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引入重組運算子與動態鏈結開發技術 

於粒子群最佳化演算法 

學生：簡明昌                             指導教授：陳穎平 

國立交通大學資訊科學與工程研究所 

摘 要 

粒子群最佳化演算法(PSO)為一有效率之演化計算演算法，近年更有許多改良粒子群最

佳化演算法的研究持續進行中，其中針對粒子群最佳化演算法與基因演算法(GAs)之結

合的主題亦已成為熱門研究。另一方面，於基因演算法中，如何有效處理基因鏈結

(Genetic linkage)問題亦成為有效改良基因演算法效能的重要議題。因此於本論文中，

主要欲達成之目標有二。第一，我們透過引入基因鏈結之概念於粒子群最佳化演算法

中，藉以提昇其搜尋之效能。為了完成之目標，我們必須瞭解粒子群最佳化演算法及基

因鏈結問題之特性，並尋找適當的結合模式以有效發揮兩者的功能。除此之外，我們希

望能完成之另一目標為有效處理、辨識實數問題之基因鏈結，而為達成此一目標，我們

必須設計一個特別的基因鏈結辨識技術。 

於此篇論文中，我們假設基因鏈結於實數問題中是存在且隨著搜尋過程中而產生變動。

於此假設前提下，我們設計了動態基因鏈結開發技術(dynamic linkage discovery 

technique)來處理基因鏈結問題，此技術為根據適者生存之自然淘汰為概念所設計，為

有效且計算成本低廉的基因鏈結辨識技術。此外，為了有效提昇粒子最佳化演算法及基

因鏈結辨識結合的效能，我們亦設計了重組運算子(recombination operator)，透過操

作使用動態基因鏈結開發技術所辨識出的建構基石(building blocks)，粒子群最佳化

演算法便能有效的處理存在於實數問題中的基因鏈結，於此研究中，我們將結合重組運

算子、動態鏈結開發技術與粒子群最佳化的演算法稱為PSO-RDL。 

因此於此研究中，我們藉由引入動態基因鏈結開發技術來處理實數問題中的基因鏈結，

搭配重組運算子的運作以提昇粒子群最佳化演算法的效能。我們透過仔細設計的各項數
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學函式做為評估實驗，針對所提出的演算化做效能上的評估分析。另外，我們也將

PSO-RDL應用於電力系統上的經濟調配問題，而由各項實驗的結果也可知，我們所設計

的演算法確有完成提昇效能的目標。 

 

關鍵詞: 粒子群最佳化演算法; 基因演算法; 基因鏈結; 建構基石; 動態基因鏈結開發

技術; 重組運算子。 
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Abstract 

There are two main objectives in this thesis. The first goal is to improve the performance of 

the particle swarm optimizer by incorporating linkage concept which is an essential mechanism 

in genetic algorithms. To achieve this purpose, we need to know the characteristics of the particle 

swarm optimizer and the genetic linkage problem. Through survey of the particle swarm 

optimization and the linkage problem, we then figure out how to introduce the linkage concept to 

particle swarm optimizer. Another goal is to address the linkage problem in real-parameter 

optimization problems. We have to study different linkage learning techniques, and understand 

the meaning of genetic linkage in real-parameter problems. After that, we design a novel linkage 

identification technique to achieve this objective. 

In this thesis, the existence of genetic linkages in real-parameter optimization problem and 



iv 

that genetic linkages are dynamically changed through the search process are the primary 

assumptions. With these assumptions, we develop the dynamic linkage discovery technique to 

address the linkage problem. Moreover, a special recombination operator is designed to promote 

the cooperation of particle swarm optimizer and linkage identification technique. In the 

consequence, we introduce the recombination operator with the technique of dynamic linkage 

discovery to particle swarm optimization (PSO). Dynamic linkage discovery is a costless, 

effective linkage recognition technique adapting the linkage configuration by utilizing the natural 

selection without incorporating extra judging criteria irrelevant to the objective function. 

Furthermore, we employ a specific recombination operator to work with the building blocks 

identified by dynamic linkage discovery. The whole framework forms a new efficient search 

algorithm and is called PSO-RDL in this study. Numerical experiments are conducted on a set of 

carefully designed benchmark functions and demonstrate good performance achieved by the 

proposed methodology. Moreover, we also applied the proposed algorithm on the economic 

dispatch problem which is an essential topic in power control systems. The experimental results 

show that PSO-RDL can performs well both on numerical benchmark and real-world 

applications. 

 

keywords: 

Particle swarm optimization, genetic algorithms, genetic linkage, building blocks, dynamic 

linkage discovery, recombination operator 
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Chapter 1

Introduction

1.1 Motivation

Particle swarm optimizer (PSO), introduced by Kennedy and Eberhart in 1995 [1, 2],

emulates flocking behavior of birds to solve optimization problems. The PSO algorithm

is conceptually simple and can be implemented in a few lines of codes. In PSO, each

potential solution is considered as a particle. All particles have their own fitness values

and velocities. These particles fly through the D-dimensional problem space by learning

from the historical information of all the particles. There are global and local versions

of PSO. Instead of learning from the personal best and the best position discovered so

far by the whole population as in the global version of PSO, in the local version, each

particle’s velocity is adjusted according to its own best fitness value and the best position

found by other particles within its neighborhood. Focusing on improving the local version

of PSO, different neighborhood structures are proposed and discussed in the literature.

Moreover, the position and velocity update rules have been modified to enhance the PSO’s

performance as well.

On the other hand, genetic algorithms (GAs), introduced by John Holland [3, 4], are

stochastic, population-based search and optimization algorithms loosely modeled after the

paradigms of evolution. Genetic algorithms guide the search through the solution space

by using natural selection and genetic operators, such as crossover, mutation, and the

like. Furthermore, the GA optimization mechanism is theorized by researchers [3, 4, 5]

with building block processing, such as creating, identifying and exchanging. Building

blocks are conceptually non-inferior sub-solutions which are components of the superior
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complete solutions. The building block hypothesis states that the final solutions to a given

optimization problem can be evolved with a continuous process of creating, identifying,

and recombining high-quality building blocks. According to that the GA’s search capa-

bility can be greatly improved by identifying building blocks accurately and preventing

crossover operation from destroying them [6, 7], linkage identification, the procedure to

recognize building blocks, plays an important role in GA optimization.

The two aforementioned optimization techniques are both population-based that have

been proven successful in solving a variety of difficult problems. However, both models

have strength and weakness. Comparisons between GAs and PSOs can be found in the

literature [8, 9] and suggest that a hybrid of these two algorithms may lead to further ad-

vances. Hence, a lot of studies on the hybridization of GAs and PSOs have been proposed

and examined. Most of these research works try to incorporate genetic operators into

PSO [10, 11], while some try to introduce the concept of genetic linkage into PSO [12].

Based on the similar idea employed by linkage PSO[12], our work is to introduce recom-

bination working on building blocks to enhance the performance of PSO with the concept

of genetic linkage.

1.2 Thesis Objectives

This thesis presents a research project that aims to address the genetic linkage problem

in real-parameter optimization problems and introduce the genetic linkage concept to

particle swarm optimizer. Thus, there are two primary objectives:

1. With the assumption that linkage problems exist in real-parameter problems , a

linkage identification technique is needed to address the genetic linkage problems.

This thesis provides both the linkage identification mechanism and observation of

experiments to support the initial assumption.

2. To improve the performance of particle swarm optimizer, the genetic linkage concept

is introduced. An optimization algorithm that incorporates these mechanism is

developed and numerical experiments are done to evaluate the performance.
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Focusing on the two objectives, in this research work, we propose a dynamic linkage

discovery technique to effectively detect the building blocks of the objective function. This

technique differs from those traditional linkage detection technique in that the evaluation

cost is eliminated. The idea is to dynamically adapt the linkage configuration according

to the search process and the feedback from the environment. Thus, this technique is

costless and easy to be integrated into existing search algorithms. Our method introduces

the linkage concept and the recombination operator to the operation of particle swarm

optimizer.

1.3 Road Map

This thesis is composed by six chapters. The detailed organization is given as follows:

• Chapter 1 consists of the motivation, objectives and organization of this study. It

describes why this research work is important and the main tasks to be accom-

plished.

• Chapter 2 provides a complete overview of the particle swarm optimization algo-

rithm. The background and traditional particle swarm optimizer is introduced,

and the parameter controls that have an impact on the performance are discussed.

Moreover, recent advances of related work in particle swarm optimization are also

surveyed in this chapter.

• Chapter 3 presents the concept of genetic linkage in genetic algorithms. The defin-

ition and importance of genetic linkage are described. Linkage learning techniques

in the literature are also briefly discussed.

• Chapter 4 described the proposed method in detail. The three mechanisms including

particle swarm optimizer, dynamic linkage discovery technique and recombination

operator, are introduced. The algorithm composed by the above three components

is then presented.

• Chapter 5 shows the numerical experimental results that evaluate the performance

of the proposed algorithm. The description of the test functions, parameter settings,

3



and simulated results are given. The discussion and observation of the experiments

are covered in this chapter certainly.

• Chapter 6 applied the designed algorithm on economic dispatch problems, which

are a significant topic in the power system. It describes the objectives and formu-

lations of economic dispatch problems, and then gives the proposed solution and

experimental results.

• Chapter 7 give a summary of this research work. The future works and the main

conclusions of the study are proposed.
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Chapter 2

Particle Swarm Optimization

The particle swarm optimizer (PSO), introduced by Kennedy and Eberhart in 1995 [1,

2], emulates flocking behavior of birds to solve the optimization problems. The PSO

algorithm is conceptually simple and can be implemented in a few lines of codes. In PSO,

each potential solution is considered as a particle. All particles have their own fitness

values and velocities. These particles fly through the D-dimensional problem space by

learning from the historical information of all the particles. In the following sections, we

will give a complete overview of PSO. Section 1 introduces the historical background of

PSO, section 2 describes how PSO works, section 3 discusses the parameter control in

PSO, section 4 has a brief survey of PSO related to our work, and finally, section 5 gives

a summary of this chapter.

2.1 Historical Background

Many scientists have studied and created the computer simulation of various interpreta-

tions of the movement of organisms in a bird flock or fish school [13, 14]. From simulations,

it is considered that there might be a local process that underlies the group dynamics of

bird social behavior and relies heavily on manipulation of inter-individual distance. That

is, the movement of the flock was an outcome of the individuals’ efforts to maintain an

optimum distance from their neighborhood [1].

The social behavior of animals and in some cases of humans, is governed by similar

rules. However, human social behavior is more complex than a flock’s movement for

at least one obvious reason: collision. Two individuals can hold identical attitudes and

5



beliefs without banging together, while two birds cannot occupy the same position in

space without colliding. Such an abstraction in human social behavior has comprised a

motivation for developing a model for it.

As sociobiologist E.O. Wilson [15] has written, ”In theory at least, individual mem-

bers of the school can profit from the discoveries and previous experience of all other

members of the school during the search for food. This advantage can become decisive,

outweighing the disadvantages of competition for food items, whenever the resource is

unpredictably distributed in patches”. This statement and numerous examples coming

from nature enforce the view ,that social sharing of information among the individuals of

a population may offers an evolutionary advantage. This belief has formed a fundamental

of the development of particle swarm optimization, which will be introduced in the next

section.

