C.`,

we have the following operations depending on how we select the placement of label i of

1If PB .x ≥ PA.x, and PB .y ≥ PA.y, then PB is said to dominate PA.

6



the anchor c for the realization p (i.e. apply arrow i)

1. i = 1, then p(x, y) generates p′(C.x + C.l, y)

2. i = 2, then p(x, y) generates p′(C.x, y)

3. i = 3, then p(x, y) generates p′(x,C.y)

4. i = 4, then p(x, y) generates p′(x,C.y + C.l)

The cardinality associated with point p′ will be one more than that with point p’s car-

dinality. If the y-coordinate of p′ is greater than the x-coordinate, we do the swapping

operation to exchange the x- and y- coordinates. We call point p the parent point of p′

and the generated point p′ the child point of p.

3

4

2
1

p

p′3

p′1

Figure 2.2: Example of the R-map.

Take Figure 2.2 as an example. Given a parent point p(x, y) and a cross located at

(C.x, C.y) with arrow length C.l, arrow 2 of the cross C represents an infeasible place-

ment with respect to point p. Applying arrows 1 and 3, point p generates two child points

p′1(C.x + C.l, y) and p′3(C.x, x) respectively. The following property is immediate.

7



Property 2.0.5 Given a parent point p(x, y) and a cross C located at (C.x, C.y) with

arrow length C.l,

1. If y > C.y, the point can apply no arrow.

2. If C.y ≥ y > C.y − C.l, the point can apply arrow 4.

3. If C.y − C.l ≥ y, the point can apply arrows 3 and 4.

4. If x > C.x, the point can apply neither arrow 1 nor arrow 2.

5. If C.x ≥ x > C.x − C.l, the point can apply arrow 1.

6. If C.x − C.l ≥ x, the point can apply arrows 1 and 2.

8



Chapter 3 Maximum Independent Set of

Label Placements for Different Models

We adopt a greedy method to solve the problem for each model, namely, we process the

anchors in sequential manner, and will maintain a set of realizations that reflect the best

possible labeling, ignoring those that are known to be no better than the present set of

realizations, after each anchor is processed.

3.1 1d2PH, 1d2PV

For the 1d2PH model, which only allows placement of labels 1 and 2, the problem can be

transformed to the problem of Maximum Independent Set (MIS) of Interval Graph, which

can be solved in O(n) time when the anchors are given sorted. The following lemma is

obvious.

Lemma 3.1.1 Given two realizations Ri
A and Ri

B , for i = 1, 2, . . . , n, we will select Ri
A

over Ri
B , either if Ri

A.c > Ri
B.c, or if Ri

A.c = Ri
B.c, and Ri

A is better than Ri
B .

Lemma 3.1.2 Given a realization Ri−1, when both placements of labels 2 and 3 of next

anchor Ai are feasible, the selection of label , label 2, above the line will yield a better

realization Ri.

Proof: Given a current realization (a, b) with the normal form representation (i.e., a > b)

and the anchor position x, placing label at x either above or below the line changes the

labeling state into (x, b) or (a, x) respectively. Since a > b, placing the label above the

line generates a better realization. �

Here we give a greedy algorithm for the problem 1d2PV , which only allows labels

2 and 3 without loss of generality.

9



Algorithm 3.1.1 M2PV
Input: A set of anchors sorted by their x-coordinate and their associated labels.

Output: The maximum cardinality of map labeling for model 1d2PV .

1: while pick up the next anchor from the sorted list do

2: if the placement of label 2 is feasible then

3: place label 2 and put the anchor into MIS solution, cardinality++

4: else if the placement of label 3 is feasible then

5: place label 3 and put the anchor into MIS solution, cardinality++

6: else

7: discard the anchor.

8: return cardinality

The time complexity of M2PV is O(n) given the sorted anchors.

Theorem 3.1.3 The algorithm of M2PV generates an optimal solution.

Proof: Immediate. �

3.2 1d4P

Now let us consider model 1d4P. Given an anchor whose feasible labels are label 1, 3

and 4, placing either label 1 or label 3 may generate an optimal solution. We cannot tell

which placement is better at the time when we process the anchor. Figure 3.1(a) shows

that the choice between the placements of labels 1 and 3 is best decided by future anchors.

