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動態更新與修補溢位弱點的設計與實作 

 

研究生： 黃有德     指導教授： 黃世昆 教授 

 

摘要 

 
我們無法避免程式產生錯誤，因此必須利用修補機制(Patch)進行更新。但

在一般作業系統平台，例如微軟視窗(Microsoft Windows)，對程式進行更新時，

通常需將程式關閉，才能對程式進行更新。這雖然是無法避免的動作，對商業網

站的營運卻會造成巨額損失。目前已有多種軟體動態修補(Dynamic Software 

Updating)的研究成果，但是皆需原始碼(Source Code)的輔助。有鑑於此，我們

針對微軟視窗平台上商業軟體，在沒有原始碼可供分析的情況下，仍可進行動態

軟體修補。 

 

為了證明修補機制的可行性，我們試行運用於溢位弱點的動態修補操作。現

存偵測溢位弱點的方法中，大都無法有效用於正在運行的伺服器上，因為偵測溢

弱點耗費時間，影響網站服務效率。我們因此利用所發展的修補機制，發展可動

態偵測軟體溢位弱點的工具，讓使用者選擇性地啟動溢位弱點偵測，供使用者在

不關閉程式的前提下，進行修補有溢位弱點的程式。透過在視窗平台上的軟體實

驗，我們可以有效地修補溢位弱點，防止惡意使用者利用此類型弱點進行攻擊。 
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Patching Buffer-Overflow Vulnerability by 

Dynamic Updating Binary Software 
 

Student: Yu-Te Huang     Advisor: Shih-Kun Huang 

 

Abstract 

 
Programs are inherently with bugs for we can only prove their presence but not 

their absence. In order to maintain the quality of software and get rid of bugs, 

developers need to fix them and release corresponding patches. When patching the 

software on Microsoft Windows, we usually terminate the software first, apply 

related patches, and restart the system. Such a process is expensive to shutdown the 

system only for patching and fixing the software bugs. Much research efforts focus 

on dynamic software updating (DSU) with static analysis on source code. Our work, 

called DUBS, instead tries to develop DSU on Commercial Off-The-Shelf (COTS) 

software. 

 

To prove the applicability of our binary updating mechanism, we apply DSU on 

Buffer overflow detection. Such techniques have been well developed but they can 

not be applied to server dynamically, due to their high execution overhead. We 

develop a tool by our binary DSU which could detect buffer overflow vulnerability 

dynamically. Users can optionally enable the detection mechanism and use this tool 

to patch the vulnerability dynamically in COTS on Microsoft Windows without 

stopping the program. We perform the experiment on COTS and can successfully 

block the attack from malicious users. 

 

Keywords: Dynamic Software Updating 
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1. INTRODUCTION 
 

1.1. Motivation 
 

Programs are inherently with bugs for we can only prove their presence but not their 

absence. In order to maintain the quality of software and get rid of bugs, developers 

need to fix them and release corresponding patches. Once intended and malicious 

users obtain the patch, the patch itself reveals important information on the 

vulnerable parts of the system and become a direct assistant to a cracking tool. They 

can observe and analyze the running behavior of the patch, and find the involved 

code which is vulnerability related. The observed vulnerabilities can be exploited. 

Microsoft chief executive Steve Ballmer also claimed that “The hacker community 

uses our patches as blueprints to our vulnerabilities.” [1] It is therefore commonly 

believed that the community already uses publicly available patches to breach the 

software released by the Microsoft Corp. It is vitally important to apply patches and 

fix the vulnerable software immediately. 
 

When patching the software, we usually terminate the software first, apply 

related patches, and then restart the system again. Occasionally, it is an expensive 

process to shutdown the system only for patching and fixing the software bugs. For 

example, millions of users stay in the Amazon web site for browsing and searching 

interested books simultaneously. Once their software has a security bug, they want to 

fix it with patch. First, they must stop the services in some servers until bugs are fixed, 

and restart the services in these servers. If you want to enable users to continue 

browsing and shopping, you can use distributed systems and move the users from 

server A to server B; until bugs in the server A is fixed, and users are moved back to 

server A. Although users can continue browsing and shopping in the web sites, you 

cannot patch all servers in the same time. Such kind of patching strategy may leave 

late patched servers exposed to security threats. 

 

We want to fix the bugs in software, without terminating the software. It can 
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also reduce the cost when we fix the bugs in software. Another motivation of this 

work is that buffer overflow detection technique is often with high overhead, even 

cost 250 times more than that without detection capability[2]. The cost is not 

acceptable. So we do not want to apply the buffer overflow detection technique for 

normal situations. When some functions are suspicious to be compromised by buffer 

overflow breaches, we dynamically apply buffer overflow detection technique to 

monitor suspect functions. If we find the function which has the buffer overflow 

breach, we can close it. The server will serve users continuously even if it suffers 

from buffer overflow attack. 
 

1.2. Background 
 

This work focuses on buffer overflow detection and protection in binary program at 

running time. We need many techniques to support us finishing our work. First, it is 

hard to know program behavior when we only having binary code so we need 

disassembly technique to help us know it. Second, we want to control program 

behavior in the running time, so we must using debugger method to support us 

control it. Finally, we want to detect the buffer overflow, so we introduce two types 

of buffer overflow attack. 
 