2.2 Particle Swarm Optimization

As mentioned above, PSO began as a simulation of a simplified social behavior that was

used to visualize the movement of a birds’ flock. Considering such as nearest-neighbor

velocity matching, the cornfield vector and acceleration by distance, several variation of

the simulation model has been through a trial and error process and finally results in a

first simplified version of PSO [1].

PSO is similar to genetic algorithm in that both of them are population based search

algorithms. A population of individuals is randomly initialized where each individual

is considered as a potential solution of the problem. Especially an individual is called

a ”particle” and a population is called a ”swarm” in PSO [1]. However, in PSO, each

potential solution is also assigned an adaptable velocity that enables the particle to fly

through the hyperspace. Moreover, each particle has a memory that keeps track of the

best position in the search space that it has ever visited [2]. Thus the movement of a

particle is an aggregated acceleration towards its best previously visited position and the

best individual of its neighborhood.

There are mainly two variants of PSO algorithm were developed [2]. The major

6



difference between the two variant is that one with a global neighborhood while the

other with a local neighborhood. According to the global variant, particle’s movement

is influenced by its previous best position and the best particle of the whole swarm. On

the other hand, each particle moves according to its previous best position and the best

particle of its restricted neighborhood in the local variant. Because the local version of

PSO can be derived from the global variant through minor changes. In the next paragraph,

we will have a complete introduction of the global version PSO.

In PSO, each particle is treated as a point in a D-dimensional space. Ths ith particle is

represented by a D-dimensional vector, Xi = (xi1, xi2, ..., xiD) The best previous position

of any particle is represented as Pi = (pi1, pi2, ..., piD), and the best particle’s position of

the whole swarm is represented by Pg = (pg1, pg2, ..., pgD). The velocity of particle i is also

represented as a D-dimensional vector,Vi = (vi1, vi2, ..., viD). The position and velocity of

each particle is updated according to the following equation:

vn+1
id = vn

id + c1 ∗ randd
1() ∗ (pn

id − xn
id) + c2 ∗ randd

2() ∗ (pn
gd − xn

id) (2.1)

xn+1
id = xn

id + vn+1
id (2.2)

where d = 1,2,...,D; i = 1,2,...,N , and N is the size of the swarm; c1 and c2 are two

positive constants, called the acceleration constant; rand1() and rand2() are two uniformly

distributed random numbers in the range [0,1]; and n = 1,2,..., determines the iteration

number. The second part of the Equation 2.1 is the ”cognition” part, which represents

the private thinking of the particle itself, and the third part is the ”social” part, which

represents the collaboration among the particles [16]. A flowchart of how the particle

swarm optimization works on a swarm is shown in Figure2.1.

Equation 2.1 and 2.2 define the initial version of the PSO algorithm. Referring to

Equation 2.1, the second and third part have an important influence on the movement

of each particle. Without these two parts, the particles will keep on flying at the current

speed in the same direction until they hit the boundary. On the other hand, without the

first part of equation 2.1, the particle’s velocity is determined by the current best position
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and previous best position. Thus all the particles will tend to move toward the same

position. In such a case, it is more likely that the second and third part of the Equation

2.1 play as a local searcher, while the first part plays as a global searcher. There is a

tradeoff between the local and global search. For different problems, different balance

between them should be considered. In order to achieve this goal, a parameter the called

inertia weight ’w’ is introduced, and the Equation 2.1 is modified as [17]:

vn+1
id = w ∗ vn

id + c1 ∗ randn
1 () ∗ (pn

id − xn
id) + c2 ∗ randn

2 () ∗ (pn
gd − xn

id) (2.3)

Since the particle swarm optimization is conceptually simple and can be easily imple-

mented, the fine-tune of parameters become an important topic which have great impact

on the performance of the particle swarm optimization. Discussion about the parameters

will be given in the next section.

2.3 Parameters of PSO

In the previous section, we have introduced PSO algorithm and given a modified version.

In order to facilitate the efficiency of PSO algorithm, it is important to understand how

the parameters would influence PSO. Thus, in this section, we will have a brief discussion

on this topic.

Since the particles are ”flying” through the search space, it is necessary to have a

maximum value Vmax on it. The parameter has been proven to be crucial because it

actually serves as a constraint that controls the maximum global exploration ability that

PSO can have [18]. Moreover, the inertia weight described in Equation2.2 is also important

for the balance of global and local search ability. When Vmax is large, PSO can have a large

range of exploration by selecting a proper inertia weight. By setting a small maximum

velocity, PSO would act as a local searcher whatever the inertia weight is selected. As Shi

and Eberhart suggested in [18], since the maximum velocity affects global exploration

indirectly, it is considered better to controls the global exploration ability through the

inertia weight only. Furthermore, choosing a large inertia weight to facilitate greater
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global exploration is not a good strategy, and a smaller inertia weight should be selected

to achieve a balance between global and local exploration for a faster search.

The parameters c1 and c2 represent the acceleration rates of cognitive and social parts

of each particle. Thus, fine-tuning could result in faster convergence of the swarm. As

default values in [1], c1 = c2 = 2 were proposed. Recent work has suggested that it might

be better to choose a larger cognitive parameter, c1, but c1 + c2 ≤ 4 [19].

Finally, rand1() and rand2() are random numbers uniformly distributed in the range

[0,1] and are used to maintain the diversity of the whole swarm.

In the past decade, many studies of improving the performance of particle swarm opti-

mization were done. Variants of particle swarm optimization are discussed and proposed.

In the next section, related works in the literature will be given.

2.4 Recent Advances in PSO

In this section, we will have a brief survey of PSO which is related to our research. As

mentioned previously, there are mainly two variants of PSO developed and we have given

an overview of the global one. However, many researches on the local version of PSO have

been working on. In the local variant, the Pg has been replaced by Pl, the best position

achieved by a particle within its neighborhood. Focusing on improving the local version

of PSO, different neighborhood structures have been proposed and discussed [20, 21, 22].

Furthermore, studies on modifying the rule of updating position and velocity are also

conducted [12, 23, 24]. Devicharan and Mohan [12] first computed the elements of linkage

matrix based on observation of the results of perturbations performed in some randomly

generated particles. These elements of the linkage matrix were used in a modified PSO

algorithm in which only strongly linked particle positions were simultaneously updated.

Liang et al [23, 24] proposed a learning strategy where each dimension of a particle learned

from particle’s historical best information, while each particle learned from different par-

ticles’ historical best information for different dimensions.

In order to enhance the performance of PSO by introducing the genetic operators

and/or mechanisms, many hybrid GA/PSO algorithms have been proposed and tested on
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function minimization problems [10, 11, 25, 26] Lvbjerg et al [10] incorporated a breeding

operator into the PSO algorithm, where breeding occurred inline with the standard ve-

locity and position update rules. Robinson et al [25] tested two hybrid version. The first

used the GA algorithm to initialize the PSO population while another used the PSO to

initialize the GA population. Shi et al [26] proposed two approaches. The main idea of

the proposed algorithm was to parallelly integrate PSO and GA. Settles and Soule [11]

combined the standard velocity and position update rules of PSO with the concept of

selection, crossover, and mutation from GAs. They employed an additional parameter,

the breeding ratio, to determine the proportion of the population which underwent the

breeding procedure (selection, crossover, and mutation) in the current generation.

Based on the brief literature review, we know that since PSO was proposed, many

research focusing on improving the performance of PSO were conducted. By incorporating

different mechanisms such as special neighborhood structure, modified update equation

or hybridizing with GA concepts, many different models of PSO were developed. In this

research work, we have also proposed a particular model of PSO which dissimilar to those

described in this section. A detailed description will be given in Chpater 3.

2.5 Summary

In this chapter, particle swarm optimization algorithms were briefly introduced, including

its historical background and working principles. The initial and modified global version

PSO were described. In order to understand how parameters affect the PSO, we make a

short discussion of the parameter control in PSO. Finally, recent advances of PSO that

are related to our research work were surveyed. From the survey, we know that the

hybridization of PSO and GAs has became a popular research topic. It inspired us to

improve the particle swarm optimizer by incorporating the linkage concept in GAs. A

complete review of the genetic linkage in GAs will be provided in the next chapter.
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Figure 2.1: A flowchart of particle swarm optimizer, in each generation, PSO manipulate
each particle through updating their position and velocity according to Equation 2.1
and Equation 2.2. After updating particle’s position and velocity, PSO then evaluates
particle’s fitness value and decides that the previous best individual and the global best
individual should be replaced or not
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Chapter 3

Genetic Linkage

In this chapter, we discuss about the topic of genetic linkage in genetic algorithms. We

will present the definition and the importance of genetic linkage. The genetic linkage

learning techniques are also discussed. Particularly, the following topics are presented:

• The definition of genetic linkage: Describes what genetic linkage is in genetic algo-

rithms.

• The importance of genetic linkage: Describes why linkage learning is an essential

topic in genetic algorithms.

• The linkage learning techniques: Describes what kinds of techniques have been

developed to address the genetic linkage problems.

3.1 What Is Genetic Linkage?

Since the central topics in this chapter is genetic linkage, we first give the definition of

genetic linkage in genetic algorithms. The basic idea and assumption of genetic algorithms

will be given, and then the definition of genetic linkage in genetic algorithms will be

explained.

Genetic algorithms (GAs), introduced by John Holland [3, 4], are stochastic, population-

based search and optimization algorithms loosely modeled after the paradigms of evolu-

tion. Genetic algorithms search the solution space by using natural selection and genetic

operators, such as crossover, mutation, and the like. Furthermore, the GA optimiza-

tion mechanism is theorized by researchers [3, 4] with building block processing, such as
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creating, identifying and exchanging. Building blocks are conceptually non-inferior sub-

solutions which are components of the superior complete solutions. The building block

hypothesis states that the final solutions to a given optimization problem can be evolved

with a continuous process of creating, identifying, and recombining high-quality building

blocks.

For genetic algorithms, the chromosome is represented as a string of characters, and

we use genetic operators like crossover and mutation to manipulate these chromosomes.

Holland indicated that crossover operator in genetic algorithms induce a linkage phenom-

enon [3]. In [27], the term genetic linkage has been loosely defined for a set of genes as

follows:

If the genetic linkage between these genes is tight, the crossover operator

disrupts them with a low probability and transfers them all together to the

child individual with a high probability. On the other hand, if the genetic

linkage between these genes is loose, the crossover operator disrupts them

with a high probability and transfers them all together to the child individual

with a low probability.

This definition implies the genetic linkage of a set of genes depend on the chromosome

representation and the crossover operator.

