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Abstract 

Assuring authenticity of packets is a critical security measure in multicast 

applications.  Due to the high overhead of signing every multicast packet with a 

digital signature, schemes employing signature amortization abate this cost by 

endorsing a block of packets at once.  By utilizing a fault-tolerant coding algorithm, 

signature amortization schemes can tolerate packet loss.  However, enhancing these 

schemes with a fault-tolerant coding algorithm introduces pollution attacks, a form of 

denial of service attack in which the adversary injects invalid symbols into the 

decoding process.  Unfortunately, previous solutions that combat pollution attack 

required time synchronization or were computationally inefficient.  To address these 

problems, we propose a multicast authentication scheme resistant to pollution attack 

that eases the time synchronization restriction and validates packets with significantly 

less hash computations. 
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1. Introduction 

Instead of individually transmitting the same data to each receiver, multicast 

communication permits one or more senders to simultaneously send the same data to 

many receivers.  This communication technique decreases the workload of the 

sender, greatly raising its efficiency.  Applications of multicast communication 

include system announcement (new keys, network time), monitoring (headlines, stock 

prices), collaboration (distance learning, multimedia conferencing, multiplayer 

gaming), and e-commerce (auctions). 

Unfortunately, a malicious user may drop, delay, or modify intercepted 

communication packets or inject their own packets into the data stream.  Security 

measures offer different benefits, such as authentication, authorization, confidentiality, 

integrity, and non-repudiation.  At a minimum, authentication prevents the attacker 

from hijacking the data stream and deceiving receivers into accepting fabricated data. 

Authentication typically employs one of two cryptographic fundamentals: 

symmetric cryptographic primitives or asymmetric cryptographic primitives.  

Approaches that use symmetric cryptographic primitives share an identical secret key 

between the sender and receiver.  For example, a sender generates a MAC (Message 

Authentication Code) as a function of the message and the secret key.  The receiver 

may authenticate the packet by calculating the MAC using the secret key.  However, 

simply employing a MAC for multicast authentication without introducing an 

asymmetric mechanism, such as delayed key disclosure used in TESLA (Timed 

Efficient Stream Loss-Tolerant Authentication) [10][15], will allow adversaries to 

easily forge a MAC by capturing a receiver and using the secret key.  Unfortunately, 

the nature of delayed key disclosure inherently leads to denial of service attacks, as 

adversaries can overwhelm the receivers’ buffers before they obtain the key to verify 
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the message.  In contrast, methods that use asymmetric cryptographic primitives 

involve a public and private key pair.  For instance, the sender generates a digital 

signature with the private key, which the receiver can verify using the public key.  

However, generating a digital signature for each message incurs a significant 

computational and bandwidth cost.  A one-time signature is a type of digital 

signature that can sign a predetermined number of messages.  Despite their speed 

and efficiency over ordinary digital signatures, schemes that utilize one-time 

signatures [3][7][11] suffer from large key sizes. 

Signature amortization defrays the cost of digital signatures by generating a 

single signature over a block of packets.  Receivers authenticate the signature after it 

has obtained all the packets in the block.  Based on a multitude of techniques, early 

signature amortization schemes offer different benefits.  For example, SAIDA 

(Signature Amortization using the Information Dispersal Algorithm) [4][8] utilizes 

fault-tolerant encoding to tolerate random packet loss.  However, they all suffer from 

denial of service attacks.  Fault-tolerant schemes, in particular, are vulnerable to 

pollution attacks, a type of denial of service attack in which an adversary disrupts the 

decoding process by introducing invalid symbols.  Previous schemes resistant to 

pollution attacks, such as PRABS (Pollution Resistant Authenticated Block Streams) 

[2] and PARM (Pollution Attack Resistant Multicast) [1], require time 

synchronization between the sender and receiver.  Unfortunately, time 

synchronization may cause a receiver to suffer significant buffer consumption, like in 

PRABS, or prevent it from recovering from an unsynchronized state, like in PARM. 

