Efficient Share Renewal Protocol Design for
Mobile Ad Hoc Network using Perfect Hash

Families

LEENER L BERE FRe H1

N

L

d 2 a AR FH e (Mobile Ad Hoc Network) fh— i L= 4%

R d ~ FFEAPF I 77 LT

B bl4e? ¥ AR MRE SROBFHE 3 TR ERAR S ABE

i ? SnRp 8 R TR BT 2N A L - B PPR o R

=

- g s oPKI R B BB ERTE FTERERD
BT FA- BEY S CALABEY bR Tl AR RRY - TR
P R R P NI o

Az D - B T FgeisaE (Perfect Hash Families) e
FEFR(HRERTET > B RS GAITE LER Y D5 B
Zod - TRBHOEFILEEFRETPH T L IHRFIFFARTEE &
(AT R &M MELLEFERG AR DL H ot F F e F ik -
Bk ST % RS R 0 T AT R AR [e F e o

Bots o AP E AT B AR E N2 A B R R

Mg (MR FRRE (R ORERTEZ VP IRBLE - ER

Efficient Share Renewal Protocol Design for Mobile Ad Hoc Network using
Perfect Hash Families

Student : Hung-Hsiang Hsu Advisor : Dr. Yi-Shiung Yeh

Institute of Computer Science and Information Engineering National Chiao
Tung University

Abstract :

Due to the inherent characteristic, such as unreliable wireless media, host
mobility and lack of infrastructure, providing a secure communication
platform in a mobile ad hoc network is a big challenge. However, common
authentication schemes like PKI, which is used extensively in wired network,
are not applicable in the ad hoc network environment because public key
infrastructure with a centralized certification.authority is rather difficult to
deploy here. Thus, the centralized circumstance needs to be solved.

This thesis propose a scheme using the perfect hash families to
implement the (n, k) threshold secret sharing. We separate the private keys
into several shares and distribute them to every node in the mobile ad hoc
network. Only a fixed number of nodes can sign the signature collaboratively.
We also use the proactive secret sharing to update the private shares. It can
avoid one node holding the same secret share for a long time and can increase
the difficulty to being attacked. Moreover, we use the property of a PHF to do
the proactive secret sharing, resulting in a more efficient update procedure.
Finally, we analyze the performance of this scheme and compare our system

with other previously mentioned methods.

Key words: Mobile Ad Hoc Network, (n, k) threshold secret sharing,

Proactive Secret Sharing, Perfect Hash Families.

il

®#

T
iy
Tl
¥
«)
= »
oo
N
PariY
.=
—h
S
&4
)
s
"
3
&
Sl
\.‘
%
i
o
4k
??
71‘1*
hoid
My
e
e

FERALNZ e B3 L MR IRNL T LY R EEE S

Beo B P s BB S E 3 s 0prs Gobby o % R P edp I i

\\Q:E_
N5
=3
-
\'
4
poy
&
bl
=X
AN
o
\lﬁ.‘

L 8 edh o B T - AzpaARst > WA
TS R AR BRI o 2 B R B AR E Wl
s A FPE R R BiE e BT o snk A F S B TR AR AR o
Bofs » BAHA N AG SR IRPL E R P E AR 64 4
ek > B oz 2EF chps B oo

WA B }}% Lot Bl A LR BRI o

v

Contents

BT T e ii

ADSIIACE 1 oottt ettt et e et e et e bt e nteebeeeatean il
R BB ettt ettt et e et e te et e et e aeere et eeteennas iv
FgUre LIStottt ettt ettt ettt e eeeas vii
TADLE LLEST ...t ettt ettt ettt e st esnneenes viil
Chapter 1 INtrodUCHIONccviiiiiieeiiie ettt e e e e et e e ere e e saee e e areeennseeens 1
1.1 Background..........cccueieiiiiieeeee e e 1

1.2 IMIOTIVALION ..ttt ettt et et ettt et e e esaeeeaee 3

1.3 Related WOTKooiiiii e 4

1.4 (0211172110 | KPS 7
Chapter 2 Related KNOWIEAZEcccvviieiiiieiiiecieeee et e 8
2.1 NEtWOTK SECUIILY ..eevvvieiiieeiie ettt e 8
2.1.1 REQUITEMENT ...t e 8

2.1.2 TYPES OF ATLACKS ..evveeeiiieeiiee ettt e e 10

2.2 Fundamental of Cryptography.........cccccveeviiieeriiieniieccieecee e 12
2.2.1 Symmetric CryptOgraphy ..ol i 13

222 Asymmetric Cryptography .. it eveoeeeeeiee et 14

2.3 Public Key Infrastrieture ..ol i 16
23.1 PKI OVEIVIEW...... . Lol i 18

232 Certificate and - Certification Authorityccccveevieeiiiiieeiieieeieees 20

2.4 (n, k) Threshold Secret'Sharingccooiiiiie e 21

2.5 Proactive Secret Sharing.........ccveveveeeciiiiiiieeeieece e 22

2.6 Combinatorial OBJECtccuuiieeuiieeiiieeieeete e e 24
2.6.1 Introduction to Perfect Hash Families..........c.cccoooeiiiiniiniininnn, 25

2.6.2 Propositions of Perfect Hash Familiescccoeciienciiiiiiiciiieein, 27

2.6.3 Construction methods of Perfect Hash Familiesc.cccoccoiiiiiens 28

2.7 Fundamentals of Mobile Ad Hoc Networkccccceviiiiiniiininiee, 33
2.7.1 Mobile Ad HOC NetWorkcccueiieiiiiiiiiiiiieeieeeee e 34

2.7.2 Characteristics of Mobile Ad Hoc Networkcccceevieniiiniincnneen, 34

2.7.3 Security challenges of Mobile Ad Hoc Network..........cccceeevveenveeenneen. 35

Chapter 3 System ATChItECIUIE.......cueeiiiieeiieecie ettt e e e aee e 37
3.1 (010) 1 161C) o | F RS SUPSPRRRRTPRR 37
3.1.1 CONSLIUCLION ...ttt ettt et ettt esate b 37

3.12 Partitionoooiiiiieie e 41

3.1.3 Conceptual Building BIOCKS.........cceiviiiiriiiieieeeieecee e 43

3.2 SYStemM ASSUMPLION ...veeeuiiieeiieeeiieeeiieesieeesteeesereeeareeesreeeaeeesseeessseesnsseeens 44

3.2.1 Intrusion MOdel.........ooouiiiiiiiiiii e 44

322 TruSted AEALET ..oooeeieeeiieiieieeeee e 45

33 Details and ProtoColS........c.ceviiiiiiiiiieiieiie et 45
3.3.1 System INTtAliZatioNcccveeiieriiiiiieieeieee e 45

332 CertifiCation SEIVICE.eevuiieiieeiieeiieriieeieerite et ite e seeeeaeeaeeenneesens 47

333 Updating the Secret Shares..........occvevviieiieiiienieeieeeeee e 49

Chapter 4 Evaluation and ANalySisccceoiiriiiiieiiieiieeie et 54
4.1 EValUQtioNcc.oiiiiiiiiieiiecie ettt e 54

4.2 ANALYSIS ottt e ettt ta e et abeetaeenaeenne 56

4.3 DISCUSSION. ...ttt ettt ettt ettt et e seae et estaeeteesaaeenbeeseseenseesnseenne 61
Chapter 5 CONCIUSIONocvieiiiieiieeie ettt ettt ettt e s e et e sabeesbeesnaeensaens 63
L 2 15) 1 TV PR 64
FLN 1) 11 111 L. O PR 66
APPENAIX B et e e e 70

vi

Figure List

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

2.1.1 Passive Threats.............cccocoeeviiiiniiiiiieeeeeeeecee e 10
2.1.2 Active Thrreatscccoovviiiiiiiieeiiecieeeeeeee e 11
2.2.1 Symmetric Cryptographyccocccovviiiiniiiiniieeeeeee e, 14
2.2.2 Asymmetric Cryptographycccccoeviiiiniiiiniiiiieeeiee e, 15
2.3.1 Man-in-the-middle Attack................ccccooeviiniiiiniiiieeeee, 17
2.3.2 Components and Process of PKIc.ccooooiiniiinninnnen. 19
2.7.1 Mobile Ad Hoc Network............cccooeviiniiiiniiiiieeeeeiee e, 34
3.1.1 Finding the minimal prime power qc.cccccceevvveerieennen. 38
3.1.2 Construction Algorithm of PHFccoooiiniiiinn. 38
3.3.1 Construction Algorithm of the whole Network...................... 46
3.3.2 Request for Certification................c.ccccoeevieniiiiniiiniieciee e, 49
3.3.3 Certification Servicecoceeviiriiiiiiniiiiiceeceeeee e, 49
3.3.4 Algorithm of Changing the Partition Header 50
3.3.5 Share Refreshing................ccooviveiiiiiiiiiniiee e, 52
420 PHE, Q=3 st oottt 57
4.2.2 PHE, Q=4 .. oo ineeste et ceeeeteeeee st et eite sttt st see e sieesaeennea 58
423 PHF, Q=5 .l B i et 58
4.2.4 PHE, Q= 3 s ettt 59
425 PHF, Q54 .. T ittt 59
4.2.6 PHE, 0 = 5/ ittt et 60
42T PHE, =7 oottt 60

vii

Table List

Table
Table
Table
Table

2.6.1 PHEF (459, 3,3) oottt ettt e 26
2.6.2 Construction Methods................cocceviiiiiiiiiiinieeeee e, 29
BT APHF(459,3,3) et 40
4.1.1 Communication COSt..............cccvieriiieriieeieeeiee e 55

viii

Chapter 1 Introduction

1.1 Background

In the recent decades, with the development of science and technology, the internet has
clearly become an indispensable part of our lives. A wide variety of applications and services
are offered through the internet. For example, through the internet libraries can establish joint
borrowing and returning systems, and we can also make flight and hotel reservations for
destinations worldwide in advance. By using the internet, it is more convenient and easy to
communicate with one another. Through some simple internet applications such as e-mail and
instant messenger, we can easily transmit messages or even files to another party of the
communication. The internet has-helped bridge the bartiers of time and distance through
enabling communication with virtually no beundaries. In addition, a current trend is the rapid
growth and development of wireless network, as evidenced in the increased numbers of
wireless related applications. Without any wired help, users can now use their wireless devises,
such as PDAs and laptops, to connect to the internet via various wireless transmission
protocols including, for example, 802.11b and Bluetooth. Wireless network provides users
with greater flexibilities and convenience. However, as an increasing amount of sensitive and
important information being transmitted electronically, network security is an increasing
concern. Thus, in order to ensure the integrity and confidentiality of transmitted data, people
are paying more attention to network security related issues.

As we continue to expand on the conceptual framework for guiding further development
in network security, we need to understand the different types of attacks. Attacks can

generally be divided into two categories: passive attack and active attack. A passive attack is

when adversaries simply want to obtain information off the network; it includes, for example,
eavesdropping and peep. An active attack, on the other hand, is when adversaries not only
read information off the network but also want to modify or write data to the network; it
includes, for instance, masquerade, replay attack, and denial of service.

In order to resist aforementioned attacks, a security mechanism should satisfy following
requirements: confidentiality, authentication, integrity, non-repudiation, access control, and
availability [1][2]. These requirements can be supported by cryptography including both
symmetric and asymmetric approaches. In addition to the cryptography technology, a suitable
infrastructure also needs to be constructed. Public key infrastructure (PKI) is one of such
structures. PKI supports a trusted third party called Certification Authority (CA) [3]. CA has
its own key pair (public key / private key). CA uses its private key to sign the digital
certificate, and the certificate then includes the user’s identity and his corresponding public
key. Other people can verify the certificate by using the CA’s public key. If the certificate is
valid, it can then be concluded that the.content.of the eertificate is indeed valid. Depending on
the certificates, users can authenticate the identity and transmit the data safely.

However, deploying security mechanisms is rather difficult due to the inherent properties
of ad hoc networks, such as the high dynamics of their topology, limited resources of end
systems, or bandwidth constraints and possible asymmetrical communication links. Any
centralized design entity of security service is not practical in the ad hoc network because
such entities would obviously become the targets of attack. Therefore, it is impossible to
implement a centralized CA for managing public keys of the participants, because if the
centralized CA is compromised, the attackers would be able to obtain much useful and
sensitive information. The attackers can even impersonate a valid CA and consequently issue
the certificate to the users. In this case, intruders can steal the transmitting data easily.
Furthermore, due to the high mobility of each node, if the node, playing the role of CA, leaves
the network, then other users would not be able to find the CA. Therefore, they cannot apply

2

for a certificate or manage the certificate. In this case, the entire network system may crash.
Hence, a distributed solution must be found instead.

One popular method to achieve the distribution condition is to implement the (n, k)
threshold secret sharing [4]. In fact, there has been much research focused on using the (n, k)
threshold secret sharing method to construct the distributed CA. In this paper, we propose and
evaluate a new architecture for securing communication in the mobile ad hoc network. More
specifically, we use the perfect hash families (PHF) [5][6] approach to construct the network
along with the threshold method. Also, we distribute the CA function and network secret to
multiple nodes. Furthermore, we adopt proactive secret sharing [7] to improve network
security. By using the characteristics of the PHF, we can make the proactive secret sharing
more efficient and also enhance the effectiveness of this approach in the event when some
nodes are unavailable. Moreover, the extra overhead of doing secret shares updating can be

shared among a group of nodes.

1.2 Motivation

As wireless technology and applications continue to develop and gain popularity, there is
a high demand in developing a secure wireless network. Considering some inherent limits in
the mobile ad hoc network, the traditional PKI cannot be directly applied to the mobile ad hoc
network without any modification. Therefore, our goal is to make some changes to the
traditional PKI and ultimately implement it in the mobile ad hoc network.

