
Maximum Discrimination Spatial Filter for
EEG-Based Brain-Computer Interface Systems

A thesis presented

by

Sheng-Han Lin

to

Institute of Computer Science and Engineering

College of Computer Science

in partial fulfillment of the requirements

for the degree of

Master

in the subject of

Computer Science

National Chiao Tung University

Hsinchu, Taiwan

2006



Maximum Discrimination Spatial Filter for EEG-Based Brain-Comp uter Interface

Systems

Copyright c© 2006

by

Sheng-Han Lin



Abstract

Over the past decades, people have begun to explore a new communication channel

directly between human brain and computers. The brain-computer interface (BCI) has the

potential to enable severely disable people to drive computers directly by brain activity

rather than depend on nerves and muscles. Research into BCI systems mainly involved

recording of electroencephalographic (EEG) signals usingsurface electrodes. By recog-

nizing the pattern of the brain activities, the system translates the messages encoded in the

brain activities into computer instructions.

In this thesis, we proposed a new spatial-filter-based feature extraction method using the

concept of maximum contrast beamformer. The beamformer based on overlapping sphere

head model. It can reconstruct the activation magnitude of the target source and maximize

the difference between specific brain states. In asynchronous BCI systems, it is hard to de-

cide whether the target brain source is in active state. Our method successfully maximizes

the variance of signals when subject is performing motor imagery tasks and suppresses the

interferences in resting states. We also verified the stability of the spatial filter. After mea-

suring the subject’s sensor position, we applied the model to beamforming method with

six data sets recorded in different time. We evaluated the stability of the spatial filter by

calculating the correlation coefficient between them. Finally, we used sample-by-sample

analysis to simulate an asynchronous BCI system and some issues about left/right hand mo-

tor tasks are discussed in the end of this thesis. After the active state was recognized, we

proposed two procedures for classifying different tasks. We proposed a spatial filter design

idea by generalizing Fisher linear discriminant analysis and applied it in the procedures.
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Chapter 1

Introduction



2 Introduction

1.1 Brain-Computer Interface (BCI) System Overview

Over the past 20 years, people have more knowledge and powerful tools to explore

the undiscovered area of human brain. In addition, by the growing concern of the needs

and potentials of people with disabilities, more and more people feel that monitoring brain

activities or other measures of brain function might provide a new non-muscular channel for

sending messages and commands to the external world - a brain-computer interface [29].

A general BCI flowchart is in Fig 1.1 and a common BCI system environment is illustrated

in Fig 1.2.

Figure 1.1:General BCI Flowchart. ”Signal acquisition”, ”Signal preprocessing”, ”Feature extrac-

tion”, ”Translation algorithm” are basic components of a BCI system. After translated the brain activities into

device commands, the subject can control machines. And the feedback let the subject to adjust his situation

dynamically.

In sections 1.1, we will briefly introduce how the system usedin medical works. And

in section 1.2, basic categories of current BCI systems will beillustrated.

1.1.1 Options for Restoring Function to Those with Motor Disabilities

Many different disorders will disrupt the neuromuscular channels. For instance, amy-

otrophic lateral sclerosis (ALS), brainstem stroke, brainor spinal cord injury, cerebral

palsy, muscular dystrophies, multiple sclerosis, and numerous diseases impair the neural
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Figure 1.2:Brain-Computer Interface Devices.

pathways that control muscles or impair the muscle themselves [29]. Current assistant

methods such as eye tracking, voice control are also finding asolution to improve the life

quality of the disabled people. In recent years, BCI systems are developed in several ways

such as P300 potentials, mu and beta rhythm, slow cortical potentials or ECoG recorded

by implanted electrodes. The goal of these systems is to provide a communication inter-

face for severely disabled people to drive computer directly by brain activities rather than

physical means.

1.1.2 Current BCI Systems

Methods for Monitoring Brain Activity

In present days, ways to observe the brain activities have been developed. Non-invasive

techniques such as functional Magnetic Resonance Imaging (fMRI), magnetoencephalog-

raphy (MEG) and Positron Emission Tomography (PET) are usedto monitor brain activ-

ities. On the other hand, invasive methods such as ECoG is alsoa method to monitor

brain activities. However, fMRI, MEG, PET and ECoG are still technically demanding

and expensive [29]. Generally speaking, these methods are not portable and not convenient

enough for a patient to use in their daily lives and living environments.
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Electroencephalography

In our research, we use electroencephalography (EEG) as themain analysis tool. Com-

paring to other measurements, EEG is not only an non-invasive method but also has higher

time resolution and is more cheaper and portable.

The spatial resolution of EEG depends on the number of electrodes. The distribution

of the electrodes is based on international 10-20 system. The ”10-20” means the relation

between the location of electrodes and the underlying area of cerebral cortex.

Figure 1.3: International 10-20 System. The ”10” and ”20” represent the distance between the

electrodes. The code ”F” for frontal, ”C” for central, ”P” for parietal, ”O” for occipital and ”T” for temporal

which denotes the area of human brain. (source: http://faculty.washigton.edu/chudler/1020.html)

Though using electroencephalography is a basic technique to monitor the brain activi-

ties, the details to construct a BCI system is still an open issue. According to the different

electrophysiological signals that used by researchers, BCI systems can be divided into 5

groups. The first group, those using VEPs, are dependent BCIs (i.e. they depend on using

muscular control of gaze direction). The other 4 groups, those using slow cortical poten-

tials, P300 evoked potentials, mu and beta rhythms, and cortical neuronal action potentials,

are called independent BCIs. For these analyzing techniques,EEG-based brain-computer

systems are always facing the following problems:

1. The amplitude of the recorded EEG signals is about10−6 volts, which is very small

and sensitive to external interference.
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2. The sampling rate is high in BCI systems, signal processing algorithms are some-

times complicated or time-consuming.

3. User’s self-generated brain activities may blur the event-related activities thus mis-

lead the recognition procedures.

4. In biomedical researches, the creature activities may varies largely. The brain pattern

is always inconsistent even under the same environment and experiment.

Some details for related works will be shown in the next chapter.

1.2 Thesis Scope

In this thesis, we proposed methods in designing spatial filters which has the ability

to maximize the signals of different brain states at certainbrain area. In order to achieve

these requirements, we proposed ideas in designing the spatial filter using beamforming

techniques. It is an algorithm to estimate the source activities by MEG/EEG recordings.

Based on linear constrained and minimum variance [28], we decided the dipole orientation

by maximizing the signal variance between active and resting state. Furthermore, we apply

the filter to EEG experiments and evaluate the performance ofthe filter. In the following,

we briefly describe the main parts in our thesis.

1. Designing spatial filters: We proposed a spatial filter which is helpful to recognize

the active states in asynchronous BCI systems. The spatial filter was designed by

maximum contrast beamforming method which can effectivelyincrease the variance

of EEG signals corresponding to specific motor task and decrease the variance of

EEG signals during resting states. It suppresses the interference from other brain

areas. In designing procedure, we use morlet wavelet transform to analyze the time-

frequency map of the EEG signals. By this analysis, we decide the dominant fre-

quency band and the time period of the active state (i.e. the brain source is in acti-

vation) and control state (i.e. resting) of the signals. Then a forward model of the

subject will be estimated and the power map of the whole brainwill be calculated.
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By this calculation, we decide the optimal source location and the spatial filter will

be constructed.