While devising a multicast authentication scheme, we must take into account the 

following design requirements: 

• Packet authenticity.  An adversary must not be able to forge his own 

packets without knowledge of the secret key chains.  Receivers must 
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validate the origin of each packet to ensure the refusal of injected or 

modified packets. 

• Packet loss robustness.  Individual authentication permits receivers to 

authenticate packets regardless of burst, correlated, or other deliberate 

loss pattern of packets. 

• Packet replay rejection.  A receiver must be able to detect and reject 

replayed packets. 

• Packet reordering robustness.  Independent validation allows receivers 

to authenticate out-of-order packets. 

• Denial of service resistance.  A lightweight and immediate 

authentication mechanism allows receivers to withstand denial of service 

attacks against their storage and computation resources. 

In this paper, we propose a multicast authentication scheme that is both 

lightweight and resistant to pollution attack.  By using one-way hash functions, our 

scheme can quickly generate and verify packets.  Since our proposed scheme can 

immediately and independently authenticate a received packet, it does not risk 

exceeding buffer space with unverified packets during a pollution attack.  Schemes 

that rely on fault-tolerant coding to provide packet loss tolerance can employ our 

approach to defend against pollution attacks.  We make the following contributions: 

• We do not assume time synchronization between sender and receiver. 

This assumption allows for immediate and individual authentication of 

received packets; therefore, our scheme can easily recover from 

disordered or lost packets. 

• We introduce a recent key storage mechanism in which the receiver 

retains a window of the w most current hash values of each hash chain.  

This mechanism permits the receiver to execute a minimal number of 



 

 4

hashes to validate slightly out-of-order packets. 

• We suggest a secure, yet economical, key chain renewal plan.  This plan 

prevents hash value reuse while avoiding unnecessary waste of unused 

hash values. 

In the following section, we discuss related work in signature amortization.  We 

also describe the problem of pollution attack in signature amortization and identify 

schemes that defend against it.  Next, section 3 details our proposed scheme by 

highlighting our scheme’s features, indicating our assumptions, and specifying its 

various phases.  In addition, we provide an analysis of our scheme and a comparison 

of its performance to PARM in section 4.  Finally, we conclude by summarizing our 

findings in section 5. 
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2. Related work 

 

We introduce the idea of signature amortization in section 2.1 and describe 

current research in this area.  In section 2.2, we define the problem of pollution 

attack, which plagues the aforementioned signature amortization schemes.  We also 

present schemes that combat pollution attack and discuss their weaknesses. 

  

2.1. Signature amortization 
 

Due to the considerable computation and communication overhead in digital 

signature based multicast authentication, signature amortization is utilized to allay 

these expenses by generating a single digital signature over many packets instead of 

each packet individually.  Signature amortization schemes differ in their 

implementation and can be classified into several categories: hash graphs, Merkle 

hash trees, and erasure codes. 

2.1.1. Hash Graphs 

Approaches that use hash graphs [6][12][14][15] construct a directed acyclic 

graph where each vertex corresponds to a packet and edges indicate hash direction.  

In addition, each vertex contains the hash value of the neighbors on its incoming 

edges.  Terminating the hash graph by endorsing it with a digital signature allows a 

receiver to authenticate a packet in the hash graph by validating the hashes along the 

path to the signature packet.  Unfortunately, signature flooding attacks render hash 

graphs vulnerable by overwhelming receivers’ computational and storage resources.  

Furthermore, hash graphs suffer from deliberate signature packet loss, which prevents 

the authentication of any packets. 
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2.1.2. Merkle Hash Trees 

A Merkle hash tree [20] is a binary tree whose leaves consist of the hash of its 

data blocks.  Nodes further up the tree comprise of the hash of the concatenation of 

their respective children.  This family of schemes [16] constructs a Merkle hash tree 

over a block of packets and utilizes a digital signature to sign the root of the tree.  