The most important component in the PKI structure is the CA. In order to ensure
availability and high survivability, we implement a decentralized CA by distributing the CA’s
functionality to many nodes. We use Adi Shamir’s (n, k) threshold secret sharing to do it. The
CA has a key pair (public key / private key). The secret key is divided into n shares, and these

shares are owned by n nodes. Only when k or more than k nodes combine their own secret

shares cooperatively, they can collectively function as the role of CA. The original secret key
is, however, not visible or known by any component of the network except at the system
bootstrapping phase. Then these k nodes sign the certificate collectively and issue it to the
user. The CA’s public key is public in the network, so every user can easily verify the validity
of a certificate. Users can then use the certificates to authenticate others’ identities and
communicate securely. We construct the (n, k) threshold secret sharing by using the PHF.
Then we use the partition characteristic of the PHF to divide the entire network into several
disjoint partitions. We use the partition point of view to do the proactive secret sharing. In this
way, we can update the secret shares at a lower communication cost. Additionally, we can
ensure a higher rate of success in doing the secret shares updating. Moreover, since our
system does not require the synchronization of the network in the update process, we can
prevent some attacks of synchronization. Finally, we can also securely transmit the new shares

to each participant who needs it.

1.3 Related Work

There has been much research focused on the mobile ad hoc network security. In [8],
Zhou and Hass proposed a secure key management scheme. They used (7, k) threshold
cryptography to distribute trust among a set of servers. They focused on the security of the
shared secret in the presence of possible compromises of secret share holders. The system can
tolerate k-1 compromised servers. However, they did not provide any specific explanation for
how a node can make contact to sufficient servers, especially when the servers are spread
across a large area. The authors also proposed to employ proactive schemes to achieve share
refreshing to counter mobile adversaries. Yet, their solution assumed the group of servers with
rich connectivity. It is not suitable for ad hoc environments. The authors also did not address

the issue of how to distribute the update shares to the server nodes efficiently and securely.

In [9], Kong et al. also used threshold secret sharing mechanism to distribute the
functions of CA to some nodes. In order to ease the difficulty of contacting server nodes, they
employed localized certification schemes. In other words, each entity holds a secret share, and
multiple entities in a local neighborhood then jointly provide complete services. This method
also can enhance the service efficiency for users. The authors noted that £ is the balance point
between service availability and intrusion tolerance. However, in their scheme the threshold
value k is difficult to set. It is known that if k& is too small, the probability of a global secret
key being compromised is quite high. On the other hand, if & is big, although we can resist
more compromises, it is relatively harder to find k£ one-hop legitimate neighboring nodes.
Another problem is that they also did not address the issue of how to distribute the update
shares to the server nodes efficiently and securely. [10] is an extension of [9] because the
authors proposed the parallel share updates to prevent from emulating a coalition of & nodes to
fake share updates. Yet, this method requires a much higher communication cost due to the
fact that each update polynomial function has to.be generated by £ nodes collaboratively.
After the polynomial function is generated, each'node that wants to do the update procedure
would be required to ask £ nodes again to decrypt the polynomial function, then to complete
the update. The authors also implemented a localized certification service to enhance service
availability for mobile nodes and robustness against DoS attacks. However, this localized
certification service operates under the assumption that each node has at least & legitimate
neighbors; it surely has some difficulties to ensure that in a mobile ad hoc network
environment.

In [11], Bechler et al. proposed and evaluated a clustered architecture for securing
communication in mobile ad hoc networks. They divided the network into clusters and used
threshold cryptography to implement a decentralized CA. The authors further separated the
cluster internal traffic from the network-wide traffic. For cluster internal traffic, they used the
symmetric encryption. For network-wide traffic, they used public key cryptography. There are,

5

however, two major problems with their proposed architecture: (1) with its log-on procedure
and (2) with its sharing update. First, they did not specify how to find the warrant nodes, and
also the number of warrant nodes is indeterminate. Second, they used proactive secret sharing
without any modification. Therefore, the communication overhead is too high for the wireless
channel.

In [12], Zhu et al. proposed a novel key management scheme based on the hierarchical
structure and secret sharing to distribute cryptography keys and to provide certification
services, called the Autonomous Key Management (AKM). AKM is a logical tree, in which
all the left nodes represent real wireless nodes, while all the branch nodes only exist logically.
AKM can achieve flexibility and adaptivity by issuing certificates with different levels of
assurance and can handle the mobile ad hoc network (MANET) with a large number of nodes.
They further proposed two algorithms, which are based on threshold cryptography and
Verifiable Secret Sharing (VSS).-These algorithms can-resist active attacks targeting
certification services. The disadvantage of AKM.is that if we want to change the configuration
of (n, k) to (n’, k), it would require a'significant'cost. Under their “join operation,” when one
real node wants to join a region, the system would choose a group of £ nodes randomly. The
authors assumed that each node in that group should know the identity of one another.
However, their assumption is not sound, since each node is randomly chosen.

In [13], Wu et al. also adopted the threshold cryptography to distribute the private key
share to shareholders. The major difference in this presented model is that the shareholders
form a special group, called the server group. In the pervious approach the shareholders are all
independent; users must communicate with each server node individually. In contrast, here a
user only needs to communicate with one member of the server group, then that server node
will send the information to other server nodes automatically. The advantage of this method is
that it is easier for a node to request service from a well maintained group rather than from
multiple “independent” service providers, which may spread across a large area. Furthermore,

6

the server group does not have to include all shareholders; it takes the soft state maintenance
to ensure a number of shareholders. In sum, the benefits include communication-efficiency,
bandwidth-saving, and easy management. However, the size of a server group is the
determinant of the entire network performance. That is, if the server group is small, it is then
relatively easier to respond and manage. Yet, this kind of small server groups may not have
the ability to serve a large network. On the other hand, if the group is big, the response rate
would, as expected, be slower and thus would have an impact on the entire network
performance. Therefore, how to decide on the size of a server group would be key in

determining the quality of network performances.

1.4 Organization

This thesis is organized as follows. First,-it begins with a brief overview of related
knowledge in chapter 2. Specifically, it includes backgrounds on cryptography and security,
mobile ad hoc network concepts, ptinciples of secret sharing, and some combinatorial objects.
Then chapter 3 focuses on the specific concepts and describes the detailed protocol of our
scheme. In chapter 4, we present the analysis of mobile ad hoc network that uses our scheme
in order to show its availability and performance. Results and related parameters are also
discussed in this chapter. Finally, chapter 5 provides conclusions pertaining to the proposed

scheme and results and suggestions for some future research directions based on this thesis.

Chapter 2 Related Knowledge

2.1 Network Security

2.1.1 Requirement

Network security is an increasingly important issue, especially for those
security-sensitive applications. In order to ensure the safety of data transmission process in

the network, the following attributes need to be considered [1][2]:

Confidentiality
Authentication
Integrity
Non-repudiation
Access control

Availability

Below is a description for each requirement.
(1) Confidentiality

Confidentiality is the protection of transmitted data from passive attacks. It ensures that
the data only be accessible by authorized entities. The other aspect of confidentiality is the
protection of traffic flow from analysis. Network applications with sensitive information
transmission require confidentiality. If such kinds of information are leaked out to the
adversaries, it may result in devastating consequences.

8

(2) Authentication
Authentication is the process that enables a node to ensure the identity of the peer node
that it is communicating with. Without authentication, adversaries could masquerade a node

and thus obtain unauthorized access to resource and sensitive information.

(3) Integrity
Integrity is the measure of ensuring the correctness and completeness of transmitted
information. It guarantees that data are received as sent, with no insertion, modification,

reordering, or corruption.

(4) Non-repudiation

Non-repudiation prevents eithet sender or receiver from denying a transmitted message.
Also, the sender and receiver have ways to prove that they actually have sent and received the
message respectively. Essentially; non=repudiation is the process that holds senders and
receivers accountable for sending or'receiving any'data. Non-repudiation is also useful for
detecting and isolating compromised nodes. When node A receives an erroneous message
from node B, non-repudiation allows A to accuse B for sending the message and to convince

other nodes that B has, indeed, been compromised.

(5) Access control

Network resources are limited. If unauthorized nodes use the network resources
unrestrictedly, it may endanger the entire network. Therefore, access control is the ability to
permit or deny the access to network resources. To achieve this control, each entity has to

obtain authorizations prior to any use of the resources.

(6) Availability

Availability ensures the survivability of the network service. Many kinds of attacks can
result in loss or reduction in the availability of services. Thus, there is a strong need for
finding solutions to deal with this situation and to let only authorized nodes get the service

easily.

2.1.2 Types of Attacks

Generally speaking, attacks can be classified into two categories: passive attack and

active attack. Below is a description of these two types of attacks [1]:

(1) Passive attack
A passive attack is an attack'where an-unauthorized attacker monitors or listens to the
communication between two parties. Figure 2.1.1 shows the two different types of passive

attacks.

Passive Threats

Release of Traffic
message contents analysis

Figure 2.1.1 Passive Threats

One kind of passive attack involves an unauthorized release of message contents.

10

Another type is the traffic analysis threat, which is much more subtle. It means that
encryption masks the content of the transmitted message, so even if captured by attackers,
they would be unable to read the content of the message. Although the attackers cannot see
the content, they nevertheless could determine the location of the sender or some other
important information, such as the communication model.

Passive attacks are very difficult to detect because they do not involve any alteration of
the data or message. Due to the difficulty in detecting passive attacks, the primary defense

strategy is in prevention rather than detection.

(2) Active attack

In active attacks, adversaries may modify the data stream or create a fake reply. The
attacker may also transmit data to one or both parties, or block the data stream in one or both
directions. It is also possible that-an attacker could deceive user A into believing he is user B
and could deceive user B into believing-heisuser A. In other words, users A and B do not
know that the communication link between thenmi has been compromised. Figure 2.1.2 shows

various types of active attacks.

Active Threats
Masquerade Replay Modification of Denial of
message contents service

Figure 2.1.2 Active Threats

11

Masquerade is an attempt to act like or to impersonate someone else or some other
system.

Replay attack means that attackers first intercept the valid data and then subsequently
retransmit the data to fulfill their illegal intention.

Modification of message contents simply means to produce an unauthorized effect by
altering or reordering some portions of the message.

Denial of service (DoS) attacks lead to a loss of services and resources to legitimate
users in the system.

In general, it is also quite difficult to prevent active attacks because it would require a
complete protection of all communication facilities to do so. Contrary to passive attacks, the
primary defense strategy to active attacks is to detect them and recover any disruption or

delay caused by them.

2.2 Fundamentaliof:Cryptography

Cryptography is the science of keeping secrets secret. The origin of cryptography traces
back millenniums ago. When humans had learned how to communicate with one another, they
had no choice but to find methods to keep their private messages secret. Therefore,
cryptography is the science of encoding a message such that only the sender and the intended
recipients are able to understand it. “Plaintext” refers to a message before encryption, and
after the encryption, the corresponding message is known as the “ciphertext.”

Cryptography is fundamental to the network security. All of the security requirements
discussed in the earlier section of this text can be achieved by relying on cryptography
algorithm. Cryptography algorithm could involve some replacement or permutation
techniques. It also could be based on some kinds of mathematical function operations. With

the participation of some secret information, usually referred to as a "secret key," we use the

12

cryptography algorithm to transform the plaintext into unreadable ciphertext, which is
something unintelligible to anyone other than an authorized recipient.

Generally speaking, depending on how the secret key is used, cryptography can be
classified into two categories: symmetric cryptography and asymmetric cryptography. The

following is an introduction of each cryptography approach [14][15].

2.2.1 Symmetric Cryptography

Symmetric cryptography uses the same symmetrical key for both encryption and
decryption. Without the secret key, it is impossible to recover ciphertext back to its original
plaintext. Therefore, the secret key has to be stored secretly. Two popular symmetric
cryptography techniques are DES and AES. There are several weaknesses associated with the
symmetric cryptography approach: 1. The fact that eneryption and decryption parties share a
same key, before transmitting any data, the'Secret key must be securely sent to both parties
first. However, how key exchangeprocess can be kept secret is a major problem. 2. Another
weakness is related to the difficulties in managing the key, as one secret key is shared by users
altogether. 3. Lastly, if a secret key is compromised, then the key must be destroyed and
replaced with a new one. The effort to distribute the new secret key to all users would be
enormous. Despite its disadvantages, symmetric cryptography is nonetheless an efficient
approach to encrypt and decrypt messages.

Figure 2.2.1 illustrates the operation of symmetric cryptography. The sending party and
the receiving party use the same secret key and the same encryption model to do the

encryption and decryption.

13

Secret Kev shared by Secret kev shared by
sender and recipient sender and recipient

T T

Transmitted

ciphertext

Plaintext R , , . Plaintext
— Encryvption algorithim Decrvption algorithm —
(e.g. DES) (reverse of encryption
algorithm)

Figure 2.2.1 Symmetric Cryptography

2.2.2 Asymmetric Cryptography

Asymmetric cryptography, also knownas,public-key cryptography, is perhaps the most
important development in the history of cryptography. Introduced by Whitfied Diffie and
Martin Hellman in 1976, the concept of public-key eryptography was specifically
developed to solve problems related to theseeret key distribution and management in
symmetric cryptography. Public-key ¢ryptography has, in fact, taken cryptography
development to a new direction and network security to a new level. First, the asymmetric
algorithms are based on mathematical functions instead of replacement or rearrangement
techniques. Then, most importantly, the asymmetric cryptography uses two asymmetric
keys. Asymmetric cryptography uses one key for encryption and a different, but relative,
key for decryption. The concept of public-key cryptography is built upon the idea that it
might be possible to find a cryptosystem where it is computationally infeasible to
determine dg given ex. If that is the case, then according to the encryption rule, ek is a
public key, which can be published in the world, and dk is a secret key, which has to be

stored secretly. Two common kinds of asymmetric cryptography are RSA and DSA.

