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Introducing Recombination with Dynamic Linkage

Discovery to Particle Swarm Optimization

Student: Ming-chung Jian Advisor: Ying-ping Chen

Institute of Computer Science and Engineering
College of Computer Science

National Chiao Tung University

Abstract

There are two main objectives in this thesis. The first goal is to improve the performance of
the particle swarm optimizer by incorporating linkage concept which is an essential mechanism
in genetic algorithms. To achieve this purpose, we need to know the characteristics of the particle
swarm optimizer and the genetic linkage problem. Through survey of the particle swarm
optimization and the linkage problem, we then figure out how to introduce the linkage concept to
particle swarm optimizer. Another goal is to address the linkage problem in real-parameter
optimization problems. We have to study different linkage learning techniques, and understand
the meaning of genetic linkage in real-parameter problems. After that, we design a novel linkage
identification technique to achieve this objective.

In this thesis, the existence of genetic linkages in real-parameter optimization problem and

il



that genetic linkages are dynamically changed through the search process are the primary
assumptions. With these assumptions, we develop the dynamic linkage discovery technique to
address the linkage problem. Moreover, a special recombination operator is designed to promote
the cooperation of particle swarm optimizer and linkage identification technique. In the
consequence, we introduce the recombination operator with the technique of dynamic linkage
discovery to particle swarm optimization (PSO). Dynamic linkage discovery is a costless,
effective linkage recognition technique adapting the linkage configuration by utilizing the natural
selection without incorporating extra judging criteria irrelevant to the objective function.
Furthermore, we employ a specific recombination operator to work with the building blocks
identified by dynamic linkage discovery. The whole framework forms a new efficient search
algorithm and is called PSO-RDL in this study. Numerical experiments are conducted on a set of
carefully designed benchmark functions and:demonstrate good performance achieved by the
proposed methodology. Moreovet, we. also applied the proposed algorithm on the economic
dispatch problem which is an essential topic in pewer control systems. The experimental results
show that PSO-RDL can performs well both on numerical benchmark and real-world

applications.

keywords:

Particle swarm optimization, genetic algorithms, genetic linkage, building blocks, dynamic

linkage discovery, recombination operator
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Chapter 1

Introduction

1.1 Motivation

Particle swarm optimizer (PSO), introduced by Kennedy and Eberhart in 1995 [I], 2],
emulates flocking behavior of birds to solve optimization problems. The PSO algorithm
is conceptually simple and can be implemented in a few lines of codes. In PSO, each
potential solution is considered assa particle. 'All particles have their own fitness values
and velocities. These particles fly through:the .D-dimensional problem space by learning
from the historical information of all the particless There are global and local versions
of PSO. Instead of learning from the*personal best and the best position discovered so
far by the whole population as in the'global version of PSO, in the local version, each
particle’s velocity is adjusted according to its own best fitness value and the best position
found by other particles within its neighborhood. Focusing on improving the local version
of PSO, different neighborhood structures are proposed and discussed in the literature.
Moreover, the position and velocity update rules have been modified to enhance the PSO’s
performance as well.

On the other hand, genetic algorithms (GAs), introduced by John Holland [3], 4], are
stochastic, population-based search and optimization algorithms loosely modeled after the
paradigms of evolution. Genetic algorithms guide the search through the solution space
by using natural selection and genetic operators, such as crossover, mutation, and the
like. Furthermore, the GA optimization mechanism is theorized by researchers [3] 4, ]
with building block processing, such as creating, identifying and exchanging. Building

blocks are conceptually non-inferior sub-solutions which are components of the superior



complete solutions. The building block hypothesis states that the final solutions to a given
optimization problem can be evolved with a continuous process of creating, identifying,
and recombining high-quality building blocks. According to that the GA’s search capa-
bility can be greatly improved by identifying building blocks accurately and preventing
crossover operation from destroying them [0} [7], linkage identification, the procedure to
recognize building blocks, plays an important role in GA optimization.

The two aforementioned optimization techniques are both population-based that have
been proven successful in solving a variety of difficult problems. However, both models
have strength and weakness. Comparisons between GAs and PSOs can be found in the
literature [8, [9] and suggest that a hybrid of these two algorithms may lead to further ad-
vances. Hence, a lot of studies on the hybridization of GAs and PSOs have been proposed
and examined. Most of these research works try to incorporate genetic operators into
PSO [10, 1], while some try to introduce the concept of genetic linkage into PSO [12].
Based on the similar idea employed by linkage PSO[12], our work is to introduce recom-
bination working on building blocks to enhance the performance of PSO with the concept

of genetic linkage.

1.2 Thesis Objectives

This thesis presents a research project that aims to address the genetic linkage problem
in real-parameter optimization problems and introduce the genetic linkage concept to

particle swarm optimizer. Thus, there are two primary objectives:

1. With the assumption that linkage problems exist in real-parameter problems , a
linkage identification technique is needed to address the genetic linkage problems.
This thesis provides both the linkage identification mechanism and observation of

experiments to support the initial assumption.

2. To improve the performance of particle swarm optimizer, the genetic linkage concept
is introduced. An optimization algorithm that incorporates these mechanism is

developed and numerical experiments are done to evaluate the performance.



Focusing on the two objectives, in this research work, we propose a dynamic linkage
discovery technique to effectively detect the building blocks of the objective function. This
technique differs from those traditional linkage detection technique in that the evaluation
cost is eliminated. The idea is to dynamically adapt the linkage configuration according
to the search process and the feedback from the environment. Thus, this technique is
costless and easy to be integrated into existing search algorithms. Our method introduces
the linkage concept and the recombination operator to the operation of particle swarm

optimizer.

1.3 Road Map

This thesis is composed by six chapters. The detailed organization is given as follows:

e Chapter 1] consists of the motivation, objectives and organization of this study. It

describes why this research work is imiportant and the main tasks to be accom-

plished.

e Chapter |2 provides a complete overview of the particle swarm optimization algo-
rithm. The background dnd. traditional particle swarm optimizer is introduced,
and the parameter controls that have an impact on the performance are discussed.
Moreover, recent advances of related work in particle swarm optimization are also

surveyed in this chapter.

e Chapter |3 presents the concept of genetic linkage in genetic algorithms. The defin-
ition and importance of genetic linkage are described. Linkage learning techniques

in the literature are also briefly discussed.

e Chapter d|described the proposed method in detail. The three mechanisms including
particle swarm optimizer, dynamic linkage discovery technique and recombination
operator, are introduced. The algorithm composed by the above three components

is then presented.

e Chapter |p| shows the numerical experimental results that evaluate the performance

of the proposed algorithm. The description of the test functions, parameter settings,



and simulated results are given. The discussion and observation of the experiments

are covered in this chapter certainly.

Chapter [6] applied the designed algorithm on economic dispatch problems, which
are a significant topic in the power system. It describes the objectives and formu-
lations of economic dispatch problems, and then gives the proposed solution and

experimental results.

Chapter [7] give a summary of this research work. The future works and the main

conclusions of the study are proposed.



Chapter 2

Particle Swarm Optimization

The particle swarm optimizer (PSO), introduced by Kennedy and Eberhart in 1995 [T,
2], emulates flocking behavior of birds to solve the optimization problems. The PSO
algorithm is conceptually simple and can be implemented in a few lines of codes. In PSO,
each potential solution is considered as a particle. All particles have their own fitness
values and velocities. These particles, fly through the D-dimensional problem space by
learning from the historical informationrof all.the' particles. In the following sections, we
will give a complete overview of PSO. Section 1 introduces the historical background of
PSO, section 2 describes how PSO werks;=section 3 discusses the parameter control in
PSO, section 4 has a brief survey of PSO related to our work, and finally, section 5 gives

a summary of this chapter.

2.1 Historical Background

Many scientists have studied and created the computer simulation of various interpreta-
tions of the movement of organisms in a bird flock or fish school [13][14]. From simulations,
it is considered that there might be a local process that underlies the group dynamics of
bird social behavior and relies heavily on manipulation of inter-individual distance. That
is, the movement of the flock was an outcome of the individuals’ efforts to maintain an
optimum distance from their neighborhood [1J.

The social behavior of animals and in some cases of humans, is governed by similar
rules. However, human social behavior is more complex than a flock’s movement for

at least one obvious reason: collision. Two individuals can hold identical attitudes and



beliefs without banging together, while two birds cannot occupy the same position in
space without colliding. Such an abstraction in human social behavior has comprised a
motivation for developing a model for it.

As sociobiologist E.O. Wilson [I5] has written, "In theory at least, individual mem-
bers of the school can profit from the discoveries and previous experience of all other
members of the school during the search for food. This advantage can become decisive,
outweighing the disadvantages of competition for food items, whenever the resource is
unpredictably distributed in patches”. This statement and numerous examples coming
from nature enforce the view ,that social sharing of information among the individuals of
a population may offers an evolutionary advantage. This belief has formed a fundamental
of the development of particle swarm optimization, which will be introduced in the next

section.

2.2 Particle Swarm:Optimization

As mentioned above, PSO began as a simulation of a simplified social behavior that was
used to visualize the movement of a'birds™flock: ‘Considering such as nearest-neighbor
velocity matching, the cornfield vector-and aceeleration by distance, several variation of
the simulation model has been through a trial and error process and finally results in a
first simplified version of PSO [1].

PSO is similar to genetic algorithm in that both of them are population based search
algorithms. A population of individuals is randomly initialized where each individual
is considered as a potential solution of the problem. Especially an individual is called
a "particle” and a population is called a "swarm” in PSO [I]. However, in PSO, each
potential solution is also assigned an adaptable velocity that enables the particle to fly
through the hyperspace. Moreover, each particle has a memory that keeps track of the
best position in the search space that it has ever visited [2]. Thus the movement of a
particle is an aggregated acceleration towards its best previously visited position and the
best individual of its neighborhood.

There are mainly two variants of PSO algorithm were developed [2]. The major



difference between the two variant is that one with a global neighborhood while the
other with a local neighborhood. According to the global variant, particle’s movement
is influenced by its previous best position and the best particle of the whole swarm. On
the other hand, each particle moves according to its previous best position and the best
particle of its restricted neighborhood in the local variant. Because the local version of
PSO can be derived from the global variant through minor changes. In the next paragraph,
we will have a complete introduction of the global version PSO.