For each packet, the sender appends the verification information, which comprises of 

the signed root and its authentication path, that is, the nodes in the Merkle hash tree 

necessary to recreate the root.  By including the signed root, the receiver can 

immediately authenticate the packet.  Unfortunately, these schemes also suffer from 

signature flooding.  Moreover, each packet’s verification information grows 

logarithmically as the number of leaf nodes increases. 

2.1.3. Erasure Codes 

Schemes based on erasure codes [13][17][18][21] encode a message of length n 

blocks into a set of blocks greater than n.  If the receiver obtains a sufficient number 

of symbols, it can accurately reconstruct the message.  The rate r is the fraction of 

symbols required to rebuild the message.  Thus, erasure codes can tolerate a 

maximum loss of rn −  symbols per message.  Despite its low overhead and ability 

to tolerate random packet loss, schemes utilizing erasure codes [4][5][8] are 

susceptible to deliberate corruption of symbols. 

 

2.2. Pollution Attack 
 

A pollution attack is a type of denial of service attack in which an adversary 

injects forged symbols into the data stream.  When a receiver attempts to reconstruct 

the message, it expends considerable buffer space and computation power.  Two 

schemes have been proposed to tackle pollution attack in a signature amortization 
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scheme:  PRABS utilizes distillation codes, while PARM employs one-way hash 

chains. 

2.2.1. Distillation Codes 

Proposed by Karlof et al. [2], PRABS employs distillation codes to resist 

pollution attacks by distilling the valid symbols of an erasure encoding from the 

invalid ones.  To achieve this task, the distillation encoder accumulates a set of valid 

symbols and appends a witness to each symbol.  Because distillation codes utilize 

Merkle hash trees as one-way accumulators, the size of the witness increases 

logarithmically with the size of the accumulated set.  To recover a valid message, the 

distillation decoder uses a symbol’s witness to partition the received symbols such 

that valid symbols are separate from invalid ones.  When a partition collects enough 

symbols, it can use an erasure decoder to attempt a reconstruction of the message.  

Unfortunately, the receiver requires a large amount of storage to temporarily buffer 

received symbols.  Since the receiver has no knowledge of the root of the Merkle 

hash tree in advance, it must retain valid and invalid symbols alike.  

2.2.2. One-Way Hash Chains 

A one-way hash function [19] is a cryptographic mechanism that can quickly and 

easily calculate a hash value; however, it is infeasible to compute the original message 

using the hash value.  Given a message M of variable length, its fixed-length hash 

value is generated by a hash function H of the form )(MHh = .  A secure hash 

function must satisfy three critical properties: 

• One-way.  For any given hash value y, it is computationally infeasible to 

find x such that yxh =)( . 

• Weak collision resistance.  For any given value x, it is computationally 

infeasible to find xy ≠  with )()( yhxh = . 

• Strong collision resistance.  It is computationally infeasible to find any 
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pair ),( yx  such that )()( yhxh = . 

To create a one-way hash chain, the output of a hash function is repeatedly 

hashed until achieving the desired length of the chain.  Based on a set of one-way 

hash chains, Lin et al. [1] designed a signature amortization scheme, PARM, which 

augments each packet with a set of hash values as its verification information.  

Unlike PRABS, this scheme consumes constant communication overhead by 

assuming time synchronization between sender and receiver.  A lack of 

synchronization, however, reduces the ability of PARM to instantly validate a 

received packet or even prevents its recovery to normal operations.  For long hash 

chains, moreover, PARM expends significant computation power during validation as 

it recursively hashes the verification information. 
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3. Proposed scheme 

 

In section 3.1, we describe the features of our proposed scheme.  Next, we 

define our assumptions in section 3.2.  Finally, section 3.3 details the operations of 

our scheme’s four phases. 