The top realization shown in Figure 3.1(a) shows the placement of label 1 of the anchor

leads to an optimal solution. However, the bottom realization shown in Figure 3.1(a)

shows the placement of label 3 of the anchor leads to an optimal solution. Furthermore,

given an anchor whose feasible labels are labels 1 and 4, we cannot immediately decide

whether placing either one can generate an optimal solution or not. Figure 3.1(b) shows

the placement of label 1 may block the future labels. That is, we may need to postpone

the decision as to whether the current anchor is to be included in the realization until

10



later. The condition also occurs for label 4. However, if we must choose one placement

between label 1 and label 4 of an anchor, then following Lemma 3.1.2, the choice of the

label above the line (label 1) gives a better realization. We first observe some properties

of model 1d4P .

1

(2)

(1)

1

4

3

Figure 3.1: (a) Example of incomparability between realizations resulting from placing

labels 1 and 3. (b) Example of undecidable situation as to whether we should choose to

include label 1 or not.

Proposition 3.2.1 Given a realization Ri−1, when both placements of labels 1 and 2 (re-

spectively, labels 3 and 4) of next anchor Ai are feasible, the selection of label 2 (respec-

tively, label 3) will yield a better realization Ri.

Lemma 3.2.2 Given a realization Ri−1, when the placement of label 3 of next anchor Ai

is feasible, the anchor is included in the MIS solution.

Proof: Suppose the current realization is (a, b) with a > b and the next anchor Ai whose

placement at label 3 is feasible. Assume that there is an optimal solution such that it does

not contain Ai. It is trivial that if placing label 1 or label 3 of Ai into the solution overlaps

no labels, then we can place one more label into the solution to get a larger cardinality,

which leads to a contradiction. Otherwise, there is an anchor Aj , j > i. i.e, Aj is to the
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right of Ai, whose label 3 overlaps the label 3 of Ai. Since Aj is to the right of Ai, we can

replace label 3 of Aj by the placement of label 3 of Ai to get a better realization. �

Corollary 3.2.3 Given a realization Ri−1, when the placement of label 2 of next anchor

pi is feasible, the anchor is in the MIS solution.

We introduce our main idea as follows. Let S[i, j] denote a set of incomparable

realizations Rj of cardinality i, for 1 ≤ i ≤ j ≤ n. We shall apply a dynamic program-

ming method to process the anchors and record the ’better’ realizations of each possible

cardinality. To find an optimal realization Rn, we may need to maintain intermediate

realizations S[i, j] for 1 ≤ i ≤ j ≤ n, that have the potential leading to an optimal re-

alization. As we shall show later, for each j ≤ n we only need to maintain at most five

subsets S[k, j], S[k + 1, j], S[k + 2, j], S[k + 3, j], and S[k + 4, j] for some k. We shall

process the table from j = 1 till n and fill each entry S[i, j] with a set of incomparable re-

alizations, and there are probably quite a few incomparable realizations to be maintained

at each step.

The realizations in an incomparable set form a ”point chain” on the R-map without

having any point in the chain dominate another. When we encounter a new cross, some

of the point in this chain of cardinality k, for some k, will generate new child points, thus

getting upgraded to a realization of cardinality k + 1, some will remain as non-upgraded

with cardinality k, and are kept as potential candidates leading possibly to an optimal

solution, and some get eliminated due to some new child points upgraded from points

of cardinality k − 1. At the end after anchor An is processed, the realizations in the

non-empty entry S[i, n] with the largest i are optimal solutions.

To sum up, some points in the set S[i, j] may simply move to S[i, j + 1] without

increasing cardinality, following what we call a non-upgrading process. Other points in

the set may generate points which are included in S[i + 1, j + 1], whose cardinality is

incremented, following what we call an upgrading process. When a point moves from

one entry to another, it should be compared with other points in the target entry, and only

better ones are kept. We repeat such operations until we have processed all anchors. The

following is the algorithm of model 1d4P .
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Algorithm 3.2.1 M4P
Input: A set of anchors sorted by their x-coordinates and their associated labels.

Output: A maximum cardinality of map labeling for model 1d4P .

1: Use dynamic programming method on two parameters S[i, j]: the anchor ordering in

column and the cardinality of possible solutions in row. Initialize the first entry by

the placement of label 2 of the first anchor.

2: for j = 2 to n do

3: Let the largest cardinality of non-empty entries in column j − 1 be k.

4: for i = k to max{k − 4, 0} do

5: 2-1. Classify the points in S[i, j − 1] into upgrading and non-upgrading classes.

6: 2-2. Move the non-upgraded points into S[i, j].

7: 2-3. Move the upgraded points into S[i + 1, j].