2. Performance evaluation: Since the spatial filter is designed to maximize the dif-

ference between active and control state signal variance. The averaged variance of

the signal will be illustrated and we will discuss the ability of the filter to suppress

the noise from other brain areas. Furthermore, in order to verify the practicability,

we compare the spatial filter designed by different signal source under the same for-

ward model. The correlation coefficient of the spatial filters will be calculated for

evaluating the stability using maximum contrast beamforming method.

3. Simulation of an asynchronous BCI: In the simulation of asynchronous BCI sys-

tem, we use sample-by-sample analysis [26] for the evaluation of the performance.

In our work, we implemented the program for analyzing the brain signals by C/C++

and MATLAB.

1.3 Thesis Organization

In Chapter 2, we introduce the background knowledge about human brain and brain-

computer interfaces. By reviewing some current BCI systems, wefurther discuss the role

of spatial filter in signal processing procedure and discussthe designing ideas of the spatial

filters. Since the goal of this thesis is to construct a spatial filter for discriminating different

brain states, details of the filter will be illustrated in Chapter 3. The experiment results

using our filter are shown in Chapter 4, including offline analysis and the simulation of

an asynchronous BCI system. Finally, conclusions and discussions are in Chapter 5 for

summarizing these methods introduced or proposed in our thesis.
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2.1 Background Neuropsychology and Neurophysiology

In this section, we will mention about some basic issues about neuropsychology and

neurophysiology. The relevant issue could be resulted fromthe relation between our mental

state and our brain activities. However, after recording our brain signals in EEG, the signal

must be translated into device commands. During this process, we also concern about the

voluntarily control of their own brain activities. We will introduce the brain structure first

and then discuss some mental tasks that used in BCI systems later.

2.1.1 Function of the Brain

Human brain structure can be divided into several areas. Some of the areas are in

Table 2.1. In these structures, we focus on the 2-4 mm thick gray matter on the surface of

the cerebrum. In the past decades, doctors and researchers have been dedicated themselves

to study the functions of human brain. Up to now, the functional mapping of our brain

can be illustrated in Figure 2.1. Motor cortex (the green area) concerned with controlling

voluntary movements, by receiving signals from thalamic nuclei and sending output to

motor control neurons in the brain stem and spinal cord. Sensorimotor cortex (the yellow

area) is located prior to the central sulcus. This area responses when receiving stimulus

from the external environment. Another cortex often used inBCI system is located on

occipital lobe and relevant to visual stimulus.

Most of the time, subjects in BCI experiments are asked to produce and control changes

in particular EEG signals by thinking about specific things or by concentrating on willing

a cursor to move. Different tasks consequently activate different cortex areas. In recent

studies, motor cortex acts an important role in experiments. One reason is that it controls

movement of our body and directly matches the motivation that people design the non-

muscular interface for disabled patients. Besides, it is a common activity in our life and

the corresponding activation is concentrated on specified area. Furthermore, the right side

activities of our body are basically corresponding to our left hemisphere and vice versa.

These characteristics are good properties in analyzing thebrain activities that encoded in

brain signals.
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Figure 2.1: Brain function map. (source: http://members.shaw.ca/hidden-talents/brain/113-

maps.html)
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Brain structure Function

Cerebral cortex The outermost layer of the cerebral hemisphere is composed of

gray matter. Cortices are asymmetrical. Both hemispheres are

able to analyze sensory data, perform memory functions, learn

new information, form thoughts and make decisions.

Left hemisphere Sequential Analysis: systematic, logical interpretation of infor-

mation. Interpretation and production of symbolic informa-

tion: language, mathematics, abstraction and reasoning. Memory

stored in a language format.

Right hemisphere Holistic Functioning: processing multi-sensory input simulta-

neously to provide ”holistic” picture of one’s environment. Visual

spatial skills. Holistic functions such as dancing and gymnastics

are coordinated by the right hemisphere. Memory is stored inau-

ditory, visual and spatial modalities.

Corpus callosum Connects right and left hemisphere to allow for communication

between the hemispheres. Forms roof of the lateral and thirdven-

tricles.

Table 2.1:Basic brain structures. (source: http://www.waiting.com/brainfunction.html)

2.1.2 Event-related Brain Signals

The history of event-related brain signals might be traced back to 1930 since Berger

found that some event could block the ongoing alpha activities [7]. It is about 50 years

later than the beginning of the history of cognitive sciencesince Wundt established the first

laboratory of psychology in 1879. Later in 1947, Dawson usedthe skill that overlaid the

evoked potential (EP) and create the new generation of neural electrophysiology. In the

follow paragraphs, event-related potentials (ERP) and event-related desynchronization and

synchronization (ERD/ERS) techniques will be illustrated [3].
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Event-related Potentials

ERP is usually defined by ”The potential variation in brain evoked by specified stimulus

from external world.” The ”specified stimulus” may be the start of the stimulus or the draw-

back of the stimulus. In 1951, Dawson first averaged the recordings of evoked potentials to

analyze the signals. This method is also called ”Average Evoked Potentials (AEP)” [3].

The evoked potential of EEG is about 2-10µV [3] and hard to be observed in the

ongoing signals. However, the response time and waveform ofthe event-related potential

is fixed. With the ongoing background EEG treated as a zero-mean noise, we can increase

the signal-to-noise ration1/2 times after averaging EEG trials. Some common ERPs are

used in BCI systems, such as P300 and visual-evoked potential (VEP). Some details are as

below.

1. P300: P300 was found by Sutton et al. in 1965 [3]. It was initially found a positive

peak appears 300ms after the onset time. This component could be detected under

an oddball paradigm and the magnitude of the peak is in proportion to the effort

of mental activity. The properties of P300 have described inmany papers through

different points [8]. Some BCI systems implemented by P300 arealso discussed

in [6]. Fig 2.2 is an typical P300-based BCI system, subject wastold to gaze at the

target word, the matrix flashes once a row and column. The P300ERP was found at

Cz and Pz and the largest magnitude evoked while the target word is hit.

Figure 2.2:Typical P300-based BCI system.”ERP’s at the midline electrodes sites recorded from

the wheel-chaired subject and the able-bodies subjects. The data associated with the three types of trials are

superimposed.”
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2. VEP and SSVEP: Visual evoked potential (VEP) is a typical ERP and is easy to be

detected when the eyes receive a flashlight stimulus. The response time is about 100-

200ms after the visual task. Moreover, if the flashlight is not just once but appeared

continuously and regularly, then steady-state visual evoked potential (SSVEP) will

be generated. A typical experiment is a phase-reversing checkerboard pattern [11].

If the checkerboard reversed in certain frequency, we can see a component on the

frequency in power spectrum density of the recorded signals. In Fig 2.3, the subject

gaze at the center of monitor which the two checkboards will switch between each

other at a random time and cause a ”flash” event.

Figure 2.3:Visual evoked potential experiment.The signal is averaged by 100 trials, VEP was

found at about 100ms where 0ms is the time the picture performs a flash.

Event-related Desynchronization and Synchronization

EEG activities could be divided into two categories -phase-lockedand non-phase-

locked. Phase-locked means that the responded waveform of the event-related tasks is

fixed, for instance, P300 has a positive peak at 300ms after the event. All types of event-

related potentials is the former case [9]. A typical non-phase-locked event is motor-related

tasks, the power of mu-rhythm will decrease during the planning stage. Opposite to phase-

locked potentials, this kind of phenomenon will keep a few seconds but not only ”several

peak at several time”. These time-locked but non-phase-locked signals can not be extracted

by linear operations such as addition, subtraction or averaging, thus frequency analysis is

required [7].
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Event-related desynchronization and synchronization (ERD/ERS) researches were pro-

posed by Pfurtscheller at 1977. By the definition in [7], ERD/ERSis described below.

