n=pxq 2L E 2 F ¥

Study on Factorization of n = px(q

i B fed o F e

n=px qDFEs R
Study on Factorization of n = pxq

ogo2 ERER Student : Yu-Hao Chang
R Eae Advisor : Yi-Shiung Yeh
SRR
AU - S B N A S
L I I
A Thesis

Submitted to Institute of. Computer Science and Engineering
College of Computer Science
National ChiaoTung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science

September 2006

Hsinchu, Taiwan, Republic of China

n=px q NFHESL Ry

$%
|
=
|5
o
=%
4
o
%
a8
S
M
[
T8,
| I

B d ~gFasad imlse

F £

RSA %75 4 %(RSA Cryptosystem)£_i¢ * #. 5 B iLeh 245 d k sz - > 2 %
RHEED L RIS R T AR R R L 0 - B AR
RSA it € (RSA assumption) o — 487 i 5 Fg €24 0] & 8 (deterministic Turing
machine - ﬁf,? 7];]6‘ DTM)¥ & % 78 s\ B it p HE RSA Bz 5N i B
BT RSA BBt S AR T d o F o e o 25 5 FLE R L 4 %
e R R 2 o B ow Araes & iR H L0 frlc s #oph o [- = g 2 (quadratic
sieve factoring algorithm » f# fi£ QS) A B et ™ 7 5 2 « X VN PFHF LA BT
Haoo A & FRor QS eh- A% A2 S TAF# S IE 5N Z = & % (multiple
polynomial quadratic sieve - {§ i MPQS) ; - % 7 #2332 RSA e ihig & » APk
- ik kdeid MPQS i E LR o B % G 2004 45 RSA S P (7
A fRPATER A > T L~ | F RSA RSk stpE ey £ o

M4EF D RSA BAS j 5t~ FlHcA 5~ - i~ 4TS TSN S K g

Study on Factorization of n = p x q

student : Yu-Hao Chang Advisor : Dr. Yi-Shiung Yeh

Institute of Computer Science and Information Engineering
National Chiao Tung University

ABSTRACT

The RSA Cryptosystem is one of the most used public-key cryptosystems. The
security it rests on the fact that it is computationally infeasible to factor a large integer
into its component primes. This fact.is referred to as'the RSA assumption. It is
believed that there is no deterministic, Turing machines (DTM) that can break the RSA
assumption in polynomial time. If a polynomial-time algorithm is found, the RSA
Cryptosystem would be insecure. Owing 1o this,‘many scientists have devoted
themselves to researching efficient factoring.algarithms. So far, the quadratic sieve
factoring algorithm (abbreviated to QS) is the fastest known general-purpose method
for factoring numbers having less than about 110 digits. Restricted by time and
computer hardware, we focus on one of the variants of the QS, called the multiple
polynomial quadratic sieve (MPQS). To ensure the strength of the RSA assumption,
we propose a scheme to enhance the sieving procedure of the MPQS. The
experimental results are contributive to the analyses of the strength of the RSA
assumption against the modern factoring technology and should be taken into
consideration on future cryptographic implementations based on the RSA
cryptosystem.

Keywords : RSA Cryptosystem, factoring integers, quadratic sieve, multiple

polynomial quadratic sieve

RHRITAEB FACRRMA B EReEF o 20
£ Ko KX ﬂ"';lu:fﬁ%-’l%‘\;__ﬁﬁ FoF A el & o B F BN 5 v
EF-EFLALRERDE L e B EG » A R HE o

EERHM LFEL > AART RIEANE > 7 BFEAEE &2 AHGe

T e Thwmy @rOR s RFFE RS B R G FEHEBY L
CEO T AR RARER ST AR B S BB A

L RN TG 03 2AadA B TR B AR K R T

3
M| \I«

AP B RO RERE T ERPRGT BAYE
TR IR BHIA-EFFEOT A o - D ¥4k Qting

Gobby ~ fapr » BEZR A & (R - B PR X IR PR AR o f st BERIR P o
B ATROF Sk B] R &R AR P p B E s (e 2
Boo > IR ET Kad & - R M oL B R CEFHEL - F

KB - B REARAEF S B RWHAD KR §§

B SRR £ P A RN TSRS o B P o g

?}}%‘/‘“Lr”ﬁ P2 1 B SR -

Contents

P2 B & s 1
N] £ - (0! RSP SRPRPR R 2
L PRSP i
(7] 01 =] o | 3PP PPT PR TUP TP \Y
LiST OF TADIES. ... e %
Chapter 1 INEFOTUCTION .. e 1
1.1 Elementary NUMDEr THEOIY......ccoveieiiiiiece e 1

1.2 The RSA CryptoSYSIEM.......coiiiiiiieiieeie e e eie e e ste et 2

1.3 RSAand Factoring INTEgEISecueiierieieseesie e sie et 4
Chapter 2 Factoring AlgOrithmS........ccoiiiiiiii s 5
2.1 The Dixon’s Random Squares Algorithmcccooveveiveieenn e 5

2.2 The Quadratic Sieve Factoring Algorithm..........cccoceviviveiievincic e 9
2.2.1 Setting Up the Factor Base iccoveveiieieere e 10

2.2.2 The Sieving PrOGedUIE . ..ii i . it eeeeeee et ee s se e sae e 12

2.2.3 Improvementsion the QS ..t ir e 14

2.3 The Multiple Polynamial QuadratiC SIeVEcccevvereiieeieeriesieinnn 15
2.3.1 Polynomials Selection. i 16

2.3.2 The Details of Choosingthe Coefficients............cccccovvivevviiennn, 18

2.3.3 ST [53 Y71 S 21

Chapter 3 The Modified Multiple Polynomial Quadratic Sieve...................... 23
3.1 Motivation for the Modified Multiple Polynomial Quadratic Sieve 24

3.2 Square ROOtS OF N MOGUIO Po%......rveeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeee s seeeenes 25

3.3 Modified Sieving ProCeaUrecoveiieieeiesiese e 28

3.4 Parallel SIEVINGcoveiiiieieee e 35
Chapter 4 Experimental ReSUILS..........cooiiiiiiiiiie e 37
4.1 ENVIFONMENT. ...ttt bbb 37

4.2 RESUIS ..ottt e 37
Chapter 5 CONCIUSION ..o e 40
RETEIEINCES ... ettt bbbt sre e e 41

Table 1
Table 2

List of Tables

Chapter 1 Introduction

The RSA Cryptosystem [1] is one of the most important public-key cryptosystems,

and the security of it rests on the fact that it is computationally infeasible to factor a

large integer into its component primes. If an efficient algorithm is found that can

factor any large integer in polynomial time, the RSA Cryptosystem would be insecure.
In this chapter, we will describe some important number-theoretic results, the

RSA Cryptosystem, the details of setting up it, etc.

1.1 Elementary Number Theory

In the beginning of this section, we firstintroduee some basic definitions from

elementary group theory.

Definition 1: [1]
For a finite multiplicative group G, define the order of an element ge G to be the
smallest positive integer m such that g™ = 1. If there are n elements of G, then we say

that G is a multiplicative group of order n. 0

We then proceeds to mention a very important theorem, called the Lagrange’s

theorem [1].

Theorem 1
Suppose G is a multiplicative group of order n, and g€ G. Then the order of g divides

n. 0

n/m _

From Theorem 1, it is clear that g" = (g™)"™ = 1 for any element ge G.