In PSO, each particle is treated as a point in a D-dimensional space. Ths ¢th particle is
represented by a D-dimensional vector, X; = (1, Z;2, ..., z;p) The best previous position
of any particle is represented as P; = (pi1, Pi2, ---, Pin), and the best particle’s position of
the whole swarm is represented by P, = (pg1, g2, -, Pgp). The velocity of particle i is also
represented as a D-dimensional vector,V; = (v;1, vs2, ..., v;p). The position and velocity of
each particle is updated according to thesfollowing equation:

U?d—i—l = Ujg + C1 % m”dcll() * (pig = i) T2 * mndg() * (p;d — Ziy) (2.1)

T E— n+1
Tig i Tid T Vig (2.2)

where d = 1,2,....D; i = 1,2,....N, and N is the size of the swarm; ¢; and ¢y are two
positive constants, called the acceleration constant; rand; () and rands() are two uniformly
distributed random numbers in the range [0,1]; and n = 1,2,..., determines the iteration
number. The second part of the Equation [2.1] is the ”cognition” part, which represents
the private thinking of the particle itself, and the third part is the ”social” part, which
represents the collaboration among the particles [16]. A flowchart of how the particle
swarm optimization works on a swarm is shown in Figurd2.1]

Equation and define the initial version of the PSO algorithm. Referring to
Equation 2.1 the second and third part have an important influence on the movement
of each particle. Without these two parts, the particles will keep on flying at the current
speed in the same direction until they hit the boundary. On the other hand, without the

first part of equation [2.1] the particle’s velocity is determined by the current best position



and previous best position. Thus all the particles will tend to move toward the same
position. In such a case, it is more likely that the second and third part of the Equation
2.1| play as a local searcher, while the first part plays as a global searcher. There is a
tradeoff between the local and global search. For different problems, different balance
between them should be considered. In order to achieve this goal, a parameter the called
inertia weight "w’ is introduced, and the Equation is modified as [I7]:

ol = w kol + ey k randy () * (Pl — 2l + co * randy () * (Pya — Tig) (2.3)

Since the particle swarm optimization is conceptually simple and can be easily imple-
mented, the fine-tune of parameters become an important topic which have great impact
on the performance of the particle swarm optimization. Discussion about the parameters

will be given in the next section.

2.3 Parameters of PSO

In the previous section, we havesintroducedPSQ algorithm and given a modified version.
In order to facilitate the efficiency of PSO algorithm, it is important to understand how
the parameters would influence PSO. Thus, in this section, we will have a brief discussion
on this topic.

Since the particles are "flying” through the search space, it is necessary to have a
maximum value V,,,, on it. The parameter has been proven to be crucial because it
actually serves as a constraint that controls the maximum global exploration ability that
PSO can have [I8]. Moreover, the inertia weight described in Equatio is also important
for the balance of global and local search ability. When V. is large, PSO can have a large
range of exploration by selecting a proper inertia weight. By setting a small maximum
velocity, PSO would act as a local searcher whatever the inertia weight is selected. As Shi
and Eberhart suggested in [I§], since the maximum velocity affects global exploration
indirectly, it is considered better to controls the global exploration ability through the

inertia weight only. Furthermore, choosing a large inertia weight to facilitate greater



global exploration is not a good strategy, and a smaller inertia weight should be selected
to achieve a balance between global and local exploration for a faster search.

The parameters ¢; and ¢y represent the acceleration rates of cognitive and social parts
of each particle. Thus, fine-tuning could result in faster convergence of the swarm. As
default values in [I], ¢; = co = 2 were proposed. Recent work has suggested that it might
be better to choose a larger cognitive parameter, c;, but ¢; + co <4 [19].

Finally, rand;() and randy() are random numbers uniformly distributed in the range
[0,1] and are used to maintain the diversity of the whole swarm.

In the past decade, many studies of improving the performance of particle swarm opti-
mization were done. Variants of particle swarm optimization are discussed and proposed.

In the next section, related works in the literature will be given.

2.4 Recent Advances in PSO

In this section, we will have a brief survey of PSO® which is related to our research. As
mentioned previously, there arg mainly two variants: of PSO developed and we have given
an overview of the global one. Howeyer; many researches on the local version of PSO have
been working on. In the local variant;the /% has been replaced by P}, the best position
achieved by a particle within its neighborhood. Focusing on improving the local version
of PSO, different neighborhood structures have been proposed and discussed [20), 211, 22].

Furthermore, studies on modifying the rule of updating position and velocity are also
conducted [12} 23, 24]. Devicharan and Mohan [12] first computed the elements of linkage
matrix based on observation of the results of perturbations performed in some randomly
generated particles. These elements of the linkage matrix were used in a modified PSO
algorithm in which only strongly linked particle positions were simultaneously updated.
Liang et al [23] 24] proposed a learning strategy where each dimension of a particle learned
from particle’s historical best information, while each particle learned from different par-
ticles’ historical best information for different dimensions.

In order to enhance the performance of PSO by introducing the genetic operators

and/or mechanisms, many hybrid GA /PSO algorithms have been proposed and tested on



function minimization problems [10} 111 25, 26] Lvbjerg et al [10] incorporated a breeding
operator into the PSO algorithm, where breeding occurred inline with the standard ve-
locity and position update rules. Robinson et al [25] tested two hybrid version. The first
used the GA algorithm to initialize the PSO population while another used the PSO to
initialize the GA population. Shi et al [26] proposed two approaches. The main idea of
the proposed algorithm was to parallelly integrate PSO and GA. Settles and Soule [11]
combined the standard velocity and position update rules of PSO with the concept of
selection, crossover, and mutation from GAs. They employed an additional parameter,
the breeding ratio, to determine the proportion of the population which underwent the
breeding procedure (selection, crossover, and mutation) in the current generation.

Based on the brief literature review, we know that since PSO was proposed, many
research focusing on improving the performance of PSO were conducted. By incorporating
different mechanisms such as special neighborhood structure, modified update equation
or hybridizing with GA conceptgy manypdifferent models of PSO were developed. In this
research work, we have also proposed a particular model of PSO which dissimilar to those

described in this section. A detailed:deseription will be given in Chpater 3.

2.5 Summary

In this chapter, particle swarm optimization algorithms were briefly introduced, including
its historical background and working principles. The initial and modified global version
PSO were described. In order to understand how parameters affect the PSO, we make a
short discussion of the parameter control in PSO. Finally, recent advances of PSO that
are related to our research work were surveyed. From the survey, we know that the
hybridization of PSO and GAs has became a popular research topic. It inspired us to
improve the particle swarm optimizer by incorporating the linkage concept in GAs. A

complete review of the genetic linkage in GAs will be provided in the next chapter.
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Initialize position X, associated velocities V, pbest
and gbest of the population

h 4
[=W
I
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X! =Xx'+v!

Yes !
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Y
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Figure 2.1: A flowchart of particle swarm optimizer, in each generation, PSO manipulate
each particle through updating their position and velocity according to Equation [2.1
and Equation [2.2] After updating particle’s position and velocity, PSO then evaluates
particle’s fitness value and decides that the previous best individual and the global best
individual should be replaced or not
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Chapter 3

Genetic Linkage

In this chapter, we discuss about the topic of genetic linkage in genetic algorithms. We
will present the definition and the importance of genetic linkage. The genetic linkage

learning techniques are also discussed. Particularly, the following topics are presented:

e The definition of genetic linkage: Describes what genetic linkage is in genetic algo-

rithms.

e The importance of genetic linkage: Describes why linkage learning is an essential

topic in genetic algorithms:

e The linkage learning techniques: Describes what kinds of techniques have been

developed to address the genetic linkage problems.

3.1 What Is Genetic Linkage?

Since the central topics in this chapter is genetic linkage, we first give the definition of
genetic linkage in genetic algorithms. The basic idea and assumption of genetic algorithms
will be given, and then the definition of genetic linkage in genetic algorithms will be
explained.

Genetic algorithms (GAs), introduced by John Holland [3], 4], are stochastic, population-
based search and optimization algorithms loosely modeled after the paradigms of evolu-
tion. Genetic algorithms search the solution space by using natural selection and genetic
operators, such as crossover, mutation, and the like. Furthermore, the GA optimiza-

tion mechanism is theorized by researchers [3], 4] with building block processing, such as
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creating, identifying and exchanging. Building blocks are conceptually non-inferior sub-
solutions which are components of the superior complete solutions. The building block
hypothesis states that the final solutions to a given optimization problem can be evolved
with a continuous process of creating, identifying, and recombining high-quality building
blocks.

For genetic algorithms, the chromosome is represented as a string of characters, and
we use genetic operators like crossover and mutation to manipulate these chromosomes.
Holland indicated that crossover operator in genetic algorithms induce a linkage phenom-
enon [3]. In [27], the term genetic linkage has been loosely defined for a set of genes as

follows:

If the genetic linkage between these genes is tight, the crossover operator
disrupts them with a low probability and transfers them all together to the
child individual with a high prebability, On the other hand, if the genetic
linkage between these genes is ldose, ‘the crossover operator disrupts them
with a high probability and transfers-them all:together to the child individual

with a low probability.

This definition implies the genetic linkage of a set of genes depend on the chromosome
representation and the crossover operator.

From the definition of genetic linkage given above, we can infer that the linkage phe-
nomenon is induced by using crossover operator with string type representation. For
example, consider a 6-bit function consisting of two independent subfunctions. For
r = [x1, 29, T3, Xy, Ts, L], two possible combinations of subfunctions are shown as fol-

lows:

=

—

a¥
I

fi(zy, xa, 23) + fa(xa, 5, T6)

5

—

=
I

fl(x17 xs, .T5) + f2<x27 O 336)

Taking one-point crossover as an example, it is obviously to see that genes belonging
to the same subfunction are likely to stay or to be transferred together in F(z), while
in Fy(z), genes belonging to the same subfunction are split almost every time when a

crossover event occurs.
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In Goldberg’s design decomposition [5], the first step to design a competent genetic
algorithm is to know what genetic algorithms process. It emphasizes that genetic algo-
rithms work through the components of good solutions - identified as building blocks by
Holland [3]. Therefore, from the viewpoint of genetic algorithms, genetic linkage can be
used to describe and measure the relation of genes, i.e, how close those genes belonging
to a building block are on a chromosome.

With the definition of genetic linkage, we can understand that handling genetic linkage
is important to genetic algorithms. Hence, we will discussed the influence of the genetic

linkage to genetic algorithms in the next section.

3.2 Why Is Genetic Linkage Important?

In the previous section, we give the explanation of what genetic linkage is and the linkage
problem occurs when the crossover gpetatoris used. In this section, we will discussed the
importance of genetic linkage and howit affects the performance of genetic algorithms.

In many problems, because of'the interactions between parameters, to optimize each
dimension of candidate solutions separatélyicould not lead to a global optimum. As
described in the previous section, ‘linkage,-i.€, interrelationships existing between genes
needed to be considered when genetic algorithms are used. Moreover, according to Gold-
berg’s design decomposition theory, building block identification or genetic linkage learn-
ing is critical to the success of genetic algorithms.

