P IR P

Bl { ATE ZATE 235 Bk T
Patching Buffer Overflow Vulnerability by Dynamically Updating
Binary Software

1k Student: Yu-Te Huang

L
T 2 Advisor: Shih-Kun Huang

Hsinchu, Taiwan, Republic of China

PEARAY T ER

s
[
P
She
5
%
\\:: N
A
e
¥
Wi
AY3, 1
-34‘\.?
b
_.
%
ot
-

P AT A 2y i24¢ 15 41 (Patch)ie {7 L #7 - &

R : s (7 ATRY

¥ F R MR A s e T AT s AL g v $H T £ R

sheny S Er £ . L : Y §5 A 43 \amic Sof tware

l}'-‘) }\. fre

Updating

E ¥4k & (7 A

e 1 E o If,
E i RE
55 3
o R n

B A

Patching Buffer-Overflow Vulnerability by
Dynamic Updating Binary Software

Student: Yu-Te Huang Advisor: Shih-Kun Huang

Abstract

Programs aresinherently with bugs for we can only proveitheir presence but not
their absence. In order to maintain the quality of software and get rid of bugs,
developers need to fix them and release.corresponding patches. When.patching the
software on Microsoft Windows, we usually terminate the software first, apply
related patches, and restart the system. Such.a process is expensive to shutdown the
system only for patching and fixing the software bugs. Much research efforts focus
on dynamic software updating (DSU) with static.analysis on source code. Our.work,
called DUBS, instead tries to develop DSU on_Commercial Off-The-Shelf (COTS)

software.

To prove the applicability of-ourbinary-updatings-mechanism, we apply DSU on
Buffer-overflow detection. Such techniques have been well developed but they can
not be applied to server dynamically, due to their high execution overhead. We
develop a tool by our binary DSU which could detect buffer overflow vulnerability
dynamically. Users can optienally enable the detection-mechanism and use this tool
to patch the vulnerability dynamically in COTS on Microsoft Windows without
stopping the program. We perform the experiment on COTS and can successfully

block the attack from malicious users.

Keywords: Dynamic Software Updating

% mk

LA

o SRR BP hy R E R R REE HBPE R P 3 ko ik

AFIFF AL AR ThHY FrORHHR S BT K& P LT
£

hail

£ e KA A B A RPE 0 BRI St g o SRR B

A A futdh Lo B RS L B R BB ALIRA AT I A F
'1-?‘}-}?3 o

=

f

Contents

INTRODUCTION ..ottt 1
L1, MOUIVALION ...ttt 1
1.2, BACKGIrOUNG......coiiiiiiitiiiieiieiieee et 2
1.2.1. DiSASSEMDIY ... 2
1.2.2. Debuggera. . BB - B A oo, 3
1.2.3. Stack-based Buffer Overflow Attack......c.....c.cccoovvrininininiinns 4
1.2.4. Heap-based Buffer Overflow Atackcciveivviiveicieiiniiiics 6
1.3, GDIOEHRER =" T TR o 6
1.4. ECAREEOUtion N A G ... 7
1. SEREEI0DS| Sl e R TR 8
REAIED WORK ™R . "N N Tl S = W ... R ... 9
2.1. System Call Interception TOO0IS........ccee..eoviiaieciiiniie e i 9
2.2. Dynamic Software Updating TeCNNIQUEScocververeeieieeneirieaseeneeneen. 9
2.3. Buffer Overflow Detection TEChNIQUES...c....cceiiriiiriiiiicc e 10
2.4. Buffer Overflow Surviving TeCANIQUES.cccervvveiireeiieieie s desresisanneee 11
2.5. Binary Instrumentation TOOIS i ..ot s 12
RESEARCH METHOD.....ki ittt atesnesntasiassesasheeeeeeeneeneessesees b dinansestastenees 14
3.1. Discovering User-Defined FUNCLIONS ummsmmmmmmmms - veerveereeshaasseasnasteesees 15
312, Building Function Indirect Table....... 5 i sbeanis s eesne e 15
3.3. " Break 5 Bytes LIMItation ... b e 19
IMPLEMENTATION .. .ottt e st ana s e 20
4.1, SYSEemM ArChITECTUIE........ceveeiiieieiicrie it ana st e e 20
4.2. Implementation of System Features......mi s ibieeeeieieenesc e 23
4.2.1. FUNCLION SWAP ...t 23
4.2.2. Function BIOCKING...cc... it 24
4.2.3. Function Unblocking ... 25
4.2.4. Injecting Code Before Function Prolog..........cccccoeevvniiinininene, 25
4.2.5. Injecting Code After Function Epilogccccooviininiiiniennen, 26
4.3. Performance IMProVEMENT.......cccooiiiiiriiinieieiee e 26
4.3.1. Multi-Function Indirect Table ... 26
4.3.2. Check Times INterval..........ccccoiiiiiiiiiiie e 28
4.3.3. SavINg MEMOIY SPACEcceiviriiriiiirieeeie e 29
4.4. Blocking Buffer Overflow Attacks...........ccooiiiiiiiiiiinece 30
44.1. Detection of Buffer OVerflow...........ccccooeiiiiniiiiiiiccc 31

Vi

4.4.2. Analysis and Block the Critical FUnCtionc.ccoovevniinnencnn 31

RESULTS AND ASSESSMENToooiiiiicce ettt 34
5.1. Buffer Overflow Attack in Serv-U 4.1 ..o, 34
5.1.1. Blocking Overflow Attack..........c.ccooevviininiiiiiiiiieceee 34
5.1.2. Performance Evaluation............cccccoeveiieiiiic e 34
5.2, DISCUSSIONSuviviiiieiieciee ittt st ettt beeste e ra e 36
CONCLUSION AND FUTURE WORKcoviiiiiiieiectseseeeee e 38
6.1, LIMITAtION......ccoiiiiceccce e 38
6.1.1. Call Destination Address in REGIStersc.covervrirerriereriennnnn 38

6.1.2. Control Flow: Log
6.1.3. Buffer O

6.2. Future
6.2.1.

Vil

List of Tables

Table 2-1: Characteristics summary tablecccoooevieviiiiiiie e 12
Table 3-1: Modified sites comparison tableccccoovvieiiiiiiiniiieneens 19
Table 4-1: The functionality of our t00lcccccvevviiiiiei e 21
Table 5-1: EXperiment enVIrONMENT.........ccoooveieereerieiieseene e seeseeeneesneens 34

Table 5-2: Compare.pe
Table 5-3: Comp
Table 6-

viii

List of Figures

Figure 1-1: Forward and reverse engineering ProCeSS.........coceeverververeeeeenn. 3
Figure 1-2: Return type and parameters of CreateProcess................... 3
Figure 1-3: Return type and parameters of DebugActiveProcess....... 4
Figure 1-4: The arrangement of the elements on the stack.............ccccccoene 4
Figure 1-5: Stack-based buffer overflow crash example...........c.ccocveieneneee. 5
Figure 1-6: Before buffer overflow stack contentcccccooeieninninnns 5
Figure 1-7: After buffer overflow stack content.............coovviveieienenennens 6
Figure 3-1: The steps of applying DUBS ...ttt 14
Figure 3-2: (a) Function call without a function indirect table (b) Function
call with a function indirect table ... 16
Figure 3-3:'Using function indirect table to inject code........cccoorvvvverennnnee. 17
Figure 3-4: (a) Different function calls using different inject code (b) The
same function using specified iNjECt COde ...ov iiiiiriiienie i e sranssse e 18
Figure 4-1: (a) The function before insert breakpoint (b) The function has
been insert Breakpoint............cioci it 21
Figure 4-2: The dynamic update WOrkFlowocceeeeeiecdiesiennnnne 22
Figure 4-3: Re-calculate the offSet between two addresses.........ccwmnee.... 23