For any positive integer n, let Z,~ denote the set of residues modulo n that are

relatively prime to n. It can be easily verified that Z_~ is a (finite) multiplicative group.
The Euler phi-function ¢(n) [1] is defined to be the number of positive integers not

exceeding n and relatively prime to n. That is, |Z

= ¢(n). Given the prime-power

factorization of n, a well-known theorem provides a formula to evaluate the value

of g(n) [2]:

Theorem 2

Letn=p*p,* .. p,* be the prime-power factorization of the positive integer n.

¢(n):n(1—i)[1—ij [1_ij. (1)
pl p2 pk

Then

By using the results above, it is easy to see that

g’™ =1 (mod n) (2)
for any element ge Z,". This fact is fairly important and essentially relevant to the

RSA Cryptosystem.

1.2 The RSA Cryptosystem

The RSA Cryptosystem is one of the most important public-key cryptosystems, which
is invented by Ronald Rivest, Adi Shamir, and Leonard Adleman in 1977. In this

section, we will describe how it works. Let n = pxq, where p and q are two large
2

primes. By Theorem 2, it is clear that ¢(n)= (p — 1)(q — 1). An integer d is chosen
such that gcd(d, #(n)) = 1. We next compute
e=d ™ mod ¢(n). (3)

(Since gcd(d, ¢(n)) =1, the inverse of d modulo ¢(n) must exist.) Then, the private
key is pair (d, n), and the public key is pair (e, n). To encrypt a message M (where M
is a nonnegative integer less than n), the cipher C is computed as

C = M® mod n. (4)
To decrypt the cipher C, we compute

M' = C? mod n. (5)

We now verify that M' = M. Since e = d™> mod ¢(n), we have that
ed=1 (mod ¢(n)).

= ed=Kg¢(n) + 1, forsome ke N. (6)
We first consider the case that MeZ, . Using the result from Section 1.1, it follows

that
M'=C"mod n

= (M®®mod n

= M* mod n

= M*™*? mod n

= (M”“”))k M mod n

= (1)*M mod n

=M. (7)
ForMeZ, ", if M =0, itis clear that M' = M. If M= 0, without loss of generality,

suppose that M = kp for some ke N. Since M < n, it must be the case that gcd(k, q) =1,

namely gcd(M, q) = 1. Then it follows from the Fermat’s Little Theorem [2] that

M@~Y=1 (mod q).
— MUY =kq+ 1, for some k'e N. (8)
Thus we have
M'=C%mod n

=M ™" mod n

=M*“™M mod n

= (MO)C=D M mod n

= (kq+ 1)“*"Y M mod n

k(p-1

(- _
=M > Cc®*?(k'q) modn
i=0

k(p1) .
=M +(kp)g > CK*P (k') ¢ modn
i=1
k(p1) .
=M +kn D> C"H(k) g mod n

=1

=M, (9)

as desired.

1.3 RSA and Factoring Integers

The security of the RSA Cryptosystem rests on the fact that it is computationally
infeasible to factor a large integer into its component primes. Obviously, if n = pxq
can be factored, it is easy to compute ¢(n) = (p - 1)(q - 1) and then compute d = e™*
mod ¢(n) exactly. Therefore, to ensure the security of the RSA Cryptosystem, it is
necessary to set n large enough. Nowadays, it is believed that there is no efficient
algorithm that can factor any large integer in polynomial time. If a polynomial-time

algorithm is found, the RSA Cryptosystem would be insecure.

Chapter 2 Factoring Algorithms

Throughout this chapter, we suppose that n = pxq is the composite integer that we
want to factor, where p, g are two large primes, and p and g are roughly the same size.
To attempt to factor n, the straightforward method is trial division, which divides n by
each prime less than or equal to Jn until p or q is found. This method is guaranteed to
find p, g. However, it is computationally infeasible to factor large enough n by using
this method. For very large n, we need to use more effective algorithms.

Mathematicians have been attempting to find more efficient factoring
algorithms for a long time, and a lot of powerful algorithms have been proposed, such
as the well-known Pollard’s rho-algorithm-and p,— 1 algorithm, the continued
fraction algorithm, the elliptic curve factoring algorithm, the quadratic sieve
factoring algorithm (abbreviated to QS) [-3] and the number field sieve (abbreviated
to NFS) [4]. Because of the restriction of time and-computer hardware, we will focus
on the quadratic sieve algorithm.

The rest of this chapter is organized as follows. Section 2.1 introduces the
Dixon’s random squares algorithm, which consists of several essential concepts still
used in the QS and NFS (specifically, the concepts of a factor base, being smooth
over a factor base, and finding dependencies among vectors over Z,). In Section 2.2,
we will give a brief overview of the QS. Finally, Section 2.3 presents the multiple
polynomial quadratic sieve (abbreviated to MPQS) [3], one of the most useful

variants of the QS, which is widely employed in practice.

2.1 The Dixon’s Random Squares Algorithm

The basic idea many factoring algorithms use is pretty simple and is described as
5

follows. Suppose we can find two integers x and y such that x!=+y (mod n) and
x> =y* (mod n). (10)
Then
(x +y) (x—y) =x* - y*=0 (mod n), (11)
but neither (x +y) nor (x —) is divisible by n. Therefore gcd(x +y, n) and gcd(x -y, n)
must be non-trivial factors of n. This means that n is successfully factored.

If integers x and y satisfying (10) are produced randomly, then there is no
guarantee that x!=+y (mod n), and the factorization of n may not be yielded.
However, what is the probability that x=+y (mod n)? It can be proved
that x!=+y (mod n) with probability < 1/2. In other words, there is at least 1/2
chance that gcd(x + vy, n) and gcd(x —y, n) will be nontrivial. By producing enough x
and y satisfying (10), the probability of success ean be increased above any desired
threshold.

The Dixon’s random squares algarithm-is-a method used to find two integers x
and y satisfying (10). It begins by ‘choosing several random integers r; such that ri? >
n, and then proceeds to compute the values

f(r)) = ri mod n. (12)
It is clear that for all r;,
f(ri) =ri? (mod n), (13)
and f(r;) = ri2. Therefore the right side of the congruence (13) is already a perfect
square for any r;, and of course multiplying arbitrary ones of the r;?’s will yield a
perfect square. The idea is to then find a subset S of these r;’s such that

[Tf(r)=y? forsomey. (14)

resS

If this can be done, then by letting

x=[Tr. (15)

res

6

a congruence of the desired type follows

X2 E[Hﬁ] (mod n)

reS

[1r? (modn)

res

[Tt (modn)

res
=y?> (mod n). (16)
Notice that the equation (14) holds if and only if every prime factor

of H f(r) is used an even number of times. This then gives us an idea to find S: if

res
we have known the complete factorization of each of the f(r;)’s, it is easy to check to
see if the product of some specific f(r;)’s is a square. However, it is clearly difficult to
factor each of the f(r;)’s. Therefore,instead of factoring each of the f(r;)’s, we just
retain those f(r;)’s, which can be-“easily” factored,.and use them. The details of doing
this will be explained below. For simphcity,-we first give the definitions of a factor

base and being smooth over a factor-base.as follows:

Definition 2:
A factor base £ is a nonempty set of prime integers. An integer « is said to be
smooth over the factor base g if all the prime factors of occur in g (in other

words, « factors completely over £). 0

Here is an example to illustrate.

Example 1:

Suppose that # = {2, 3, 7, 13} is the factor base and & =504 = 2° x 3 x 7.

