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Abstract

Over the past decades, people have begun to explore a newwuooation channel
directly between human brain and computers. The brain-ateninterface (BCI) has the
potential to enable severely disable people to drive coerpulirectly by brain activity
rather than depend on nerves and muscles. Research into BEinsystainly involved
recording of electroencephalographic (EEG) signals usingace electrodes. By recog-
nizing the pattern of the brain activities, the system tiaes the messages encoded in the
brain activities into computer instructions.

In this thesis, we proposed a new spatial-filter-based feaxtraction method using the
concept of maximum contrast beamformer. The beamformesdcbas overlapping sphere
head model. It can reconstruct the activation magnitudbefdrget source and maximize
the difference between specific brain states. In asyncluoB€I systems, it is hard to de-
cide whether the target brain source is in active state. @Qahod successfully maximizes
the variance of signals when subject is perfoerming motogieng tasks and suppresses the
interferences in resting states. \We-also verified the #abii the spatial filter. After mea-
suring the subject’s sensor-pasition, we applied the mazéketmforming method with
six data sets recorded in different time.. \We evaluated thiilgy of the spatial filter by
calculating the correlation coefficient between them. lnave used sample-by-sample
analysis to simulate an asynchronous BCl system and somea iaisaet left/right hand mo-
tor tasks are discussed in the end of this thesis. After theeastate was recognized, we
proposed two procedures for classifying different tasks.prdposed a spatial filter design
idea by generalizing Fisher linear discriminant analysis applied it in the procedures.
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Introduction




Introduction

1.1 Brain-Computer Interface (BCIl) System Overview

Over the past 20 years, people have more knowledge and poweois to explore
the undiscovered area of human brain. In addition, by thevigigp concern of the needs
and potentials of people with disabilities, more and momppefeel that monitoring brain
activities or other measures of brain function might prevachew non-muscular channel for
sending messages and commands to the external world - admaiputer interface [29].
A general BClI flowchart is in Fig 1.1 and a common BCI system enwiremt is illustrated
in Fig 1.2.

BClI System

Signal Feature Translation
Preprocessing Extraction Algorithm

i
I
I
I
'

. -

Command

External
Feedback Devices

Figure 1.1:General BCI Flowchart. "Signal acquisition”, "Signal preprocessing”, "Featurdrac-
tion”, "Translation algorithm” are basic components of alB¢stem. After translated the brain activities into
device commands, the subject can control machines. Andetfgbfick let the subject to adjust his situation
dynamically.

In sections 1.1, we will briefly introduce how the system usedhedical works. And
in section 1.2, basic categories of current BCI systems wiillbstrated.

1.1.1 Options for Restoring Function to Those with Motor Disabilities

Many different disorders will disrupt the neuromusculaahels. For instance, amy-
otrophic lateral sclerosis (ALS), brainstem stroke, brainspinal cord injury, cerebral
palsy, muscular dystrophies, multiple sclerosis, and moosediseases impair the neural
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Figure 1.2:Brain-Computer Interface Devices.

pathways that control muscles or impair the muscle therasel29]. Current assistant
methods such as eye tracking, voice control are also findswuion to improve the life
quality of the disabled people. In recent years, BCI systemsleveloped in several ways
such as P300 potentials, mu and beta rhythm, slow cortidehgials or ECoG recorded
by implanted electrodes. The goal of these systems is tag@@ communication inter-
face for severely disabled people tordrive:computer diyemfl brain activities rather than
physical means.

1.1.2 Current BCI Systems
Methods for Monitoring Brain Activity

In present days, ways to observe the brain activities hase developed. Non-invasive
techniques such as functional Magnetic Resonance Imaditigljf magnetoencephalog-
raphy (MEG) and Positron Emission Tomography (PET) are tsedonitor brain activ-
ities. On the other hand, invasive methods such as ECoG isaafeethod to monitor
brain activities. However, fMRI, MEG, PET and ECoG are stilthrically demanding
and expensive [29]. Generally speaking, these methodsaportable and not convenient
enough for a patient to use in their daily lives and livingieswments.
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Electroencephalography

In our research, we use electroencephalography (EEG) asdimeanalysis tool. Com-
paring to other measurements, EEG is not only an non-ingasethod but also has higher
time resolution and is more cheaper and portable.

The spatial resolution of EEG depends on the number of elées: The distribution
of the electrodes is based on international 10-20 systera.”I®20" means the relation
between the location of electrodes and the underlying drearebral cortex.

Fy Wy

Figure 1.3:International 10-20 System. The”10” and "20” represent the distance between the
electrodes. The code "F” for frontal, "C” for.central, "P"fparietal,.”O” for occipital and "T” for temporal
which denotes the area of human brain. (sotrce: http:ifasashigton.edu/chudler/1020.html)

Though using electroencephalography is a basic technayoenitor the brain activi-
ties, the details to construct a BCI system is still an opereiséieccording to the different
electrophysiological signals that used by researchers, B&leéss can be divided into 5
groups. The first group, those using VEPSs, are dependent BEldley depend on using
muscular control of gaze direction). The other 4 groupssehasing slow cortical poten-
tials, P300 evoked potentials, mu and beta rhythms, anatabneuronal action potentials,
are called independent BClIs. For these analyzing techni@ii&sS;based brain-computer
systems are always facing the following problems:

1. The amplitude of the recorded EEG signals is akiéuf volts, which is very small

and sensitive to external interference.
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2. The sampling rate is high in BCI systems, signal procesdmgyithms are some-

times complicated or time-consuming.

3. User’s self-generated brain activities may blur the evelated activities thus mis-

lead the recognition procedures.

4. In biomedical researches, the creature activities mags&argely. The brain pattern
is always inconsistent even under the same environmentaqatiment.

Some details for related works will be shown in the next cbapt

1.2 Thesis Scope

In this thesis, we proposed methods in designing spatialdikvhich has the ability
to maximize the signals of different brain states at cerbamn area. In order to achieve
these requirements, we proposed ideas in,designing thialsfilédr using beamforming
techniques. It is an algorithm to-estimate:the-source dietsvby MEG/EEG recordings.
Based on linear constrained and minimum variance [28], waldddhe dipole orientation
by maximizing the signal variance between active and rgstiate. Furthermore, we apply
the filter to EEG experiments’and evaluate the performandeedfilter. In the following,

we briefly describe the main partsin‘our thesis.

1. Designing spatial filters We proposed a spatial filter which is helpful to recognize
the active states in asynchronous BCIl systems. The spatal\iidhs designed by
maximum contrast beamforming method which can effectirstyease the variance
of EEG signals corresponding to specific motor task and dser¢éhe variance of
EEG signals during resting states. It suppresses the enéerée from other brain
areas. In designing procedure, we use morlet wavelet ttemdb analyze the time-
frequency map of the EEG signals. By this analysis, we dec¢idedbminant fre-
guency band and the time period of the active state (i.e. i@ source is in acti-
vation) and control state (i.e. resting) of the signals. nfhdorward model of the
subject will be estimated and the power map of the whole bsélirbe calculated.
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By this calculation, we decide the optimal source locatiod toe spatial filter will
be constructed.

2. Performance evaluation Since the spatial filter is designed to maximize the dif-
ference between active and control state signal varianbe.aVeraged variance of
the signal will be illustrated and we will discuss the apilif the filter to suppress
the noise from other brain areas. Furthermore, in order tidyvie practicability,
we compare the spatial filter designed by different signats®under the same for-
ward model. The correlation coefficient of the spatial fdterill be calculated for
evaluating the stability using maximum contrast beamfagmethod.