Figure 4-4: (a) Function call before SWAP (b) Function call after SWAP 24
Figure 4-5: (a) Function without being blocked (b) Function has been

blocke@ie NEIAL “TENNNNES_BE “= = b S R ... 25
Figure 4-6: (a) Multi-function indirect table (b) One function indirect table

... 27
Figure 4-7: (a) Multi-jump program (b) After refine the address............... 28
Figure 4-8: (a) Two copy.of inject.code (b) One copy of inject code 30
Figure 4-9: Buffer overflow function in failing runcccoeeivnes 32
Figure 4-10: Block the buffer overflow function in failing run.................. 32
Figure 4-11: Buffer overflow function at intersection of working run and

FAHING FUN .o 33
Figure 4-12: Block critical function in failing run............cc.ccocooeininenne, 33
Figure 5-1: Performance graph by file Size ..., 35
Figure 5-2: Performance graph by number of files..........cccconinininnnen, 36

1. INTRODUCTION

1.1. Motivation

Programs are inherently with bugs for we can only prove their presence but not their
absence. In order to maintain the quality of software and get rid of bugs, developers
need to fix them and release corresponding patches. Once intended and malicious
users obtain the "patch, the patch itself reveals important information on the
vulnerable parts of the system and become a direct assistant to a craeking tool. They
can observe and analyze the running behavior of the patch, and find the involved
code which is vulnerability related. The observed vulnerabilities can be exploited.
Microsoft chief executive Steve Ballmer also, claimed that “The hacker community
uses-our patches as blueprints to our vulnerabilities.” [1] It is therefore commonly
believed that the community already uses publicly available patches to breach the
software released by the Microsoft Corp. It Is vitally important to apply patches and

fix the vulnerable software immediately.

When patching ‘the software, we usually terminate the software first, apply
related patches, and then restart the system-again= Occasionally, it IS an.expensive
process to'shutdown the system only for patching and fixing the software bugs. For
example, millions of users stay in the Amazon web site for browsing and searching
interested books simultaneously..Once their software-has a security bug, they want to
fix it with patch. First, they must stop the services in some servers until bugs are fixed,
and restart the services in these servers. If you want to enable users to continue
browsing and shopping, you can use distributed systems and move the users from
server A to server B; until bugs in the server A is fixed, and users are moved back to
server A. Although users can continue browsing and shopping in the web sites, you
cannot patch all servers in the same time. Such kind of patching strategy may leave

late patched servers exposed to security threats.

We want to fix the bugs in software, without terminating the software. It can

also reduce the cost when we fix the bugs in software. Another motivation of this
work is that buffer overflow detection technique is often with high overhead, even
cost 250 times more than that without detection capability[2]. The cost is not
acceptable. So we do not want to apply the buffer overflow detection technique for
normal situations. When some functions are suspicious to be compromised by buffer
overflow breaches, we dynamically apply buffer overflow detection technique to
monitor suspect functions. If we find the function which has the buffer overflow
breach, we can close it. The server will serve users continuously even if it suffers

from buffer overflow attack.

1.2. Background

This work focuses on buffer-overflow-detection and protection in binary program at
running time. We need many technigues to support us finishing our work. First, it is
hard.to know program.behavior when we only having binary code so we need
disassembly technique to help us know it. Second, we want to control program
behavior in the running time, so we must using debugger method to support us
control it. Finally, we want to detect the buffer overflow, so we introduce two types

of buffer overflow attack.

1.2.1. Disassembly

Disassembly, as part of reverse engineering, translates the machine code into the
assembly language. Cheng introduced the forward and reverse engineering process
[3]. As shown in Figure 1-1, forward engineering is a process from concept to design

to implementation. To reverse this process is called reverse engineering.

Reverse Engineering

<
! @O 1@
\ -
: /i// G 010110
AN C2 010111
\ - - o
Programming Language Machine Code
- =p | ProgrammingLangusg
Concept Design Implementation
>

Forward Engineering

Figure 1-1: Forward and reverse engineering process

1.2.2. Debugger

The debugger is a tool which.the programmer. uses to debug the program..Microsoft
provides several debugging functions, which the programmer can use to create his
own debugger. There are two ways to use debugger, either by launching the program
in ‘the debugger or by attaching to the running program. Microsoft provides
CreateProcess function and DebugActiveProcess function respectively.
The prototype of CreateProcess function is shown in Figure 1-2,.and the

prototype of DebugActiveProcess function is.shown in Figure 1-3.

BOOL WINAPI CreateProcess(
LPCTSTR lpipplicationName,
LPTSTR IlpCommandLine,
LPSECURITY ATTRIBUTES IpProcessAttributes,
LPSECURITY ATTRIBUTES IpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFladgs,
LPVOID IpEnvironment,
LPCTSTR lpCurrentDirectory,
LPSTARTUPINFO IpStartupInfo,
LPPROCESS_INFORMATION IpProcessInformation

)

Figure 1-2: Return type and parameters of CreateProcess

BOOL DebugActiveProcess(
DWORD dwFProcessId
) ;

Figure 1-3: Return type and parameters of DebugActiveProcess

1.2.3. Stack-based Buffer Overflow Attack

The stack-based buffer overflow often leads the program into the unexpected state. In
most calling conventions, when a function is called, its parameters will be pushed to
the stack. Figure 1-4 shows the arrangement of the active record on the stack. When
executing the instruction CALL, the operation system will push the return address,
which is_the address of the next instruction, to the stack. Then the value_in the EBP
register.will be pushed to the stack, because it stores the frame pointer, which stores
the address of current stack=frame. Finally, enough space is reserved for the local
variable, if any. In most operating systems, including Windows, the stack grows from
the high address down to the lower address, but the buffer is written from the low
address to higher address. Once local variables are written beyond their boundary,
subsequent data, namely the saved frame pointer and the return address, will be
overwritten. Program returns to the wrong address, not the parent function, when

leaving this function. This is called stack-based buffer overflow.

Low Address
Local Variable

Saved Frame
Pointer

Buffer Growth Stack Growth

Return Address

Parameters
High Address

Figure 1-4: The arrangement of the elements on the stack

Figure 1-5 is a simple example with buffer overflow. Figure 1-6 and Figure 1-7 show
contents of the stack before and after buffer overflow, respectively. The actual
parameters of the Stack Buffer_Overflow function, 1 and 2, are pushed in
address 0012FF2C and address 0012FF30 in Figure 1-6 . Return address is stored
in the address O012FF28, and the previous frame pointer is stored in address
0012FF24. Finally, the LocalVariable local variable is stored in address
0012FF20. After the sprintf function writes over the LocalVariable, the
data below are overwritten with 78, i.e., the 'x' in ASCII code. Therefore, the program
will crash when returning from the Stack Bufifer_ Overflow function. The
stack-based buffer averflow usually occurs in using improperly,some memory-related
functions, e.g. strcpy and sprintf, because these functions work without
boundary checking. In the secure programming.aspect, these functions should be

replaced by the safe version, for example, strncpy, snprintf, etc.