14

Alices's
public key
ring
Joy Ted I
Mike Bab
Bob's public Bob 's private
key key
Y
Transmitted
ciphertext
’ @
Plaintext Plaintext

. Encryption algorithm Decryption algorithm
input) - . output

(e.g., RSA) (reverse of encryption

~"orithm)
(a) Encryption and Decryption
Bob's
public key
oV
jb Jor Ted
Mike = Alice
Alice's private Alices's public
key key
Transmitted
ciphertext
> —»
Plaintext . . . i Plaintext

. Encryption algorithm Decryption algorithm
input) . e output

(e.g., RSA) (reverse of encryption

algorithm)
(b) Authentication

Figure 2.2.2 Asymmetric Cryptography

As Figure 2.2.2(a) shows, when Alice wants to transmit a message to Bob, Alice uses

Bob’s public key to encrypt the message. Then, instead of the original message, she

15

transmits the ciphertext to Bob. When Bob receives the ciphertext, he uses his own private
key to recover the message. From the example above, it clearly shows that only when we
have Bob’s private key, then are we capable of recovering the ciphertext back to its original
state. Thus, an advantage of the public-key cryptography is that even if other people were to
intercept the transmitting ciphertext, they would not be able to recover the message without
Bob’s private key.

As Figure 2.2.2(b) illustrates, the public-key cryptography can also be used for identity
authentication. Alice uses her secret key to encrypt the message that she wants to send to Bob.
When Bob receives it, he can use Alice’s public key to decrypt the message. Because this
message is encrypted by Alice’s secret key, only Alice could generate this message. Thus, the
entire message itself can also serve as a digital signature. Additionally, the person who sends
this encrypted message can be authenticated. This achieves the identity authentication.

Asymmetric cryptography solyes the key management and key distribution problems
successfully. However, the fact that asymmetric approach involves relatively more
complicated algorithms as compared:to.the symmetric approach, the efficiency in encryption
and decryption is then not as good as that of the symmetric approach.

In the current thesis, both symmetric and asymmetric cryptography are used.
Specifically, we use the asymmetric method for getting the signatures to verify the identities
of the node and of the corresponding public key. Then, when each node has the same
symmetric key, we encrypt the transmitting message by using the symmetric algorithm.
Therefore, not only can our approach solve the key distribution problem but also achieve

high transmission efficiency.

2.3 Public Key Infrastructure

Asymmetrical algorithms, such as RSA and DSA, have undoubtedly revolutionized the

16

science of cryptography, but these algorithms do not guarantee a carefree crypto life.
Problems with asymmetrical algorithms stem from their practical applications, and these
problems can only be avoided by constructing a suitable infrastructure. Problems with
asymmetrical algorithms are summarized in the following section [3].

(1) Authenticity of the key: In an asymmetric cryptosystem, how can one tell a public
key belongs to whom? In other words, an attacker can easily use a man-in-the-middle attack
to cheat both the sender and the receiver, as depicted in Figure 2.3.1. This is a scenario when
user A wants to communicate with user B secretly. First, they exchange their public keys with
each other. If there is an attacker that tells A that he is B and also tells B that he is A, and in
the event that both users A and B were to believe the identity of this “middle-man,” they
would then share their public keys with the attacker. Upon receiving A and B’s public keys,
the attacker would then send his public key to bothrusers, pretending that this was, in fact, the
public key of their communication partners. Then A and B use the attacker’s public key to
encrypt the message that they want to send.and think that it is secure. What A and B do not
realize is that the attacker can, in fact; use his public key to decrypt the message. This is called

the man-in-the-middle attack.

d -l

ser 4 User B

1 1

Mo lllt'}-

lasquetade
1

Attacker

Figure 2.3.1 Man-in-the-middle Attack

(2) Revoking keys: If someone noticed that his private key had been stolen, he

17

immediately generated a new key pair to replace the old private key. But then how can others
know that his old private key has been revoked? In other words, it is not possible to tell from
a public key itself whether it has been revoked or not.

(3) Non-repudiation: The purpose of digital signature is to ensure that the individual
sending the message is indeed who he claims to be. If one, however, keeps his private key
secret, and he simply denies that the key used in the signature was his, no one can challenge
him. Since no one can forge his key, the problem then is how to prove that a particular key
belongs to whom?

Therefore, a suitable structure must be constructed to address these problems. Such a

structure is called a public key infrastructure (PKI).

2.3.1 PKI overview

PKI has more than twenty years of history.in development. The concept of the
public-key cryptography was first introduced by:W. Diffieand and M. Hellman in 1976. Two
years later, computer scientists proposed the concept of public-key digital certificates. In 1988,
the first certificate standard X.509 was developed. In 1993, the first IETF certificate was
introduced to the public. In short, the technology of PKI refers to the framework that uses
asymmetric approach to generate digital signatures and that provides a highly secure service
platform for network transactions. The major goal of PKI is to construct trust relationships
among individuals. Establishing trust relationships is fundamental to the implementation of
information security. Major components of a PKI are shown in the next illustration, Figure

2.3.2.

18

Initialization
Certification,

Key Pair Recovery,
Key Pair Update,
Revocation Request

Certificate
Publication

Registration
‘ Authority

Certificate/CRL Repository

Certificate/CRL
Publication
‘ Authority-1
CRL Publication []
CRL Issuer
PKI
Management
Components

AT e T,

Figure Zé?xCon}ﬁl

its and Process of PKI
"\-_';';':\l \"'. e

e |

~

.1
L

o

- -d . .
tes,or has owned certifications. For example,

"
", b

a web server or even a mobile phone *Gﬁg megﬁg_%iértiﬁcates. Registration authority (RA) is

End entity is the subject Wﬁ%p
e

the administrative center where an end entity can apply for certificates. The RA may be
authenticated face to face by the certification authority (CA) and may then be trusted to
perform face to face authentication for the end entity. The PKI standard does not strictly
define the existence of RA. End entity can communicate with the CA directly. However,
almost all PKI implementations are provided for an RA and actually do not allow any
communication between an end entity and the CA.

The present thesis seeks to implement some roles for the CA. The relationship between

the certificate and certificate authority is introduced in the following sub-section.

19

2.3.2 Certificate and Certification Authority

The certification authority (CA) plays the most important role in a trust center. By
definition, a trust center without CA is not possible. The CA is the entity that issues
certificates. From the security perspective, CA is a highly crucial component. In particular, the
CA’s private key has to be stored in a highly secure environment. In order to avoid attacks
from the network, the computer running the CA software should, as a rule, not be connected
to the internet.

The certificate issued by the CA is the solution to the aforementioned remaining
problems of asymmetric algorithms. The content of a certificate may consist of, for instance,
issuer, user identity, a corresponding public key, valid period, and issuer’s signature. Often,
the certificate has signature signed using the CA’s private key. As a result, if anyone wants to
verify the certificate, he can use €A’s public'key to do-so. He can then trust that the public key
inside of the certificate actually belongs to-the corresponding user. This solves the authenticity
of the key problem. A CA can also revoke a public'key very well by signing a revocation list
called Certificate Revocation List (CRL). The CRL contains the invalid certificates. One
should download the CRL and check a certificate’s validity against the CRL before accepting
it. Finally, because a CA issues digital certificates to all users, non-repudiation is much easier
to guarantee. If one registers with a CA and is officially given a key pair, he can hardly have
any dispute over his ownership at a later time.

In summary, there are several characteristics of using a CA:

(1) Only CA can create, update, and revoke a certificate.

(2) Every user can verify whether the certificate is issued by the CA.

(3) Every user can verify the correctness of a certificate.

(4) Every user can read the content of a certificate to determine its identity and the owner’s
public key.

20

2.4 (n, k) Threshold Secret Sharing

Secret sharing means that a secret is divided into many shares, and these shares are
distributed to a group of users. As a group, these people collectively share this secret. No one
in the group knows or holds the complete secret, and no one can use his own partial share to
retrieve the original secret. Only when enough partial shares are combined can we recover the
original secret. The (n, k) threshold secret sharing means that we divide a secret into n shares
and distribute the shares to n participators. Only when k participators (k < n) collaboratively
combine their own shares, then the secret can be recovered.

(n, k) threshold secret sharing was introduced by Adi Shamir in 1979 [4]. He used a
polynomial function to generate a secret into n shares. After that, one can use the Lagrange
interpolation method to recover the.secret. Below is.a step-by-step instruction of this method.

First, suppose that the secret we Wwant to share is S, and there are n participators to share
this secret. The identities of participators are.denoted as ID;...n. Then there is a dealer, which
is trusted by all participators. Specifically, the dealer is responsible to perform the following
actions and to distribute the shares to their corresponding participators.

(1) Give a prime number p, that p > max(S, n).

(2) Dealer chooses a polynomial function, f(x) =S+ a;x + -+ + a.1x*", that ao = S and
choose ai...ax. from Z,.

(3) Compute share secret, S; = f(ID;)(mod p), fori =1 ~ n.

(4) Distribute share secret S; to ID;.

In order to recover the original secret, Lagrange interpolation must be used. We must

have & or more than £, use f(x) to construct f(0), and finally secret S is retrieved.

21

Lagrange interpolation:

f@=28 H 1;; (x)(modp)

2.5 Proactive Secret Sharing

The secret sharing we mentioned above relies on the idea of distribution. We share the
secret to many nodes, so if one node is compromised, the attacker still cannot retrieve the
secret. The only way that an attacker can obtain the secret is to compromise at least £ nodes. If
each share is, however, never changed, an attacker may have ample time to compromise k
nodes and ultimately retrieve the secret. This probability increases over time. Therefore, some
people, such as A. Herzber, proposed proactive secret sharing in 1995[7]. The objective of this
method is to decrease the likelihood'of the abovementioned situation by using an update
function to periodically calculate-new share and distribute the new share to each node.

Without disclosing the service private key, proactive secret sharing allows the users to
calculate the new shares from the old ones in collaboration. After the update, users remove the
old shares and replace them with only the new ones. The fact that different time periods have
different update shares and that they are completely independent of the old shares, there is no
way to reconstruct the original secret by combining the new and old shares. Furthermore, no
one can predict the new share value for each node after each update cycle — that is, it is
completely random, not predictable. Thus, if an attacker wants to get the secret, he has to
compromise at least k£ nodes during one point in time. Otherwise, after each update, any
information he had previously obtained would clearly become useless. Share refreshing

basically relies on the following homomorphic property.

If (s, 5,, ..., s,) is a (n, k) sharing of secret S and (s;, s,, ..., 5,) is a (n, k) sharing of secret S,

1] ,7 4 17

then (s, +5,, 5, + S, ..., 5, +5) is a (n, k) sharing of S+S". If S is 0, then we get a new (n, k)

22

sharing of S. Now, let’s turn our attention to how it does that.
First, for each node i, we must generate a new polynomial t(i)(x) to correspond with f(x).
The constant term of f”(x) has to be 0 because we want the secret shared by this polynomial

is 0. The method of updating share is shown as follows:

f)=(S+ax+-+a,_x"")mod p
f7)=(b,x+--+b,,,x"")mod p,b, ,....b,,, is random number.

f(x) = (f(x)+zk:f(i)(x)) =(S+(q +ibi,l)x+”'+(ak—l +ibi,k—1)xkil)m0dp

i=1

The update share for each node is computed by f '(IDA/), forj=1, ..., k. Therefore, each

participant first generates its own polynomial ' (x) . Then according to the polynomial, he

computes /' (ID). After that, he sends these results securely to the corresponding node.

When a node receives the new share from other participants, he will add to the original share.
The result of this addition is the new share.

A verification system must, however, be in place in order to prevent some nodes being
compromised. A compromised node may not want to participate in the update process, or it
may intentionally send incorrect update shares to other nodes. If other nodes use the incorrect
shares to construct their new shares, the secret, which is recovered from the new shares, will
then not be consistent with the original one. Hence, verifiable secret sharing is used to prevent
this kind of attack. The method is detailed below.

(1) Prior to distributing the secret share to other nodes, the dealer publishes
g“,g",---,g"" that are the witnesses of coefficients of the sharing polynomial.
(2) Each participant then receives its share and verifies it by calculating

) IDF!

g =g"(gM" (g™

23

2.6 Combinatorial Object

We begin this section by first introducing some specific notations and their definitions

[16].

Definition 2.6.1 ®-notation [16]
For a given function g(n), we denoted by ®(g(n)) the set of functions

O(g(n)) = {f(n): there exists positive constants ¢,, ¢, and n, such that

0<cg(n)<f(n)<c,g(n)foralln>n,} o

A function f(n) belongs to the set ®(g(n)) if there exists positive constants c; and ¢, such that

it can be “sandwiched” between c;g(n) and c,g(n) for sufficiently large n.

Definition 2.6.2 O-notation - [16]}
For a given function g(n), we denoted by O(g(n)) the set of functions
O(g(n)) = {f(n): there exists positive constants ¢ and n, such that

0<f(n) <cg(n) forall n > n,} o

We use O-notation to give an asymptotic upper bound on a function to within a constant

factor.

Definition 2.6.3 (2-notation [16]
For a given function g(n), we denoted by (2(g(n)) the set of functions
Q(g(n)) = {f(n): there exists positive constants ¢ and 7, such that

0<cg(n)<f(n) foralln>n,} o

24

We use (2-notation to provide an asymptotic lower bound on a function to within a constant

factor.

2.6.1 Introduction to Perfect Hash Families

Computer scientists have studied perfect hash families (PHF) for more than 15 years.
Perfect hash families are basic combinatorial structures, and they have played many important
roles in the field of computer science, such as in database management and compiler
constructions. Such hash functions should be easily computable, and only a minimal amount
of memory would be required. Not until recently that the concept of perfect hash families has
been applied to cryptography. For example, it can be seen used in the broadcast encryption
schemes, secret sharing, and cover-frtee families. A perfect hash family can be defined as

follows [5]:

Definition 2.6.4 [5]

A perfect hash family, denoted as PHF(F; A, B, w), should satisfy the following

statements:
1. A and B are the finite non-empty set.