8: 2-4. Compare the points in S[i + 1, j] and keep the better ones.

9: return The maximum cardinality of non-empty entries.

In what follows we will prove a few results that help establish the correctness of our

algorithm. Let PA and PB be two points on the R-map, and (C.x, C.y) be the coordinates

of the next cross.

(a) (b)

PBPA

PB

PA

PB

P
′

B

PA

Figure 3.2: Illustration of Lemma 3.2.4.

Lemma 3.2.4 For the following two cases

(a) PA.x ≥ PB.x, PA.y < PB.y, PA.c < PB.c and C.y ≥ PB.y

(b) PA.y ≥ PB.y, PA.x < PB.x, PA.c < PB.c and C.x ≥ PB.x

PB is better than PA.
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Proof:

(a) Since C.y ≥ PB.y > PA.y, applying the cross, PA will generate a point Pnew where

Pnew.x ≥ PA.x ≥ PB.x and Pnew.y ≥ C.y ≥ PB.y and Pnew.c = PA.c + 1 ≤ PB.c. That

is, PA cannot generate any child point which is better than PB , so PA need not be kept.

(b) Since C.x ≥ PB.x > PA.x, applying the cross, PA will generate a point Pnew

where Pnew.x ≥ C.x ≥ PB.x and Pnew.y ≥ PA.y ≥ PB.y and Pnew.c = PA.c+1 ≤ PB.c.

That is, PA cannot generate any child point which is better than PB , so PA need not be

kept. �

Lemma 3.2.5 The points in an incomparable set going through an upgrading process

generates at most two incomparable child points.

Proof: By the definition of operations on the R-map, we know that after applying a cross

C of the center (C.x, C.y), the child points will be located on one of the following four

lines:

1. x = C.x

2. x = C.x + C.l

3. y = C.y

4. y = C.y + C.l

Moreover, since we represent a realization in a normal form, such four lines can be ex-

pressed more specifically as:

1. x = C.x, y ≤ C.y

2. x = C.x + C.l, y ≤ C.y + C.l

3. y = C.y, x > C.x

4. y = C.y + C.l, x > C.x + C.l

It is then easy to see that at most two incomparable points can be found on these four

lines. �

Theorem 3.2.6 The number of points in an incomparable set is bounded by O(n).

Proof: By Lemma 3.2.5, there are at most two points added to an entry while processing

every cross. After processing n crosses, the number of points in an entry is bounded by
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O(n). �

Theorem 3.2.7 After processing a cross C, if there is a point with cardinality k which is

the ancestor of a point with cardinality k + 5, then no point with cardinality k will lead

to an optimal solution. That is, the difference in cardinality of incomparable points is at

most four.

Proof: Let point P (x, y) whose associated cardinality is k be the ancestor of a point with

cardinality k + 5. For any point Q(x′, y′) whose associated cardinality is k, we have the

following two cases to consider, y′ ≤ y and y′ > y.

Case 1: y′ ≤ y. Consider the three crosses that were applied to upgrade point P to a point

P ′ of cardinality k + 3. Among these three crosses, at least two labels, say Ci and

Cj, j > i, must be placed on the same side of the line. It is clear that the anchor

corresponding to the next cross C lies totally to the right of the label associated

with Ci. Since Q(x′, y′) is an arbitrary point of cardinality k with y′ ≤ y, we know

that cross Ci can be applied to point Q. Then point Q′ upgraded by Ci is always

better than point Q, by Lemma 3.2.4(a). Thus point Q need not be kept, which is to

say, any point with cardinality k whose y-coordinate is no more than y need not be

retained. That is, when a point P (x, y) of cardinality k got upgraded by three to a

point P ′ of cardinality k+3, those points Q(x′, y′) of the same cardinality k, y′ ≤ y

would be upgraded by at least one to Q′ of cardinality k + 1 and Q′ always better

than Q. And therefore the difference in cardinality of these points of cardinality k,

when one of them got upgraded by three to P ′ of cardinality k + 3, is at most two.