1. when referring to ERD/ERS of the EEG/MEG it is necessary to specify the frequency

band;

2. the term ERD is only meaningful if the baseline measured someseconds before the

event represents a rhythmicity seen as a clear peak in the power spectrum. Similarly,

the term ERS only has a meaning if the event results in the appearance of a rhythmic

component and therewith in a spectral peak that was initially not detectable (Lopes

da Silva and Pfurtscheller, 1999).

Basically, there are two methods in calculating ERD -bandpower methodandintertrial

variance method. The former is for both phase-locked and non-phase-locked EEG activi-

ties, the later is for non-phase-locked signals only. Details of these methods could be found

in [9] and thus not illustrated here.

2.2 BCI Research and Associated Motor Related Tasks

Since voluntary control of brain activity is always an essential condition for BCI sys-

tems, choosing a useful task is an important issue. Discussion about the events were mainly

focused on motor cortex and motor related task in several present-day BCI systems, such

as BCI2000 by Wadsworth center in New York and Graz BCI system implemented by the

Austrian team.

2.2.1 Wadsworth BCI

Studies at the Wadsworth Center over the past 20 years have shown that people with

or without motor disabilities can learn to control the amplitude of µ and β rhythms in

EEG activity recorded from the scalp over sensorimotor cortex and can use that control to

move a cursor on a computer screen in one or two dimensions [30]. 8-12 Hzµ and 13-28

Hz β rhythms are produced in sensorimotor cortex and associatedareas. Their research
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concentrated on defining the topographical, spectral, and temporal features of mu- and

beta-rhythm control and optimizing the mutually adaptive interactions between the user

and the BCI system. The analysis relies largely on the measurer2 [30], the proportion of

the total variance in mu- or beta-rhythm amplitude that is accounted for by target position

and thereby reflects the user’s level of EEG control. In recent years, they developed a

general-purpose BCI system called BCI-2000 and have made it available to other research

groups, which will be briefly described in the following paragraphs.

Essential Features

In practical BCI system design, there are many problems must beconcerned. Wadsworth

Center have brought up some important concepts and some experience during BCI2000

system design [24]. The essential features in designing thesystem are:

1. Common Model: A model with four modules including source, signal processing,

user application and operator interface. Modules can communicate through network

based on TCP/IP.

2. Interchangeability and Independence: The goal of this feature is to design a system

which maximize the independence among the components. In other words, when

changing a component, it will not effect other components.

3. Scalability: Scalability means that the modules do not put constraints on the para-

meters such as sampling rate or channel numbers.

4. Real-Time Capability: A real-time BCI system have to provide the ability to process

the signal in a very short time. In BCI2000, they minimize the effect on response

time of the operating system or other devices, which may cause delay.

5. Support and Facilitation of Offline Analyses: Most of the time, offline analysis needs

a lot of information such as event time, event types or feedbacks during the experi-

ment. BCI2000 records sufficient information for comprehensive analysis.

6. Practicality : BCI2000 not only integrates many different BCI methods but also

provides documentation for researchers from engineers to end users.
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Modules

In the common model, each of the components will be descried in the following para-

graph. Fig 2.4 shows the flow chart illustrating general prototype in many BCI systems

[24]. It can be divided into the following components:

1. Source Module: This module digitizes and stores the brain signals and relevant

information of the acquired data. At least five modules have been created in the

system to support different manufactures.

2. Signal Processing Module: In detailed, signal processing module could be divided

into four steps. They arefeature extraction, feature selection, classificationand

translationin order. During the first two signal processing progresses,spatial filters

including Laplacian derivation, common average, independent component analysis

and common spatial patterns [14] are applied. Another important technique is tem-

poral filter, to date, they have implement five variations: slow wave filter, autore-

gressive spectral estimation, a finite-impulse response filter and a filter that averages

evoked responses. The other two steps trains a classifier to classify and translate the

inputs signals into device commands. The interdependence of the module is a critical

problem in system design and BCI2000 also did a lot of effort in this module.

3. User Application Module: User application is the interface that user learn and control

the system. BCI2000 has already implemented seven applications using different

tasks.

4. Operator Module: This module allows the investigator to control the experiment and

adjust the system parameters such as some signal processingvariables.

2.2.2 Synchronous and Asynchronous BCI Systems

Generally speaking, one way to classify the BCI system is to depend on the source of

stimulus - internal-paced or external-paced. Internal-paced means that the subject could
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Figure 2.4: BCI2000 design. The four modules are the components of BCI2000. Notice that the

operator component maintains the system configuration and online presentation for the investigator [24].

decide when to start the ’mental activity’ by himself and in external-paced system the

subject is given a cue to indicate when the ’mental activity’should start. [5].

As described in previous sections, researches about EEG depends largely on event-

related tasks in the beginning stage, that is, we observe thechanges of waveform after a

specified event in a specific time. In a synchronous BCI system, we can get the start time

of a trial by asking the subject to response after a visual or audio cue. But in practical usage

of a BCI system, a cue-based system may not be suitable to the disabled.

In the past five years, many groups have tried to develop systems that can dynamically

recognize the activities of subjects. Base on the understanding of brain signals until today,

some basic asynchronous system have been applied to practical usage [17] [18]. The BCI

user can perform a mental activity whenever he wished to submit a command to the system.

The difficulties in asynchronous system may be arisen from that we not only have to

recognize where is the onset time of an active state (user performs a mental activity)

but also have to classify the period of signal into certain predefined task from noise

and other brain states (user is resting, idling or thinking something that may bring

about some EEG activities).

However, integrating all BCI components into a real-time system is also a challenge.

Offline analysis could be complicated and time-consuming inprocessing signals in order to
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achieve high accuracy in task recognizing or observe the detail of the signals. But in prac-

tical system, all processes must be finished in a very short time. These requirements are

called ”online” in custom. Generally speaking, the goal of an online BCI system is to use

as less channel as possible but keeps satisfying accuracy and efficiency. All signal process-

ing procedures are willing to increase the signal-to-noiseratio and find useful features to

support the design of BCI systems.

2.3 Spatial Filter in BCI Systems

Spatial filter is widely used in analyzing EEG signals [14] [13] [27], it is an inevitable

process in many occasions. In this section, some spatial filters will be introduced.

2.3.1 Introduction to Spatial Filter

In spatial domain, suppose that the number of EEG sensor isN , then measured data

from a sensor can be viewed as a vector. Therefore theN sensors is the basis and spans a

vector space in the spatial domain which derives the name”spatial filter” . The concept of

spatial filter has been discussed earlier then 1995, both spatial and temporal filter method

are proposed for increasing signal-to-noise ratio. A filtercan effectively suppress the noise

and signals from undesired location is always of necessity in analyzing brain signals.

Figure 2.5:Examples of spatial filter. Suppose the target channel is C3 (red),for CAR filter, the

recordings of C3 is subtracted by the mean of all the green channels. For Laplacian, only the mean of four

channels will be subtracted. [13]
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To date, some widely used spatial filters arecommon average reference (CAR), small

Laplacian, large Laplacianandcommon spatial patterns. Specifically, the design idea of

each filter is as below and an example that take C3 channel as thedesired channel is in

Fig 2.5.