2. F is a finite set of hash functions from A to B such that for each X < A if |X| =w,

there exists at least one f € F , where f | x is injective. O

Note: In many situations, a perfect hash family can also be denoted as PHF(|F|; |A|, [B|, w).

According to the above definition, the notation ‘|x’ is used to denote the restriction to the

set X. We say that a function f:A — B seperates X A if f is injective to the set X.

25

Note: We may also write f(A, B,w)asfeF,f:A > B, F={f(A,B,w)|f}.
Let N be the minimum number of functions such that a PHF(F; A, B, w) would exist.
That is, N=min { |F| } is the optimal solution [5].

Below is a simple example of a perfect hash family — PHF(4; 9, 3, 3).

Example 2.6.1

We have a PHF(4; 9, 3, 3). Consider the matrix:

111 2 2 2 3 3 3

1 231 2 3 1 2 3
M =

1 23 3 1 2 2 31

1 23 23131 2

LetA=1{1,2,3,4,5,6,7,8,9} and B={1,2,3}. Hence |A|=9, |B|=3.

Let f be a set of hash functions f;, i = 1, 2,3, 4, as shown in Table 2.6.1.

X 1 2 3 4 5 6 7 8 9
f1(x) 1 1 1 2 2 2 3 3 3
£(x) 1 2 3 1 2 3 1 2 3
£3(x) 1 2 3 3 1 2 2 3 1
£4(x) 1 2 3 2 3 1 3 1 2

Table 2.6.1 PHF4; 9, 3, 3)

From these four functions, we can see that for any subset of X c A with [X| =3, we
have at least one function f; that separates X. The verification of that F is a PHF(4; 9, 3, 3) has

been shown in [5]. i

In the next section, two propositions of perfect hash families are presented. These two

propositions are used in our scheme later.

26

2.6.2 Propositions of Perfect Hash Families

Two propositions of perfect hash families are discussed here [5][6]. One is the partition

characteristic offered by the perfect hash families. The other one is the corresponding matrix.

Definition 2.6.5 w-partition of A

wl |A], T is a partition of A. PieTl, {P1, P, -+, P}, [P| = w.

The order of each subset is w. O

A set X < A is separated by a partition 7 of A if the elements of X are in
Note:
distinct part of 7.

Proposition 2.6.6 [5][6]
Suppose that IT is a family of w-partition-of A with |H| = N. For all sets X ¢ A
with |X| = w, X is seperated by at least one 7' I1. Then there exists a PHF(N; n, m, w).

Conversely, a PHF(N; n, m, w) gives rise to such w-partition set I'T of A. O

The proof for Proposition 2.6.6 is included in Appendix A. A simple example of

Proposition 2.6.6 is given below.

Example 2.6.2
LetA=1{1,2,3,4,5,6,7,8, 9}. Consider the PHF(4; 9, 3, 3) we constructed in Example

2.6.1, we can get the following results:

m=1{{1,2,3},{4,5,6},{7,8,9}}, r2={{1,4,7},{2,5,8},{3,6,9}}
m3={{1,5,9},{2,6,7},{3,4,8}}, ma=1{{1,6,8},{2,4,9},{3,5,7}}

27

Thus, [T ={71,72, 73, 74} is the most desired set of partitions of A.

Conversely, we can find a function family F = {fi, f2, f3, f4}, such that fi(x) is denoted as

i and for each x € A, labeling the part for each partition 7 : according to the given order.
o

Proposition 2.6.7 [5][6]

Suppose that there exists a PHF(N; n, m, w). Then there exists an array M, where
size is N *n and which has entries in a set B of size m, such that for any subset
X of columns of M with |X| = w, there is at least one row of M that seperates

the subsex X of columns of M.

Conversely, such an array gives rise to a PHF(N; n, m, w). O

The proof of Proposition 2.6.7 is also included in Appendix A. Referring to the matrix
provided in Example 2.6.1, it is obvious thatit.is.an example of Proposition 2.6.7.
Next section provides a summary of construction methods of perfect hash families

proposed in other studies. We also.discuss some-known bounds of N(n, m, w).

2.6.3 Construction methods of Perfect Hash

Families

In this section, we are more interested in the behavior of minimum N as a function of n
when m and w are fixed. Bounds on N have been studied extensively (For examples, see
[ST[6][17][18][19]). In particular, in [19], it provides a proof that when m and w are fixed, N is
O(log n). However, this existence is non-constructive. It is also believed that it is difficult to
give explicit constructions that are as asymptotically good. Here, we introduce some explicit
constructions and point out the bound on N in those constructions. Although these
constructions are not as asymptotically good as the one presented in [19], they are quite

28

reasonable.
There are many kinds of method to construct perfect hash families, such as using
combinatorial structures and using algebraic structures. Table 2.6.2 lists the approaches

included in the combinatorial and algebra structures.

Combinatorial Structures Algebra Structures
Design Theory Special Global Function Field
Error-Correcting Codes Algebraic Curves
Recursive Constructions

Table 2.6.2 Construction Methods

In the combinatorial structures, we can use the design theory to construct perfect hash
families. There are some set systems, such as the balanced incomplete block design (BIBD)
and the separating resolvable block'design(SRBD)."The detail of this construction was
introduced in [17]. According to-their inference and proof, in the situation when m and w are
fixed, the bound of N is (2(n). Although these'methods give simple constructions, they are
limited in the sense that they cannot be/applied to obtaining a PHF with an arbitrary m 2 w. In
other words, they cannot obtain a PHF in which m is O(w). In addition, in a construction of
perfect hash families using Error-Correcting Codes, the bound of N is O(n). The restriction of
this method is the same as using the design theory to construct it. It also cannot construct a
PHF in which m is O(w). Finally, in [17], the authors proposed two kinds of recursive
construction. First, they used an already existing PHF together with a (n, k, A) - difference

matrix to obtain another PHF with larger N and n. In this construction, the bound of N is

log(" |+1)
O((logn) [ZJ). Second, the authors used three already existing PHFs and combine them

into a new PHF with larger N and n. The bound value of N in the second method is about the
same as the first one, but the second method has a slightly larger constant term.

In [18], the authors proposed the method of using algebra structures to construct perfect

29

hash families. Specifically, they used an algebraic curve to construct a PHF. In this method,
the bound of N is O(log n). Details of this kind of construction are not included in this text
since algebra structures are not used in this thesis. (For more related information, see [18].)

In this thesis, the PHF is constructed by the affine plane and resolvable BIBD. Before we
introduce the construction mechanism, we first give some definitions for affine plane and
resolvable BIBD.

An affine plane is a PBD(P, B) with some specific properties[20]. Before we state the
corresponding properties, PBD(P, B) is introduced first. A pairwise balanced design, referred
to as the PBD, is an ordered pair (P, B). P is a finite set of symbols, and B is a collection of
subsets of P called blocks, such that each pair of distinct elements of P occurs together in
exactly one block of B. The properties of an affine plane are summarized below.

(1) P contains at least one subset of 4 points,-and no 3 of which are collinear.

(2) Given a line h and a point p not on h,.there is exactly one line of B containing p,

which is parallel to h.

Example 2.6.3
Aftine plane.
P={1,2,3,4}
B={{1,2} {1,3} {1.4}

{3,4}y {2,4}y {2,3}} o

In an affine plane (P, B), the number of points in each block is called the order of the

affine plane.

30

Definition 2.6.8 k-power set of X
P is the power set of X.

A is a k-power set of X if A < P and for each x € A |x| =k.

X
We have {’ ‘ |j k-power sets of X.

Definition 2.6.9 [5]
X is a non-empty set of points, and A is a subset of the k-power set of X called blocks.
Let v, k, A be positive integers such that v>k>2. A (v, b, , k, A)— balanced incomplete

block design (denoted as (v, b, r, k, 4)— BIBD) is a set system(X, A) such that the following

properties are satisfied:
L[X|=v,
2. Every point occurs in r bloeks, and

3. Every pair of points occurs 'in exactly A blocks. O

For simplicity, in the following examples, we write blocks in the form abc, rather than {a,

b, c}.

Example 2.6.4

A(10, 15, 6,4, 2) — BIBD.
X=1{0,1,2,3,4,5,6,7,8,9}, and

A= {0123, 0145, 0246, 0378, 0579, 0689, 1278, 1369, 1479, 1568, 2359, 2489, 2567, 3458,
3467},

31

Theorem 2.6.10. [5][21]
1.A(v, b, , k, 1) - BIBD follows from elementary counting that vir = bkand A(v - 1) =

rtk - 1). i

The proof of Theorem 2.6.10 is included in Appendix A.
A parallel class in (X, A) is a set of blocks that forms a partition of the point set X. A
BIBD is resolvable if A can be partitioned into r parallel classes, and each of which consists of

v/k disjoint blocks. Obviously, a BIBD can have a parallel class only if v=0 mod £.

Example 2.6.5 A resolvable (6, 15, 5,2, 1) — BIBD.

Let X=1{0, 1, 2, 3,4, 5}, and » = 5::Hence there are 5 parallel classes, and each consists of 3
blocks.
So parallel classes = {01, 25, 34},

{02, 13, 45},

{03, 24, 15},

{04, 35, 12},

{05, 14, 23} m
It is well-known that an affine plane of order q is an (¢°, g(q+1), g+1, g, 1) — BIBD. It is

also a resolvable BIBD. Thus, the following theorem can be derived: For any prime power ¢,

there exists an affine plane of order ¢. That is, there exists a (¢°, g(¢+1), g+1, g, 1) — BIBD.

32

Theorem 2.6.11. [5][18]

If there exists a resolvable (v, b, , k, A1) — BIBD with » > /1(2/} , then there exists a PHF (7, v,

vik, w). i

The above theory is derived and obtained from [5][18]. The proof is stated in Appendix

A. Based on this theory and the above description, we then can derive the following corollary.

Corollary 2.6.12 [5]

w
Let w be an integer such that w 2 2. Suppose ¢ is a prime power and g +1> (2J . Then there

exists a PHF(¢+1; ¢°, ¢, w). i
Therefore, we can use an affine plane to.construct a PHF.

In this thesis, we construct the.perfect hash families according to Corollary 2.6.12. The
detail of our construction is described in the next chapter. By observations, we find that
formats of the BIBD and the PHF, which are constructed from an affine plane, are determined
by only one parameter — prime power q. Thus, we give a special name for these kinds of

BIBDs and PHFs — namely, (¢, 1) — BIBD and (¢, w) — PHF.

2.7 Fundamentals of Mobile Ad Hoc Network

In the last few years, computer scientists have shown growing interest in studying mobile
ad hoc networks as they have tremendous military and commercial potential [22]. Security
related issues in mobile ad hoc networks are also an important topic of research. Below is a

brief introduction to the mobile ad hoc network [23].

33

2.7.1 Mobile Ad Hoc Network

Mobile ad hoc network for short is called MANET. It is a non-infrastructure network.
MANET is consisted of a group of autonomous mobile nodes. Each node has the function of a
router. They are able to communicate with each other without any support of wired
infrastructure. As long as they stay in the communication scope of each other, they can talk to
each other by using the wireless link. Since the nodes have mobility, the network topology
may change rapidly and unpredictably. Also, the network is decentralized; all network
activities, which include discovering the topology and delivering messages, must be executed
by the nodes themselves. Nowadays, a mobile node can be a notebook, a PDA, or any other
kinds of wireless device with mobility. Next figure illustrates a mobile ad hoc network

constructed by many kinds of mobile node.

Figure 2.7.1 Mobile Ad Hoc Network

2.7.2 Characteristics of Mobile Ad Hoc Network

According to IETF RFC 2501[24], the characteristics of MANET include several parts,
and they are outlined below.

1. Dynamic topologies: Because the nodes in MANET have high mobility, the topology

34

may change randomly and rapidly at unpredictable times.

2. Bandwidth-constrained, variable capacity links: Compare to the wired network
environment, MANET is resource-constrained in bandwidth and link capacity. In addition, the
realized throughput of wireless communications is often much less than a radio’s maximum
transmission rate.

3. Energy-constrained operation: The power supply for some nodes in MANET is batteries
or other exhaustible energy. Therefore, the consideration of limited battery power and life is
also necessary.

4. Limited physical security: Wireless links are generally prone to more physical security
threats than wired links. MANET suffers from, for example, passive eavesdropping, active
impersonation, and denial-of-service attacks. As a benefit, though, the decentralized

mechanisms in MANET have higher security.

2.7.3 Security challenges of Mobile Ad Hoc

Network

Due to the noticeable characteristics of mobile ad hoc networks, achieving the
requirements of security mentioned in the earlier section can be rather challenging. First,
compared with wired links, wireless links are generally more prone to link attacks because all
the data are transmitted in the air. As a result, it is relatively easier to perform eavesdropping,
impersonation, message replay and message distortion. The simplest way to protect the
transmitting data is to encrypt it before sending it out. Certainly, in this way, we have to bear
the overheads from encryption. Second, since each node has the mobility, it may roam to a
dangerous environment. Some nodes may therefore be compromised. Thus, we should not
only pay attention to the malicious attacks from the outside, but also, equally important,

35

watch out for the wrong information from the inside compromised nodes. The trust
relationship among nodes may change very often; for example, some nodes may have been
detected as compromised nodes, so we have to authenticate the neighbor nodes periodically.
Third, due to the high mobility, some roles that are responsible for authentication, such as CA,
cannot be the central entities. In order to improve the survivability, the authenticator must use
a distribution structure. Fourth, because of a rapid changing topology, a mobile node may only
be able to perform effectively and have timely communication with its local neighbors but not
with remote entities. For example, routing protocols may fail to establish robust
communication over multi-hop paths. Thus, it is imperative to localize the security service.
Finally, an ad hoc network may consist of hundreds or even thousands of nodes. Therefore,

the scalability and flexibility of security mechanisms are crucial properties.