Goldberg, Korb, and Deb [6] have used an experiment to demonstrate how genetic
linkage dictate the success of a simple genetic algorithm. In the experiment, the ob-
jective function is composed of 10 uniformly scaled copies of an order-3 fully deceptive
function [28| 29] Three types of codings scheme were tested: tightly ordering, loosely
ordering, and randomly ordering. For tightly ordering, genes of the same subfunction are
arranged to one another on the chromosome. The loosely ordering coding scheme means
that all genes are distributed evenly so that genes belonging to the same subfunction
are divided by other genes. The randomly ordering indicates that genes are arranged

randomly in an arbitrary order. From the experimental results, it is shown that genetic
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algorithms perform well when tightly ordering coding scheme, i,e. genes belonging to the
same building block are tightly linked, is used. Moreover, some other studies [30, 3] 4]
have also reached similar conclusions. With tight building blocks on the chromosome,
genetic algorithms could work better.

From the related work described above, it is clear that one of the essential keys for ge-
netic algorithms to success is to handle genetic linkage well. The genetic linkage problem
including all kinds of building block processing such as creation, identification and recom-
bination. However, in the real world problem, information about the genetic linkage can
not often be known in advance. Thus, studies on handling genetic linkage are extremely

important and have long been discussed and recognized in the field of genetic algorithms.

3.3 Genetic Linkage Learning Techniques

The definition and importance of genetic linkage are described in the previous sections.
One of the key elements to suceess in-genetic.algorithms is to address the linkage prob-
lem. In Goldberg’s design decomposition, genetic algorithms capable of learning genetic
linkages and identifying good building blecks ¢an solve problems quickly, accurately and
reliably. Thus, many research efforts have been concentrated on linkage identification of

genetic algorithms, which can be broadly classified into three categories[5]:

e Perturbation techniques include the messy GA [0], fast messy GA [32], gene expres-
sion messy GA [33], linkage identification by nonlinearity check GA, and linkage
identification by monotonicity detection GA [34], and dependency structure matrix

driven genetic algorithms(DSMDGA) [35]
e Linkage adaptation techniques [36] 37]

e Probabilistic model building techniques include population-based incremental learn-
ing [38], the bivariate marginal distribution algorithm [39], the extended compact
GA (eCGA) [40], iterated distribution estimation algorithm [41], Bayesian opti-

mization algorithm(BOA) [42, [43].
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For perturbation techniques, the relations between genes are detected by perturbing
the value of gene, and analyze the differences before and after the perturbation. For
example, linkage identification by nonlinearity check for real-coded GAs (LINC-R) [34]
tests nonlinearity by random perturbations on each locus and identifies the linkage con-
figuration according to the nonlinearity relation between locus.

In the linkage adaptation technique, linkage learning GA(LLGA) [36], B7] applies a
two-point-like crossover operator to ring-shaped chromosomes and constructs linkages
dynamically.

According to the probabilistic model building technique, a probabilistic model is
built through analyzing the properties and statistics of the population. As an exam-
ple, Bayesian optimization algorithm (BOA) [42], [43] constructs a Bayesian network based

on the distribution of individuals in a population and identifies linkages.

3.4 Summary

In this chapter, we focus on an important issue i genetic algorithms—genetic linkage.
By providing the definition and disc¢ussing the importance of the genetic linkage, it is
obvious that addressing genetic linkage problém’ plays an important role for using genetic
algorithms. Thus many genetic linkage identification techniques were proposed in the
literature. Here we broadly classified them into three categories and had brief explanations
for them. The influences of genetic linkage to genetic algorithms inspired us to introduce
such a concept to the particle swarm optimizer. Particularly we design a special linkage
identification technique which is quite different from those mentioned in this chapter. The

proposed framework will be discussed in detail in the next chapter.
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Chapter 4

Framework

In this chapter, we will give the overview of the algorithm proposed in this study. This
algorithm introduces the recombination operator with the technique of dynamic linkage
discovery to particle swarm optimization (PSO) in order to improve the performance
of PSO. Dynamic linkage discovery is a costless, effective linkage recognition technique
adapting the linkage configuration by utilizing the natural selection without incorporating
extra judging criteria irrelevant to.therobjective.function. Furthermore, we employ a
specific recombination operator to work with the building blocks identified by dynamic

linkage discovery. The following topic -will-be-discussed in this chapter:

e Dynamic linkage discovery technique: Describe how the linkage problem is addressed

through the natural selection and dynamic linkage discovery.

e Recombination operator: In order to make good use of building blocks , a special
recombination operator which is similar to multi-parental crossover operators is

designed and presented here.

e Introducing recombination with dynamic linkage discovery in PSO: A new optimiza-
tion algorithm which is composed by particle swarm optimizer, dynamic linkage

discovery and recombination operator is described in detail.

4.1 Dynamic Linkage Discovery Technique

From chapter 3, the importance of genetic linkage has been discussed. Many mechanisms

have been proposed to address the linkage problem. Most linkage identification techniques
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were proposed and tested on trap functions [44]. However, there are relatively fewer
studies on handling genetic linkage in real number optimization problems. From the
survey of linkage learning, Tezuka identified linkage by nonlinearity check on real-coded
genetic algorithm [45]. Such a technique has also been incorporated with particle swarm
optimizer [I2]. Different from this perturbation based linkage identification technique, in
this study, we propose the dynamic linkage discovery technique. Following paragraph will
have a detailed introduction of this mechanism.

In the particle swarm optimization, particles are encoded as real number vectors. With
this representation, genetic linkages indicate the interrelation among dimensions. In dif-
ferent stages of optimization process, we consider that the linkage configuration should
be different according to the fitness landscape and the population distribution. Hence in
the current work, we assume that the relation between different dimensions is dynami-
cally changed along with the optimization process. The linkage configuration should be
updated accordingly. For most problems,.it.is difficult to exactly identified the linkage
configuration, especially when the linkage configuration changed dynamically. Instead of
incorporating extra artificial criteria, for_linkage adaptation, we again entrust the task to
the mechanism of natural selectién.As a consequence, we propose the dynamic linkage
discovery technique and we call the PSO combined with recombination and dynamic link-
age discovery as PSO-RDL. The dynamic linkage discovery technique is costless, effective,
and easy to implement. The idea is to update the linkage configuration according to the
fitness feedback. During the whole search process, PSO-RDL first assigns a set of ran-
dom linkage groups and then adjusts the linkage groups according to the fitness feedback
from the optimization problem. If the average fitness value of the current population
is improved over a specified threshold, the current linkage configuration is considered
appropriate and stays unchanged. Otherwise, the linkage groups will be reassigned at
random. A flowchart of the dynamic linkage discovery process is shown in Figure 1.1l An
illustration of how we decide the linkage configuration is shown in Figure [4.1]

The dynamic linkage discovery technique is developed based on the idea of natural
selection, and can equip with optimization algorithm naturally. In this study, we integrate

it into the particle swarm optimizer. Furthermore, we introduce a recombination operator
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Figure 4.1: The flowchart of the dynamic linkage discovery process. This flow illustrates
that every time a particle swarm optimization process is done, the fitness improvement
is checked if it improves over the predefined threshold. Based on the results, the linkage
configuration can be decided to change or not.

which manipulates the building blocks to construct the new population. The detail of this

operator will be given in the next section.
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Figure 4.2: An illustration shows that in dynamic linkage discovery, the linkage configu-
ration is assigned at random.

4.2 Recombination Operator

Since Holland’s original propose of genetic algorithms, the merits of crossover has been
an essential research topic. Instead,ofithestraditional two-parent recombinatory chro-
mosome reproduction, there has'been,€onsiderable discussion of multi-parent crossover
mechanisms [46, 47, 48]. Work by Eiben, Raue and Ruttkay [47] on multi-parental re-
combination techniques (with fixed numberstof parents) showed that for many standard
test-bed functions, N-parental inheritance (with N greater than 2 but less than the size
of the population) can be advantageous. From the previous research work, we decide to
develop a multi-parental recombination operator for reconstructing the population.

In this study, since we have explicitly identified the linkage group, in order to make
good use of linkage information, we design a special recombination operator. The re-
combination operator is designed according to the idea of multi-parental recombination.
In the recombination process, individuals with good fitness are selected and we consider
the selected individuals as a building block pool. Every offspring is created by choosing
and recombining building blocks from the pool at random. We use this recombination
process to generate the whole next population. An illustration of how a new individual is
generated is shown as Figure 4.3 By repeating the process shown in Figure |4.3 we can
reconstruct a new population in which each particle is composed by the good building

blocks. A flowchart of the population reconstructing process is shown in Figure 4.4}
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A seemingly similar operator has been proposed by Smith and Fogarty [48]. In [4§], the
representation on which the recombination operator works takes the form of markers on
the chromosome which specify whether or not a gene is linked to its neighbors. Different
chromosomes form different numbers of building blocks. However, our recombination
operator keeps a global linkage configuration such that every individual in the pool is

decomposed into the same building blocks.

BBs pool

individuals | BB1 | BB2 /E}/B///

individual 2 BB2
individual3 BB1 | BB2 | BB3

BB2

individual4

individualn-1
individualn

radomly choose
BB from each
individual

new individual BB2 /E}/B//a/

Figure 4.3: The procedure of how a new particle is generated through the recombination
operator

In this algorithm, the recombination operator is used to mix building blocks, and to
construct a new population. In the beginning of optimization process, this procedure can
be viewed as a global search, while the particle swarm optimizer serves as a local searcher
that fine tune the building blocks. As the optimization goes on, the population starts to
converge and the building blocks become similar. Thus the recombination operator plays
as a local searcher at this time. The cooperation between them and the complete flow of

this algorithm will be described in the next section.
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Figure 4.4: The process of constructing-new population through recombination operator

4.3 Introducing Recombination with Dynamic Link-
age Discovery in PSO

The main purpose in this study is to enhance the PSO’s performance by introducing the
genetic operator with linkage concept. To achieve this goal, we design the dynamic linkage
discovery technique and the corresponding recombination operator. Although there were
many variant of the particle swarm optimization proposed in the literature. For the
convenience of analyzing and development, in this algorithm, we applied only a modified
version of the particle swarm optimization wchich proposed by Shi and Eberhart [I7]. A
composition of these three components is described in the following paragraph.

In the proposed algorithm, we repeat the PSO procedure for a certain number of
generations, we term such a period a PSO epoch in the rest of this report. After each
PSO epoch, we select the N best particles from the population to construct the building

block pool and conduct the recombination operation according to the building blocks
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identified by dynamic linkage discovery. After the recombination process, the linkage
discovery step is executed when necessary. We calculate the average fitness of the current
epoch, compare the average with the one calculated during last epoch, and check if the
improvement is significant enough. When the specified threshold is reached, the current
linkage groups are considered suitable and remain unchanged for the next PSO epoch.
Otherwise, it is considered that the building blocks do not work well for the current
search stage. Thus, the linkage discovery process restarts, and the linkage configuration is
randomly reassigned. The pseudo code and flow of the algorithm are shown in Figures
and [4.0], respectively.