Then « is smooth over S because all the prime factors of « (namely, 2, 3, 7) occur

in g. 0

The method of Dixon uses a factor base S = {pi, p2, ..., Pv}, Which is a set of
the b smallest primes, for an appropriate value b (it is generally recommended that

Ny

~—————). For all r;, we then check to see if f(r;) is smooth over g. If it is,
In2/rlog, r

this r; is said to be “useful”, and is reserved; otherwise we throw this r; out, and try the

2

next one. Suppose W ={r_, r, _, ..., r,}isasetof r’s with the property that f(.,)
is smooth over g forl < j < m, and

b

f(gd=DLo* (17)

k=1
withe ; > 0,1 <j <m, 1<Kk < b Wethenattempt to find a set S satisfying
(14) from the subsets of W. Observe:that-every-subset U of W can be mapped to a
vector Z = (z,, 2,, ..., 2,,) € (Z,)" asfollows (where (Z,)" denotes the m-dimensional

vector space over the finite field Z, of 2 elements):

1ifr, eU
Z. = ! 18
'o|0ifr, eU (18)

for 1 < j < m. Itis clear that this mapping is one-to-one and onto, and

[Tfw=T1(f))"

reU j=1

= H Py (19)
k=1
As described previously, H f(r) is a perfect square if and only if
reU
> e,;z; =0 (mod 2) (20)
j=1

for 1 < k < b. This homogeneous linear system can be written in matrix form as

€1 € o G| L 0
€, €, - & |z 0

21 22 - 2:, :2 = . (mod 2). (21)
€1 G2 0 Gm [Zn 0

The question then becomes one of solving the equation (21). If a solution S of
the equation (21) is found, the set S can then be constructed according to S. Itis a

standard result from linear algebra.J -4] that if m>b then the equation (21) has at
least |Zz|m*b > 2 solutions. Thiss-means that there must be at least one non-trivial
solution of the equation (21),which ¢an be-used to construct a nonempty set S
satisfying (14). Since the equation (21°)1s'solved only modulo 2, it can be
simplified by replacing the e, ; with (¢, ; mod2) for1 < j <m,1 <k <h.
There are many efficient algorithms for solving a homogeneous linear system
over a finite field, such as Gauss-Jordan elimination [5], block Lanczos algorithm
[6], and Wiedemann algorithm [7]. In fact, it spends most of time determining
whether f(r;) is smooth over g for all r;, instead of solving the linear system.
Therefore, the real question is how to find enough r; with f(r;) smooth over £ in an

efficient way.

2.2 The Quadratic Sieve Factoring Algorithm

The quadratic sieve factoring algorithm is a well-known algorithm invented by Carl
9

Pomerance in 1981. It was the fastest known general-purpose factoring algorithm
until the number field sieve was proposed, and has been widely used in practice for a
long time. Generally speaking, the QS is faster than the number field sieve for
numbers having less than about 110 digits. Up to now, the QS is still the algorithm of
choice for factoring large integers between 50 and 110 digits.

In reality the QS extends the ideas of the Dixon’s random squares algorithm. At
its kernel, the QS is essentially the same as the Dixon’s method. There are two major
differences between them. The first one is that instead of using the function f(r;) = r;?
mod n, the function

f(r) = -n (22)
is used. It is easy to see that for all r; the congruence
f(r) =ri* (mod n) (13)
still holds even though the function.f(r;) has been replaced. Hence the new f(r;) can
play the same role the old f(r;) plays. The-second difference is in how to obtain

integers r;. In the Dixon’s method, we simply.choose the r;’s at random. In contrast,

the QS uses successive integers as r;’s, such as r; :Lﬁﬁi, i=1,2,.... Itlooks like

that the QS is not much different from the Dixon’s method. But through these slight
modifications, some special tricks can be used and the running time becomes

dramatically faster. In this section, we describe the details of doing this.

2.2.1 Setting Up the Factor Base

As with the Dixon’s method, the QS also begins by fixing a factor base g = {p1,
P2, ..., Po}. Then we search for integers r; with f(r;) is smooth over S. However, notice
that not any prime can be put into £. For any p, € £, it must be satisfied that there

exists at least one r; such that f(r;) is divisible by py; otherwise there is no f(r;)

10

divisible by this py, and putting it into S doesn’t make sense at all. Therefore, for

any p, € 4,
pk | f(ri), for some ;.
< px| (ri? =n), for some ;.
< ri=n (mod py), for some r;.
< nisaquadratic residue modulo py.
o (1}1. (23)
Py
Where (plj denotes the Legendre symbol, which can be evaluated by using the
k

following theorem [8].

Theorem 3
Suppose po is an odd prime. Then

(pij =T mad pe (24)

The modular exponentiation of (24) can be computed efficiently by using the
well-known Square-and-Multiply algorithm [8]. Thus we can decide which odd
prime p, should be put into £ by easily determining whether (n‘*™’ mod p,) = 1.
On the other hand, we should choose the primes of £ as small as possible, because
the f(r;)’s are intuitively thought more likely smooth over # when the primes of 2 are
smaller. At this point, we can set up our factor base as follows. First, we set 5 to be

an empty set. Then we should put the prime 2 into 4 since f(r;) = ri? = n is even as r; is

11

odd. We then proceed to start at p, = 3 and check to see if (™2 mod p,) = 1. If it

does, then p, is added to S, otherwise it is discarded. In either case, the next prime is

assigned to p,, and the process continues until | g |=b, for an appropriate value b.

2.2.2 The Sieving Procedure

Once £ has been set up completely, we begin to determine whether f(r;) is smooth
over g for all r;. As described previously, this procedure is the most time-consuming
part of this kind of algorithms. Let’s consider how to determine which f(r;) is smooth
over . Obviously the straightforward method is trial division, which divides f(r;) by
every prime of 5. However, this method is incredibly inefficient. In general, a specific
f(r;) is not divisible by most primes of 3. Therefore, a lot of time is wasted attempting
to divide a specific f(r;) by those primes which don’t actually divide it. In Dixon’s
method, it seems that we have ne alternative but to do trial division.

In fact, the key breakthroughs eccur-when.we change the viewpoint of the
operations. Instead of focusing on one fixed.f(r;) at a time and trying to divide it by all
the primes of 5, we fix a prime of £ and determine which f(r;) are divisible by it. It is
easy to see which f(r;) = ri’ - n is divisible by 2 by determining if r; is odd (because
ri - n is divisible by 2 if and only if r; is odd). On the other hand, for a fixed odd
prime poe £, we need to find all the ry’s with

Po | (ri* = n).
< ri=n (mod py).
< rjisasolution to the congruence r’=n (mod p,). (25)

We already know that n is a quadratic residue modulo p, and p, is an odd prime, so

the congruence r’=n (mod p,) has exactly two solutions in Z_ , say So1 and .

po !
(Moreover, these two solutions are negatives of each other modulo p,, namely sy, =

12

Po — So,1.) Let Soe {So,1, So,2}. Then it is clear that
ri is a solution to the congruence r’=n (mod py).
& =S, +ipy, te Z. (26)

Hence it remains to consider how to compute s,1 and S, 2 in a reasonable manner.
Fortunately, there is an efficient method called the Shanks-Tonelli algorithm [1],
which can be used to compute these modular square roots efficiently. Since s, 1 and
So2 only depend on n and p,, when we set up S, we also compute (and store) them for
each po in S.