 

3.1. Features 

 

We devise a multicast authentication scheme resistant to pollution attack that 

remains computationally lightweight through the use of one-way hash functions for its 

cryptographic primitive.  Unlike PRABS, our scheme does not require the receiver to 

buffer received packets, regardless of its validity, before authentication.  While 

PARM improves upon PRABS because it can immediately validate a packet, it 

assumes time synchronization between sender and receiver.  Since our scheme does 

not require time synchronization, it can instantly and independently authenticate 

out-of-order packets.  In addition, the lack of time synchronization allows our 

scheme to recover in the event that packets are lost.  Furthermore, our scheme saves 

the receiver considerable computational power: packets arriving in order cost only 

one hash computation per segment of evidence while packets arriving just slightly 

out-of-order require just a few additional hash computations per segment of evidence.  

Nevertheless, receivers can still validate packets that are significantly out-of-order 

using the original public key.  Finally, our scheme provides a key renewal 

mechanism that prevents the reuse of any hash values.  In addition, we can assure 

that at least half the length of each key chain will be used in the worst-case scenario. 
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3.2. Assumptions 

 

We assume the sender is a relatively powerful device that cannot be 

compromised.  A key distribution mechanism is required to securely deliver the 

public key to all the intended receivers.  Moreover, the receivers are guaranteed to 

obtain the new public key during the key renewal phase. 

 

3.3. Proposed Scheme 

 

In the following sub-sections, we detail the four phases of our scheme: 

initialization, evidence generation, evidence validation, and key renewal.  We 

summarize our notation in Table 3-1. 
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Table 3-1. Parameter Definitions 

j
iC  j-th current TSK element of the i-th TSK chain 

Ei i-th Evidence 

E Evidence of a packet 

P Packet 

Q Sequence number of a packet 

Ri i-th Random number 

Si i-th Segment 

Ui i-th Usage number 

b Size of segment (bits) 

k Number of TSK chains 

l Length of a TSK chain 

n Size of random number / TSK element (bits) 

p Number of segments 

q Number of sequence numbers 

w Number of current TSK elements per TSK chain 

 

3.3.1. Initialization Phase 

 

During the initialization phase, the sender generates a temporal key pair 

consisting of a temporal public key (TPK) and a set of temporal secret key (TSK) 

chains.  Similar to asymmetric key encryption, the sender uses the TSK chains to 

generate evidence for a packet, while the receiver validates the evidence with the 

TPK. 

To create a temporal key pair, the sender first randomly generates k n-bit random 
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numbers ],,,,[ 1210 −kRRRR K . Next, it recursively applies the one-way hash function 

h to each random number, constructing a set of k hash chains of length l.  Thus, the 

first TSK chain, 0TSK , contains the values 

)](),(,),(),(,[ 0
1

0
2

0
2

0
1

0 RhRhRhRhR ll −−K , while the last TSK chain, 1−kTSK , has 

values of )](),(,),(),(,[ 1
1

1
2

1
2

1
1

1 −
−

−
−

−−− k
l

k
l

kkk RhRhRhRhR K .  The TPK consists of 

the l-th hash of each random number, that is, )](,),(),(),([ 1210 −k
llll RhRhRhRh K .  

Figure 3-1 illustrates the process of generating the temporal public key and the set of 

temporal secret key chains.  In this figure, the arrows indicate the direction of the 

one-way hash function during the initialization phase.  However, we shall spend the 

key chain in the opposite direction throughout the evidence generation phase. 
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. . .

. . .

. . .

. . .

 

Figure 3-1. Temporal Key Pair Generation 

 

We shall use the notation y
xTSK  to represent individual hash values of the TSK 

chains, where x and y denotes the TSK chain and the number of recursive hashes 

required to reach the TPK, respectively.  For example, the hash element l
kTSK 1−  is 

part of the last TSK chain and must be recursively hashed l times to verify it is 

equivalent to the TPK.  We may also write the last TSK chain as 

],,,,,[ 1
1

2
1

2
1

1
11 −−

−
−

−
−− kk

l
k

l
k

l
k TSKTSKTSKTSKTSK K .  Correspondingly, we identify 

individual components of the temporal public key by xTPK , where x denotes the 

chain.  Therefore, we may represent the TPK as ],,,,[ 1210 −kTPKTPKTPKTPK K .  
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Error! Reference source not found. summarizes our notation. 