36

Chapter 3 System Architecture

3.1 Concept

In this thesis, we distribute the CA’s functionality to many nodes in the network. In
addition to using Shamir’s threshold secret sharing scheme, we also use perfect hash families’
properties to distribute the trust among a group of nodes. In this chapter, we discuss the

concept behind the design of our protocol.

3.1.1 Construction

Initially, our network system is.constructed from a special form of BIBD: (¢°, g(g+1),
g+l1, g, 1) — BIBD, and we call it(g, 1) =BIBD. From-section 2.6.3, we know that for any
prime power g, there exists an affine plane of order ¢. Furthermore, an affine plane of order ¢

can construct a (¢, 1) — BIBD. Because ¢g° = 0 mod ¢, it is also a resolvable BIBD. Let w be
w

an integer such that w 2 2. Suppose ¢ is a prime power and g +1> (2j . Then, based on

Corollary 2.6.12, there exists a PHF(g + 1; ¢°, g, w), and we call it (¢, w) — PHF. When we

want to construct the system, we therefore first consider the security parameter w that we

want to achieve and the system secret S. After both variables are determined, we then get a

w
minimal random prime power ¢ such thatg +1> (2} . Finally, we use this prime power ¢ to

create a (¢, w) — PHF. The following two figures show the construction algorithm of this PHF.

The program of the construction is appended in Appendix B. Figure 3.1.1 provides the

w
procedure of finding the minimal prime power q that satisfies the requirementg +1 > (2} .

37

Thatis ¢ =min{ x| x is a prime power and x+1 > (S}J }. Figure 3.1.2 then illustrates how

the appropriate (¢, w) — PHF is generated [20].

// Finding the minimal prime power q
// Input: the security parameter w

// Output: prime power q

Finding q(w)

L g em

2 while g exists

3 if q is a prime power

4. then return q
5 break
6 elseq < q+1

Figure 3.1.1 Finding the minimal prime power q

// Construction algorithm of PHF
// Input: the prime power q

// Output: A (q, w) - PHF

Construct PHF(q)

1. Use the prime power q to construct a finite field

2. Derive an affine plane of order q from the finite field
3. Map the affine plane to a (q, 1) - BIBD

4. Construct a (q, w) - PHF from the (q, 1) - BIBD

5. return (q, w) - PHF

Figure 3.1.2 Construction Algorithm of PHF

38

The meaning of every parameter in the PHF(g + 1; ¢°, ¢, w) is explained as follows: ¢
means the number of nodes owning the secret shares in our system. We call this kind of nodes
as the server nodes. (g + 1) represents the number of secret shares each server node should
hold. Besides, it also implies that this PHF has (¢ + 1) hash functions, and we have to create
(g + 1) polynomial functions with degree (w - 1) for secret sharing. Each polynomial function
has the same secret S. Also, a set of secret shares can be combined for every w server nodes to
reconstruct the system secret S and use S as the secret key to sign a certification
collaboratively. In other words, w is the minimum number of server nodes required to retrieve
the original S. Finally, g refers to the number of disjoint sets in each partition when we
partition ¢* sever nodes. That is, each partition has ¢ disjoint sets. Furthermore, it also implies
the number of secret shares that each polynomial function has to generate.

When we divide the system secret S into several secret shares, we have to send these
secret shares to the sever nodes. The coefficient of the-corresponding hash functions
determines which serve node gets which'secret share.

Take the PHF(4; 9, 3, 3) we mentioned abeve for example. From this PHF, we know that
the system has nine sever nodes. We denote them as from Ser; to Seryg. Then we would
generate four polynomial functions with degree 2, and each would individually generate three
secret shares. Each sever node would then have four secret shares from different polynomial
functions. Any three randomly chosen server nodes could use a set of secret shares to
reconstruct the system secret. We distribute the secret shares to the nine server nodes

according to the four hash functions, which is summarized below in Table 3.1.1.

39

X 1 2 3 4 5 6 7 8 9
Fi(x) 1 1 1 2 2 2 3 3 3
Fa(x) 1 2 3 1 2 3 1 2 3
F3(x) 1 2 3 3 1 2 2 3 1
Fi(x) 1 2 3 2 3 1 3 1 2

Table 3.1.1 A PHF(4; 9, 3, 3)

Suppose we denote the four polynomial functions as Py, P,, P3 and P4. Furthermore, we
mark the secret shares generated from P; as Sy, Sy, Si3, those from P; as S;;, S»,, Sz, and so
on and so forth.

Assuming the distribution of secret shares generated from P; corresponds to hash
function f)(x), and those generated from P,, P; and P4 are based on f,(x), f3(x) and fi(x)
respectively to do the distribution. Table:3.1.1:shows that for the hash function f;(x), Ser;,
Ser, and Ser; map to the same coefficient — that 1s, 1."For this reason, these three server nodes
get the same secret share S;; from P;. Similarly, Sers, Sers and Sers map to the same
coefficient of fj(x), which is 2, so they get the same secret share S, from P;. Lastly, the secret
share Si3 from P is sent to Ser;, Serg and Serg because these server nodes have the same
coefficient. Likewise, the secret shares generated from P, are distributed based on f5(x). Thus,
S, 1s sent to Sery, Sers, and Sery; Sy, 1s sent to Ser,, Sers, and Serg; and S,3 is sent to Sers,
Sers and Serg. As for all other secret shares from the last two polynomial functions, they are
distributed to the remaining nine server nodes based on f3(x) and fi(x). Finally, the
distribution of all secret shares is completed.

In the following section, we describe how w server nodes can recover the system secret.
Since the degree of the polynomial function is w-1, we know that we can retrieve the constant,
or say the system secret, of that function by getting w different secret shares from that
polynomial function. Each server node has g+1 secret shares, so the question is how to

determine which secret share to use for recovering the secret. The answer is that according to

40

the definition of a PHF, when we randomly select a subset of order w, there must exist at least
one hash function that makes this subset injective. We, therefore, take the secret shares that
corresponded with this specific hash function to reconstruct the system secret. Since this hash
function makes the subset of order w injective, the w server nodes map to w coefficients
accordingly. In other words, all w server nodes get different secret shares from the polynomial
function that is mapped to this hash function. Therefore, we derive the system secret by using
Lagrange interpolation method with these secret shares. Here we also take the above example
to illustrate. If we randomly select three sever nodes — for example Ser;, Sers, and Serg — then
we can find at least one hash function that creates one-to-one mapping. That is, they have
different coefficients. The above table demonstrates that fj(x) satisfies this requirement. As a
result, these three server nodes can use the secret shares that they got from polynomial
function P; to recover the system secret. More precisely, they use Sy, S;» and S;3 respectively
to complete the reconstruction.

In our system, we do not have to ensure that there exists connections among all ¢* sever
nodes. Specifically, we do not have to promise afull connection among server nodes. Full
connection is, in fact, not a reasonable requirement in MANET environment. Instead, we only
have to guarantee that each sever node has connections with at least the other (w-1) sever
nodes. In this way, we can be certain that there is enough sever nodes to participate in
recovering the system secret. So, referring back to the above example, we only have to
maintain the requirement that each server node has links with at least two other sever nodes.

In sum, our system can handle the dynamic characteristics of a MANET well.

3.1.2 Partition

Based on the characteristics that we described in section 2.6.2 and in the last section, we

know that each partition generated from PHF(q + 1; ¢°, ¢, w) consists of ¢ disjoint sets. In our

41

system, we would appoint one server node in each disjoint set as a partition header, or PH for
short. From the example PHF(4; 9, 3, 3), we can discover that each hash function can generate
a corresponding partition. Take f;(x) for example, the partition made by fi(x) is {{1, 2, 3}, {4,
5,6}, {7,8,9}}. So, among these three disjoint sets, we would appoint three server nodes as
partition headers for each disjoint set individually. For instance, we may assign Ser;, Sers and
Sers to be the partition headers. As for f5(x), its partition is {{1, 4, 7}, {2, 5, 8}, {3, 6,9} }.
Similarly, we would also appoint three PHs for these blocks, for example Sers, Ser,, and Sery.
For all other partitions, we would also do the same. Details on how to appoint the partition
headers are described in the latter section. Each server node can be the PH in different blocks
simultaneously. When the server nodes do the secret share update procedure, these PHs can
make it more efficient; the detail is also presented in the latter section. Furthermore, these PHs
also have to maintain connection status with all of the server nodes.

Every PH has the responsibility to maintain the connection status. The way a PH
maintains the connection is to periodically-broadcast apacket in the block in which it belongs
to. At the same time, the PH would also-set up atimer. If the PH does not receive the reply
packet from server node Ser; before the timer expires, we would say that Ser; has left the
block. In this case, the PH must find another node that has passed the authentication
procedure and holds a valid certification. The PH would then replace the Ser; by appointing
this new node as a server node and deliver the common secret share of this block to him. In
the next periodic broadcast packet, the PH would announce the new location of that server
node to other server nodes. In order to prevent the adversaries from getting the sensitive
information such as location information, all broadcast packets delivered from the PH can be
encrypted using the common secret share of that block. This concept is called the intra-block

security and is introduced in the following section.

42

3.1.3 Conceptual Building Blocks

The architectural concept behind our system is that the network-wide security is based
on the distributed certification infrastructure in the entire network. By public key
cryptography, the distributed certification infrastructure forms a basis for a secure end-to-end
communication. Besides, the security of communication within the disjoint set is provided by
symmetric encryption. Therefore, two conceptual building blocks can be sketched in our
system.

1. Network-wide security: Network-wide security is the security concept that uses public
key cryptography to ensure confidentiality, integrity, and authentication. In this kind of
network, each node holds a self-generated key pair. The key pair is used for providing
end-to-end security between arbitrary nodes. In therad hoc network, the public keys are
distributed by using the certification issued by a trusted CA. Thus, each node needs to apply
to the CA to obtain the certification before distributing its public key. Contrary to the
traditional PKI in a fixed network, the function-of the CA in our system is distributed. The
CA’s functionality is delivered by a group of server nodes in the network. The system secret,
also representing the CA’s private key, is distributed by server nodes. This concept has two
advantages: First, service availability is enhanced, since certification can be issued even if
some server nodes cannot be reached. Second, this kind of infrastructure can be more resistant
to attacks. Specifically, it can tolerate some server nodes being compromised without leaking
the system secret.

2. Intra-block security: The characteristic of a PHF suggests that server nodes can be
divided into many partitions, and each partition consists of many disjoint blocks. Based on
this description, we know that the server nodes in the same disjoint block share a property.
That is, they all map to the same coefficient of one hash function. It also means that they have
a common secret share. Moreover, we know as a fact that except for the ones belong to this

43

block, no other server nodes own this particular secret share. Therefore, when the server
nodes in the same disjoint block want to communicate with one another, they can use their
common secret share as a secret key and perform the symmetric cryptography. In this way, we
can lighten the computational overhead for securing communication among server nodes. The

intra-block communication is primarily used in the process of updating secret shares.

3.2 System Assumption

3.2.1 Intrusion model

In this section, we briefly discuss what kind of intrusion model that our system can resist.
In the worst-case scenario, if a network entityshas been compromised, the attacker would be
able to get all the information from that entity, regardless whether it is public or private
information. The intrusion attacker then has'the-power to tamper, impersonate, or even delete
any information he has obtained. However, in order to achieve authentication, we ought to
assume that there is always something that cannot be duplicated or impersonated. Otherwise,
as long as a network entity was compromised, we have no way to recognize whether he has
been intruded or not. More generally, we would not be able to differentiate compromised
nodes from normal nodes. In other words, our system needs to set limitations to restrict an
attacker’s ability to threaten the network. An intruder with infinite power is, in fact,
meaningless because security systems would fail then.

Let’s consider some realistic intrusion models that we can resist in our system.

1. An intruder cannot compromise or control w or even more server nodes within an update
interval. Our assumption of having the ability to resist these kinds of adversaries can be
achieved by using the share update technology.

44

2. The user’s identity cannot be copied or forged by intruders. Hence, if a node was
compromised, the other nodes could, in theory, discover this situation by verifying the

identity.

3.2.2 Trusted dealer

The dealer is required only once when the system is initialized. Once the security
parameter w has been decided, our system then needs a trusted dealer to construct the
corresponding perfect hash family. Additionally, the trusted dealer has the responsibility to
generate the system key pair, the corresponding polynomial functions, and the corresponding
secret shares. The system key pair includes the CA’s public key and the secret key or called
system public key and secret key. The.dealer génerates the polynomial functions based on the
system secret key. Based on the polynomial functions; he then generates the corresponding
secret shares. Finally, the trusted-dealer would distribute the secret shares to the corresponding
server nodes in a secure way. The presence of a trusted dealer is required as currently there is
no other known method for efficiently generating such key shares and securely distributing

them to the server nodes during the initial period in an asynchronous distributed system [25].

3.3 Details and Protocols

3.3.1 System initialization

The system initialization stage requires an off-line trusted dealer. After setting up the
security parameter, this off-line trusted dealer would generate everything needed for the
system, including an appropriate balanced incomplete block design and a perfect hash family,
system key-pair, corresponding number of polynomial functions, and secret shares. The

45

system key-pair consists of system public key and the secret key. The system secret key is
further divided into many secret shares depending upon the polynomial functions. The system
public key is then distributed within the entire network. Finally, using the aforementioned
mechanism, the trusted dealer distributes the secret shares to the server nodes securely and
completes the system initialization procedure.

Figure 3.3.1 shows the construction algorithm of the entire network. This algorithm
relies on the BIBD blocks for distributing secret shares. In fact, it is identical with the

distribution method that we discussed earlier.