Although all the r;’s satisfying (26) can be found, it is obviously impossible to
use all of them. In practice, we pick an interval and just consider the r;’s in this

interval. Such an interval is called the sieving interval. To simplify matters, suppose
the sieving interval is H\/HJH, L\/EJ+5] and'r; :L\/HJH, forl1 <i < & The

bound ¢ is selected such that it:is expected more than'b f(r;)’s which correspond to the
ri’s within this range will be smooth over B.Then an'array of computer memory is
allocated, and fori=1, 2, ..., 5, f(r}) =r#=n'is calculated and stored in the array.
Since the r;’s are successive instead of being random, every r; can be mapped to the
index of the array element which saves the corresponding f(r;). Suppose the array
elements are M[1], M[2], ..., M[5]. We can store the f(r;)’s in such a way: for each r;,

M[i] is assigned to f(r;), namely M[r; —L\/ﬁj] = f(ri). Therefore, given an r;, we can

easily determine which M[I]=f(r;)), 1 < | < 6.
In the next step of the algorithm, the congruence r*=n (mod p,) is solved for

each odd prime poe £. All the r;’s satisfying

LJHJHS [=So+ Py < Lx/ﬁJ+5, teZ (27)
are then picked out, and the corresponding M[r; —L«/ﬁ J 1’s are divided by p,

13

repeatedly until their quotients are not divisible by p, any more. This procedure is

performed for every odd prime p,e A. Similarly, for every odd r;, f(r;) is divided by 2
repeatedly until it is not divisible by 2 any more. (Even we can easily divide f(r;) by 2°
by doing bitwise right shifts if f(r;) is divisible by 2°.) In the end all the M[I]’s are

scanned for which M[I]=1,1 < | < & M[I] = 1 if and only if f(HﬁJ+ 1) is smooth

over . Consequently, we can find out all the r;’s within the sieving interval with
f(r;)’s smooth over .

By using this technique, every division executed is “meaningful”. That is to say,
f(r;) is divided by py if and only if f(r;) is divisible by pi for every prime pxe 5. Any
blind division trying to divide an f(r;) by the px which doesn’t evenly divide it.
Moreover, the divisions that divide an integer by its prime factor are much faster than
the other divisions. Therefore, through omitting.the useless divisions, the running time
is dramatically speeded up. The-approach described in this subsection is called the

sieving procedure, which yields the so-called-quadratic sieve algorithm.

2.2.3 Improvements on the QS

Although the algorithm has been dramatically improved, the sieving procedure is still
the most time-consuming part of the algorithm. There are several methods of
accelerating the speed of sieving. One way is simply to set the size of each f(r;) as

small as possible. In order to do this, observe that replacing the sieving
interval H\/HJH L\/HJ+5} by UJHJ—% L\/HJ+§} can effectively decrease

the sizes of half the f(r;)’s. Although the f(r;)’s corresponding to the ry’s

within U\/ﬁj —g, L\/ﬁﬂ are negative, we can still factor them (by especially

regarding (-1) as a factor). However, condition (14) must be still satisfied for some S.

14

In other words, except that every prime factor of H f(r) is used an even number of

res

times, H f(r,) is necessarily positive, i.e., (1) of H f(r,) is also used an even

reS res
number of times. Therefore, the question can be easily solved by adding (-1) to our
factor base, and the approach of finding S just works like the Dixon’s method.
Besides the method described above, another technique usually used is to

predict which f(r;) is smooth over g by using logarithmic operations. Observe that

b
f)=[]n™
k=1
b
= log(f(r)) =2 e, log(p,)
k=1
b
= log(f(r))- e log(p,)=0 (28)
k=1
with e, ; > 0. Thus we can probably predict whether f(r;) is smooth over 5 as follows.

First, we compute log(f(r;)) for each r; in the Sieving interval. For every pxe 5, we
then proceed to subtract log(px) fromilog(f(r;))-for those f(r;)’s are divisible by py. This
can be done efficiently because all the r;’s satisfying (25) can be easily found. If the
log(f(r;)) is reduced to 0 by this procedure, the corresponding f(r;) is necessarily
smooth over A. However, this event only happens wheney; =0, 1 for1 < k < b. If
exi > 1, this procedure can not yield the accurate predictions. But if we specify a

reasonable threshold and only preserve the f(r;)’s whose log(f(ri))’s are reduced below

this threshold, we can eliminate a lot of f(r;)’s which are not smooth over 5. We only
try to factor the remained f(r;)’s. On the other hand, some f(r;)’s smooth over g may
also be eliminated. Therefore, the size of the threshold is a trade-off between

eliminating too many “useful” f(r;)’s and reserving too many “useless” f(r;)’s.

2.3 The Multiple Polynomial Quadratic Sieve

15

The multiple polynomial quadratic sieve was suggested by Peter Montgomery and is
one of the variants of the QS. As the name implies, it uses several polynomial
functions instead of just one f(r;) = ri? — n in the QS. A big problem in the QS is that as
ri gets large, f(r;) = ri? — n also becomes large. Of course, the larger f(r;) is, the less
likely it is that f(r;) is smooth over g. For fighting the drift to infinity of f(r;), the
MPQS uses several polynomial functions gi(ri), gz(ri), Once the values of one
polynomial get “too” large, we discard it and use a new one. This procedure not only
makes the values of gn(r;) smaller, but also makes the sieving interval and the factor
base much smaller. Of course, all this is done to increase the speed of finding the
gn(ri)’s smooth over £. In the MPQS, the polynomials must be chosen according to
certain conditions. In the subsection below, we then proceed to describe the details of

doing this.
2.3.1 Polynomials Selection

Observe that if we use polynomial funetions of the form gn(ri) = (r; + bp)? = n, the
values of different gn(r;)’s actually overlap. Hence selecting polynomials in such way
doesn’t make sense. The MPQS uses the polynomial functions of the form

gn(ri) = an ri? + 2by i + Cp, (29)
where the coefficients ay, by, Ch are chosen according to the guidelines below.
1. ay is a perfect square, say an = dy’.
2. Choose 0 < by < a such that by>=n (mod ay).
3. Choose ¢, such that by — ap ¢, = n. (Such a ¢, must exist because of our choice of

bn.)

If these can be done, then

ap X gh(ri)

16

= (an ri)* + 2(an ri) by + an Cn

= (an 1i)* + 2(an ri) by + (b2 = n)

=(anri+bp)’-n. (30)
Thus

anxgn(ri)=(anri + bh)2 (mod n). (31)
Moreover

gn(r)=[d, (@ ri + bw)]* (mod n), (32)

where Jh = dn ! mod n (assume dy and n are relatively prime). As with the QS, gn(ri) is
congruent to a perfect square modulo n, and this is what we want.
On the other hand, what about the factor base? Suppose the factor base g = {p,
P2, ..., P} FOr any pxe B, the condition-must be still satisfied that there exists at
least one r; such that gn(ri) is divisible by py..That is, for any prime pxe 3,
Pk }:0n(r;), for:some g, and r;. (33)
For px = 2, the condition (33) can-always hold by restricting the values of a, and c,.
Consider that for any odd prime poe £, if gcd(an, po) = 1, then
Po | On(ri), for some ;.
Po | @anx gn(ri), for some r;.

o
< Po [(@n ri + bn)> = n], for some r;.

< (anri+ bp)?=n (mod p,), for some r;.
o

n is a quadratic residue modulo po.