#include <stdio.h>
void Stack_Based_Buffer_Overflow{int, int);

int main()

¢ Stack_Based_Buffer_0Overflow{1, 2);
return A;
H
void Stack_Based_Buffer_Overflow{int a, int b)
¢ char LocalVariable[4];
5printF{Lucaanriahle, S, UHEENENEENENNENENNEN NN NN ;
H

Figure 1-5: Stack-based buffer overflow crash example

BEIZFFIC| DRERE2EE
BE12FF2E| BEEEEEEE
BE12FF24 | FrEal 2FF2a
BE12FF22|] 80481841 [RETURM to main.main+2l from main. 646 1688F
BE1ZFFZC) | 90000881
HE1ZFFZE| | BEEEREEZ
BE1ZFF24 || FCI3E73E(ntdl 1. YCR2E7IE
BE12FF22|| FFFFEFFFE
BE12FF2C| | YEFFDSEEE
BE12FF48|] CCCCCCCC
BE12FF44|] CCCCCCCC

Figure 1-6: Before buffer overflow stack content

BE12FFIC| CCCCCCCC
BE12FF2E8| FEFETEFE
BE1ZFF24| FSYSTYEFE
BE1ZFF25| F8YE87YE7E
BE1ZFF2C) FEYE8TEFE
BE1ZFF2HE| FEYEYETE
BE12FF24| FEFETEFE
BE12FF22| FEVETEFE
BE12FF2C| FEFETEFE
BE1ZFF48| CCCCCCaa
AE12FF44| CCCCCCCC

Figure 1-7: After buffer overflow stack content

1.2.4. Heap-based Buffer Overflow Attack

The concept of heap-based buffer overflow is much like stack-based buffer overflow.
The major difference between stack-based buffer overflow and heap-based buffer
overflow is where the buffer is. Global-variables-and dynamically allocated memory,
e.g. by function. maliloc, are.stored in the heap. Once these buffer are overwritten,

the program will access invalid'addresses when freeing the®buffer, and it will crash

[4]

1.3:0Dbjective

Hicks-et al. proposes Dynamic Software Updating [5, 6], which can dynamically fix
bugs in software in UNIX platform. However, their approach requires the source code
of the program..If the source code is not available, they can not patch the program.
An automatic-patch.generator compares the old files and the new files to identify the
change to generate the corresponding interface code file, patch file and etc, which are

used to dynamically patch the software:

Our objective is to use the binary code of programs only and aim at buffer
overflow attack, dynamically applying buffer overflow detection to monitor the
function which might has buffer overflow bugs without stopping program. You can
either redirect the vulnerable function to another existing function or injected

machine code, or block the vulnerable function if possible

1.4. Contribution

Buffer overflow is a common bug in the software and usually becomes a security flaw.
Malicious users can exploit the buffer overflow vulnerability of the server. There are

four contributions of this work:

1. Many buffer overflow detection technique are great, but their high overhead
deters wide deployment. Consideration of the reasonable overhead, our tool can
support buffer overflow detection dynamically, whichimeans that you can select
some functions to monitor at running time. You do not need to monitor all
functions and do not need to monitor functions from program start to end. This
is an-effective way to reduce the overhead™ compared with monitoring all

functions from program. start.

2. Once some functions of server software have buffer overflow vulnerabilities.
But the official patch is not yet released. Our tool can close the function which
has buffer overflow vulnerability in running time. It means that you do not stop
the server and server will lack a few of functionality, but server can mitigate the

buffer overflow attack.

3. Most instrumentation tools 'inject code into the program at loading time. Some
tools‘rewrite the binary execution file before execution. Qur tool can inject the
machine code at loading time and running time, because othertools lost control
when program running. It means.that.you can replace any function which you
can insert machine code before function execution or after function execution in
the run time. This design is very useful, therefore you can perform various
operations on the target program, for example, function blocking, function

unblocking, function swapping, and etc.

4. Our tool supports a logging feature, which you can use to log the function
calling list of the process. It aims to log the function calling list in a working run
and a failing run. Working run means that the program runs correctly. Failing

run means that program will crash after the buffer overflow attack. The

7

difference between the working run and the failing run are candidates of the
critical function. This feature is optional, and is disabled by default for

performance.

1.5. Synopsis

In section 2, we will present related work. Section 3 describes the research method of

2. RELATED WORK

We survey some techniques and tools which are related to our work. These

techniques and tools are classified according to their major functionality.

2.1. System Call Interception Tools
We use the interception technique to wrap the binary code of program. APISPY32

[7] can intercept the. binary program in Windows system. The technique used in
APISPY32 is to redirect function calls in DLL by modifying the“Import Address
Table (IAT). After logging the function information, it jumps to the address of
original target function. AP ISPY32 and Detours [8] have the same functionalities,
but they use different techniques.-The technique of the binary program interception
used in Detours is that it modifies the prolog of the function, in which it inserts the
JMP instruction to get control before the function runs.

Watchd [9] also modifies the IAT in order to log the information of functions.
It has something different from APISPY32. It has more functionality than
API1SPY32. For example, it can perform automatic error detection and recovery,
incremental data replications, IP packets re-routing, and etc. Final technique is
proposed by Srouji et al. [10] They can insert checkpoints in the program. If
program crashed, the tool could rollback to checkpoint without running the program
again. It changes the startup routine and system calls.import table. It changes the
startup routing in order to insert the checkpoint into program. It changes the system
calls import table in order"to wrap API system call to preserve states across a

checkpoint.

2.2. Dynamic Software Updating Techniques

We want to patch the program without stopping the software. The first technique is
Dynamic Software Updating (DSU) [5]. Itis used in Unix-Like system, and

needs source code of programs. With the old file and patched file, it could produce

9

some files and use it to patch the running software. It dynamically re-links the old
module to new module. If types of data were different, it creates stub functions to
convert the old data type to the new data type. It also uses stub functions as an
interface between the old function and the new function. It also implements in C
version [6].

The idea of Automatic Software Upgrades (ASU) [11] issimilarto
DSU, but ASU focuses on distributed object-oriented database, and DSU focuses on a
single process program.

The final technique is JPDA Enhancements [12]. It has already been
implemented in Java. It can.enable programmers to fix-and-continue debugging. If
programmers find some bugs in the program, they can change the source code of
program and see the difference without recompilation._This technique also provides
the ability which could fix bugs.in running server without shutting down.the running

Server.

2.3. Buffer Overflow Detection Techniques

We'want to dynamically apply buffer overflow detection or surviving techniques in a
running program. We review eight kinds of buffer overflow detection techniques and

two Kinds of buffer overflow surviving techniques.