1.2.1. Disassembly 
 

Disassembly, as part of reverse engineering, translates the machine code into the 

assembly language. Cheng introduced the forward and reverse engineering process 

[3]. As shown in Figure 1-1, forward engineering is a process from concept to design 

to implementation. To reverse this process is called reverse engineering. 
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Figure 1-1: Forward and reverse engineering process 
 

1.2.2. Debugger 
 

The debugger is a tool which the programmer uses to debug the program. Microsoft 

provides several debugging functions, which the programmer can use to create his 

own debugger. There are two ways to use debugger, either by launching the program 

in the debugger or by attaching to the running program. Microsoft provides 

CreateProcess function and DebugActiveProcess function respectively. 

The prototype of CreateProcess function is shown in Figure 1-2, and the 

prototype of DebugActiveProcess function is shown in Figure 1-3. 

 

 
 

Figure 1-2: Return type and parameters of CreateProcess 
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Figure 1-3: Return type and parameters of DebugActiveProcess 

 

1.2.3. Stack-based Buffer Overflow Attack 
 

The stack-based buffer overflow often leads the program into the unexpected state. In 

most calling conventions, when a function is called, its parameters will be pushed to 

the stack. Figure 1-4 shows the arrangement of the active record on the stack. When 

executing the instruction CALL, the operation system will push the return address, 

which is the address of the next instruction, to the stack. Then the value in the EBP 

register will be pushed to the stack, because it stores the frame pointer, which stores 

the address of current stack frame. Finally, enough space is reserved for the local 

variable, if any. In most operating systems, including Windows, the stack grows from 

the high address down to the lower address, but the buffer is written from the low 

address to higher address. Once local variables are written beyond their boundary, 

subsequent data, namely the saved frame pointer and the return address, will be 

overwritten. Program returns to the wrong address, not the parent function, when 

leaving this function. This is called stack-based buffer overflow. 

 

 
 

Figure 1-4: The arrangement of the elements on the stack 
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Figure 1-5 is a simple example with buffer overflow. Figure 1-6 and Figure 1-7 show 

contents of the stack before and after buffer overflow, respectively. The actual 

parameters of the Stack_Buffer_Overflow function, 1 and 2, are pushed in 

address 0012FF2C and address 0012FF30 in Figure 1-6 . Return address is stored 

in the address 0012FF28, and the previous frame pointer is stored in address 

0012FF24. Finally, the LocalVariable local variable is stored in address 

0012FF20. After the sprintf function writes over the LocalVariable, the 

data below are overwritten with 78, i.e., the 'x' in ASCII code. Therefore, the program 

will crash when returning from the Stack_Buffer_Overflow function. The 

stack-based buffer overflow usually occurs in using improperly some memory-related 

functions, e.g. strcpy and sprintf, because these functions work without 

boundary checking. In the secure programming aspect, these functions should be 

replaced by the safe version, for example, strncpy, snprintf, etc. 

 

 
 

Figure 1-5: Stack-based buffer overflow crash example 
 

 
 

Figure 1-6: Before buffer overflow stack content 
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Figure 1-7: After buffer overflow stack content 
 

1.2.4. Heap-based Buffer Overflow Attack 
 

The concept of heap-based buffer overflow is much like stack-based buffer overflow. 

The major difference between stack-based buffer overflow and heap-based buffer 

overflow is where the buffer is. Global variables and dynamically allocated memory, 

e.g. by function malloc, are stored in the heap. Once these buffer are overwritten, 

the program will access invalid addresses when freeing the buffer, and it will crash 

[4]. 
 

1.3. Objective 
 

Hicks et al. proposes Dynamic Software Updating [5, 6], which can dynamically fix 

bugs in software in UNIX platform. However, their approach requires the source code 

of the program. If the source code is not available, they can not patch the program. 

An automatic patch generator compares the old files and the new files to identify the 

change to generate the corresponding interface code file, patch file and etc, which are 

used to dynamically patch the software. 
 

Our objective is to use the binary code of programs only and aim at buffer 

overflow attack, dynamically applying buffer overflow detection to monitor the 

function which might has buffer overflow bugs without stopping program. You can 

either redirect the vulnerable function to another existing function or injected 

machine code, or block the vulnerable function if possible 
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1.4. Contribution 
 

Buffer overflow is a common bug in the software and usually becomes a security flaw. 

Malicious users can exploit the buffer overflow vulnerability of the server. There are 

four contributions of this work: 

 

1. Many buffer overflow detection technique are great, but their high overhead 

deters wide deployment. Consideration of the reasonable overhead, our tool can 

support buffer overflow detection dynamically, which means that you can select 

some functions to monitor at running time. You do not need to monitor all 

functions and do not need to monitor functions from program start to end. This 

is an effective way to reduce the overhead compared with monitoring all 

functions from program start. 

 

2. Once some functions of server software have buffer overflow vulnerabilities. 

But the official patch is not yet released. Our tool can close the function which 

has buffer overflow vulnerability in running time. It means that you do not stop 

the server and server will lack a few of functionality, but server can mitigate the 

buffer overflow attack. 

 

3. Most instrumentation tools inject code into the program at loading time. Some 

tools rewrite the binary execution file before execution. Our tool can inject the 

machine code at loading time and running time, because other tools lost control 

when program running. It means that you can replace any function which you 

can insert machine code before function execution or after function execution in 

the run time. This design is very useful, therefore you can perform various 

operations on the target program, for example, function blocking, function 

unblocking, function swapping, and etc. 