2

< n® P2 modp, = 1. (34)

0

If gcd(an, po) # 1 (namely ged(an, po) = Po), there may not exist g, and r; such that gn(ri)

is divisible by p,. However, this can be avoided by choosing a, such that for every
17

odd prime poe S, a is not divisible by p,. Besides this method, if we choose ay to be
a power of a prime, there is at most one odd prime in £ such that gn(r;) is never

divisible by it. Therefore, the procedure used to set up the factor base in the QS can be

also used in the MPQS.

2.3.2 The Details of Choosing the Coefficients

The MPQS chooses gn(ri)’s to custom fit not only the number n, but also the length of

the sieving interval. Suppose we use the sieving interval [—5, 5] of length 26 before

we change gn(ri). Consider

gn(ri) = an ri? + 2bp ri + cp

2
=ay| r?+2r by - by) |_b’-ac
I ; ah ah ah

2
= ap Hb_hj el (35)
a'h a'h

We would like to make the values of |gh(ri)| to be as small as possible on the sieving

interval. One way to do this is to have the minimum and maximum values of gx(r;)

over [—5, 5] be roughly the same in absolute values, but be opposite in sign. It is
clear that the minimum value of gn(ri) is gh(—b—h) — " Since we choose 0 < bn <
h h

ap, l.e,-1< by < 0, the minimum value of gy(r;)
a'h

over [-6, 6] is gh(—Z—h) = —al. Moreover, the maximum value of gn(r;)
h h

over [, &] appearsatri =5, and it is

gh(é):ah(mb—“j —

18

n
Ao’ ——

a'h
(a,86)>—n
S S 36
A (36)
As described above, we expect
n b a.0)>—n
= gh(__h) z|gh(§)|:L'
a‘h a‘h h
= n=(a,d)°-n.
= ahé'z\/%.
J2n
= a,~—.
o
= d, = @ . (37)

This then helps us to select a suitable d.
Recall that in subsection 2.3.1, the. coefficients ay, by, c, must be chosen
according to three guidelines. The.condition 1 can be easily satisfied. If the condition

2 has been satisfied, the condition 3 can be also satisfied by choosing c;,

— bh2 —n
8y

. Therefore, the real question is how to choose by, according to the condition

2. To do this, n must be a quadratic residue modulo ay. This is true if and only if nis a
quadratic residue modulo d for every prime factor d of a, [8], i.e., for every prime d

with d | ap,

(gjzl. (38)

Hence, we would like to choose ay, with its factorization known (namely, choose dj,

with its factorization known, because a, = dp2). For convenience, we choose dy as a

J2n

prime close to ,|—— such that n =1.
) d,

19

Once dy, has been chosen, we then proceed to solve the congruence
r*=n (mod d?), (39)
and set by, to be one of the modular square roots. If the congruence
r’=n (mod dy) (40)
can be solved, we can also compute the solutions of the congruence (39) by the

following theorem [9].

Theorem 4 (Hensel’s Lemma)
Suppose that f(x) is a polynomial with integer coefficients and that k is an integer with
k > 2. Suppose further that r is a solution of the congruence f(x) =0 (mod p*~%).
Then,

(1) if f'(r)!'=0 (mod p), then there is a unique integert, 0 < t < p, such that

f(r + tp*~1)=0 (mod p*), .given by

where f'(r) is an inverse of f’(r) modulo p;

(i) if f'(r)=0 (mod p) and f(r)=0 (mod p"), then f(r + tp*~*)=0 (mod p") for
all integers t;

(iii) if f'(r) =0 (mod p) and f(r)!=0 (mod p*), then f(x)=0 (mod p) has no

solutions with x=r (mod p*~?). 0

Suppose f(r) = r*=n, s is a solution of the congruence (40) (namely, the congruence
f(x)=0 (mod dy)). By the Theorem 4, we can easily calculate one solution of

congruence (39) as follows. First, compute

th=—f '(sh)[%j mod db, (41)

20

where f’(sh) is an inverse of f'(s,) modulo dp, i.e.,

f'(s,) = (2sn)"* mod d. (42)
Then
S’ = Sp + t dn mod dy’ (43)
is a solution of the congruence (39) (namely, the congruence f(x)=0 (mod dx?)).
As described previously, the Shanks-Tonelli algorithm can be used to compute
the modular square roots of the congruence (40). However, if we choose dy by using
the tricks below, this work can be done more efficiently. Suppose we choose dy as a

prime with [dlj =1 and

h

dg=3 (mod 4). (44)

d.+1

If this can be done, then n‘»™"?:= 1 (mod-) and is an integer. Thus,

(n(dh+1)/4)2 = 2 (mod dh)
=nn%™"2 (mod dy)
=n (mod dp). (45)
That is, (n®*’* mod dy) is a modular square root of the congruence (40). Therefore,

we can set s, to be (n“** mod dy) and use it to compute sy

2.3.3 Sieving

Just as the QS, we need to solve the congruence gy(r)=0 (mod p,) for each odd
prime p, in the factor base B. Nothing but whenever we use a new polynomial as
gn(ri), we need to do this work again for the new polynomial. Fortunately, the
congruence

an r’ + 2bp r + ¢, =0 (mod po) (46)

21

can be easily solved by using the standard formula for solving a quadratic polynomial.
(Recall that there is at most one p, with gcd(an, po) # 1, and we would not solve
gn(r)=0 (mod p,) for this p,.)
r = (2a)[-2bn % ((2bn)* - 4as cn)*] mod po

= 27'a, [=2bp £ 2(by? — an ¢v)Y4] mod po

= an [-bn+ n'?] mod po. (47)
Since gcd(an, po) = 1, (an* mod po) exists and we can always find it. Moreover, the
square roots of n modulo p, (n*? mod p,) can be computed by using the
Shanks-Tonelli algorithm. Therefore, the sieving procedure of the MPQS just works

the same way as the QS, besides using multiple polynomials instead of a single one.

22

Chapter 3 The Modified Multiple

Polynomial Quadratic Sieve

As described above, sieving procedure is the most time-consuming part of the MPQS.
Specifically, it spends most of time doing trial division in order to determine which
g(ri) is smooth over £. Trial division must be applied because we don’t know how
many times p; divides a given g(r;) (if g(ri) is divisible by p;), for each

pje £. However, if we can explicitly compute the number of times (p; divides a given
g(ri)) without doing any trial division, is it possible to improve the MPQS? Notice that
if this can be done, we can determing.whether'a.given g(r;) is smooth over £ by doing

logarithmic operations. We illustrate this technique with a small example.

Example 2:
Suppose that g(r;)) =504 = 2° x 3% x 7and B ={2, 3, 7, 13}. Then g(r;) is smooth
504

7 = 1. On the other hand, we can conclude the same

over S because
2° x 7

result according to the reason that 504 is divisible by 2°, 3%, 7 and

log(504) — [3xlog(2) + 2xlog(3) + log(7)] = 0. (48)

This idea is fairly simple, and we will particularly mention it latter in this chapter.
Generally speaking, trial division (of large numbers) spends more time than
logarithmic operations. Therefore, it remains to consider how to compute the number

of times p; divides a given g(r;) without doing any trial division. In this Chapter, we

23

will describe our methods of doing this.

The remaining sections of this chapter are organized as follows. Section 3.1
introduces the basic ideas of our methods. In Section 3.2, we discuss how to compute
the square roots of n modulo p.* for each odd prime poe LS. The results of doing this
are very important and will be used in the following steps. In Section 3.3, we describe
how to solve the congruence g(r)=0 (mod p.*) for the g(r) in the MPQS; and how to
apply these results to the sieving procedure. Finally, in order to make the MPQS more

practical, Section 3.4 provides a scheme to parallelize the sieving procedure.