1. Common average reference: When applying CAR, mean of measurements from all

channels will be subtracted. The filter based on the concept that uniform and entirely

channel covered components are usually not representativeenough in specific brain

activity. In this way, global components will be removed andthus highly emphasizes

focal distributions. Because focal distributions usually have higher frequency, CAR

can be viewed as a function of high pass filter.

2. Laplacian method: Laplacian method filters the signal at a certain location bythe

concept of Laplation derivation. In [13], McFarland et al. use a finite difference

method, which approximates the second derivative by subtracting the averaged sig-

nals surrounding the target channel. The formula is

VLAP
i = VER

i −
∑

j∈Si

gijV
ER
j (2.1)

where

gij = 1/dij/
∑

j∈Si

gij1/dij (2.2)

Si is the set of electrodes surrounding theith electrode anddij is the distance between

electrodei andj. Whendij is 3cm, the method is called small Laplacian and 6cm

for large Laplacian. Most of the time, the distance is decided by the electrode on the

EEG equipment such as 64-channel or 40-channel system.

3. Common spatial patterns: BCI group in Graz have developed an optimal spatial

filter before 1999 [14] [20] [27]. Until now, this filter is used in many EEG analysis

for classifying different tasks and has high classificationrate. CSP is also called

common spatial subspace decomposition (CSSD). CSP is a feature extraction method

and ”can be realized by projections of the high-dimensional, spatial-temporal raw

signals onto very few specifically designed spatial filters”[14]. It uses variance of
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the two classes of data as the discriminative information. An example is in Fig 2.6,

the spatial filter in the figure is for discriminating left andright motor imageries. All

the details of CSP could be found in [14] and thus doesn’t describe here.

Figure 2.6:Topography calculated by Common Spatial Pattern method.CSP constructs

spatial filters for discrimination of two populations. The topography represents the coefficient of channels.

[19]

2.3.2 Model-Based Spatial Filter

Generally speaking, methods in designing spatial filter could be divided intodata-

driven andmodel-basedcategories. The concept of them are as follows.

1. Data-driven analysis: Data-driven analysis performs computations in an order dic-

tated by data dependencies. When applying these methods to design spatial filter, the

algorithm do not have to know the channel information. Take Laplacian for example,

the method is defined by ”subtracts the averaged signal around the target channel”.

And in CSSD, the algorithm calculate the projection matrix bysimutaneous diago-

nalization of two covariance matrices [20].

2. Model-based analysis: A model-based analysis based on fundamental knowledge of

the design and function of an object. For example, Beamforming method depends

largely on the sensor positions, that is, it uses the information of the channels. The

method can estimate the source signals precisely with a robust forward model.
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In our thesis, we used the later method in designing our filterand details will be illus-

trated in next chapter.



Chapter 3

Model-Based Spatial Filter For

Asynchronous BCI Systems
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3.1 EEG Forward Prediction

3.1.1 Development in Forward Model

Before we start to discuss the forward prediction problems, we have to construct appro-

priate head model to describe our head. The problem is not simple because human brain

consist of different tissues, such as cortex (gray matter and white matter), cerebrospinal

fluid (CSF), skull and scalp. The history of the head model construction start from the

researches aboutsingle-shell modelwhich assume that human head is a simple shell. In

the beginning, least-square estimation is used to find out the best-fit sphere among all EEG

sensors and then map the sensor locations onto the best-fit sphere surface. In this way, we

can estimate the surface potential. Furthermore,multi-shell modelis proposed when taking

different tissues into consideration. Based on this model, P. Berg, et al. [2] and Mingui

Sun [25] have proposed two different ways to enhance the efficiency of multi-shell forward

model. Both methods improve the efficiency of the calculationbut lose some accuracy.

Nevertheless, there is still a problem - human head is not just a sphere. Prediction error

will raise while the distance between sensors and sphere surface increases. A method to

solve this problem is boundary element model (BEM). It uses the Magnetic Resonance

Imaging (MRI) information to reconstruct the surface of tissues. Though it’s very accurate

but it is time-consuming. In order to improve the drawbacks,Mosher et al. presented

the idea ofoverlapping sphererather than using traditionalsensor-fitted sphereon MEG

problems [12] [23]. We then extended the method and applied on EEG works.

3.1.2 Forward Model Using Overlapping Sphere

The idea of the method is using multi-shell geometry rather than BEM model to esti-

mate the overlapping sphere. By assuming that human head hadm layers and estimate the

surface potential by the second kind Fredholm integral. We use digitizer to measure the

surface of realistic head and then calculate the overlapping sphere for each EEG sensor by

minimizing the difference between the multi-shell sphere and realistic head. The details for

constructing the spatial filter using the forward model willbe introduced in next chapter.
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3.2 Introduction to Beamforming Techniques

Beamforming [4] [10] is a method to localize the signal sourceduring array signal

processing. It was developed in middle of 20th century and widely used in different field

such as sonar, radar and astronomical telescope array systems. The aim of this method is

to calculate a set of weighting of the physical channels, called beamforming coefficients.

By linearly combine the recording signals with corresponding coefficients, we can create a

virtual sensor at a specified position with a specified dipoleorientation. In [28], Van Veen

proposed a linearly constrained minimum variance (LCMV) method for implementation of

beamforming on EEG/MEG. In section 3.2.1, we will briefly introduce the data model used

in beamforming technique, a simple concept of beamforming is in Fig 3.1. In section 3.2.2,

the detail for calculating the dipole orientation will be explained.

Figure 3.1: Beamforming techniques used in EEG analysis.The spatial filter is a set of

weighting linearly combine the signals recorded by sensors.

3.2.1 Data Model

Under the system ofN channel EEG sensors, the measured surface potentialm at an

instant time can be regarded as anN × 1 vector expressed by

m = G(r)q = G(r)
q

‖q‖
‖q‖ = l(r;q)‖q‖ (3.1)

whereG(r) is the gain matrix calculated by forward model andl(r;q) is the leadfield.

More precisely, leadfield means the measurement with the dipole source located atr with
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dipole momentq which composed by dipole orientationq
‖q‖

and dipole strength‖q‖. Fur-

thermore, when there arek dipole sources at an instant time, we model the noise as an

N × 1 vectorn. The measured data can be rewritten as

m =
k∑

i=1

l(ri;qi)‖qi‖ + n (3.2)

whereqi (i = 1,2,. . . ,k) is theith dipole moment.

Notice that the equation above represents the measurement at an instant time. In time

domain, bio-medical signal is often modeled as a random signal and thus we take temporal

information into consideration and we use first and second order statistics to describe the

dipole as

q̄i = E{qi} (3.3)

cqi
= E{ [qi − q̄i][qi − q̄i]

T} , (3.4)

respectively, whereE stands for expectation. Furthermore, the mean and covariance matrix

of the measurement are

m̄ = E{m} =
k∑

i=1

l(ri;qi)q̄i (3.5)

C = E{‖m(qi) − m̄‖‖m(qi) − m̄‖T} =
L∑

i=1

l(ri;qi)cqi
lT (ri;qi) + Cn (3.6)

respectively, whereCn is the covariance of the noise under an assumption of zero mean.

Practically,C is calculated by using recorded EEG signals.