3. Simulation of an asynchronous BCI In the simulation of asynchronous BCI sys-
tem, we use sample-by-sample analysis [26] for the evalnati the performance.

In our work, we implemented the program for analyzing thdarbsignals by C/C++
and MATLAB.

1.3 Thesis Organization

In Chapter 2, we introduce the“background knowledge abouthumain and brain-
computer interfaces. By reviewing some eurrent BCl systemduviker discuss the role
of spatial filter in signal processing procedure and disthusslesigning ideas of the spatial
filters. Since the goal of this thesis is to construct a spfiter for discriminating different
brain states, details of the filter will be illustrated in Cteap3. The experiment results
using our filter are shown in Chapter 4, including offline asayand the simulation of
an asynchronous BCI system. Finally, conclusions and dismssire in Chapter 5 for
summarizing these methods introduced or proposed in osisthe
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Background

2.1 Background Neuropsychology and Neurophysiology

In this section, we will mention about some basic issues abeuropsychology and
neurophysiology. The relevant issue could be resulted themelation between our mental
state and our brain activities. However, after recordingain signals in EEG, the signal
must be translated into device commands. During this pepees also concern about the
voluntarily control of their own brain activities. We wilhtroduce the brain structure first
and then discuss some mental tasks that used in BCI systems late

2.1.1 Function of the Brain

Human brain structure can be divided into several areas. eSafnthe areas are in
Table 2.1. In these structures, we focus on the 2-4 mm thiak gratter on the surface of
the cerebrum. In the past decades, doctors and researelverbden dedicated themselves
to study the functions of human brain._Wp tornow, the funaiamapping of our brain
can be illustrated in Figure 2.1. Motor cortex«(the greerapo®ncerned with controlling
voluntary movements, by receiving signals from thalamicleuand sending output to
motor control neurons in the brain:stem and spinal cord. @emstor cortex (the yellow
area) is located prior to the central sulcus. This area resggwhen receiving stimulus
from the external environment. Another cortex often use®@@1 system is located on
occipital lobe and relevant to visual stimulus.

Most of the time, subjects in BCl experiments are asked to m®dund control changes
in particular EEG signals by thinking about specific thing$p concentrating on willing
a cursor to move. Different tasks consequently activaterdiht cortex areas. In recent
studies, motor cortex acts an important role in experime@tse reason is that it controls
movement of our body and directly matches the motivation pleple design the non-
muscular interface for disabled patients. Besides, it ismamaon activity in our life and
the corresponding activation is concentrated on specified. &urthermore, the right side
activities of our body are basically corresponding to otir emisphere and vice versa.
These characteristics are good properties in analyzinprhiea activities that encoded in
brain signals.
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Brain structure

Function

Cerebral cortex

The outermost layer of the cerebral hemisphere is compofsé
gray matter. Cortices are asymmetrical. Both hemispheres
able to analyze sensory data, perform memory functionsn |
new information, form thoughts and make decisions.

ad 0
5 are

ea

Left hemisphere

Sequential Analysis: systematic, logical interpretation of info
mation. Interpretation and production of symbolic informa-
tion: language, mathematics, abstraction and reasoning. Me
stored in a language format.

r

mory

Right hemisphere

Holistic Functioning: processing multi-sensory input simult
neously to provide "holistic” picture of one’s environmekisual

spatial skills. Holistic functions such as dancing and ggstits
are coordinated by the right hemisphere. Memory is storediin
ditory, visual and spatial modalities.

Corpus callosum

Connects right and:left"hemisphere to allow for communice
between the hemispheres. Farms roof of the lateral and\bimel
tricles.

[io

Table 2.1:Basic brain structures. (soutce: http:/Aww.waiting.com/brainfunction.html)

2.1.2 Event-related Brain Signals

The history of event-related brain signals might be tracackkio 1930 since Berger

found that some event could block the ongoing alpha aawifv]. It is about 50 years

later than the beginning of the history of cognitive sciesioee Wundt established the first

laboratory of psychology in 1879. Later in 1947, Dawson ubedskill that overlaid the

evoked potential (EP) and create the new generation of helaetrophysiology. In the

follow paragraphs, event-related potentials (ERP) andtexeated desynchronization and

synchronization (ERD/ERS) techniques will be illustrated [3
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Event-related Potentials

ERP is usually defined by "The potential variation in brainl@aby specified stimulus
from external world.” The "specified stimulus” may be therstd the stimulus or the draw-
back of the stimulus. In 1951, Dawson first averaged the diegs of evoked potentials to
analyze the signals. This method is also callddeérage Evoked Potentials (AER3].

The evoked potential of EEG is about 2-1¥ [3] and hard to be observed in the
ongoing signals. However, the response time and wavefortieoévent-related potential
is fixed. With the ongoing background EEG treated as a zer@ameise, we can increase
the signal-to-noise ratia'/? times after averaging EEG trials. Some common ERPs are
used in BCI systems, such as P300 and visual-evoked potevili&)( Some details are as

below.

1. P300: P300 was found by Sutton et al. in 1965 [3]. It was initialbuhd a positive
peak appears 300ms after the onset time. This componerd beulletected under
an oddball paradigm andsthe magnitude of the peak is in ptigmoto the effort
of mental activity. The:properties of P300 have describechamy papers through
different points [8]. Some BCI systems implemented by P300atse discussed
in [6]. Fig 2.2 is an typical iP300-based BCI system, subject wwlikto gaze at the
target word, the matrix flashes once a‘row and column. The ER®was found at
Cz and Pz and the largest magnitude evoked while the targetig/bit.

— Target Letter (™)

s - Target Row/Column

-- Standards

100 0 100200300400 500
ms

Figure 2.2:Typical P300-based BCI systenT:ERP’s at the midline electrodes sites recorded from
the wheel-chaired subject and the able-bodies subjectsdaita associated with the three types of trials are
superimposed.”
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2. VEP and SSVEPVisual evoked potential (VEP) is a typical ERP and is easyeto b
detected when the eyes receive a flashlight stimulus. Tipensg time is about 100-
200ms after the visual task. Moreover, if the flashlight isjnst once but appeared
continuously and regularly, then steady-state visual esighotential (SSVEP) will
be generated. A typical experiment is a phase-reversingkehieoard pattern [11].
If the checkerboard reversed in certain frequency, we camaseomponent on the
frequency in power spectrum density of the recorded sigmalBig 2.3, the subject
gaze at the center of monitor which the two checkboards willch between each
other at a random time and cause a "flash” event.

i 100 150 200 24 30 3 an 230 a0

e i s

Figure 2.3:Visual evoked potential-experiment.The signal is averaged by 100 trials, VEP was
found at about 100ms where Oms is the time the picture pegfarfiash.

Event-related Desynchronization and Synchronization

EEG activities could be divided into two categoriephase-lockedand non-phase-
locked Phase-locked means that the responded waveform of thé-mlated tasks is
fixed, for instance, P300 has a positive peak at 300ms afegvtnt. All types of event-
related potentials is the former case [9]. A typical nongahbocked event is motor-related
tasks, the power of mu-rhythm will decrease during the glamnaetage. Opposite to phase-
locked potentials, this kind of phenomenon will keep a feaosels but not only "several
peak at several time”. These time-locked but non-phadestbsignals can not be extracted
by linear operations such as addition, subtraction or awegathus frequency analysis is
required [7].
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Event-related desynchronization and synchronization (lHR3) researches were pro-
posed by Pfurtscheller at 1977. By the definition in [7], ERD/E&&escribed below.