3.1 Motivation for the Modified Multiple Polynomial

Quadratic Sieve

Recall from Subsection 2.3.3 that in.the sieving procedure we first solve the
congruence

g(r) = ar?+2br+¢=0 (mod po) (49)
for each odd prime p, in the factor base 4. By doing this, we can find all the r; with
g(r;) divisible by p,. At this point, we already know which g(r;) is divisible by p,, but
how do we know the exponent of p, in the prime power factorization of g(r;)? It might

appear to be necessary to divide g(ri) by p, repeatedly until its quotient is not divisible

by p, (i.e. do trial division). Recall that the maximum values of |g(r,)| are

about 5\/2. Thus, it is intuitively reasonable that many of |g(ri)| are almost as large

as /n, and it would spend a lot of time to divide each g(r;) by its prime factors.

However, if the exponent of p, (in the factorization of g(r;)) can be derived without

doing any trial division, this shift may lead to a speed-up.

24

Now suppose that we can find the solutions of the congruence
g(r)=ar?+2br+c=0 (mod po~) (50)
for any positive integer k, and
Sok = {ri | 9(r}) =0 (mod po*)}
= {ri | g(r;) is divisible by p,‘}. (51)

“*1 it is also divisible by po‘. Thus it is clear that

Notice that if g(r;) is divisible by p
Sok+1 < Sox, k=1, 2, Consider

Dok = Sok — Sok+1

={ri| g(ri) =t po*, ged(t, po) = 13- (52)

For a particular k, if Dok can be found (i.e. Sox, Sok +1 can be found), we can find all
the g(r;) divisible exactly by p.* but not divisible by p.“**. In other words, we can find
all the g(r;) in whose prime power factorization pg‘.appears. Of course, the
prerequisite is that the congruence (.50) can be solved for any positive integer k. In

the next section, we briefly discuss how: 10-solve.the simplest case of the congruence

(50).

3.2 Square Roots of n Modulo p,*

Suppose
g(r)=r’—n, (53)
the simplest polynomial of the form
ar’+2br+c. (54)
(Of course, a, b, ¢ must be chosen according to the guidelines in the MPQS.) In fact
g(r) is a special form of these polynomials, and it plays an important role in our
method. We now consider how to solve the congruence

g(r) = r* = n=0 (mod p) (55)

25

for any positive integer k.

Recall that for every odd prime po€ 5, (lj =1. Therefore, for any positive

0
integer k there are two square roots of n modulo p,* according to the theorem below

[8]

Theorem 5

Suppose that p is an odd prime, e is a positive integer, and gcd(a, p) = 1. Then the

congruence y*=a (mod p°®) has no solutions if (%) = -1, and two solutions (modulo

0°) if [%] 1. 0

Since there are exactly two modular square roots; it is clear that they are negatives of
each other modulo po*, and we need to,compute just one of them. When k = 1, as
described previously the square roots of n modula p, can be computed efficiently by
using the Shanks-Tonelli algorithm. When k > 2, the Hensel’s Lemma is applied.
Suppose Uy 1 is a solution of the congruence g(r)=0 (mod p.*~1). Then
Uk-1!=0 (mod po). (56)
To see this, consider that
(Uc-2)* =n=0 (mod po"~?)
= (U_1)*—n=0 (mod py). (57)
If uc-1=0 (mod p,), it implies that n=0 (mod p,), which is a contradiction since gcd(n,
Po) = 1. Hence ux_1!=0 (mod p,), and
9'(Uy)=2u,,
1=0 (mod po). (58)

(Notice that p, is an odd prime.) Therefore, case (i) of Hensel’s Lemma always
26

applies. That is, ux = (Ux_1 + tx—1 Po* %) is a solution of the congruence g(r)=0 (mod

Po%), given by

s = g'(ukl)[g;”:-f)] (mod po), (59)
where §'(u, ,) is an inverse of g'(u, ,) modulo po.
We now consider the solution uy+1 = (U + t po*) of the congruence g(r)=0
(mod po* " Y). First,
g'(u,) =2 Uy

=2 (U1 +t_1 P

=2 Ux-1 (mod po)

=0'(U,;) (mod po). (60)
Thus §'(u,) =§'(u,_,), and we don’t need to compute §'(u,) repeatedly
once §'(u, ,) is computed. By extending this result, it is clear that §'(u,) = §'(u,) for

any k > 1 (where uy is a solution of the‘congruence g(r)=0 (mod p,)). Suppose

u
Oea= gé ::j). (61)

Then we can compute g as follows:

_g(u)
= —p .

u’-n
_ .

(U, +t,, pok_l)2 —N
= pok
— 2 uk—l 1:k—l pok_l + (tk—l pok_l)2 + ((uk—l)2 - n)
= o
22Ut pok_l +9(u,)

o F
2u, t,+0, .
P,

'

= (tk—l)2 pok_2 +

=(t)’ P, "+ (62)
When k > 3,

27

g, = 2ttt ber (mod p) (63)

0

These results then provide an efficient method to evaluate gx and (qx mod p,) through
Qk-1Whenk > 3.
In the rest of this section, we discuss the size of ux we computed. Of course, we

wish to make each uk as small as possible, i.e.

1<u, <pf-1, (64)
for k > 1. Assume

1<u, <pft-L (65)
If we choose ti_1 with

0<t, <p,-1 (66)

then
0 <ty P 1S (P = DB
= 1+0 < u_, +t. P (p S =) + (p, -1 p,
= 1<u <pf-1 (67)
Therefore we take u1e Z,, and
te=-§'(u,) g, mod po, (68)
g(u)

k

Po

where q, = . Then

1<u <pf-1 (69)

follows for any k > 1.

3.3 Modified Sieving Procedure

Suppose

28

gir=ar’+2br+c, (70)
where coefficients a, b, ¢ satisfy the guidelines in the MPQS. In the beginning of this
section, we first consider the solutions to the congruence

g(r)=ar’+2br+c=0(mod poS), (71)
for any positive integer k. Throughout this section, we will suppose that gcd(a, po) = 1.
(Recall that there is at most one p, with gcd(a, po) # 1.) Since gcd(a, po) = 1, the
congruence (71) can be solved by using the standard formula for solving a quadratic

polynomial. That is,
r = (2a)[-2b + ((2b)* — 4a ¢)“*] mod p,©
= 27%a [-2b + 2(b? — a ¢)¥*] mod p,*

= a'[-b+n"?] mod p,*

= a'[-b 0% mod po", (72)

where n{ denotes the square root of n modulo po\. Recall that n is a quadratic residue

modulo p, and the Legendre symbol [DL): 1. According to Theorem 5, there are

exactly two square roots of n modulo p.*, namely n® and p,* — n. Therefore, the
congruence (71) has exactly two solutions modulo p.¥, say

s =a"[-b + n{®] mod p,* (73)
and

s =a[-b-n%]1mod p". (74)
We already know from Section 3.2 that n* can be computed efficiently by using the
Hensel’s Lemma.