C =
1

N − 1
MMDFMT

MDF (3.7)

whereT is the sampling number andM is anN × T matrix which represents the recorded

EEG signals. The subscript ”MDF ” denotes Mean-Deviation Form which each element is

substituted by the mean of row of original matrix (i.e. averaged potential of each sensor).
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3.2.2 Spatial Filter Design

As mentioned in previous section, beamforming is designed to reconstruct the source

activation by linearly combine the recordings from each EEGsensor. The idea can be

written as

y = wT (r0;q0)m (3.8)

wherey is the reconstructed moment with dipole locationr0 and dipole orientationq

‖q‖
,

andwT (r0;q0) is anN × 1 vector which denotes the spatial filter. By LCMV, there are

two constraints in findingw. The first one islinearly constrained:

wT (r0;q0)l(r0;q0) = 1 (3.9)

which extracts the target source (r = r0 andq = q0) and suppresses other sources (r 6= r0

andq 6= q0). This constraint is also calledunit gain constraintbecause after filtering

the predicted potential, we would get the original source. The second idea of LCMV is

minimum variance:

min
w(r0;q0)

cys.t.w
T (r0;q0)l(r0;q0) = 1 (3.10)

wherecy is the variance of the estimated signal. The reason to minimize the variance of the

filtered signal is that if forward model is exactly correct and without noise, then

y0 = wT (r0;q0)m = wT (r0;q0)l(r0;q0)q0 = 1 × q0 = q0 (3.11)

whereq0 is the true source moment at the target position. The detailsin solving the filter

w are in [28] and the equation is:

w = (C + αI)−1l(lT (C + αI)−1l)−1 =
(C + αI)−1l

lT (C + αI)−1l
(3.12)

whereα is a regularization parameter,C is the covariance matrix explained in previous

section andI is the identity matrix. Here we omit(r0;q0) for simplicity.

However, there is still one question - ”How do we know the dipole orientation?” . In

accordance with this question, LCMV decomposes the orientation solution space with 3
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orthogonal basis in 3D space [28]. Robinson and Vrba proposessynthetic aperture magne-

tometery (SAM)method to search the orientation such that the resultant value of z-deviate

is maximum [22]. However, we proposed a method to calculate the optimal dipole orienta-

tion analytically. The following section will illustrate the details in this method and explain

how we use it in designing a filter for an asynchronous BCI system.

3.3 Spatial Filters for Asynchronous BCI Systems

All the following topics in designing our asynchronous BCI system could be divided

into two parts.

1. Recognition of active state: As mentioned in subsection 2.2.2, we want to design

a filter that can recognize the active state during the execution of BCI system. In

subsection 3.3.1, we usemaximum contrast beamformer(MCB) method for this sit-

uation. Details of MCB will be illustrated later in subsecion3.3.1.

2. Classification of different tasks: After we recognize the active state, we can further

classify the signals. We proposed a filter construction method in order to increase

the distance between each group. In subsection 3.3.2, we will introduce how to use

Fisher’s criterion to design this filter.

3.3.1 Maximum Contrast Beamformer for Brain State Analysis

Maximum Contrast Beamformer

The decision of dipole orientation is an important issue in beamforming techniques. A

correct dipole orientation can successfully suppress the undesired noise. The idea of MCB

is finding the optimal dipole orientation by maximizing the ratio of active state and control

state. In the beginning, recall that the definition in section 3.2.2 the leadfieldl = G(r) q

‖q‖

can be rewritten asl = Gj and substitute it into Eq 3.12 we have

w =
(C + αI)−1l

lT (C + αI)−1l
=

(C + αI)−1Gj

jTGT (C + αI)−1Gj

.
=

Aj

jTBj
(3.13)
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whereA = (C + αI)−1G andB = GT (C + αI)−1G. Notice that the dipole orientationj

could be extracted. In the idea of MCB, we maximize the ratio between active and control

state by using F statistic for the criterion in deciding the ratio. The formula is

F =
wTCaw

wTCcw
(3.14)

After substituting Eq 3.13 into Eq 3.14, the formula can be translated as:

j̃ = arg max
j

( Aj

jT Bj
)TCa(

Aj

jT Bj
)

( Aj

jT Bj
)TCc(

Aj

jT Bj
)

= max
j

jTATCaAj

jTATCcAj

.
= max

j

jTPj

jTQj
(3.15)

whereP = ATCaA andQ = ATCcA. Now we can know that it is a traditional optimiza-

tion problem in solvingj and the solution is the eigenvector with respect to the maximum

eigenvalue of matrixQ−1P. Therefore, we determined the source orientation with deter-

ministic computational steps.

MCB in asynchronous BCI system

However, in biomedical engineering domain, the intersubject variability is always a

critical problem. In section 2.2, we can realize that not only the peak frequency but also

peak latency [15] of subjects are always different. Therefore, when take the theory into

practical use, we must take the following topics into consideration.

1. Frequency band: The peak frequency band of the subject must be decided, we use

continuous wavelet transform (CWT) for peak frequency selection. Morlet wavelet

transform is applied and proper band width will be decided according to the time-

frequency map.

2. Signal range for active/control state: While selectiing the time period of active state

, we tested different signal ranges and 0.5 second active range is found to be the best

width. On the other hand, resting state is more stable when the selected signal range

changes.

3. Dipole location: As mentioned in section 3.2.1, dipole location is used to calculate

forward model. But in reality, we don’t know the exact position of the brain source.
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In our methods, we searched the brain and find the location with maximum contrast

beamformer.

4. Optimal regularization parameter: The regularization parameter refers to theα in

Eq 3.12. A value of10−7 is applied in the general cases.

5. Feature extraction: After the signal was filtered by the spatial filter, we extract the

feature for classification by calculating the variance of the signal. The variance of a

signal at an instant time is calculated by the nearest 500ms periods.

6. Classification of brain states: We use a threshold to define the boundary of active

state and control state. We determine that the subject is performing motor related

tasks when the variance is larger than the threshold or the subject should be resting.

All the results of experiments and the details for deciding the parameters above will be

shown in next chapter.

3.3.2 Different Tasks Classification Using Maximum Discrimination

Beamfroming Techniques

Fisher Linear Discriminant

This linear discriminant method is proposed by Ronald A. Fisher in 1936 [21] and

widely used in many classification problems such as image recognition. We may begin to

introduce this method by considering a problem that projects data fromd dimensions onto

a line. The idea of the method is in [21]. It is basically designed for two-class classification.

The goal is to find the most discriminant projection vectorw. Fig 3.2 is an example, the

two populations can be regarded as right group and left groupafter the projection [21]. The

projected data would have two properties:

1. The distance between the two projected group means will bemaximized.

2. The variance of each group will be minimized.
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Figure 3.2:Projections in different directions. A same set of data was projected onto two different

lines in directionw. The projected points were more separable on the right figure[21].