1. when referring to ERD/ERS of the EEG/MEG it is necessary toigpihe frequency
band,;

2. the term ERD is only meaningful if the baseline measured smoends before the
event represents a rhythmicity seen as a clear peak in thenspeetrum. Similarly,
the term ERS only has a meaning if the event results in thesappee of a rhythmic
component and therewith in a spectral peak that was initiadlyydetectable (Lopes
da Silva and Pfurtscheller, 1999).

Basically, there are two methods in calculating ERIandpower methodndintertrial
variance methodThe former is for both phase-locked and non-phase-loclked Ectivi-
ties, the later is for non-phase-locked signals only. Detdithese methods could be found
in [9] and thus not illustrated here:

2.2 BCIl Research and Associated Motor Related Tasks

Since voluntary control of brain activity.is‘always an essdrcondition for BCI sys-
tems, choosing a useful task is an important issue. Dismusdiout the events were mainly
focused on motor cortex and motor related task in severaepteday BCI systems, such
as BCI2000 by Wadsworth center in New York and Graz BCI systemamphted by the
Austrian team.

2.2.1 Wadsworth BCI

Studies at the Wadsworth Center over the past 20 years hawan shat people with
or without motor disabilities can learn to control the armyge of ;. and 5 rhythms in
EEG activity recorded from the scalp over sensorimotoresoaind can use that control to
move a cursor on a computer screen in one or two dimensiofps§32 Hz; and 13-28
Hz 5 rhythms are produced in sensorimotor cortex and assocatst. Their research



14 Background

concentrated on defining the topographical, spectral, angporal features of mu- and
beta-rhythm control and optimizing the mutually adaptimteractions between the user
and the BCI system. The analysis relies largely on the mea$|g®], the proportion of
the total variance in mu- or beta-rhythm amplitude that oaoted for by target position
and thereby reflects the user’s level of EEG control. In regears, they developed a
general-purpose BCI system called BCI-2000 and have made iablato other research
groups, which will be briefly described in the following pgraphs.

Essential Features

In practical BCI system design, there are many problems musiteerned. Wadsworth
Center have brought up some important concepts and someengeduring BCI2000
system design [24]. The essential features in designingytstem are:

1. Common Model A model with four modules including source, signal protegs
user application and operator interface. Modules can camgate through network
based on TCP/IP.

2. Interchangeability and Independenc&he goal of this feature is to design a system
which maximize the independence among the components. hir @tords, when
changing a component, it will not effect other.components.

3. Scalability: Scalability means that the modules do not put constraintthe para-
meters such as sampling rate or channel numbers.

4. Real-Time Capability A real-time BCI system have to provide the ability to process
the signal in a very short time. In BCI2000, they minimize thie@fon response
time of the operating system or other devices, which mayedeatay.

5. Support and Facilitation of Offline AnalyseMost of the time, offline analysis needs
a lot of information such as event time, event types or feekkbduring the experi-
ment. BCI2000 records sufficient information for comprehemsinalysis.

6. Practicality : BCI2000 not only integrates many different BCI methods but also
provides documentation for researchers from engineensdasers.
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Modules

In the common model, each of the components will be descni¢ld following para-
graph. Fig 2.4 shows the flow chart illustrating general giggie in many BCI systems
[24]. It can be divided into the following components:

1. Source Module This module digitizes and stores the brain signals and/aale
information of the acquired data. At least five modules hasenbcreated in the
system to support different manufactures.

2. Signal Processing Moduleln detailed, signal processing module could be divided
into four steps. They aréature extractionfeature selectionclassificationand
translationin order. During the first two signal processing progresspatial filters
including Laplacian derivation, common average, indepah@omponent analysis
and common spatial patterns [14] are applied. Another itapbtechnique is tem-
poral filter, to date, they have implement five variationsowsivave filter, autore-
gressive spectral estimation, afinite-impulse respontee &hd a filter that averages
evoked responses. The other two steps trains a classifieassify and translate the
inputs signals into device commands. The-interdependedribe module is a critical
problem in system design and BC12000 also did a lot of efforhis inodule.

3. User Application Module User application is the interface that user learn and obntr
the system. BCI2000 has already implemented seven apphsatising different
tasks.

4. Operator Module This module allows the investigator to control the expesitrand
adjust the system parameters such as some signal proceasiiges.

2.2.2 Synchronous and Asynchronous BCI Systems

Generally speaking, one way to classify the BCI system is t@démn the source of
stimulus - internal-paced or external-paced. Internalepgameans that the subject could
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Operator
system configuration visualization
Source brain signals Slgmﬂ control signals User
— ——
evenl markers 1 evenl markers i H
Storage Processing Application

event markers

Figure 2.4: BCI2000 design. The four modules are the components of BCI2000. Notice that t
operator component maintains the system configuration alirgegpresentation for the investigator [24].

decide when to start the 'mental activity’ by himself and kteznal-paced system the
subject is given a cue to indicate when they’'mental actistyould start. [5].

As described in previous sections, researches about EEEéndspargely on event-
related tasks in the beginning stage, that is, we observehheges of waveform after a
specified event in a specific time. In a synchronous BCI systemtam get the start time
of a trial by asking the subject to response after-avisualidicecue. But in practical usage
of a BCI system, a cue-based system may not be suitable to tigelis

In the past five years, many groups have tried to developregstieat can dynamically
recognize the activities of subjects. Base on the undernstgrd brain signals until today,
some basic asynchronous system have been applied to pfaiage [17] [18]. The BCI
user can perform a mental activity whenever he wished to giboommand to the system.
The difficulties in asynchronous system may be arisen froatile not only have to
recognize where is the onset time of an active state (user germs a mental activity)
but also have to classify the period of signal into certain pedefined task from noise
and other brain states (user is resting, idling or thinking smething that may bring
about some EEG activities).

However, integrating all BCl components into a real-time aysts also a challenge.
Offline analysis could be complicated and time-consumingatessing signals in order to
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achieve high accuracy in task recognizing or observe thalaegtthe signals. But in prac-
tical system, all processes must be finished in a very shuod.tiThese requirements are
called "online” in custom. Generally speaking, the goal mwfoaline BCI system is to use
as less channel as possible but keeps satisfying accurd@ffasiency. All signal process-
ing procedures are willing to increase the signal-to-noég® and find useful features to
support the design of BCI systems.

2.3 Spatial Filter in BCl Systems

Spatial filter is widely used in analyzing EEG signals [143][{27], it is an inevitable
process in many occasions. In this section, some spateaisfiltill be introduced.

2.3.1 Introduction to Spatial Filter

In spatial domain, suppose that the number of EEG sensbr, ihen measured data
from a sensor can be viewed as a vector. Thereforé\tlsensors is the basis and spans a
vector space in the spatial domain which derives the rispatial filter” . The concept of
spatial filter has been discussed earlier-then 1995, botiaspad temporal filter method
are proposed for increasing signal-to-noise ratio. A fitm effectively suppress the noise
and signals from undesired location is always of necessianalyzing brain signals.

Comon Averaged
Referenced

Right Ear Reference Small Laplacian Large Laplacian

[ LY
o (]
:u'.:..nl

Figure 2.5:Examples of spatial filter. Suppose the target channel is C3 (red),for CAR filter, the
recordings of C3 is subtracted by the mean of all the greenrekia. For Laplacian, only the mean of four
channels will be subtracted. [13]
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To date, some widely used spatial filters anmon average reference (CARMall
Laplacian large Laplacianandcommon spatial patternsSpecifically, the design idea of
each filter is as below and an example that take C3 channel ate#ied channel is in
Fig 2.5.