Similar research works have been done in the literature, such as PSO with learning
strategy [23] 24] and PSO with adaptive linkage learning [12]. The main difference be-
tween the proposed algorithm and them is that we introduce the recombination operator
specifically designed to work with the_identified building blocks. In addition, we propose
a new linkage discovery technique to dymamically adapt the linkage during the search

process.

4.4 Summary

In this chapter, we first described how we deal with the genetic linkages. Based on the
natural selection concept, a dynamic linkage discovery technique is designed. This tech-
nique is designed to identified the linkage configurations in real-parameter optimization
problems. In order to make good use of linkages, we then propose the recombination
operator. In this algorithm, we introduce the recombination with genetic linkage concept
to particle swarm optimization. As a result, a new optimization algorithm is proposed
and numerical experiments are also conducted. The experimental results will be shown

and discussed in Chapter 5.
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PSO with Recombination Operator & Dynamic Linkage Discovery

Step1: Do Finding the linkage group.
1. Generate an integer number N from 1 to D (D: problem dimensions).
2. Assign each dimension an integer number from 1 to N.
3. Dimensions with the same number grouped as the same building
block.
Step2: Do PSO algorithm on the population.
1. For each particle
Evaluate fitness value
If the fitness value is better than the best fitness value (pBest) in
history set current value as the new pBest
End
2. Choose the particle with,the best fitness value of all the particles as the
gBest
3. For each patticle
Calculate particle’s veloeity.
Update particle’s position.
End
4. Repeat 1 to 3:until maximum iterations is attained.
Step3: Do Recombination to generate next.population.
1. Select M best particles from the population.
2. Fori=1to N (N: number of building blocks)
Select ith building block from particles 1 to M.
Put the selected building block to the ith slot of the new generated
particle.
End
3.  Repeat 2 for § times, S means the swarm size.
Step4: If fitness value improves over the specified threshold, then go to Step2, else
go to Step3.
Repeat until the maximum iteration is reached.

Step5: Do local search on the best particle.

Figure 4.5: Pseudocode of PSO-RDL
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Linkage discovery
BB1 BB2 | ... BBn

Do PSO for specified
generations

Do recombination on N best
particles to generate the next
population
Check if fitness
improvement reach the
threshold

No

Maximum generation
reached

Do local search on the
best particle

Figure 4.6: The flow of the PSO-RDL
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Chapter 5

Experimental Results

Computer simulations are conducted to demonstrate the performance of PSO-RDL. The
experiments are focused on the real-valued parameter optimization. The test problems
are proposed in the special session on real-parameter optimization in CEC2005 aimed at
developing high-quality benchmark functions to be publicly available to the researchers
around the world for evaluating their algorithms. The following topics will be covered in

this chapter:

Test Functions: The description of test problems

Parameter Setting: The patameter settings-uised in the experiment.

e Experimental Results: Show the numerical results of the experiments as well as the

linkage dynamics during optimizing several functions of different characteristics.

Discussion: Discuss the results and observations from the experiments.

5.1 Test Functions

The newly proposed set of test problems includes 25 functions of different characteristics.
Five of them are unimodal problems, and others are multimodal problems [49]. A tech-
nical report of detail description of test problems is available at

http://nclab.tw/TR/2005/NCL-TR-2005001.pdf. All test functions are tested on 10

dimensions in this study. The summary of the 25 functions is shown as follows:

e Unimodal Functions (5):
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: Shifted Sphere Function

: Shifted Schewefel’s Problem 1.2

: Shifted Rotated High Conditioned Elliptic Function
: Shifted Schwefel’s Problem 1.2 with Noise in Fitness

: Schwefel’s Problem 2.6 with Global Optimum on Bounds

e Multimodal Functions (20):

— Basic Functions (7):

*

*

F5: Shifted Rosenbrock’s Function

F: Shifted Rotated Griewank’s Function without Bounds

Fy: Shifted Rotated Ackley’s Function with Global Optimum on Bounds
Fy: Shifted Rastrigin’s«Function

Fio: Shifted Rotated Rastrigin’s Function

F1: Shifted Rotated Weierstrass Function

Fi5: Schwefels” Problem 2:13

— Expanded Function (2)

*

*

Fi3: Expanded Extended Griewank’s plus Rosenbrock’s Function (F8F2)

F4: Shifted Rotated Expanded Scaffer’s F6

— Hybrid Composition Function (11)

*

Fi5: Hybrid Composition Function

Fi6: Rotated Hybrid Composition Function

F17: Rotated Hybrid Composition Function with Noise in Fitness
Fi5: Rotated Hybrid Composition Function

Fi9: Rotated Hybrid Composition Function with a Narrow Basin for the

Global Optimum

Fyy: Rotated Hybrid Composition Function with the Global Optimum on

the Bounds
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*

F51: Rotated Hybrid Composition Function

*

Fy: Rotated Hybrid Composition Function with High Condition Number

Matrix

*

Fy3: Non-Continuous Rotated Hybrid Composition Function

*

Fy4: Rotated Hybrid Composition Function

*

Fy5: Rotated Hybrid Composition Function without Bounds

The properties and the formulas of these functions are presented in the appendix [A]
The bias of fitness value for each function f(z*), the search ranges [X,uin, Ximae] and the
initializatino range of each function are given in Table 5.1 The individuals of global

optimum for each function are given in Table

Table 5.1: Global optimum, search ranges and initialization ranges of the test functions

f | f(x*) | Search Range | Initialization Range
fi | 450 | F100,100] [-100,100]
fo | 450 [ [-100.100] [-100,100]
s | 450 9 —[c100,100] [-100,100]
fa | -450 [-100,100] [-100,100]
fs | -310 [~1005100] [-100,100]
fe | 390 [-100,100] [-100,100]
fr | 180 | [“00, 00 [0,600]
fs | -140 [32,32] 32,32
o | -330 [5,5] [-5,5]
fo| 330 | [55) 5.3
S| 90 [-0.5,0.5] [-0.5,0.5]
fiz | -460 [—7, 7] [—7, 7]
fis| 130 | [55) 5.5)
Fia | =300 | [-100,100] [-100,100]
fis | 120 5,5 5,5)
fis | 120 5,5] 53]
fir | 120 [5.5) 53]
fis | 10 [-5,5] [-5,5]
f19 10 [_575] {_575]
fuo | 10 [5,5] 5.5
| 360 | [55) 5.5
for | 360 5.5 5.3
fos | 360 5.5 5.3
f24 260 [—OO, OO] [-5,5]
f25 260 [—OO, OO] [2,5]
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Table 5.2: Parameter setting in this numerical experiments

Parameter Setting

Parameter description Value

Swarm size 20

Inertia weight (w) w € [0.6,0.9]
Acceleration rate of cognitive part(C}) Cy € [0.5,2.0]
Acceleration rate of social part(Cy) Cs € 10.5,2.0]
Maximum velocity 25% of the search range
Size of selected particle for recombination 25% of the swarm size
Improvement threshold 2% over the previous best fitness

Numerical test problems described above were simulated to evaluate the performance
of the proposed algorithm. This benchmark with multiple types of functions such as
unimodal, multimodal, expanded and composition functions, so that the strength and

weakness of the algorithm could be analyzed comprehensively.

5.2 Parameter Setting

The parameter setting in this study is described as follows:

The number of particles is set t0.20,.0.6 <law <£.0.9, 0.5 < ¢, < 2.0, 0.5 < gy < 2.0,
and V., restricts the particles’ velocityzswhere V., is equal to 25% of the initialization
range. N, the number of particles selected for the recombination, is set to 25% of the
swarm size. The threshold which decides if the linkage configuration should be changed
is set to 2% of the previous best fitness value. A list of the parameter setting is shown in

Table 5.2

5.3 Experimental Results

The complete experimental results are listed in Tables[5.3] 5.4} [5.5], [5.6]and [5.7] According
to the definition in the special session, PSO-RDL successfully solved problems 1, 2, 4, 5,
6, 7 and 12 in the experimental results. Moreover, comparable results are achieved in

solving problems 3, 8, 11, 13 and 14. Unfortunately, PSO-RDL failed to solve problems 9,

10 and 15-25. Table ,[5.10] [5.11 and [5.12| show the experimental results compared

with other evolutionary algorithms proposed in the special session. Table gives the
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number of successfully solved problems. From these comparisons, it can be observed that
PSO-RDL has a good performance for most problems. Table shows the solution found
by PSO-RDL for each function in this benchmark. Figures[5.1} [5.2] and [5.4] show how
the dynamic linkage discovery technique changes the linkage configuration during the
optimization process. Detailed discussion on the experimental results is presented in the

next section.

5.4 Discussion

From the experimental results listed in Table [5.3| it can be considered that the proposed
algorithm is able to provide good results for the benchmark. The first five functions are
unimodal functions. Function 1 is shifted sphere function, Function 2 is shifted Schwefel’s
problem 1.2, and Function 3 is shifted rotated high condition elliptic function. These
three functions have different condition mumbers which make Function 3 much harder
than Functions 1 and 2. Function 4 is shifted Schwefel’s problem 1.2 with noise in fitness.
Function 5 is Schwefel’s problem 2.6 with-global optimum on bounds. From the results,
we can observe that PSO-RDL-reaches the predefined error tolerance level for Functions
1, 2, 4, and 5. For Function 3, PSO-RDL-achieves an error of le-4 but does not meet
the le-6 criterion. It may be caused by the multiplicator 10° in the objective function
which greatly amplifies the error. In summary, PSO-RDL provides a sufficiently good
performance for the unimodal functions in this benchmark.