StackGuard [13] is used to detect buffer overflow. It inserts canary between
Return Address:and Saved Frame Pointer. When leaving the function, it will check
the canary. If the canary has been changed, it alerts the occurrence of buffer overflow

and shutdowns the process.

ProPolice [14] differs from StackGuard in two aspects. First, it puts canary in
front of Saved Frame Pointer. Because when buffer overflow occurs and overwrites
the Saved Frame Pointer, the control flow of programs would be changed. When
leaving the function, it will check the canary. If the canary has been changed, it
reports that buffer overflow has occurred. Second, it could reorder local variables so
that the function pointers are placed in the lower memory address. When buffer

overflow occurs, buffer overflow would overwrite other local variables except the

10

pointer which has been moved to lower memory address. It could reduce the damage

slightly when buffer overflow attack occurs.

C Range Error Detector (CRED) [15] builds a referent tree which records
buffer start address and buffer size. If any instruction uses a buffer, it would check if
the destination is within the buffer range, and check if the input size is small than the
buffer size. If used buffer is not in referent tree, or input data size is larger than the

buffer size, it would report violation of buffer overflow.

Insure++ [16] isacommercial tool from Parasoft. It instruments the source code
of program. It can detect memory corruption, memory leaks, memory allocation
errors, variable initialization errors, variable definition conflicts,-pointer error, and

etc.

Chaperon [16] isalso-acommercial tool from Parasoft: It Is part ofithe Insure++.
It intercepts mall loc and Free function calls. It could also detect memory leaks and

variable initialization errors. But the limitation is that it only checks heap buffers.

Valgrind [17] is a x86/emulator, and transforms the binary code to its own format.

It usessMemory Check Plug-in to check whether buffer overflow occurs or not.

CCured [18] performs the static analysis on program source code. It classifies the
pointer into three kinds — SAVE, SEQ and WILD. SAVE -pointers can only be
dereferenced. SEQ pointers can be dereferenced and. used In pointer arithmetic.
WILD pointers can be dereferenced, used in pointer arithmetic and type casts.

CCured applies different pointer types with different checks.

Tiny C Compiler (TinyCC) [19] is asmall C compiler. It modifies the source
code, and inserts the code to check buffer usage. But it can not compile large
programs, such as Apache. It can not detect read overflow either.

2.4. Buffer Overflow Surviving Techniques

11

There are two kinds of buffer overflow surviving techniques. Both of them can

survive under the buffer overflow attacks.

Stack Shield [20] would save the return address during function prolog, and
check the return address during function epilog. If two addresses are different, it
reveals the violation of buffer overflow. It would terminate the program and if you

want to continue running program, it could recover the original return address.

In order to avoid buffer overflow to affect control flow of program, the technique
proposed by Rinard’et al. [21], uses hash table and memory block to store the
data which is the writing data beyond the buffer. If you want to get the data over the

buffer, it can get the value in a hash table indexed under the memory block.

We summarize the characteristics-of these ten techniques and tools and present
in Table 2-1.

Table 2-1: Characteristics summary table

Require | Buffer Buffer B Heap Stack Compile
pen
Tool 0Ss Source Overflow Overflow L Overflow Overflow Large
ource
code Detection | Survival Detection | Detection [Program
StackGuard Unix-Like Yes Yes No Yes No Yes Yes
ProPolice Unix-Like Yes Yes No Yes No Yes Yes
CRED Unix-Like Yes Yes No Yes Yes Yes Yes
Unix-Like/
Insure++ s Yes Yes No No Yes Yes Yes
Windows
Chaperon Unix-Like No Yes No No Yes No Yes
Valgrind Unix-Like No Yes No Yes Yes No Yes
CCured Unix=Like Yes Yes No Yes Yes Yes No
TinyCC Unix-Like Yes Yes No Yes Yes Yes No
Stack R R
B Unix-Like Yes Yes Yes Yes No Yes Yes

Shield
Rinard et B B

. Unix-Like Yes Yes Yes No Yes Yes Yes
al.

2.5. Binary Instrumentation Tools

Binary instrumentation inserts the extra code into program to do some specific
behavior. Binary rewriting is a technique which can rewrite and instrument binary

code without source code. Etch [22] is a binary instrumentation tool, and it uses

12

binary rewriting technique to inject the code. It can not only instrument but also
optimize the binary code. Vulcan [23] is also a binary instrumentation tool, and it
injects the code using binary rewriting technique, but it focuses on distributed
environment. Danny Nebenzahl et al. [24] use binary rewriting technique
injecting the detection code into binary code to protect the program against stack
smashing attacks in Windows. BCEL [25] is a binary instrumentation tool for Java
bytecode.

13

3. RESEARCH METHOD

Figure 3-1 shows the steps of applying DUBS, we disassemble the binary code to find
out all function entry addresses in this program. After loading the program, we
modify IAT (Import Address Table) to wrap the library functions. Then, a function
indirect table is created in free space of memory. We modify all function calls in the

program in memory and enable program use the function indirect table which we

create. Finally, if you want to contro | beha ior in program, you can give

a signal to the pr 1 it will perform the

corresponding or example, functions manipulation, g=buffer overflow

detection techn , function loggi

= =1 !:i
[|
-I Executable File
| -
Disassembly

= o

il

Function
Discovery

=zt

Start Program

4

Create Function
Indirect Table

Waiting Signal for
Control Functions

Applying Patch
Code

Figure 3-1: The steps of applying DUBS

14

3.1. Discovering User-Defined Functions

There are two types of functions in a program. One is existing library functions, and
the other is user defined functions. Library functions will show in executable file, but
user defined functions will not. APISPY32 can modify the IAT. Once the API
function name in executable file is match the function name in IAT and it would be
wrapped by APISPY32. We use debugger tool to get the disassembly content from
binary files and do static analysis only. We collect all destination address of CALL
from disassembly files because functions almost be called by CALL instruction. Static
analysis may not detect all functions which user defined, because some destination
address of CALL instruction are stored in registers. We do not know the value which

has been stored in register until the program starts to run.

3.2. Building Function Indirect Table

Function indirect table is a medium between CALL instruction and target functions.
Figure 3-2 (a) shows the original.program. The line with arrow represents the control
transfer with a CALL or a JMP. Eigure.3-2.(b).shows.the, program with function
indirect table. Function: indirect table istores a lot-of JMP instructions. Every
intercepted-function has an entry in function indirect table. The target address of
every intercepted function call is replaced with the address of its corresponding entry
in the table; the entry is a JMP instruction that jumps to the address of the intercepted

function. In this way, a intercepted function Is invoked via the function indirect table.

15

CALL Function A . CALL Function A

Function A < v Function A

(a) ~ Jump to Address of Function A &

Jump to Address of Function B

Jump to Address of Function C

(b)
Figure 3-2: (@) Function call without a function indirect table (b) Function call with a

function indirect table

Using the function-indirect table'has many benefits as;following:

1. It can inject code in memory space before function calling. It is like
inject code in prolog of function. Most of all instrumentation tools
have the same limitation that they can not inject code In small
functions. They insert'the IMP instruction into function prolog and use
the JMP instruction to jump.to address of stub code, but the user
defined functions are not large enough. The size of the function is too
small to insert a JMP instruction, which occupies 5 bytes in the x86
architecture. We use the function indirect.table to solve this problem.
Intercepted function calls-are detoured to the function redirect table.
After building the function indirect table, we do not need to change
CALL sites. We insert code in unused memory space, and modify the
address of function indirect table to that address. Figure 3-3 shows the

control flow of using function indirect table to insert code.

