
國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

在無線隨意網路中使用完美雜湊族的高效率秘密

更新協定設計

Efficient Share Renewal Protocol Design for

Mobile Ad Hoc Network using Perfect Hash

Families

研 究 生：許鴻祥

指導教授：葉義雄 教授

中 華 民 國 九 十 五 年 七 月

在無線隨意網路中使用完美雜湊族的高效率秘密更新協定設計

研究生：許鴻祥 指導教授：葉義雄 博士

國立交通大學資訊科學與工程研究所碩士班

摘要︰

 由於無線隨意行動網路 (Mobile Ad Hoc Network) 的一些先天特

性，例如不可靠的無線環境、節點的移動性、不需要任何基地台或移動

轉換中心的協助等等，使得提供安全通訊成為一個很大的挑戰。然而，

一般用在有線網路上的 PKI 架構也無法直接移植到無線隨意行動網路的

環境下，因為一個集中式 CA 是很難建構在無線隨意行動網路中。因此我

們必須解決此集中式的現象。

 本論文提出一個利用「完美雜湊族」(Perfect Hash Families)的模

式來實現(n,k)閥值祕密共享，將私密的金鑰分散給在網路上的每個節

點，由一定個數的節點共同做簽章的動作，並且採用預防式祕密共享來

更新私密金鑰，以避免長時間擁有相同的金鑰，增加攻擊者攻擊的難度。

此外，我們利用完美雜湊族的特性，使得更新金鑰的程序更加有效率。

最後，我們會分析此方法與前人所提的各式方法的差異以及效能比較。

關鍵字︰隨意行動網路、(n,k)閥值祕密共享、預防式祕密共享、完美雜

湊族。

 ii

Efficient Share Renewal Protocol Design for Mobile Ad Hoc Network using
Perfect Hash Families

Student：Hung-Hsiang Hsu Advisor：Dr. Yi-Shiung Yeh

Institute of Computer Science and Information Engineering National Chiao
Tung University

Abstract︰
 Due to the inherent characteristic, such as unreliable wireless media, host

mobility and lack of infrastructure, providing a secure communication

platform in a mobile ad hoc network is a big challenge. However, common

authentication schemes like PKI, which is used extensively in wired network,

are not applicable in the ad hoc network environment because public key

infrastructure with a centralized certification authority is rather difficult to

deploy here. Thus, the centralized circumstance needs to be solved.

 This thesis propose a scheme using the perfect hash families to

implement the (n, k) threshold secret sharing. We separate the private keys

into several shares and distribute them to every node in the mobile ad hoc

network. Only a fixed number of nodes can sign the signature collaboratively.

We also use the proactive secret sharing to update the private shares. It can

avoid one node holding the same secret share for a long time and can increase

the difficulty to being attacked. Moreover, we use the property of a PHF to do

the proactive secret sharing, resulting in a more efficient update procedure.

Finally, we analyze the performance of this scheme and compare our system

with other previously mentioned methods.

Key words: Mobile Ad Hoc Network, (n, k) threshold secret sharing,

Proactive Secret Sharing, Perfect Hash Families.

 iii

致 謝

這篇論文能夠順利的完成，首先我必須感謝我的指導教授，葉義雄教

授，這兩年來敎了我許多，不論是在學問上或是待人處事方面都令我獲

益良多。接著很感謝的是高銘智學長，在我遇到瓶頸時，給了我很多的

寶貴意見以及協助；還有，也謝謝實驗室裡的各位學長姊、同學與學弟

妹，小白、阿甘、昇哥、英宗、雅婷、伯昕與 Gobby，大家平日的相互勉

勵與學習，讓我成長許多；尤其是雅婷，在期間幫我一起跑程式，讓我

因此節省許多寶貴的時間，真是太感謝了。此外，還要感謝在美國的怡

君，特地撥時間幫我修改英文寫作，改正了我許多寫作的問題與錯誤。

最後，要謝謝我的父母，由於你們多年來的栽培與支持，才會有今天

的我，真的非常非常的感謝你們。

謹將我這篇論文獻給所有關心我與支持我的人，謝謝你們。

許鴻祥

中華民國九十五年七月

 iv

Contents

摘要︰ ... ii
Abstract︰ ...iii
致 謝 .. iv
Figure List ..vii
Table List ...viii
Chapter 1 Introduction ... 1

1.1 Background.. 1
1.2 Motivation ... 3
1.3 Related Work ... 4
1.4 Organization .. 7

Chapter 2 Related Knowledge ... 8
2.1 Network Security... 8

2.1.1 Requirement .. 8
2.1.2 Types of Attacks .. 10

2.2 Fundamental of Cryptography... 12
2.2.1 Symmetric Cryptography .. 13
2.2.2 Asymmetric Cryptography .. 14

2.3 Public Key Infrastructure .. 16
2.3.1 PKI overview... 18
2.3.2 Certificate and Certification Authority .. 20

2.4 (n, k) Threshold Secret Sharing ... 21
2.5 Proactive Secret Sharing.. 22
2.6 Combinatorial Object .. 24

2.6.1 Introduction to Perfect Hash Families ... 25
2.6.2 Propositions of Perfect Hash Families .. 27
2.6.3 Construction methods of Perfect Hash Families 28

2.7 Fundamentals of Mobile Ad Hoc Network ... 33
2.7.1 Mobile Ad Hoc Network ... 34
2.7.2 Characteristics of Mobile Ad Hoc Network .. 34
2.7.3 Security challenges of Mobile Ad Hoc Network................................. 35

Chapter 3 System Architecture... 37
3.1 Concept.. 37

3.1.1 Construction .. 37
3.1.2 Partition ... 41
3.1.3 Conceptual Building Blocks.. 43

3.2 System Assumption ... 44
3.2.1 Intrusion model.. 44

 v

3.2.2 Trusted dealer .. 45
3.3 Details and Protocols ... 45

3.3.1 System initialization .. 45
3.3.2 Certification service... 47
3.3.3 Updating the Secret Shares.. 49

Chapter 4 Evaluation and Analysis .. 54
4.1 Evaluation.. 54
4.2 Analysis ... 56
4.3 Discussion.. 61

Chapter 5 Conclusion... 63
References: ... 64
Appendix A ... 66
Appendix B ... 70

 vi

Figure List

Figure 2.1.1 Passive Threats... 10
Figure 2.1.2 Active Threats .. 11
Figure 2.2.1 Symmetric Cryptography ... 14
Figure 2.2.2 Asymmetric Cryptography ... 15
Figure 2.3.1 Man-in-the-middle Attack... 17
Figure 2.3.2 Components and Process of PKI .. 19
Figure 2.7.1 Mobile Ad Hoc Network.. 34
Figure 3.1.1 Finding the minimal prime power q .. 38
Figure 3.1.2 Construction Algorithm of PHF ... 38
Figure 3.3.1 Construction Algorithm of the whole Network....................... 46
Figure 3.3.2 Request for Certification... 49
Figure 3.3.3 Certification Service .. 49
Figure 3.3.4 Algorithm of Changing the Partition Header 50
Figure 3.3.5 Share Refreshing.. 52
Figure 4.2.1 PHF, q = 3 ... 57
Figure 4.2.2 PHF, q = 4 ... 58
Figure 4.2.3 PHF, q = 5 ... 58
Figure 4.2.4 PHF, q = 3 ... 59
Figure 4.2.5 PHF, q = 4 ... 59
Figure 4.2.6 PHF, q = 5 ... 60
Figure 4.2.7 PHF, q = 7 ... 60

 vii

Table List

Table 2.6.1 PHF(4; 9, 3, 3) .. 26
Table 2.6.2 Construction Methods ... 29
Table 3.1.1 A PHF(4; 9, 3, 3)... 40
Table 4.1.1 Communication cost .. 55

 viii

Chapter 1

1.1

 Introduction

 Background

 In the recent decades, with the development of science and technology, the internet has

clearly become an indispensable part of our lives. A wide variety of applications and services

are offered through the internet. For example, through the internet libraries can establish joint

borrowing and returning systems, and we can also make flight and hotel reservations for

destinations worldwide in advance. By using the internet, it is more convenient and easy to

communicate with one another. Through some simple internet applications such as e-mail and

instant messenger, we can easily transmit messages or even files to another party of the

communication. The internet has helped bridge the barriers of time and distance through

enabling communication with virtually no boundaries. In addition, a current trend is the rapid

growth and development of wireless network, as evidenced in the increased numbers of

wireless related applications. Without any wired help, users can now use their wireless devises,

such as PDAs and laptops, to connect to the internet via various wireless transmission

protocols including, for example, 802.11b and Bluetooth. Wireless network provides users

with greater flexibilities and convenience. However, as an increasing amount of sensitive and

important information being transmitted electronically, network security is an increasing

concern. Thus, in order to ensure the integrity and confidentiality of transmitted data, people

are paying more attention to network security related issues.

 As we continue to expand on the conceptual framework for guiding further development

in network security, we need to understand the different types of attacks. Attacks can

generally be divided into two categories: passive attack and active attack. A passive attack is

 1

when adversaries simply want to obtain information off the network; it includes, for example,

eavesdropping and peep. An active attack, on the other hand, is when adversaries not only

read information off the network but also want to modify or write data to the network; it

includes, for instance, masquerade, replay attack, and denial of service.

 In order to resist aforementioned attacks, a security mechanism should satisfy following

requirements: confidentiality, authentication, integrity, non-repudiation, access control, and

availability [1][2]. These requirements can be supported by cryptography including both

symmetric and asymmetric approaches. In addition to the cryptography technology, a suitable

infrastructure also needs to be constructed. Public key infrastructure (PKI) is one of such

structures. PKI supports a trusted third party called Certification Authority (CA) [3]. CA has

its own key pair (public key / private key). CA uses its private key to sign the digital

certificate, and the certificate then includes the user’s identity and his corresponding public

key. Other people can verify the certificate by using the CA’s public key. If the certificate is

valid, it can then be concluded that the content of the certificate is indeed valid. Depending on

the certificates, users can authenticate the identity and transmit the data safely.

 However, deploying security mechanisms is rather difficult due to the inherent properties

of ad hoc networks, such as the high dynamics of their topology, limited resources of end

systems, or bandwidth constraints and possible asymmetrical communication links. Any

centralized design entity of security service is not practical in the ad hoc network because

such entities would obviously become the targets of attack. Therefore, it is impossible to

implement a centralized CA for managing public keys of the participants, because if the

centralized CA is compromised, the attackers would be able to obtain much useful and

sensitive information. The attackers can even impersonate a valid CA and consequently issue

the certificate to the users. In this case, intruders can steal the transmitting data easily.

Furthermore, due to the high mobility of each node, if the node, playing the role of CA, leaves

the network, then other users would not be able to find the CA. Therefore, they cannot apply

 2

for a certificate or manage the certificate. In this case, the entire network system may crash.

Hence, a distributed solution must be found instead.

One popular method to achieve the distribution condition is to implement the (n, k)

threshold secret sharing [4]. In fact, there has been much research focused on using the (n, k)

threshold secret sharing method to construct the distributed CA. In this paper, we propose and

evaluate a new architecture for securing communication in the mobile ad hoc network. More

specifically, we use the perfect hash families (PHF) [5][6] approach to construct the network

along with the threshold method. Also, we distribute the CA function and network secret to

multiple nodes. Furthermore, we adopt proactive secret sharing [7] to improve network

security. By using the characteristics of the PHF, we can make the proactive secret sharing

more efficient and also enhance the effectiveness of this approach in the event when some

nodes are unavailable. Moreover, the extra overhead of doing secret shares updating can be

shared among a group of nodes.

1.2 Motivation

As wireless technology and applications continue to develop and gain popularity, there is

a high demand in developing a secure wireless network. Considering some inherent limits in

the mobile ad hoc network, the traditional PKI cannot be directly applied to the mobile ad hoc

network without any modification. Therefore, our goal is to make some changes to the

traditional PKI and ultimately implement it in the mobile ad hoc network.

The most important component in the PKI structure is the CA. In order to ensure

availability and high survivability, we implement a decentralized CA by distributing the CA’s

functionality to many nodes. We use Adi Shamir’s (n, k) threshold secret sharing to do it. The

CA has a key pair (public key / private key). The secret key is divided into n shares, and these

shares are owned by n nodes. Only when k or more than k nodes combine their own secret

 3

shares cooperatively, they can collectively function as the role of CA. The original secret key

is, however, not visible or known by any component of the network except at the system

bootstrapping phase. Then these k nodes sign the certificate collectively and issue it to the

user. The CA’s public key is public in the network, so every user can easily verify the validity

of a certificate. Users can then use the certificates to authenticate others’ identities and

communicate securely. We construct the (n, k) threshold secret sharing by using the PHF.

Then we use the partition characteristic of the PHF to divide the entire network into several

disjoint partitions. We use the partition point of view to do the proactive secret sharing. In this

way, we can update the secret shares at a lower communication cost. Additionally, we can

ensure a higher rate of success in doing the secret shares updating. Moreover, since our

system does not require the synchronization of the network in the update process, we can

prevent some attacks of synchronization. Finally, we can also securely transmit the new shares

to each participant who needs it.

1.3 Related Work

There has been much research focused on the mobile ad hoc network security. In [8],

Zhou and Hass proposed a secure key management scheme. They used (n, k) threshold

cryptography to distribute trust among a set of servers. They focused on the security of the

shared secret in the presence of possible compromises of secret share holders. The system can

tolerate k-1 compromised servers. However, they did not provide any specific explanation for

how a node can make contact to sufficient servers, especially when the servers are spread

across a large area. The authors also proposed to employ proactive schemes to achieve share

refreshing to counter mobile adversaries. Yet, their solution assumed the group of servers with

rich connectivity. It is not suitable for ad hoc environments. The authors also did not address

the issue of how to distribute the update shares to the server nodes efficiently and securely.