Functions 6-14 are multimodal problems. Function 6 is shifted Rosenbrock’s function,
a problem with a very narrow valley from the local optimum to the global optimum, and
solved by PSO-RDL. Function 7 is shifted rotated Griewank’s function without bounds,
and this function makes the search easily away from the global optimum. Fortunately,
PSO-RDL solved it twice in 25 trials and can achieve a comparable result in average for
this function. Function 8 is shifted rotated Ackley’s function with global optimum on
bounds, which has a very narrow global basin and half of the dimensions of this basin
are on the boundaries. Hence, the search algorithm cannot easily find the global basin

when the recombination operator is used. The PSO-RDL failed on this problem in all 25
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Table 5.13: Problems solved in different evolutionary algorithms

Method Unimodal | Basic Multimodal | Expanded | Hybrid Composition
Functions(5) Functions (7) Function (2) Function (11)
PSO-RDL 1,2,4,5 (4) 6,7,12 (3) *
PSO 1,2,4,5 (4) 6,7,12 (3) * *
SPC-PNX 1,2,4,5 (4) 6,7,11 (3) * *
Sa-DE 1,24 (3) 9,12 (2) 15 *
DE 1,2,3,4,5 (5) 6,9 (2) * *
DMS-PSO 1,2,3,5 (4) 6,7,9,12 (4) 15 *
LR-CMA-ES | 1,2,3,4,5 (5) 6,7,12 (3) * *
|
0t l
E 10° }
WU-uf ‘L
WDM— _\

0 5 " I 20 2% e 35 40

epoch
Figure 5.1: Fitness convergence and linkage dynamics of the Sphere function. A unimodal
function which PSO-RDL solved successfully. The gray area in the figure represents the
proper building blocks can improve the fitness and stay unchanged. Once the building

blocks do not work well, the linkage configuration will change until the next suitable set
is found.
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runs. Functions 9, 10, and 11 are shifted Rastrigin’s function, shifted rotated Rastrigin’s
function, and shifted rotated Weierstrass function, respectively, all of them have a huge
number of local optima. The PSO-RDL has a relatively bad performance on the first two
problems comparing with traditional PSO [50] and DMS-PSO [51]. Comparable results
were obtained for Function 11. It may be because when the number of local optima
is huge, the dissimilar individuals would likely to have similar fitness values. Although
they could provide good building blocks, when different building blocks are combined to
create new individuals, the offspring could have worse fitness values instead. As long as
the building blocks cannot be identified correctly, the genetic operator cannot work well,
either. Function 12 is Schwefel’s problem, and PSO-RDL achieves a 80% success rate.
Functions 13 and 14 are extended functions, and the PSO-RDL produces comparable
results in solving these two functions.

Function 15-25 are eleven composition, functions. They are all built up with basic
functions. They give a big challenge to any. search algorithm. PSO-RDL has failed in all
the experiment runs. These compesition funetions possess a huge number of local optima,
thus made PSO-RDL performsiworse due to the similar reason discussed for Functions 9
and 10. The failure of identifying/building bleck makes the PSO-RDL also failed in the
search process.

Observe the fitness convergence and linkage dynamics in Figures [5.1] [5.2] and
.4 The gray areas represent the time frames when a proper linkage configuration can
assist the optimization process. When the current linkage groups are not suitable, i.e.
the linkage configuration cannot assist the search, the linkage group composition will
start to vibrate for some iterations until the next proper set of linkage groups is found.
The phenomenon can explain the assumption that the building block’s composition is
dynamically changed during the search process in the real-parameter optimization prob-
lem. Thus, it is reasonable that we hand over the linkage adaptation to the mechanism
of natural selection. Moreover, Figure 7 shows the function with a large number of local
optima and PSO-RDL failed. It is clearly that the linkage configuration keeps changing
all the time. As discussed above, this phenomenon indicates that when the function has

a large number of local optima, it is hard to recognize the building blocks because totally
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different individuals may have similar fitness values. In such a case, different individual
may provide their own good building blocks, but worse individuals may still be created
by recombining these incompatible pieces of solutions.

Focusing on the time ratio of the linkage status (changing vs. unchanged), we can
observe that for Figures and the linkage configuration stay unchanged most of the
time. Correspondingly, the proposed algorithm provide good results on these two func-
tions. On the contrary, the linkage configuration keeps changing in the Figures and
[5.4] Thus, our algorithm do not work very well on these two functions, although we men-
tioned that PSO-RDL can obtain comparable results on the shifted expanded Griewank’s
plus Rosenbrock’s function. Because there does not exist a very efficient algorithm for
this problem so far. Hence, we can conclude that when the linkage configuration changes

too often, the algorithm will fail to solve the problem with a high probability.

5.5 Summary

In this chapter, we evaluate the performance of PSO-RDL by conducting the search on
25 numerical functions that wese proposed im CEC2005 special session on real-parameter
optimization. The description of the test functions, parameter setting and experimental
results were given in the above context. We also discussed the strength and weakness of
the PSO-RDL by analyzed the search result and linkage dynamics. From the results, it
is considered that PSO-RDL can work well and produce a better performance than the
traditional particle swarm optimizer. Further, from the observation of linkage dynamics,
it is considered that dynamic linkage discovery and recombination operator do improve
the performance of the particle swarm optimizer when the building blocks are successfully
identified. A detailed discussion and summary of this research work will be provided in

the next chapter.
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Figure 5.2: Fitness convergence and linkage dynamics of the Shifted Rotated Griewank’s
function. A multimodal function which PSO-RDL produced comparable results. The
gray area in the figure represents the proper building blocks can improve the fitness and
stay unchanged. Once the building blocks do not work well, the linkage configuration will
change until the next suitable set_i$ found.
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Figure 5.3: Fitness convergence and linkage dynamics of the Shifted Expanded Griewank’s
plus Rosenbrock’s function. A multimodal function which PSO-RDL produced compara-
ble results. The gray area in the figure represents the proper building blocks can improve
the fitness and stay unchanged. Once the building blocks do not work well, the linkage
configuration will change until the next suitable set is found.
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Figure 5.4: Fitness convergence and linkage dynamics of the Shifted Rastrigin’s function.
A multimodal function with large number of local optima and PSO-RDL failed to solve.
The gray area in the figure represents the proper building blocks can improve the fitness
and stay unchanged. Once the building blocks do not work well, the linkage configuration
will change until the next suitable set is found.
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Chapter 6

Real-world Applications

In this chapter, we proposed the algorithm to real-world applications. We focus on solving
the economic dispatch (ED) problem which is an significant topic in the power system.
There are lots of studies working on the ED problem including optimization and equation
modeling. Due to the importance of the ED problem, here in this study, we try to solve
this problem with the proposed efficientssearch algorithm. The following topics will be

covered in this chapter:

e Economic Dispatch Problem: Briefly introduce the purpose and formulations of the

ED problem.

e Our solution: The PSO-RDL is applied to solve the economic dispatch problem,

and the constraint handling technique is described as well.

e Experimental results: The result of 3-generators, 40-generators economic dispatch

problems and comparison with other search algorithm are listed in this section.

6.1 Economic Dispatch Problem

With the development of modern power systems, the economic dispatch problem has
received an increasing attention. Economic dispatch is essential for real-time control of
power system operation. It consists of allocating the total generation required among the
available thermal generating units, assuming that a thermal unit commitment is previously
determined. The objective aims to minimize the fuel cost subject to the physical and

operational constraints.
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The economic dispatch problem is to find the optimal combination of power gener-
ations that minimizes the total generation cost while satisfying equality and inequality
constraints. To model the economic dispatch problem, a simplified cost function of each
generator which is represented as a quadratic function is as follows[56]:

C=> FP) (6.1)

jed

Fj(P)) = aj + bjP; + ¢; P? (6.2)

where

C'": total generation cost;

Fj: cost function of generator j;

a;,b;, c;: cost coefficients of generator j;
P

;- electrical output of generator j;

J: set for all generators.

In the real world, the total genération should be equal to the total system demand plus
the transmission network loss. However, in this study, the network loss is not considered
for simplicity as in many studies. Thus the constraints of the problem include two main
parts. The first part is the equality constraint. The total system demand must be equal
to the summation of each generator’s output, i.e.,

> P=D, (6.3)
jeJ
where D is the total system demand.
Secondly, the generation output of each unit should be between its minimum and

maximum limits. This introduces the inequality constraints as follows:
ijin S F)] S ~ijax7 (64)

where Pjnin, Pjmaez 15 the minimum, maximum output of generator j.
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In reality, the objective function of economic dispatch problem is more complicated
due to the valve-point effects and change of fuels. Therefore, the nonsmooth cost functions
were considered. The inclusion of valve-point loading effects makes the modeling of the
incremental fuel cost function of the generators more practical. This increase the non-
linearity as well as number of local optima in the solution space. Also make search
algorithm trap in the local optimal easily. The incremental fuel cost function of the

generating units with valve-point loadings are represented as follows[57]:
Fj(Py)) = aj + b;P; + ¢; P} + |ej * sin(fj * (Pmin — P;))| (6.5)

where e; and f; are the coefficients of generator j reflecting valve-point effects.

In this study, we focus on solving the economic dispatch problem with valve point
effect, which is model as We applied the proposed method as a optimization tool,
and the equality and inequality constraints in this problem is handled through repair and

penalty mechanisms. A detail des¢ription will'be given in the following section.

6.2 Our Solution

According to the importance of the.ED probleni, there were many studies in the past.
Especially, evolutionary algorithms like genetic algorithm[57, (58| (59} [60} [61], evolution-
ary programming[62] [63] 64, 65], particle swarm optimization[66] [67, [68, [69], have been
adapted on this problem successfully. Here in this study, we proposed the algorithm
with constraint handling techniques including repair and penalty mechanism to the ED
problem.

The most important topic for solving the ED problems may be the equality and
inequality constraints. These constraints divide the entire solution space into complicated
areas. Such a condition leads the search algorithm to be inefficient. To address this
problem, we here propose a constraint handling technique based on both of the repair
and the penalty concepts. According to the repair concept, the infeasible solution is
somehow fixed to be a feasible one. We do this by firstly rearranging a sequence number
in a random way. Each number in the sequence represents a generator in the solution.

Thus, the result sequence means the order we process the generator. With this order, we
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check the equality constraint, i.e., the sum of the generator’s output has to be equal to the
total demand. If the equality constraint is not satisfied, the output of current generator
would be modified according to the following function:
G; = min(max((DM — Z G;), Low_bound(G;)), Up_bound(G;)), (6.6)
j=1,j#
where DM means the total demand output, Low_bound(G;) and Up_bound mean the low
bound and up bound of G, i.e., the inequality constraint of G;.

The above repair process is conducted with a probability, and is repeated until the
current solution becomes feasible. On the other hand, to preserve the diversity of the
population and the optima that appear close to the boundaries, we do not repair all the
infeasible solutions. Instead, we use a simple penalty function to deal with those infeasible
solutions. The penalty function was designed as follows:

fitness(P;) = _fitness(B)+ abs(DM — Z P;)? (6.7)
j=1

The proposed algorithm incorporate the‘constraint handling technique make it able
to solve the ED problem efficiently: - With the two constraint handling techniques, the
diversity of the population is preserved. Furthermore, the recombination process in the
original framework make it possible to discover different potential solutions which are
divided by the equality and inequality constraints in the ED problem. To verify our
approach, numerical experiments were conducted, and the results are given in the next

section.

6.3 Experiments

In this section, the test problems will be described in detail. The propose method do work
well in the test problem and produces good results. A complete experimental results will

be shown and discussed.