16

CALL Function A

Function A

Jump to Address of Inject Code

Jump to Address of Function B

Jump to Address of Function C

on indirect

nction A.

ect table and
nction A. If we want
Iction to execute the same
inject code, we maodify al ion-calls which call the same function
to call the same entry of the function indirect table. As shown in
Figure 3-4 (b), first function call A and second function call A call the
same entry of function indirect table, jump to injected code 1 and then

jump back to function A.

17

CALL Function A CALL Function A
CALL Function A =y CALL Function A
Function A Function A
Jump to Address of Inject Code 1 Jump to Address of Inject Code
Jump to Address of Inject Code 2 Jump to Address of Function A
Jump to Address of Function B Jump to Address of Function B
Inject Code 1 Inject Code 1
Jump to Address of Function A Jump to Address of Function A
Inject Code 2 (b)
Jump to Address of Function A

(@)

Figure 3-4: (a) Different function calls using different inject cade (b) The same

function. using specified inject code

3. It is easy to manage with function indirect table. If we want to control
function behavior, we can modify the function indirect table easily.
For example, we can modify all function calls which call the same
function to call the same entry of function indirect table. If we want to
redirect these function calls to another function, we can replace the
entry of function indirect table with another function without

modifying every function calls.

18

Modifying the different sites has the different advantage and drawback. We
compare with modify different sites and list them in &FF,? ! }’&T ?U%Eﬁ“k?’ﬁ o,

Table 3-1: Modified sites comparison table

Modified Need Extra | Instrument Reduce Specify Whole Easy to
Site Memory Small Performance Function Function Management
Function Call Instrument
Instrument
CALL Site No Yes No Yes No No
Function No No No No Yes No
Prolog
Using Yes : '. N 30 * e Yes Yes
Function
Indirect

Table

breakpo
extra cod

code an

19

which
all to

bugger
e get the
ter) to

er extra

4. IMPLEMENTATION

We implement a tool to help users to detect the buffer overflow vulnerability and to
protect their server from malicious users. We will explain the system architecture,

implementation and performance improvement in this section.

4.1. System Architecture

This work focuses on binary software so we need a disassembly tool to help us
disassembling the binary code. We_choose OllyDbg. te help us to disassemble the
binary code, and to find the user defined functions. If the PDB (Portable Database)
file is"available, we can show the function names from disassembly files rather than
the numeric address. Our tool bases'on APISPY32 which.is used to wrap the library
function. We write a more friendly and useful GUI to,wrap the APISPY32, so you
may_not feel APISPY32 existing. When a program is loading we modify the program
in memory and insert function indirect.tableinto it. \WWe must re-calculate the offset of
function calls, when building function indirect table. Our working environment is
Microsoft Windows on' Intel X86.-0xCC.is-a-breakpoint.code of machine code. We
use polling method to.check if the signal file exists, so we modify;the first byte in
prolog of functions to OXCC, and we must backup the value which we overwrite.
Figure 4-1 (a) shows the original function without inserting breakpointiand Figure 4-1
(b) shows that the first byte.of prolog has been modified by a breakpoint. We will
receive the EXCEPT ION_BREAKPOINT when program runs the OxXCC. Once we get
the EXCEPT 10N_BREAKPOINT event, we check'if the signal file exists. If it exists,
it means that we want to control the behavior of function right now. Our tool will
read the setting in configuration file and patch file. According to the setting in the
configuration file, it runs the corresponding work. Our tool supports much
functionality to control function behavior. We list them in Table 4-1 and show the

workflow of our system in Figure 4-2.

20

CALL Function A

0x55

0x8B OxEC

Jump to Address of Function A

Jump to Address of Function B

CALL Function A

0x8B OxEC

Jump to Address of Function A

Jump to Address of Function B

Jump to Address of Function C Jump to Address of Function C

(a) (b)
Figure 4-1: (a) The function before insert breakpoint (b) The function has been insert

breakpoint

Table 4-1: The functionality of our tool

Functionality Action

SWAP I't can swap functionality of two functions.

It can block functionality of function: It
Block means that_the functions which have been
block. wi lFl do nothing.

I't canrestore the functronal i1ty of functions

Unblock)
which have been block.

To 1nject the machine code before specific
function running. 1t is like injecting
machine code 1nto the prolog of the function.

Inject - Before

To Inject the machine code after specific
Inject - After | function running. It is like injecting

machine code into the epilog of the function.

21

A

OllyDbg

Collect
Load binary function calls
code to into indirect
memroy table

Insert function
call indirect
table into
memory

Change all
function
destination to
indirect table

Waiting
Breakpoint

Do function
relink or apply
buffer overflow
protect

Exist ?

Load related
files

Figure 4-2: The dynamic update workflow

22

4.2. Implementation of System Features

Out tool supports many functionality of interaction with functions of program. We list

and explain the implementation details of our tool.

4.2.1. Function SWAP

This is an interesting functionality. It can swap functionality between two functions.
We can implement:this functionality easily with function indirect table. Look the
Figure 4-4 (a) and Figure 4-4 (b) first. We want to swap two instructions which are
CALL Funetion A instruction and CAlL Function B instruction. It Is a‘trivial idea of
that we can swap the content.inithe function indirect table but it does not work. We
find that the argument of a JMP instruction is relative offset; not an absolute address.
If we want to do function swap, we must re-calculate the offset respectively. We

show the re-calculate the offset function in Figure 4-3.

unsigned long RelativeDffset{unsigned long source, unsigned long target)

{

unsigned long offset;

if(source < target)

{
offset = target - source - 5;
H
else
{
offset = O2FFFFFFFF - (source - target + 4);
H

return offset;

Figure 4-3: Re-calculate the offset between two addresses

23

CALL Function A

CALL Function B

Function A

Jump to Address of Function A

Jump to Address of Function B

Jump to Address of Function C

(a)

CALL Function A

CALL Function B

Function A

Jump to Address of Function B

Jump to Address of Function A

Jump to Address of Function C

(b)

Figure 4-4: (a) Function call before:SWAP (b) Function call after SWAP

4.2.2. Function Blocking

Function bloeking is a.useful functionality for blocking buffer overflow attack. Most
of functions use OXC3 (RETN) to return, but some functions do not. They use return
type are 0xC20400 (RETN 4), 0xC20800 (RETN 8), 0xC20100 (RETN 10)
or etc. We must check the target function and ge.t the return type before block the
function. Figure 4-5 (a) shows the original function without being blocked. Figure 4-5
(b) shows that the entry of function indirect table has been overwrite to RETN. Once
function call A occurs, it will jJump to RETN and return immediately. We overwrite

function indirect table only, without modifying the function call and function.