 4

In [9], Kong et al. also used threshold secret sharing mechanism to distribute the

functions of CA to some nodes. In order to ease the difficulty of contacting server nodes, they

employed localized certification schemes. In other words, each entity holds a secret share, and

multiple entities in a local neighborhood then jointly provide complete services. This method

also can enhance the service efficiency for users. The authors noted that k is the balance point

between service availability and intrusion tolerance. However, in their scheme the threshold

value k is difficult to set. It is known that if k is too small, the probability of a global secret

key being compromised is quite high. On the other hand, if k is big, although we can resist

more compromises, it is relatively harder to find k one-hop legitimate neighboring nodes.

Another problem is that they also did not address the issue of how to distribute the update

shares to the server nodes efficiently and securely. [10] is an extension of [9] because the

authors proposed the parallel share updates to prevent from emulating a coalition of k nodes to

fake share updates. Yet, this method requires a much higher communication cost due to the

fact that each update polynomial function has to be generated by k nodes collaboratively.

After the polynomial function is generated, each node that wants to do the update procedure

would be required to ask k nodes again to decrypt the polynomial function, then to complete

the update. The authors also implemented a localized certification service to enhance service

availability for mobile nodes and robustness against DoS attacks. However, this localized

certification service operates under the assumption that each node has at least k legitimate

neighbors; it surely has some difficulties to ensure that in a mobile ad hoc network

environment.

In [11], Bechler et al. proposed and evaluated a clustered architecture for securing

communication in mobile ad hoc networks. They divided the network into clusters and used

threshold cryptography to implement a decentralized CA. The authors further separated the

cluster internal traffic from the network-wide traffic. For cluster internal traffic, they used the

symmetric encryption. For network-wide traffic, they used public key cryptography. There are,

 5

however, two major problems with their proposed architecture: (1) with its log-on procedure

and (2) with its sharing update. First, they did not specify how to find the warrant nodes, and

also the number of warrant nodes is indeterminate. Second, they used proactive secret sharing

without any modification. Therefore, the communication overhead is too high for the wireless

channel.

In [12], Zhu et al. proposed a novel key management scheme based on the hierarchical

structure and secret sharing to distribute cryptography keys and to provide certification

services, called the Autonomous Key Management (AKM). AKM is a logical tree, in which

all the left nodes represent real wireless nodes, while all the branch nodes only exist logically.

AKM can achieve flexibility and adaptivity by issuing certificates with different levels of

assurance and can handle the mobile ad hoc network (MANET) with a large number of nodes.

They further proposed two algorithms, which are based on threshold cryptography and

Verifiable Secret Sharing (VSS). These algorithms can resist active attacks targeting

certification services. The disadvantage of AKM is that if we want to change the configuration

of (n, k) to (n’, k’), it would require a significant cost. Under their “join operation,” when one

real node wants to join a region, the system would choose a group of k nodes randomly. The

authors assumed that each node in that group should know the identity of one another.

However, their assumption is not sound, since each node is randomly chosen.

In [13], Wu et al. also adopted the threshold cryptography to distribute the private key

share to shareholders. The major difference in this presented model is that the shareholders

form a special group, called the server group. In the pervious approach the shareholders are all

independent; users must communicate with each server node individually. In contrast, here a

user only needs to communicate with one member of the server group, then that server node

will send the information to other server nodes automatically. The advantage of this method is

that it is easier for a node to request service from a well maintained group rather than from

multiple “independent” service providers, which may spread across a large area. Furthermore,

 6

the server group does not have to include all shareholders; it takes the soft state maintenance

to ensure a number of shareholders. In sum, the benefits include communication-efficiency,

bandwidth-saving, and easy management. However, the size of a server group is the

determinant of the entire network performance. That is, if the server group is small, it is then

relatively easier to respond and manage. Yet, this kind of small server groups may not have

the ability to serve a large network. On the other hand, if the group is big, the response rate

would, as expected, be slower and thus would have an impact on the entire network

performance. Therefore, how to decide on the size of a server group would be key in

determining the quality of network performances.

1.4 Organization

This thesis is organized as follows. First, it begins with a brief overview of related

knowledge in chapter 2. Specifically, it includes backgrounds on cryptography and security,

mobile ad hoc network concepts, principles of secret sharing, and some combinatorial objects.

Then chapter 3 focuses on the specific concepts and describes the detailed protocol of our

scheme. In chapter 4, we present the analysis of mobile ad hoc network that uses our scheme

in order to show its availability and performance. Results and related parameters are also

discussed in this chapter. Finally, chapter 5 provides conclusions pertaining to the proposed

scheme and results and suggestions for some future research directions based on this thesis.

 7

Chapter 2 Related Knowledge

2.1 Network Security

2.1.1 Requirement

Network security is an increasingly important issue, especially for those

security-sensitive applications. In order to ensure the safety of data transmission process in

the network, the following attributes need to be considered [1][2]:

Confidentiality

Authentication

Integrity

Non-repudiation

Access control

Availability

Below is a description for each requirement.

(1) Confidentiality

 Confidentiality is the protection of transmitted data from passive attacks. It ensures that

the data only be accessible by authorized entities. The other aspect of confidentiality is the

protection of traffic flow from analysis. Network applications with sensitive information

transmission require confidentiality. If such kinds of information are leaked out to the

adversaries, it may result in devastating consequences.

 8

(2) Authentication

 Authentication is the process that enables a node to ensure the identity of the peer node

that it is communicating with. Without authentication, adversaries could masquerade a node

and thus obtain unauthorized access to resource and sensitive information.

(3) Integrity

 Integrity is the measure of ensuring the correctness and completeness of transmitted

information. It guarantees that data are received as sent, with no insertion, modification,

reordering, or corruption.

(4) Non-repudiation

 Non-repudiation prevents either sender or receiver from denying a transmitted message.

Also, the sender and receiver have ways to prove that they actually have sent and received the

message respectively. Essentially, non-repudiation is the process that holds senders and

receivers accountable for sending or receiving any data. Non-repudiation is also useful for

detecting and isolating compromised nodes. When node A receives an erroneous message

from node B, non-repudiation allows A to accuse B for sending the message and to convince

other nodes that B has, indeed, been compromised.

(5) Access control

 Network resources are limited. If unauthorized nodes use the network resources

unrestrictedly, it may endanger the entire network. Therefore, access control is the ability to

permit or deny the access to network resources. To achieve this control, each entity has to

obtain authorizations prior to any use of the resources.

 9

(6) Availability

Availability ensures the survivability of the network service. Many kinds of attacks can

result in loss or reduction in the availability of services. Thus, there is a strong need for

finding solutions to deal with this situation and to let only authorized nodes get the service

easily.

2.1.2 Types of Attacks

Generally speaking, attacks can be classified into two categories: passive attack and

active attack. Below is a description of these two types of attacks [1]:

(1) Passive attack

 A passive attack is an attack where an unauthorized attacker monitors or listens to the

communication between two parties. Figure 2.1.1 shows the two different types of passive

attacks.

Figure 2.1.1 Passive Threats

 One kind of passive attack involves an unauthorized release of message contents.

 10

 Another type is the traffic analysis threat, which is much more subtle. It means that

encryption masks the content of the transmitted message, so even if captured by attackers,

they would be unable to read the content of the message. Although the attackers cannot see

the content, they nevertheless could determine the location of the sender or some other

important information, such as the communication model.

 Passive attacks are very difficult to detect because they do not involve any alteration of

the data or message. Due to the difficulty in detecting passive attacks, the primary defense

strategy is in prevention rather than detection.

(2) Active attack

 In active attacks, adversaries may modify the data stream or create a fake reply. The

attacker may also transmit data to one or both parties, or block the data stream in one or both

directions. It is also possible that an attacker could deceive user A into believing he is user B

and could deceive user B into believing he is user A. In other words, users A and B do not

know that the communication link between them has been compromised. Figure 2.1.2 shows

various types of active attacks.

Figure 2.1.2 Active Threats

 11

 Masquerade is an attempt to act like or to impersonate someone else or some other

system.

 Replay attack means that attackers first intercept the valid data and then subsequently

retransmit the data to fulfill their illegal intention.

 Modification of message contents simply means to produce an unauthorized effect by

altering or reordering some portions of the message.

 Denial of service (DoS) attacks lead to a loss of services and resources to legitimate

users in the system.

 In general, it is also quite difficult to prevent active attacks because it would require a

complete protection of all communication facilities to do so. Contrary to passive attacks, the

primary defense strategy to active attacks is to detect them and recover any disruption or

delay caused by them.

2.2 Fundamental of Cryptography

Cryptography is the science of keeping secrets secret. The origin of cryptography traces

back millenniums ago. When humans had learned how to communicate with one another, they

had no choice but to find methods to keep their private messages secret. Therefore,

cryptography is the science of encoding a message such that only the sender and the intended

recipients are able to understand it. “Plaintext” refers to a message before encryption, and

after the encryption, the corresponding message is known as the “ciphertext.”

Cryptography is fundamental to the network security. All of the security requirements

discussed in the earlier section of this text can be achieved by relying on cryptography

algorithm. Cryptography algorithm could involve some replacement or permutation

techniques. It also could be based on some kinds of mathematical function operations. With

the participation of some secret information, usually referred to as a "secret key," we use the

 12

cryptography algorithm to transform the plaintext into unreadable ciphertext, which is

something unintelligible to anyone other than an authorized recipient.

Generally speaking, depending on how the secret key is used, cryptography can be

classified into two categories: symmetric cryptography and asymmetric cryptography. The

following is an introduction of each cryptography approach [14][15].

2.2.1 Symmetric Cryptography

Symmetric cryptography uses the same symmetrical key for both encryption and

decryption. Without the secret key, it is impossible to recover ciphertext back to its original

plaintext. Therefore, the secret key has to be stored secretly. Two popular symmetric

cryptography techniques are DES and AES. There are several weaknesses associated with the

symmetric cryptography approach: 1. The fact that encryption and decryption parties share a

same key, before transmitting any data, the secret key must be securely sent to both parties

first. However, how key exchange process can be kept secret is a major problem. 2. Another

weakness is related to the difficulties in managing the key, as one secret key is shared by users

altogether. 3. Lastly, if a secret key is compromised, then the key must be destroyed and

replaced with a new one. The effort to distribute the new secret key to all users would be

enormous. Despite its disadvantages, symmetric cryptography is nonetheless an efficient

approach to encrypt and decrypt messages.

Figure 2.2.1 illustrates the operation of symmetric cryptography. The sending party and

the receiving party use the same secret key and the same encryption model to do the

encryption and decryption.

 13

Figure 2.2.1 Symmetric Cryptography

2.2.2 Asymmetric Cryptography

Asymmetric cryptography, also known as public-key cryptography, is perhaps the most

important development in the history of cryptography. Introduced by Whitfied Diffie and

Martin Hellman in 1976, the concept of public-key cryptography was specifically

developed to solve problems related to the secret key distribution and management in

symmetric cryptography. Public-key cryptography has, in fact, taken cryptography

development to a new direction and network security to a new level. First, the asymmetric

algorithms are based on mathematical functions instead of replacement or rearrangement

techniques. Then, most importantly, the asymmetric cryptography uses two asymmetric

keys. Asymmetric cryptography uses one key for encryption and a different, but relative,

key for decryption. The concept of public-key cryptography is built upon the idea that it

might be possible to find a cryptosystem where it is computationally infeasible to

determine dK given eK. If that is the case, then according to the encryption rule, eK is a

public key, which can be published in the world, and dK is a secret key, which has to be

stored secretly. Two common kinds of asymmetric cryptography are RSA and DSA.

 14

(a) Encryption and Decryption

(b) Authentication

Figure 2.2.2 Asymmetric Cryptography

As Figure 2.2.2(a) shows, when Alice wants to transmit a message to Bob, Alice uses

Bob’s public key to encrypt the message. Then, instead of the original message, she

 15

transmits the ciphertext to Bob. When Bob receives the ciphertext, he uses his own private

key to recover the message. From the example above, it clearly shows that only when we

have Bob’s private key, then are we capable of recovering the ciphertext back to its original

state. Thus, an advantage of the public-key cryptography is that even if other people were to

intercept the transmitting ciphertext, they would not be able to recover the message without

Bob’s private key.

As Figure 2.2.2(b) illustrates, the public-key cryptography can also be used for identity

authentication. Alice uses her secret key to encrypt the message that she wants to send to Bob.

When Bob receives it, he can use Alice’s public key to decrypt the message. Because this

message is encrypted by Alice’s secret key, only Alice could generate this message. Thus, the

entire message itself can also serve as a digital signature. Additionally, the person who sends

this encrypted message can be authenticated. This achieves the identity authentication.

Asymmetric cryptography solves the key management and key distribution problems

successfully. However, the fact that asymmetric approach involves relatively more

complicated algorithms as compared to the symmetric approach, the efficiency in encryption

and decryption is then not as good as that of the symmetric approach.

In the current thesis, both symmetric and asymmetric cryptography are used.

Specifically, we use the asymmetric method for getting the signatures to verify the identities

of the node and of the corresponding public key. Then, when each node has the same

symmetric key, we encrypt the transmitting message by using the symmetric algorithm.

Therefore, not only can our approach solve the key distribution problem but also achieve

high transmission efficiency.

2.3 Public Key Infrastructure

Asymmetrical algorithms, such as RSA and DSA, have undoubtedly revolutionized the

 16

science of cryptography, but these algorithms do not guarantee a carefree crypto life.

Problems with asymmetrical algorithms stem from their practical applications, and these

problems can only be avoided by constructing a suitable infrastructure. Problems with

asymmetrical algorithms are summarized in the following section [3].