6.3.1 Test Problems

In the experiment, we focus on solving the economic dispatch problem with nonsmooth

functions considering the valve-point effects. The nonsmooth functions were described
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Table 6.1: Units data for test case I(3-Unit System) with valve-point loading. a, b, c, e,
and f are cost coefficients in the fuel cost function Fj(P;) = a; +b;P;+¢; P? +|ej* sin( f;*
(Pjmin — 15))]

Generator ‘ Prin(MW) ‘ Praz(MW) ‘ a ‘ b ‘ c ‘ e ‘ f
1 100 600 0.001562 | 7.92 | 561 | 300 | 0.0315
2 50 200 0.00482 | 7.97 | 78 | 150 | 0.063
3 100 400 0.00194 | 7.85 | 310 | 200 | 0.042

in the previous section and modeled as Equation [6.1. The PSO-RDL is applied to two
ED problems, one with 3 generators and another with 40 generators. The input data
for 3-generator system are given in [57] and those for 40-generator is given in [63]. The
detail parameters include each generator output range and related coefficients in both
systems are given in Table [6.1 and Table [6.2] Here, the total demand for the 3-unit and
40-unit systems are set as 850 MW and 10500 MW, respectively. It is proved that for
3-unit system, the glob optimum solution is,8234.07 [70]. As for the 40-unit system, the
optimum has not been found yetrand thepbest solution reported until now is 122252.265
[68]. The parameter setting in our algorithim is as same as Table . The probability

threshold used to decide the infeasible selution should be repaired or not is set to 0.4.

6.3.2 Experimental Results

The above experiments were done to evaluate the performance of PSO-RDL on the real-
world problem. We have done 100 trials for each problem. The obtained results for
the 3-unit system are given in Table [6.3| and the results were compared with those of
IEP[71], EP[64] and MPSO[68]. It shows that PSO-RDL has successfully found the
global optimum solution presented in [70]. In the case of the 40-unit system, the results are
compared with those from other methods in [63] such as classical EP(CEP), fast EP(FEP),
modified FEP(MEFP), improved FEP(IFEP), and also the results from MPSO in [6§].
The obtained best value from PSO-RDL is 121468.820, which is better than the previous
best result 122252.265 in [68]. The best solution obtained in each method is shown in
Table The generation outputs and the corresponding costs of the best solution are
provided in Table [6.5] To compare the result of PSO-RDL with other various methods

in a statistical manner, we here shows the each range of cost among 100 trials in Table
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[6.6] Furthermore, to compare the performance of PSO-RDL with MPSO [68], we also run
the t-Test for the 40-unit system experimental results. Since we don’t have the actual
data set for MPSO, we do the t-Test with two kinds of data. First, we use the MPSO
data set contains forty-seven 122252.265 which is the optimum reported in MPSO [68]
and fifty-three 122750 which is average of 122500 to 123000. The t-Test results is listed
in Table [6.7] Secondly, we use the MPSO data set contains forty-seven 122252.265 which
is the optimum reported in MPSO [68] and fifty-three 122750 which is best value in the
range from 122500 to 123000. The t-Test results is listed in Table [6.8|

From the experimental results, it is obvious that our algorithm performs well for these
two ED problems. Especially for the 40-unit system, we improve the known best solution
to 121468.82. From the Table 6.7 [6.8 it can be obeserved that our algorithm is
statiscally outperformed MPSO[68]. The ED problem is a highly constraint optimization
problem, and we use two constraint handling techniques including the repair techniques
and the penalty function. Thesestwo mechanisms are easy to implement and incorporate
well with the proposed algorithm: From this application, we can find that for the con-
stainted optimization problems; the propesed-algorithm can also still performs well as in

the unconstraint optimization problems.

51



Table 6.2: Units data for test case 11(40-Unit System) with valve-point loading. a, b, c,
e, and f are cost coefficients in the fuel cost function Fj(P;) = a; + bjP; + ¢; P} + |e; *
sin(fj * (Bjmin — P)))]

Generator ‘ Prin(MW) ‘ Prae(MW) ‘ a ‘ b ‘ c ‘ e ‘ f
1 36 114 0.0069 | 6.73 | 94.705 | 100 | 0.084
2 36 114 0.0069 | 6.73 | 94.705 | 100 | 0.084
3 60 120 0.2028 | 7.07 | 309.54 | 100 | 0.084
4 80 190 0.00942 | 8.18 | 369.03 | 150 | 0.063
) 47 97 0.0114 | 5.35 | 148.89 | 120 | 0.077
6 68 140 0.01142 | 8.05 | 222.33 | 100 | 0.084
7 110 300 0.00357 | 8.03 | 287.71 | 200 | 0.042
8 135 300 0.00492 | 6.99 | 391.98 | 200 | 0.042
9 135 300 0.00573 | 6.6 | 455.76 | 200 | 0.042
10 130 300 0.00605 | 12.9 | 722.82 | 200 | 0.042
11 94 375 0.00515 | 12.9 | 635.2 | 200 | 0.042
12 94 375 0.00569 | 12.8 | 654.69 | 200 | 0.042
13 125 500 0.00421 | 12.5 | 913.4 | 300 | 0.035
14 125 500 0.00752 | 8.84 | 1760.4 | 300 | 0.035
15 125 500 000708 | 9.15 | 1728.3 | 300 | 0.035
16 125 500 0.00708 | 9.15 | 1728.3 | 300 | 0.035
17 220 500 0.00313 | 7.97 | 647.85 | 300 | 0.035
18 220 500 0:00313 | 7.95 | 649.69 | 300 | 0.035
19 242 500 0.00313 | 7.97 | 647.83 | 300 | 0.035
20 242 250 0.00313 | 7.97 | 647.81 | 300 | 0.035
21 254 550 0:00298 | 6.63 | 785.96 | 300 | 0.035
22 254 550 0.00298 | 6.63 | 785.96 | 300 | 0.035
23 254 550 0.00284 | 6.66 | 794.53 | 300 | 0.035
24 254 550 0.00284 | 6.66 | 794.53 | 300 | 0.035
25 254 550 0.00277 | 7.1 | 801.32 | 300 | 0.035
26 254 550 0.00277 | 7.1 | 801.32 | 300 | 0.035
27 10 150 0.52124 | 3.33 | 1055.1 | 120 | 0.077
28 10 150 0.52124 | 3.33 | 1055.1 | 120 | 0.077
29 10 150 0.52124 | 3.33 | 1055.1 | 120 | 0.077
30 47 97 0.0114 | 5.35 | 148.89 | 120 | 0.077
31 60 190 0.0016 | 6.43 | 222.92 | 150 | 0.063
32 60 190 0.0016 | 6.43 | 222.92 | 150 | 0.063
33 60 190 0.0016 | 6.43 | 222.92 | 150 | 0.063
34 90 200 0.0001 | 8.95 | 107.87 | 20 | 0.042
35 90 200 0.0001 | 8.62 | 116.58 | 200 | 0.042
36 90 200 0.0001 | 8.62 | 116.58 | 200 | 0.042
37 25 110 0.0161 | 5.88 | 307.45 | 80 | 0.098
38 25 110 0.0161 | 5.88 | 307.45 | 80 | 0.098
39 25 110 0.0161 | 5.88 | 307.45 | 80 | 0.098
40 242 550 0.00313 | 7.97 | 647.83 | 300 | 0.035
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Table 6.3: Comparison of simulation results of each method considering valve-point effect

(3-unit system)

Unit | GA IEP EP MPSO | PSO-RDL
(pop=20) (par=20) | (par=20)
1 300 300.23 300.26 300.27 300.267
2 400 400 400 400 400
3 150 149.77 149.74 149.73 149.733
TP 850 850 850 850 850
TC | 8237.6 | 8234.09 | 8234.07 | 8234.07 8234.07

Table 6.4: Comparison of simulation results of each method considering valve-point effect

(40-unit system)

CEP

FEP

| MFEP |

IFEP

| MPSO | PSO-RDL

Minimum cost | 123488.3 | 122679.7 | 122647.6 | 122624.35 | 122252.3 | 121468.82
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Table 6.5: Generation output of each generator and the corresponding cost in 40-unit
system

Unit | Pmin(MW) | Pmax(MW) | Generation | Cost

1 36 114 112.2886 | 949.880767
2 36 114 111.0704 | 929.604348
3 60 120 97.49443 | 1192.38418
4 80 190 179.7531 | 2143.97098
) 47 97 88.89745 | 724.712068
6 68 140 140 1596.46432
7 110 300 300 3216.42404
8 135 300 284.7229 | 2782.07788
9 135 300 284.777 | 2801.46883
10 130 300 130 2502.065

11 94 375 94.00612 | 1893.44177
12 94 375 94.03925 | 1909.04089
13 125 200 214.77 3792.32437
14 125 200 394.2823 | 6414.93466
15 125 500 304.5313 | 5171.47843
16 125 200 394.2847 | 6436.72027
17 220 200 489.2827 | 5296.78245
18 220 200 489.3102 | 5289.42926
19 242 250 511.2908 | 5541.17665
20 242 250 011.2941 | 5541.22862
21 254 950 023.2818 | 5071.33798
22 254 550 523.398 5073.69255
23 254 250 523.3437 | 5058.51899
24 254 250 523.3715 | 5059.07705
25 254 250 523.2815 | 5275.13221
26 254 950 023.28 5275.10232
27 10 150 10.00005 | 1140.52506
28 10 150 10.00442 | 1140.62574
29 10 150 10.01797 | 1140.93732
30 47 97 92.60281 | 785.447407
31 60 190 190 1643.99125
32 60 190 190 1643.99125
33 60 190 190 1643.99125
34 90 200 200 2101.01703
35 90 200 200 2043.72703
36 90 200 200 2043.72703
37 25 110 110 1220.16612
38 25 110 110 1220.16612
39 25 110 110 1220.16612
40 242 250 511.3228 | 5541.87129

Total Generation & Total Cost ‘ 10500 ‘ 121468.82
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Table 6.6: Comparison of method on

cost

relative frequency of convergence

in the ranges of

Range of Cost [k$]

Evaluation | 127.0 | 126.5 | 126.0

125.5 | 125.0 | 124.5 | 124.0 | 123.5 | 123.0 | 122.5 | 122.0 | 121.5
Method - - - - - - - - - - - -
126.5 | 126.0 | 125.5 | 125.0 | 124.5 | 124.0 | 123.5 | 123.0 | 122.5 | 122.0 | 121.5 | 121.0
CEP 10 4 - 16 22 42 4 2 - - - -
FEP 6 - 4 2 10 20 26 24 6 - - -
MFEP - - - - - 14 26 50 10 - - -
IFEP - - 2 - 4 4 18 50 22 - - -
MPSO - - - - - - - - 53 47 - -
PSO-RDL - - - - - - - 6 8 36 49 1

Table 6.7: t-Test for the resultg of IPSO-RDL.and MPSO under condition 1, where the
PSO-RDL data set contains the actual results, and the MPSO data set contains forty-
seven 122252.265 and fifty-three 122750.