24

CALL Function A CALL Function A

Function A Function A
RETN RETN
Jump to Address of Function B Jump to Address of Function B
Jump to Address of Function C Jump to Address of Function C
(a) (b)

Figure 4-5: (a) Function without being blogked (b) Function has been blocked

4.2.3. Function Unblocking

Sometimes, you try to use function blocking to block some functions which you think
that they might have buffer.overflow vulnerability.“When the function has been
blocked, the only way to re-activate it is using function unblocking.m Function
unblocking is used to restore the functionality of function which has been blocked.
We can restore the values 'to function indirect table for restoring functionality of

functions.

4.2.4. Injecting Code Before Function Prolog

It is the same as Figure 3-3. We inject the machine code in unused memory of
program and modify the indirect table address which is re-calculated the offset from
function indirect table to unused memory. We do not need to modify the function call

and the prolog of function.

25

4.2.5. Injecting Code After Function Epilog

Injecting machine code after function running is much different from before running.
The small function means that its size is less than 5 bytes. We can not inject a JMP
instruction into a small function, because a JMP occupies 5 bytes. Many tools suffer
the same problem, and they can not solve this problem. We use debugger to help us

solving this problem. We list the steps as following:

1. Overwrite the function return with a breakpoint. Most of all cases are to
overwrite OXC3 with OXCC or OxC2 with OxXCC. We assume that the address of
function returnis address A.

2. Inject the instrumentation code into unused memory of program and inject a
return instruction which is the original value of address A after that. We assume
that the address of-instrumentation code is the address B.

3. To set the EIP of program to address: ‘B, when we receiving the
EXCEPTION_BREAKPOINT event and the address of breakpoint is address A.

Enable the program run continually:

4.3. Performance Improvement

We design many methods to improve performance. It might reduce the overhead or

memory footprint.

4.3.1. Multi-Function Indirect Table

Sometimes a program uses the function indirect table by itself. If we inject function
indirect table again, it has two function indirect tables. We find all addresses of calls
and check them to see if they are JMP instruction or not. If the instruction is a JMP,
we use the target address of JMP to replace the address of CALL. Figure 4-6 (a)
shows the original program with its own function indirect table and our function

indirect table. Figure 4-6 (b) shows that our function indirect table replaces the

26

original function indirect table. If there are multi-jump in a program, we use the same
method to solve it. We replace the address in function indirect table with the final
address of JMP. Figure 4-7 (a) shows that function call A must go through three
indirect jumps. If function call A is usually used, it has high overhead. Figure 4-7 (b)
shows that we will find the final destination address to replace the entry address in

function indirect table. It can reduce some overhead when solving multi-jump

problem.

Figure 4-6: (a) Multi-function indirect table (b) One function indirect table

Jump to Address of Function A

Jump to Address of Function B

Jump to Address of Function C

CALL Function A

Function A

Jump to Address of Function A

Jump to Address of Function B

Jump to Address of Function C

(a)

27

Jump to Address of Function A

Jump to Address of Function B

Jump to Address of Function C

CALL Function A

Function A

Jump to Address of Function A

Jump to Address of Function B

Jump to Address of Function C

(b)

Jump to Address 2 Jump to Address 2
Jump to Address of Function A

Jump to Address of Function A

Function A Function A

CALL Function A CALL Function A
Jump to Address 1]@ Jump to Address 1

Jump to Address of Function A Jump to Address of Function A

Jump to Address of Function B Jump to Address of Function B
Jump to Address of Function C Jump to Address of Function C
(a) (b)

Figure 4-7: (a) Multi-jump program (b) After refine the address

4.3.2. Check Times Interval

Our tool"uses pooling method to check if the signal file exists. We: insert breakpoints
in prolog of functions. We receive the EXCEPTI10N_BREAKPOINT when program
reaches a breakpoint. Once-we get the EXCEPTION_BREAKPOINT event, we check
if the signal file exists. The signal file does not exist most of the time. It has a high
overhead, so our tool counts ‘the number® of times when we get the
EXCEPTION_BREAKPOINT event. Our tool sets a number dynamically for interval.
If the number which our tool counts is small than the number of interval, our tool will
do nothing and let the program continue. If the number which our tool counts is equal
to the number of interval, our tool will check the signal file to see if it exists and reset
the number of our tool counts to zero. Our tool always checks the signal file more
than one time in one second. It will change the number of interval dynamically and

let itself check the signal file every two seconds. Using this method can reduce some

28

overhead with polling method.

4.3.3. Saving Memory Space

Sometimes, you may want to inject the same instrumentation code into different
function. We can wrap it to a function and they need only one copy. Figure 4-8 (a)

shows that function call A and function call B are using the same instrumentation

code before call function A and ction B. It uses two copy of the same

instrumentation code. Figure 4-8 he result of using our method. We

add function calls all A and functio modify the entry of

function indir 0 j{lr.np to them. Finally, we use funct allsswhich we added

to call ins

29

CALL Function A CALL Function A

CALL Function B N CALL Function B F~
\
\\ \\
\
\ \\
! \
! |
! |
! \
! I
Function A ! Function A [
|
: N
|
I I
! I
! I
| |
v Function B ‘,‘ Function B | |1
I | \\ 1{
/ " |
| I |
[| \
1
1(I /)\\
| !
‘/ Jump to Address of Inject Code 4 Jump to Address of Saving A ! \
/|
| 7 \
Jump to Address of Inject Code 4‘\ Jump to Address of Saving B u \
\ \| \
Jump to Address of Function C \ Jump to Address of Function C | \

|
! .
|
Inject Code : Inject Code !I }
‘ /1 i |
! / I
F i
I
Jump to Address of Function A } ¥ RETN } !
!
e // \I]
i I | |
| / '\ ! |/
\\ Inject Code - \ Call Inject Code -
\| I/
\
. T\\ Jump to Address of Function A -
| | \ ////
= Jump to Address of Function B (R Call Inject Code ‘/
\\) //
s Jump to Address of Function B
(a)
(b)

Figure 4-8: (a) Two copy of inject-code (b) One copy of inject code

4.4. Blocking Buffer Overflow Attacks

Buffer overflow attacks are a serious and dangerous problem. In this section, we

introduce the buffer overflow detection and how to block buffer overflow attack by
using our tool.

30

4.4.1. Detection of Buffer Overflow

We apply the idea of StackGuard to implement a buffer overflow detection. This
technique is something different from StackGuard. First, StackGuard needs source
code to instrument, but we need not. Second, StackGuard monitors all function at
program starting, but we can monitor specific functions which we select at run time.

It can reduce much overhead compared with StackGuard.

4.4.2. Analysis'‘and Block the Critical Function

We want to block the buffer overflow-aittack; so-we must know which. function has
buffer overflow vulnerability. \We can use buffer overflow detection:technique to find
which function has buffer overflow vulnerability. In our. tool, we apply the technique
of StackGuard. When we find out the function which might be vulnerable to buffer
overflow attack, we can stop it by using function blocking. We can see Figure 4-9
which is a control flow graph, the line with arrow represents the-call sequence; when
program running. Working run meanssthat program run correctly and all the functions
which program has been passed. Function 1, 2, 3, 4 and 7 are in the working run.
Failing run means that program:will-crashrafter-buffer-overflow attack, and all the
functions which program has been passed. Fanction 1,72, 5, 6 and 7 are in the failing
run, and we can see that working run and failing run both call Function:7. In Figure
4-9, we assume that Function 6 has been found buffer overflow vulnerability. We
block Function 6 and prevent server from crashing after buffer overflow attack, see
Figure 4-10.