Case 2: y′ > y. Without loss of generality let us consider an arbitrary point Q with x′ <

x and y′ > y. Among the five crosses that have been applied to point P , at least

three labels, say those associated with crosses Ci, Cj, and Ck, k > j > i, must be

placed on the same side of the line, and the next cross C lies totally to the right of

labels associated with Ci and Cj . If Ci is placed above the line, it is obvious that

cross Ci can also be applied to upgrade Q, since x′ < x. By Lemma 3.2.4(b), point

Q′ upgraded by Ci is always better than point Q, and hence Q of cardinality k need
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not be kept. Suppose all these three labels are placed below the line. Without loss

of generality, let us take the leftmost three crosses, Ci, Cj, and Ck, k > j > i. Let

P ′ denote the child point upgraded from point P after cross Cj is applied, and let

P ′.y denote the right side of the label associated with Cj . If P ′.y ≥ y′, then cross

Ck and the other two crosses, will play the role of the three crosses, P ′ will play the

role of P , as in Case 1 above, then as shown before , we no longer need to keep Q

(of cardinality k). Otherwise, (P ′.y < y′) consider the the cross Ch corresponding

to the last label below the line associated with point Q. We know that Ch (or anchor

Ah) is to the left of Ci (or anchor Ai). Since the label associated with Cj is placed

totally to the right of the label associated with Ci, we can replace the last label

associated with Ch in Q by the label associated with Cj to obtain a new point Q′,

so that Q′.c = Q.c = k, and Q′.y = P ′.y < y′. This implies that Q′ is better

than Q after the replacement, and Q would have been eliminated after Ci and Cj

were considered. Then when Ck is applied to P ′, it can also be applied to point

Q′. Since cross C is totally to the right of the label associated with Ck, by Lemma

3.2.4(a), point Q′ (which is better than Q) upgraded by Ck is always better than

point Q. Thus, we no longer need to keep point Q. That is, when a point P (x, y)

of cardinality k got upgraded by five to a point of cardinality k + 5, those points

Q(x′, y′) of the same cardinality k, y′ > y would be upgraded by at least one to a

point of cardinality k + 1 and always better than Q which remain non-upgraded,

and therefore the difference in cardinality of these points of cardinality k, when one

of them got upgraded by five to a point of cardinality k + 5, is at most four.

To sum up, any point with cardinality k which gets upgraded to a point with cardi-

nality k + 5, will force all the points which remain non-upgraded to have cardinality k to

be subsumed by other upgraded points. Therefore no point with cardinality k will lead

to an optimal solution and the difference in cardinality of these incomparable points is at

most four. �

By Theorem 3.2.7, in computing S[i, j] for 1 ≤ i ≤ j ≤ n, it is sufficient to maintain

at most five consecutive sets of incomparable realizations S[k, ∗], S[k + 1, ∗], S[k + 2, ∗],

S[k + 3, ∗] and S[k + 4, ∗].
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Lemma 3.2.8 The following operations all take O(log n) time.

(1) Classifying points into the upgrading and non-upgrading classes.

(2) Finding two incomparable points among all upgraded points.

(3) The comparison between one point and n incomparable points.

Proof: (1) When we process a cross C centered at (C.x, C.y), we can simply divide the

set of points of our R-map into three layers by two lines below:

1. y = C.y

2. y = C.y − C.l

The points P in the top layer with P.y ≥ C.y belong to non-upgrading class. The points

P in the middle layer with C.y ≥ P.y ≥ C.y − C.l belong to both upgrading and non-

upgrading classes. The points P in the bottom layer with C.y − C.l ≥ P.y belong to the

upgrading class. Since the set of incomparable points can be maintained in sorted order

in y-coordinates, two binary searches suffice.

(2) We can divide the lower two layers above into five regions (R1, R2, R3, R4 and R5,

see Figure 3.3) by the following two lines:

1. x = C.x − C.l

2. x = C.x

By the operations on the R-map, we know that the following points in the chain of up-

graded points are better than all the other points (in the chain) in each of their regions

after the upgrading process:

1. the rightmost point of the chain in R1

2. the leftmost point of the chain in R2

3. the leftmost point of the chain in R3

4. the rightmost point of the chain in R4

5. the leftmost point of the chain in R5

We can also use binary search four times to obtain the five points (at most three points

in a point chain actually). Finding the two incomparable points out of these points takes

constant time.

(3) Since an incomparable set is a point chain without any point dominating another, we

need only to find out all points in the chain that dominate p when we have to compare a

point p with such a point chain. We can simply do binary search in the chain two times
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to divide the chain into three sub-chains of consecutive points and the middle sub-chain

which dominates p can then be eliminated and replaced by p. �

R3R2R1

R4 R5

Figure 3.3: Proof for Lemma 3.2.8 (b).

Theorem 3.2.9 The time complexity of Algorithm M4P is O(n log n).