From the definition of genetic linkage given above, we can infer that the linkage phe-

nomenon is induced by using crossover operator with string type representation. For

example, consider a 6-bit function consisting of two independent subfunctions. For

x = [x1, x2, x3, x4, x5, x6], two possible combinations of subfunctions are shown as fol-

lows:

F1(x) = f1(x1, x2, x3) + f2(x4, x5, x6)

F2(x) = f1(x1, x3, x5) + f2(x2, x4, x6)

Taking one-point crossover as an example, it is obviously to see that genes belonging

to the same subfunction are likely to stay or to be transferred together in F1(x), while

in F2(x), genes belonging to the same subfunction are split almost every time when a

crossover event occurs.
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In Goldberg’s design decomposition [5], the first step to design a competent genetic

algorithm is to know what genetic algorithms process. It emphasizes that genetic algo-

rithms work through the components of good solutions - identified as building blocks by

Holland [3]. Therefore, from the viewpoint of genetic algorithms, genetic linkage can be

used to describe and measure the relation of genes, i.e, how close those genes belonging

to a building block are on a chromosome.

With the definition of genetic linkage, we can understand that handling genetic linkage

is important to genetic algorithms. Hence, we will discussed the influence of the genetic

linkage to genetic algorithms in the next section.

3.2 Why Is Genetic Linkage Important?

In the previous section, we give the explanation of what genetic linkage is and the linkage

problem occurs when the crossover operator is used. In this section, we will discussed the

importance of genetic linkage and how it affects the performance of genetic algorithms.

In many problems, because of the interactions between parameters, to optimize each

dimension of candidate solutions separately could not lead to a global optimum. As

described in the previous section, linkage, i.e, interrelationships existing between genes

needed to be considered when genetic algorithms are used. Moreover, according to Gold-

berg’s design decomposition theory, building block identification or genetic linkage learn-

ing is critical to the success of genetic algorithms.

Goldberg, Korb, and Deb [6] have used an experiment to demonstrate how genetic

linkage dictate the success of a simple genetic algorithm. In the experiment, the ob-

jective function is composed of 10 uniformly scaled copies of an order-3 fully deceptive

function [28, 29] Three types of codings scheme were tested: tightly ordering, loosely

ordering, and randomly ordering. For tightly ordering, genes of the same subfunction are

arranged to one another on the chromosome. The loosely ordering coding scheme means

that all genes are distributed evenly so that genes belonging to the same subfunction

are divided by other genes. The randomly ordering indicates that genes are arranged

randomly in an arbitrary order. From the experimental results, it is shown that genetic
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algorithms perform well when tightly ordering coding scheme, i,e. genes belonging to the

same building block are tightly linked, is used. Moreover, some other studies [30, 31, 4]

have also reached similar conclusions. With tight building blocks on the chromosome,

genetic algorithms could work better.

From the related work described above, it is clear that one of the essential keys for ge-

netic algorithms to success is to handle genetic linkage well. The genetic linkage problem

including all kinds of building block processing such as creation, identification and recom-

bination. However, in the real world problem, information about the genetic linkage can

not often be known in advance. Thus, studies on handling genetic linkage are extremely

important and have long been discussed and recognized in the field of genetic algorithms.

3.3 Genetic Linkage Learning Techniques

The definition and importance of genetic linkage are described in the previous sections.

One of the key elements to success in genetic algorithms is to address the linkage prob-

lem. In Goldberg’s design decomposition, genetic algorithms capable of learning genetic

linkages and identifying good building blocks can solve problems quickly, accurately and

reliably. Thus, many research efforts have been concentrated on linkage identification of

genetic algorithms, which can be broadly classified into three categories[5]:

• Perturbation techniques include the messy GA [6], fast messy GA [32], gene expres-

sion messy GA [33], linkage identification by nonlinearity check GA, and linkage

identification by monotonicity detection GA [34], and dependency structure matrix

driven genetic algorithms(DSMDGA) [35]

• Linkage adaptation techniques [36, 37]

• Probabilistic model building techniques include population-based incremental learn-

ing [38], the bivariate marginal distribution algorithm [39], the extended compact

GA (eCGA) [40], iterated distribution estimation algorithm [41], Bayesian opti-

mization algorithm(BOA) [42, 43].
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For perturbation techniques, the relations between genes are detected by perturbing

the value of gene, and analyze the differences before and after the perturbation. For

example, linkage identification by nonlinearity check for real-coded GAs (LINC-R) [34]

tests nonlinearity by random perturbations on each locus and identifies the linkage con-

figuration according to the nonlinearity relation between locus.

In the linkage adaptation technique, linkage learning GA(LLGA) [36, 37] applies a

two-point-like crossover operator to ring-shaped chromosomes and constructs linkages

dynamically.

According to the probabilistic model building technique, a probabilistic model is

built through analyzing the properties and statistics of the population. As an exam-

ple, Bayesian optimization algorithm (BOA) [42, 43] constructs a Bayesian network based

on the distribution of individuals in a population and identifies linkages.

3.4 Summary

In this chapter, we focus on an important issue in genetic algorithms—genetic linkage.

By providing the definition and discussing the importance of the genetic linkage, it is

obvious that addressing genetic linkage problem plays an important role for using genetic

algorithms. Thus many genetic linkage identification techniques were proposed in the

literature. Here we broadly classified them into three categories and had brief explanations

for them. The influences of genetic linkage to genetic algorithms inspired us to introduce

such a concept to the particle swarm optimizer. Particularly we design a special linkage

identification technique which is quite different from those mentioned in this chapter. The

proposed framework will be discussed in detail in the next chapter.
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Chapter 4

Framework

In this chapter, we will give the overview of the algorithm proposed in this study. This

algorithm introduces the recombination operator with the technique of dynamic linkage

discovery to particle swarm optimization (PSO) in order to improve the performance

of PSO. Dynamic linkage discovery is a costless, effective linkage recognition technique

adapting the linkage configuration by utilizing the natural selection without incorporating

extra judging criteria irrelevant to the objective function. Furthermore, we employ a

specific recombination operator to work with the building blocks identified by dynamic

linkage discovery. The following topic will be discussed in this chapter:

• Dynamic linkage discovery technique: Describe how the linkage problem is addressed

through the natural selection and dynamic linkage discovery.

• Recombination operator: In order to make good use of building blocks , a special

recombination operator which is similar to multi-parental crossover operators is

designed and presented here.

• Introducing recombination with dynamic linkage discovery in PSO: A new optimiza-

tion algorithm which is composed by particle swarm optimizer, dynamic linkage

discovery and recombination operator is described in detail.

4.1 Dynamic Linkage Discovery Technique

From chapter 3, the importance of genetic linkage has been discussed. Many mechanisms

have been proposed to address the linkage problem. Most linkage identification techniques
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were proposed and tested on trap functions [44]. However, there are relatively fewer

studies on handling genetic linkage in real number optimization problems. From the

survey of linkage learning, Tezuka identified linkage by nonlinearity check on real-coded

genetic algorithm [45]. Such a technique has also been incorporated with particle swarm

optimizer [12]. Different from this perturbation based linkage identification technique, in

this study, we propose the dynamic linkage discovery technique. Following paragraph will

have a detailed introduction of this mechanism.

In the particle swarm optimization, particles are encoded as real number vectors. With

this representation, genetic linkages indicate the interrelation among dimensions. In dif-

ferent stages of optimization process, we consider that the linkage configuration should

be different according to the fitness landscape and the population distribution. Hence in

the current work, we assume that the relation between different dimensions is dynami-

cally changed along with the optimization process. The linkage configuration should be

updated accordingly. For most problems, it is difficult to exactly identified the linkage

configuration, especially when the linkage configuration changed dynamically. Instead of

incorporating extra artificial criteria for linkage adaptation, we again entrust the task to

the mechanism of natural selection. As a consequence, we propose the dynamic linkage

discovery technique and we call the PSO combined with recombination and dynamic link-

age discovery as PSO-RDL. The dynamic linkage discovery technique is costless, effective,

and easy to implement. The idea is to update the linkage configuration according to the

fitness feedback. During the whole search process, PSO-RDL first assigns a set of ran-

dom linkage groups and then adjusts the linkage groups according to the fitness feedback

from the optimization problem. If the average fitness value of the current population

is improved over a specified threshold, the current linkage configuration is considered

appropriate and stays unchanged. Otherwise, the linkage groups will be reassigned at

random. A flowchart of the dynamic linkage discovery process is shown in Figure 4.1. An

illustration of how we decide the linkage configuration is shown in Figure 4.1.

The dynamic linkage discovery technique is developed based on the idea of natural

selection, and can equip with optimization algorithm naturally. In this study, we integrate

it into the particle swarm optimizer. Furthermore, we introduce a recombination operator
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Figure 4.1: The flowchart of the dynamic linkage discovery process. This flow illustrates
that every time a particle swarm optimization process is done, the fitness improvement
is checked if it improves over the predefined threshold. Based on the results, the linkage
configuration can be decided to change or not.

which manipulates the building blocks to construct the new population. The detail of this

operator will be given in the next section.
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Figure 4.2: An illustration shows that in dynamic linkage discovery, the linkage configu-
ration is assigned at random.

4.2 Recombination Operator

Since Holland’s original propose of genetic algorithms, the merits of crossover has been

an essential research topic. Instead of the traditional two-parent recombinatory chro-

mosome reproduction, there has been considerable discussion of multi-parent crossover

mechanisms [46, 47, 48]. Work by Eiben, Raue and Ruttkay [47] on multi-parental re-

combination techniques (with fixed numbers of parents) showed that for many standard

test-bed functions, N-parental inheritance (with N greater than 2 but less than the size

of the population) can be advantageous. From the previous research work, we decide to

develop a multi-parental recombination operator for reconstructing the population.

In this study, since we have explicitly identified the linkage group, in order to make

good use of linkage information, we design a special recombination operator. The re-

combination operator is designed according to the idea of multi-parental recombination.

In the recombination process, individuals with good fitness are selected and we consider

the selected individuals as a building block pool. Every offspring is created by choosing

and recombining building blocks from the pool at random. We use this recombination

process to generate the whole next population. An illustration of how a new individual is

generated is shown as Figure 4.3. By repeating the process shown in Figure 4.3, we can

reconstruct a new population in which each particle is composed by the good building

blocks. A flowchart of the population reconstructing process is shown in Figure 4.4.
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A seemingly similar operator has been proposed by Smith and Fogarty [48]. In [48], the

representation on which the recombination operator works takes the form of markers on

the chromosome which specify whether or not a gene is linked to its neighbors. Different

chromosomes form different numbers of building blocks. However, our recombination

operator keeps a global linkage configuration such that every individual in the pool is

decomposed into the same building blocks.

BBs po o l

BB1 BB2 BB3

BB1 BB2 BB3

BB1 BB2 BB3

BB1 BB2 BB3new  individual

radomly choose
BB from each

individual

BB1 BB2 BB3

individual1
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individual3

individualn

BB1 BB2 BB3

BB1 BB2 BB3

.

.