(1) Authenticity of the key: In an asymmetric cryptosystem, how can one tell a public

key belongs to whom? In other words, an attacker can easily use a man-in-the-middle attack

to cheat both the sender and the receiver, as depicted in Figure 2.3.1. This is a scenario when

user A wants to communicate with user B secretly. First, they exchange their public keys with

each other. If there is an attacker that tells A that he is B and also tells B that he is A, and in

the event that both users A and B were to believe the identity of this “middle-man,” they

would then share their public keys with the attacker. Upon receiving A and B’s public keys,

the attacker would then send his public key to both users, pretending that this was, in fact, the

public key of their communication partners. Then A and B use the attacker’s public key to

encrypt the message that they want to send and think that it is secure. What A and B do not

realize is that the attacker can, in fact, use his public key to decrypt the message. This is called

the man-in-the-middle attack.

Figure 2.3.1 Man-in-the-middle Attack

(2) Revoking keys: If someone noticed that his private key had been stolen, he

 17

immediately generated a new key pair to replace the old private key. But then how can others

know that his old private key has been revoked? In other words, it is not possible to tell from

a public key itself whether it has been revoked or not.

(3) Non-repudiation: The purpose of digital signature is to ensure that the individual

sending the message is indeed who he claims to be. If one, however, keeps his private key

secret, and he simply denies that the key used in the signature was his, no one can challenge

him. Since no one can forge his key, the problem then is how to prove that a particular key

belongs to whom?

Therefore, a suitable structure must be constructed to address these problems. Such a

structure is called a public key infrastructure (PKI).

2.3.1 PKI overview

PKI has more than twenty years of history in development. The concept of the

public-key cryptography was first introduced by W. Diffieand and M. Hellman in 1976. Two

years later, computer scientists proposed the concept of public-key digital certificates. In 1988,

the first certificate standard X.509 was developed. In 1993, the first IETF certificate was

introduced to the public. In short, the technology of PKI refers to the framework that uses

asymmetric approach to generate digital signatures and that provides a highly secure service

platform for network transactions. The major goal of PKI is to construct trust relationships

among individuals. Establishing trust relationships is fundamental to the implementation of

information security. Major components of a PKI are shown in the next illustration, Figure

2.3.2.

 18

Figure 2.3.2 Components and Process of PKI

End entity is the subject who owns certificates or has owned certifications. For example,

a web server or even a mobile phone can process certificates. Registration authority (RA) is

the administrative center where an end entity can apply for certificates. The RA may be

authenticated face to face by the certification authority (CA) and may then be trusted to

perform face to face authentication for the end entity. The PKI standard does not strictly

define the existence of RA. End entity can communicate with the CA directly. However,

almost all PKI implementations are provided for an RA and actually do not allow any

communication between an end entity and the CA.

The present thesis seeks to implement some roles for the CA. The relationship between

the certificate and certificate authority is introduced in the following sub-section.

 19

2.3.2 Certificate and Certification Authority

The certification authority (CA) plays the most important role in a trust center. By

definition, a trust center without CA is not possible. The CA is the entity that issues

certificates. From the security perspective, CA is a highly crucial component. In particular, the

CA’s private key has to be stored in a highly secure environment. In order to avoid attacks

from the network, the computer running the CA software should, as a rule, not be connected

to the internet.

The certificate issued by the CA is the solution to the aforementioned remaining

problems of asymmetric algorithms. The content of a certificate may consist of, for instance,

issuer, user identity, a corresponding public key, valid period, and issuer’s signature. Often,

the certificate has signature signed using the CA’s private key. As a result, if anyone wants to

verify the certificate, he can use CA’s public key to do so. He can then trust that the public key

inside of the certificate actually belongs to the corresponding user. This solves the authenticity

of the key problem. A CA can also revoke a public key very well by signing a revocation list

called Certificate Revocation List (CRL). The CRL contains the invalid certificates. One

should download the CRL and check a certificate’s validity against the CRL before accepting

it. Finally, because a CA issues digital certificates to all users, non-repudiation is much easier

to guarantee. If one registers with a CA and is officially given a key pair, he can hardly have

any dispute over his ownership at a later time.

In summary, there are several characteristics of using a CA:

(1) Only CA can create, update, and revoke a certificate.

(2) Every user can verify whether the certificate is issued by the CA.

(3) Every user can verify the correctness of a certificate.

(4) Every user can read the content of a certificate to determine its identity and the owner’s

public key.

 20

2.4 (n, k) Threshold Secret Sharing

Secret sharing means that a secret is divided into many shares, and these shares are

distributed to a group of users. As a group, these people collectively share this secret. No one

in the group knows or holds the complete secret, and no one can use his own partial share to

retrieve the original secret. Only when enough partial shares are combined can we recover the

original secret. The (n, k) threshold secret sharing means that we divide a secret into n shares

and distribute the shares to n participators. Only when k participators (k ≤ n) collaboratively

combine their own shares, then the secret can be recovered.

(n, k) threshold secret sharing was introduced by Adi Shamir in 1979 [4]. He used a

polynomial function to generate a secret into n shares. After that, one can use the Lagrange

interpolation method to recover the secret. Below is a step-by-step instruction of this method.

First, suppose that the secret we want to share is S, and there are n participators to share

this secret. The identities of participators are denoted as ID1…n. Then there is a dealer, which

is trusted by all participators. Specifically, the dealer is responsible to perform the following

actions and to distribute the shares to their corresponding participators.

(1) Give a prime number p, that p > max(S, n).

(2) Dealer chooses a polynomial function, f(x) = S + a1x + … + ak-1xk-1, that a0 = S and

choose a1…ak-1 from Zp.

(3) Compute share secret, Si = f(IDi)(mod p), for i = 1 ~ n.

(4) Distribute share secret Si to IDi.

In order to recover the original secret, Lagrange interpolation must be used. We must

have k or more than k, use f(x) to construct f(0), and finally secret S is retrieved.

 21

Lagrange interpolation:

))(mod()(
,11

px
IDID

IDxSxf
k

ijj ji

j
k

i

i ∏∑
≠== −

−
⋅=

2.5 Proactive Secret Sharing

The secret sharing we mentioned above relies on the idea of distribution. We share the

secret to many nodes, so if one node is compromised, the attacker still cannot retrieve the

secret. The only way that an attacker can obtain the secret is to compromise at least k nodes. If

each share is, however, never changed, an attacker may have ample time to compromise k

nodes and ultimately retrieve the secret. This probability increases over time. Therefore, some

people, such as A. Herzber, proposed proactive secret sharing in 1995[7]. The objective of this

method is to decrease the likelihood of the abovementioned situation by using an update

function to periodically calculate new share and distribute the new share to each node.

Without disclosing the service private key, proactive secret sharing allows the users to

calculate the new shares from the old ones in collaboration. After the update, users remove the

old shares and replace them with only the new ones. The fact that different time periods have

different update shares and that they are completely independent of the old shares, there is no

way to reconstruct the original secret by combining the new and old shares. Furthermore, no

one can predict the new share value for each node after each update cycle – that is, it is

completely random, not predictable. Thus, if an attacker wants to get the secret, he has to

compromise at least k nodes during one point in time. Otherwise, after each update, any

information he had previously obtained would clearly become useless. Share refreshing

basically relies on the following homomorphic property.

 If S’ is 0, then we get a new (n, k)

' ' ' '
1 2 1 2If (, , ,) is a (,) sharing of secret and (, , ...,) is a (,) sharing of secret , n ns s s n k S s s s n k S…

' ' '
1 1 2 2then (..., is a () sharing of ', ,) , .n ns s s s s s n k S S+ + + +

 22

sharing of S. Now, let’s turn our attention to how it does that.

First, for each node i, we must generate a new polynomial f(i)(x) to correspond with f(x).

The constant term of f(i)(x) has to be 0 because we want the secret shared by this polynomial

is 0. The method of updating share is shown as follows:

 p)xaxa(Sf(x) k-
k- mod1

11 +++= L

 number. random is b , ,b mod 1-k i,i,1
1

11 …++= p,)xbx(b(x)f k-
i, k-i,

(i) L

 pxbaxbaSxfxfxf k
k

i
kik

k

i
i

k

i

i mod))()(())()(()(1

1
1,1

1
1,1

1

)(' −

=
−−

==
∑∑∑ +++++=+= L

 The update share for each node is computed by , for j = 1, …, k. Therefore, each

participant first generates its own polynomial

)(IDf j
'

 (i)f (x) . Then according to the polynomial, he

computes (i)
jf (ID) . After that, he sends these results securely to the corresponding node.

When a node receives the new share from other participants, he will add to the original share.

The result of this addition is the new share.

 A verification system must, however, be in place in order to prevent some nodes being

compromised. A compromised node may not want to participate in the update process, or it

may intentionally send incorrect update shares to other nodes. If other nodes use the incorrect

shares to construct their new shares, the secret, which is recovered from the new shares, will

then not be consistent with the original one. Hence, verifiable secret sharing is used to prevent

this kind of attack. The method is detailed below.

(1) Prior to distributing the secret share to other nodes, the dealer publishes

 that are the witnesses of coefficients of the sharing polynomial. 110 ,,, −kaaa ggg L

(2) Each participant then receives its share and verifies it by calculating

1

11)(...)(
−

−⋅⋅⋅=
k
ikii IDaIDaSS gggg

 23

2.6 Combinatorial Object

We begin this section by first introducing some specific notations and their definitions

[16].

Definition 2.6.1 Θ-notation [16]

For a given function g(n), we denoted by Θ(g(n)) the set of functions

1 2 0(g(n)) = {f(n): there exists positive constants , and such thatc c nΘ

1 2 0 g() f() g() for all }c n n c n n n0≤ ≤ ≤ ≥ □

A function f(n) belongs to the set Θ(g(n)) if there exists positive constants c1 and c2 such that

it can be “sandwiched” between c1g(n) and c2g(n) for sufficiently large n.

Definition 2.6.2 O-notation [16]

For a given function g(n), we denoted by O(g(n)) the set of functions

0(g(n)) = {f(n): there exists positive constants and such thatO c n

n

0 0 f(n) g(n) for all }c n≤ ≤ ≥

n n

 □

We use O-notation to give an asymptotic upper bound on a function to within a constant

factor.

Definition 2.6.3 Ω-notation [16]

For a given function g(n), we denoted by Ω(g(n)) the set of functions

0(g(n)) = {f(n): there exists positive constants and such thatc nΩ

0 0 g(n) f(n) for all }c≤ ≤ ≥ □

 24

We use Ω-notation to provide an asymptotic lower bound on a function to within a constant

factor.

2.6.1 Introduction to Perfect Hash Families

Computer scientists have studied perfect hash families (PHF) for more than 15 years.

Perfect hash families are basic combinatorial structures, and they have played many important

roles in the field of computer science, such as in database management and compiler

constructions. Such hash functions should be easily computable, and only a minimal amount

of memory would be required. Not until recently that the concept of perfect hash families has

been applied to cryptography. For example, it can be seen used in the broadcast encryption

schemes, secret sharing, and cover-free families. A perfect hash family can be defined as

follows [5]:

Definition 2.6.4 [5]

 A perfect hash family, denoted as PHF(F; A, B,), should satisfy the following
statements:

1. A and B are the finite non-empty set.

2. F is a finite set of hash functions from A to B such that

w

for each X A if |X| ,w⊆ =

Xthere exists at least one f F , where f | is injective.∈ □

Note: In many situations, a perfect hash family can also be denoted as PHF(|F|; |A|, |B|, w).

 According to the above definition, the notation ‘|X’ is used to denote the restriction to the

set X. We say that a function f : A B seperates X A if f is injective to the set X.→ ⊆

 25

Note: We may also write f(A, B,) as f F, f:A B, F { f(A, B,) | f }.w w∈ → =

Let N be the minimum number of functions such that a PHF(F; A, B, w) would exist.

That is, N = min { |F| } is the optimal solution [5].

 Below is a simple example of a perfect hash family – PHF(4; 9, 3, 3).

Example 2.6.1

We have a PHF(4; 9, 3, 3). Consider the matrix:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

213132321
132213321
321321321
333222111

M

Let A = {1, 2, 3, 4, 5, 6, 7, 8, 9} and B = {1, 2, 3}. Hence |A| = 9, |B| = 3.

Let f be a set of hash functions fi, i = 1, 2, 3, 4, as shown in Table 2.6.1.

X 1 2 3 4 5 6 7 8 9

f1(x) 1 1 1 2 2 2 3 3 3
f2(x) 1 2 3 1 2 3 1 2 3
f3(x) 1 2 3 3 1 2 2 3 1
f4(x) 1 2 3 2 3 1 3 1 2

Table 2.6.1 PHF(4; 9, 3, 3)

From these four functions, we can see that for any subset of with |X| = 3, we

have at least one function f

X A⊆

i that separates X. The verification of that F is a PHF(4; 9, 3, 3) has

been shown in [5]. □

In the next section, two propositions of perfect hash families are presented. These two

propositions are used in our scheme later.

 26

2.6.2 Propositions of Perfect Hash Families

Two propositions of perfect hash families are discussed here [5][6]. One is the partition

characteristic offered by the perfect hash families. The other one is the corresponding matrix.

Definition 2.6.5 w-partition of A

i 1 2 i|A|
w

| A is a partition of A. P {P , P , , P |P | ., ,w wΠ ∈Π L }, =

The order of each subset is .w □

Note:
A set X A is separated by a partition of A if the elements of X are in

distinct part of .

π

π

⊆

Proposition 2.6.6 [5][6]

 Suppose that is a family of -partition of A with N. For all sets X A

with X , X is seperated by at least one . Then there exists a PHF(; , ,).

w

w Nπ

Π Π =

= ∈Π n m w

⊆

Conversely, a PHF(; , ,) gives rise to such -partition set of A. N n m w w Π □

The proof for Proposition 2.6.6 is included in Appendix A. A simple example of

Proposition 2.6.6 is given below.