We now consider

29

Sok ={r | g(r) is divisible by po"}. (75)
It is clear that

Sox ={r|g(r)=0 (mod po)}

= {80 +tpo"| s e{s;), sio} te). (76)
Once S, Sox+1 are found,
Dok = Sok — Sox+1 (77)

is found. As described in Section 3.1, we can find all the g(r) divisible exactly by po¢

but not divisible by po***. If we wish to find Dy 1, Do, .., D, 1, We need to find S, 4,
So2, -+ Sy, INadvance. It might appear to be necessary to first

compute s, s, fork=1, 2, ..., ko. Fortunately, we just need to

011 So2
compute s{%’, s{s). To see this, netice that
s = s (mod pq) (78)
and
s&) =519 (mod po), (79)
for k < k,. We will give a brief proof below.
For clarity, suppose that a*’ is an inverse of a modulo p,*. Then for k < k.,
aal® =1 (mod p,*).
= aa =1 (mod pY).
= a%) =a (mod po). (80)
Moreover,

(n%) =n (mod p,*).

30

= (nf) =n (mod py". (81)
In other words, n{* is a square root of n modulo p,*. Without loss of generality,
suppose
n =n® (mod p,%). (82)
From the discussion above, it follows that

(ko) = (k) (ko) Ko
So,l =4, [_b N] mod Po

= a{*' [-b + n{*’] (mod po")

ag” [-b + n{] (mod po)

s (mod po"). (83)
Similarly, it can be proved that

sis' =89 (mod po). (84)
Therefore, we obtain the following result: for k <k,

Sox = {8 +tpo| s¥ efs¥, s¥}, tez}
= {55 +tpo‘ | si*) e{sly), si¢'} tez}. (85)
That is to say, if s{;’, s¢3’ have been computed, So1, So2 ..., S, are found (so are
Do Doz .- D,y ;). 8557, 583 can be computed by using the formula (72).
Since n) only depends on n, p, and ko, when we set up 3, we also compute (and

store) it for each p, in . Whenever we compute s'5’, sis’ for new polynomials, the
Hensel’s Lemma would not be used.
We now describe the proposed scheme. To simplify matters, suppose that the

sieving interval is [1-&, &], ri=i-¢, and all the g(r;)’s which correspond to the r;’s
31

within this range are divisible by p, at most k, times. We first evaluate s{’, s’ for

each odd prime p,e . By doing this, So1, Sop, ..., S, can be found. Therefore, we

already know which g(r;) is divisible by p, exactly k times, for any k < k,. Then we

can determine which g(r;) is smooth over g without doing any trial division. To see

this, suppose that g(ri) is divisible by p; exactly e;; times with e, ; >0, for each

pje A. Then it is clear that

g(ri) is smooth over f.
< g(r) :H p,™.
j=1
b
< log(g(r)) =2 e, log(p)).

= Tog(gi)* 3éloa(p,) =0 (86)
Now we can apply this result to-the sieving pracedure as follows. First, an array of
size 20 is allocated, and suppose theiarray elements are M[1], M[2], ..., M[25]. We
then evaluate the logarithm of g(r;) for-each rj;-and assign it
to M[i], namely M[r, + o] = log(g(ri)). For every rie Sox and
1-96 <1 £ 6, log(po) is subtracted from M[r, + 5], where k < k. (That is, for
every rieDoxand 1 -6 < r; < &, kxlog(p,) is subtracted from M[r. +], where k

< ko. Moreover, since all the g(r;)’s we consider are divisible by p, at most k, times,
foreveryrieS,, and1-6 < ri < &, koxlog(po) is subtracted

from M[r. +6].) This procedure is performed for every odd prime poe £. Similarly, if
g(ri) is divisible by 2 at most k' times, k'x log(2) must be subtracted from M[r, + J]. In
fact, k' can be easily determined by scanning g(r;) from the least significant bit
towards more significant bits, until the first 1 bit is found. Finally, all the M[i]’s are
scanned for which M[i]=0,1 < i < 26. Clearly, M[i] = 0 if and only if g(r;) is

32

smooth over S. By using this technique, we can determine which g(r;) is smooth
over £ without doing any trial division (of large numbers).

At this point, we know that after sieving M[i] = 0 if and only if g(r;) is smooth
over S. However, if g(r;) is not smooth over 2, how large M[i] is? The answer of this
question is very useful. Generally, a logarithm of a positive integer is not a finite
decimal. Therefore, when we do logarithmic operations, inaccuracy may appear.
Hence, we need a reasonable bound to estimate which M[i] actually equals 0. The

following result is fairly simple, and we will give a brief proof of it.

Theorem 6

Suppose that the factor base g = {p1, p2, .., Po}, P IS the maximum prime in B, pp <
d=+a (in general, this condition holds), and g(r;)-is divisible by p; at most e;; times,

where e ; >0, j=1,2, ..., b. Then; if g(ri) is'hot smooth over 2,

qi ="g(r) /LH D) > Po. (87)

Proof We will prove this by assuming that

di < Po, (88)
and obtain a contradiction. Since g(r;) is not smooth over g, it must be the case that
gi= 1. Suppose q is a prime factor of g;. Since g(r;) is divisible by g;, it is also divisible

by g. As described in Section 2.3 (because g < pp < dandd is prime, gcd(a, q) =

ged(d?,) = 1), n is a quadratic residue modulo g, i.e. (gj =1. Recall from Section
2.2 that

5 ={p; | pyis prime, p; < py and (pl]ﬂ}. (89)

]

33

Hence, it must be the case that ge B. Without loss of generality, suppose g = p1. Since

g(ri) = QiX[H Pjei’jj (90)

i1 t1

and q = p; is a prime factor of g, it follows that g(r;) is divisible by p,**"". Thus, we

obtain a contradiction, because g(r;) is divisible by p; at most e;; times by our

assumption. 0

From Theorem 6, it is not difficult to see that after sieving M[i] > log(py) if and only if

g(r;) is not smooth over g.

In the rest of this section, we briefly discuss how large k, should be for each

odd prime poe S. Recall that all the g(r;)’s.which correspond to the r;’s within the

sieving interval are divisible by pgat. maostks times, and the maximum values

n :
of |g(r,)| are about 5\/;. Hence, it seems to be reasonable to set k, to be

i‘log N (5@” = Llogpo (5)J+E(Iog .. (n)—log,, (2))J (91)

However, this value of k, is not appropriate. It goes without saying that the smaller k,

is, the less time it spends to compute any quantity related to k. (e.g. p,* and at

mod p,*). But if k, is too small, a lot of g(r;)’s smooth over £ would be considered
not smooth over A. Thus there is a trade-off. Our idea is to take
ko= | log, (25) | (92)
such that
P < 25 < pl (93)

Then there isat mostoneriwith1— o6 < r; < O satisfies

34

ri=sd™ (mod p,%™). (94)
Similarly, there isat most one rywith 1 — 6 < r; < ¢ satisfies

ri=ss™ (mod p,*). (95)

Therefore, there are at most two r;’s with g(ri)’s divisible by p_ . Even though there

ko +1

are two g(r;)’s divisible by p,“*, they may not be smooth over 3. Hence, most of the

g(ri)’s smooth over g would not be eliminated. In reality, k, can be set to be smaller
according to the properties of g(ri)’s smooth over g. For example, if the exponents of

most g(r;)’s (smooth over g) are always small, we can set k, to be much smaller.