31

Pass Run Fail Run

O: Buffer overflow functio

-10: Block the buffer overflow function in_fi

Sometimes, yo - icht has buffer overflow
vulnerability is at intersection o ing run a ing run. See Figure 4-11, we
assume that Function 7 has buffer overflow vulnerability and it is in the intersection
of working run and failing run. If we block Function 7, it might affect the behavior of
working run. Our tool can log the function calling list, and we want to find the
candidates of critical function. We define critical functions are the predecessor of
buffer overflow and there are no relationship between critical functions and working
run. The candidate of critical functions will be found easily, we can find the functions
in failing run but they are not in working run. In Figure 4-11, we know Function 5

and Function 6 are candidates of critical functions. We try to block Function 5 or

32

Function 6 to prevent server from crashing after buffer overflow attack and it shows

in Figure 4-12.

iling run

'S BN P N

Pass Run

Figure 4-1 B : ctio ailing run

33

5. RESULTS AND ASSESSMENT

We use our tool to protect the software which has buffer overflow vulnerability. Our

experimental environment is shown in Table 5-1.

Table 5-1: Experiment environment

Device Description
CPU Intel Pentium 4.CPU 3.40 GHz
Memory 1 GB
Operation Microsoft Windows XP SP2
System

5.1. Buffer Overflow Attack in Serv-U 4.1

Sery=U 4.1 has a buffer overflow vulnerability. Malicious users can use the bug of
MDTM command to exploit the Serv-U 4.1.

5.1.1. Blocking Overflow Attack

We use our toolto detect buffer overflow in the Serv-U: We find that function whose
address is OxO0683A88 has the buffer overflow vulnerability. We use logging

functionality by our tool and find the control flow of Serv-U.

5.1.2. Performance Evaluation

We instrument the Serv-U with dynamic update functionality. We evaluate the
performance of original program, and compare it with DUBS. Table 5-2 shows the
performance by getting and putting many files with different size, and Figure 5-1
shows the performance graph. Blue line represents the original Serv-U and pink line

34

represents the Serv-U applying DUBS. We also provide another performance

evaluation. Table 5-3 shows the performance by getting and putting many files whose

size are 1K bytes and Figure 5-2 also represents it as a performance graph. We can

see that Serv-U has little overhead when applying DUBS.

Table 5-2: Compare performance by file size

Series Operation Original With DUBS Slowdown
1 Get 1 MB File 1.8 sec 1.8 sec 0 %
2 Get 10 MB File 5.6 sec 5.8 sec 3.6 %
3 Get 100MB'File 42 sec 43 sec 2.4 %
4 Put "1 MB File 2 sec 2 sec 0 %
5 Put 10 MB File 4_4 sec 4.6 sec 4.5 %
6 Put 100 MB File 32 sec 32.4 sec 1.3 %
Average 2 %
50
40 |
E 30 —— Original
320 | —=— With DUBS
10 |
0
1 2 3 4 5 6
Series

Figure 5-1: Performance graph by file size

35

Table 5-3: Comparison performance by number of files

Series Operation Original With DUBS Slowdown
1 Get 10 Files 2.6 sec 2.6 sec 0 %
2 Get 100 Files 17 sec 17.4 sec 2.4 %
3 Get 1000 Files 155 sec 169 sec 9.0 %
4 Put 10 Files 2.4 sec 2.4 sec 0 %
5 Put 100 Files 15.6 sec 16.2 sec 3.8 %
6 Put 1000 Files 144 sec 146 sec 1.4 %
Average 2.8 %
200
150
N —+— Original
S 100 e
3 —=— With DUBS
50
0

Figure 5-2: Performance graph by number of files

5.2. Discussions

Our tool uses polling method in order to get the control of program. The problem of
polling method is high overhead. We apply the DUBS on Serv-U 4.1 and we find that
maximal overhead is 9.0 percent. Although it costs 9.0 percent overhead but it has a

dynamic updating feature. We can control the function behavior and detect the buffer

overflow vulnerability dynamically by this feature. Once buffer overflow
vulnerability has been detected, we can block the function which has buffer overflow

36

vulnerability immediately. The 9.0 percent overhead compares to system crash is
little.

We also do some evaluation on Serv-U 4.1. The match rate of control flow finding in
Serv-U 4.1 is 98%, and Serv-U produces 8 threads when it is running. Building
function indirect table in Serv-U 4.1 needs 38 seconds because Serv-U has 26657
user defined functions.

37

6. CONCLUSION AND FUTURE WORK

We develop a tool, called DUBS, to protect COTS software and prevent malicious
users from attacking the system. COTS software would crash when you use DUBS to
protect the software at first attack. After first attacking, you would enable the
detection and protection features in DUBS. Using DUBS, you can optionally enable
the detection of buffer overflow vulnerability, by blocking the function with overflow
vulnerability. This tool can also act as a better binary instrumentation tool, because it
can instrument machine code into running program. The comparison of binary
instrument tools is listed on Table 6-1. It also supports the feature which can change

the behavior of functions.

Table 6-1: Binary instrumentation tools comparison table

Detecting L Block or
B Inject "
L User Define B Active User
Break 5 Detecting | Handle Machine R
I Function Instrument N 1 Define
Bytes Small | User Define | InstrumentDLL | Multithread Code in) ~
] _ with Timing] 1 i Function in
Function Function _ Application Running g
Indirect i Running
Time i
Tables Time
Loading
Detours No No No Yes i Yes No No
Time
Danny
Yes Rewrite
Nebenzahl et No No' Yes ” 7 Yes No No
(IDA Pro) Binary File
al.
Rewrite
Binary File
Vulcan No Yes Yes Yes = Yes No No
or Loading
Time
Rewrite
Etch No No No No _ _ Yes No No
Binary File
Dynamic
Updating Yes Loading
Yes Yes Yes 1l Yes Yes Yes
Binary (Ol 1yDBG) Time
Software

6.1. Limitation

Our work has some limitations, and we show them as follows.

6.1.1. Call Destination Address in Registers

38

Our tool can not control the function which is called by registers in order to control
the function whose size is small than 5 bytes. Most of all instrumentation techniques
insert a JMP instruction into function prolog. They will face the 5 bytes limitation

problem, because JMP occupies 5 bytes.

6.1.2. Control Flow Logging

We find the user define functions.and inject the breakpoint in the function prolog and
epilog. We can log 'the control flow by receiving the debug event
EXCEPTION_BREAKPOINT. We find that the number of function call is more than
function return when program logging finished. Because we can not inject the

monitor code in function epilog in DLL files.

6.1.3. Buffer Overflow Vulnerability in Critical Function

We can block the function which has the buffer overflow vulnerability. But there is a
condition. The function which we are blocked must be in the failing run and not in
passing run. If you block [the function which is in pass run, the right ‘action might
become wrong action. Robot F TP also has buffer overflow vulnerability, it occurs in
USER command. We can not protect the. .Robot. FTP because its passing run and

failing runiare the same.