 

. . .

Temporal Public Key

Temporal Secret Key chains

Random Numbers

. . .

. . .

. . .

. . .

Hash Values

. . .

1
0
−lTSK 1

1
−lTSK 1

2
−lTSK 1

1
−
−

l
kTSK

lTSK0
lTSK1

lTSK2
l
kTSK 1−

2
0TSK 2

1TSK 2
2TSK 2

1−kTSK

1
0TSK 1

1−kTSK

0TSK

0TPK 1TPK 2TPK 1−kTPK

1TSK 2TSK 1−kTSK

1
2TSK 1

2TSK

. . .2
0
−lTSK 2

1
−lTSK 2

2
−lTSK 2

1
−
−

l
kTSK

 
Figure 3-2. Temporal Key Pair Notation 

 

Prior to regular communications with receivers, the sender must securely 

distribute the temporal public key to all the intended receivers.  To demonstrate the 

authenticity of the TPK, the sender should provide a digital signature or some other 

means of authentication.  In addition to the TPK, the receivers will save a small 

window of the latest hash values for each TSK chain in the current elements table.  

Error! Reference source not found. provides an example of a current elements table. 
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. . .

. . .

. . .

. . .

6
2TSK

5
2TSK

3
1

−
−

l
kTSK

2
1
−
−

l
kTSK

8
1
−
−

l
kTSK

4
1
−
−

l
kTSK

. . .

9
2TSK

0TSK 1TSK 2TSK 1−kTSK
9

0
−lTSK 14

1TSK
8

0
−lTSK

7
0
−lTSK

5
0
−lTSK

 
Figure 3-3 Current Elements Table 

 

The sender will also maintain a copy of the TPK as a reference in the event a 

receiver requests the TPK.  Furthermore, the sender will store the set of temporal 

secret key chains and use them as a lookup table during the evidence generation phase.  

Finally, the sender must keep track of a usage table that tallies the number of times 

each TSK chain has been used.  Figure 3-2 depicts a sample usage table. 

 

Usage Table
TSK0 TSK1 TSKk-1

. . .TSK2
l-3 14 l-1. . .0

Chain Index
Usage Amount  

Figure 3-4 Usage Table 

 

3.3.2. Generation Phase 

 

Before multicasting a packet to its receivers, the sender must modify the packet 

with a sequence number to thwart replay attacks.  It must also append evidence, a 

piece of validation information, which allows the recipient to verify the authenticity 

of the packet.  Because each packet is affixed a unique evidence, the generation 

phase must only involve lightweight computation. 

To generate the evidence E of a packet P and its sequence number Q, the sender 

utilizes a one-way hash function h to perform a hash.  Next, the sender divides the 
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packet into p segments ],,,,[ 1210 −pSSSS K  of at most b bits in length, where 

⎡ ⎤)lg(kb = .  By interpreting a segment as an integer, the sender can index a specific 

TSK chain for each segment.  Subsequently, the sender consults the usage table to 

determine the number of times each TSK chain has been used.  It will select the next 

unused hash value for each segment’s corresponding TSK chain and append them as 

the packet’s evidence.  In addition, the sender will increment and include the usage 

number of each TSK chain selected as part of the evidence.  This permits receivers 

to immediately validate received packets despite lost or out-of order packets.  Lastly, 

the sender will update its usage table as hash values are expended. 
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P

S0

E0 || U0 || E1 || U1 || … || Ep-1 || Up-1

Evidence & Usage

Usage Table

h(P||Q)
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P
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. . .
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−lTSK 2
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−
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TSK chains
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Figure 3-5. Evidence Generation 

 

Figure 3-5 illustrates the operations of the evidence generation phase.  For 

example, the sender hashes a packet P and its sequence number Q by )||( QPh  and 

then partitions it into p segments.  Taken as an integer, segment S0 corresponds to the 

third TSK chain.  By examining the usage table, the sender can determine that 

segment S0 has never been hashed before; thus, it selects element )( 2
11

2 RhTSK l−= .  
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The complete evidence constitutes the corresponding hash value and usage quantity of 

each of the p segments.  After attaching the sequence number and evidence to the 

packet, the sender can finally distribute the packet to its receivers. 