Example 2.6.2

 Let A = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Consider the PHF(4; 9, 3, 3) we constructed in Example

2.6.1, we can get the following results:

7}} 5, {3, 9}, 4, {2, 8}, 6, {1,{ ,8}} 4, {3, 7}, 6, {2, 9}, 5, {{1,
9}} 6, {3, 8}, 5, {2, 7}, 4, {{1, 9}}, 8, {7, 6}, 5, {4, 3}, 2, {{1,

43

21

==
==

ππ
π π

 27

1 2 3 4Thus, , , , } is the most desired set of partitions of A.{π π π πΠ =

1 2 3 4

Conversely, we can find a function family F {f , f , f , f , such that f (x) is denoted as

and for each x A, labeling the part for each partition according to the given order.

i

i iπ π

= }

∈

 □

Proposition 2.6.7 [5][6]

 Suppose that there exists a PHF(; , ,). Then there exists an array M, where

size is * and which has entries in a set B of size , such that for any subset

X of columns of M with X , th

N n m w

N n m

w= ere is at least one row of M that seperates

 the subsex X of columns of M.

Conversely, such an array gives rise to a PHF(; , ,). N n m w □

The proof of Proposition 2.6.7 is also included in Appendix A. Referring to the matrix

provided in Example 2.6.1, it is obvious that it is an example of Proposition 2.6.7.

Next section provides a summary of construction methods of perfect hash families

proposed in other studies. We also discuss some known bounds of N(n, m, w).

2.6.3 Construction methods of Perfect Hash

Families

In this section, we are more interested in the behavior of minimum N as a function of n

when m and w are fixed. Bounds on N have been studied extensively (For examples, see

[5][6][17][18][19]). In particular, in [19], it provides a proof that when m and w are fixed, N is

Θ(log n). However, this existence is non-constructive. It is also believed that it is difficult to

give explicit constructions that are as asymptotically good. Here, we introduce some explicit

constructions and point out the bound on N in those constructions. Although these

constructions are not as asymptotically good as the one presented in [19], they are quite

 28

reasonable.

There are many kinds of method to construct perfect hash families, such as using

combinatorial structures and using algebraic structures. Table 2.6.2 lists the approaches

included in the combinatorial and algebra structures.

Combinatorial Structures Algebra Structures

Design Theory Special Global Function Field
Error-Correcting Codes Algebraic Curves
Recursive Constructions

Table 2.6.2 Construction Methods

In the combinatorial structures, we can use the design theory to construct perfect hash

families. There are some set systems, such as the balanced incomplete block design (BIBD)

and the separating resolvable block design (SRBD). The detail of this construction was

introduced in [17]. According to their inference and proof, in the situation when m and w are

fixed, the bound of N is Ω(n). Although these methods give simple constructions, they are

limited in the sense that they cannot be applied to obtaining a PHF with an arbitrary m ≥ w. In

other words, they cannot obtain a PHF in which m is O(w). In addition, in a construction of

perfect hash families using Error-Correcting Codes, the bound of N is O(n). The restriction of

this method is the same as using the design theory to construct it. It also cannot construct a

PHF in which m is O(w). Finally, in [17], the authors proposed two kinds of recursive

construction. First, they used an already existing PHF together with a (n, k, λ) - difference

matrix to obtain another PHF with larger N and n. In this construction, the bound of N is

1
2

log()
((log)

w

O n
⎛ ⎞

+⎜ ⎟
⎝ ⎠) . Second, the authors used three already existing PHFs and combine them

into a new PHF with larger N and n. The bound value of N in the second method is about the

same as the first one, but the second method has a slightly larger constant term.

In [18], the authors proposed the method of using algebra structures to construct perfect

 29

hash families. Specifically, they used an algebraic curve to construct a PHF. In this method,

the bound of N is O(log n). Details of this kind of construction are not included in this text

since algebra structures are not used in this thesis. (For more related information, see [18].)

In this thesis, the PHF is constructed by the affine plane and resolvable BIBD. Before we

introduce the construction mechanism, we first give some definitions for affine plane and

resolvable BIBD.

An affine plane is a PBD(P, B) with some specific properties[20]. Before we state the

corresponding properties, PBD(P, B) is introduced first. A pairwise balanced design, referred

to as the PBD, is an ordered pair (P, B). P is a finite set of symbols, and B is a collection of

subsets of P called blocks, such that each pair of distinct elements of P occurs together in

exactly one block of B. The properties of an affine plane are summarized below.

(1) P contains at least one subset of 4 points, and no 3 of which are collinear.

(2) Given a line h and a point p not on h, there is exactly one line of B containing p,

which is parallel to h.

Example 2.6.3

Affine plane.

P = {1, 2, 3, 4}

B = { {1, 2} {1, 3} {1. 4}

 {3, 4} {2, 4} {2, 3} } □

In an affine plane (P, B), the number of points in each block is called the order of the

affine plane.

 30

Definition 2.6.8 k-power set of X

P is the power set of X.

A is a -power set of X if A P and for each x A |x| .k k⊆ ∈ =

| |
We have -power sets of X.

X
k

k
⎛ ⎞
⎜ ⎟
⎝ ⎠

 □

Definition 2.6.9 [5]

X is a non-empty set of points, and A is a subset of the k-power set of X called blocks.

Let v, k, λ be positive integers such that v ≥ k ≥ 2. A (v, b, r, k, λ) – balanced incomplete

block design (denoted as (v, b, r, k, λ) – BIBD) is a set system(X, A) such that the following

properties are satisfied:

1. | X | = v,

2. Every point occurs in r blocks, and

3. Every pair of points occurs in exactly λ blocks. □

For simplicity, in the following examples, we write blocks in the form abc, rather than {a,

b, c}.

Example 2.6.4

A (10, 15, 6, 4, 2) – BIBD.

X = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and

A = {0123, 0145, 0246, 0378, 0579, 0689, 1278, 1369, 1479, 1568, 2359, 2489, 2567, 3458,

3467}.

 □

 31

Theorem 2.6.10. [5][21]

1. A (v, b, r, k,λ)–BIBD follows from elementary counting that vr = bk and λ(v–1) =

r(k–1). □

 The proof of Theorem 2.6.10 is included in Appendix A.

A parallel class in (X, A) is a set of blocks that forms a partition of the point set X. A

BIBD is resolvable if A can be partitioned into r parallel classes, and each of which consists of

v/k disjoint blocks. Obviously, a BIBD can have a parallel class only if v ≡ 0 mod k.

Example 2.6.5 A resolvable (6, 15, 5, 2, 1) – BIBD.

Let X = {0, 1, 2, 3, 4, 5}, and r = 5. Hence there are 5 parallel classes, and each consists of 3

blocks.

So parallel classes = {01, 25, 34},

 {02, 13, 45},

 {03, 24, 15},

 {04, 35, 12},

 {05, 14, 23} □

It is well-known that an affine plane of order q is an (q2, q(q+1), q+1, q, 1) – BIBD. It is

also a resolvable BIBD. Thus, the following theorem can be derived: For any prime power q,

there exists an affine plane of order q. That is, there exists a (q2, q(q+1), q+1, q, 1) – BIBD.

 32

Theorem 2.6.11. [5][18]

If there exists a resolvable (v, b, r, k, λ) – BIBD with , then there exists a PHF(r; v,

v/k, w). □

2
w

r λ⎛ ⎞
> ⎜ ⎟

⎝ ⎠

The above theory is derived and obtained from [5][18]. The proof is stated in Appendix

A. Based on this theory and the above description, we then can derive the following corollary.

Corollary 2.6.12 [5]

Let w be an integer such that w ≥ 2. Suppose q is a prime power and . Then there

exists a PHF(q+1; q

 1
2
w

q ⎛ ⎞
+ > ⎜ ⎟

⎝ ⎠
2, q, w). □

Therefore, we can use an affine plane to construct a PHF.

In this thesis, we construct the perfect hash families according to Corollary 2.6.12. The

detail of our construction is described in the next chapter. By observations, we find that

formats of the BIBD and the PHF, which are constructed from an affine plane, are determined

by only one parameter – prime power q. Thus, we give a special name for these kinds of

BIBDs and PHFs – namely, (q, 1) – BIBD and (q, w) – PHF.

2.7 Fundamentals of Mobile Ad Hoc Network

In the last few years, computer scientists have shown growing interest in studying mobile

ad hoc networks as they have tremendous military and commercial potential [22]. Security

related issues in mobile ad hoc networks are also an important topic of research. Below is a

brief introduction to the mobile ad hoc network [23].

 33

2.7.1 Mobile Ad Hoc Network

Mobile ad hoc network for short is called MANET. It is a non-infrastructure network.

MANET is consisted of a group of autonomous mobile nodes. Each node has the function of a

router. They are able to communicate with each other without any support of wired

infrastructure. As long as they stay in the communication scope of each other, they can talk to

each other by using the wireless link. Since the nodes have mobility, the network topology

may change rapidly and unpredictably. Also, the network is decentralized; all network

activities, which include discovering the topology and delivering messages, must be executed

by the nodes themselves. Nowadays, a mobile node can be a notebook, a PDA, or any other

kinds of wireless device with mobility. Next figure illustrates a mobile ad hoc network

constructed by many kinds of mobile node.

Figure 2.7.1 Mobile Ad Hoc Network

2.7.2 Characteristics of Mobile Ad Hoc Network

According to IETF RFC 2501[24], the characteristics of MANET include several parts,

and they are outlined below.

1. Dynamic topologies: Because the nodes in MANET have high mobility, the topology

 34

may change randomly and rapidly at unpredictable times.

2. Bandwidth-constrained, variable capacity links: Compare to the wired network

environment, MANET is resource-constrained in bandwidth and link capacity. In addition, the

realized throughput of wireless communications is often much less than a radio’s maximum

transmission rate.

3. Energy-constrained operation: The power supply for some nodes in MANET is batteries

or other exhaustible energy. Therefore, the consideration of limited battery power and life is

also necessary.

4. Limited physical security: Wireless links are generally prone to more physical security

threats than wired links. MANET suffers from, for example, passive eavesdropping, active

impersonation, and denial-of-service attacks. As a benefit, though, the decentralized

mechanisms in MANET have higher security.

2.7.3 Security challenges of Mobile Ad Hoc

Network

Due to the noticeable characteristics of mobile ad hoc networks, achieving the

requirements of security mentioned in the earlier section can be rather challenging. First,

compared with wired links, wireless links are generally more prone to link attacks because all

the data are transmitted in the air. As a result, it is relatively easier to perform eavesdropping,

impersonation, message replay and message distortion. The simplest way to protect the

transmitting data is to encrypt it before sending it out. Certainly, in this way, we have to bear

the overheads from encryption. Second, since each node has the mobility, it may roam to a

dangerous environment. Some nodes may therefore be compromised. Thus, we should not

only pay attention to the malicious attacks from the outside, but also, equally important,

 35

watch out for the wrong information from the inside compromised nodes. The trust

relationship among nodes may change very often; for example, some nodes may have been

detected as compromised nodes, so we have to authenticate the neighbor nodes periodically.

Third, due to the high mobility, some roles that are responsible for authentication, such as CA,

cannot be the central entities. In order to improve the survivability, the authenticator must use

a distribution structure. Fourth, because of a rapid changing topology, a mobile node may only

be able to perform effectively and have timely communication with its local neighbors but not

with remote entities. For example, routing protocols may fail to establish robust

communication over multi-hop paths. Thus, it is imperative to localize the security service.

Finally, an ad hoc network may consist of hundreds or even thousands of nodes. Therefore,

the scalability and flexibility of security mechanisms are crucial properties.

 36

Chapter 3 System Architecture

3.1 Concept

In this thesis, we distribute the CA’s functionality to many nodes in the network. In

addition to using Shamir’s threshold secret sharing scheme, we also use perfect hash families’

properties to distribute the trust among a group of nodes. In this chapter, we discuss the

concept behind the design of our protocol.

3.1.1 Construction

Initially, our network system is constructed from a special form of BIBD: (q2, q(q+1),

q+1, q, 1) – BIBD, and we call it (q, 1) – BIBD. From section 2.6.3, we know that for any

prime power q, there exists an affine plane of order q. Furthermore, an affine plane of order q

can construct a (q, 1) – BIBD. Because q2 ≣ 0 mod q, it is also a resolvable BIBD. Let w be

an integer such that w ≥ 2. Suppose q is a prime power and . Then, based on

Corollary 2.6.12, there exists a PHF(q + 1; q

 1
2
w

q
⎛ ⎞

+ > ⎜ ⎟
⎝ ⎠

2, q, w), and we call it (q, w) – PHF. When we

want to construct the system, we therefore first consider the security parameter w that we

want to achieve and the system secret S. After both variables are determined, we then get a

minimal random prime power q such that . Finally, we use this prime power q to

create a (q, w) – PHF. The following two figures show the construction algorithm of this PHF.

The program of the construction is appended in Appendix B. Figure 3.1.1 provides the

procedure of finding the minimal prime power q that satisfies the requirement .

1
2
w

q
⎛ ⎞

+ > ⎜ ⎟
⎝ ⎠

1
2
w

q
⎛ ⎞

+ > ⎜ ⎟
⎝ ⎠

 37

That is is a prime power and +1 >
2

min{ | }
w

q x x x
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. Figure 3.1.2 then illustrates how

the appropriate (q, w) – PHF is generated [20].

// Finding the minimal prime power q
// Input: the security parameter w
// Output: prime power q

Finding_q(w)
w

1. q
2

2. q exists
3. q is a prime power
4.

while
if

the

⎛ ⎞
← ⎜ ⎟

⎝ ⎠

 q
5.
6. q q + 1

n return
break

else ←

Figure 3.1.1 Finding the minimal prime power q

// Construction algorithm of PHF

// Input: the prime power q

// Output: A (q, w) - PHF

Construct_PHF(q)

1 Use the prime power q to construct a finite field

2 Derive an affine plane of order q from the

.