.

individual4

individualn -1

Figure 4.3: The procedure of how a new particle is generated through the recombination
operator

In this algorithm, the recombination operator is used to mix building blocks, and to

construct a new population. In the beginning of optimization process, this procedure can

be viewed as a global search, while the particle swarm optimizer serves as a local searcher

that fine tune the building blocks. As the optimization goes on, the population starts to

converge and the building blocks become similar. Thus the recombination operator plays

as a local searcher at this time. The cooperation between them and the complete flow of

this algorithm will be described in the next section.
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Figure 4.4: The process of constructing new population through recombination operator

4.3 Introducing Recombination with Dynamic Link-

age Discovery in PSO

The main purpose in this study is to enhance the PSO’s performance by introducing the

genetic operator with linkage concept. To achieve this goal, we design the dynamic linkage

discovery technique and the corresponding recombination operator. Although there were

many variant of the particle swarm optimization proposed in the literature. For the

convenience of analyzing and development, in this algorithm, we applied only a modified

version of the particle swarm optimization wchich proposed by Shi and Eberhart [17]. A

composition of these three components is described in the following paragraph.

In the proposed algorithm, we repeat the PSO procedure for a certain number of

generations, we term such a period a PSO epoch in the rest of this report. After each

PSO epoch, we select the N best particles from the population to construct the building

block pool and conduct the recombination operation according to the building blocks
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identified by dynamic linkage discovery. After the recombination process, the linkage

discovery step is executed when necessary. We calculate the average fitness of the current

epoch, compare the average with the one calculated during last epoch, and check if the

improvement is significant enough. When the specified threshold is reached, the current

linkage groups are considered suitable and remain unchanged for the next PSO epoch.

Otherwise, it is considered that the building blocks do not work well for the current

search stage. Thus, the linkage discovery process restarts, and the linkage configuration is

randomly reassigned. The pseudo code and flow of the algorithm are shown in Figures 4.5

and 4.6, respectively.

Similar research works have been done in the literature, such as PSO with learning

strategy [23, 24] and PSO with adaptive linkage learning [12]. The main difference be-

tween the proposed algorithm and them is that we introduce the recombination operator

specifically designed to work with the identified building blocks. In addition, we propose

a new linkage discovery technique to dynamically adapt the linkage during the search

process.

4.4 Summary

In this chapter, we first described how we deal with the genetic linkages. Based on the

natural selection concept, a dynamic linkage discovery technique is designed. This tech-

nique is designed to identified the linkage configurations in real-parameter optimization

problems. In order to make good use of linkages, we then propose the recombination

operator. In this algorithm, we introduce the recombination with genetic linkage concept

to particle swarm optimization. As a result, a new optimization algorithm is proposed

and numerical experiments are also conducted. The experimental results will be shown

and discussed in Chapter 5.

23



PSO with Recombination Operator & Dynamic Linkage Discovery 

Step1: Do Finding the linkage group. 
1. Generate an integer number N from 1 to D (D: problem dimensions). 
2. Assign each dimension an integer number from 1 to N. 
3. Dimensions with the same number grouped as the same building 

block. 
Step2: Do PSO algorithm on the population. 

1. For each particle 
  Evaluate fitness value 

If the fitness value is better than the best fitness value (pBest) in 
history set current value as the new pBest  

End 
2. Choose the particle with the best fitness value of all the particles as the 

gBest 
3. For each particle 

Calculate particle’s velocity. 
      Update particle’s position. 

End 
4. Repeat 1 to 3 until maximum iterations is attained. 

Step3: Do Recombination to generate next population. 
1. Select M best particles from the population.         
2. For i = 1 to N (N: number of building blocks) 
       Select ith building block from particles 1 to M. 
       Put the selected building block to the ith slot of the new generated 

particle. 
    End 
3. Repeat 2 for S times, S means the swarm size. 

Step4: If fitness value improves over the specified threshold, then go to Step2, else 
      go to Step3. 
     Repeat until the maximum iteration is reached. 
Step5: Do local search on the best particle. 

 

Figure 4.5: Pseudocode of PSO-RDL
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Figure 4.6: The flow of the PSO-RDL
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Chapter 5

Experimental Results

Computer simulations are conducted to demonstrate the performance of PSO-RDL. The

experiments are focused on the real-valued parameter optimization. The test problems

are proposed in the special session on real-parameter optimization in CEC2005 aimed at

developing high-quality benchmark functions to be publicly available to the researchers

around the world for evaluating their algorithms. The following topics will be covered in

this chapter:

• Test Functions: The description of test problems

• Parameter Setting: The parameter settings used in the experiment.

• Experimental Results: Show the numerical results of the experiments as well as the

linkage dynamics during optimizing several functions of different characteristics.

• Discussion: Discuss the results and observations from the experiments.

5.1 Test Functions

The newly proposed set of test problems includes 25 functions of different characteristics.

Five of them are unimodal problems, and others are multimodal problems [49]. A tech-

nical report of detail description of test problems is available at

http://nclab.tw/TR/2005/NCL-TR-2005001.pdf. All test functions are tested on 10

dimensions in this study. The summary of the 25 functions is shown as follows:

• Unimodal Functions (5):
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– F1: Shifted Sphere Function

– F2: Shifted Schewefel’s Problem 1.2

– F3: Shifted Rotated High Conditioned Elliptic Function

– F4: Shifted Schwefel’s Problem 1.2 with Noise in Fitness

– F5: Schwefel’s Problem 2.6 with Global Optimum on Bounds

• Multimodal Functions (20):

– Basic Functions (7):

∗ F6: Shifted Rosenbrock’s Function

∗ F7: Shifted Rotated Griewank’s Function without Bounds

∗ F8: Shifted Rotated Ackley’s Function with Global Optimum on Bounds

∗ F9: Shifted Rastrigin’s Function

∗ F10: Shifted Rotated Rastrigin’s Function

∗ F11: Shifted Rotated Weierstrass Function

∗ F12: Schwefels’ Problem 2.13

– Expanded Function (2)

∗ F13: Expanded Extended Griewank’s plus Rosenbrock’s Function (F8F2)

∗ F14: Shifted Rotated Expanded Scaffer’s F6

– Hybrid Composition Function (11)

∗ F15: Hybrid Composition Function

∗ F16: Rotated Hybrid Composition Function

∗ F17: Rotated Hybrid Composition Function with Noise in Fitness

∗ F18: Rotated Hybrid Composition Function

∗ F19: Rotated Hybrid Composition Function with a Narrow Basin for the

Global Optimum

∗ F20: Rotated Hybrid Composition Function with the Global Optimum on

the Bounds
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∗ F21: Rotated Hybrid Composition Function

∗ F22: Rotated Hybrid Composition Function with High Condition Number

Matrix

∗ F23: Non-Continuous Rotated Hybrid Composition Function

∗ F24: Rotated Hybrid Composition Function

∗ F25: Rotated Hybrid Composition Function without Bounds

The properties and the formulas of these functions are presented in the appendix A.

The bias of fitness value for each function f(x∗), the search ranges [Xmin, Xmax] and the

initializatino range of each function are given in Table 5.1. The individuals of global

optimum for each function are given in Table B.1.

Table 5.1: Global optimum, search ranges and initialization ranges of the test functions

f f(x∗) Search Range Initialization Range
f1 -450 [-100,100] [-100,100]
f2 -450 [-100,100] [-100,100]
f3 -450 [-100,100] [-100,100]
f4 -450 [-100,100] [-100,100]
f5 -310 [-100,100] [-100,100]
f6 390 [-100,100] [-100,100]
f7 -180 [−∞,∞] [0,600]
f8 -140 [-32,32] [-32,32]
f9 -330 [-5,5] [-5,5]
f10 -330 [-5,5] [-5,5]
f11 90 [-0.5,0.5] [-0.5,0.5]
f12 -460 [−π, π] [−π, π]
f13 -130 [-5,5] [-5,5]
f14 -300 [-100,100] [-100,100]
f15 120 [-5,5] [-5,5]
f16 120 [-5,5] [-5,5]
f17 120 [-5,5] [-5,5]
f18 10 [-5,5] [-5,5]
f19 10 [-5,5] [-5,5]
f20 10 [-5,5] [-5,5]
f21 360 [-5,5] [-5,5]
f22 360 [-5,5] [-5,5]
f23 360 [-5,5] [-5,5]
f24 260 [−∞,∞] [-5,5]
f25 260 [−∞,∞] [2,5]
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Table 5.2: Parameter setting in this numerical experiments

Parameter Setting

Parameter description Value
Swarm size 20
Inertia weight (w) w ∈ [0.6, 0.9]
Acceleration rate of cognitive part(C1) C1 ∈ [0.5, 2.0]
Acceleration rate of social part(C2) C2 ∈ [0.5, 2.0]
Maximum velocity 25% of the search range
Size of selected particle for recombination 25% of the swarm size
Improvement threshold 2% over the previous best fitness

Numerical test problems described above were simulated to evaluate the performance

of the proposed algorithm. This benchmark with multiple types of functions such as

unimodal, multimodal, expanded and composition functions, so that the strength and

weakness of the algorithm could be analyzed comprehensively.

5.2 Parameter Setting

The parameter setting in this study is described as follows:

The number of particles is set to 20, 0.6 ≤ w ≤ 0.9, 0.5 ≤ ~ϕ1 ≤ 2.0, 0.5 ≤ ~ϕ2 ≤ 2.0,

and Vmax restricts the particles’ velocity, where Vmax is equal to 25% of the initialization

range. N , the number of particles selected for the recombination, is set to 25% of the

swarm size. The threshold which decides if the linkage configuration should be changed

is set to 2% of the previous best fitness value. A list of the parameter setting is shown in

Table 5.2.

5.3 Experimental Results

The complete experimental results are listed in Tables 5.3, 5.4, 5.5, 5.6 and 5.7. According

to the definition in the special session, PSO-RDL successfully solved problems 1, 2, 4, 5,

6, 7 and 12 in the experimental results. Moreover, comparable results are achieved in

solving problems 3, 8, 11, 13 and 14. Unfortunately, PSO-RDL failed to solve problems 9,

10 and 15-25. Table 5.8, 5.9 , 5.10, 5.11 and 5.12 show the experimental results compared

with other evolutionary algorithms proposed in the special session. Table 5.13 gives the
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number of successfully solved problems. From these comparisons, it can be observed that

PSO-RDL has a good performance for most problems. Table C.1 shows the solution found

by PSO-RDL for each function in this benchmark. Figures 5.1, 5.2, 5.3 and 5.4 show how

the dynamic linkage discovery technique changes the linkage configuration during the

optimization process. Detailed discussion on the experimental results is presented in the

next section.

5.4 Discussion

From the experimental results listed in Table 5.3, it can be considered that the proposed

algorithm is able to provide good results for the benchmark. The first five functions are

unimodal functions. Function 1 is shifted sphere function, Function 2 is shifted Schwefel’s

problem 1.2, and Function 3 is shifted rotated high condition elliptic function. These

three functions have different condition numbers which make Function 3 much harder

than Functions 1 and 2. Function 4 is shifted Schwefel’s problem 1.2 with noise in fitness.