 

4. Our tool supports a logging feature, which you can use to log the function 

calling list of the process. It aims to log the function calling list in a working run 

and a failing run. Working run means that the program runs correctly. Failing 

run means that program will crash after the buffer overflow attack. The 
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difference between the working run and the failing run are candidates of the 

critical function. This feature is optional, and is disabled by default for 

performance. 

 

1.5. Synopsis 
 

In section 2, we will present related work. Section 3 describes the research method of 

our work. In section 4, the implementation of our work will be presented. Section 5 is 

experimental results, and we conclude in Section 6. 
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2. RELATED WORK 
 

We survey some techniques and tools which are related to our work. These 

techniques and tools are classified according to their major functionality.  

 

2.1. System Call Interception Tools 
We use the interception technique to wrap the binary code of program. APISPY32 

[7] can intercept the binary program in Windows system. The technique used in 

APISPY32 is to redirect function calls in DLL by modifying the Import Address 

Table (IAT). After logging the function information, it jumps to the address of 

original target function. APISPY32 and Detours [8] have the same functionalities, 

but they use different techniques. The technique of the binary program interception 

used in Detours is that it modifies the prolog of the function, in which it inserts the 

JMP instruction to get control before the function runs. 

Watchd [9] also modifies the IAT in order to log the information of functions. 

It has something different from APISPY32. It has more functionality than 

APISPY32. For example, it can perform automatic error detection and recovery, 

incremental data replications, IP packets re-routing, and etc. Final technique is 

proposed by Srouji et al. [10] They can insert checkpoints in the program. If 

program crashed, the tool could rollback to checkpoint without running the program 

again. It changes the startup routine and system calls import table. It changes the 

startup routing in order to insert the checkpoint into program. It changes the system 

calls import table in order to wrap API system call to preserve states across a 

checkpoint.  

 

2.2. Dynamic Software Updating Techniques 
 

We want to patch the program without stopping the software. The first technique is 

Dynamic Software Updating (DSU) [5]. It is used in Unix-Like system, and 

needs source code of programs. With the old file and patched file, it could produce 
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some files and use it to patch the running software. It dynamically re-links the old 

module to new module. If types of data were different, it creates stub functions to 

convert the old data type to the new data type. It also uses stub functions as an 

interface between the old function and the new function. It also implements in C 

version [6].  

 The idea of Automatic Software Upgrades (ASU) [11] is similar to 

DSU, but ASU focuses on distributed object-oriented database, and DSU focuses on a 

single process program.  

 The final technique is JPDA Enhancements [12]. It has already been 

implemented in Java. It can enable programmers to fix-and-continue debugging. If 

programmers find some bugs in the program, they can change the source code of 

program and see the difference without recompilation. This technique also provides 

the ability which could fix bugs in running server without shutting down the running 

server. 
 

2.3. Buffer Overflow Detection Techniques 
 

We want to dynamically apply buffer overflow detection or surviving techniques in a 

running program. We review eight kinds of buffer overflow detection techniques and 

two kinds of buffer overflow surviving techniques.  

 

StackGuard [13] is used to detect buffer overflow. It inserts canary between 

Return Address and Saved Frame Pointer. When leaving the function, it will check 

the canary. If the canary has been changed, it alerts the occurrence of buffer overflow 

and shutdowns the process. 
 

ProPolice [14] differs from StackGuard in two aspects. First, it puts canary in 

front of Saved Frame Pointer. Because when buffer overflow occurs and overwrites 

the Saved Frame Pointer, the control flow of programs would be changed. When 

leaving the function, it will check the canary. If the canary has been changed, it 

reports that buffer overflow has occurred. Second, it could reorder local variables so 

that the function pointers are placed in the lower memory address. When buffer 

overflow occurs, buffer overflow would overwrite other local variables except the 
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pointer which has been moved to lower memory address. It could reduce the damage 

slightly when buffer overflow attack occurs. 
 

C Range Error Detector (CRED) [15] builds a referent tree which records 

buffer start address and buffer size. If any instruction uses a buffer, it would check if 

the destination is within the buffer range, and check if the input size is small than the 

buffer size. If used buffer is not in referent tree, or input data size is larger than the 

buffer size, it would report violation of buffer overflow. 
 

Insure++ [16] is a commercial tool from Parasoft. It instruments the source code 

of program. It can detect memory corruption, memory leaks, memory allocation 

errors, variable initialization errors, variable definition conflicts, pointer error, and 

etc. 

 

Chaperon [16] is also a commercial tool from Parasoft. It is part of the Insure++. 

It intercepts malloc and free function calls. It could also detect memory leaks and 

variable initialization errors. But the limitation is that it only checks heap buffers. 

 

Valgrind [17] is a x86 emulator, and transforms the binary code to its own format. 

It uses Memory Check Plug-in to check whether buffer overflow occurs or not. 

 

CCured [18] performs the static analysis on program source code. It classifies the 

pointer into three kinds – SAVE, SEQ and WILD. SAVE pointers can only be 

dereferenced. SEQ pointers can be dereferenced and used in pointer arithmetic. 

WILD pointers can be dereferenced, used in pointer arithmetic and type casts. 

CCured applies different pointer types with different checks. 