. finite field

3. Map the affine plane to a (q, 1) - BIBD

4 Construct a (q, w) - PHF from the (q, 1) - BIBD

5 (q, w) - PHF

.

. return

Figure 3.1.2 Construction Algorithm of PHF

 38

The meaning of every parameter in the PHF(q + 1; q2, q, w) is explained as follows: q2

means the number of nodes owning the secret shares in our system. We call this kind of nodes

as the server nodes. (q + 1) represents the number of secret shares each server node should

hold. Besides, it also implies that this PHF has (q + 1) hash functions, and we have to create

(q + 1) polynomial functions with degree (w - 1) for secret sharing. Each polynomial function

has the same secret S. Also, a set of secret shares can be combined for every w server nodes to

reconstruct the system secret S and use S as the secret key to sign a certification

collaboratively. In other words, w is the minimum number of server nodes required to retrieve

the original S. Finally, q refers to the number of disjoint sets in each partition when we

partition q2 sever nodes. That is, each partition has q disjoint sets. Furthermore, it also implies

the number of secret shares that each polynomial function has to generate.

When we divide the system secret S into several secret shares, we have to send these

secret shares to the sever nodes. The coefficient of the corresponding hash functions

determines which serve node gets which secret share.

Take the PHF(4; 9, 3, 3) we mentioned above for example. From this PHF, we know that

the system has nine sever nodes. We denote them as from Ser1 to Ser9. Then we would

generate four polynomial functions with degree 2, and each would individually generate three

secret shares. Each sever node would then have four secret shares from different polynomial

functions. Any three randomly chosen server nodes could use a set of secret shares to

reconstruct the system secret. We distribute the secret shares to the nine server nodes

according to the four hash functions, which is summarized below in Table 3.1.1.

 39

X 1 2 3 4 5 6 7 8 9
F1(x) 1 1 1 2 2 2 3 3 3
F2(x) 1 2 3 1 2 3 1 2 3
F3(x) 1 2 3 3 1 2 2 3 1
F4(x) 1 2 3 2 3 1 3 1 2

Table 3.1.1 A PHF(4; 9, 3, 3)

Suppose we denote the four polynomial functions as P1, P2, P3 and P4. Furthermore, we

mark the secret shares generated from P1 as S11, S12, S13, those from P2 as S21, S22, S23, and so

on and so forth.

Assuming the distribution of secret shares generated from P1 corresponds to hash

function f1(x), and those generated from P2, P3 and P4 are based on f2(x), f3(x) and f4(x)

respectively to do the distribution. Table 3.1.1 shows that for the hash function f1(x), Ser1,

Ser2 and Ser3 map to the same coefficient – that is, 1. For this reason, these three server nodes

get the same secret share S11 from P1. Similarly, Ser4, Ser5 and Ser6 map to the same

coefficient of f1(x), which is 2, so they get the same secret share S12 from P1. Lastly, the secret

share S13 from P1 is sent to Ser7, Ser8 and Ser9 because these server nodes have the same

coefficient. Likewise, the secret shares generated from P2 are distributed based on f2(x). Thus,

S21 is sent to Ser1, Ser4, and Ser7; S22 is sent to Ser2, Ser5, and Ser8; and S23 is sent to Ser3,

Ser6 and Ser9. As for all other secret shares from the last two polynomial functions, they are

distributed to the remaining nine server nodes based on f3(x) and f4(x). Finally, the

distribution of all secret shares is completed.

In the following section, we describe how w server nodes can recover the system secret.

Since the degree of the polynomial function is w-1, we know that we can retrieve the constant,

or say the system secret, of that function by getting w different secret shares from that

polynomial function. Each server node has q+1 secret shares, so the question is how to

determine which secret share to use for recovering the secret. The answer is that according to

 40

the definition of a PHF, when we randomly select a subset of order w, there must exist at least

one hash function that makes this subset injective. We, therefore, take the secret shares that

corresponded with this specific hash function to reconstruct the system secret. Since this hash

function makes the subset of order w injective, the w server nodes map to w coefficients

accordingly. In other words, all w server nodes get different secret shares from the polynomial

function that is mapped to this hash function. Therefore, we derive the system secret by using

Lagrange interpolation method with these secret shares. Here we also take the above example

to illustrate. If we randomly select three sever nodes – for example Ser1, Ser5, and Ser8 – then

we can find at least one hash function that creates one-to-one mapping. That is, they have

different coefficients. The above table demonstrates that f1(x) satisfies this requirement. As a

result, these three server nodes can use the secret shares that they got from polynomial

function P1 to recover the system secret. More precisely, they use S11, S12 and S13 respectively

to complete the reconstruction.

In our system, we do not have to ensure that there exists connections among all q2 sever

nodes. Specifically, we do not have to promise a full connection among server nodes. Full

connection is, in fact, not a reasonable requirement in MANET environment. Instead, we only

have to guarantee that each sever node has connections with at least the other (w-1) sever

nodes. In this way, we can be certain that there is enough sever nodes to participate in

recovering the system secret. So, referring back to the above example, we only have to

maintain the requirement that each server node has links with at least two other sever nodes.

In sum, our system can handle the dynamic characteristics of a MANET well.

3.1.2 Partition

Based on the characteristics that we described in section 2.6.2 and in the last section, we

know that each partition generated from PHF(q + 1; q2, q, w) consists of q disjoint sets. In our

 41

system, we would appoint one server node in each disjoint set as a partition header, or PH for

short. From the example PHF(4; 9, 3, 3), we can discover that each hash function can generate

a corresponding partition. Take f1(x) for example, the partition made by f1(x) is {{1, 2, 3}, {4,

5, 6}, {7, 8, 9}}. So, among these three disjoint sets, we would appoint three server nodes as

partition headers for each disjoint set individually. For instance, we may assign Ser1, Ser5 and

Ser8 to be the partition headers. As for f2(x), its partition is {{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}.

Similarly, we would also appoint three PHs for these blocks, for example Ser4, Ser2, and Ser9.

For all other partitions, we would also do the same. Details on how to appoint the partition

headers are described in the latter section. Each server node can be the PH in different blocks

simultaneously. When the server nodes do the secret share update procedure, these PHs can

make it more efficient; the detail is also presented in the latter section. Furthermore, these PHs

also have to maintain connection status with all of the server nodes.

Every PH has the responsibility to maintain the connection status. The way a PH

maintains the connection is to periodically broadcast a packet in the block in which it belongs

to. At the same time, the PH would also set up a timer. If the PH does not receive the reply

packet from server node Seri before the timer expires, we would say that Seri has left the

block. In this case, the PH must find another node that has passed the authentication

procedure and holds a valid certification. The PH would then replace the Seri by appointing

this new node as a server node and deliver the common secret share of this block to him. In

the next periodic broadcast packet, the PH would announce the new location of that server

node to other server nodes. In order to prevent the adversaries from getting the sensitive

information such as location information, all broadcast packets delivered from the PH can be

encrypted using the common secret share of that block. This concept is called the intra-block

security and is introduced in the following section.

 42

3.1.3 Conceptual Building Blocks

The architectural concept behind our system is that the network-wide security is based

on the distributed certification infrastructure in the entire network. By public key

cryptography, the distributed certification infrastructure forms a basis for a secure end-to-end

communication. Besides, the security of communication within the disjoint set is provided by

symmetric encryption. Therefore, two conceptual building blocks can be sketched in our

system.

1. Network-wide security: Network-wide security is the security concept that uses public

key cryptography to ensure confidentiality, integrity, and authentication. In this kind of

network, each node holds a self-generated key pair. The key pair is used for providing

end-to-end security between arbitrary nodes. In the ad hoc network, the public keys are

distributed by using the certification issued by a trusted CA. Thus, each node needs to apply

to the CA to obtain the certification before distributing its public key. Contrary to the

traditional PKI in a fixed network, the function of the CA in our system is distributed. The

CA’s functionality is delivered by a group of server nodes in the network. The system secret,

also representing the CA’s private key, is distributed by server nodes. This concept has two

advantages: First, service availability is enhanced, since certification can be issued even if

some server nodes cannot be reached. Second, this kind of infrastructure can be more resistant

to attacks. Specifically, it can tolerate some server nodes being compromised without leaking

the system secret.

2. Intra-block security: The characteristic of a PHF suggests that server nodes can be

divided into many partitions, and each partition consists of many disjoint blocks. Based on

this description, we know that the server nodes in the same disjoint block share a property.

That is, they all map to the same coefficient of one hash function. It also means that they have

a common secret share. Moreover, we know as a fact that except for the ones belong to this

 43

block, no other server nodes own this particular secret share. Therefore, when the server

nodes in the same disjoint block want to communicate with one another, they can use their

common secret share as a secret key and perform the symmetric cryptography. In this way, we

can lighten the computational overhead for securing communication among server nodes. The

intra-block communication is primarily used in the process of updating secret shares.

3.2 System Assumption

3.2.1 Intrusion model

In this section, we briefly discuss what kind of intrusion model that our system can resist.

In the worst-case scenario, if a network entity has been compromised, the attacker would be

able to get all the information from that entity, regardless whether it is public or private

information. The intrusion attacker then has the power to tamper, impersonate, or even delete

any information he has obtained. However, in order to achieve authentication, we ought to

assume that there is always something that cannot be duplicated or impersonated. Otherwise,

as long as a network entity was compromised, we have no way to recognize whether he has

been intruded or not. More generally, we would not be able to differentiate compromised

nodes from normal nodes. In other words, our system needs to set limitations to restrict an

attacker’s ability to threaten the network. An intruder with infinite power is, in fact,

meaningless because security systems would fail then.

Let’s consider some realistic intrusion models that we can resist in our system.

1. An intruder cannot compromise or control w or even more server nodes within an update

interval. Our assumption of having the ability to resist these kinds of adversaries can be

achieved by using the share update technology.

 44

2. The user’s identity cannot be copied or forged by intruders. Hence, if a node was

compromised, the other nodes could, in theory, discover this situation by verifying the

identity.

3.2.2 Trusted dealer

The dealer is required only once when the system is initialized. Once the security

parameter w has been decided, our system then needs a trusted dealer to construct the

corresponding perfect hash family. Additionally, the trusted dealer has the responsibility to

generate the system key pair, the corresponding polynomial functions, and the corresponding

secret shares. The system key pair includes the CA’s public key and the secret key or called

system public key and secret key. The dealer generates the polynomial functions based on the

system secret key. Based on the polynomial functions, he then generates the corresponding

secret shares. Finally, the trusted dealer would distribute the secret shares to the corresponding

server nodes in a secure way. The presence of a trusted dealer is required as currently there is

no other known method for efficiently generating such key shares and securely distributing

them to the server nodes during the initial period in an asynchronous distributed system [25].

3.3 Details and Protocols

3.3.1 System initialization

The system initialization stage requires an off-line trusted dealer. After setting up the

security parameter, this off-line trusted dealer would generate everything needed for the

system, including an appropriate balanced incomplete block design and a perfect hash family,

system key-pair, corresponding number of polynomial functions, and secret shares. The

 45

system key-pair consists of system public key and the secret key. The system secret key is

further divided into many secret shares depending upon the polynomial functions. The system

public key is then distributed within the entire network. Finally, using the aforementioned

mechanism, the trusted dealer distributes the secret shares to the server nodes securely and

completes the system initialization procedure.

Figure 3.3.1 shows the construction algorithm of the entire network. This algorithm

relies on the BIBD blocks for distributing secret shares. In fact, it is identical with the

distribution method that we discussed earlier.

2

1 2 1

// Construction algorithm of the whole network
// input: PHF(q + 1, q , q, w), q(q+1) BIBD blocks, network secret
// We denoted the BIBD blocks as .

Construct_Network(PHF(q + 1; q

q q

S
B B B +(), , ,L

2

2
1 2 1

2
1

1 1

, q, w),)

1. create q server nodes denoted as

2. create q + 1 polynomial functions of secret S denoted as

3.
4. i = 1 to q+1
5. generate q secret shares

q q

q

q

B B B S

Ser Ser

P P

+

+

(), , , ,

,

,

for
do

L

L

L

1

i ij

from denoted as

6. j = 1 to q
7. S [j] W ;

8.
9. i = 1, j = 1 to q, k = 1 to q(q+1)
10
11 k mod (q+1) 0
12 i i + 1
13 j 1
14
15 each point in the

i iP W

←

≡
←
←

, ,

for

for
do

if

L

k i

k

 block B gets the secret share S [j]
16 Breturn

iqW

Figure 3.3.1 Construction Algorithm of the whole Network

 46

3.3.2 Certification service

Our certification service is based on the (n, k) threshold secret sharing. For convenience,

regular nodes in this text refer to all nodes with the only exception of server nodes. When

participating in the network, each regular node would hold a self-generated key pair. Before

the regular nodes communicate with one another, each of them has to get a certification to

verify his identity and his public key. Certification is obtained by asking the server nodes to

do the authentication. Because of the threshold mechanism, a regular node is required to pass

the authentication from at least w server nodes individually, and he then can obtain the

certification.

In [9][10], Kong et al. use the RSA scheme to provide the certificate services. In our

thesis, we refer to [12] to employ our certificate services. In [12], Zhu et al. proposed two

schemes to provide the certificate services. For the threshold value w, one is assigning

certificates based on 2w-1 nodes, another is based on w nodes. In the first one, they use 2w-1

nodes to achieve verifiable certificate services and ensure the certificate process can be

finished within one round. In the second one, only w nodes sign the certificate cooperatively,

but it may take more than one round to assign the certificate.