Suppose we have two sets ofd-dimensional samplesx1, ...,xn, n1 in setD1 andn2 in

setD2. Then the projection can be written as

yi = wTxi,∀i = 1, ..., n (3.16)

wherew andxi ared× 1 vectors, and the projected datayi is in G1 andG2 corresponding

to D1 andD2 respectively. The meanm1 of setD1 is given by

m1 =
1

n1

∑

xi∈D1

xi (3.17)

and the meanm′
1 which projected from data in setD1 is given by

m′
1 =

1

n1

∑

yi∈G1

yi =
1

n1

∑

xi∈D1

wTxi = wTm1 (3.18)

which is the projection ofm1 and we can have the projected mean of setD2 by the same

way. Now we can define the distance between the two groups by

|m′
1 − m′

2| = |wT(m1 − m2)| (3.19)
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Remember the second property of Fisher linear discriminant is to minimize the variance

of projected data. Take setG1 for example, rather than using simple variances1, we define

thescatterinstead.

s1
2 =

∑

yi∈G1

(yi − m′
1)

2 (3.20)

Similarly, the variances2 of setG2 could be calculated in the same way. Thus, the

criterion function of Fisher linear discriminant can be defined by

J(w) =
|m′

1 − m′
2|

2

s1
2 + s2

2
(3.21)

Now the idea of Fisher’s criterion is illustrated, and then we adapt the criterion function in

order to find the optimalw. For this purpose, we modify the numerator and denominator

of the equation by

|m′
1 − m′

2|
2 = (wTm1 − wTm2)

2

= wT(m1 − m2)(m1 − m2)
Tw

= wTSBw

(3.22)

whereSB = (m1 − m2)(m1 − m2)
T and

s1
2 + s2

2 =
∑

yi∈G1

(yi − m′
1)

2 +
∑

yi∈G2

(yi − m′
2)

2

=
∑

xi∈D1

(wTxi − wTm1)
2 +

∑
xi∈D2

(wTxi − wTm2)
2

=
∑

xi∈D1

wT(m1 − m2)(m1 − m2)
Tw +

∑
xi∈D2

wT(m1 − m2)(m1 − m2)
Tw

= wTS1w + wTS2w

= wTSWw

(3.23)

whereSW = S1+S2. We callSB thebetween-class scatter matrixandSW thewithin-class

scatter matrix. Consequently, Fisher’s criterion function can be rewritten as

J(w) =
wTSBw

wTSWw
(3.24)
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The goal of Fisher linear discriminant is to find an optimalw to maximize the object

functionJ(w).

Maximum Discrimination using Fisher linear discriminant

Base on Fisher’s method, we further apply the concept to classify different EEG tasks.

Recall that our goal is to maximize the difference between different tasks, now we reform

the procedure as the following.

Suppose the channel number isN and the number of sample points of a trial isT ,

we generalize thed-dimensional data to ourN × T EEG data. Similar to the previous

paragraph, we definexi asN × T EEG trials. For the two classes of tasks, number of

trialsn1 is in setD1 andn2 is in setD2. Therefore, the mean of each group is the same as

Eq 3.17, and notice thatxi is a matrix. After the data was projected byw (i.e. theN × 1

spatial filter), we would have the projected datayi (an1 × T vector) which represents the

filtered signal.

Under this situation, the calculation of projected mean is the same as Eq 3.18, but notice

thatm′
1 andm′

2 are both1×T vectors which mean the averaged projected signal. Then the

remaining problem is how to define the distance between groupmeans and how to calculate

the group variance. We generalize the concept ”distance” from Eq 3.22 by

‖m′
1 − m′

2‖
2 = ‖wTm1 − wTm2‖

2

= wT(m1 − m2)(m1 − m2)
Tw

= wTSBw

(3.25)

whereSB is the newbetween-class scatter matrix.

It is easy to be realized that if we consider the original Fisher’s linear discriminant as

data at ”an instant time” in EEG. The concept of distance is simply generalized to ”a series

of time”. By the same way, we generalize thescatterby

s1
2 =

∑

yi∈G1

‖yi − m′
1‖

2 (3.26)

and the same withs2
2. Thus thewithin-class scatter matrixcan be defined by
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s1
2 + s2

2 =
∑

yi∈G1

‖yi − m′
1‖

2 +
∑

yi∈G2

‖yi − m′
2‖

2

=
∑

xi∈D1

‖wTxi − wTm1‖
2 +

∑
xi∈D2

‖wTxi − wTm2‖
2

=
∑

xi∈D1

wT(m1 − m2)(m1 − m2)
Tw +

∑
xi∈D2

wT(m1 − m2)(m1 − m2)
Tw

= wTS1w + wTS2w

= wTSWw

(3.27)

and we may notice that the form of criterion functionJ(w) is the same as Eq 3.14 and thus

we calculated the projection vector in the same way with Eq 3.14.

By the end of this chapter, we summarize the idea for designingthe maximum dis-

criminant spatial filter. In our methods, we use Fisher’s criterion to find an optimal dipole

orientation which can maximize the difference between the two classes of tasks. We gen-

eralize the data format of Fisher discriminant analysis from d-dimesional sample toN × T

dimensional sample (i.e. from ”an instant time” to ”a seriesof time”). In next chapter, we

will show the results by applying the filter.
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Experiment Results
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4.1 Experiments

4.1.1 Experiment Paradigm

The experiment paradigm is in Fig 4.1. At the beginning of a trial, a fixation cross is

shown in the middle of screen and disappeared at 2s. After thewarning tone, a visual cue

(an arrow points to the left or right) will appear and last for1.25 seconds. The subject is

told to do the finger movement/imagery task after the cue disappeared. Left arrow is for left

finger lifting task and vice versa. In this experiment, a session is about 20 minutes and the

period of a trial is 8 seconds. Left or right arrow appears randomly during the experiment.

Figure 4.1:Experiment paradigm. The experiment is for right/left finger lifting tasks

4.1.2 Data Sets

In our experiment, we have data sets from 24 years old male. Six data sets was acquired

about once per month, three of them are experiments of real finger lifting task (labeled R01-

03) and the others are of imagery task (labeled I01-03).

4.2 Implementation of Spatial Filter

Recent studies show that cognitive tasks and motor functionsare relevant to specific

frequency band of EEG signals [15] [16]. In our methods, it isalso important to decide the

dominant frequency band. Details will be illustrated and discussed in this section.
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Figure 4.2:Time-frequency map of I01. The map has been normalized to [0 1] respectively. The

dominant frequency is around 10-15Hz and the post-movementpower appears about 1 second later.

4.2.1 Time-frequency analysis

Frequency Band Selection

In order to estimate the dominant frequency band, we appliedcontinuous wavelet trans-

form (CWT) to EEG signals. CWT is a time-frequency analysis method in signal process-

ing procedures and each trials was calculated using morlet wavelet. In Fig 4.2, , the fre-

quency with range from 10 to 30 Hz was illustrated and upper alpha band (10-13 Hz) could

be determined as a dominant frequency band.

In our method, we use 10-15 Hz as the dominant frequency band for this subject. A

band pass filter was applied to the raw EEG signals before the proceeding calculations.

Active State Selection

In maximum contrast beamforming method, trials are used to calculate the covariance

matrix of active and control states. Thus an appropriate period of signals which can repre-

sents the states is very important. Different ranges of active state are tested and we found

that 0.5 second width (covered by the red area in the time-frequency map) is the best range
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Figure 4.3: Tomography of data R01. The brain was divided into grids and each F value was

calculated using maximum contrast beamforming methods.

for the maximum contrast. On the other hand, we used 1-secondrange for resting state

signals. Since the signal of the resting state is more stable(the subject do nothing with eyes

opened), the range of resting state didn’t effect the resultvery much.