 

Tiny C Compiler (TinyCC) [19] is a small C compiler. It modifies the source 

code, and inserts the code to check buffer usage. But it can not compile large 

programs, such as Apache. It can not detect read overflow either. 

 

2.4. Buffer Overflow Surviving Techniques 
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There are two kinds of buffer overflow surviving techniques. Both of them can 

survive under the buffer overflow attacks. 

  

Stack Shield [20] would save the return address during function prolog, and 

check the return address during function epilog. If two addresses are different, it 

reveals the violation of buffer overflow. It would terminate the program and if you 

want to continue running program, it could recover the original return address. 

 

In order to avoid buffer overflow to affect control flow of program, the technique 

proposed by Rinard et al. [21], uses hash table and memory block to store the 

data which is the writing data beyond the buffer. If you want to get the data over the 

buffer, it can get the value in a hash table indexed under the memory block. 

 

We summarize the characteristics of these ten techniques and tools and present 

in Table 2-1. 

 

Table 2-1: Characteristics summary table 

Tool OS 

Require 

Source 

code 

Buffer 

Overflow 

Detection

Buffer 

Overflow

Survival

Open 

Source

Heap 

Overflow 

Detection

Stack 

Overflow 

Detection 

Compile

Large 

Program

StackGuard Unix-Like Yes Yes No Yes No Yes Yes 

ProPolice Unix-Like Yes Yes No Yes No Yes Yes 

CRED Unix-Like Yes Yes No Yes Yes Yes Yes 

Insure++ 
Unix-Like / 

Windows 
Yes Yes No No Yes Yes Yes 

Chaperon Unix-Like No Yes No No Yes No Yes 

Valgrind Unix-Like No Yes No Yes Yes No Yes 

CCured Unix-Like Yes Yes No Yes Yes Yes No 

TinyCC Unix-Like Yes Yes No Yes Yes Yes No 

Stack 

Shield 
Unix-Like Yes Yes Yes Yes No Yes Yes 

Rinard et 

al. 
Unix-Like Yes Yes Yes No Yes Yes Yes 

 

2.5. Binary Instrumentation Tools 
 

Binary instrumentation inserts the extra code into program to do some specific 

behavior. Binary rewriting is a technique which can rewrite and instrument binary 

code without source code. Etch [22] is a binary instrumentation tool, and it uses 
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binary rewriting technique to inject the code. It can not only instrument but also 

optimize the binary code. Vulcan [23] is also a binary instrumentation tool, and it 

injects the code using binary rewriting technique, but it focuses on distributed 

environment. Danny Nebenzahl et al. [24] use binary rewriting technique 

injecting the detection code into binary code to protect the program against stack 

smashing attacks in Windows. BCEL [25] is a binary instrumentation tool for Java 

bytecode. 
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3. RESEARCH METHOD 
 

Figure 3-1 shows the steps of applying DUBS, we disassemble the binary code to find 

out all function entry addresses in this program. After loading the program, we 

modify IAT (Import Address Table) to wrap the library functions. Then, a function 

indirect table is created in free space of memory. We modify all function calls in the 

program in memory and enable program use the function indirect table which we 

create. Finally, if you want to control the function behavior in program, you can give 

a signal to the program. It will read the configuration file and it will perform the 

corresponding work, for example, functions manipulation, applying buffer overflow 

detection technique, function logging, and etc.  

 

 
 

Figure 3-1: The steps of applying DUBS 
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3.1. Discovering User-Defined Functions 
 
There are two types of functions in a program. One is existing library functions, and 

the other is user defined functions. Library functions will show in executable file, but 

user defined functions will not. APISPY32 can modify the IAT. Once the API 

function name in executable file is match the function name in IAT and it would be 

wrapped by APISPY32. We use debugger tool to get the disassembly content from 

binary files and do static analysis only. We collect all destination address of CALL 

from disassembly files because functions almost be called by CALL instruction. Static 

analysis may not detect all functions which user defined, because some destination 

address of CALL instruction are stored in registers. We do not know the value which 

has been stored in register until the program starts to run. 

 

3.2. Building Function Indirect Table 
 

Function indirect table is a medium between CALL instruction and target functions. 

Figure 3-2 (a) shows the original program. The line with arrow represents the control 

transfer with a CALL or a JMP. Figure 3-2 (b) shows the program with function 

indirect table. Function indirect table stores a lot of JMP instructions. Every 

intercepted function has an entry in function indirect table. The target address of 

every intercepted function call is replaced with the address of its corresponding entry 

in the table; the entry is a JMP instruction that jumps to the address of the intercepted 

function. In this way, a intercepted function is invoked via the function indirect table.  
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Figure 3-2: (a) Function call without a function indirect table (b) Function call with a 

function indirect table 

 

Using the function indirect table has many benefits as following: 

 

1. It can inject code in memory space before function calling. It is like 

inject code in prolog of function. Most of all instrumentation tools 

have the same limitation that they can not inject code in small 

functions. They insert the JMP instruction into function prolog and use 

the JMP instruction to jump to address of stub code, but the user 

defined functions are not large enough. The size of the function is too 

small to insert a JMP instruction, which occupies 5 bytes in the x86 

architecture. We use the function indirect table to solve this problem. 

Intercepted function calls are detoured to the function redirect table. 