 

3.3.3. Validation Phase 

 

Upon obtaining a packet, the receiver can authenticate it using the information 

enclosed in the evidence.  In the worst-case scenario, the receiver validates the 

evidence by recursively hashing each segment of evidence to reach the TPK.  

However, the optimal case involves a window of current hash values to calculate a 

minimal number of hashes.  The optimal case arises when packets arrive in order (a 

single hash calculation per segment of evidence) or slightly out-of-order (a small 

number of hash calculations per segment of evidence). 

As depicted in Figure 3-6, the process of verifying a packet’s evidence in the 

worst case is similar to that of generation.  To determine the validity of a packet, the 

receiver must construct and compare two sets of data: the TPK set which involves the 

public key and the evidence set which involves the hash values contained within the 

evidence.  When a packet arrives, the receiver separates the packet P and its 

sequence number Q from its evidence E.  To build the TPK set, the receiver first 

hashes the packet with the hash function h.  It then splits the outcome into p 

segments of at most b-bits in length and treats the resultant integers as indexes to the 

hash chains.  Next, the receiver selects the individual components of the TPK 

corresponding to the index of each segment.  For instance, the receiver chooses 

2TPK  given segment 20 =S .  When generating the hash set, the receiver hashes 

each element of the evidence ],...,,[ 110 −pEEE  by the corresponding usage amount 
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],...,,[ 110 −pUUU .  Thus, the receiver computes the evidence set by 

)](),...,(),([ 110
110

−
−

p
UUU EhEhEh p . 

 

)( 0
0 EhU )( 1

1 EhU )( 1
1

−
−

p
U Eh p

0STPK
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0TPK 1TPK 2TPK 1−kTPK

 

Figure 3-6. Worst-case Verification 

 

Unlike the worst-case scenario, the receiver does not need to recursively hash a 

segment entirely to the TPK component in the optimal case.  Instead, the receiver 

need only hash a segment to the nearest validated hash value since the receiver buffers 

the latest accepted w hash values for each hash chain.  Error! Reference source not 

found. illustrates the verification of evidence in the optimal case.  As described 
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previously, the receiver validates a packet by separating the packet and sequence 

number from the evidence.  It then hashes the packet using the hash function h.  

After partitioning )||( QPh  into p segments, the receiver interprets each segment as 

an integer index to the hash chains.  Given a selected hash chain, the receiver checks 

the current elements table to determine if a previous validated hash value exists in the 

window.  If successful, the receiver hashes the corresponding element of the 

evidence to the nearest hash value.  Let y
xTSKE = , yU = , and z

xTSK  be the 

closes hash value in the buffer, then the receiver computes )( y
x

zy TSKh −  to verify E.  

For example, given l
kTSKE 11 −=  and lU =1 , the receiver consults the table of 

current elements and finds that 2
1

−
−

l
kTSK  is the closes hash value in the buffer.  Thus, 

the receiver needs to only recursively hash E1 twice, that is, 

2
11

2
1

)2( )()( −
−−−

−− == l
k

l
k

l
k

ll TSKTSKhTSKh . 
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Figure 3-7 Optimal Case Verification 

 

The receiver accepts packets whose segments completely match its 

corresponding TPK components or latest hash elements.  Otherwise, the evidence 

fails the evidence check, and the receiver immediately rejects the packet. 
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3.3.4. Key Renewal Phase 

 

Without the TSK chain, it is infeasible for an adversary to augment packets with 

forged verification information that a receiver will accept.  Nevertheless, our scheme 

must not reuse any hash values of the TSK chain.  Once the sender exhausts a key 

chain, it will search for other chains which have used over half its key space and 

regenerate new key chains to replace them.  Not only does this plan prevent the 

sender from reusing hash values, but it also strikes a balance between the number of 

wasted hash values and the number of key chain renewals. 
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4. Evaluation 

 

Now that we have presented a detailed description of our scheme, we shall 

provide an analysis per our original requirements in section 4.1 and compare its 

performance to PARM in section 4.2. 