4.2.2 Brain Activation Tomography

Tomography Using Maximum Contrast Beamformer

As mentioned in section 3.3.1, the spatial filter was calculated under a given dipole

location (i.e. activated brain source). Since we will not know the exact dipole location of

the subject, we searched the whole brain using MCB.

After divided the brain into grids, we calculated the optimal dipole orientation which

maximizes the active and control state for each grid. In Fig 4.3, a set of tomography of right

hand real movement task (data set R01) was calculated. The peak was calculated at motor

cortex which located at left hemisphere. By this tomography,the activated brain source

could be determined and we can further use the dipole location in designing our spatial

filter.
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Figure 4.4:Topography of data R01.The topography of data R01 (right hand movement trials) was

used to calculate the spatial filter. Notice that the activation brain source is at the left hemisphere with respect

to right hand movement.

Topography of Spatial Filter

After the pre-processing procedures in previous sections,the spatial filterw introduced

in section 3.3.1 could be calculated. Recall thatw is the weighting corresponding to the

EEG sensors and the filtered signal can be viewed as a linear combination of all the EEG

signals. The topography of the spatial filter calculated using data R01 (right hand move-

ment trials) is in Fig 4.4.

Stability of Spatial Filter

Furthermore, we considered a question that a EEG subject mayencounter - ”How to

estimate the sensor positions which constructed the forward model?”. The measurement of

the sensor position is not easily to be acquired at any time. In accordance with this concern,

we applied the sensor positions estimated during the experiment R01 to each data set. In

Fig 4.5, right hand imagery/movement trials were calculated under the same gainmatrix

(i.e. Using the same sensor position and dipole location).

In Fig 4.6, left hand trials were used to calculate the spatial filters. We can see that

the correlation coefficients are more similar to those calculated using right hand trials. It

is reasonable that non-dominant hand is always more distinguishable in active and control

states [1].

In this section, we illustrated the details in constructingspatial filters and we verified
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Figure 4.5: Topography using the same sensor position. (Right finger im-
agery/movement trials)We took the first topography to be the standard spatial filter and other data

sets were compared with it by calculating correlation coefficient . Data labeled from left to right were R01,

R02, I01, I02, I03, R03.

Figure 4.6: Topography using the same sensor position. (Left finger im-
agery/movement trials)We took the first topography to be the standard spatial filter and other data

sets were compared with it by calculating correlation coefficient . Data labeled from left to right were R01,

R02, I01, I02, I03, R03.
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the stability of maximum contrast beamforming with different data sets. In next section, we

will evaluating the performance of the filter by simulation of asynchronous BCI systems.

4.3 Performance Evaluation

4.3.1 Unbalanced features

When evaluating the performance in asynchronous BCI systems, acommon problem is

that the time period of active state is always far less than resting states. In [26], Pfurtscheller

et al., proposed an evaluating method using operating characteristics curves (ROC) to de-

fine the accuracy of an asynchronous BCI system and we use sample-by-sample analysis

as the measurement. The two axes of the ROC curves are true positive rate (TPR) and

false positive rate (FPR). TPR is used for measurements of sensitivity and FPR is used for

selectivity [26]. The definition is:

TPR =
TP

TP + FN
,FPR =

FP

TN + FP
(4.1)

where TP, FN, TN, and FP are the number of true positive, falsenegative, true negative,

and false positive respectively. Note that the type is defined sample-by-sample and are

illustrated in Fig 4.14.

4.3.2 Recognition of Active State

The flowcharts for recognition is in the following. In Fig 4.7, we applied our spatial

filter to EEG signals (8-15Hz). We extracted the feature by calculating the signal variance

and then used a threshold to recognize the active brain states.

Applying Spatial Filter

In Fig 4.8 and Fig 4.9, we take a look at continuous 20 trials form data set I02 (left hand

finger imagery). Data set I02 is the most clean data set which has least noise interference.

The left column are the first continuous trials recorded at C4 channel and the right column

is the data filtered by our maximum contrast filter. In trial 07, the raw data has some noise
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Figure 4.7:Flowchart - Recognition of Active State.

at 0-2000 sample points (i.e. 2 seconds before the cue appear). After applying the spatial

filter, the noises were eliminated and the variance is stablearound 5000-7000 sample points.

Similar cases can be found in trial 01, 11 and 19. For trial 03,07, 10, 16, we can see that

the variance of the signals is largely increased.

In contrast to data set I02, we also show the continuous 20 trials from data set R02

which is largely interfered by the environment and the subject. In Fig 4.10 and Fig 4.11,

we can see the noise is larger than I02 by observing the signals around 0-3000ms. After

applying our filter, we successfully suppressed the noise.

Averaged Variance Ratio

In our method, we extracted our feature by calculated the signal variance. In order to

evaluate the changes of the signal, we calculated the variance of the filtered signal by a

500ms-width sliding window ( Fig 4.12). Firstly, We calculated the signal variance curve

and then divided it by the variance of resting states. We called it theratio curveand we

used it as our feature. In Fig 4.13, we illustrates the averaged ratio for each data sets (right

hand tasks). We can see that the ratio at active states is at least 3 times larger the resting
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Figure 4.8:Applying filter to raw data. The signals are from data set I02 (trail 1-10), left finger

imagery trials. The left column is the raw data recorded at channel C4, and the right column is the filtered

signal.
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Figure 4.9:Applying filter to raw data. The signals are from data set I02 (trial 11-20), left finger

imagery trials. The left column is the raw data recorded at channel C4, and the right column is the filtered

signal.
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Figure 4.10:Applying filter to raw data. The signals are from data set R02 (trail 1-10), left finger

imagery trials. The left column is the raw data recorded at channel C4, and the right column is the filtered

signal.
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Figure 4.11:Applying filter to raw data. The signals are from data set R02 (trial 11-20), left finger

imagery trials. The left column is the raw data recorded at channel C4, and the right column is the filtered

signal.
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Figure 4.12:Calculating variance using sliding window.A sliding window with 500ms width

is used to calculate the curve of signal variance. This curvewill divide the variance of resting state signal for

the ratio curve for classification.

states (blue curve) which is larger than the ratio of raw data(red curve). Besides, there

are some noises before the cue in data set R02 and R03. That may beresult from the eye

movement or the subject moved his body. Those noises are largely suppressed and this is

also a practical property for BCI systems.

Evaluating ROC Curves

In Fig 4.14, we used the ratio curve as our feature. While evaluating the performance,

a threshold was adjusted and the Eq 4.1 will be calculated. The classification result was in

Fig 4.15 and Fig 4.16. The red curve is the result of raw EEG data (8-15Hz) and the blue

curve is the result of data applied by our spatial filter. The point marked on the curve is the

point which nearest to point (0,1). Note that the point (0,1)means that the classification is

perfect because it is exactly correct in ”event period” and no error in ”non-event period”. In

our experiment, (TPR, FPR) is (0.7363, 0.2001) for averaged right hand tasks and (0.7658,

0.1983) for averaged left hand tasks. From the results, we conclude that left hand is more

effective in discriminating active and control state signals because both TPR ad FRP of left

hand tasks are better than right hand tasks. This result can be explained by the researches

in [1] which says that ERS is more differentiable in non-dominant hand.



46 Experiment Results

Figure 4.13:Averaged variance of trials. In the figure, the averaged ratio for each data set is

illustrated. The result is from right finger movement/imagery trials. The x-axis is time and y-axis is the

value that the current signal variance divides the signal variance at resting states. The red line is for raw data

recorded at channel C3, the blue line is for filtered signals.