Method PSO-RDL MPSO
mean +, 122083.5084* 122516.0646

t value 7.12311

p value 1.91171E-11

Table 6.8: t-Test for the results of PSO-RDL and MPSO under condition 2, where the
PSO-RDL data set contains the actual results, and the MPSO data set contains forty-
seven 122252.265 and fifty-three 122500.

Method  PSO-RDL MPSO
mean 122083.5084 122516.06455

t value 9.13251

p value 7.91529E-17
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Chapter 7

Conclusions

7.1 Summary

In this project, we studied the particle swarm optimization and genetic linkage problems
in genetic algorithms. After survey on the hybridization of particle swarm optimizer
and genetic algorithms, we decided to introduce the genetic linkage concept, which is an
important topic in genetic algorithms; to particle.swarm optimizer. To address the genetic
linkage problem in real-parameter optimization problems, we develop the dynamic linkage
discovery technique. Further, in order to‘make good use of building blocks information,
we also design a recombination operater. By combining these mechanisms, we proposed a
new efficient search algorithm and have the experiments on real-parameter test functions.
Finally, we applied PSO-RDL on the economic dispatch problem, which is an essential
problem in the power control system.

Chapter [2| briefly introduced the particle swarm optimization algorithms, including
the historical background, working principles of PSO. The initial and modified global
version PSO were described, and the local variant can be made through small changes. In
order to understand how parameters impact on the PSO, we also make a short discussion
of the parameters control in PSO. Finally, the recent advances of PSO that related to
our research work were done that help us understand the problems and issues in particle
swarm optimization.

Chapter |3| explains the genetic linkage in genetic algorithm and shows the impacts on
genetic algorithms through identifying genetic linkage. Various kinds of genetic linkage

learning technique are also discussed in this chapter. Under the assumption of building
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blocks hypothesis, it is obviously that addressing genetic linkage problem is an important
issued when using genetic algorithms.

Chapter 4| describes about the dynamic linkage discovery technique and recombina-
tion operator are also given. Finally, the complete algorithm flow is introduced. In
this algorithm, we introduce the genetic linkage concept to particle swarm optimization.
Based on the natural selection concept, a dynamic linkage discovery technique is designed.
Furthermore, in order to make good use of building blocks, a recombination operator is
incorporated.

In Chapter [5, the performance of PSO-RDL is evaluated by simulated the search
on 25 numerical functions that proposed in CEC2005 special session on real-parameter
optimization. The description of the test functions, parameter setting and experimental
results were given in this chapter. We also discussed the strength and weakness of the
PSO-RDL by analyzed the search result;and linkage dynamics. From the results, it is
considered that the PSO-RDL algorithmecanwork well and produce a better performance
than the traditional particle swarm optimizer.

Chapter [0] applied PSO-RDL on-thereconomic dispatch problem in the power sys-
tem. The economic dispatch problem is essential to power controls and include many
constraints. We evaluate the performance by solving both the 3-unit and 40-unit sys-
tems. Comparing to other advance evolutionary algorithms, PSO-RDL do performs well

on economic dispatch problems.

7.2 Future Work

In this paper, we proposed a new framework by introducing the recombination mechanism
with the dynamic linkage discovery technique to PSO. From the experiments, the proposed
algorithm can provide a good performance on a carefully designed benchmark function
set. The following is a list of research directions for future consideration suggested by the

author:

e From the experimental results, we can observe that the dynamic linkage discovery

technique and recombination operator do improve the performance of the particle
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swarm optimizer. Hence, we can try to apply the dynamic linkage discovery tech-

nique with recombination operator to other evolutionary optimization algorithms.

e Since we have successfully improve the performance of particle swarm optimizer
by introducing the linkage concept and genetic operator, it shows the possibility
that the linkage problem exists in the real-parameter optimization problems. More-
over, from the observation of the linkage dynamics of the experiments, the linkage
configuration may dynamically change through the search process. Based on these
observations, we can develop other linkage discover techniques for real-parameter
optimization problems and improves the performance of the algorithm through ad-

dressing the genetic linkage problems.

e According to the analysis and observation of the experimental results, we have un-
derstood the strength and weakness of the proposed method. Thus, we should
enhance the performance of.the algorithm by improving the shortcomings. Further-
more, we should also find some réal'world applications with different features as

advanced experiments.

7.3 Main Conclusions

In this paper, we first surveyed on the recent studies. We recognize the importance of
the linkage concept of GA and that the correct combination of GA and PSO can lead
to the further algorithmic advance. We then introduced the dynamic linkage discovery
technique into PSO by incorporating the recombination operator to work on the identified
building blocks. We adopted the benchmark functions defined in CEC2005 to evaluate
the performance of the proposed algorithm. The experimental results indicated that
the proposed algorithm can provide a good performance on the benchmark functions of
different characteristics.

Furthermore, the work on PSO-RDL gives us two observations. First, in the literature,
it is rarely discussed about the building blocks in real-parameter optimization problems.
This work may shed light on the existence of building blocks in real-parameter opti-

mization problems. Secondly, if building blocks do exist, then why these building blocks
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cannot be detected by the linkage detection techniques previously proposed in the liter-
ature? According to the information obtained in this study, perhaps in a real-parameter
optimization problem, the configuration of building blocks dynamically changes along
with the search stage. Thus, those traditional, static linkage detection techniques fail to
accomplish the task.

In this study, we introduce recombination with dynamic linkage discovery to PSO and
consider the integration as a promising research direction. By combining the strength of
different optimization models, we create the PSO-RDL algorithm with intriguing features
and properties. We will continue to work on understanding and analyzing the real number

optimization problem in order to design better evolutionary algorithms in the future.
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Appendix A

CEC’05 25 Real-Parameter

Functions

Unimodal Problems:

1. Shifted Sphere Function

D

Fl(I) = ZZ? + f,biasl

=1

z=x—o0,x=[r,Ts,..:&p), D: dimensions. o = [0y, 0y,

optimum.

2. Shifted Schwefels Function

Fy(z) =

i=1 j

z=x— o0, r=[r1,s,...,xp|, D: dimensions. o = [0y, 09,

optimum.

3. Shifted Rotated High Conditioned Elliptic Function

D i
(Y 2))? + f biasy

(A.1)

...,op]: the shifted global

(A.2)

...,op]: the shifted global

D
Fy(z) =Y (10°)5122 + f_biass (A.3)

i=1

z=(x—0)x M, x = [x,29,...,2p], D: dimensions. o = [01, 09, ..., 0p]: the shifted

global optimum. M: orthogonal matrix

4. Shifted Schwefels Problem 1.2 with Noise in Fitness

Fi(x)=> (O %) (1+04[N(0,1)]) + f bias, (A.4)

i=1 j=1
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2z =x— o0, =[r1,s,...,xp|, D: dimensions. o = [0y, 09, ...,0p|: the shifted global

optimum.

. Schwefels Problem 2.6 with Global Optimum on Bounds
f(ZL‘) = max{|x1 + 21‘2 - 7| ) |2[L‘1 + T — 5|} ai = ]-7 ey 1, Tt = [173]7 f(l’*) =0

Extend to D Dimensions:
F5(x) = max{|A;x — B;|} + f_biass (A.5)

dg=1,...D, x = [x1,19,..xp]

D:dimensions

A is a D % D matrix, a;; are integer random number in the range [—500, 500],
det(A) # 0, A; is the i row of A.

B; = A; %0, 01is a D x 1 vector, o; are random number in the range [—100, 100]
After load the data file, set o; =12100;for : = 1,2,...,[D/4],

0; =100, for i = |3D/4], &, D

Multimodal Problems:

. Shifted Rosenbrocks Function

Fs(x) = Z (100(27 — 241)* + (2 — 1)?) + £ _bias (A.6)

z=x—o0+1, x=[r1,29,...,2p],

D: dimensions. o = [0y, 09, ..., 0p]: the shifted global optimum.

. Shifted Rotated Griewanks Function without Bounds

D D
2; 2
Fr(x) = E L — Hcos(—l.) + 1+ f_biasy (A.7)
2000 L1707

z=(x—0)xM, x = [r1,29,....,2p],
D: dimensions. o = [0y, 09, ..., 0p]: the shifted global optimum.
M'’: linear transformation matrix, condition number=3

M = M'(1+0.3|N(0,1)])

61



10.

11.

Shifted Rotated Ackleys Function with Global Optimum on Bounds

—exp(—= cos(27rzl)) +20+ e+ f biass (A.8)

z=(x—o0)%x M, x=|xy,29,..,2p],

D: dimensions. o = [0y, 09, ..., 0p]: the shifted global optimum.

After load the data file, set 05;_1 = —320,; are randomly distributed in the search
range, for j =1,2,...|D/2]

M: linear transformation matrix, condition number=100

Shifted Rastrigins Function

(22 — 10 cos(27z;) + 10) + f_biasg (A.9)

NE

Fg(l’) =

i=1
2 =x— o0, =[T,2s,..xp[yD: dimensions. o = [0y, 02, ...,0p|: the shifted global

optimum.
Shifted Rotated Rastrigins Funetion

Fio(x Z 22510 cos(2m2;) + 10) + f_bias,0 (A.10)

=1
z=(x—0)xM, x = [r1,29,....,2p],
D: dimensions. o = [0y, 09, ..., 0p]: the shifted global optimum.

M: linear transformation matrix, condition number=2

Shifted Rotated Weierstrass Function

D  kmax k max
Fii(x) = Z ( Z [a" cos(2mb* (2 + 0.5))]) — D Z [a* cos(2mb”  0.5))] + f_biasy,
i=1 k=0 k=0

(A.11)
a=0.5,b=3, kpar =20, 2= (x—0)x M, v = [11, 29, ..., 2p],
D: dimensions. o = [0y, 09, ..., 0p]: the shifted global optimum.

M: linear transformation matrix, condition number=>5
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12.

13.

14.