After building the function indirect table, we do not need to change 

CALL sites. We insert code in unused memory space, and modify the 

address of function indirect table to that address. Figure 3-3 shows the 

control flow of using function indirect table to insert code. 
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CALL Function A

Function A

…

Jump to Address of Inject Code

Jump to Address of Function B

Jump to Address of Function C

…

…

Inject Code

…

Jump to Address of Function A

 
 

Figure 3-3: Using function indirect table to inject code 

 

2. For a function, it can wrap some or all of its invocation. Although 

different function calls may call the same function, we can enable 

them execute the different inject code and Figure 3-4 (a) shows the 

process of that. First function call A calls its entry of function indirect 

table and jump to injected code 1 and then jumps back to function A. 

Second function call A call its entry of function indirect table and 

jump to injected code 2 and then jumps back to function A. If we want 

all function calls which call the same function to execute the same 

inject code, we modify all function calls which call the same function 

to call the same entry of the function indirect table. As shown in 

Figure 3-4 (b), first function call A and second function call A call the 

same entry of function indirect table, jump to injected code 1 and then 

jump back to function A. 
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Figure 3-4: (a) Different function calls using different inject code (b) The same 

function using specified inject code 

 

3. It is easy to manage with function indirect table. If we want to control 

function behavior, we can modify the function indirect table easily. 

For example, we can modify all function calls which call the same 

function to call the same entry of function indirect table. If we want to 

redirect these function calls to another function, we can replace the 

entry of function indirect table with another function without 

modifying every function calls. 
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Modifying the different sites has the different advantage and drawback. We 

compare with modify different sites and list them in 錯誤! 找不到參照來源。. 

 

Table 3-1: Modified sites comparison table 
Modified 

Site 

Need Extra 

Memory 

Instrument 

Small 

Function 

Reduce 

Performance

Specify 

Function 

Call 

Instrument

Whole 

Function 

Instrument 

Easy to 

Management

CALL Site No Yes No Yes No No 

Function 

Prolog 

No No No No Yes No 

Using 

Function 

Indirect 

Table 

Yes Yes Yes Yes Yes Yes 

 

3.3. Break 5 Bytes Limitation 
 

Most of all instrumentation techniques insert a JMP instruction into function which 

they want to control, but the function whose size is small than 5 bytes is too small to 

insert a JMP instruction. In order to overcome 5 bytes limitation, we use the debugger 

to help us. First, we insert the breakpoint into target function. Once we get the 

breakpoint event signal, we can use debugger to control the PC (Program Counter) to 

extra code which we are inserted. Finally, we insert the JMP command after extra 

code and use it going back to original address of program. 
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4. IMPLEMENTATION 
 

We implement a tool to help users to detect the buffer overflow vulnerability and to 

protect their server from malicious users. We will explain the system architecture, 

implementation and performance improvement in this section. 

 

4.1. System Architecture 
 

This work focuses on binary software so we need a disassembly tool to help us 

disassembling the binary code. We choose OllyDbg to help us to disassemble the 

binary code, and to find the user defined functions. If the PDB (Portable Database) 

file is available, we can show the function names from disassembly files rather than 

the numeric address. Our tool bases on APISPY32 which is used to wrap the library 

function. We write a more friendly and useful GUI to wrap the APISPY32, so you 

may not feel APISPY32 existing. When a program is loading we modify the program 

in memory and insert function indirect table into it. We must re-calculate the offset of 

function calls, when building function indirect table. Our working environment is 

Microsoft Windows on Intel x86. 0xCC is a breakpoint code of machine code. We 

use polling method to check if the signal file exists, so we modify the first byte in 

prolog of functions to 0xCC, and we must backup the value which we overwrite. 

Figure 4-1 (a) shows the original function without inserting breakpoint and Figure 4-1 

(b) shows that the first byte of prolog has been modified by a breakpoint. We will 

receive the EXCEPTION_BREAKPOINT when program runs the 0xCC. Once we get 

the EXCEPTION_BREAKPOINT event, we check if the signal file exists. If it exists, 

it means that we want to control the behavior of function right now. Our tool will 

read the setting in configuration file and patch file. According to the setting in the 

configuration file, it runs the corresponding work. Our tool supports much 

functionality to control function behavior. We list them in Table 4-1 and show the 

workflow of our system in Figure 4-2. 
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Figure 4-1: (a) The function before insert breakpoint (b) The function has been insert 

breakpoint 

 

Table 4-1: The functionality of our tool 

Functionality Action 

SWAP It can swap functionality of two functions.

Block 

It can block functionality of function. It 

means that the functions which have been 

block will do nothing. 

Unblock 
It can restore the functionality of functions

which have been block. 

Inject - Before 

To inject the machine code before specific

function running. It is like injecting 

machine code into the prolog of the function.

Inject - After 

To inject the machine code after specific

function running. It is like injecting 

machine code into the epilog of the function.
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Figure 4-2: The dynamic update workflow 
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4.2. Implementation of System Features 
 

Out tool supports many functionality of interaction with functions of program. We list 

and explain the implementation details of our tool. 

 

4.2.1. Function SWAP 
 

This is an interesting functionality. It can swap functionality between two functions. 

We can implement this functionality easily with function indirect table. Look the 

Figure 4-4 (a) and Figure 4-4 (b) first. We want to swap two instructions which are 

CALL Function A instruction and CALL Function B instruction. It is a trivial idea of 

that we can swap the content in the function indirect table but it does not work. We 

find that the argument of a JMP instruction is relative offset, not an absolute address. 

