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Abstract

Human Action Analysis 1s a_fundamental issue that can be applied to
different application domams. “In this dissertation, we propose two video
processing techniques for human action analysis. First, to automatically analyze
a long and unsegmented human action video sequence, we propose a framework
for unsupervised analysis of human action based on manifold learning. To
analyze of human action, unsupervised learning is superior to supervised one
because the former does not require much human intervention beforehand.
However, the complex nature of human action analysis makes unsupervised
learning a challenging task. In this work, a pairwise human posture distance
matrix is derived from a training action sequence. Then, the isometric feature
mapping (Isomap) algorithm is applied to construct a low-dimensional structure

from the distance matrix. Consequently, the training action sequence is mapped

il



into a manifold trajectory in the Isomap space. To identify the break points
between any two successive atomic action trajectories, we represent the manifold
trajectory in the Isomap space as a time series of low-dimensional points. A
temporal segmentation technique is then applied to segment the time series into
sub-series, each of which corresponds to an atomic action. Next, the dynamic
time warping (DTW) approach is used to cluster atomic action sequences.
Finally, we use the clustering results to learn and classify atomic actions
according to the nearest neighbor rule. If the distance between the input
sequence and the nearest mean sequence is greater than a threshold, it is regarded

as an unknown atomic action.

In our second work, we propose-a framework for learning and recognizing
atomic human actions using variable:length Markov models (VLMMs). The
framework comprises two modules: a posture_labeling module, and a VLMM
atomic action learning and recognition module. In the first stage, a posture
template selection algorithm is developed based on a modified shape context
matching technique. The selected posture templates form a codebook which can
be used to convert input posture sequences into discrete symbol sequences for
subsequent processing. Then, the VLMM technique is applied to learn the
training symbol sequences of atomic actions. Finally, the constructed VLMMs
are transformed into hidden Markov models (HMMs) for recognizing input
atomic actions. This approach combines the advantages of the excellent learning

function of a VLMM and the fault-tolerant recognition ability of an HMM.
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Chapter 1

Introduction

1.1 Motivation

In recent years, visual analysis' of human ‘action has become a popular research
topic in the field of computer vision.This is because it has a wide spectrum of
potential applications, such as smart_surveillance [14, 27], human computer
interfaces [35, 55], content-based retrieval [39, 57], and virtual reality [21, 67].
Comprehensive surveys of related work can be found in [1, 23, 64]. In [64],
Wang et al. pointed out that a human action analysis system needs to address two
low-level processes, namely human detection and tracking, and a high-level
process of understanding human action. While the low-level processes have
been studied extensively, the high-level process has received relatively little
attention. In this dissertation, we put our emphasis on video-based human action

understanding.
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1.2 Related Work

Human action usually consists of a series of atomic actions, each of which
indicates a basic and complete movement. Therefore, understanding human
action involves two key issues: 1) how to segment an input action sequence into
atomic actions; and 2) how to recognize each segmented atomic action. Many
approaches have been proposed for these two issues, which we describe in the

following two subsections, respectively.

1.2.1 Survey on Atomic Action Segmentation

Ali and Aggarwal [2] proposed-a methodology. for automatic segmentation and
recognition of continuous human activity.. They segmented a continuous human
activity into separate actions and correctly identified each action. First, they
computed the angles subtended by three major components of the human body
with the vertical axis, namely the torso, the upper component of the leg and the
lower component of the leg. Then, they classified frames into breakpoint and
non-breakpoint frames using these three angles as a feature vector. Breakpoints
indicated an action’s commencement or termination. Finally, each action
between any two breakpoint frames was trained and classified using the
corresponding sequence of feature vectors. In [68], a new method for temporal

segmentation of human actions was proposed based on a 2D inter-frame similarity
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plot. A similarity matrix involved relevant information for analysis of cyclic and
symmetric human activities was used. The pattern associated to a periodic
activity in the similarity matrix is rectangular and decomposable into elementary
units. Thus, a morphology-based approach for the detection and analysis of
activity patterns was proposed, and pattern extraction was then applied for the
detection of the temporal boundaries of the cyclic symmetric activities. In [11],
Chen et al. proposed a framework for automatic atomic human action
segmentation in continuous action sequences. They used a star figure enclosed
by a bounding convex polygon to effectively and uniquely represent the
extremities of the silhouette of .athuman body. Thus, a sequence of the star
figure’s parameters was uséd to represent.a himan action. Then, they applied
Gaussian mixture models-(GMM) for human-action modeling. Finally, they
automatically segmented a<sequence of continuous human actions using the

underlying technique of the description model.