Proof: By Theorem 3.2.7, the inner for loop repeats at most five times. By Lemma 3.2.8,

the tasks in the inner for loop can be completed in O(log n) time. The outer for loop

repeats n times to handle n anchors. Then the total time complexity for solving model

1d4P is O(n log n). �

When the algorithm terminates, any point in S[k, n] with the largest k is an optimal

solution (of maximum cardinality k). The actual placement of labels can be obtained if

we record the processing history when a point is upgraded.
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3.3 1d2kP

The 1d2kP model is a generalization of 1d4P model. It allows the label of each anchor to

be placed at k positions, k ≥ 2, both above and below the line. Poon et al., Strijk and van

Kreveld, Kim et al. studied the decision k-position models [13,21,22]. We consider the

maximization of 1d2kP problem. Due to the definition of k-position model, the incompa-

rable points in an entry could be up to O(kn), therefore the time complexity of classifying

points in Lemma 3.2.8 (1) is O(log kn). The number of lines in Lemma 3.2.5 is also mod-

ified by k, and thus the number of incomparable points of upgrading process in Lemma

3.2.5 would be k. Therefore the time complexity of Lemma 3.2.8 (2) is O(k log kn), and

the comparing time between k points and kn points would also be O(k log kn) in Lemma

3.2.8 (3). The overall time complexity of solving model 1d2kP would be O(kn log kn).
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Chapter 4 Conclusion Remarks

We have extended the decision version of the map labeling problem on a horizontal line

to an optimization version where the number of feasible labels is to be maximized. It is a

variation of maximum independent set problem on interval graphs. It can also be regarded

as a simplified version of job-machine scheduling problem (two machines, each job has k

time intervals to be selected in its given time range) in which the number of schedulable

jobs is to be maximized. We present an O(n log n) time algorithm for Max-1d4P model

by dynamic programming on two parameters: the anchor ordering and the cardinality of

possible solutions.

We have proposed the R-map idea which can be useful for quite a few problems,

including many versions of job scheduling problems. Moreover, we feel that it may be

used to improve the approximation ratio for general Max-4P problem when combining

the line stabbing technique and our solution. Whether there exist solution for the Max-

Slope4P fixed height(or width) rectangle label model remains to be seen.
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Appendix I : Example of R-map

The following are the illustrations of the growing incomparable points number.

Figure I.1: Illustration of the growing incomparable points number (1)
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Figure I.2: Illustration of the growing incomparable points number (2)

Figure I.3: Illustration of the growing incomparable points number (3)
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Figure I.4: Illustration of the growing incomparable points number (4)

Figure I.5: Illustration of the growing incomparable points number (5)
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Figure I.6: Illustration of the growing incomparable points number (6)

Figure I.7: Illustration of the growing incomparable points number (7)
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Figure I.8: Illustration of the growing incomparable points number (8)

Figure I.9: Illustration of the growing incomparable points number (9)
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Figure I.10: Illustration of the growing incomparable points number (10)

Figure I.11: Illustration of the growing incomparable points number (11)
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Appendix II : Experimental Codes

The following is the experimental codes.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

struct data{

int card;

int anchor;

int x;

int y;

struct data prev;

struct data next;

};

struct fourcard{

int total;

int level;

struct data head;

struct data tail;

};

struct data node list head, node list tail;

struct fourcard level ptr[4];

int anchor array[30000];

void init level(void){

int i;
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for (i=0;i<4;i++){

level ptr[i] = malloc(sizeof(struct fourcard));

level ptr[i]->total=0;

level ptr[i]->level=i+1;

level ptr[i]->head=NULL;

level ptr[i]->tail=NULL;

}

}

void special init(int x, int y){

int i;

struct data node = malloc(sizeof(struct data));

for (i=0;i<4;i++){

level ptr[i] = malloc(sizeof(struct fourcard));

level ptr[i]->total=0;

level ptr[i]->level=i+2;

level ptr[i]->head=NULL;

level ptr[i]->tail=NULL;

}

node->card = 2;

node->anchor = 0;

node->x = x;

node->y = y;

node->prev = NULL;

node->next = NULL;

level ptr[0]->total++;

level ptr[0]->head = node;

level ptr[0]->tail = node;

}
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void incre level(void){

int i;

struct data tmp1, tmp2;

tmp1 = level ptr[0]->head;

while (tmp1){

tmp2 = tmp1;

tmp1 = tmp1->next;

}

for (i=0;i<3;i++){

level ptr[i]->total = level ptr[i+1]->total;

level ptr[i]->level = level ptr[i+1]->level;

level ptr[i]->head = level ptr[i+1]->head;

level ptr[i]->tail = level ptr[i+1]->tail;