1. Common average referenc&Vhen applying CAR, mean of measurements from all
channels will be subtracted. The filter based on the conbeptiniform and entirely
channel covered components are usually not representataegh in specific brain
activity. In this way, global components will be removed dmals highly emphasizes
focal distributions. Because focal distributions usuabyd higher frequency, CAR
can be viewed as a function of high pass filter.

2. Laplacian method Laplacian method filters the signal at a certain locatiortHzy
concept of Laplation derivation. In [13], McFarland et alseua finite difference
method, which approximates the second derivative by sciivtcathe averaged sig-
nals surrounding the target channrel. The formula is

VI SV EER T, (2.1)
jesi
where
9i; = Vgt 1951/ di; (2.2)
JEST

Siis the set of electrodes surrounding itieelectrode and,; is the distance between
electrode; andj. Whend,; is 3cm, the method is called small Laplacian and 6cm
for large Laplacian. Most of the time, the distance is detio the electrode on the
EEG equipment such as 64-channel or 40-channel system.

3. Common spatial patterns BCI group in Graz have developed an optimal spatial
filter before 1999 [14] [20] [27]. Until now, this filter is uden many EEG analysis
for classifying different tasks and has high classificatiate. CSP is also called
common spatial subspace decomposition (CSSBP is a feature extraction method
and”can be realized by projections of the high-dimensionakitsd-temporal raw
signals onto very few specifically designed spatial filtgds?]. It uses variance of
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the two classes of data as the discriminative information.efample is in Fig 2.6,
the spatial filter in the figure is for discriminating left anght motor imageries. All
the details of CSP could be found in [14] and thus doesn’t destrere.

Left motor imagery Right motor imagery

Figure 2.6:Topography calculated by Common Spatial Pattern method.CSP constructs
spatial filters for discrimination of two populations. Thepbgraphy represents the coefficient of channels.
[19] RRTITTTY

1 ' . M
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2.3.2 Model-Based Shatiagl Fﬁiltér;

Generally speaking, meithods"ih d:e-'s:ignirglg spatial filterlccdne divided intodata-
driven andmodel-basedcategoriés; The‘co‘anept of them are as follows.

1. Data-driven analysis Data-driven analysis performs computations in an order di
tated by data dependencies. When applying these methodsigmdgatial filter, the
algorithm do not have to know the channel information. Ta&placian for example,
the method is defined by "subtracts the averaged signal drthentarget channel”.
And in CSSD, the algorithm calculate the projection matrixsbputaneous diago-

nalization of two covariance matrices [20].

2. Model-based analysisA model-based analysis based on fundamental knowledge of
the design and function of an object. For example, Beamfagmiethod depends
largely on the sensor positions, that is, it uses the inftonaf the channels. The
method can estimate the source signals precisely with astdward model.
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In our thesis, we used the later method in designing our fitet details will be illus-
trated in next chapter.




Chapter 3

Model-Based Spatial Filter For
Asynchronous BCI Systems
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3.1 EEG Forward Prediction

3.1.1 Development in Forward Model

Before we start to discuss the forward prediction problengshave to construct appro-
priate head model to describe our head. The problem is nqiisibecause human brain
consist of different tissues, such as cortex (gray mattdrvetnite matter), cerebrospinal
fluid (CSF), skull and scalp. The history of the head model wanson start from the
researches abostingle-shell modelvhich assume that human head is a simple shell. In
the beginning, least-square estimation is used to find eubéist-fit sphere among all EEG
sensors and then map the sensor locations onto the bedtditespurface. In this way, we
can estimate the surface potential. Furthermandti-shell modeis proposed when taking
different tissues into consideration. Based on this modeBeRy, et al. [2] and Mingui
Sun [25] have proposed two different ways to enhance theeaifig of multi-shell forward
model. Both methods improve the efficiency of the calculabiohlose some accuracy.

Nevertheless, there is still a problem - human head is nbajephere. Prediction error
will raise while the distance between sensors and. sphefacsuincreases. A method to
solve this problem is boundary element model (BEM). It usesMagnetic Resonance
Imaging (MRI) information to reconstruct the surface ofiss. Though it's very accurate
but it is time-consuming. In order to‘improve the drawbadWesher et al. presented
the idea ofoverlapping sphereather than using traditionakensor-fitted spheren MEG
problems [12] [23]. We then extended the method and apphelEG works.

3.1.2 Forward Model Using Overlapping Sphere

The idea of the method is using multi-shell geometry rathantBEM model to esti-
mate the overlapping sphere. By assuming that human heawh legetrs and estimate the
surface potential by the second kind Fredholm integral. A& digitizer to measure the
surface of realistic head and then calculate the overlgpgphere for each EEG sensor by
minimizing the difference between the multi-shell sphare gealistic head. The details for
constructing the spatial filter using the forward model Wwélintroduced in next chapter.
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3.2 Introduction to Beamforming Techniques

Beamforming [4] [10] is a method to localize the signal soudceing array signal
processing. It was developed in middle of 20th century ardklyiused in different field
such as sonar, radar and astronomical telescope arrayrsystdie aim of this method is
to calculate a set of weighting of the physical channeldeddteamforming coefficients.
By linearly combine the recording signals with correspogdinefficients, we can create a
virtual sensor at a specified position with a specified dipolentation. In [28], Van Veen
proposed a linearly constrained minimum variance (LCMV)hodtfor implementation of
beamforming on EEG/MEG. In section 3.2.1, we will brieflyroduce the data model used
in beamforming technique, a simple concept of beamformsnig Fig 3.1. In section 3.2.2,
the detail for calculating the dipole orientation will bepéained.

Figure 3.1: Beamforming techniques used in EEG analysis.The spatial filter is a set of
weighting linearly combine the signals recorded by sensors

3.2.1 Data Model

Under the system oV channel EEG sensors, the measured surface potentalan
instant time can be regarded as/sinx 1 vector expressed by

m = G(r)q = G(r)@,,nqn —1(r; q)q (3.1)

where G(r) is the gain matrix calculated by forward model akid; q) is the leadfield.
More precisely, leadfield means the measurement with th@elgpurce located atwith
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dipole momenty which composed by dipole orientati%&” and dipole strengthq||. Fur-
thermore, when there ate dipole sources at an instant time, we model the noise as an
N x 1 vectorn. The measured data can be rewritten as

k
m = Zl(ri; ai)||qil| + n (3.2)

=1
whereq; ( = 1,2,... k) is theith dipole moment.

Notice that the equation above represents the measuretamirastant time. In time
domain, bio-medical signal is often modeled as a randonmasegmd thus we take temporal
information into consideration and we use first and secoddrastatistics to describe the
dipole as

ai = E{ai} (3.3)

¢ = E{la2lalla =a]" (3.4)

respectively, wheré stands for expéctation. Furthermore, the mean and coeariaatrix
of the measurement are

k
m = E{m}= 100 g (3.5)

=1

L
C = E{|lm(q;) - m[lm(q;) - m|"} = > 1z ai)eql’ (1 a:) + Ca (3.6)

respectively, wher€,, is the covariance of the noise under an assumption of zerom.mea
Practically,C is calculated by using recorded EEG signals.