Function 5 is Schwefel’s problem 2.6 with global optimum on bounds. From the results,

we can observe that PSO-RDL reaches the predefined error tolerance level for Functions

1, 2, 4, and 5. For Function 3, PSO-RDL achieves an error of 1e-4 but does not meet

the 1e-6 criterion. It may be caused by the multiplicator 106 in the objective function

which greatly amplifies the error. In summary, PSO-RDL provides a sufficiently good

performance for the unimodal functions in this benchmark.

Functions 6-14 are multimodal problems. Function 6 is shifted Rosenbrock’s function,

a problem with a very narrow valley from the local optimum to the global optimum, and

solved by PSO-RDL. Function 7 is shifted rotated Griewank’s function without bounds,

and this function makes the search easily away from the global optimum. Fortunately,

PSO-RDL solved it twice in 25 trials and can achieve a comparable result in average for

this function. Function 8 is shifted rotated Ackley’s function with global optimum on

bounds, which has a very narrow global basin and half of the dimensions of this basin

are on the boundaries. Hence, the search algorithm cannot easily find the global basin

when the recombination operator is used. The PSO-RDL failed on this problem in all 25
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Table 5.13: Problems solved in different evolutionary algorithms

Method Unimodal Basic Multimodal Expanded Hybrid Composition
Functions(5) Functions (7) Function (2) Function (11)

PSO-RDL 1,2,4,5 (4) 6,7,12 (3) *
PSO 1,2,4,5 (4) 6,7,12 (3) * *

SPC-PNX 1,2,4,5 (4) 6,7,11 (3) * *
Sa-DE 1,2,4 (3) 9,12 (2) 15 *

DE 1,2,3,4,5 (5) 6,9 (2) * *
DMS-PSO 1,2,3,5 (4) 6,7,9,12 (4) 15 *

LR-CMA-ES 1,2,3,4,5 (5) 6,7,12 (3) * *

 

changing 

unchanged 

epoch 

Figure 5.1: Fitness convergence and linkage dynamics of the Sphere function. A unimodal
function which PSO-RDL solved successfully. The gray area in the figure represents the
proper building blocks can improve the fitness and stay unchanged. Once the building
blocks do not work well, the linkage configuration will change until the next suitable set
is found.
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runs. Functions 9, 10, and 11 are shifted Rastrigin’s function, shifted rotated Rastrigin’s

function, and shifted rotated Weierstrass function, respectively, all of them have a huge

number of local optima. The PSO-RDL has a relatively bad performance on the first two

problems comparing with traditional PSO [50] and DMS-PSO [51]. Comparable results

were obtained for Function 11. It may be because when the number of local optima

is huge, the dissimilar individuals would likely to have similar fitness values. Although

they could provide good building blocks, when different building blocks are combined to

create new individuals, the offspring could have worse fitness values instead. As long as

the building blocks cannot be identified correctly, the genetic operator cannot work well,

either. Function 12 is Schwefel’s problem, and PSO-RDL achieves a 80% success rate.

Functions 13 and 14 are extended functions, and the PSO-RDL produces comparable

results in solving these two functions.

Function 15-25 are eleven composition functions. They are all built up with basic

functions. They give a big challenge to any search algorithm. PSO-RDL has failed in all

the experiment runs. These composition functions possess a huge number of local optima,

thus made PSO-RDL performs worse due to the similar reason discussed for Functions 9

and 10. The failure of identifying building block makes the PSO-RDL also failed in the

search process.

Observe the fitness convergence and linkage dynamics in Figures 5.1, 5.2, 5.3, and

5.4. The gray areas represent the time frames when a proper linkage configuration can

assist the optimization process. When the current linkage groups are not suitable, i.e.

the linkage configuration cannot assist the search, the linkage group composition will

start to vibrate for some iterations until the next proper set of linkage groups is found.

The phenomenon can explain the assumption that the building block’s composition is

dynamically changed during the search process in the real-parameter optimization prob-

lem. Thus, it is reasonable that we hand over the linkage adaptation to the mechanism

of natural selection. Moreover, Figure 7 shows the function with a large number of local

optima and PSO-RDL failed. It is clearly that the linkage configuration keeps changing

all the time. As discussed above, this phenomenon indicates that when the function has

a large number of local optima, it is hard to recognize the building blocks because totally
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different individuals may have similar fitness values. In such a case, different individual

may provide their own good building blocks, but worse individuals may still be created

by recombining these incompatible pieces of solutions.

Focusing on the time ratio of the linkage status (changing vs. unchanged), we can

observe that for Figures 5.1 and 5.2, the linkage configuration stay unchanged most of the

time. Correspondingly, the proposed algorithm provide good results on these two func-

tions. On the contrary, the linkage configuration keeps changing in the Figures 5.3 and

5.4. Thus, our algorithm do not work very well on these two functions, although we men-

tioned that PSO-RDL can obtain comparable results on the shifted expanded Griewank’s

plus Rosenbrock’s function. Because there does not exist a very efficient algorithm for

this problem so far. Hence, we can conclude that when the linkage configuration changes

too often, the algorithm will fail to solve the problem with a high probability.

5.5 Summary

In this chapter, we evaluate the performance of PSO-RDL by conducting the search on

25 numerical functions that were proposed in CEC2005 special session on real-parameter

optimization. The description of the test functions, parameter setting and experimental

results were given in the above context. We also discussed the strength and weakness of

the PSO-RDL by analyzed the search result and linkage dynamics. From the results, it

is considered that PSO-RDL can work well and produce a better performance than the

traditional particle swarm optimizer. Further, from the observation of linkage dynamics,

it is considered that dynamic linkage discovery and recombination operator do improve

the performance of the particle swarm optimizer when the building blocks are successfully

identified. A detailed discussion and summary of this research work will be provided in

the next chapter.
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Figure 5.2: Fitness convergence and linkage dynamics of the Shifted Rotated Griewank’s
function. A multimodal function which PSO-RDL produced comparable results. The
gray area in the figure represents the proper building blocks can improve the fitness and
stay unchanged. Once the building blocks do not work well, the linkage configuration will
change until the next suitable set is found.
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Figure 5.3: Fitness convergence and linkage dynamics of the Shifted Expanded Griewank’s
plus Rosenbrock’s function. A multimodal function which PSO-RDL produced compara-
ble results. The gray area in the figure represents the proper building blocks can improve
the fitness and stay unchanged. Once the building blocks do not work well, the linkage
configuration will change until the next suitable set is found.
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Figure 5.4: Fitness convergence and linkage dynamics of the Shifted Rastrigin’s function.
A multimodal function with large number of local optima and PSO-RDL failed to solve.
The gray area in the figure represents the proper building blocks can improve the fitness
and stay unchanged. Once the building blocks do not work well, the linkage configuration
will change until the next suitable set is found.
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Chapter 6

Real-world Applications

In this chapter, we proposed the algorithm to real-world applications. We focus on solving

the economic dispatch (ED) problem which is an significant topic in the power system.

There are lots of studies working on the ED problem including optimization and equation

modeling. Due to the importance of the ED problem, here in this study, we try to solve

this problem with the proposed efficient search algorithm. The following topics will be

covered in this chapter:

• Economic Dispatch Problem: Briefly introduce the purpose and formulations of the

ED problem.

• Our solution: The PSO-RDL is applied to solve the economic dispatch problem,

and the constraint handling technique is described as well.

• Experimental results: The result of 3-generators, 40-generators economic dispatch

problems and comparison with other search algorithm are listed in this section.

6.1 Economic Dispatch Problem

With the development of modern power systems, the economic dispatch problem has

received an increasing attention. Economic dispatch is essential for real-time control of

power system operation. It consists of allocating the total generation required among the

available thermal generating units, assuming that a thermal unit commitment is previously

determined. The objective aims to minimize the fuel cost subject to the physical and

operational constraints.
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The economic dispatch problem is to find the optimal combination of power gener-

ations that minimizes the total generation cost while satisfying equality and inequality

constraints. To model the economic dispatch problem, a simplified cost function of each

generator which is represented as a quadratic function is as follows[56]:

C =
∑
j∈J

Fj(Pj) (6.1)

Fj(Pj) = aj + bjPj + cjP
2
j (6.2)

where

C: total generation cost;

Fj: cost function of generator j;

aj, bj, cj: cost coefficients of generator j;

Pj: electrical output of generator j;

J : set for all generators.

In the real world, the total generation should be equal to the total system demand plus

the transmission network loss. However, in this study, the network loss is not considered

for simplicity as in many studies. Thus the constraints of the problem include two main

parts. The first part is the equality constraint. The total system demand must be equal

to the summation of each generator’s output, i.e.,

∑
j∈J

Pj = D, (6.3)

where D is the total system demand.

Secondly, the generation output of each unit should be between its minimum and

maximum limits. This introduces the inequality constraints as follows:

Pjmin ≤ Pj ≤ Pjmax, (6.4)

where Pjmin, Pjmax is the minimum, maximum output of generator j.
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In reality, the objective function of economic dispatch problem is more complicated

due to the valve-point effects and change of fuels. Therefore, the nonsmooth cost functions

were considered. The inclusion of valve-point loading effects makes the modeling of the

incremental fuel cost function of the generators more practical. This increase the non-

linearity as well as number of local optima in the solution space. Also make search

algorithm trap in the local optimal easily. The incremental fuel cost function of the

generating units with valve-point loadings are represented as follows[57]:

Fj(Pj) = aj + bjPj + cjP
2
j + |ej ∗ sin(fj ∗ (Pjmin − Pj))| (6.5)

where ej and fj are the coefficients of generator j reflecting valve-point effects.

In this study, we focus on solving the economic dispatch problem with valve point

effect, which is model as 6.1. We applied the proposed method as a optimization tool,

and the equality and inequality constraints in this problem is handled through repair and

penalty mechanisms. A detail description will be given in the following section.

6.2 Our Solution

According to the importance of the ED problem, there were many studies in the past.

Especially, evolutionary algorithms like genetic algorithm[57, 58, 59, 60, 61], evolution-

ary programming[62, 63, 64, 65], particle swarm optimization[66, 67, 68, 69], have been

adapted on this problem successfully. Here in this study, we proposed the algorithm

with constraint handling techniques including repair and penalty mechanism to the ED

problem.

The most important topic for solving the ED problems may be the equality and

inequality constraints. These constraints divide the entire solution space into complicated

areas. Such a condition leads the search algorithm to be inefficient. To address this

problem, we here propose a constraint handling technique based on both of the repair

and the penalty concepts. According to the repair concept, the infeasible solution is

somehow fixed to be a feasible one. We do this by firstly rearranging a sequence number

in a random way. Each number in the sequence represents a generator in the solution.

Thus, the result sequence means the order we process the generator. With this order, we
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check the equality constraint, i.e., the sum of the generator’s output has to be equal to the

total demand. If the equality constraint is not satisfied, the output of current generator

would be modified according to the following function:

Gi = min(max((DM −
n∑

j=1,j 6=i

Gj), Low bound(Gi)), Up bound(Gi)), (6.6)

where DM means the total demand output, Low bound(Gi) and Up bound mean the low

bound and up bound of Gi, i.e., the inequality constraint of Gi.