 

4.1. Protocol Analysis 
 

We analyze the security of our scheme in terms of its ability to authenticate 

packets, resume from packet loss, reject replayed packets, recover from reordered 

packets, and resist pollution attacks. 

 

4.1.1. Packet Authenticity 

Given any received packet, a receiver can determine the authenticity of the 

packet.  We assume every receiver possesses an authentic copy of a legitimate 

sender’s temporal public key and that h is a collision-resistant hash function.  To 

successfully forge a packet by injection or modification, an adversary must either 

obtain the set of temporal secret key chains or perform a brute force attack on the hash 

function to find collisions.  In our scheme, only the sender has knowledge of the set 

of TSK chains.  Since the security strength of a hash function against a brute force 

attack depends solely on the length of the resultant hash value, our scheme provides a 

strong collision resistance of )2/(2 np , where p is the number of hash values per packet 

and n is the number of bits per hash value.  For a hash function to have strong 

collision resistance, it is computationally infeasible to find any pair ),( yx  such that 

)()( yhxh = .  Therefore, it is impractical for an adversary to inject new packets or 

modify existing ones. 



 

 24

4.1.2. Packet Loss Robustness 

Although a network may inadvertently lose packets or an adversary may 

deliberately drop packets, a receiver can continue to verify other received packets.  

Because each packet’s verification information contains both the hash value and the 

amount of hash calculations per hash value, a receiver can validate each packet both 

immediately and independently of other packets.  Thus, the loss of packets does not 

affect the ability of the receiver to check the authenticity of other packets. 

4.1.3. Packet Replay Rejection 

Because an adversary can collect packets and replay them later, a receiver must 

be able to identify a duplicate packet and discard it.  In our scheme, each packet 

contains evidence of each packet.  Before evidence generation, we append a 

sequence a number to each packet.  We then generate the evidence over both the 

content of the original packet and its sequence number.  Therefore, the receiver 

concurrently validates the sequence number when it checks the authenticity of the 

packet.  Since the receiver keeps track of spent sequence numbers, it can expose 

replayed packets. 

4.1.4. Packet Reordering Robustness 

Due to the exposed nature of networks, an adversary can intercept and reorder 

packets before delivering them to the receiver.  The receiver must retain the ability to 

immediately validate any packet even though it receives packets out-of-order.  With 

the exception of the TPK, which we assume the receiver possesses, a packet’s 

verification information is self-contained.  Based upon the contents of the packet, a 

receiver can calculate the index of each segment of the evidence.  Since the evidence 

contains both a segment’s hash value and the number of times to execute the hash, the 

receiver can individually authenticate each packet.  Therefore, a receiver can verify 

reordered packets without delay. 
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4.1.5. Denial of Service Resistance 

An adversary can initiate various types of denial of service (DoS) attack against 

its target, depending on which resource of its target it is attempting to deplete.  In a 

network environment, the adversary can attack the sender, the network infrastructure, 

or the receiver.  Because the sender must deliver the current temporal public key to 

its receivers, an adversary can launch a DoS attack against the sender by repeatedly 

requesting the TPK.  Secure distribution of the TPK is beyond the scope of this work, 

thus, we do examine this situation.  Moreover, we also do not consider DoS attack 

which exhaust network bandwidth.  However, we must investigate the possibility of 

an adversary launching a DoS attack on the receiver’s computational and storage 

resources.  Since our scheme only relies on fast one-way hash functions for its 

cryptographic primitive, a receiver can quickly verify a received packet’s evidence.  

In addition, a receiver does not buffer forged packets since it can immediately check 

the packet’s validity with the evidence.  Thus, our scheme can resist DoS attacks that 

try to consume a receiver’s computation and storage resources. 