/I Construction algorithm of the whole network
// input: PHF(q + 1, q°, g, w), q(q+1) BIBD blocks, network secret S
//' We denoted the BIBD blocks as B, B,, -+, B

> Tq(q+)*

Construct Network(PHF(+1;q4%, q,w),B,, B,, -*-, B S)

> TqlgH)?
1. create q° servernodes denoted as- Ser;, - Ser,
2. create q + 1 polynomialfunctions of secret S denoted as B,--- F, |
3.
4. for i=1toq+l
5. do generate q secret shares from £, denoted as W, ---, W,
6. forj=1toq
7. S.0] <« W;;
8.
9. fori=1,j=1toq,k=1toq(qtl)
10 do
11 if k mod (q+1) = 0
12 i« itl
13 j« 1
14
15 each point in the block B, gets the secret share S,[j]
16 return B,

Figure 3.3.1 Construction Algorithm of the whole Network

46

3.3.2 Certification service

Our certification service is based on the (n, k) threshold secret sharing. For convenience,
regular nodes in this text refer to all nodes with the only exception of server nodes. When
participating in the network, each regular node would hold a self-generated key pair. Before
the regular nodes communicate with one another, each of them has to get a certification to
verify his identity and his public key. Certification is obtained by asking the server nodes to
do the authentication. Because of the threshold mechanism, a regular node is required to pass
the authentication from at least w server nodes individually, and he then can obtain the
certification.

In [9][10], Kong et al. use the RSA scheme to provide the certificate services. In our
thesis, we refer to [12] to employ our certificate seryices. In [12], Zhu et al. proposed two
schemes to provide the certificate services. For.the threshold value w, one is assigning
certificates based on 2w-1 nodes,-another.is.based on' w nodes. In the first one, they use 2w-1
nodes to achieve verifiable certificate services and‘ensure the certificate process can be
finished within one round. In the second one, only w nodes sign the certificate cooperatively,
but it may take more than one round to assign the certificate.

A regular node only needs to send a request to one of the nearest server nodes. The
request packet includes this regular node’s identity and its public key for doing the
authentication. Due to the characteristic of (¢, 1) — BIBD, we know each pair of elements
occurs in exactly one blocks. On the other hand, in the (¢, w) — PHF, the server nodes in the
same block of partition P; must in the distinct blocks of other partitions. Each server node in
(g, w) — PHF would belong to q blocks. Thus, once the server node receives the request packet,
he will choose a block and then forward the original packet to his block members.
Additionally, he also provides the identities for all q server nodes. In our system, if ¢ > 2w-1,
we can satisfy the first scheme in [12]. Therefore, these q server nodes would each do the

47

authentication to this regular node individually. After the regular node passes the
authentication of server nodes successfully, the server nodes would pass their secret shares in
the form of partial certifications g* to him. In other case, if ¢ < 2w-1, we then can use the
second scheme in [12]. A partial group of w server nodes would cooperate to assign the
regular node a certificate. Although the second may need more than one round, the simulation
results in Kong et al. show that more than 96% of certificate services can be finish within two
rounds. Thus, it would not take a long time to complete the certificate service.

We know that among these w server nodes, each has a set of secret shares. The question
then is how could they know which secret share should be passed. The answer is based on the
identities they received from the request packet. From these identities, they can know which
specific hash function made these w server nodes one-to-one mapping. As a result, they know
which secret shares they should pass: After the regular node collects w partial certificates, he
could combine the partial certificates altogether to form a valid certificate. A valid certificate
consists of information on the relationship-between the regular node and its public key and the
expiration time. After that, the regular nede can-use this certification to ensure the
network-wide security. The other participators in the network can use the system public key to
verify this certification. If the certification is valid, they then can trust this regular node. It is
important to note that throughout the entire certification service procedure, the CA’s private
key is never disclosed.

The following two figures demonstrate the certification service procedure. Figure 3.3.2
illustrates the process in which a regular node requests a certification from a nearest server
node. Figure 3.3.3 shows that when a regular node passes the authentication, the server nodes

would each send back its partial certification to him.

48

Request for
/ certification.

Z

Regular node

Ser;

Forward the
request.

Figure 3.3.2 Request for Certification

»

/ Combine
y ==
Regular

node

»

S

g

Figure 3.3.3 Certification Service

3.3.3 Updating the Secret Shares

In addition to the threshold secret sharing, our mechanism also involves proactive secret

sharing. In order to resist the mobile adversaries, we would periodically update the secret

shares in each server node. The proactive secret sharing scheme computes new threshold

secret shares for every server node without changing the original secret, and these new secret

shares are completely independent of the old ones. No adversary can compute or derive the

new secret shares based on the previous ones. The server nodes then use their new secret

49

shares to sign the partial certifications, but others still use the same public key to verify it.
Unlike the traditional proactive secret sharing, in our secret share update procedure, the new
partition headers would be selected first. Moreover, from the characteristics of perfect hash
families, we know that there is more than one polynomial function. Each polynomial function
can obtain a set of secret shares. Thus, each polynomial function can perform the secret share

update procedure to refresh its shares.

// Change the Partition Headers for PHF(q + 1; q°, q,)
// input: q disjoint set blocks of a partition P, q(q+1) BIBD bocks

//' We denoted the disjoint set blocks of partition P as P,, P,, ---, P.
//' We denoted the BIBD blocks as B, B,, ---, B

> Tq(gth”

ChPH(P,P, ---,P,B,,B,, ”"Bq(qﬂ))

q’

1 c«< 0

2 for i < 1toq(qtl)

3 for j «—=ltoq

4 doif B, 2P = ¢

S. then ¢ < ¢+ 1

6

7 ifc=q

8 then the new partition header of P is the points in B,
9 return B,

10. break

12. printf("False! We can not find the new partition headers.\n")
13. printf ("The network should be re-built again.\n")

Figure 3.3.4 Algorithm of Changing the Partition Header

Figure 3.3.4 shows the algorithm of changing the partition header of partition P. As we
know, each hash function in (¢, w) — PHF can generate a partition for the ¢” server nodes, and

this partition is consisted of g disjoint blocks. Each disjoint block has, indeed, g server nodes.

50

For an arbitrary partition P, if we want to update the secret shares that are distributed based on
the coefficient of this hash function, we should choose the partition headers for the
corresponding polynomial function. That is, a server node that is a PH from each disjoint
block of P should be selected. The number of PHs should be the same as the value of g. This
PH selection method is designed based on the relationship between a (¢, 1) — BIBD and a (g,
w) — PHF. By observations, we would discover that the existing blocks in the BIBD are the
disjoint blocks consisted in all partitions. Furthermore, for partition P, the server nodes in
other disjoint blocks, which are derived from the other partitions, are exactly distributed in
different blocks of P. Therefore, we appoint the PHs for P by selecting other partitions’
disjoint blocks. Thus, if we can successfully choose a disjoint block, the ¢ server nodes in that
block would be the PHs of P. PHs should be re-selected for each time the update procedure is
performed. This way, every node has the opportunity to be the PH. All server nodes, therefore,
share the overhead of being a PH. Furthermore, our system has much more flexibilities to
handle the dynamic network environment.

After selecting the PHs for partition P, these PHs would do the secret share update
procedure. From section 2.5, we know that secret share refreshing basically relies on the

following homomorphic property.

If (s,, 5, ..., 5,) is a (n, k) sharing of secret S and (s, s,, ..., 5,) is a (n, k) sharing of secret S,

then (s, +5,, S, + S, ..., 8, +5.) is a (n, k) sharing of S+ . If S is 0, then we get a new (n, k)
sharing of S. Thus, each PH would complete the following procedure:

(1) Each PH, generates a polynomial function £ (x) with secret 0.
(2) Then, PH; uses other PHs' identities to generate the new partial secret shares S;;.
(3) PH; sends the new partial secret share S;; to corresponding PH;.

(4) When PH; receives all the new partial secret shares from other PHs, he could create

51

q
his new secret share by S; =§; + ;Sij.
(5) Finally, after PH; creates his new secret share, he sends the new shares to the same

partition block member securely.

Stage five is similar to the intra-block communication that we introduced in 3.1.3. The
PH has the responsibility to securely deliver the new secret share to the server nodes in the
same block. Figure 3.3.5 provides a figural illustration of this concept—namely, the share

refreshing.

A
S e S, e S
P]‘[q< i lg Aq 2 qq
PH | q 21 S S,
PHl< Sll cee Sil cee Sql
-
PH, PH, PHq

Figure 3.3.5 Share Refreshing

There are many advantages with our secret share update procedure. With PHF(g + 1; ¢°,
g, w), there are (¢ + 1) polynomial functions that should be required to do the secret share
update, and they all map to the same system secret. Thus, due to the high mobility, we design
a system that allows some of the polynomial functions for not taking a part in the secret share
update procedure, but the system can remain operational. In fact, as long as there is one

polynomial function that can perform the secret share update, our network system can work

52

well and the server nodes also can refresh one of their secret shares successfully. This concept
enhances the effectiveness of proactive secret sharing. Moreover, different polynomial
functions can do the update procedure in different time slots. Our system also does not require
all ¢* server nodes to do the update altogether; instead, only the PHs of that polynomial
function are required to complete the update. In this way, we can avoid synchronal attacks and
mitigate the overhead of network traffic. Each time when we do the update, the PHs would be
re-selected again. This design increases the difficulty of attacks because it would be hard for
attackers to anticipate which server nodes would do the update procedure next. Furthermore,
each server node has the chance to be a PH, and we can then distribute the overhead of
playing the PH evenly to all server nodes. Therefore, in comparison to the traditional
proactive secret sharing, our secret share update method not only improves the effectiveness
and efficiency, but also increases the level of security.

There are many reasons for selecting the PHs in'the way we proposed. First, it is an easy
selection method. Due to the characteristic-of (¢,-1) - BIBD, for partition P, when we select
the PHs from the blocks that are derived from other partitions, we are not required to check
whether the PHs we have selected are exactly distributed in each block of P. Because the (g,
1) — BIBD guarantees that each pair of points occurs in exactly one block, for partition P, each
pair of server nodes within the same block would not appear together in any other blocks. On
the other hand, for other partitions, the server nodes in the same block would not show up as a
couple. That means they would all belong to different blocks. There are g server nodes in one
block, and there are also g blocks in a partition. Therefore, each server node in the other
partitions’ block would belong to the blocks of partition P respectively. The second reason is
for the verification. In section 2.5, the verifiable secret sharing was presented. When we select
the PHs by the unit of blocks, there exists a property. All the PHs would hold a common
secret share. So, the PH can make use of their common secret share to do encryption on their
transmitting information.

53

Chapter 4 Evaluation and Analysis

In the current chapter, evaluation and analyses of our proposed scheme are discussed. We
first use the Maple to obtain the finite fields and then use them to construct the affine plane.
After that, using the affine plane of order q for input, we write C codes to construct the
corresponding (¢, 1) — BIBD and (¢, w) — PHF. By using the (¢, 1) — BIBD and (g, w) — PHF,
we complete the following analyses. For the first and second analyses, we also write C
programs with the input of PHF blocks to simulate the mobility phenomenon. We test the
effect of server nodes losing connection on our system. Finally, based on the relationship
between a (¢, 1) — BIBD and a (¢, w),=PHE, wermwant to show that there is an equal
probability of each server node being chosen.as a PH.-All of the analysis programs are run on

a Pentium IV 2.66GHz laptop.

4.1 Evaluation

Our scheme uses the secret sharing update procedure, which was introduced in section
3.3.3. In this section, we evaluate the communication cost of our proposed mechanism. The
original concept of proactive secret sharing was presented in an earlier section of this text, and
recalling this concept, n server nodes are required to update the secret shares [7]. Each server
node should generate an update polynomial function with secret 0 and then use other server
nodes’ IDs to calculate the new partial secret shares. After that, the server node should
transmit the partial secret shares to other corresponding server nodes. A server node cannot
complete the secret share update procedure unless he receives the partial secret shares from all

of n server nodes individually and combines them with his old secret share. The

54

communication cost refers to the network traffic overhead of all server nodes transmitting all
secret shares to complete the secret share update.

From the description above, we know that in the original proactive secret sharing method,
each server node should generate n partial secret shares and sends them out. Since there are n
server nodes and each one generates n partial secret shares, the communication cost is
therefore O(n?).

In our proposed scheme, however, only the partition headers are involved in the secret
share update procedure. According to the format of (¢, w) — PHF, although there are ¢” server
nodes, only ¢ PHs participate in the update procedure. In other words, if there are n server
nodes, the number of PHs is exactly Jn . As the result, the communication cost of
transmitting secret shares among PHs is O(n). Upon receiving the new secret share, the PH
has the responsibility to send the new share to members in his block. This kind of
communication cost is called the-intra-block communication cost. Depending on the network
traffic, the PH can decide when to send'the new secret-share to his members. Thus, the
intra-block communication would not have a significant impact on the entire network traffic.
Furthermore, we evaluation the entire system communication cost. That is, we consider the
case that all the polynomial functions perform the update procedure. In a (¢, w) — PHF with n
server nodes, there are Jn +1 polynomial functions. Therefore, the communication cost of the
entire system is O(n>?). Clearly, the communication overhead of our secret share updating
procedure in one polynomial function is comparatively much lower than the original one, as
shown in Table 4.1.1. Since there usually has bandwidth constraints in the MANET, the result

of our designed scheme is evidently much more suitable for the MANET environment.

Evaluation Traditional Proactive PHF-based Secret The entire
Secret Sharing Share update PHF-based system
Communication Cost o) O(n) on*?)

Table 4.1.1 Communication cost

55

4.2 Analysis

Since our proposed protocol design is built from the concept of perfect hash families, in
our system, each server node holds more than one secret share. Furthermore, each secret share
that a server node holds comes from different polynomial functions. Thus, more than one
polynomial function map to the same system secret, and they all are required to do the secret
share update. Moreover, in our system, different polynomial functions can do the update
procedure in different time slots. Therefore, we can take advantage of having multiple
polynomial functions to enhance the effectiveness of our system. In this section, three
analyses of our system are presented.