A regular node only needs to send a request to one of the nearest server nodes. The

request packet includes this regular node’s identity and its public key for doing the

authentication. Due to the characteristic of (q, 1) – BIBD, we know each pair of elements

occurs in exactly one blocks. On the other hand, in the (q, w) – PHF, the server nodes in the

same block of partition Pi must in the distinct blocks of other partitions. Each server node in

(q, w) – PHF would belong to q blocks. Thus, once the server node receives the request packet,

he will choose a block and then forward the original packet to his block members.

Additionally, he also provides the identities for all q server nodes. In our system, if q > 2w-1,

we can satisfy the first scheme in [12]. Therefore, these q server nodes would each do the

 47

authentication to this regular node individually. After the regular node passes the

authentication of server nodes successfully, the server nodes would pass their secret shares in

the form of partial certifications gsi to him. In other case, if q < 2w-1, we then can use the

second scheme in [12]. A partial group of w server nodes would cooperate to assign the

regular node a certificate. Although the second may need more than one round, the simulation

results in Kong et al. show that more than 96% of certificate services can be finish within two

rounds. Thus, it would not take a long time to complete the certificate service.

We know that among these w server nodes, each has a set of secret shares. The question

then is how could they know which secret share should be passed. The answer is based on the

identities they received from the request packet. From these identities, they can know which

specific hash function made these w server nodes one-to-one mapping. As a result, they know

which secret shares they should pass. After the regular node collects w partial certificates, he

could combine the partial certificates altogether to form a valid certificate. A valid certificate

consists of information on the relationship between the regular node and its public key and the

expiration time. After that, the regular node can use this certification to ensure the

network-wide security. The other participators in the network can use the system public key to

verify this certification. If the certification is valid, they then can trust this regular node. It is

important to note that throughout the entire certification service procedure, the CA’s private

key is never disclosed.

The following two figures demonstrate the certification service procedure. Figure 3.3.2

illustrates the process in which a regular node requests a certification from a nearest server

node. Figure 3.3.3 shows that when a regular node passes the authentication, the server nodes

would each send back its partial certification to him.

 48

Ser1

Ser2

Ser3

Request for
certification.

Forward the
request.

Regular node

Figure 3.3.2 Request for Certification

Ser1

Ser2

Ser3

1Sg

2Sg

3Sg

Combine Sg

Regular
node

Figure 3.3.3 Certification Service

3.3.3 Updating the Secret Shares

In addition to the threshold secret sharing, our mechanism also involves proactive secret

sharing. In order to resist the mobile adversaries, we would periodically update the secret

shares in each server node. The proactive secret sharing scheme computes new threshold

secret shares for every server node without changing the original secret, and these new secret

shares are completely independent of the old ones. No adversary can compute or derive the

new secret shares based on the previous ones. The server nodes then use their new secret

 49

shares to sign the partial certifications, but others still use the same public key to verify it.

Unlike the traditional proactive secret sharing, in our secret share update procedure, the new

partition headers would be selected first. Moreover, from the characteristics of perfect hash

families, we know that there is more than one polynomial function. Each polynomial function

can obtain a set of secret shares. Thus, each polynomial function can perform the secret share

update procedure to refresh its shares.

2

1 2 q

// Change the Partition Headers for PHF(q + 1; q , q, w)
// input: q disjoint set blocks of a partition P, q(q+1) BIBD bocks
// We denoted the disjoint set blocks of partition P as P , P , , P .

// We d

L

1 2 q(q+1)

1 2 q 1 2 q(q+1)

i j

enoted the BIBD blocks as B , B , , B .

ChPH(P , P , , P , B , B , , B)

1. c 0
2. i 1 to q(q+1)
3. j 1 to q
4. B P !=

5. c c + 1
6.
7. c = q
8. the new partition

for
for

do if

then

if
then

φ

←
←

←
∩

←

L

L L

i

i

header of P is the points in B
9. B
10.
11.
12. ("False! We can not find the new partition headers.\n")
13. ("The network should be re-built again.\n")

return
break

printf
printf

Figure 3.3.4 Algorithm of Changing the Partition Header

Figure 3.3.4 shows the algorithm of changing the partition header of partition P. As we

know, each hash function in (q, w) – PHF can generate a partition for the q2 server nodes, and

this partition is consisted of q disjoint blocks. Each disjoint block has, indeed, q server nodes.

 50

For an arbitrary partition P, if we want to update the secret shares that are distributed based on

the coefficient of this hash function, we should choose the partition headers for the

corresponding polynomial function. That is, a server node that is a PH from each disjoint

block of P should be selected. The number of PHs should be the same as the value of q. This

PH selection method is designed based on the relationship between a (q, 1) – BIBD and a (q,

w) – PHF. By observations, we would discover that the existing blocks in the BIBD are the

disjoint blocks consisted in all partitions. Furthermore, for partition P, the server nodes in

other disjoint blocks, which are derived from the other partitions, are exactly distributed in

different blocks of P. Therefore, we appoint the PHs for P by selecting other partitions’

disjoint blocks. Thus, if we can successfully choose a disjoint block, the q server nodes in that

block would be the PHs of P. PHs should be re-selected for each time the update procedure is

performed. This way, every node has the opportunity to be the PH. All server nodes, therefore,

share the overhead of being a PH. Furthermore, our system has much more flexibilities to

handle the dynamic network environment.

After selecting the PHs for partition P, these PHs would do the secret share update

procedure. From section 2.5, we know that secret share refreshing basically relies on the

following homomorphic property.

 If S’ is 0, then we get a new (n, k)

sharing of S. Thus, each PH would complete the following procedure:

' ' ' '
1 2 1 2If (, , ,) is a (,) sharing of secret and (, , ...,) is a (,) sharing of secret , n ns s s n k S s s s n k S…

' ' '
1 1 2 2then (..., is a (,) sharing of ', ,) .n ns s s s s s n k S S+ + + +

(1) (i)
iEach PH generates a polynomial function f (x) with secret 0.

(2) i ijThen, PH uses other PHs' identities to generate the new partial secret shares S .

(3) i ijPH sends the new partial secret share S to corresponding PH .j

(4) jWhen PH receives all the new partial secret shares from other PHs, he could create

 51

q

'
j j

i=1
 his new secret share by S = S + S .ij∑

(5) jFinally, after PH creates his new secret share, he sends the new shares to the same

 partition block member securely.

 Stage five is similar to the intra-block communication that we introduced in 3.1.3. The

PH has the responsibility to securely deliver the new secret share to the server nodes in the

same block. Figure 3.3.5 provides a figural illustration of this concept—namely, the share

refreshing.

1qS iqS
qqS

jS1 ijS
qjS

11S 1iS
1qS

1PH iPH qPH

1PH

jPH

qPH

Figure 3.3.5 Share Refreshing

There are many advantages with our secret share update procedure. With PHF(q + 1; q2,

q, w), there are (q + 1) polynomial functions that should be required to do the secret share

update, and they all map to the same system secret. Thus, due to the high mobility, we design

a system that allows some of the polynomial functions for not taking a part in the secret share

update procedure, but the system can remain operational. In fact, as long as there is one

polynomial function that can perform the secret share update, our network system can work

 52

well and the server nodes also can refresh one of their secret shares successfully. This concept

enhances the effectiveness of proactive secret sharing. Moreover, different polynomial

functions can do the update procedure in different time slots. Our system also does not require

all q2 server nodes to do the update altogether; instead, only the PHs of that polynomial

function are required to complete the update. In this way, we can avoid synchronal attacks and

mitigate the overhead of network traffic. Each time when we do the update, the PHs would be

re-selected again. This design increases the difficulty of attacks because it would be hard for

attackers to anticipate which server nodes would do the update procedure next. Furthermore,

each server node has the chance to be a PH, and we can then distribute the overhead of

playing the PH evenly to all server nodes. Therefore, in comparison to the traditional

proactive secret sharing, our secret share update method not only improves the effectiveness

and efficiency, but also increases the level of security.

There are many reasons for selecting the PHs in the way we proposed. First, it is an easy

selection method. Due to the characteristic of (q, 1) – BIBD, for partition P, when we select

the PHs from the blocks that are derived from other partitions, we are not required to check

whether the PHs we have selected are exactly distributed in each block of P. Because the (q,

1) – BIBD guarantees that each pair of points occurs in exactly one block, for partition P, each

pair of server nodes within the same block would not appear together in any other blocks. On

the other hand, for other partitions, the server nodes in the same block would not show up as a

couple. That means they would all belong to different blocks. There are q server nodes in one

block, and there are also q blocks in a partition. Therefore, each server node in the other

partitions’ block would belong to the blocks of partition P respectively. The second reason is

for the verification. In section 2.5, the verifiable secret sharing was presented. When we select

the PHs by the unit of blocks, there exists a property. All the PHs would hold a common

secret share. So, the PH can make use of their common secret share to do encryption on their

transmitting information.

 53

Chapter 4 Evaluation and Analysis

In the current chapter, evaluation and analyses of our proposed scheme are discussed. We

first use the Maple to obtain the finite fields and then use them to construct the affine plane.

After that, using the affine plane of order q for input, we write C codes to construct the

corresponding (q, 1) – BIBD and (q, w) – PHF. By using the (q, 1) – BIBD and (q, w) – PHF,

we complete the following analyses. For the first and second analyses, we also write C

programs with the input of PHF blocks to simulate the mobility phenomenon. We test the

effect of server nodes losing connection on our system. Finally, based on the relationship

between a (q, 1) – BIBD and a (q, w) – PHF, we want to show that there is an equal

probability of each server node being chosen as a PH. All of the analysis programs are run on

a Pentium IV 2.66GHz laptop.

4.1 Evaluation

Our scheme uses the secret sharing update procedure, which was introduced in section

3.3.3. In this section, we evaluate the communication cost of our proposed mechanism. The

original concept of proactive secret sharing was presented in an earlier section of this text, and

recalling this concept, n server nodes are required to update the secret shares [7]. Each server

node should generate an update polynomial function with secret 0 and then use other server

nodes’ IDs to calculate the new partial secret shares. After that, the server node should

transmit the partial secret shares to other corresponding server nodes. A server node cannot

complete the secret share update procedure unless he receives the partial secret shares from all

of n server nodes individually and combines them with his old secret share. The

 54

communication cost refers to the network traffic overhead of all server nodes transmitting all

secret shares to complete the secret share update.

From the description above, we know that in the original proactive secret sharing method,

each server node should generate n partial secret shares and sends them out. Since there are n

server nodes and each one generates n partial secret shares, the communication cost is

therefore O(n2).

In our proposed scheme, however, only the partition headers are involved in the secret

share update procedure. According to the format of (q, w) – PHF, although there are q2 server

nodes, only q PHs participate in the update procedure. In other words, if there are n server

nodes, the number of PHs is exactly n . As the result, the communication cost of

transmitting secret shares among PHs is O(n). Upon receiving the new secret share, the PH

has the responsibility to send the new share to members in his block. This kind of

communication cost is called the intra-block communication cost. Depending on the network

traffic, the PH can decide when to send the new secret share to his members. Thus, the

intra-block communication would not have a significant impact on the entire network traffic.

Furthermore, we evaluation the entire system communication cost. That is, we consider the

case that all the polynomial functions perform the update procedure. In a (q, w) – PHF with n

server nodes, there are n +1 polynomial functions. Therefore, the communication cost of the

entire system is O(n3/2). Clearly, the communication overhead of our secret share updating

procedure in one polynomial function is comparatively much lower than the original one, as

shown in Table 4.1.1. Since there usually has bandwidth constraints in the MANET, the result

of our designed scheme is evidently much more suitable for the MANET environment.

Evaluation Traditional Proactive
Secret Sharing

PHF-based Secret
Share update

The entire
PHF-based system

Communication Cost O(n2) O(n) O(n3/2)

Table 4.1.1 Communication cost

 55

4.2 Analysis

Since our proposed protocol design is built from the concept of perfect hash families, in

our system, each server node holds more than one secret share. Furthermore, each secret share

that a server node holds comes from different polynomial functions. Thus, more than one

polynomial function map to the same system secret, and they all are required to do the secret

share update. Moreover, in our system, different polynomial functions can do the update

procedure in different time slots. Therefore, we can take advantage of having multiple

polynomial functions to enhance the effectiveness of our system. In this section, three

analyses of our system are presented.

Before we report the result of the first analysis, we first discuss some situations below.

Due to the characteristics of involving multiple functions, our system can still remain

operational even if some of the polynomial functions fail to successfully complete the secret

share update. In fact, as long as there is one polynomial function that can perform the secret

share update, our network system can work well and the server nodes also can periodically

refresh one of their secret shares. Thus, we discuss in what situation a polynomial function

would fail to perform the secret share update procedure. In the beginning phase of the

updating procedure, we have to choose the PHs for the partition in corresponding polynomial

function. Therefore, we say that a polynomial function cannot execute the update procedure if

and only if we cannot successfully select the PHs for it.

So, in the first instance, due to the mobility in the MANET, we want to examine after

how many server nodes disappeared, or lost connection would cause one of the polynomial

functions not able to do the update procedure. We analyze the (q, w) – PHF by writing some C

programs. We check all of the combinations for q2 server nodes and obtain the probability of a

polynomial function failing to update the secret share. We test the case when q = 3, 4, 5.