6.2. Future Work

6.2.1. Memory Space Reallocation

Scarce memory space is a big problem to us, because we need memory to create
function indirect table and place the instrumentation code. We can use binary

rewriting technique to enlarge the memory space.

39

6.2.2. Using Event Message Instead of Polling Method

Our tool uses polling method to get the control of program. It must do context switch
when breakpoint occurs. It costs high overhead when doing context switch. Microsoft
Windows supports message which is like the signal in Unix-like system and it can

communicate two individual programs.

6.2.3. Code Injectio

Our tool can le ect the code into running program ports injecting the

machine code . If you want toinj st.compile the C

language cc i ions. : ple, you

40

REFERENCES

[1] Steve Ranger, "Microsoft faces up to security threat,” Computing,
Http://www.Computing.Co.uk/vnunet/news/2123457/microsoft-Faces-Security-
Threat,

[2] Michael Zhivich, Tim Leek and Richard Lippmann, "Dynamic Buffer Overflow
Detection,” Workshop on the Evaluation of Software Defect Detection Tools,
June. 2005.

[3] Gerald C. Gannod and Betty H.C. Cheng, "Strongest Postcondition Semantics as
the Formal BasisiforReverse Engineering,” Proceedings of the Second
Working Conference on Reverse Engineering, July. 1995.

[4] Anonymous "Once upon a free()," Http://www.Phrack.org/phrack/57/p57-0x009,

[5] M. Hicks, J. T. Moore and S. Nettles, ¥Dynamic software updating,” in.PLDI '01:
Proceedings of the ACM SIGPLAN 2001 Conference on Programming
Language Design and Implementation, 2001, pp. 13-23.

[6] Michael Hicks, "Practical-Dynamic Software Updating for C," November. 2005.
[7] Matt Pietrek, Windows 95 System Programming SECRETS. IDG Books, 1995,

[8] Galen Hunt and Doug Brubacher, "Deétours: Binary Interception of Win32
Functions,” Proceedings of the 3rd USENIX Windows NT Symposium, July.
1999.

[9] Yennun Huang, P."Emerald Chung and Chandra Kintala, "NT-SwiFT: Seftware
Implemented Fault Tolerance on Windows NT,* =Journal of Systems and
Software, November. 2002.

[10] Johny Srouji, Paul Schuster, Maury Bach and Yulik Kuzmin, A Transparent
Checkpoint Facility On NT," Proceedings of the 2nd USENIX Windows NT
Symposium, August. 1998.

[11] Programming Methodolegy Group, “Automatic Software Upgrades,”
Http://pmg.Lcs.Mit.edu/upgrades/,

[12] I. Sun Microsystems, "JPDA Enhancements,"
Http://java.Sun.com/j2se/1.4.2/docs/guide/jpda/enhancements.Html,

[13] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle and Qian Zhang, "StackGuard: Automatic
Adaptive Detection and Prevention of Buffer-Overflow Attacks,” Proceedings
of 7th USENIX Security Conference, pp. 63-78, January. 1998.

[14] Hiroaki Etoh and Kunikazu Yoda, "Protecting from stack-smashing attacks,"
Http://www.Trl.Ibm.com/projects/security/ssp/main.Html,

41

[15] Olatunji Ruwase and Monica S. Lam, "A Practical Dynamic Buffer Overflow
Detector,” Proceedings of the 11th Annual Network and Distributed System
Security Symposium, February. 2004.

[16] Anonymous "Parasoft. Insure++: Automatic runtime error detection,"”
Http://www.Parasoft.Com,

[17] N. N. Julian Seward and J. Fitzhardinge, "Valgrind: A GPL’d system for
debugging and profiling x86-linux programs,” Http://valgrind.Kde.Org,

[18] George C. Necula, Scott McPeak and Westley Weimer, "CCured: Type-Safe
Retrofitting of Legacy Code," Proceedings of Symposium on Principles of
Programming Languages, pp. 128-139, 2002.

[19] F. Bellard, "TCC:Tiny C compiler,” October. 2003.

[20] Anonymous A “stack smashing™ technique protection tool for Linux,"”
Http://www.Angelfire.com/sk/stackshield/,

[21] Martin Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy and Tudor Leu,
"A Dynamic Technique for Eliminating Buffer Overflow Vulnerabilities (and
Other Memory Errors),” ACSAC, December. 2004.

[22], Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Waong, Hank
Levy and Brian Bershad, "Instrumentation and Optimization of Win32/Intel
Executables Using Etch,” Proceedingsof the USENIX Windows NT Workshop,
August. 1997.

[23] Amitabh Srivastava, Andrew Edwards and Hoi Vo, "Vulcan: Binary
transformantion in a distributed environment,” Techical Report
MSR-TR-2001-50; 2001.

[24] Danny Nebenzahl; Mooly Sagiv and Avishai Waool; "Install-Time Vaccination of
Windows Executables to Defend against Stack Smashing Attacks,” 1EEE
Transactions on Dependable and Secure Computing, vol. 3; pp. 78-90,
January=March. 2006.

[25] The Apache Jakarta Project;'BCEL : Byte Code Engineering Library,” October.
2001.

42

	1. INTRODUCTION
	1.1. Motivation
	1.2. Background
	1.2.1. Disassembly
	1.2.2. Debugger
	1.2.3. Stack-based Buffer Overflow Attack
	1.2.4. Heap-based Buffer Overflow Attack

	1.3. Objective
	1.4. Contribution
	1.5. Synopsis

	2. RELATED WORK
	2.1. System Call Interception Tools
	2.2. Dynamic Software Updating Techniques
	2.3. Buffer Overflow Detection Techniques
	2.4. Buffer Overflow Surviving Techniques
	2.5. Binary Instrumentation Tools

	3. RESEARCH METHOD
	3.1. Discovering User-Defined Functions
	3.2. Building Function Indirect Table
	3.3. Break 5 Bytes Limitation

	4. IMPLEMENTATION
	4.1. System Architecture
	4.2. Implementation of System Features
	4.2.1. Function SWAP
	4.2.2. Function Blocking
	4.2.3. Function Unblocking
	4.2.4. Injecting Code Before Function Prolog
	4.2.5. Injecting Code After Function Epilog

	4.3. Performance Improvement
	4.3.1. Multi-Function Indirect Table
	4.3.2. Check Times Interval
	4.3.3. Saving Memory Space

	4.4. Blocking Buffer Overflow Attacks
	4.4.1. Detection of Buffer Overflow
	4.4.2. Analysis and Block the Critical Function

	5. RESULTS AND ASSESSMENT
	5.1. Buffer Overflow Attack in Serv-U 4.1
	5.1.1. Blocking Overflow Attack
	5.1.2. Performance Evaluation

	5.2. Discussions

	6. CONCLUSION AND FUTURE WORK
	6.1. Limitation
	6.1.1. Call Destination Address in Registers
	6.1.2. Control Flow Logging
	6.1.3. Buffer Overflow Vulnerability in Critical Function

	6.2. Future Work
	6.2.1. Memory Space Reallocation
	6.2.2. Using Event Message Instead of Polling Method
	6.2.3. Code Injection with C Language

	 REFERENCES