1

whereT' is the sampling number ard is an N x T" matrix which represents the recorded
EEG signals. The subscripd’ D F” denotes Mean-Deviation Form which each element is
substituted by the mean of row of original matrix (i.e. agaa potential of each sensor).
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3.2.2 Spatial Filter Design

As mentioned in previous section, beamforming is designe@donstruct the source
activation by linearly combine the recordings from each E&g@sor. The idea can be

written as

y =w' (ro;qo)m (3.8)

wherey is the reconstructed moment with dipole locatignand dipole orientatiorﬂg—l,
andw? (rg; qg) is anN x 1 vector which denotes the spatial filter. By LCMV, there are
two constraints in findingy. The first one idinearly constrained:

w’ (ro; qo)l(ro; qo) = 1 (3.9)

which extracts the target sourae-€ ro andq = qp) and suppresses other sources:(ro
andq # qo). This constraint is also callednit gain constraintbecause after filtering
the predicted potential, we would'get the original sourcee $econd idea of LCMV is

minimum variance:

min ¢, $.tw" (re; qo)lro; qo) = 1 (3.10)
w(ro;do)

wherec, is the variance of the estimated signal. The reason to mzeithie variance of the
filtered signal is that if forward model is exactly correctiamithout noise, then

Yo = WT(I‘O; QO)m = WT(I"O; QO)I(I‘O; QO)QO =1Xqo=0qo (3-11)

whereqy is the true source moment at the target position. The detadislving the filter
w are in [28] and the equation is:

L _ (Ct+an
~17(C +al) 1
whereq is a regularization parametet; is the covariance matrix explained in previous

w = (C +al)"1(17(C + o)~ 1) (3.12)

section and is the identity matrix. Here we omjfk; qo) for simplicity.
However, there is still one question - "How do we know the tipaorientation?” . In
accordance with this question, LCMV decomposes the orientablution space with 3
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orthogonal basis in 3D space [28]. Robinson and Vrba propsyseketic aperture magne-
tometery (SAMnethod to search the orientation such that the resultane\aflz-deviate
is maximum [22]. However, we proposed a method to calcuteeptimal dipole orienta-
tion analytically. The following section will illustratéé details in this method and explain
how we use it in designing a filter for an asynchronous BCI system

3.3 Spatial Filters for Asynchronous BCI Systems

All the following topics in designing our asynchronous BCltgys could be divided
into two parts.

1. Recognition of active state As mentioned in subsection 2.2.2, we want to design
a filter that can recognize the active state during the ei@ctuf BCI system. In
subsection 3.3.1, we useaximum contrast beamform@CB) method for this sit-
uation. Details of MCB will be illustrated later in subseci®:3.1.

2. Classification of different tasksAfter we recognize the active state, we can further
classify the signals. We proposed a filter construction oekih order to increase
the distance between each group.:lnssubsection 3.3.2, Wantkilduce how to use
Fisher’s criterion to design this filter.

3.3.1 Maximum Contrast Beamformer for Brain State Analysis
Maximum Contrast Beamformer

The decision of dipole orientation is an important issuegarbforming techniques. A
correct dipole orientation can successfully suppressigdesired noise. The idea of MCB
is finding the optimal dipole orientation by maximizing tfaio of active state and control
state. In the beginning, recall that the definition in setB®.2 the leadfieldl = G(r) L

llall
can be rewritten as= Gj and substitute it into Eq 3.12 we have

(C+al)™  (CHol)'Gj . Aj

_ _ - 3.13
VT E(Cral)1 JTGT(C+al)'Gj j'Bj (3.13)
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whereA = (C + aI)"'G andB = G (C + oI)"'G. Notice that the dipole orientatigh
could be extracted. In the idea of MCB, we maximize the ratiavben active and control
state by using F statistic for the criterion in deciding taga. The formula is

wlC,w

F= o (3.14)

After substituting Eq 3.13 into Eqg 3.14, the formula can laastated as:

- (5735)" Cal5755) JTATC.Aj i"Pj
j = argmax - = = MaX ey = Max (3.15)
I Grgs)TCe(erg;) 0 JTATCA] T TQ)

whereP = ATC,A andQ = ATC_.A. Now we can know that it is a traditional optimiza-
tion problem in solvingi and the solution is the eigenvector with respect to the marim
eigenvalue of matrixQ —'P. Therefore, we determined the source orientation withreete
ministic computational steps.

MCB in asynchronous BCI system

However, in biomedical .engineering domain, the intersctbyariability is always a
critical problem. In section:2.2, we can realize that notydhke peak frequency but also
peak latency [15] of subjects are-always-different. Thaefavhen take the theory into
practical use, we must take the following topics into coasadion.

1. Frequency band The peak frequency band of the subject must be decided, &e us
continuous wavelet transform (CWT) for peak frequency selactMorlet wavelet
transform is applied and proper band width will be decidecbading to the time-
frequency map.

2. Signal range for active/control staté/NVhile selectiing the time period of active state
, we tested different signal ranges and 0.5 second actiggnarfound to be the best
width. On the other hand, resting state is more stable whesdlected signal range
changes.

3. Dipole location: As mentioned in section 3.2.1, dipole location is used toutate
forward model. But in reality, we don’t know the exact positiof the brain source.
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In our methods, we searched the brain and find the locatidnméximum contrast

beamformer.

4. Optimal regularization parameter The regularization parameter refers to thén
Eq 3.12. A value o0~ 7 is applied in the general cases.

5. Feature extraction After the signal was filtered by the spatial filter, we extrdne
feature for classification by calculating the variance @f signal. The variance of a
signal at an instant time is calculated by the nearest 50@msds.

6. Classification of brain statesWe use a threshold to define the boundary of active
state and control state. We determine that the subject ferpging motor related
tasks when the variance is larger than the threshold or thjecshould be resting.

All the results of experiments and the details for decidimgparameters above will be

shown in next chapter.

3.3.2 Different Tasks Classification Using Maximum Discrimination

Beamfroming Techniques
Fisher Linear Discriminant

This linear discriminant method is proposed by Ronald A. &ish 1936 [21] and
widely used in many classification problems such as imagegrétion. WWe may begin to
introduce this method by considering a problem that prejdata from{ dimensions onto
aline. The idea of the method is in [21]. Itis basically desid for two-class classification.
The goal is to find the most discriminant projection veatorFig 3.2 is an example, the
two populations can be regarded as right group and left gaftepthe projection [21]. The
projected data would have two properties:

1. The distance between the two projected group means willdbemized.

2. The variance of each group will be minimized.
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Figure 3.2:Projections in different directions. A same set of data was projected onto two different
lines in directionw. The projected points were more separable on the right figlie

Suppose we have two setsdflimensional samples,, ..., x,, ny in setD; andn, in

setD,. Then the projection can be written.as

c=wexe Vi=1...n 3.16
Yi G y e (3.16)

wherew andx; ared x 1 vectors,.and the projected datais in G; andG, corresponding

to D, and D, respectively. The meam, of setD; is given by

m=— 3 x (3.17)

and the meam!, which projected from data in sé, is given by

Z wix; = wimy (3.18)

1 1
m; = — Z Yi=—
m yi€G1 n ;€D
which is the projection ofn; and we can have the projected mean ofiSgby the same

way. Now we can define the distance between the two groups by

im} — mj| = [w" (m; — m,)| (3.19)
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Remember the second property of Fisher linear discrimirsaotminimize the variance
of projected data. Take sét, for example, rather than using simple variangewe define
the scatterinstead.

si2= 3 (yi—mj)? (3.20)

¥ €G1
Similarly, the variances, of set(, could be calculated in the same way. Thus, the
criterion function of Fisher linear discriminant can be deti by

(3.21)

Now the idea of Fisher’s criterion is illustrated, and themadapt the criterion function in
order to find the optimaiw. For this purpose, we modify the numerator and denominator
of the equation by

i, — = (TR Tin, )
= W' (my— ma)(mpy— my)’w (3.22)
= wliSgw
whereSg = (m; — my)(m; — my)%and
si?+s82? = ¥ (yi—m))?+ X (yi—m))?
yi€G1 1, €EG2
= ¥ wWIxi—wim)?+ ¥ (wTx; — wlmy)?
T, €D x;€ED2
= > wlm; —my)(m; —mz)Tw+ ¥ wl(m; —my)(m; — my)'w
T, €D x;€ED2
= WTslw + WT82W
= wlSww
(3.23)

whereSw = S;+S,. We callSp thebetween-class scatter mataxdSy; thewithin-class
scatter matrix Consequently, Fisher’s criterion function can be rewnitie

J(w) = W Spw (3.24)

wISww
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The goal of Fisher linear discriminant is to find an optimato maximize the object
functionJ(w).