}

level ptr[3]->total = 0;

level ptr[3]->level = (level ptr[2]->level)+1;

level ptr[3]->head = NULL;

level ptr[3]->tail = NULL;

}

void incre2 level(void){

int i;

for (i=0;i<2;i++){

level ptr[i]->total = level ptr[i+2]->total;

level ptr[i]->level = level ptr[i+2]->level;

level ptr[i]->head = level ptr[i+2]->head;

level ptr[i]->tail = level ptr[i+2]->tail;

}

level ptr[2]->total = 0;

level ptr[2]->level = level ptr[0]->level+2;

level ptr[2]->head = NULL;
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level ptr[2]->tail = NULL;

level ptr[3]->total = 0;

level ptr[3]->level = level ptr[1]->level+2;

level ptr[3]->head = NULL;

level ptr[3]->tail = NULL;

}

int find level(struct data node){

int i;

for (i=0;i<4;i++){

if (level ptr[i]->level == node->card)

return i;

}

return -1;

}

int region(struct data node, int anchor){

if (anchor < node->y)

return 2;

else if (anchor >= node->x)

return 0;

else

return 1;

}

int opera(struct data node, int anchor, int label){

if (anchor < node->y)

return 0;

else if (anchor >= node->x){

if ((anchor-label < node->x) && (anchor-label >= node->y))

return 99;
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else if (anchor-label >= node->x)

return 1;

else

return 11;

}

else{

if (anchor-label < node->y)

return 22;

else

return 2;

}

}

struct data operax(struct data node, int anchor, int label){

struct data tmp = malloc(sizeof(struct data));

tmp->anchor = anchor;

tmp->card = node->card+1;

tmp->prev = NULL;

tmp->next = NULL;

tmp->y = node->y;

if ((anchor-label) >= node->x)

tmp->x = anchor;

else

tmp->x = anchor+label;

return tmp;

}

struct data operay(struct data node, int anchor, int label){

int temp;

struct data tmp = malloc(sizeof(struct data));
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tmp->anchor = anchor;

tmp->card = node->card+1;

tmp->prev = NULL;

tmp->next = NULL;

tmp->x = node->x;

if ((anchor-label) >= node->y)

tmp->y = anchor;

else

tmp->y = anchor+label;

if (tmp->x < tmp->y){

temp = tmp->x;

tmp->x = tmp->y;

tmp->y = temp;

}

return tmp;

}

void del node(struct data node){

int i = find level(node);

int j;

if (i == -1){

printf(”find level return -1 !!!\n”);

exit(1);

}

if (level ptr[i]->total == 1){

level ptr[i]->head = NULL;

level ptr[i]->tail = NULL;

}

else if (node == level ptr[i]->head){

level ptr[i]->head = level ptr[i]->head->next;

level ptr[i]->head->prev = NULL;
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}

else if (node == level ptr[i]->tail){

level ptr[i]->tail = level ptr[i]->tail->prev;

level ptr[i]->tail->next = NULL;

}

else{

node->prev->next = node->next;

node->next->prev = node->prev;

}

level ptr[i]->total–;

}

int tune node(int anchor){

int reg;

struct data tmp, tmp1, tmp2, tmp3, tmp4;

tmp3 = level ptr[2]->head;

tmp4 = level ptr[3]->head;

if (tmp4 && (region(tmp4, anchor) == 0)){

incre2 level();

return 1;

}

if (tmp3 && (region(tmp3, anchor) == 0)){

incre level();

return 1;

}

tmp1 = level ptr[0]->head;

tmp2 = level ptr[1]->head;

while(tmp2){

reg = region(tmp2, anchor);

while (tmp1){
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tmp = tmp1;

tmp1 = tmp1->next;

if (reg == 0){

if (tmp->x >= tmp2->y)

del node(tmp);

}

else if (reg ==1){

if (tmp->x >= tmp2->x)

del node(tmp);

}

}

tmp2 = tmp2->next;

}

tmp1 = level ptr[0]->head;

tmp2 = level ptr[1]->head;

tmp3 = level ptr[2]->head;

while (tmp3){

reg = region(tmp3, anchor);

while (tmp2){

tmp = tmp2;

tmp2 = tmp2->next;

if (reg == 0){

printf(”increase level twice (in tmp2)!!!\n”);

exit(1);

}

else if (reg == 1){

if (tmp->x >= tmp3->x)

del node(tmp);