 56

Second, going a step further, we want to know after how many server nodes disappeared,

or lost connection would lead to a complete system failure. This analysis is similar to the first

one. The major difference between these two is that in the second analysis, we have to make

sure that all polynomial functions cannot perform the secret share update procedure. We also

test the case when q = 3, 4, 5. The following figures show the results of the above analyses.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10

Number of Server nodes fail

P
ro

ba
bi

li
ty

f1 cannot update

System fails

Figure 4.2.1 PHF, q = 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 3 6 9 12 15 1

Number of Server nodes fail

P
ro

ba
bi

li
ty

8

f1 cannot update

system fails

 57

Figure 4.2.2 PHF, q = 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 3 6 9 12 15 18 21 24 27

Number of Server nodes fail

P
ro

ba
bi

li
ty

f1 cannot update

system fails

Figure 4.2.3 PHF, q = 5

Finally, we analyze the probability of a server node being selected as a PH. For the secret

share update procedure, the PH has to generate the new partial shares and distribute the new

secret share to his members. Thus, there is an extra overhead associated with being a PH. In

our scheme, we want to distribute this extra overhead to all server nodes, instead of just

covered by a few specific server nodes. Therefore, we write programs with different

parameter Ts – meaning the number of secret share update procedure that we have– in order

to show the equal probability among server nodes. Results are presented in the following

figures.

 58

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 1 2 3 4 5 6 7 8 9 10

Server node ID

Pr
ob

ab
ili

ty

T = 20

T = 60

T = 100

Figure 4.2.4 PHF, q = 3

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 2 4 6 8 10 12 14 16 18

Server node ID

Pr
ob

ab
ili

ty

T = 20

T = 60

T = 100

Figure 4.2.5 PHF, q = 4

 59

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 3 6 9 12 15 18 21 24 27

Server node ID

Pr
ob

ab
ili

ty

T = 20

T = 60

T = 100

Figure 4.2.6 PHF, q = 5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 5 10 15 20 25 30 35 40 45 50 55

Server node ID

Pr
ob

ab
ili

ty

T = 20

T = 60

T = 100

Figure 4.2.7 PHF, q = 7

 60

4.3 Discussion

In the previous section, we can see the probability of when a polynomial function and the

entire system would fail. Due to the characteristic of (q, 1) – BIBD, we know each pair of

elements occurs in exactly one block. On the other hand, in the (q, w) – PHF, the server nodes

in the same block of partition Pi must be in the distinct blocks of other partitions. Thus, in

order to make a polynomial function fi fail to choose PHs, the other blocks in other partitions

must be destroyed. The minimum number of nodes that needs to destroy all other blocks must

equal to q. In this case, the q server nodes must exist in the same block of partition Pi.

Furthermore, if we want to destroy the entire system, not only the blocks in other partitions,

but also the blocks in Pi that we have to destroy. So the minimum number of server nodes

would be q + (q-1). As shown in Figure 4.2.1, Figure 4.2.2 and Figure 4.2.3, we verify that the

minimum number of server nodes that could make a polynomial function fail to update is q.

The probability in this case is less than 1%. Furthermore, the minimum number of server

nodes that would make the entire system fail to update is q + (q-1). The probability in this

case is also less than 1%.

 In addition to finding the lower bound of server nodes, we also find the upper bound.

That means when the server nodes amount to a special number, either one of the polynomial

functions or the entire system would crash. In other words, obtaining the upper bound allows

us to find out when the server nodes amount to a special number that would result in either

one of the polynomial functions or the entire system to crash. We can easily find that the

special number is q*(q-1) + 1. Therefore, if more than q*(q-1) + 1 server nodes fail, our

system would fail too. Figure 4.2.1, Figure 4.2.2 and Figure 4.2.3 reveal these results.

In the third analysis, we show that each server node has an equal probability of being

 61

selected as a PH. Looking at the result figures, we can see that the more server nodes that we

have in our system, the more even probability of each one being a PH. Furthermore, it also

shows that the probability of balancing the overhead to all server nodes increases as the

number of secret share update procedure increases. Therefore, in our system, we can evenly

balance the overhead that each server node has to contribute.

From the above evaluation and analyses, the following conclusions can be derived: First,

the network communication overhead of secret share update in our system is considerably less

than the traditional proactive secret sharing method. Second, depending on the properties of

PHF, we improve the robustness of our protocol design. Thus, our system handles the

dynamic environment reasonably well. Finally, the partition header selection scheme allows

the resource consumption be shared by all server nodes.

 62

Chapter 5 Conclusion

Nowadays, since wireless technology and applications have become increasingly popular,

there is a high demand in developing a secure wireless network. In order to ensure the

integrity and confidentiality of data during transmissions, people are paying more attention to

issues related to network security. Considering some inherent limits in the mobile ad hoc

network, the traditional PKI cannot be directly applied to the mobile ad hoc network without

any modification. The purpose of this thesis is therefore to make some changes to the

traditional PKI. We use the properties of PHF to carry out the threshold secret sharing for

distributing the trust. Furthermore, we enhance the efficiency of our secret share renewal

procedure by choosing only the PHs to do it.

In our proposed protocol design, the effectiveness and efficiency is improved. Analysis

results also show that the extra overhead is shared by a group of nodes. Overall, results reveal

that our system is more suitable for a mobile ad hoc network. Below are some issues and

several suggestions for adjustment to future studies. In our protocol design, a (q, w) – PHF

would generate q+1 polynomial functions, and each server node would have q+1 secret shares.

The bigger the q is, the more polynomial functions and secret shares a server node should

hold. Thus, if q is quite big, the server nodes need to increase the storage to store the secret

shares. And, it may also increase the complexity in system operation. Each time when we do

the update procedure, the PHs would be re-selected again, and it is the additional cost of

doing the update procedure. Also, we make the assumption that the server nodes are static

when the PH selection process begins. That is, throughout the entire update procedure, the

mobility of server nodes is not considered. Taking the mobility at all times into account is a

good research topic for future studies. Finally, how often the secret shares need to be updated

is also key in balancing between the network loading and the system safety.

 63

References:

[1] W. Stallings, “Network security essentials: Applications and standards,” Prentice Hall,

2000.

[2] E. Maiwald, “Network security: A beginner’s guide,” McGraw-Hill, 2001.

[3] K. Schmeh, “Cryptography and Public Key Infrastructure on the Internet,” John Wiley,
2003.

[4] A. Shamir, “How to Share a Secret,” Communications of ACM, vol. 22, no 11, pp.
612 – 613, 1979.

[5] K. Kyung-Mi, “Perfect Hash Families: Constructions and Applications,” a thesis of
University of Waterloo, 2003.

[6] S. R. Blackburn, “Combinatorics and threshold cryptography,” in "Combinatorial
Designs and their Applications," Chapman and Hall/CRC Research Notes in
Mathematics, vol. 403, pp. 49 – 70, 1999.

[7] A. Herzber, S. Jarecki, H. Krawczyk, M. Yung, “Proactive Secret Sharing Or: How to
Cope With Perpetual Leakage,” in Advances in Cryptology, Proc. CRYPTO’95, ser.
LNCS, vol. 936, pp. 339 – 352, 1995.

[8] L. Zhou, Z. J. Haas, “Securing Ad Hoc Networks,” IEEE Networks, Volume 13, Issue 6,
pp. 24 – 30, 1999.

[9] J. Kong, P. Zerfos, H. Luo, S. Lu, L. Zhang, “Providing Robust and Ubiquitous Security
Support for Mobile Ad-Hoc Networks,” IEEE ICNP Nov. 2001, pp. 251 – 260, 2001.

[10] H. Luo, P.Zerfos, J. Kong, S. Lu, L. Zhang, “Self-securing Ad Hoc Wireless Networks,”
IEEE ISCC’02, pp. 567 – 575, 2002.

[11] M. Bechler, H.-J. Hof, D. Kraft, F. Pählke, L. Wolf, “A Cluster-Based Security
Architecture for Ad Hoc Networks,” IEEE INFOCOM, vol. 4, pp. 2393 – 2403, 2004.

[12] B. Zhu, F. Bao, R. H. Deng, M. S. Kankanhalli, G. Wang, “Efficient and robust key
management for large mobile ad hoc network,” Computer Networks, Volume 48, Issue
4, pp. 657 – 682, 2005.

[13] B. Wu, J. Wu, E. B. Fernandez, M. Ilyas, S. Magliveras, “Secure and efficient key
management in mobile ad hoc networks,” Journal of Network and Computer
Applications, SSN’2005, pp.288, 2005.

 64

[14] H. Delfs, H. Knebl, “Introduction to Cryptography: Principles and Applications,” Berlin,
2002.

[15] W. Stallings, “Cryptography and Network Security: Principles and Practices,” 3rd
edition, Prentice Hall, 2003.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, “Introduction to Algorithms,” 2nd
edition, MIT Press, 2001

[17] M. Atici, D. R. Stinson, and R. Wei, “Some recursive constructions for perfect hash
families,” Journal of Combinatorial Designs, pp. 353 – 363, 1995.

[18] H. Wang, C. Xing, “Explicit constructions of perfect hash families from algebraic
curves over finite fields,” Journal of Combinatorial Theory, Series A, pp. 112 – 124,
2001.

[19] K. Mehlhorn, “Data Structures and Algorithms 1: Sorting and Searching,”
Springer-Verlag, 1984.

[20] C. C. Lindner, C. A. Rodger, “Design Theory,” CRC Press, 1997.

[21] R. E. Klima, N. Sigmon, E. Stitzinger, “Applications of Abstract Algebra with Maple,”
CRC Press, 2000

[22] IETF Mobile Ad Hoc Networks (MANETs) Working Group,
http://www.ietf.org/html.charters/manet-charter.html.

[23] C. Siva Ram Murthy, B. S. Manoj, “Ad Hoc Wireless Networks: Architectures and
Protocols,” Prentice Hall, 2004.

[24] S. Corson, J. Macker, RFC 2501, “Mobile Ad hoc Networking (MANET): Routing
Protocol Performance Issues and Evaluation Considerations,” IETF, 1999.

[25] C. Cachin, J. A. Poritz, “Secure Intrusion-tolerant Replication on the Internet,” IEEE
DSN-2002, pp. 167 – 176, 2002.

 65

http://www.ietf.org/html.charters/manet-charter.html

Appendix A

1. The proof of Proposition 2.6.6 [5].

Proof:

1 2 n

i

Let = { , , , } be a family of -partition of A. We can construct a

collection F of functions, which map the elements from A to B, by labeling the

parts of each partition with distinct element

wπ π π

π

Π L

i

i

1 2

s of B, and then defining to

map each x A to the label of the part of containing x. Then resulting set of

functions, say F { , , , }, is an (, ,) - perfect hash family.

Conversely, suppo

N

f

f f f n m w

π∈

= L

1 2

1 2 n i

i

se that F { , , , } is a PHF(; , ,). We can

construct a set of partitions of A, say = { , , , }, by setting to

for all i = 1, 2,..., . And then for any , x, y A in the same par

N

i

f f f N n m w

f

N

π π π π

π

=

Π

∈

L

L

it of

whenever () (). Hence is the desired set of partition of A.i if x f y

π

= Π

Q.E.D

2. The proof of Proposition 2.6.7 [5].

Proof:

1 2For given an (, ,)-perfect hash family F { , , , }, we can

produce an array M of size * with entries in B as follows: Index the

columns of M by the elements x A, and index the rows of M by th

Nn m w f f f

N n

=

∈

L

e set

{1, 2, ..., }. That is, each row of the array corresponds to one of the

functions in the family F. Setting the value of the entry (i, x) in M to be

(x), the resulting array satisfied the desiri

N

f ed conditions.

 66

In the reverse direction, suppose that M is an array of size * , having entries

on B. For 1, 2, ..., and x A, we define (x) to be the value of the

entry (i, x) of M.

Hence, (x) = (y) for

i

i i

N n

i N f

f f f

= ∈

 whenever the (,)th and (,)th entries of M

are equal. Then we have a desired set { :1 }, which is a

PHF(; , ,).

i

i

F i x i y

F f i N

N n m w

∈

= ≤ ≤

Q.E.D

3. The proof of Theorem 2.6.10 [21].

Proof:

To show that equation vr = bk holds, we consider the set

T = {(a, B) | a is an object in block B}, and count | T | in two ways.

First, the design has v objects that each appear in r blocks. Hence, | T | = vr.

But the design also has b blocks that each contains k objects. Hence, | T | = bk.

Thus vr = bk.

To show that (v-1)λ = r(k-1), we choose an object a0 in the design.

Then for U = {(x, B) | x is an object with a0 in block B}, we count | U | in two ways.

First, there are (v-1) objects in the design that each appear in λ blocks with a0, so | U |

= (v-1)λ.

But there are also r blocks in the design that each contains a0 and (k-1) other objects.

Hence, | U | = r(k-1).

Thus (v-1)λ = r(k-1).

Q.E.D

 67

4. The proof of Theorem 2.6.11 [5].

In order to obtain the Theorem 2.6.11, we first give a lemma.

Lemma:

Let (X, A) be a resolvable (v, b, r, k, λ) – BIBD and Π is a set of parallel class. For any subset

Y of w points, there exists a parallel class π ∈Π such that the w points in Y occur in w

different blocks in π.

Proof:

Let Y be a set of w points of X. Suppose that there exists no parallel class

 π ∈Π separating Y. Then each parallel class cannot separate some pair of elements

in Y. By the definition of a resolvable (v, b, r, k, λ) – BIBD, we note that any pair of

points in X occurs in exactly λ blocks. Thus, there are at most λ parallel classes in Π

that do not separate a fixed pair of elements. Hence, there are at most parallel
2
w

λ
⎛ ⎞
⎜ ⎟
⎝ ⎠

classes in Π that do not separate Y. In a resolvable (v, b, r, k, λ) – BIBD, there are r

parallel classes and r > . Thus, there exists at least one parallel class in Π that
2
w

λ
⎛ ⎞
⎜ ⎟
⎝ ⎠

separates Y.

Q.E.D

Proof of Theorem 2.6.11:

Let { :1 }i i rπΠ = ≤ ≤ be a set of parallel class. For any subset Y of w points, by the

above lemma, we know that there exists a parallel class π ∈Π such that the w points

in Y occur in w different blocks in π. Thus, define a family

 68

{ : , and 1 N} iF f A B i= → ≤ ≤ as follows:

For any 1 ≤ i ≤ r, define i() whenever x A is in the jth block in .if x j π= ∈

Clearly, j ≤ v/k and fi is an (n, v/k) hash function.