3.4 Parallel Sieving

In order to make the MPQS more‘practicaljjwe parallelize the sieving procedure. In
general, the way this is done is to partition the sieving interval into several
subintervals, and then each procéssor-sieves-over a‘different subinterval. To make the
implementation simple, we propose another'scheme in this section. Our idea is to
make each processor use different quadratic polynomial functions. In fact, this can be
easily done if each processor uses different coefficients dn. Here we will use the
schemes described in the last of Subsection 2.3.2. Recall that d,=3 (mod 4). Suppose
the MPQS sieves in parallel by using t computers. Then, the jth computer uses the dj
satisfying that dy, is prime and

dp=4(kt+j) +3, (96)
where j=1, 2, ..., t, ke Z. Itis clear that d,=3 (mod 4). Moreover, it is very easy to
prove that different computers never use the same dy’s, and this is what we want. The
drawback of this method is that t can not be a multiple of 3. Since the tth computer

uses the d;, satisfying

35

dh=4((kt+t)+3
=4tk +1) + 3, (97)
if t is a multiple of 3, dy is necessarily a multiple of 3 for any ke Z. However, d, needs
to be prime. Therefore, t can not be a multiple of 3 in this method. Fortunately, it is
not difficult to prevent t from being a multiple of 3. Hence this method is indeed

practical.

36

Chapter 4 Experimental Results

In our research, we use the program called the GQS [10], which is developed by
Professor D. J. Guan in order to implement the MPQS. The GQS is written with the C
language and based on the GMP [11]. (GMP is a library for arbitrary precision
arithmetic, and performs very well on most computers.) We modified the GQS with
parallel sieving, and successfully factored a 100-digit number n (where n = pxq, p, q
are prime, and p and g are roughly the same size), by distributing the computations to
32 workstations in the department of CS in the NCTU (National Chiao Tung
University). However, we do not implement the main idea described in Chapter 3. In

the rest of this chapter, we will present the experimental results we obtained.

4.1 Environment

Throughout our experiments, the GQS was performed on the workstations in the
department of CS in the NCTU. Each workstation is equipped with AMD Athlon XP
2700+ CPU (running at 2.2 GHz on average), 2 GB memory and 512 MB disk space
total. Moreover, they are running operating system RedHat Linux 9.0. The sieving
procedure needs to allocate many memories to sieve, and take a lot of disk space to
save the sieving results. Therefore, it is important to reserve large enough memory

and disk space.

4.2 Results

The asymptotic running time of the MPQS is[1]:

0 (e(1+o(1))\/m) (98)

37

The notation o(1) denotes a function of n that approaches 0 as n — . Formula

(198) can be used to estimate the time required for factoring n using one personal
computer. By using one workstation, we have successfully factored the numbers
having less than about 50-70 digits. We tabulate the estimated times and the execution

times for some values of n in Table 1.

Table 1
Estimated running times of | Execution times involving
log10(n) / 10g2(n)
the MPQS in one PC one workstation
50/ 166 0.01 (hours) 0.16 (hours)
60/ 199 0.16 (hours) 0.11 (hours)
70/ 233 2.00:(hours) 6.00 (hours)

Execution times-involving ene workstation

The results show that the execution time-is not elose to the estimation when n has
more than about 70 digits. We have also factored larger numbers in the range 80-100
digits. These were done by using parallel sieve on 32 workstations. The execution

times are given as follows:

38

Table 2

logio(n) / logz(n)

Estimated running times of

the MPQS in one PC

Execution times involving

32 workstations

80/ 266 22 (hours) 1.4 (hours)
82 /272 36 (hours) 3.4 (hours)
85/282 72 (hours) 6.7 (hours)
90 /299 210 (hours) 11.3 (hours)
100/ 332 80 (days) 6.6 (days)

Execution times involving 32 workstations

The results show that sieving by using 32 workstations is not 32 times faster than

using one PC. Moreover, the larger«nis, the less the speedup is.

39

Chapter 5 Conclusion

In this paper, we present the methods to enhance the sieving procedure of the MPQS.
The advantage of our methods is that it doesn’t need to do a lot of trial division for
large numbers. Conversely, our methods need to do a lot of addition and
multiplication for smaller numbers. Therefore, this shift may improve the MPQS.

For factoring RSA moduli, the NFS is recently the most-used algorithm. A lot
of RSA Challenge Numbers were successfully factored by using the NFS. The

asymptotic running time of the NFSis[1]:

0 (e<1.92+o(1))<ln(n»“3<ln(ln(n>»2’3) (99)

which is faster than the MPQS for.numbers having.more than about 125-130 digits. In
fact, the NFS is improved upon-by,the MPQS;-and.it still uses the essential concepts
of the MPQS. Hence, our ideas can be also-applied to the NFS. If the MPQS can be
improved by using our methods, the’NFS.can.be also improved. On the other hand,
the parameters of our methods (such as the size of the factor base and the length of the
sieving interval) can be optimized to reduce the running time. Thus the complexity of

the algorithm may be actually smaller.

40

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

References

Douglas R. Stinson, Cryptography: Theory and Practice, 2nd Edition,
Chapman & Hall/CRC, 2002.

Kenneth H. Rosen, Elementary Number Theory and Its Applications, 5th
Edition, Pearson Addison Wesley, 2004.

Carl Pomerance, “The Quadratic Sieve Factoring Algorithm”, University of
Georgia, 1998.

A. K. Lenstra, H. W. Lenstra, Jr., et al, “The Development of the Number
Field Sieve”, Lecture Notes in Mathematics, vol. 1554, Springer-Verlag,
1993.

Stephen H. FriedBerg, et al, Linear Algebra, 4th Edition, Pearson Prentice
Hall, 2002.

Otto Bretscher, Linear Algebraswith Applications, 3rd Edition, Pearson
Prentice Hall, United States of America, 2004.

P. L. Montgomery, “A block Lanczas Algorithm for finding dependencies
over GF(2)”, Advances in"Cryptology — EUROCRYPT *95, vol. 921, pp.
106-120, 1995.

D. H. Wiedemann, “Solving.Sparse Linear Equations over Finite Fields”,
IEEE Trans. Information Theory, IT-32, pp. 54-62, 1986.

Ramanujachary Kumanduri, Christina Romero, Number Theory with
Computer Applications, 1st Edition, Prentice Hall, Upper Saddle River,
New Jersey, 1997.

D. J. Guan, “Experience in Factoring Large Integers Using Quadratic
Sieve”, 2003.

The GNU MP Bignum Library, http://www.swox.com/gmp/.

41

	 摘 要
	ABSTRACT
	誌 謝
	Contents
	List of Tables
	Chapter 1 Introduction
	1.1 Elementary Number Theory
	1.2 The RSA Cryptosystem
	1.3 RSA and Factoring Integers

	Chapter 2 Factoring Algorithms
	2.1 The Dixon’s Random Squares Algorithm
	2.2 The Quadratic Sieve Factoring Algorithm
	2.2.1 Setting Up the Factor Base
	2.2.2 The Sieving Procedure
	2.2.3 Improvements on the QS

	2.3 The Multiple Polynomial Quadratic Sieve
	2.3.1 Polynomials Selection
	2.3.2 The Details of Choosing the Coefficients
	2.3.3 Sieving

	Chapter 3 The Modified Multiple Polynomial Quadratic Sieve
	3.1 Motivation for the Modified Multiple Polynomial Quadratic Sieve
	3.2 Square Roots of n Modulo pok
	3.3 Modified Sieving Procedure
	3.4 Parallel Sieving

	Chapter 4 Experimental Results
	4.1 Environment
	4.2 Results

	Chapter 5 Conclusion
	References