Before we report the result of the.first analysis, we first discuss some situations below.
Due to the characteristics of involving multiple functions, our system can still remain
operational even if some of the polynomial functions fail to successfully complete the secret
share update. In fact, as long as thete is one polynemial function that can perform the secret
share update, our network system can work well and the server nodes also can periodically
refresh one of their secret shares. Thus, we discuss in what situation a polynomial function
would fail to perform the secret share update procedure. In the beginning phase of the
updating procedure, we have to choose the PHs for the partition in corresponding polynomial
function. Therefore, we say that a polynomial function cannot execute the update procedure if
and only if we cannot successfully select the PHs for it.

So, in the first instance, due to the mobility in the MANET, we want to examine after
how many server nodes disappeared, or lost connection would cause one of the polynomial
functions not able to do the update procedure. We analyze the (¢, w) — PHF by writing some C
programs. We check all of the combinations for ¢” server nodes and obtain the probability of a

polynomial function failing to update the secret share. We test the case when ¢ =3, 4, 5.

56

Second, going a step further, we want to know after how many server nodes disappeared,
or lost connection would lead to a complete system failure. This analysis is similar to the first
one. The major difference between these two is that in the second analysis, we have to make
sure that all polynomial functions cannot perform the secret share update procedure. We also

test the case when ¢ = 3, 4, 5. The following figures show the results of the above analyses.

o
o0

—&— {1 cannot update
—— System fails

Probability
o o
~ o

o
to

0 1 2 3 4 5 6 7 8 9 10
Number of Server nodes fail
TR

Figure 4.2.1 PHF,q=3

—&— f] cannot update
—B— gystem fails

Probability

0 3 6 9 12 15 18

Number of Server nodes fail

57

Figure 4.2.2 PHF, q = 4

1.1

—— f] cannot update
—— gystem fails

Probability

0 3 6 9 12 15 18 21 24 27

Number of Server nodes fail

Figure 4.2.3 PHF, q = 5

Finally, we analyze the probability ofajserver node being selected as a PH. For the secret
share update procedure, the PH has to generate the new partial shares and distribute the new
secret share to his members. Thus; there is an‘extra overhead associated with being a PH. In
our scheme, we want to distribute this extra overhead to all server nodes, instead of just
covered by a few specific server nodes. Therefore, we write programs with different
parameter 7s — meaning the number of secret share update procedure that we have— in order

to show the equal probability among server nodes. Results are presented in the following

figures.

58

Probability

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

4 5 6
Server node ID

10

Probability

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

001

6 8 10

Server node ID

12

14

16

18

Figure 4.2.5 PHF, q =4

59

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Probability

0 3 6 9 12 15 18 21 24 27
Server node ID

Figure 4.2.6 PHF, =5

0.035

0.03

0.025

S
)
\®)

Probability
o
=

——T=20
0.01 o
—¥—=T=100

0.005

0 5 10 15 20 25 30 35 40 45 50 55

Server node ID

Figure 4.2.7 PHF, =7

60

4.3 Discussion

In the previous section, we can see the probability of when a polynomial function and the
entire system would fail. Due to the characteristic of (¢, 1) — BIBD, we know each pair of
elements occurs in exactly one block. On the other hand, in the (¢, w) — PHF, the server nodes
in the same block of partition P; must be in the distinct blocks of other partitions. Thus, in
order to make a polynomial function f; fail to choose PHs, the other blocks in other partitions
must be destroyed. The minimum number of nodes that needs to destroy all other blocks must
equal to ¢. In this case, the g server nodes must exist in the same block of partition P;.
Furthermore, if we want to destroy the entire system, not only the blocks in other partitions,
but also the blocks in P; that we hayeto destroy. So the minimum number of server nodes
would be g + (¢-1). As shown inFigure 4.2.1, Figure 4.2.2 and Figure 4.2.3, we verify that the
minimum number of server nodes that could-make a polynomial function fail to update is q.
The probability in this case is less than 1%.Furthermore, the minimum number of server
nodes that would make the entire system fail to update is ¢ + (g-1). The probability in this

case is also less than 1%.

In addition to finding the lower bound of server nodes, we also find the upper bound.
That means when the server nodes amount to a special number, either one of the polynomial
functions or the entire system would crash. In other words, obtaining the upper bound allows
us to find out when the server nodes amount to a special number that would result in either
one of the polynomial functions or the entire system to crash. We can easily find that the
special number is g*(g-1) + 1. Therefore, if more than g*(g-1) + 1 server nodes fail, our

system would fail too. Figure 4.2.1, Figure 4.2.2 and Figure 4.2.3 reveal these results.

In the third analysis, we show that each server node has an equal probability of being

61

selected as a PH. Looking at the result figures, we can see that the more server nodes that we
have in our system, the more even probability of each one being a PH. Furthermore, it also
shows that the probability of balancing the overhead to all server nodes increases as the
number of secret share update procedure increases. Therefore, in our system, we can evenly
balance the overhead that each server node has to contribute.

From the above evaluation and analyses, the following conclusions can be derived: First,
the network communication overhead of secret share update in our system is considerably less
than the traditional proactive secret sharing method. Second, depending on the properties of
PHF, we improve the robustness of our protocol design. Thus, our system handles the
dynamic environment reasonably well. Finally, the partition header selection scheme allows

the resource consumption be shared by all server nodes.

62

Chapter 5 Conclusion

Nowadays, since wireless technology and applications have become increasingly popular,
there is a high demand in developing a secure wireless network. In order to ensure the
integrity and confidentiality of data during transmissions, people are paying more attention to
issues related to network security. Considering some inherent limits in the mobile ad hoc
network, the traditional PKI cannot be directly applied to the mobile ad hoc network without
any modification. The purpose of this thesis is therefore to make some changes to the
traditional PKI. We use the properties of PHF to carry out the threshold secret sharing for
distributing the trust. Furthermore, we enhance the efficiency of our secret share renewal
procedure by choosing only the PHs to'doit.

In our proposed protocol design, the effectiveness and efficiency is improved. Analysis
results also show that the extra overhead 1s'shared by a'group of nodes. Overall, results reveal
that our system is more suitable for.a.mobile ad ho¢ network. Below are some issues and
several suggestions for adjustment to future studies. In our protocol design, a (¢, w) — PHF
would generate g+1 polynomial functions, and each server node would have g+1 secret shares.
The bigger the ¢ is, the more polynomial functions and secret shares a server node should
hold. Thus, if ¢ is quite big, the server nodes need to increase the storage to store the secret
shares. And, it may also increase the complexity in system operation. Each time when we do
the update procedure, the PHs would be re-selected again, and it is the additional cost of
doing the update procedure. Also, we make the assumption that the server nodes are static
when the PH selection process begins. That is, throughout the entire update procedure, the
mobility of server nodes is not considered. Taking the mobility at all times into account is a
good research topic for future studies. Finally, how often the secret shares need to be updated

is also key in balancing between the network loading and the system safety.

63

[1]

2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

References:

W. Stallings, “Network security essentials: Applications and standards,” Prentice Hall,
2000.

E. Maiwald, “Network security: A beginner’s guide,” McGraw-Hill, 2001.

K. Schmeh, “Cryptography and Public Key Infrastructure on the Internet,” John Wiley,
2003.

A. Shamir, “How to Share a Secret,” Communications of ACM, vol. 22, no 11, pp.
612 - 613, 1979.

K. Kyung-Mi, “Perfect Hash Families: Constructions and Applications,” a thesis of
University of Waterloo, 2003.

S. R. Blackburn, “Combinatorics and threshold cryptography,” in "Combinatorial
Designs and their Applications,"'Chapman and Hall/CRC Research Notes in
Mathematics, vol. 403, pp. 49 —70,:1999.

A. Herzber, S. Jarecki, H. Krawezyk, M. Yung, “Proactive Secret Sharing Or: How to
Cope With Perpetual Leakage,” in Advances in Cryptology, Proc. CRYPTO’95, ser.
LNCS, vol. 936, pp. 339 — 352, 1995.

L. Zhou, Z. J. Haas, “Securing Ad Hoc Networks,” IEEE Networks, Volume 13, Issue 6,
pp. 24 — 30, 1999.

J. Kong, P. Zerfos, H. Luo, S. Lu, L. Zhang, “Providing Robust and Ubiquitous Security
Support for Mobile Ad-Hoc Networks,” IEEE ICNP Nov. 2001, pp. 251 — 260, 2001.

[10] H. Luo, P.Zerfos, J. Kong, S. Lu, L. Zhang, “Self-securing Ad Hoc Wireless Networks,”

IEEE ISCC’02, pp. 567 — 575, 2002.

[11] M. Bechler, H.-J. Hof, D. Kraft, F. Pihlke, L. Wolf, “A Cluster-Based Security

Architecture for Ad Hoc Networks,” IEEE INFOCOM, vol. 4, pp. 2393 — 2403, 2004.

[12] B. Zhu, F. Bao, R. H. Deng, M. S. Kankanhalli, G. Wang, “Efficient and robust key

management for large mobile ad hoc network,” Computer Networks, Volume 48, Issue
4, pp. 657 — 682, 2005.

[13] B. Wu, J. Wu, E. B. Fernandez, M. Ilyas, S. Magliveras, “Secure and efficient key

management in mobile ad hoc networks,” Journal of Network and Computer
Applications, SSN’2005, pp.288, 2005.

64

[14] H. Delfs, H. Knebl, “Introduction to Cryptography: Principles and Applications,” Berlin,
2002.

[15] W. Stallings, “Cryptography and Network Security: Principles and Practices,” 31

edition, Prentice Hall, 2003.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, “Introduction to Algorithms,” nd
edition, MIT Press, 2001

[17] M. Atici, D. R. Stinson, and R. Wei, “Some recursive constructions for perfect hash

families,” Journal of Combinatorial Designs, pp. 353 — 363, 1995.

[18] H. Wang, C. Xing, “Explicit constructions of perfect hash families from algebraic
curves over finite fields,” Journal of Combinatorial Theory, Series A, pp. 112 — 124,
2001.

[19] K. Mehlhorn, “Data Structures and Algorithms 1: Sorting and Searching,”
Springer-Verlag, 1984.

[20] C. C. Lindner, C. A. Rodger, “Design/Theory,” CRC Press, 1997.

[21] R. E. Klima, N. Sigmon, E. Stitzinger, “Applications of Abstract Algebra with Maple,”
CRC Press, 2000

[22] IETF Mobile Ad Hoc Networks (MANETs) Working Group,
http://www.ietf.org/html.charters/manet-charter.html.

[23] C. Siva Ram Murthy, B. S. Manoj, “Ad Hoc Wireless Networks: Architectures and
Protocols,” Prentice Hall, 2004.

[24] S. Corson, J. Macker, RFC 2501, “Mobile Ad hoc Networking (MANET): Routing

Protocol Performance Issues and Evaluation Considerations,” IETF, 1999.

[25] C. Cachin, J. A. Poritz, “Secure Intrusion-tolerant Replication on the Internet,” IEEE
DSN-2002, pp. 167 — 176, 2002.

65

http://www.ietf.org/html.charters/manet-charter.html

Appendix A

1. The proof of Proposition 2.6.6 [5].

Proof:

LetIl = {x,,7,,---, 7, } be a family of w-partition of A. We can construct a
collection F of functions, which map the elements from A to B, by labeling the
parts of each partition 7, with distinct elements of B, and then defining f; to
map each x € A to the label of the part of 7, containing x. Then resulting set of

functions, say F = {f,, f,,-*-, fy}, 1s an (n, m, w) - perfect hash family.

Conversely, suppose that F = {f,, f,,---, fy} 1sa PHF(N; n, m, w). We can
construct a set of partitions of A, say Il = {x,,7,,---, 7}, by setting 7, to f,
foralli=1, 2,..., N. And then forany.7,, X y € A in the same part of =,

whenever f,(x) = f,(y). Hence IT is the desired set of partition of A.

Q.E.D

2. The proof of Proposition 2.6.7 [5].

Proof:
For given an (n, m, w)-perfect hash family F = {f,, f,,---, fy}, we can
produce an array M of size N * n with entries in B as follows: Index the
columns of M by the elements x € A, and index the rows of M by the set
{1, 2,..., N}. That is, each row of the array corresponds to one of the
functions in the family F. Setting the value of the entry (i, x) in M to be

f,(x), the resulting array satisfied the desired conditions.

66

In the reverse direction, suppose that M is an array of size N * n, having entries
on B. Fori = 1, 2,..., N and x € A, we define f,(x) to be the value of the
entry (i, x) of M.

Hence, f,(x) = f,(y) for f, € F whenever the (i, x)th and (i, y)th entries of M
are equal. Then we have a desired set /' = {f,:1<i< N}, whichis a

PHF(N; n, m, w).

Q.E.D

3. The proof of Theorem 2.6.10 [21].

Proof:

To show that equation vr = bk holds, we consider the set

T = {(a, B) | ais an object in blockiB}yand count | T | in two ways.

First, the design has v objects that each appear in » blocks. Hence, | T | = vr.

But the design also has b blocks that each contains k£ objects. Hence, | T | = bk.

Thus vr = bk.

To show that (v-1)A = r(k-1), we choose an object ag in the design.

Then for U = {(x, B) | x is an object with a, in block B}, we count | U | in two ways.

First, there are (v-1) objects in the design that each appear in 4 blocks with ag, so | U |
=(v-DA.

But there are also r blocks in the design that each contains ay and (k-1) other objects.
Hence, | U | = r(k-1).

Thus (v-1)A = r(k-1).

Q.E.D

67

4. The proof of Theorem 2.6.11 [5].

In order to obtain the Theorem 2.6.11, we first give a lemma.