The above repair process is conducted with a probability, and is repeated until the

current solution becomes feasible. On the other hand, to preserve the diversity of the

population and the optima that appear close to the boundaries, we do not repair all the

infeasible solutions. Instead, we use a simple penalty function to deal with those infeasible

solutions. The penalty function was designed as follows:

fitness(Pi) = fitness(Pi) + abs(DM −
n∑

j=1

Pij)
3 (6.7)

The proposed algorithm incorporate the constraint handling technique make it able

to solve the ED problem efficiently. With the two constraint handling techniques, the

diversity of the population is preserved. Furthermore, the recombination process in the

original framework make it possible to discover different potential solutions which are

divided by the equality and inequality constraints in the ED problem. To verify our

approach, numerical experiments were conducted, and the results are given in the next

section.

6.3 Experiments

In this section, the test problems will be described in detail. The propose method do work

well in the test problem and produces good results. A complete experimental results will

be shown and discussed.

6.3.1 Test Problems

In the experiment, we focus on solving the economic dispatch problem with nonsmooth

functions considering the valve-point effects. The nonsmooth functions were described
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Table 6.1: Units data for test case I(3-Unit System) with valve-point loading. a, b, c, e,
and f are cost coefficients in the fuel cost function Fj(Pj) = aj +bjPj +cjP

2
j + |ej ∗sin(fj ∗

(Pjmin − Pj))|
Generator Pmin(MW) Pmax(MW) a b c e f

1 100 600 0.001562 7.92 561 300 0.0315
2 50 200 0.00482 7.97 78 150 0.063
3 100 400 0.00194 7.85 310 200 0.042

in the previous section and modeled as Equation 6.1. The PSO-RDL is applied to two

ED problems, one with 3 generators and another with 40 generators. The input data

for 3-generator system are given in [57] and those for 40-generator is given in [63]. The

detail parameters include each generator output range and related coefficients in both

systems are given in Table 6.1 and Table 6.2. Here, the total demand for the 3-unit and

40-unit systems are set as 850 MW and 10500 MW, respectively. It is proved that for

3-unit system, the glob optimum solution is 8234.07 [70]. As for the 40-unit system, the

optimum has not been found yet and the best solution reported until now is 122252.265

[68]. The parameter setting in our algorithm is as same as Table 5.2. The probability

threshold used to decide the infeasible solution should be repaired or not is set to 0.4.

6.3.2 Experimental Results

The above experiments were done to evaluate the performance of PSO-RDL on the real-

world problem. We have done 100 trials for each problem. The obtained results for

the 3-unit system are given in Table 6.3 and the results were compared with those of

IEP[71], EP[64] and MPSO[68]. It shows that PSO-RDL has successfully found the

global optimum solution presented in [70]. In the case of the 40-unit system, the results are

compared with those from other methods in [63] such as classical EP(CEP), fast EP(FEP),

modified FEP(MEFP), improved FEP(IFEP), and also the results from MPSO in [68].

The obtained best value from PSO-RDL is 121468.820, which is better than the previous

best result 122252.265 in [68]. The best solution obtained in each method is shown in

Table 6.4. The generation outputs and the corresponding costs of the best solution are

provided in Table 6.5. To compare the result of PSO-RDL with other various methods

in a statistical manner, we here shows the each range of cost among 100 trials in Table
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6.6. Furthermore, to compare the performance of PSO-RDL with MPSO [68], we also run

the t-Test for the 40-unit system experimental results. Since we don’t have the actual

data set for MPSO, we do the t-Test with two kinds of data. First, we use the MPSO

data set contains forty-seven 122252.265 which is the optimum reported in MPSO [68]

and fifty-three 122750 which is average of 122500 to 123000. The t-Test results is listed

in Table 6.7. Secondly, we use the MPSO data set contains forty-seven 122252.265 which

is the optimum reported in MPSO [68] and fifty-three 122750 which is best value in the

range from 122500 to 123000. The t-Test results is listed in Table 6.8.

From the experimental results, it is obvious that our algorithm performs well for these

two ED problems. Especially for the 40-unit system, we improve the known best solution

to 121468.82. From the Table 6.6, 6.7, 6.8, it can be obeserved that our algorithm is

statiscally outperformed MPSO[68]. The ED problem is a highly constraint optimization

problem, and we use two constraint handling techniques including the repair techniques

and the penalty function. These two mechanisms are easy to implement and incorporate

well with the proposed algorithm. From this application, we can find that for the con-

stainted optimization problems, the proposed algorithm can also still performs well as in

the unconstraint optimization problems.
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Table 6.2: Units data for test case II(40-Unit System) with valve-point loading. a, b, c,
e, and f are cost coefficients in the fuel cost function Fj(Pj) = aj + bjPj + cjP

2
j + |ej ∗

sin(fj ∗ (Pjmin − Pj))|
Generator Pmin(MW) Pmax(MW) a b c e f

1 36 114 0.0069 6.73 94.705 100 0.084
2 36 114 0.0069 6.73 94.705 100 0.084
3 60 120 0.2028 7.07 309.54 100 0.084
4 80 190 0.00942 8.18 369.03 150 0.063
5 47 97 0.0114 5.35 148.89 120 0.077
6 68 140 0.01142 8.05 222.33 100 0.084
7 110 300 0.00357 8.03 287.71 200 0.042
8 135 300 0.00492 6.99 391.98 200 0.042
9 135 300 0.00573 6.6 455.76 200 0.042
10 130 300 0.00605 12.9 722.82 200 0.042
11 94 375 0.00515 12.9 635.2 200 0.042
12 94 375 0.00569 12.8 654.69 200 0.042
13 125 500 0.00421 12.5 913.4 300 0.035
14 125 500 0.00752 8.84 1760.4 300 0.035
15 125 500 0.00708 9.15 1728.3 300 0.035
16 125 500 0.00708 9.15 1728.3 300 0.035
17 220 500 0.00313 7.97 647.85 300 0.035
18 220 500 0.00313 7.95 649.69 300 0.035
19 242 550 0.00313 7.97 647.83 300 0.035
20 242 550 0.00313 7.97 647.81 300 0.035
21 254 550 0.00298 6.63 785.96 300 0.035
22 254 550 0.00298 6.63 785.96 300 0.035
23 254 550 0.00284 6.66 794.53 300 0.035
24 254 550 0.00284 6.66 794.53 300 0.035
25 254 550 0.00277 7.1 801.32 300 0.035
26 254 550 0.00277 7.1 801.32 300 0.035
27 10 150 0.52124 3.33 1055.1 120 0.077
28 10 150 0.52124 3.33 1055.1 120 0.077
29 10 150 0.52124 3.33 1055.1 120 0.077
30 47 97 0.0114 5.35 148.89 120 0.077
31 60 190 0.0016 6.43 222.92 150 0.063
32 60 190 0.0016 6.43 222.92 150 0.063
33 60 190 0.0016 6.43 222.92 150 0.063
34 90 200 0.0001 8.95 107.87 20 0.042
35 90 200 0.0001 8.62 116.58 200 0.042
36 90 200 0.0001 8.62 116.58 200 0.042
37 25 110 0.0161 5.88 307.45 80 0.098
38 25 110 0.0161 5.88 307.45 80 0.098
39 25 110 0.0161 5.88 307.45 80 0.098
40 242 550 0.00313 7.97 647.83 300 0.035

52



Table 6.3: Comparison of simulation results of each method considering valve-point effect
(3-unit system)

Unit GA IEP EP MPSO PSO-RDL
(pop=20) (par=20) (par=20)

1 300 300.23 300.26 300.27 300.267
2 400 400 400 400 400
3 150 149.77 149.74 149.73 149.733

TP 850 850 850 850 850
TC 8237.6 8234.09 8234.07 8234.07 8234.07

Table 6.4: Comparison of simulation results of each method considering valve-point effect
(40-unit system)

CEP FEP MFEP IFEP MPSO PSO-RDL

Minimum cost 123488.3 122679.7 122647.6 122624.35 122252.3 121468.82
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Table 6.5: Generation output of each generator and the corresponding cost in 40-unit
system

Unit Pmin(MW) Pmax(MW) Generation Cost

1 36 114 112.2886 949.880767
2 36 114 111.0704 929.604348
3 60 120 97.49443 1192.38418
4 80 190 179.7531 2143.97098
5 47 97 88.89745 724.712068
6 68 140 140 1596.46432
7 110 300 300 3216.42404
8 135 300 284.7229 2782.07788
9 135 300 284.777 2801.46883
10 130 300 130 2502.065
11 94 375 94.00612 1893.44177
12 94 375 94.03925 1909.04089
13 125 500 214.77 3792.32437
14 125 500 394.2823 6414.93466
15 125 500 304.5313 5171.47843
16 125 500 394.2847 6436.72027
17 220 500 489.2827 5296.78245
18 220 500 489.3102 5289.42926
19 242 550 511.2908 5541.17665
20 242 550 511.2941 5541.22862
21 254 550 523.2818 5071.33798
22 254 550 523.398 5073.69255
23 254 550 523.3437 5058.51899
24 254 550 523.3715 5059.07705
25 254 550 523.2815 5275.13221
26 254 550 523.28 5275.10232
27 10 150 10.00005 1140.52506
28 10 150 10.00442 1140.62574
29 10 150 10.01797 1140.93732
30 47 97 92.60281 785.447407
31 60 190 190 1643.99125
32 60 190 190 1643.99125
33 60 190 190 1643.99125
34 90 200 200 2101.01703
35 90 200 200 2043.72703
36 90 200 200 2043.72703
37 25 110 110 1220.16612
38 25 110 110 1220.16612
39 25 110 110 1220.16612
40 242 550 511.3228 5541.87129

Total Generation & Total Cost 10500 121468.82
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Table 6.6: Comparison of method on relative frequency of convergence in the ranges of
cost

Range of Cost [k$]

Evaluation 127.0 126.5 126.0 125.5 125.0 124.5 124.0 123.5 123.0 122.5 122.0 121.5
Method - - - - - - - - - - - -

126.5 126.0 125.5 125.0 124.5 124.0 123.5 123.0 122.5 122.0 121.5 121.0

CEP 10 4 - 16 22 42 4 2 - - - -
FEP 6 - 4 2 10 20 26 24 6 - - -

MFEP - - - - - 14 26 50 10 - - -
IFEP - - 2 - 4 4 18 50 22 - - -
MPSO - - - - - - - - 53 47 - -

PSO-RDL - - - - - - - 6 8 36 49 1

Table 6.7: t-Test for the results of PSO-RDL and MPSO under condition 1, where the
PSO-RDL data set contains the actual results, and the MPSO data set contains forty-
seven 122252.265 and fifty-three 122750.

Method PSO-RDL MPSO
mean 122083.5084 122516.0646

t value 7.12311
p value 1.91171E-11

Table 6.8: t-Test for the results of PSO-RDL and MPSO under condition 2, where the
PSO-RDL data set contains the actual results, and the MPSO data set contains forty-
seven 122252.265 and fifty-three 122500.