If we want to do function swap, we must re-calculate the offset respectively. We 

show the re-calculate the offset function in Figure 4-3. 

 

 
Figure 4-3: Re-calculate the offset between two addresses 
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Figure 4-4: (a) Function call before SWAP (b) Function call after SWAP 

 

4.2.2. Function Blocking 
 

Function blocking is a useful functionality for blocking buffer overflow attack. Most 

of functions use 0xC3 (RETN) to return, but some functions do not. They use return 

type are 0xC20400 (RETN 4), 0xC20800 (RETN 8), 0xC20100 (RETN 10) 

or etc. We must check the target function and get the return type before block the 

function. Figure 4-5 (a) shows the original function without being blocked. Figure 4-5 

(b) shows that the entry of function indirect table has been overwrite to RETN. Once 

function call A occurs, it will jump to RETN and return immediately. We overwrite 

function indirect table only, without modifying the function call and function. 
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CALL Function A

Function A

…

Jump to Address of Function A

Jump to Address of Function B

Jump to Address of Function C

…

…

(a) (b)

CALL Function A

Function A

…

RETN

Jump to Address of Function B

Jump to Address of Function C

…

…

RETN RETN

 
Figure 4-5: (a) Function without being blocked (b) Function has been blocked 

 

4.2.3. Function Unblocking 
 

Sometimes, you try to use function blocking to block some functions which you think 

that they might have buffer overflow vulnerability. When the function has been 

blocked, the only way to re-activate it is using function unblocking. Function 

unblocking is used to restore the functionality of function which has been blocked. 

We can restore the values to function indirect table for restoring functionality of 

functions. 

 

4.2.4. Injecting Code Before Function Prolog 
 

It is the same as Figure 3-3. We inject the machine code in unused memory of 

program and modify the indirect table address which is re-calculated the offset from 

function indirect table to unused memory. We do not need to modify the function call 

and the prolog of function. 
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4.2.5. Injecting Code After Function Epilog 
 

Injecting machine code after function running is much different from before running. 

The small function means that its size is less than 5 bytes. We can not inject a JMP 

instruction into a small function, because a JMP occupies 5 bytes. Many tools suffer 

the same problem, and they can not solve this problem. We use debugger to help us 

solving this problem. We list the steps as following: 

 

1. Overwrite the function return with a breakpoint. Most of all cases are to 

overwrite 0xC3 with 0xCC or 0xC2 with 0xCC. We assume that the address of 

function return is address A. 

2. Inject the instrumentation code into unused memory of program and inject a 

return instruction which is the original value of address A after that. We assume 

that the address of instrumentation code is the address B. 

3. To set the EIP of program to address B, when we receiving the 

EXCEPTION_BREAKPOINT event and the address of breakpoint is address A. 

Enable the program run continually. 

 

4.3. Performance Improvement 
 

We design many methods to improve performance. It might reduce the overhead or 

memory footprint. 

 

4.3.1. Multi-Function Indirect Table 
 

Sometimes a program uses the function indirect table by itself. If we inject function 

indirect table again, it has two function indirect tables. We find all addresses of calls 

and check them to see if they are JMP instruction or not. If the instruction is a JMP, 

we use the target address of JMP to replace the address of CALL. Figure 4-6 (a) 

shows the original program with its own function indirect table and our function 

indirect table. Figure 4-6 (b) shows that our function indirect table replaces the 
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original function indirect table. If there are multi-jump in a program, we use the same 

method to solve it. We replace the address in function indirect table with the final 

address of JMP. Figure 4-7 (a) shows that function call A must go through three 

indirect jumps. If function call A is usually used, it has high overhead. Figure 4-7 (b) 

shows that we will find the final destination address to replace the entry address in 

function indirect table. It can reduce some overhead when solving multi-jump 

problem. 

 

 
Figure 4-6: (a) Multi-function indirect table (b) One function indirect table 

 



 

28  

 

 
Figure 4-7: (a) Multi-jump program (b) After refine the address 

 

4.3.2. Check Times Interval 
 

Our tool uses pooling method to check if the signal file exists. We insert breakpoints 

in prolog of functions. We receive the EXCEPTION_BREAKPOINT when program 

reaches a breakpoint. Once we get the EXCEPTION_BREAKPOINT event, we check 

if the signal file exists. The signal file does not exist most of the time. It has a high 

overhead, so our tool counts the number of times when we get the 

EXCEPTION_BREAKPOINT event. Our tool sets a number dynamically for interval. 

If the number which our tool counts is small than the number of interval, our tool will 

do nothing and let the program continue. If the number which our tool counts is equal 

to the number of interval, our tool will check the signal file to see if it exists and reset 

the number of our tool counts to zero. Our tool always checks the signal file more 

than one time in one second. It will change the number of interval dynamically and 

let itself check the signal file every two seconds. Using this method can reduce some 
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overhead with polling method. 