Thus the resulting set is a PHF(r; v, v/k, w) since for

any

 { :1 }iF f i r= ≤ ≤

i , , x and y are in the same block of x y A π∈ if and only if () ().i if x f y=

Q.E.D

 69

Appendix B

1. The construction program of 3.1.1.

Based on the prime power q, each program has the different input for construction. We take

the program with q = 4 for example.

//Affine Plane to BIBD
//Affine_to_BIBD_x.c
//Input: Affine plane of order q
//Output: BIBD(q2, q(q+1), q+1, q, 1)

// q = 4

#include <stdio.h>
#define q 4

void main()
{
 FILE *stream;

 int ADD[q][q] = {
 {4,1,2,3}, {1,4,3,2}, {2,3,4,1}, {3,2,1,4} };
 int MUL[q][q] = {
 {4,4,4,4}, {4,1,2,3}, {4,2,3,1}, {4,3,1,2} };

 int A[q][q];
 int Transform[q][q];
 int MOLS[q-1][q][q];
 int BIBD[q+1][q][q];

 int i, j, k, x, y, m, c;
 int index;

 stream = fopen("4-BIBD.txt","w");

 for(i=1; i<q+1; i++)

 70

 {
 for(j=1; j<q+1; j++)
 {
 A[i-1][j-1] = q+10*j-(i-1);
// printf("A[%d][%d] = %d\n", i-1, j-1, A[i-1][j-1]);
 if(j == 1)
 fprintf(stream, "A[%d] = %d", i-1, A[i-1][j-1]);
 else fprintf(stream, " %d", A[i-1][j-1]);
 }
 fprintf(stream, "\n");
 }

 //transfer to MOLS(q)
 for(i=1; i<q; i++)
 {
// printf("x * %d + y\n", i);
 fprintf(stream, "x * %d + y\n", i);
 for(x=0; x<q; x++)
 {
// printf("%d * %d + y\n", x, i);
// printf("MUL[%d][%d] = %d\n", x, i, MUL[x][i]);
 y = MUL[x][i];

 for(j=0; j<q; j++)
 {
 if(y == q)
 {
 y = 0;
// printf("9 * %d + y\n", i);
 }

 if(j == 0)
 {
// printf("ADD[%d] = %d", y, ADD[y][j]);
 fprintf(stream,"%d", ADD[y][j]);
 MOLS[i-1][x][j] = ADD[y][j];
 }
 else
 {

 71

// printf(" %d", ADD[y][j]);
 fprintf(stream," %d", ADD[y][j]);
 MOLS[i-1][x][j] = ADD[y][j];
 }
 }
 fprintf(stream,"\n");
 printf("\n");
 }
 }
 for(i=0; i<q-1; i++)
 {
 for(j=0; j<q; j++)
 {
 for(k=0; k<q; k++)
 {
 if(k == 0)
 printf("MOLS[%d][%d] = %d", i, j, MOLS[i][j][k]);
 else printf("%d", MOLS[i][j][k]);
 }
 printf("\n");
 }
 printf("\n");
 }

 //Transfer the form
 fprintf(stream, "\nTransfer the form.\n");
 c = 1;
 for(i=1; i<q+1; i++)
 {
 for(j=1; j<q+1; j++)
 {
 Transform[i-1][j-1] = c;
// printf("T[%d][%d] = %d\n", i-1, j-1, Transform[i-1][j-1]);
 if(j == 1)
 fprintf(stream, "T[%d] = %d", i-1, Transform[i-1][j-1]);
 else fprintf(stream, " %d", Transform[i-1][j-1]);

 c++;
 }

 72

 fprintf(stream, "\n");
 }

 //Construct the BIBD block - BIBD[q+1][q][q]
 for(i=0; i<q; i++)
 {
 for(j=0; j<q; j++)
 {
 BIBD[0][i][j] = Transform[i][j];
 BIBD[1][i][j] = Transform[j][i];
 }
 }

 for(i=0; i<q-1; i++)
 {
 m=0;
 for(index=1; index<q+1; index++)
 {

 for(j=0; j<q; j++)
 {
 for(k=0; k<q; k++)
 {
 if(MOLS[i][k][j] == index)
 {
 printf("%d ",Transform[k][j]);
 BIBD[i+2][m][j] = Transform[k][j];
 }
 }
 }
 m++;
 printf("\n");
 }
 printf("\n");
 }

 //Output to the file
 for(i=0; i<q+1; i++)
 {

 73

 for(j=0; j<q; j++)
 {
 for(k=0; k<q; k++)
 {
 if(k == 0 && j == 0)
 {
// printf("BIBD[%d][%d] = %d", i, j, BIBD[i][j][k]);
 fprintf(stream, "BIBD[%d] = \n{%d", i, BIBD[i][j][k]);
 }
 else if(k == 0)
 fprintf(stream, "{%d", BIBD[i][j][k]);
 else
 {
// printf(" %d", BIBD[i][j][k]);
 fprintf(stream, ", %d", BIBD[i][j][k]);
 }
 }
 fprintf(stream, "}\n");
 }
 fprintf(stream, "\n");
 }

 fclose(stream);
}

2. The analysis program of chapter 4.

With different prime power q, we have the different input for analysis. Furthermore, we use

the variable “A” to present the number of server nodes disappear, being compromised or lost

connection. Thus, for the following example program, we just take q = 4 and A = 7 for

example.

The program for the first and second analysis:

// BIBD, PHF, q = 4
// Number of server node = 7
// PHF_x_analysis.c

 74

#include <stdio.h>
#include <stdlib.h>
#define q 4

void compare(int, int, int, int, int, int, int);

double count = 0;
double count1 = 0;

void main(int argc, char* argv[])
{
 int A = 7; // number of nodes to be selected
 int i, j;
 double num = 1;
 int flag=0;
 int *ser_n;
 int a,b,index=0;

 ser_n = (int *)malloc(sizeof(int)*A);

 //# of Server node = 7
 for(i=0;i<A;i++)
 {
 ser_n[i]=i+1;
 }

 /* first node */
 printf("%d,%d,%d,%d,%d,%d,%d\n",
ser_n[0],ser_n[1],ser_n[2],ser_n[3],ser_n[4],ser_n[5],ser_n[6]);
 compare(ser_n[0],ser_n[1],ser_n[2],ser_n[3],ser_n[4],ser_n[5],ser_n[6]);
 printf("count = %d\n", count);

 while(ser_n[0]<=10)
 {
 for(i=A-1,j=0; i>0; i--,j++)
 {
 if(ser_n[i]==(16-j))

 75

 {
 /* trigger 的處理 */
 for(a=i-1;a>=0;a--)
 if(ser_n[a] < (16-(A-a-1)))
 {
 ser_n[a]++;
 for(b=a+1;b<A;b++)
 ser_n[b]=ser_n[b-1]+1;
 a= -1;

 flag=1;
 num++;
 // printf("%d,%d,%d,%d,%d,%d\n",
ser_n[0],ser_n[1],ser_n[2],ser_n[3],ser_n[4],ser_n[5]);

 compare(ser_n[0],ser_n[1],ser_n[2],ser_n[3],ser_n[4],ser_n[5],ser_n[6]);
 }
 /* End */
 if(flag==0)
 {
 printf("num = %lf\n", num);
 printf("count = %lf\ncount1 = %lf\n", count, count1);
 return;
 }

 }
 }
 if(flag==0)
 {
 num++;

 ser_n[A-1]++;

 //printf("%d,%d,%d,%d,%d,%d\n",
ser_n[0],ser_n[1],ser_n[2],ser_n[3],ser_n[4],ser_n[5]);
 compare(ser_n[0],ser_n[1],ser_n[2],ser_n[3],ser_n[4],ser_n[5],ser_n[6]);
 }
 flag=0;
 //printf("%d,%d,%d,%d,%d,%d\n",

 76

ser_n[0],ser_n[1],ser_n[2],ser_n[3],ser_n[4],ser_n[5]);
 }
}

void compare(int a, int b, int c, int d, int e, int f, int g)
{
 int B[q*(q+1)][q] = {
 {1,2,3,4}, {5,6,7,8}, {9,10,11,12}, {13,14,15,16},
 {4,8,12,16}, {3,7,11,15}, {2,6,10,14}, {1,5,9,13},
 {4,7,10,13}, {3,8,9,14}, {1,6,11,16}, {2,5,12,15},
 {4,5,11,14}, {2,7,9,16}, {1,8,10,15}, {3,6,12,13},
 {4,6,9,15}, {1,7,12,14}, {3,5,10,16}, {2,8,11,13} };

 int comp = q*q;
 int comp1 = q*(q+1);
 int x,y;

 for(x=0; x<q; x++)
 {
 for(y=0; y<q; y++)
 {
 if(B[x][y] ==
a||B[x][y]==b||B[x][y]==c||B[x][y]==d||B[x][y]==e||B[x][y]==f||B[x][y]==g

 ||B[x][y]==h||B[x][y]==i||B[x][y]==j||B[x][y]==k||B[x][y]==l||B[x][y]==m||B[x][y]==n
 ||B[x][y]==o||B[x][y]==p)
 {
 comp1--;
 y=q;
 }
 }
 }

 for(x=q; x<q*(q+1); x++)
 {
 for(y=0; y<q; y++)
 {
 if(B[x][y] ==
a||B[x][y]==b||B[x][y]==c||B[x][y]==d||B[x][y]==e||B[x][y]==f||B[x][y]==g)

 77

 {
 comp--;
 comp1--;
 y=q;
 }
 }
 }
 if(comp == 0)
 count++;
 if(comp1 == 0)
 count1++;

 return;
}

The program for the third analysis:

// Check the probability to be a PH
// Check_PH_4.c
// q = 4

#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>

#define randomize() srand((unsigned)time(NULL))
#define random(num) (rand()%(num))

#define delay 1000000
#define q 4
#define T 20 //the number of secret share update

void main()
{
 int B[q*(q+1)][q] = { {1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,16},
 {4,8,12,16},{3,7,11,15},{2,6,10,14},{1,5,9,13},
 {4,7,10,13},{3,8,9,14},{1,6,11,16},{2,5,12,15},
 {4,5,11,14},{2,7,9,16},{1,8,10,15},{3,6,12,13},

 78

 {4,6,9,15},{1,7,12,14},{3,5,10,16},{2,8,11,13} };

 int index = 0;
 int flag = 0;
 int i, j, k, d, x;
 int count[10][q*q];
 int sum[q*q];

 memset(count, 0, sizeof(count));
 memset(sum, 0, sizeof(sum));
 randomize();

 for(k=0; k<10; k++)
 {
 for(i=0; i<T; i++)
 {
 index = random(q*(q+1));
// printf("index = %d\n", index);

 while(1)
 {
 flag = 0;
 if(B[index][0]==1 && B[index][1]==2 && B[index][2]==3 &&
B[index][3]==4)
 flag++;

 else if(B[index][0]==5 && B[index][1]==6 &&B [index][2]==7 &&
B[index][3]==8)
 flag++;

 else if(B[index][0]==9 && B[index][1]==10 && B[index][2]==11 &&
B[index][3]==12)
 flag++;

 else if(B[index][0]==13 && B[index][1]==14 && B[index][2]==15 &&
B[index][3]==16)
 flag++;

 if(flag == 0)

 79

 break;
 else index = random(q*(q+1));
 }
// printf("after index = %d\n", index);

 for(j=0; j<q; j++)
 {
// printf("B[%d][%d] = %d ", index, j, B[index][j]);
 count[k][B[index][j]-1]++;
 }
 }

 for(x=0, d=0; d<delay; d++)
 {
 x++;
// printf("x=%d\n", x);
 }
 }

 for(k=0; k<10; k++)
 {
 for(i=0; i<q*q; i++)
 {
 printf("count[%d][%d] = %d\n", k, i, count[k][i]);
 }
 }

 for(i=0; i<q*q; i++)
 {
 for(k=0; k<10; k++)
 {
 sum[i] += count[k][i];
 }
 }

 for(k=0; k<q*q; k++)
 {
 printf("sum[%d] = %d ave = %lf\n", k, sum[k], pro);
 }

 80

	Chapter 1 Introduction
	1.1 Background
	1.2 Motivation
	1.3 Related Work
	1.4 Organization

	Chapter 2 Related Knowledge
	2.1 Network Security
	2.1.1 Requirement
	2.1.2 Types of Attacks

	2.2 Fundamental of Cryptography
	2.2.1 Symmetric Cryptography
	2.2.2 Asymmetric Cryptography

	2.3 Public Key Infrastructure
	2.3.1 PKI overview
	2.3.2 Certificate and Certification Authority

	2.4 (n, k) Threshold Secret Sharing
	2.5 Proactive Secret Sharing
	2.6 Combinatorial Object
	2.6.1 Introduction to Perfect Hash Families
	2.6.2 Propositions of Perfect Hash Families
	2.6.3 Construction methods of Perfect Hash Families

	2.7 Fundamentals of Mobile Ad Hoc Network
	2.7.1 Mobile Ad Hoc Network
	2.7.2 Characteristics of Mobile Ad Hoc Network
	2.7.3 Security challenges of Mobile Ad Hoc Network

	Chapter 3 System Architecture
	3.1 Concept
	3.1.1 Construction
	3.1.2 Partition
	3.1.3 Conceptual Building Blocks

	3.2 System Assumption
	3.2.1 Intrusion model
	3.2.2 Trusted dealer

	3.3 Details and Protocols
	3.3.1 System initialization
	3.3.2 Certification service
	3.3.3 Updating the Secret Shares

	Chapter 4 Evaluation and Analysis
	4.1 Evaluation
	4.2 Analysis
	4.3 Discussion

	Chapter 5 Conclusion