 

4.2. Overhead Comparison 
 

In this section, we compare the computation, communication, and storage costs 

of our scheme to PARM. 

4.2.1. Computation 

To verify a packet, PARM must hash each segment of a packet’s evidence the 

number times specified in the usage table.  Thus, validation consumes ∑
−

=

+
1

0
1

p

i
iU  

hash operations per packet.  Because the receiver recalculates hash operations for 

each packet, this technique wastes a considerable number of computations.  This 

trend is especially detrimental towards the end of a long hash chain.  Under the 
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best-case scenario, our scheme simply requires one hash operation per packet segment.  

That is, verifying a packet uses p+1  hash operations.  While operating in near 

optimal conditions in which packets arrive slightly out-of-order, our scheme requires 

significantly fewer computations than PARM, since it only hashes each segment of 

evidence a few times.  A receiver need only hash each segment to the nearest hash 

value within the window of current hash values.  For all remaining situations, our 

scheme expends the same amount of computation cost as PARM. 

4.2.2. Communication 

The communication overhead per packet, which consists of the evidence, 

remains constant in size for both PARM and our scheme.  The overhead of PARM 

depends on the number of segments p per packet and the size of each TSK element n, 

that is, a cost of np *  bits.  Our scheme requires an additional ⎡ ⎤)lg(* lp  bits for 

the usage number of each segment and ⎡ ⎤)lg(q  bits for the sequence number.  Thus, 

the total overhead per packet is ⎡ ⎤ ⎡ ⎤)lg())lg((* qlnp ++  bits.  Since the additional 

overhead grows logarithmically, it is not a significant increase. 

4.2.3. Storage 

In both PARM and our scheme, the sender stores a set of temporal secret key 

chains.  The sender generates k chains of length l with n-bits per TSK elements; thus, 

the set of TSK chains totals nlk **  bits of storage.  Moreover, the sender tracks 

the usage amount of each TSK chain; therefore, both schemes require ⎡ ⎤)lg(* lk  bits 

of additional space. 

These two schemes differ in the size of the space used by the receiver.  To store 

the TPK in PARM, the receiver uses a buffer size of nk *  bits.  Because a receiver 

must also remember the number of times each TSK chain is used, it must set aside 

⎡ ⎤)lg(* lk  bits of space.  In contrast, a receiver implementing our scheme does not 

keep track of a usage table.  On top of the storage needed for the TPK, however, the 
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receiver must buffer nkw **  bits of space for the window of w current hash values 

per chain.  To prevent replay attacks, it also must set aside ⎡ ⎤)lg(* qq  bits to 

remember the expended sequence numbers.  Because PARM requires time 

synchronization between the sender and receiver, its receiver cannot validate packets 

until it obtains all previous packets, which can lead to buffer overload.  Conversely, 

our scheme allows a receiver to immediately authenticate any packet it receives 

despite out-of-order or lost packets. 
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5. Conclusion 

 

In this paper, we propose a multicast authentication scheme that effectively 

resists pollution attacks, a powerful class of denial of service attack.  Due to its 

unsynchronized nature, our proposed scheme can readily tolerate packet loss or 

out-of-order packets by independently verifying received packets.  Therefore, the 

receiver has no need to buffer packets while awaiting validation.  Additionally, our 

scheme utilizes hash functions to maintain a lightweight computational overhead 

during evidence generation and verification.  Finally, we suggest a key renewal plan 

that guarantees no reuse of hash values, yet curtails the waste of unused keys.  By 

employing our scheme, other signature amortization schemes that depend on 

fault-tolerant algorithms can successfully resist pollution attacks and accept packet 

loss. 

Based upon our requirements of a multicast authentications scheme, we provided 

a protocol analysis in terms of packet authenticity, packet loss robustness, and denial 

of service resistance.  Furthermore, we evaluated our scheme against PARM, 

illustrating its improved computational performance while offering an enhanced 

feature set. 
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