Maximum Discrimination using Fisher linear discriminant

Base on Fisher’'s method, we further apply the concept toitfadifferent EEG tasks.
Recall that our goal is to maximize the difference betweetediht tasks, now we reform
the procedure as the following.

Suppose the channel numberNsand the number of sample points of a trialTis
we generalize the-dimensional data to ouN x 7" EEG data. Similar to the previous
paragraph, we define; as N x T' EEG trials. For the two classes of tasks, number of
trialsn; is in setD; andns is in setD,. Therefore, the mean of each group is the same as
Eq 3.17, and notice that; is a matrix. After the data was projected By(i.e. theN x 1
spatial filter), we would have the projected dgtgan1 x 7" vector) which represents the
filtered signal.

Under this situation, the calculation of projected meahéssame as Eq 3.18, but notice
thatm) andm/, are bothl x 7'vectors which-mean the averaged projected signal. Then the
remaining problem is how to define the distance-between greegns and how to calculate
the group variance. We generalize the-concept "distanoai £q 3.22 by

[m} —mp[* = [[wim; — whmg|
=wT(m; — my)(m; — my)’w (3.25)
= wTSgw

whereSg is the newbetween-class scatter matrix

It is easy to be realized that if we consider the original Ei&hlinear discriminant as
data at "an instant time” in EEG. The concept of distancengsy generalized to "a series
of time”. By the same way, we generalize theatterby

si?= D llyi —mi? (3.26)

yi€G1

and the same with,?2. Thus thewithin-class scatter matrigan be defined by
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si?+s2” = X flyi—mi[P+ Ty — my|]?
y:€G1 i €G2

= 3 [[wix—wim|? + ¥ |[wFx; — whmg||?
JtiEDl :EiEDg

= > wli(m; —my)(m; —mz)'w+ ¥ wr(m; —my)(m; — my)'w
x; €D x;€Do

=wIiS;w+wTrSow

= wlSww
(3.27)

and we may notice that the form of criterion functidfw) is the same as Eq 3.14 and thus
we calculated the projection vector in the same way with B4.3.

By the end of this chapter, we summarize the idea for desigtiagnaximum dis-
criminant spatial filter. In our methods, we use Fisher'tecion to find an optimal dipole
orientation which can maximize the difference between Weedlasses of tasks. We gen-
eralize the data format of Fisher discriminant analysisiftbdimesional sample t&/ x T
dimensional sample (i.e. from "an instant:time”to,"a sewésme”). In next chapter, we
will show the results by applying the-filter.



Chapter 4

Experiment Results
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4.1 Experiments

4.1.1 Experiment Paradigm

The experiment paradigm is in Fig 4.1. At the beginning ofi@,ta fixation cross is
shown in the middle of screen and disappeared at 2s. Aftawdineing tone, a visual cue
(an arrow points to the left or right) will appear and last 1025 seconds. The subject is
told to do the finger movement/imagery task after the cuepgisared. Left arrow is for left
finger lifting task and vice versa. In this experiment, a ggss about 20 minutes and the
period of a trial is 8 seconds. Left or right arrow appearslcanly during the experiment.

mmmp Right hand finger lifting imagery

Beep Cue - Left hand finger lifting imagery
Fixation -—)
+ _ Task
| | | | | |
0 1 2 3 4 5 5] 7 &
time in sec

Figure 4.1:Experiment paradigm. The-experimentis for right/left finger lifting tasks

4.1.2 Data Sets

In our experiment, we have data sets from 24 years old matele®a sets was acquired
about once per month, three of them are experiments of reg@rflifting task (labeled RO1-
03) and the others are of imagery task (labeled 101-03).

4.2 Implementation of Spatial Filter

Recent studies show that cognitive tasks and motor funcaoaselevant to specific
frequency band of EEG signals [15] [16]. In our methods, &l important to decide the
dominant frequency band. Details will be illustrated argtdssed in this section.
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beep cue beep cus

right finger imagery
- YYY

left finger imagery
- YYY

2 3 4 5 6 T 8

3 4 5 68 7 8
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Figure 4.2:Time-frequency map of I01. The map has been normalized to [0 1] respectively. The
dominant frequency is around 10-15Hz and the post-movepmmér appears about 1 second later.

4.2.1 Time-frequency analysis
Frequency Band Selection

In order to estimate the dominantfrequency band, we appbatinuous wavelet trans-
form (CWT) to EEG signals. CWT is a time=frequency analysis me&ihsignal process-
ing procedures and each trials was ‘calculated using modeebet. In Fig 4.2, , the fre-
guency with range from 10 to 30 Hz was illustrated and upperaaband (10-13 Hz) could
be determined as a dominant frequency band.

In our method, we use 10-15 Hz as the dominant frequency bamithit subject. A
band pass filter was applied to the raw EEG signals beforertieepding calculations.

Active State Selection

In maximum contrast beamforming method, trials are usedlcutate the covariance
matrix of active and control states. Thus an appropriat®geaf signals which can repre-
sents the states is very important. Different ranges ofastiate are tested and we found
that 0.5 second width (covered by the red area in the tings&recy map) is the best range
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Figure 4.3: Tomography of data RO1. The brain was divided into grids and each F value was
calculated using maximum contrast beamforming methods.

for the maximum contrast. On the other hand, we-used 1-se@nge for resting state
signals. Since the signal of the resting stateis:more s{éi®esubject do nothing with eyes
opened), the range of resting state didn’t effect the resuit much.

4.2.2 Brain Activation Tomography
Tomography Using Maximum Contrast Beamformer

As mentioned in section 3.3.1, the spatial filter was catedlainder a given dipole
location (i.e. activated brain source). Since we will nobwrthe exact dipole location of
the subject, we searched the whole brain using MCB.

After divided the brain into grids, we calculated the optimigole orientation which
maximizes the active and control state for each grid. In E3g@ set of tomography of right
hand real movement task (data set R01) was calculated. Thenasacalculated at motor
cortex which located at left hemisphere. By this tomograpig, activated brain source
could be determined and we can further use the dipole latati@esigning our spatial
filter.
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Figure 4.4:Topography of data RO1.The topography of data RO1 (right hand movement trials) was
used to calculate the spatial filter. Notice that the adtivelbrain source is at the left hemisphere with respect
to right hand movement.

Topography of Spatial Filter

After the pre-processing procedures in previous sectibiesspatial filtew introduced
in section 3.3.1 could be calculated. Recall thats the weighting corresponding to the
EEG sensors and the filtered signal can be viewed as a linearication of all the EEG
signals. The topography of the spatial filter calculatechgisiata RO1 (right hand move-
ment trials) is in Fig 4.4.