Method PSO-RDL MPSO
mean 122083.5084 122516.06455

t value 9.13251
p value 7.91529E-17
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Chapter 7

Conclusions

7.1 Summary

In this project, we studied the particle swarm optimization and genetic linkage problems

in genetic algorithms. After survey on the hybridization of particle swarm optimizer

and genetic algorithms, we decided to introduce the genetic linkage concept, which is an

important topic in genetic algorithms, to particle swarm optimizer. To address the genetic

linkage problem in real-parameter optimization problems, we develop the dynamic linkage

discovery technique. Further, in order to make good use of building blocks information,

we also design a recombination operator. By combining these mechanisms, we proposed a

new efficient search algorithm and have the experiments on real-parameter test functions.

Finally, we applied PSO-RDL on the economic dispatch problem, which is an essential

problem in the power control system.

Chapter 2 briefly introduced the particle swarm optimization algorithms, including

the historical background, working principles of PSO. The initial and modified global

version PSO were described, and the local variant can be made through small changes. In

order to understand how parameters impact on the PSO, we also make a short discussion

of the parameters control in PSO. Finally, the recent advances of PSO that related to

our research work were done that help us understand the problems and issues in particle

swarm optimization.

Chapter 3 explains the genetic linkage in genetic algorithm and shows the impacts on

genetic algorithms through identifying genetic linkage. Various kinds of genetic linkage

learning technique are also discussed in this chapter. Under the assumption of building
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blocks hypothesis, it is obviously that addressing genetic linkage problem is an important

issued when using genetic algorithms.

Chapter 4 describes about the dynamic linkage discovery technique and recombina-

tion operator are also given. Finally, the complete algorithm flow is introduced. In

this algorithm, we introduce the genetic linkage concept to particle swarm optimization.

Based on the natural selection concept, a dynamic linkage discovery technique is designed.

Furthermore, in order to make good use of building blocks, a recombination operator is

incorporated.

In Chapter 5, the performance of PSO-RDL is evaluated by simulated the search

on 25 numerical functions that proposed in CEC2005 special session on real-parameter

optimization. The description of the test functions, parameter setting and experimental

results were given in this chapter. We also discussed the strength and weakness of the

PSO-RDL by analyzed the search result and linkage dynamics. From the results, it is

considered that the PSO-RDL algorithm can work well and produce a better performance

than the traditional particle swarm optimizer.

Chapter 6 applied PSO-RDL on the economic dispatch problem in the power sys-

tem. The economic dispatch problem is essential to power controls and include many

constraints. We evaluate the performance by solving both the 3-unit and 40-unit sys-

tems. Comparing to other advance evolutionary algorithms, PSO-RDL do performs well

on economic dispatch problems.

7.2 Future Work

In this paper, we proposed a new framework by introducing the recombination mechanism

with the dynamic linkage discovery technique to PSO. From the experiments, the proposed

algorithm can provide a good performance on a carefully designed benchmark function

set. The following is a list of research directions for future consideration suggested by the

author:

• From the experimental results, we can observe that the dynamic linkage discovery

technique and recombination operator do improve the performance of the particle
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swarm optimizer. Hence, we can try to apply the dynamic linkage discovery tech-

nique with recombination operator to other evolutionary optimization algorithms.

• Since we have successfully improve the performance of particle swarm optimizer

by introducing the linkage concept and genetic operator, it shows the possibility

that the linkage problem exists in the real-parameter optimization problems. More-

over, from the observation of the linkage dynamics of the experiments, the linkage

configuration may dynamically change through the search process. Based on these

observations, we can develop other linkage discover techniques for real-parameter

optimization problems and improves the performance of the algorithm through ad-

dressing the genetic linkage problems.

• According to the analysis and observation of the experimental results, we have un-

derstood the strength and weakness of the proposed method. Thus, we should

enhance the performance of the algorithm by improving the shortcomings. Further-

more, we should also find some real world applications with different features as

advanced experiments.

7.3 Main Conclusions

In this paper, we first surveyed on the recent studies. We recognize the importance of

the linkage concept of GA and that the correct combination of GA and PSO can lead

to the further algorithmic advance. We then introduced the dynamic linkage discovery

technique into PSO by incorporating the recombination operator to work on the identified

building blocks. We adopted the benchmark functions defined in CEC2005 to evaluate

the performance of the proposed algorithm. The experimental results indicated that

the proposed algorithm can provide a good performance on the benchmark functions of

different characteristics.

Furthermore, the work on PSO-RDL gives us two observations. First, in the literature,

it is rarely discussed about the building blocks in real-parameter optimization problems.

This work may shed light on the existence of building blocks in real-parameter opti-

mization problems. Secondly, if building blocks do exist, then why these building blocks
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cannot be detected by the linkage detection techniques previously proposed in the liter-

ature? According to the information obtained in this study, perhaps in a real-parameter

optimization problem, the configuration of building blocks dynamically changes along

with the search stage. Thus, those traditional, static linkage detection techniques fail to

accomplish the task.

In this study, we introduce recombination with dynamic linkage discovery to PSO and

consider the integration as a promising research direction. By combining the strength of

different optimization models, we create the PSO-RDL algorithm with intriguing features

and properties. We will continue to work on understanding and analyzing the real number

optimization problem in order to design better evolutionary algorithms in the future.
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Appendix A

CEC’05 25 Real-Parameter
Functions

Unimodal Problems:

1. Shifted Sphere Function

F1(x) =
D∑

i=1

z2
i + f bias1 (A.1)

z = x − o, x = [x1, x2, ..., xD], D: dimensions. o = [o1, o2, ..., oD]: the shifted global

optimum.

2. Shifted Schwefels Function

F2(x) =
D∑

i=1

(
i∑

j=1

zj)
2 + f bias2 (A.2)

z = x − o, x = [x1, x2, ..., xD], D: dimensions. o = [o1, o2, ..., oD]: the shifted global

optimum.

3. Shifted Rotated High Conditioned Elliptic Function

F3(x) =
D∑

i=1

(106)
i−1
D−1 z2

i + f bias3 (A.3)

z = (x − o) ∗ M , x = [x1, x2, ..., xD], D: dimensions. o = [o1, o2, ..., oD]: the shifted

global optimum. M: orthogonal matrix

4. Shifted Schwefels Problem 1.2 with Noise in Fitness

F4(x) =
D∑

i=1

(
i∑

j=1

zj)
2 ∗ (1 + 0.4 |N(0, 1)|) + f bias4 (A.4)

60



z = x − o, x = [x1, x2, ..., xD], D: dimensions. o = [o1, o2, ..., oD]: the shifted global

optimum.

5. Schwefels Problem 2.6 with Global Optimum on Bounds

f(x) = max {|x1 + 2x2 − 7| , |2x1 + x2 − 5|} ,i = 1, ..., n, x∗ = [1, 3], f(x∗) = 0

Extend to D Dimensions:

F5(x) = max{|Aix−Bi|}+ f bias5 (A.5)

,i = 1, ..., D, x = [x1, x2, ...xD]

D:dimensions

A is a D ∗D matrix, aij are integer random number in the range [−500, 500],

det(A) 6= 0, Ai is the ith row of A.

Bi = Ai ∗ o, o is a D ∗ 1 vector, oi are random number in the range [−100, 100]

After load the data file, set oi = −100, for i = 1, 2, ..., dD/4e,

oi = 100, for i = b3D/4c, ..., D

Multimodal Problems:

6. Shifted Rosenbrocks Function

F6(x) =
D−1∑
i=1

(100(z2
i − zi+1)

2 + (zi − 1)2) + f bias6 (A.6)

z = x− o + 1, x = [x1, x2, ..., xD],

D: dimensions. o = [o1, o2, ..., oD]: the shifted global optimum.

7. Shifted Rotated Griewanks Function without Bounds

F7(x) =
D∑

i=1

z2
i

4000
−

D∏
i=1

cos(
zi√
i
) + 1 + f bias7 (A.7)

z = (x− o) ∗M , x = [x1, x2, ..., xD],

D: dimensions. o = [o1, o2, ..., oD]: the shifted global optimum.

M ′: linear transformation matrix, condition number=3

M = M ′(1 + 0.3|N(0, 1)|)
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8. Shifted Rotated Ackleys Function with Global Optimum on Bounds

F8(x) = −20 exp(−0.2

√√√√ 1

D

D∑
i=1

z2
i )− exp(

1

D
cos(2πzi)) + 20 + e + f bias8 (A.8)

z = (x− o) ∗M , x = [x1, x2, ..., xD],

D: dimensions. o = [o1, o2, ..., oD]: the shifted global optimum.

After load the data file, set o2j−1 = −32o2j are randomly distributed in the search

range, for j = 1, 2, ...bD/2c

M : linear transformation matrix, condition number=100

9. Shifted Rastrigins Function

F9(x) =
D∑

i=1

(z2
i − 10 cos(2πzi) + 10) + f bias9 (A.9)

z = x − o, x = [x1, x2, ..., xD], D: dimensions. o = [o1, o2, ..., oD]: the shifted global

optimum.

10. Shifted Rotated Rastrigins Function

F10(x) =
D∑

i=1

(z2
i − 10 cos(2πzi) + 10) + f bias10 (A.10)

z = (x− o) ∗M , x = [x1, x2, ..., xD],

D: dimensions. o = [o1, o2, ..., oD]: the shifted global optimum.

M : linear transformation matrix, condition number=2

11. Shifted Rotated Weierstrass Function

F11(x) =
D∑

i=1

(
k max∑
k=0

[ak cos(2πbk(zi + 0.5))])−D

k max∑
k=0

[ak cos(2πbk ∗ 0.5))] + f bias11

(A.11)

a = 0.5, b = 3, kmax = 20, z = (x− o) ∗M , x = [x1, x2, ..., xD],

D: dimensions. o = [o1, o2, ..., oD]: the shifted global optimum.

M : linear transformation matrix, condition number=5
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12. Schwefels Problem 2.13

F12(x) =
D∑

i=1

(Ai −Bi(x))2 + f bias12

Ai =
D∑

j=1

(aij sin αj + bij cos αj), Bi(x) =
D∑

j=1

(aij sin xj + bij cos xj)
(A.12)

D:dimensions

A, B are two D ∗ D matrix, aij, bi,j are integer random numbers in the range

[−100, 100], α = [α1, α2, ..., αD], αj are random numbers in the range [−π, π]

Expanded Problems

Using a 2-D functions F (x, y) as a starting functions, corresponding ex-

panded function is :

EF (x1, x2, ..., xD) = F (x1, x2)+F (x2, x3)+ ...+F (xD−1, xD)+F (xD, x1)

13. Shifted Expanded Griewank’s plus Rosenbrock’s Function

F8:Griewank’s Function: F8(x) =
D∑

i=1

x2
i

4000
−

D∏
i=1

cos( xi√
i
) + 1

F2:Rosenbrock’s Function: F2(x) =
D−1∑
i=1

(100(z2
i − zi+1)

2 + (zi − 1)2)

F8F2(x1, x2, ..., xD) = F8(F2(x1, x2)) + F8(F2(x2, x3)) + ...