 

4.3.3. Saving Memory Space 
 

Sometimes, you may want to inject the same instrumentation code into different 

function. We can wrap it to a function and they need only one copy. Figure 4-8 (a) 

shows that function call A and function call B are using the same instrumentation 

code before call function A and function B. It uses two copy of the same 

instrumentation code. Figure 4-8 (b) shows that the result of using our method. We 

add function calls for function call A and function call B, and modify the entry of 

function indirect table to jump to them. Finally, we use function calls which we added 

to call instrumentation code. 
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CALL Function A

Function A

…

Jump to Address of Inject Code

Jump to Address of Inject Code

Jump to Address of Function C

…

…

Inject Code

…

Jump to Address of Function A

CALL Function B

…

…

Inject Code

…

Jump to Address of Function B

(a)

Function B

…

CALL Function A

Function A

…

Jump to Address of Saving A

Jump to Address of Saving B

Jump to Address of Function C

…

…

Inject Code

…

RETN

CALL Function B

…

…

(b)

Function B

…

Call Inject Code

Jump to Address of Function A

Call Inject Code

Jump to Address of Function B

 
Figure 4-8: (a) Two copy of inject code (b) One copy of inject code 

 

4.4. Blocking Buffer Overflow Attacks 
 

Buffer overflow attacks are a serious and dangerous problem. In this section, we 

introduce the buffer overflow detection and how to block buffer overflow attack by 

using our tool. 
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4.4.1. Detection of Buffer Overflow 
 

We apply the idea of StackGuard to implement a buffer overflow detection. This 

technique is something different from StackGuard. First, StackGuard needs source 

code to instrument, but we need not. Second, StackGuard monitors all function at 

program starting, but we can monitor specific functions which we select at run time. 

It can reduce much overhead compared with StackGuard. 

 

4.4.2. Analysis and Block the Critical Function 
 

We want to block the buffer overflow attack, so we must know which function has 

buffer overflow vulnerability. We can use buffer overflow detection technique to find 

which function has buffer overflow vulnerability. In our tool, we apply the technique 

of StackGuard. When we find out the function which might be vulnerable to buffer 

overflow attack, we can stop it by using function blocking. We can see Figure 4-9 

which is a control flow graph, the line with arrow represents the call sequence when 

program running. Working run means that program run correctly and all the functions 

which program has been passed. Function 1, 2, 3, 4 and 7 are in the working run. 

Failing run means that program will crash after buffer overflow attack, and all the 

functions which program has been passed. Function 1, 2, 5, 6 and 7 are in the failing 

run, and we can see that working run and failing run both call Function 7. In Figure 

4-9, we assume that Function 6 has been found buffer overflow vulnerability. We 

block Function 6 and prevent server from crashing after buffer overflow attack, see 

Figure 4-10. 
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Figure 4-9: Buffer overflow function in failing run 

 

 
 

Figure 4-10: Block the buffer overflow function in failing run 

 

Sometimes, you will find that a function which has buffer overflow 

vulnerability is at intersection of working run and failing run. See Figure 4-11, we 

assume that Function 7 has buffer overflow vulnerability and it is in the intersection 

of working run and failing run. If we block Function 7, it might affect the behavior of 

working run. Our tool can log the function calling list, and we want to find the 

candidates of critical function. We define critical functions are the predecessor of 

buffer overflow and there are no relationship between critical functions and working 

run. The candidate of critical functions will be found easily, we can find the functions 

in failing run but they are not in working run. In Figure 4-11, we know Function 5 

and Function 6 are candidates of critical functions. We try to block Function 5 or 
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Function 6 to prevent server from crashing after buffer overflow attack and it shows 

in Figure 4-12. 

 

 
 

Figure 4-11: Buffer overflow function at intersection of working run and failing run 

 

 
 

Figure 4-12: Block critical function in failing run 
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5. RESULTS AND ASSESSMENT 
 

We use our tool to protect the software which has buffer overflow vulnerability. Our 

experimental environment is shown in Table 5-1. 

 

Table 5-1: Experiment environment 

Device Description 

CPU Intel Pentium 4 CPU 3.40 GHz 

Memory 1 GB 

Operation 

System 

Microsoft Windows XP SP2 

 

 

5.1. Buffer Overflow Attack in Serv-U 4.1 
 
Serv-U 4.1 has a buffer overflow vulnerability. Malicious users can use the bug of 

MDTM command to exploit the Serv-U 4.1. 

 

5.1.1. Blocking Overflow Attack 
 

We use our tool to detect buffer overflow in the Serv-U. We find that function whose 

address is 0x00683A88 has the buffer overflow vulnerability. We use logging 

functionality by our tool and find the control flow of Serv-U. 

 

5.1.2. Performance Evaluation 
 

We instrument the Serv-U with dynamic update functionality. We evaluate the 

performance of original program, and compare it with DUBS. Table 5-2 shows the 

performance by getting and putting many files with different size, and Figure 5-1 

shows the performance graph. Blue line represents the original Serv-U and pink line 
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represents the Serv-U applying DUBS. We also provide another performance 

evaluation. Table 5-3 shows the performance by getting and putting many files whose 

size are 1K bytes and Figure 5-2 also represents it as a performance graph. We can 

see that Serv-U has little overhead when applying DUBS. 