Stability of Spatial Filter

Furthermore, we considered a question that a EEG subjectemagunter - "How to
estimate the sensor positions which constructed the forwadel?”. The measurement of
the sensor position is not easily to be acquired at any timact¢ordance with this concern,
we applied the sensor positions estimated during the expetiRO1 to each data set. In
Fig 4.5, right hand imagery/movement trials were calculatader the same gainmatrix
(i.e. Using the same sensor position and dipole location).

In Fig 4.6, left hand trials were used to calculate the spétiars. We can see that
the correlation coefficients are more similar to those dated using right hand trials. It
is reasonable that non-dominant hand is always more disshgble in active and control
states [1].

In this section, we illustrated the details in constructapgtial filters and we verified
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Correlation Ceofficient
Standard 85.41% o6, 7% 91.58% 98.97% 60.65%

Figure 4.5: Topography using the same sensor position. (Right finger im-
agery/movement trials) We took the first topography to be the standard spatial filter @her data
sets were compared with it by calculating correlation cogffit . Data labeled from left to right were RO1,

R02, 101, 102, 103, RO3.

Correlation Coefficient
Standard 85.02% g7 .08% 08, 24% 99.09% 78.01%

Figure 4.6: Topography using the same sensor position. (Left finger im-
agery/movement trials) We took the first topography to be the standard spatial filter @her data
sets were compared with it by calculating correlation coffit . Data labeled from left to right were RO1,

R02, 101, 102, 103, RO3.
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the stability of maximum contrast beamforming with diffetelata sets. In next section, we
will evaluating the performance of the filter by simulatiodragynchronous BCI systems.

4.3 Performance Evaluation

4.3.1 Unbalanced features

When evaluating the performance in asynchronous BCI systeoosneon problem is
that the time period of active state is always far less thsting states. In [26], Pfurtscheller
et al., proposed an evaluating method using operating ctestistics curves (ROC) to de-
fine the accuracy of an asynchronous BCI system and we use sagplample analysis
as the measurement. The two axes of the ROC curves are trilgoate (TPR) and
false positive rate (FPR). TPR is used for measurements eitsély and FPR is used for
selectivity [26]. The definition is:

TP FP
= FPR= —————
TP+ FN’ TN + FP
where TP, FN, TN, and FP:-are the number of true positive, faégmtive, true negative,

TPR (4.1)

and false positive respectively. .Note that the type is ddfisemple-by-sample and are
illustrated in Fig 4.14.

4.3.2 Recognition of Active State

The flowcharts for recognition is in the following. In Fig 4we applied our spatial
filter to EEG signals (8-15Hz). We extracted the feature Bgutating the signal variance
and then used a threshold to recognize the active brairsstate

Applying Spatial Filter

In Fig 4.8 and Fig 4.9, we take a look at continuous 20 trialmfdata set 102 (left hand
finger imagery). Data set 102 is the most clean data set whasHdast noise interference.
The left column are the first continuous trials recorded at lidhael and the right column
is the data filtered by our maximum contrast filter. In trial @ raw data has some noise
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MCB
[1] Gainmatrix [2] Unitgain
| 3] Miniimum Variance

W
EEG Signals ’é) Estimated
(8-15 Hz) U > Brain Activity

Active State

Feature

Classification | Extraction  |e——

Resting State

Figure 4.7:Flowchart - Recognition of Active State.

at 0-2000 sample points (i.e. 2 seconds before the cue gppgdter applying the spatial
filter, the noises were eliminated and the vartance is s&blend 5000-7000 sample points.
Similar cases can be found in trial-01, 11 and 19. For trial0d3,10, 16, we can see that
the variance of the signals is largely increased.

In contrast to data set 102, we also show the continuous a6 thiom data set R02
which is largely interfered by the environment‘and the scibjén Fig 4.10 and Fig 4.11,
we can see the noise is larger than 102 by observing the sigmaund 0-3000ms. After
applying our filter, we successfully suppressed the noise.

Averaged Variance Ratio

In our method, we extracted our feature by calculated theasigariance. In order to
evaluate the changes of the signal, we calculated the wariahthe filtered signal by a
500ms-width sliding window ( Fig 4.12). Firstly, We calctdd the signal variance curve
and then divided it by the variance of resting states. Weedatl theratio curveand we
used it as our feature. In Fig 4.13, we illustrates the aeztaigtio for each data sets (right
hand tasks). We can see that the ratio at active states iasttdgimes larger the resting
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Figure 4.8: Applying filter to raw data. The signals are from data set 102 (trail 1-10), left finger
imagery trials. The left column is the raw data recorded anclel C4, and the right column is the filtered
signal.
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Figure 4.9:Applying filter to raw data. The signals are from data set 102 (trial 11-20), left finger
imagery trials. The left column is the raw data recorded anclel C4, and the right column is the filtered
signal.
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Figure 4.10:Applying filter to raw data. The signals are from data set R0O2 (trail 1-10), left finger
imagery trials. The left column is the raw data recorded anclel C4, and the right column is the filtered
signal.
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Figure 4.11:Applying filter to raw data. The signals are from data set RO2 (trial 11-20), left finger
imagery trials. The left column is the raw data recorded anclel C4, and the right column is the filtered
signal.
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Figure 4.12:Calculating variance using sliding window. A sliding window with 500ms width
is used to calculate the curve of signal variance. This cwillelivide the variance of resting state signal for
the ratio curve for classification.

states (blue curve) which is larger than the ratio of raw dedd curve). Besides, there
are some noises before the cue in data set R0O2 and R03. That mesultefrom the eye
movement or the subject moved his body. Those noises amdyagppressed and this is
also a practical property for BCl:systems.

Evaluating ROC Curves

In Fig 4.14, we used the ratio curve as our feature. While exilg the performance,
a threshold was adjusted and the Eq 4.1 will be calculated.clssification result was in
Fig 4.15 and Fig 4.16. The red curve is the result of raw EE@ (Bt15Hz) and the blue
curve is the result of data applied by our spatial filter. Tompmarked on the curve is the
point which nearest to point (0,1). Note that the point (OqEans that the classification is
perfect because it is exactly correct in "event period” aon@mor in "non-event period”. In
our experiment, (TPR, FPR) is (0.7363, 0.2001) for averaggd hand tasks and (0.7658,
0.1983) for averaged left hand tasks. From the results, welgde that left hand is more
effective in discriminating active and control state sigrizecause both TPR ad FRP of left
hand tasks are better than right hand tasks. This resulteaxiained by the researches
in [1] which says that ERS is more differentiable in non-doamihhand.
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Figure 4.13: Averaged variance of trials. In the figure, the averaged ratio for each data set is
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trigger

time

Figure 4.14:Paradigm for sample-by-sample analysis.Sample-by-sample evaluates the true
positive rate (TPR, denotes the accuracy in "event periddtivis the higher the better) and the false positive
rate (FPR, denotes the error in "non-event period” whichésower the better ). The event period are defined
by 2.25-5.0s after the arrow appeared. [26]
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(0.24815, 0.66566)

" (0.282, 0.60002)

€0.532148, 0.63480)

Figure 4.15:ROC curves for Data sets R01, R02, 101 Sample-by-sample evaluates the true
positive rate (TPR, denotes the accuracy in "event periddthvis the higher the better) and the false positive
rate (FPR, denotes the error in "non-event period” whichédower the better ). The event period are defined
by 2.25-5.0s after the arrow appeared.
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Figure 4.16:ROC curves for Data sets 102, 103, R03.Sample-by-sample evaluates the true
positive rate (TPR, denotes the accuracy in "event periddthvis the higher the better) and the false positive
rate (FPR, denotes the error in "non-event period” whichédower the better ). The event period are defined
by 2.25-5.0s after the arrow appeared.