+ F8(F2(xD−1, xD)) + F8(F2(xD, x1))

Shift to

F13(x) = F8(F2(z1, z2)) + F8(F2(z2, z3)) + ... + F8(F2(zD−1, zD))

+ F8(F2(zD, z1)) + f bias13

(A.13)

z = x− o + 1,x = [x1, x2, ..., xD]

D: dimensions o = [o1, o2, ..., oD]: the shifted global optimum

14. Shifted Rotated Expanded Scaffer’s F6 Function

F (x, y) = 0.5 +
(sin2(

√
x2+y2)−0.5)

(1+0.001(x2+y2))2
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Expanded to

F14(X) = EF (z1, z2, ..., zD) = F (z1, z2) + F (z2, z3) + ... + F (zD−1, zD)

+ F (zD, z1) + f bias14

(A.14)

z = (x− o) ∗M , x = [x1, x2, ..., xD],

D: dimensions. o = [o1, o2, ..., oD]: the shifted global optimum.

M : linear transformation matrix, condition number=3

Composition Problems

F (x): new composition function

fi(x): ith basic function used to construct the composition function

n: number of basic functions

D: dimensions

Mi: linear transformation matrix for each fi(x)

oi: new shifted optimum position for each fi(x)

F (x) =
n∑

i=1

{wi ∗ [f ′i((x− oi)/λi ∗Mi) + biasi]}+ f bias

wi: weight value for each fi(x), calculated as below:

wi = exp(−
DP

k=1
(xk−oik)2

2Dσ2
i

)

wi =

 wi wi = max(wi)

wi ∗ (1−max(wi).
10) wi 6= max(wi)

then normalize the weight wi = wi/
n∑

i=1

wi

σi: used to control each fi(x)’s coverage range, a small σi give a narrow

range for that fi(x)

λi: used to stretch compress the function, λi > 1 means stretch, λi < 1
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means compress

oi define the global and local optima’s position, biasi define which opti-

mum is global optimum. Using oi, biasi, a global optimum can be placed

anywhere.

If fi(x) are different functions, different functions have different properties

and height, in order to get a better mixture, estimate a biggest function

value fmaxi for 10 functions fi(x), then normalize each basic functions to

similar heights as below:

f ′i(x) = C ∗ fi(x)/ |fmax i|, C is a predefined constant.

|fmaxi| is estimated using |fmaxi| = fi((x
′/λi) ∗Mi), x

′ = [5, 5, ..., 5]

In the following composition functions, Number of basic functions n = 10.

D: dimensions, o:n ∗Dmatrix, defines fi(x)’s global optimal positions.

bias = [0, 100, 200, 300, 400, 500, 600, 700, 800, 900]. Hence, the first func-

tion f1(x) always the function with the global optimum.

C = 2000

15. Hybrid Composition Function

f1−2(x): Rastrigin’s Function

fi(x) =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10)

f3−4(x): Weierstrass Function

fi(x) =
D∑

i=1

(
k max∑
k=0

[ak cos(2πbk(xi + 0.5))])−D
k max∑
k=0

[ak cos(2πbk ∗ 0.5))]

a = 0.5, b = 3, kmax = 20

f5−6(x): Griewank’s Function

fi(x) =
D∑

i=1

x2
i

4000
−

D∏
i=1

cos( xi√
i
) + 1
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f7−8(x): Ackley’s Function

fi(x) = −20 exp(−0.2

√
1
D

D∑
i=1

x2
i )− exp( 1

D
cos(2πxi)) + 20 + e

f9−10(x): Sphere Function

fi(x) =
D∑

i=1

x2
i

σi = 1 for i = 1, 2, ..., D

λ = [1, 1, 10, 10, 5/60, 5/60, 5/32, 5/32, 5/100, 5/100]

Mi are all identity matrices

16. Rotated Version of Hybrid Composition Function F15

Except Mi are different linear transformation matrixes with condition number of 2,

all other setting are the same as F15

17. F16 with Noise in Fitness

Let (F16 − f bias16) be G(x), then F17(x) = G(x) ∗ (1 + 0.2|N(0, 1)|) + f bias17

All setting are the same as F16

18. Rotated Hybrid Composition Function

f1−2(x): Ackley’s Function

fi(x) = −20 exp(−0.2

√
1
D

D∑
i=1

x2
i )− exp( 1

D
cos(2πxi)) + 20 + e

f3−4(x): Rastrigin’s Function

fi(x) =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10)

f5−6(x): Sphere Function

fi(x) =
D∑

i=1

x2
i

f7−8(x): Weierstrass Function

fi(x) =
D∑

i=1

(
k max∑
k=0

[ak cos(2πbk(xi + 0.5))])−D
k max∑
k=0

[ak cos(2πbk ∗ 0.5))] a =

0.5, b = 3, kmax = 20

66



f9−10(x): Griewank’s Function

fi(x) =
D∑

i=1

x2
i

4000
−

D∏
i=1

cos( xi√
i
) + 1

σ = [1, 2, 1.5, 1.5, 1, 1, 1.5, 1.5, 2, 2, ];

λ = [2 ∗ 5/32; 5/32; 2 ∗ 1; 1; 2 ∗ 5/100; 5/100; 2 ∗ 10; 10; 2 ∗ 5/60; 5/60]

Mi are all rotation matrices. Condition numbers are [2 3 2 3 2 3 20 30 200 300]

o10 = [0,0,...,0]

19. Rotated Hybrid Composition Function with narrow basin global optimum

All settings are the same as F18 except

σ = [0.1, 2, 1.5, 1.5, 1, 1, 1.5, 1.5, 2, 2]

λ = [0.1 ∗ 5/32; 5/32; 2 ∗ 1; 1; 2 ∗ 5/100; 5/100; 2 ∗ 10; 10; 2 ∗ 5/60; 5/60]

20. Rotated Hybrid Composition Function with Global Optimum on the Bounds

All settings are the same as F18 exceptafter load the data file, set o1(2j) = 5, for

j = 1, 2, ..., bD/2c

21. Rotated Hybrid Composition function

f1−2(x) : RotatedExpandedScaffer′sF6Function

F (x, y) = 0.5 +
(sin2(

√
x2+y2)−0.5)

(1+0.001(x2+y2))2

fi(x) = F (x1, x2) + F (x2, x3) + ... + F (xD−1, xD) + F (xD, x1)

f3−4(x): Rastrigin’s Function

fi(x) =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10)

f5−6(x): F8F2 Function

F8(x) =
D∑

i=1

x2
i

4000
−

D∏
i=1

cos( xi√
i
) + 1

F2(x) =
D−1∑
i=1

(100(z2
i − zi+1)

2 + (zi − 1)2)

fi(x) = F8(F2(x1, x2))+F8(F2(x2, x3))+...+F8(F2(xD−1, xD))+F8(F2(xD, x1))

f7−8(x): Weierstrass Function
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fi(x) =
D∑

i=1

(
k max∑
k=0

[ak cos(2πbk(xi + 0.5))])−D
k max∑
k=0

[ak cos(2πbk ∗ 0.5))]

a = 0.5, b = 3, kmax = 20

f9−10(x): Griewank’s Function

fi(x) =
D∑

i=1

x2
i

4000
−

D∏
i=1

cos( xi√
i
) + 1

σ = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2];

λ = [5 ∗ 5/100; 5/100; 5 ∗ 1; 1; 5 ∗ 1; 1; 5 ∗ 10; 10; 5 ∗ 5/200; 5/200]

Mi are all orthogonal matrix

22. Rotated Hybrid Composition Function with High Condition Number Matrix

All settings are the same as F21 except Mi’s condition numbers are [10 20 50 100

200 1000 2000 3000 4000 5000]

23. Non-Continuous Rotated Hybrid Composition Function

All settings are the same as F21

Except xj =

 xj |xj − o1j| < 1/2

round(2xj)/2 |xj − o1j| ≥ 1/2
for j = 1, 2, ..., D

round(x) =


a− 1 if x ≤ 0&b ≥ 0.5

a if b < 0.5

a + 1 if x > 0&b ≥ 0.5

where a is x’s integral part and b is x’s decimal part

All ”round” operators in this document use the same schedule.

24. Rotated hybrid Composition Function

f1(x): Weierstrass Function

fi(x) =
D∑

i=1

(
k max∑
k=0

[ak cos(2πbk(xi + 0.5))])−D
k max∑
k=0

[ak cos(2πbk ∗ 0.5))]

a = 0.5, b = 3, kmax = 20

f2(x): Rotated Expanded Scaffer’s F6 Function

F (x, y) = 0.5 +
(sin2(

√
x2+y2)−0.5)

(1+0.001(x2+y2))2

fi(x) = F (x1, x2) + F (x2, x3) + ... + F (xD−1, xD) + F (xD, x1)
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f3(x): F8F2 Function

F8(x) =
D∑

i=1

x2
i

4000
−

D∏
i=1

cos( xi√
i
) + 1

F2(x) =
D−1∑
i=1

(100(z2
i − zi+1)

2 + (zi − 1)2)

fi(x) = F8(F2(x1, x2))+F8(F2(x2, x3))+...+F8(F2(xD−1, xD))+F8(F2(xD, x1))

f4(x): Ackley’s Function

fi(x) = −20 exp(−0.2

√
1
D

D∑
i=1

x2
i )− exp( 1

D
cos(2πxi)) + 20 + e

f5(x): Rastrigin’s Function

fi(x) =
D∑

i=1

(x2
i − 10 cos(2πxi) + 10)

f6(x): Griewank’s Function

fi(x) =
D∑

i=1

x2
i

4000
−

D∏
i=1

cos( xi√
i
) + 1

f7(x): Non-Continuous Expanded Scaffer’s F6 Function

F (x, y) = 0.5 +
(sin2(

√
x2+y2)−0.5)

(1+0.001(x2+y2))2

f(X) = F (y1, y2) + F (y2, y3) + ... + F (yD−1, yD) + F (yD, y1)

yj =

 yj |yj − o1j| < 1/2

round(2yj)/2 |yj − o1j| ≥ 1/2
for j = 1, 2, ..., D

f8(x): Non-Continuous Rastrigin’s Function

f(x) =
D∑

i=1

(y2
i − 10 cos(2πyi) + 10)

yj =

 yj |yj − o1j| < 1/2

round(2yj)/2 |yj − o1j| ≥ 1/2
for j = 1, 2, ..., D

f9(x): High Conditioned Elliptic Function

f(x) =
D∑

i=1

(106)
i−1
D−1 x2

i

f10(x): Sphere Function with Noise in Fitness
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fi(x) = (
D∑

i=1

x2
i )(1 + 0.1|N(0, 1)|)

σi = 2, for i = 1, 2, ..., D

λ = [10; 5/20; 1; 5/32; 1; 5/100; 5/50; 1; 5/100; 5/100]

Mi are all rotation matrices, condition numbers are [100 50 30 10 5 5 4 3 2 2];

F25: Rotated Hybrid Composition Function without bounds

All settings are same as F24 except no exact search range set for this test function.
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Appendix B

Global Optimum for CEC’05 25
Real-Parameter Functions
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Appendix C

Solutions found by PSO-RDL for
CEC’05 25 Real-Parameter
Functions
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