}

}

while (tmp1){
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tmp = tmp1;

tmp1 = tmp1->next;

if (reg == 0){

printf(”increase level twice (in tmp1)!!!\n”);

exit(1);

}

else if (reg == 1){

if (tmp->x >= tmp3->x)

del node(tmp);

}

}

tmp3 = tmp3->next;

}

tmp1 = level ptr[0]->head;

tmp2 = level ptr[1]->head;

tmp3 = level ptr[2]->head;

tmp4 = level ptr[3]->head;

while (tmp4){

reg = region(tmp4, anchor);

while (tmp3){

tmp = tmp3;

tmp3 = tmp3->next;

if (reg == 0){

printf(”increase 2 levels twice (in tmp3)!!!\n”);

exit(1);

}

else if (reg == 1){

if (tmp->x >= tmp4->x)

del node(tmp);

}

}
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while (tmp2){

tmp = tmp2;

tmp2 = tmp2->next;

if (reg == 0){

printf(”increase 2 levels twice (in tmp2)!!!\n”);

exit(1);

}

else if (reg == 1){

if (tmp->x >= tmp4->x)

del node(tmp);

}

}

while (tmp1){

tmp = tmp1;

tmp1 = tmp1->next;

if (reg == 0){

printf(”increase 2 levels twice (in tmp1)!!!\n”);

exit(1);

}

else if (reg == 1){

if (tmp->x >= tmp4->x)

del node(tmp);

}

}

tmp4 = tmp4->next;

}

return 0;

}

void replace node(struct data a, struct data b){

b->prev = a->prev;

b->next = a->next;
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if (a->prev)

a->prev->next = b;

if (a->next)

a->next->prev = b;

}

void add node(struct data node){

int i;

struct data tmp;

node->prev = NULL;

node->next = NULL;

if (node->card > level ptr[3]->level)

incre level();

i = find level(node);

if (level ptr[i]->total == 0){

level ptr[i]->head = node;

level ptr[i]->tail = node;

level ptr[i]->total++;

}

else if (node->x < level ptr[i]->head->x){

node->next = level ptr[i]->head;

level ptr[i]->head->prev = node;

level ptr[i]->head = node;

level ptr[i]->total++;

tmp = level ptr[i]->head;

while ((tmp->next) && (tmp->y <= tmp->next->y))

del node(tmp->next);
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}

else if (node->x > level ptr[i]->tail->x){

if (node->y < level ptr[i]->tail->y){

node->prev = level ptr[i]->tail;

level ptr[i]->tail->next = node;

level ptr[i]->tail = node;

level ptr[i]->total++;

}

}

else{

tmp = level ptr[i]->head;

while(tmp){

if (tmp->x == node->x){

if (tmp->y > node->y){

tmp->y = node->y;

while ((tmp->next) && (tmp->y <= tmp->next->y))

del node(tmp->next);

}

return;

}

else if (node->x < tmp->next->x){

if (tmp->y > node->y){

node->prev = tmp;

node->next = tmp->next;

tmp->next->prev = node;

tmp->next = node;

level ptr[i]->total++;

tmp = node;

while ((tmp->next) && (tmp->y <= tmp->next->y))

del node(tmp->next);

}

return;
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}

tmp = tmp->next;

}

}

}

void add to node list(struct data node){

if (node list tail == NULL){

node list head = node;

node list tail = node;

node list tail->next = NULL;

}

else {

node list tail->next = node;

node->prev = node list tail;

node list tail = node;

node list tail->next = NULL;

}

}

void gen node list(int anchor, int label){

int i,oper;

struct data tmp;

node list head = NULL;

node list tail = NULL;

for (i=0;i<4;i++){

tmp = level ptr[i]->head;

while (tmp){

oper = opera(tmp, anchor, label);

if (oper == 99){
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add to node list(operax(tmp, anchor,label));

add to node list(operay(tmp, anchor,label));

del node(tmp);

}

else if (oper == 1){

add to node list(operax(tmp, anchor,label));

del node(tmp);

}

else if (oper == 11){

add to node list(operax(tmp, anchor,label));

}

else if (oper == 2){

add to node list(operay(tmp, anchor,label));

del node(tmp);

}

else if (oper == 22){

add to node list(operay(tmp, anchor,label));

}

tmp = tmp->next;