Lemma:

Let (X, A) be a resolvable (v, b, r, k,) — BIBD and Il is a set of parallel class. For any subset
Y of w points, there exists a parallel class 7 €1 such that the w points in Y occur in w

different blocks in 7 .
Proof:

Let Y be a set of w points of X. Suppose that there exists no parallel class
7 €I separating Y. Then each parallel class cannot separate some pair of elements
in Y. By the definition of a resolvable (v b, % k- 1) — BIBD, we note that any pair of

points in X occurs in exactly Aiblocks. Thus, there are at most 4 parallel classes in IT

w
that do not separate a fixed pairof elements. Hence, there are at most ﬂ(zj parallel

classes in I1 that do not separate Y. In a resolvable (v, b, 7, k, A) — BIBD, there are r

parallel classes and > l(;jj . Thus, there exists at least one parallel class in IT that

separates Y.

Q.ED
Proof of Theorem 2.6.11:

Let IT={7,:1<i<r} be asetof parallel class. For any subset Y of w points, by the

above lemma, we know that there exists a parallel class 7 € I1 such that the w points

in'Y occur in w different blocks in 7 . Thus, define a family

68

F={f:A— B, and 1<i<N} as follows:

For any 1 <i <r, define f,(x) = j whenever x € A is in the jth block in 7.

Clearly, j < v/k and f; is an (n, v/k) hash function.
Thus the resulting set F' = {f, :1<i<r}is a PHF(r; v, v/k, w) since for

any x,y € 4, x and y are in the same block of 7; if and only if f,(x) = f,(»).

Q.E.D

69

Appendix B

1. The construction program of 3.1.1.
Based on the prime power q, each program has the different input for construction. We take

the program with q =4 for example.

//Affine Plane to BIBD
//Affine_to BIBD x.c

//Input: Affine plane of order q
//Output: BIBD(q%, q(q+1), g+1, q, 1)

/Iq=4

#include <stdio.h>
#define q 4

void main()

{

FILE *stream;

int ADD[q][q] = {

4,123}, {1,432}, {2,3.4,1}, {3.2,1,.4} };
int MUL[q][q] = {

(4,444}, {4,123}, {42.3.1}, {43,1,2} };

int A[q][q];
int Transform[q][q];

int MOLSJ[g-1][ql[q];
int BIBD[q+1][q][q];

int1i,], k, x,y, m,c;

int index;
stream = fopen("4-BIBD.txt","w");

for(i=1; i<q+1; i++)

70

forG=1; j<q+1; j++)

{
Ali-11[j-1] = q+10%j-(i-1);
// printf("A[%d][%d] = %d\n", i-1, j-1, A[i-1][j-1]);
if==1)
fprintf(stream, "A[%d] = %d", i-1, A[i-1][j-1]);
else fprintf(stream, " %d", A[i-1][j-1]);
}
fprintf(stream, "\n");
}
//transfer to MOLS(q)
for(i=1; i<q; i++)
{
// printf("x * %d + y\n", 1);
fprintf(stream, "x * %d + y\n!;1);
for(x=0; x<q; x++)
{
// printf("%d * %d + y\n", X, 1);
/! printf("MUL[%d][%d] = %d\n";yx3 1, MUL[x][1]);
y = MULI[x][i];
for(j=0; j<q; j*++)
{
ifly ==q)
{
y=0;
// printf("9 * %d + y\n", 1);
}
ifG==0)
{
// printf("ADD[%d] = %d", y, ADD[y][j]);

fprintf(stream,"%d", ADD[y][j]);
MOLSI[i-1][x][j] = ADD[y][j];

else

71

// printf(" %d", ADD[y][j]);
fprintf(stream," %d", ADD[y][j]);
MOLSJi-1][x][j] = ADDI[y][j];

;
fprintf(stream,"\n");
printf("\n");

}
}
for(i=0; i<g-1; i++)
{
for(j=0; j<q; j*++)
{
for(k=0; k<q; k++)
{
if(k == 0)
printf("MOLS[%d][%d] = %d", 1, j, MOLS[1][j][k]);
else printf("%d", MOLS[1i][;l[k]);
}
printf("\n");
}
printf("\n");
}

//Transfer the form
fprintf(stream, "\nTransfer the form.\n");

c=1;
for(i=1; i<q+1; i++)
{
for(j=1; j<q+1; j++)
{
Transform[i-1][j-1] =c;
// printf("T[%d][%d] = %d\n", i-1, j-1, Transform[i-1][j-1]);
if;==1)
fprintf(stream, "T[%d] = %d", i-1, Transform[i-1][j-1])
else fprintf(stream, " %d", Transform[i-1][j-1]);
ct+;
}

72

fprintf(stream, "\n");

//Construct the BIBD block - BIBD[q+1][q][q]
for(i=0; i<q; i++)

{
for(j=0; j<q; j*++)
{
BIBD[0][i][j] = Transform[i][j];
BIBD[1][i][j] = Transform[j][i];
}
}
for(i=0; i<g-1; i++)
{
m=0;
for(index=1; index<q+1; index+t)
{
for(j=0; j<q; j*++)
{
for(k=0; k<q; k*#+)
{
if(MOLSJ1][k][j] == index)
{
printf("%d ", Transform[k][j]);
BIBD[i+2][m][j] = Transform[k][j];
}
}
}
m++;
printf("\n");
}
printf("\n");
}
//Output to the file
for(i=0; i<q+1; i++)
{

73

for(j=0; j<q; j*++)

{
for(k=0; k<q; k++)
{
iflk==0&& j==0)
{
// printf("BIBD[%d][%d] = %d", 1, j, BIBD[1][j][k]);
fprintf(stream, "BIBD[%d] = \n{%d", i, BIBD[1][j][k]);
}
else if(k == 0)
fprintf(stream, " {%d", BIBD[1][j][k]);
else
{
// printf(" %d", BIBD[1i][j][k]);
fprintf(stream, ", %d", BIBD[i][j][k]);
}
}
fprintf(stream, "}\n"");
}
fprintf(stream, "\n");
}
fclose(stream);

2. The analysis program of chapter 4.

With different prime power q, we have the different input for analysis. Furthermore, we use
the variable “A” to present the number of server nodes disappear, being compromised or lost
connection. Thus, for the following example program, we just take q =4 and A = 7 for
example.

The program for the first and second analysis:

// BIBD, PHF, q =4
// Number of server node = 7

// PHF x_analysis.c

74

#include <stdio.h>
#include <stdlib.h>
#define q 4

void compare(int, int, int, int, int, int, int);

double count = 0;

double countl = 0;

void main(int argc, char* argv[])
{
int A=7; // number of nodes to be sclected
int 1, j;
double num = 1;
int flag=0;
int *ser n;

int a,b,index=0;

ser_n = (int *)malloc(sizeof(int)*A);

//# of Server node =7
for(i=0;1<A;i++)
{

ser_n[i]=i+1;

/* first node */
printf("%d,%d,%d,%d,%d,%d,%d\n",

ser n[0],ser_n[1],ser n[2],ser n[3],ser n[4],ser _n[5],ser n[6]);
compare(ser_n[0],ser n[1],ser _n[2],ser n[3],ser n[4],ser n[5],ser n[6]);
printf("count = %d\n", count);

while(ser_n[0]<=10)
{
for(i=A-1,j=0; i>0; i--,j++)
{
if(ser n[i]==(16-j))

75

/* trigger FNEEZED */
for(a=i-1;a>=0;a--)
if(ser_n[a] < (16-(A-a-1)))
{
ser_n[a]++;
for(b=a+1;b<A;b++)
ser_n[b]=ser n[b-1]+1;

a=-1;

flag=1;
num-+-+;
/! printf("%d,%d,%d,%d,%d,%d\n",

ser n[0],ser_n[1],ser n[2],ser _n[3],ser n[4],ser_n[5]);

compare(ser_n[0],ser n[1],ser_n[2],ser n[3],ser n[4],ser n[5],ser n[6]);

}
/* End */
if(flag==0)
{
printf("numr=1%lf\n", num);
printf("eount = %lf\ncount1 = %If\n", count, count1);,
return;
}
}
}
if(flag==0)
{
num-+-+;

ser n[A-1]++;

//printf("%d,%d,%d,%d,%d,%d\n",
ser n[0],ser n[1],ser n[2],ser n[3],ser n[4],ser_n[5]);
compare(ser_n[0],ser n[1],ser_n[2],ser n[3],ser n[4],ser n[5],ser n[6]);
}
flag=0;
/printf("%d,%d,%d,%d,%d,%d\n",

76

ser n[0],ser n[1],ser n[2],ser_n[3],ser n[4],ser_n[5]);
}
}

void compare(int a, int b, int c, int d, int e, int f, int g)
{
int B[q*(q+1)][q] = {

{1,2,3,4}, {5,6,7,8}, {9,10,11,12}, {13,14,15,16},
{4,8,12,16}, {3,7,11,15}, {2,6,10,14}, {1,5,9,13},
{4,7,10,13}, {3,8,9,14}, {1,6,11,16}, {2,5,12,15},
{4,5,11,14}, {2,7,9,16}, {1,8,10,15}, {3,6,12,13},
{4,6,9,15}, {1,7,12,14}, {3,5,10,16}, {2,8,11,13} };

int comp = q*q;
int compl = q*(q+1);

int x,y;

for(x=0; x<q; x++)
{
for(y=0; y<q; y++)
{
if(B[x][y] ==
a|[B[x][y]==b|B[x][y]==c¢|B[x][y]==d||B[x][y]==¢||B[x][y == B[x][y]==¢

IBIx]ly==hIBIx]lyl==ilIB[x][y]==ilB[x][y]==kI[B[x][y]==l[B[x][y]==m|[B[x][y]==n
IBIx][y]==olB[x][y]==p)

{
compl--;
Y=q;
}
}
}
for(x=q; x<q*(q+1); x++)
{
for(y=0; y<q; y++)
{
f(B[x][y] ==

a|[B[x][y]==bl[B[x][y]==c|[B[x][y]==d|[B[x][y]==elB[x][y[==flB[x][y]==¢g)
77

comp--;
compl--;

¥y=9

}

if(comp == 0)
count++;

if(compl == 0)
countl++;

return;

The program for the third analysis:

// Check the probability to be a PH,
// Check PH 4.c
IIq=4

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include <string.h>

#define randomize() srand((unsigned)time(NULL))

#define random(num) (rand()%(num))

#define delay 1000000
#define q 4
#define T 20 //the number of secret share update

void main()
{
int Blg*(qg+D][q]l={ {1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,16},
{4,8,12,16},{3,7,11,15},{2,6,10,14},{1,5,9,13},
{4,7,10,13},{3,8,9,14},{1,6,11,16},{2,5,12,15},
{4,5,11,14},{2,7,9,16},{1,8,10,15},{3,6,12,13},

78

{4,6,9,15},{1,7,12,14},{3,5,10,16},{2,8,11,13} };

int index = 0;

int flag = 0;

inti,j, k, d, x;

int count[10][q*q];

int sum[q*q];
memset(count, 0, sizeof(count));
memset(sum, 0, sizeof(sum));

randomize();

for(k=0; k<10; k++)

{

for(i=0; i<T; i++)

{
index = random(q*(q+1));

// printf("index = %d\n", index);
while(1)
{
flag = 0;

if(B[index][0]==1 && B[index][1]==2 && B[index][2]==3 &&
B[index][3]==4)
flag++;

else if(B[index][0]==5 && B[index][1]==6 &&B [index][2]==7 &&
Blindex][3]==8)
ﬂag++;

else if(B[index][0]==9 && B[index][1]==10 && B[index][2]==11 &&
Blindex][3]==12)
ﬂag++;

else if(B[index][0]==13 && Bl[index][1]==14 && B[index][2]==15 &&
Blindex][3]=—16)
ﬂag++;

if(flag == 0)

79

//

//

//

break;
else index = random(q*(q+1));

}
printf("after index = %d\n", index);

for(j=0; j<q; j*+)

{
printf("B[%d][%d] = %d ", index, j, B[index][j])
count[k][B[index][j]-1]++;
}
}
for(x=0, d=0; d<delay; d++)
{
X++;
printf("x=%d\n", x);
}
}
for(k=0; k<10; k++)
{
for(i=0; i<q*q; it++)
{
printf("count[%d][%d] = %d\n", k, 1, count[k][1]);
}
}
for(i=0; i<q*q; it++)
{
for(k=0; k<10; k++)
{
sum[i] += count[k][i];
}
}
for(k=0; k<q*q; k++)
{
printf("sum[%d] = %d ave = %lf\n", k, sum[k], pro);
}

80

2

	Chapter 1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Related Work
	1.4 Organization

	Chapter 2 Related Knowledge
	2.1 Network Security
	2.1.1 Requirement
	2.1.2 Types of Attacks

	2.2 Fundamental of Cryptography
	2.2.1 Symmetric Cryptography
	2.2.2 Asymmetric Cryptography

	2.3 Public Key Infrastructure
	2.3.1 PKI overview
	2.3.2 Certificate and Certification Authority

	2.4 (n, k) Threshold Secret Sharing
	2.5 Proactive Secret Sharing
	2.6 Combinatorial Object
	2.6.1 Introduction to Perfect Hash Families
	2.6.2 Propositions of Perfect Hash Families
	2.6.3 Construction methods of Perfect Hash Families

	2.7 Fundamentals of Mobile Ad Hoc Network
	2.7.1 Mobile Ad Hoc Network
	2.7.2 Characteristics of Mobile Ad Hoc Network
	2.7.3 Security challenges of Mobile Ad Hoc Network

	Chapter 3 System Architecture
	3.1 Concept
	3.1.1 Construction
	3.1.2 Partition
	3.1.3 Conceptual Building Blocks

	3.2 System Assumption
	3.2.1 Intrusion model
	3.2.2 Trusted dealer

	3.3 Details and Protocols
	3.3.1 System initialization
	3.3.2 Certification service
	3.3.3 Updating the Secret Shares

	Chapter 4 Evaluation and Analysis
	4.1 Evaluation
	4.2 Analysis
	4.3 Discussion

	Chapter 5 Conclusion