4.4 Discussions 49

4.4 Discussions

4.4.1 Imagery and Real Movement Tasks

In our thesis, we use six data sets for analysis. Three of th@maginary of finger lift-
ing and three of them are real finger lifting. Motor imageryasy similar to real movement
and was discussed since a few years ago.

"Imaginary of right and left hand movements result in desyoaization of mu and
beta rhythms over the contralateral hand area, very simitaplanning and execution of
real movements (Neuper and Pfurtscheller, 19995]

In our experiments, both of them are successful in calngatine spatial filter. The
correlation coefficient can prove that it is also true in oated

4.4.2 Brain Activities on Left/Right Hemisphere

Research in [1] shows that the post-movement power (caénlitat ERD/ERS) is more
differentiable in non-dominant hand . In‘our left hand imggexperiments, the averaged
power of C4 is obviously larger than C3:’In right hand imagérg,averaged power of C3
is larger then C4, but the difference’between C3 and C4 is noge & left hand imagery.
The value of the power in Fig4.2 have been normalized to [@4pectively. In Fig 4.17,
the maximum power illustrate the interaction between tasicshemispheres.

These properties and important in analyzing movement inyagesks was discussed
in [1] [15]. Classifying different motor tasks is always amplem concerned with finding
a good feature. Knowing more information about the subjedtelpful in designing the
BCI system for the subject.

4.4.3 Spatial Filter Using Maximum Discriminant Beamformer

Remind about sec 3.3.2, we design the filter pair for classidicaof left/right hand
movement. Fig 4.18 illustrates the topography of the twaiapgter. The left topography
is the filter with dipole position located at right motor ai@ad the other is at left motor
area.
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Maximum power

Figure 4.17:Interaction between tasks and hemisphereswitin left hand finger imagery, the
activity is obviously focus at the contralateral hemisgh@4). When performing dominant hand tasks (the
subject is right-handed), cortex activity at both hemisphg not significantly different.

Filter L Filter R

Figure 4.18Filter pair designed by maximum discriminant beamformer. The topography
pair is designed by maximum discriminant beamforming mettiche idea is to maximize the difference of
power at left and right motor activities.
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»  MDB
w
Raw EEG _’Band Pass W Haar Wavelet Ll ttest Lyl SVM
Signals 8-15Hz Transform
Laplacian Haar Wavelet ttest Lyl SVM
Filter Transform
»| Haar Wavelet Ly ttest Jdup| SVM
Transform

Figure 4.19:Flowchart(1) for classifying left/right finger lifting tas ks.
we compared the effect among raw data and data filtered byatiapl or MDB.

In this procedure,

In our experiments, we used two_procedures for differerkstatassification. The first
one is in Fig 4.19, we used-the 8-15Hz raw data (sampling r@®®)land then use haar
wavelet transform as our feature extraction method. Tigegsed to find the significant
components and then we used:-SVM (Support Vector Machinehaslassifier. In our
experiences, the optimal number-of components is around 20@. We compared the
effect by applying Laplacian spatial filter and MDB spati#iefi. The result is in Fig 4.20,
we can see the result of MDB is not very stable. It may becahestethe filter is sensitive
to the parameters selected during the construction of tagas(filter. How to find good
parameters and make it stable is an important problem inuturd works.

The second procedure is in Fig 4.21, we used five pass-barfédture extraction -
delta (0-3Hz), theta (4-8Hz), alpha (9-12Hz), beta (13-80&hd gamma bands(30-40Hz).
For each pass band, we filtered the signals by MDB filter pdifeen we calculated the
ERD/ERS as our features. In the last stage, we combined thadsadnd we used linear
discriminant analysis (LDA) as our classifier. The goal of A3 to project data into
two groups by calculating the optimal projection vector.néTconcept is introduced in
sec 3.3.2)
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Data Set | RawData | Laplacian MDB
101 70% 80% 76%

102 66% 79% 88%
103 1% 82% 81%

Figure 4.20:Results of SVM cross validation.

> MDB
ad Task1| [Task2
.| LowPass Feature Definition 7 Y
| Delta (0-3H2) ERD/ERS
.| Band Pass —p@—’ Feature Definition
7| Theta (4-9Hz) ERD/ERS
Linear
Ra
EEg > Band Pass ___,( )__’ Feature Definition | Discriminant
Alpha (3-12Hz) ERD/ERS i
Signals Analysis
Band Pass _.(: )_, Feature Definition
=>| Beta (13-30Hz) ERD/ERS
.| Band Pass —.@—p Feature Definition
" |Gamma (30-40Hz) ERD/ERS

Figure 4.21:Flowchart(2) for classifying left/right finger lifting tas ks. Five band-pass filter
for 0-3Hz, 4-9Hz, 10-13Hz, 14-30Hz, 30-40Hz was appliedeAfiltered by MDB filter, we used ERD/ERS
for feature definition and linear discriminant analysislassify the two tasks.
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In our experiments, data set 102 was chose for tesing. Ird#tis set, there are 80 trials
of left finger lifting and 84 trials of right finger lifting. W&ook 50 trials each (total 100
trials) for training the projection vector and then applieth the other trials. In Fig 4.22,
red points are trials of left finger lifting and blue pointg anals of right finger lifting. The
value of y-axis is the value after applying the projectiontee Our results showed that the
trials for training could be distinguished but the otheraldaot. We thought that it may
because the vector is over-fitted to the training sets. Thowgcan have high classification
rate for self-testing, it is still difficult to classify thevb tasks. This is also an important
problem in our future works.
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Figure 4.22:Results of LDA. Five bands were tested. Red points are left finger lifting/grand blue
points are right finger lifting trials. The previous 100 ksiare training data (in the black frame) and the rests
are for testing.
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In asynchronous BCI systems, the most difficult problem is #terhination of active
periods. Motor related tasks such as hand, arm or finger mengimagery are important
tasks in BCI systems. In our thesis, we proposed a spatiaiitieah can efficiently recog-
nizes the active periods of brain sources. In chapter 2, wedunced the background of
neuropsychology and neurophysiology. Besides, motoraglatowledge is also of signif-
icance in current BCI systems. In chapter 3, we used overlgpggphere model to construct
the forward model. Furthermore, we used maximum contraanb@ming method to cal-
culate the optimal dipole orientation which can maximize\hriance of active and control
state signals.

In chapter 4, we used continuous wavelet transform to pogsothe raw EEG signals.
After the dominant frequency band and the ranges of signaise wecided, we calculated
the spatial filter and further applied it to EEG signals. Thterfisuccessfully maximized
the variance of the signals at active period and minimizedsgriance in resting states.

In our method, feature extraction and classification is sntut effective. We use
signal variance as features and we only use a thresholdgsifglahe brain states.

The major advantages of our filter is as follows.

1. Noise suppressionOur spatial filter can'successfully suppress the noises frimer
brain areas. And the optimalbrain source can be acquirecéncising the whole
brain with beamforming method.

2. Accommodation For each BCI system users, they may have their own spatiafilte
which are adjusted by their own parameters. In section A& erified the stability
of the spatial filter. Users can only measure the sensoripogince and apply it to
proceeding procedures.

3. High recognition rate: In section 4.3, we successfully increased the signal naeia
which is important in recognition of brain states. In ourules the ROC curves
shown the ability of the spatial filter.

However, how to construct asynchronous BCI systems is stilffi@ut problem, and
we may base on the spatial filter for more research in futumisvo
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