Schwefels Problem 2.13

D
Flg(l') = Z(Al — Bl(l'))z + f,bZ.aSlz
p D (A.12)
Ai = Z (aij sin Qy + bij COS Oéj), BZ(ZL’> = Z (CLZ']‘ sin Z; + bij COS C(]j)
=1 j=1

D:dimensions
A, B are two D x D matrix, a;;,b;; are integer random numbers in the range

[—100, 100}, @ = [a, g, ..., ap], @ are random numbers in the range [—m, 7]

Ezxpanded Problems

Using a 2-D functions F(z,y) as a starting functions, corresponding ex-
panded function is :

EF(x1,2a,...,xp) = E(®1, vo)tF(ro523) + ... + F(xp_1,2p) + F(xp, x1)

Shifted Expanded Griewank’s "plus ‘Rosenbrock’s Function

D D
F8:Griewank’s Function: F8(z)=I}] %zo — [T cos(5) +1
i=1 i=1

D-1
F2:Rosenbrock’s Function: F2(x) = > (100(z — zi41)* + (2 — 1)?)
i=1

F8F2(xy1,xa,...,xp) = F8(F2(x1,22)) + F8(F2(x2,3)) + ...

+ F8(F2(17D_1, ZL‘D)) -+ F8(F2([ED, l’l)>
Shift to

Flg(ilf) = F8(F2<Zl, 22)) + F8(F2(22, 23)) —+ ...+ F8(F2(ZD_1, ZD))
(A.13)

+ F8(F2(zp, z1)) + f-biasis

z=x—o0+ l,x=[x1,29,..,2p]

D: dimensions o = [0y, 02, ..., 0p]: the shifted global optimum

Shifted Rotated Expanded Scaffer’s F6 Function
Fla,y) = 0.5+ Srr i 00

(1+40.001 (22 +y2))2
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Expanded to

F14(X) = EF(Z17Z27 "'7ZD) = F('Zla 22) + F(ZQa 23) +ot F(ZD—la ZD) (A 14)

+ F(zp,z1) + f_bias14
z=(x—o0)x M, x =[xy, 29,...,2p],
D: dimensions. o = [0y, 09, ..., 0p]: the shifted global optimum.

M: linear transformation matrix, condition number=3

Composition Problems

F(z): new composition function

fi(x): i*" basic functiodused to construct the composition function
n: number of basic functions

D: dimensions

M;: linear transformation matrix for'each f;(x)

0;: new shifted optimum position for each f;(z)

n

F(x) =Y {w; x [fl((x — 0;) /N * M;) + bias;]} + f_bias

=1

w;: weight value for each f;(x), calculated as below:

D 2
(zp—0ik)
o k=1
w; = exp(—*=5p5-

7

w; w; = max(w;)
w; =

10)

w; * (1 — max(w;). w; 7 max(w;)

n
then normalize the weight w; = w;/ > w;

=1

o;: used to control each f;(z)’s coverage range, a small o; give a narrow
range for that f;(x)

A;: used to stretch compress the function, A\; > 1 means stretch, \; < 1
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means compress
o; define the global and local optima’s position, bias; define which opti-
mum is global optimum. Using o;, bias;, a global optimum can be placed

anywhere.

If f;(x) are different functions, different functions have different properties
and height, in order to get a better mixture, estimate a biggest function
value fy,q40i for 10 functions f;(z), then normalize each basic functions to
similar heights as below:

fi(x) = Cx* fi(x)/ | fmaxi|, C is a predefined constant.

| frnazi| 18 estimated using | fruaei| = fi((2//N;) * M;), 2" = [5,5, ..., 5]

In the following compositienfunétions, Number of basic functions n = 10.
D: dimensions, o:n x:Dmatrix, defines f;(x)’s global optimal positions.
bias = [0, 100, 200, 300,400, 500,600, 700,800, 900]. Hence, the first func-
tion fi(z) always the functionwith'theé global optimum.

C' = 2000

15. Hybrid Composition Function

fi—2(z): Rastrigin’s Function

S

fi(z) =3 (2 — 10 cos(2mx;) + 10)

.
Il
—

fs—a(x): Weierstrass Function

filz) = f (kix [a* cos(2mbb (z; + 0.5))]) — D ké (¥ cos (27 % 0.5))]

= k
a=0.5b=3,knaw = 20

fs—6(x): Griewank’s Function

65



16.

17.

18.

fr—s(x): Ackley’s Function

D
filz) = —20exp(—0.24 [ 5 ; 2?) — exp(5 cos(2mz;)) + 20 + e

fo—10(z): Sphere Function

op=1fori=1,2,....D
A=1,1,10,10,5/60,5/60,5/32,5/32,5/100,5/100]

M; are all identity matrices

Rotated Version of Hybrid Composition Function Fi5

Except M; are different linear transformation matrixes with condition number of 2,

all other setting are the same as Fi5

F¢ with Noise in Fitness

Let (Flﬁ — f,bZ.CLSlﬁ) be G(.’E), then F17(33') — G(ZE) * (1 + 02|N(0, 1)|> + f,bia817

All setting are the same as Fi4

Rotated Hybrid Composition Function

fi—a(z): Ackley’s Function

D
filz) = —20exp(—0.2y [ 5 > x?) — exp( cos(2mz;)) + 20 + €
i=1
fs—a(x): Rastrigin’s Function

filx) = i (x? — 10 cos(2mz;) + 10)

fs—6(x): Sphere Function

fr—s(z): Weierstrass Function

D kmax k max

fi(z) =S (Y [aFcos(2mbF (z; +0.5))]) =D > [a* cos(2mb* * 0.5))] a =

i=1 k=0 k=0
0.5,b = 3, kymaw = 20
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19.

20.

21.

fo—10(z): Griewank’s Function

2

D D
file) =3 g5 — [T cos(35) +1
i=1 i=1

o=11,2,1.5,1.5,1,1,1.5,1.5,2,2,];

A=[2%5/32;5/32;2%1;1;2%5/100;5/100; 2 * 10; 10; 2 % 5/60; 5/60]

M, are all rotation matrices. Condition numbers are [2 3 2 3 2 3 20 30 200 300]
010 = [0,0,...,0]

Rotated Hybrid Composition Function with narrow basin global optimum
All settings are the same as Fig except

o=10.1,2,1.51.5,1,1,1.5,1.5,2, 2]
A=[0.1%5/32;5/32;2%1;1;2%5/100;5/100; 2 * 10; 10; 2 % 5/60; 5/60]

Rotated Hybrid Composition Function with Global Optimum on the Bounds
All settings are the same ag Fig exceptafter load the data file, set 0595y = 5, for

j=1,2,...|D/2]

Rotated Hybrid Composition funetion
fi—a(x) : Rotated ExpandedSeaf fer sE6Function

sin? T —0.
Fz,y) = 0.5 4 S e ) 00)

(140.001(z2+y?))?

fi(x) = F(x1,29) + F(x9,23) + ... + F(xp_1,2p) + F(zp, 1)
f5—4(z): Rastrigin’s Function
D
fi(x) =" (2 — 10 cos(27z;) + 10)
i=1

f5—¢(z): F8F2 Function

D 2 D .
F8(z) = ; 056 — Ecos(%) +1
D-1
F2(x) = 37 (100(27 — 2i41)* + (2 — 1)*)
i=1

filz) = F8(F2(x1,x2))+F8(F2(x9, x3))+..+ F8(F2(xp_1,2p))+F8(F2(xp, x1))

fr—s(z): Weierstrass Function
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22.

23.

24.

D  kmax k max

fi(x) =32 (Y [ak cos(2mbk (z; +0.5))]) — D > [a* cos(2mb* x 0.5))]

i=1 k=0 k=0
a=0.5b=3,knas = 20

fo—10(z): Griewank’s Function

o=1[1,1,1,1,1,2,2,2,2,2];
A= [55/100;5/100;5 = 1;1;5 % 1; 1; 5 % 10; 10; 5 = 5,/200; 5,/200]

M; are all orthogonal matrix

Rotated Hybrid Composition Function with High Condition Number Matrix
All settings are the same as Fy; except M;’s condition numbers are [10 20 50 100
200 1000 2000 3000 4000 5000]

Non-Continuous Rotated Hybrid'Composition Function

All settings are the same as Fb;
T T ollr< =2

Except z; = ’ = ! / for y=1,2,...,D
round(2x3) )2 wil@; =0 >1/2
a—1 if x <0&b>05

round(z) =< q if b<0.5

a+1 ifz>0&b>0.5

where a is x’s integral part and b is x’s decimal part

All "round” operators in this document use the same schedule.

Rotated hybrid Composition Function
fi(z): Weierstrass Function
D kmax k max

file)=32(> [a* cos(2mb*(x; + 0.5))]) — D ;;o [a® cos(2mbF % 0.5))]

—0 —
fa(z): Rotated Expanded Scaffer’s F6 Function
F(z,y) = 0.5 + S/ +e2)-05)

(140.001(z2+y2))?2

fl(ﬂf) = F(ZL’l,Ilfz) + F(ZL‘Q,Ig) + ...+ F(CL’D_l,ID) + F(xD,xl)
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f3(z): F8F2 Function

D, D i
F8(x) = Z: 4:3(1)0 l_IICOS(—l) +1
D1 -
F2(x) = (100(27 — zi41)? + (2 — 1)?)
=1

fi(x) = F8(F2(xy,22))+F8(F2(xg, x3))+... 4+ F8(F2(xp_1,2p))+F8(F2(xp, 1))
fa(x): Ackley’s Function
D
filz) = —20exp(—0.2y [ 5 > x?) — exp( cos(2ma;)) + 20 + ¢
f5(z): Rastrigin’s Function

filz) = f: (22 — 10 cos(2mz;) + 10)

fz(z): Non-Continuous Expanded Seaffer’s F6 Function
. (sin? (n /22 +y2)~0.5)
F(z,y) = 0.5 + 5ottt
f(X) = F(y1,92) + F(92,43) st F (yp-1,yp) + F(yp, 11)

Y, y; — o015 < 1/2
yi =4 v = oy /forj:1,2,...,D

round(2y;)/2 |y; — o1;] > 1/2

fs(z): Non-Continuous Rastrigin’s Function

D

f(x) =" (y? — 10 cos(2my;) + 10)
i=1
; i — o1 <1/2
A vy = ol <1/ for j=1,2,...D

round(2y;)/2 |y; — o] > 1/2

fo(z): High Conditioned Elliptic Function

i—

@) = 55 (10%) a3

fio(x): Sphere Function with Noise in Fitness
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D
filw) = (2 7)(1+ 0.1|N(0, 1))
o, =2,fori=1,2,...D
A =[10;5/20;1;5/32;1;5/100;5/50; 1; 5/100; 5/100]

M, are all rotation matrices, condition numbers are [100 50 30 10 5 5 4 3 2 2];

Fy5: Rotated Hybrid Composition Function without bounds

All settings are same as Fy4 except no exact search range set for this test function.
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Appendix B

Global Optimum for CEC’05 25
Real-Parameter Functions
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Appendix C

Solutions found by PSO-RDL for
CEC’05 25 Real-Parameter
Functions
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