Figure 4.14:Paradigm for sample-by-sample analysis.Sample-by-sample evaluates the true

positive rate (TPR, denotes the accuracy in ”event period” which is the higher the better) and the false positive

rate (FPR, denotes the error in ”non-event period” which is the lower the better ). The event period are defined

by 2.25-5.0s after the arrow appeared. [26]
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Figure 4.15:ROC curves for Data sets R01, R02, I01.Sample-by-sample evaluates the true

positive rate (TPR, denotes the accuracy in ”event period” which is the higher the better) and the false positive

rate (FPR, denotes the error in ”non-event period” which is the lower the better ). The event period are defined

by 2.25-5.0s after the arrow appeared.
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Figure 4.16:ROC curves for Data sets I02, I03, R03.Sample-by-sample evaluates the true

positive rate (TPR, denotes the accuracy in ”event period” which is the higher the better) and the false positive

rate (FPR, denotes the error in ”non-event period” which is the lower the better ). The event period are defined

by 2.25-5.0s after the arrow appeared.
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4.4 Discussions

4.4.1 Imagery and Real Movement Tasks

In our thesis, we use six data sets for analysis. Three of themis imaginary of finger lift-

ing and three of them are real finger lifting. Motor imagery isvery similar to real movement

and was discussed since a few years ago.

”Imaginary of right and left hand movements result in desynchronization of mu and

beta rhythms over the contralateral hand area, very similarto planning and execution of

real movements (Neuper and Pfurtscheller, 1999)”[15]

In our experiments, both of them are successful in calculating the spatial filter. The

correlation coefficient can prove that it is also true in our data.

4.4.2 Brain Activities on Left/Right Hemisphere

Research in [1] shows that the post-movement power (calculated by ERD/ERS) is more

differentiable in non-dominant hand . In our left hand imagery experiments, the averaged

power of C4 is obviously larger than C3. In right hand imagery, the averaged power of C3

is larger then C4, but the difference between C3 and C4 is not a large as left hand imagery.

The value of the power in Fig 4.2 have been normalized to [0 1] respectively. In Fig 4.17,

the maximum power illustrate the interaction between tasksand hemispheres.

These properties and important in analyzing movement imagery tasks was discussed

in [1] [15]. Classifying different motor tasks is always an problem concerned with finding

a good feature. Knowing more information about the subject is helpful in designing the

BCI system for the subject.

4.4.3 Spatial Filter Using Maximum Discriminant Beamformer

Remind about sec 3.3.2, we design the filter pair for classification of left/right hand

movement. Fig 4.18 illustrates the topography of the two spatial filter. The left topography

is the filter with dipole position located at right motor areaand the other is at left motor

area.
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Figure 4.17:Interaction between tasks and hemispheres.Wtih left hand finger imagery, the

activity is obviously focus at the contralateral hemisphere (C4). When performing dominant hand tasks (the

subject is right-handed), cortex activity at both hemisphere is not significantly different.

Figure 4.18:Filter pair designed by maximum discriminant beamformer. The topography

pair is designed by maximum discriminant beamforming method. The idea is to maximize the difference of

power at left and right motor activities.
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Figure 4.19:Flowchart(1) for classifying left/right finger lifting tas ks. In this procedure,

we compared the effect among raw data and data filtered by Laplacian or MDB.

In our experiments, we used two procedures for different tasks classification. The first

one is in Fig 4.19, we used the 8-15Hz raw data (sampling rate 1000) and then use haar

wavelet transform as our feature extraction method. T-testis used to find the significant

components and then we used SVM (Support Vector Machine) as the classifier. In our

experiences, the optimal number of components is around 70 to 100. We compared the

effect by applying Laplacian spatial filter and MDB spatial filter. The result is in Fig 4.20,

we can see the result of MDB is not very stable. It may because that the filter is sensitive

to the parameters selected during the construction of the spatial filter. How to find good

parameters and make it stable is an important problem in our future works.

The second procedure is in Fig 4.21, we used five pass-band forfeature extraction -

delta (0-3Hz), theta (4-8Hz), alpha (9-12Hz), beta (13-30Hz) and gamma bands(30-40Hz).

For each pass band, we filtered the signals by MDB filter pairs.Then we calculated the

ERD/ERS as our features. In the last stage, we combined the features and we used linear

discriminant analysis (LDA) as our classifier. The goal of LDA is to project data into

two groups by calculating the optimal projection vector. (The concept is introduced in

sec 3.3.2.)
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Figure 4.20:Results of SVM cross validation.

Figure 4.21:Flowchart(2) for classifying left/right finger lifting tas ks. Five band-pass filter

for 0-3Hz, 4-9Hz, 10-13Hz, 14-30Hz, 30-40Hz was applied. After filtered by MDB filter, we used ERD/ERS

for feature definition and linear discriminant analysis to classify the two tasks.
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In our experiments, data set I02 was chose for tesing. In thisdata set, there are 80 trials

of left finger lifting and 84 trials of right finger lifting. Wetook 50 trials each (total 100

trials) for training the projection vector and then appliedit to the other trials. In Fig 4.22,

red points are trials of left finger lifting and blue points are trials of right finger lifting. The

value of y-axis is the value after applying the projection vector. Our results showed that the

trials for training could be distinguished but the others could not. We thought that it may

because the vector is over-fitted to the training sets. Though we can have high classification

rate for self-testing, it is still difficult to classify the two tasks. This is also an important

problem in our future works.
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Figure 4.22:Results of LDA. Five bands were tested. Red points are left finger lifting trials and blue

points are right finger lifting trials. The previous 100 trials are training data (in the black frame) and the rests

are for testing.



Chapter 5

Conclusions
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In asynchronous BCI systems, the most difficult problem is the determination of active

periods. Motor related tasks such as hand, arm or finger movement/imagery are important

tasks in BCI systems. In our thesis, we proposed a spatial filterwhich can efficiently recog-

nizes the active periods of brain sources. In chapter 2, we introduced the background of

neuropsychology and neurophysiology. Besides, motor related knowledge is also of signif-

icance in current BCI systems. In chapter 3, we used overlapping-sphere model to construct

the forward model. Furthermore, we used maximum contrast beamforming method to cal-

culate the optimal dipole orientation which can maximize the variance of active and control

state signals.

In chapter 4, we used continuous wavelet transform to preprocess the raw EEG signals.

After the dominant frequency band and the ranges of signals were decided, we calculated

the spatial filter and further applied it to EEG signals. The filter successfully maximized

the variance of the signals at active period and minimized the variance in resting states.

In our method, feature extraction and classification is simple but effective. We use

signal variance as features and we only use a threshold to classify the brain states.

The major advantages of our filter is as follows.

1. Noise suppression: Our spatial filter can successfully suppress the noises from other

brain areas. And the optimal brain source can be acquired by searching the whole

brain with beamforming method.

2. Accommodation: For each BCI system users, they may have their own spatial filters

which are adjusted by their own parameters. In section 4.2.2, we verified the stability

of the spatial filter. Users can only measure the sensor position once and apply it to

proceeding procedures.

3. High recognition rate: In section 4.3, we successfully increased the signal variance

which is important in recognition of brain states. In our results, the ROC curves

shown the ability of the spatial filter.

However, how to construct asynchronous BCI systems is still a difficult problem, and

we may base on the spatial filter for more research in future works.
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