 

Table 5-2: Compare performance by file size 

Series Operation Original With DUBS Slowdown 

1 Get 1 MB File 1.8 sec 1.8 sec 0 % 

2 Get 10 MB File 5.6 sec 5.8 sec 3.6 % 

3 Get 100MB File 42 sec 43 sec 2.4 % 

4 Put 1 MB File 2 sec 2 sec 0 % 

5 Put 10 MB File 4.4 sec 4.6 sec 4.5 % 

6 Put 100 MB File 32 sec 32.4 sec 1.3 % 

Average    2 % 
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Figure 5-1: Performance graph by file size 
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Table 5-3: Comparison performance by number of files 

Series Operation Original With DUBS Slowdown 

1 Get 10 Files 2.6 sec 2.6 sec 0 % 

2 Get 100 Files 17 sec 17.4 sec 2.4 % 

3 Get 1000 Files 155 sec 169 sec 9.0 % 

4 Put 10 Files 2.4 sec 2.4 sec 0 % 

5 Put 100 Files 15.6 sec 16.2 sec 3.8 % 

6 Put 1000 Files 144 sec 146 sec 1.4 % 

Average    2.8 % 

 

 

0

50

100

150

200

1 2 3 4 5 6

Series

Se
co

nd
s

Original

With DUBS

 
 

Figure 5-2: Performance graph by number of files 

 

5.2. Discussions 
 
Our tool uses polling method in order to get the control of program. The problem of 
polling method is high overhead. We apply the DUBS on Serv-U 4.1 and we find that 
maximal overhead is 9.0 percent. Although it costs 9.0 percent overhead but it has a 
dynamic updating feature. We can control the function behavior and detect the buffer 
overflow vulnerability dynamically by this feature. Once buffer overflow 
vulnerability has been detected, we can block the function which has buffer overflow 
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vulnerability immediately. The 9.0 percent overhead compares to system crash is 
little. 
 
We also do some evaluation on Serv-U 4.1. The match rate of control flow finding in 
Serv-U 4.1 is 98%, and Serv-U produces 8 threads when it is running. Building 
function indirect table in Serv-U 4.1 needs 38 seconds because Serv-U has 26657 
user defined functions. 
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6. CONCLUSION AND FUTURE WORK 
 

We develop a tool, called DUBS, to protect COTS software and prevent malicious 

users from attacking the system. COTS software would crash when you use DUBS to 

protect the software at first attack. After first attacking, you would enable the 

detection and protection features in DUBS. Using DUBS, you can optionally enable 

the detection of buffer overflow vulnerability, by blocking the function with overflow 

vulnerability. This tool can also act as a better binary instrumentation tool, because it 

can instrument machine code into running program. The comparison of binary 

instrument tools is listed on Table 6-1. It also supports the feature which can change 

the behavior of functions. 

 

Table 6-1: Binary instrumentation tools comparison table 

 

Break 5 

Bytes Small 

Function 

Detecting 

User Define 

Function 

Detecting 

User Define 

Function 

with 

Indirect 

Tables 

Instrument DLL
Instrument 

Timing 

Handle 

Multithread 

Application 

Inject 

Machine 

Code in 

Running 

Time 

Block or 

Active User 

Define 

Function in 

Running 

Time 

 

Detours 

 

No No No Yes 
Loading 

Time 
Yes No No 

Danny 

Nebenzahl et 

al. 

No 
Yes  

(IDA Pro) 
No Yes 

Rewrite 

Binary File
Yes No No 

Vulcan No Yes Yes Yes 

Rewrite 

Binary File 

or Loading 

Time 

Yes No No 

Etch No No No No 
Rewrite 

Binary File
Yes No No 

Dynamic 

Updating 

Binary 

Software 

Yes 
Yes 

(OllyDBG) 
Yes Yes 

Loading 

Time 
Yes Yes Yes 

 

6.1. Limitation 
 

Our work has some limitations, and we show them as follows. 

 

6.1.1. Call Destination Address in Registers 
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Our tool can not control the function which is called by registers in order to control 

the function whose size is small than 5 bytes. Most of all instrumentation techniques 

insert a JMP instruction into function prolog. They will face the 5 bytes limitation 

problem, because JMP occupies 5 bytes. 

 

6.1.2. Control Flow Logging 
 

We find the user define functions and inject the breakpoint in the function prolog and 

epilog. We can log the control flow by receiving the debug event 

EXCEPTION_BREAKPOINT. We find that the number of function call is more than 

function return when program logging finished. Because we can not inject the 

monitor code in function epilog in DLL files. 

 

6.1.3. Buffer Overflow Vulnerability in Critical Function 
 

We can block the function which has the buffer overflow vulnerability. But there is a 

condition. The function which we are blocked must be in the failing run and not in 

passing run. If you block the function which is in pass run, the right action might 

become wrong action. Robot FTP also has buffer overflow vulnerability, it occurs in 

USER command. We can not protect the Robot FTP because its passing run and 

failing run are the same. 

 

6.2. Future Work 
 

6.2.1. Memory Space Reallocation 
 

Scarce memory space is a big problem to us, because we need memory to create 

function indirect table and place the instrumentation code. We can use binary 

rewriting technique to enlarge the memory space. 
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6.2.2. Using Event Message Instead of Polling Method 
 

Our tool uses polling method to get the control of program. It must do context switch 

when breakpoint occurs. It costs high overhead when doing context switch. Microsoft 

Windows supports message which is like the signal in Unix-like system and it can 

communicate two individual programs. 

 

6.2.3. Code Injection with C Language 
 

Our tool can let users inject the code into running program. It supports injecting the 

machine code now. If you want to inject C language code, you must compile the C 

language code first before injecting it, but it has many limitations. For example, you 

must re-calculate the offset of function which in the library. 
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