}

}

}

void process anchor array(int offset, int anchor, int label, int rate, int sid){

int i;

for (i=0;i<5000;i++)

anchor array[i] = 0;

for (i=0;i<(anchorrate);i++){

srand(time(NULL)+i+sid);

anchor array[(rand()%anchor)+offset] = (rand()%label);

}

for (i=0;i<anchor;i++){
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if (anchor array[i])

printf(”%2d : %d\n”,i,anchor array[i]);

}

}

void node list to level(void){

int i=0;

struct data tmp;

while (node list head){

tmp = node list head;

node list head = node list head->next;

add node(tmp);

}

node list head = NULL;

node list tail = NULL;

}

void print table(void){

int i,j;

struct data tmp;

for (i=0;i<4;i++){

if (level ptr[i]->total == 5)

printf(”!!!!!!!!!\n”);

else if (level ptr[i]->total == 6)

printf(”@@@@@@@@@\n”);

else if (level ptr[i]->total == 7)

printf(”777777777\n”);

else if (level ptr[i]->total == 8)

printf(”888888888\n”);

else if (level ptr[i]->total == 9)

printf(”999999999\n”);
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else if (level ptr[i]->total > 9)

printf(”orzorzorz\n”);

printf(”%d(%d) : ”,level ptr[i]->level,level ptr[i]->total);

if (level ptr[i]->total){

j = 0;

tmp = level ptr[i]->head;

while(tmp){

printf(” (%2d,%2d)”, tmp->x, tmp->y);

tmp = tmp->next;

j++;

}

if (j != level ptr[i]->total)

printf(”\nXXXXXXXXXXXXX”);

}

printf(”\n”);

}

}

void array to node list(int anchor number){

int i,j;

struct data tmp;

for (i=0;i<anchor number;i++){

if (anchor array[i]){

if (tune node(i))

tune node(i);

printf(”\n=== %d(%d)\n”, i, anchor array[i]);

print table();

gen node list(i,anchor array[i]);

tmp = node list head;

printf(”———————–\n”);

while(tmp){
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printf(”%d(%d,%d) ”,tmp->card,tmp->x,tmp->y);

tmp = tmp->next;

}

printf(”\n”);

printf(”———————–\n”);

node list to level();

print table();

}

}

}

void input spec(void){

struct data node1, node2, node3, node4, node5;

int i;

node1 = malloc(sizeof(struct data));

node2 = malloc(sizeof(struct data));

node3 = malloc(sizeof(struct data));

node4 = malloc(sizeof(struct data));

node5 = malloc(sizeof(struct data));

for (i=0;i<4;i++){

level ptr[i] = malloc(sizeof(struct fourcard));

level ptr[i]->total = 0;

level ptr[i]->level = i+88;

level ptr[i]->head = NULL;

level ptr[i]->tail = NULL;

}

node1->prev = NULL;

node1->next = NULL;

node1->card = 89;

node1->anchor = 12;

node1->x = 13;

node1->y = 12;
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add node(node1);

node2->prev = NULL;

node2->next = NULL;

node2->card = 89;

node2->anchor = 12;

node2->x = 16;

node2->y = 9;

add node(node2);

node3->prev = NULL;

node3->next = NULL;

node3->card = 89;

node3->anchor = 12;

node3->x = 24;

node3->y = 2;

add node(node3);

node4->prev = NULL;

node4->next = NULL;

node4->card = 90;

node4->anchor = 12;

node4->x = 24;

node4->y = 16;

add node(node4);

node5->prev = NULL;

node5->next = NULL;

node5->card = 90;

node5->anchor = 12;

node5->x = 27;

node5->y = 12;

add node(node5);

}

int
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main(int argn, char argv[]){

int i,j;

if (argn!=9){

printf(”bad arguments!!\n”);

return;

}

j = atoi(argv[7]);

for (i=atoi(argv[6]);i>0;i–){

if (atoi(argv[1]) < atoi(argv[2])){

process anchor array(atoi(argv[1]),atoi(argv[3]),atoi(argv[4])/j,atoi(argv[5]),i);

if (atoi(argv[8])==0)

special init(atoi(argv[2]), atoi(argv[1]));

else

input spec();

}

else{

process anchor array(atoi(argv[2]),atoi(argv[3]),atoi(argv[4])/j,atoi(argv[5]),i);

if (atoi(argv[8])==0)

special init(atoi(argv[1]), atoi(argv[2]));

else

input spec();

}

j–;

if (j==0)

j = atoi(argv[7]);

array to node list(atoi(argv[3]));

printf(”\n\n\n\n”);

}

return;

}
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