Cuntoor and Chellappa [17] proposed an antieigenvalue-based approach to
detect key frames by investigating properties of operators that transformed past
states to observed future states. The theory of antieigenvalues is based on
changes in the data, and it is sensitive to how much a data vector is turned from a
known direction, rather than the direction of persistence. On the other hand,
eigenvectors represent the direction of maximum spread of the data and the
eigenvalues are proportional to the amount of dilation. In [42], a method for

segmentation and recognition of human body behavior data was proposed by



Introduction

Nakata. He proposed a two-step scheme for human behavior recognition:
analysis of movement correlations among limbs and temporal segmentation of
motion data. Inter-limb movement correlations were widely observed in various
behaviors and well represented contents of behavior, so it would be a universal
feature value for general behavior. In general, the combination of inter-limb
movements can be preserved until the action changes. Therefore, observing
changes of inter-limb correlations, they segmented motion capture data into
temporal fragment of action units. Hunter et al. [28] proposed a system to
determine the segment boundaries in a broad range of actions and then to
discriminate different action-types. _They predicted sub-events using a set of
basic movement features for a widejrange of actions in which a human model
interacted with objects. In addition, they created an accessible tool to track
human actions for use in a wide range of machine-vision and cognitive science

applications.

1.2.2 Survey on Atomic Action Recognition

In the action recognition issue, existing methods can be categorized into two
classes, i.e., 3-D based or 2-D based, depending on the type of human body model

adopted [40].
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3-D Based Methods

Ohya [45] proposed computer vision based methods for analyzing human
behaviors: estimating postures and recognizing interactions between a human
body and object. He developed a heuristic based method and a non-heuristic
method for estimating postures in 3D from multiple camera images. The
heuristic based method analyzes the contour of a human silhouette so that
significant points of a human body can be located in each image, while the
non-heuristic method utilizes a curve function for analyzing contours without
using heuristic rules. Finally,sthey used the function-based contour analysis and
motion vector-based analysis for recognizing the interactions so that the system
could judge whether the human body interacted with the object. In [9], Boulay
et al. presented a new approach for recognizing human postures in video
sequences. They first used projections of moving pixels on a reference axis and
learned 2-D posture appearances through PCA. Then, they employed a 3-D
model of the posture to make the projection-based method independent of the

camera’s position.

Dockstader et al. [19] proposed a new model-based approach toward the 3-D
tracking and extraction of gait and human motion. They suggested a structural
model of the human body that leveraged the simplicity and robustness of a 3-D
bounding volume and the elegance and accuracy of a highly parameterized stick

model. The hierarchical structural model is accompanied by hard and soft
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kinematic constraints. In [66], Werghi proposed a method for recognizing
human body postures from 3D scanner data by adopting a model-based approach.
To find a representation for a high power of discrimination between posture
classes, he developed a new type of 3D shape descriptors, namely wavelet
transform coefficients (WC). These features can be seen as an extension to 3D
of 2D wavelet shape descriptors developed by [56]. Finally, he compared the

WC with other 3D shape descriptors within a Bayesian classification framework.

2-D Based Methods

Using 3-D human body model, one can deal, with more complex human actions.
However, due to the need of developing low-cost systéms, complex computations
and expensive 3-D solutions are not considered for‘real-time applications. As a
result, a number of researchers have proposed their analyses of human action
based on 2-D postures. For examples, Haritaoglu et al. [26] proposed the W*
system, a real time visual surveillance system for detecting and tracking multiple
people and monitoring their activities in an outdoor environment. They
computed the vertical and horizontal projections of a 2-D silhouette image to
determine the global posture of a subject (standing, sitting, bending, or lying). In
[8], Bobick and Davis proposed a new view-based approach for the representation
and recognition of human movement. First, they stacked a set of consecutive
frames to build a 2-D temporal template that characterizes human motion by using

motion energy images (MEI) and motion history images (MHI). Moment-based
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features were then extracted from the MEI and MHI and used for action

recognition based on template matching.

Rahman and Ishikawa [50] proposed an automatic human action
representation and recognition technique. In their scheme, a tuned eigenspace
technique for automatic human posture and/or motion recognition that
successfully overcome the appearance-change problem due to human wearing
dresses and body shapes was proposed. In the first stage tuning, they employed
image pre-processing by Gaussian and Sobel edge filter for reducing a dress eftfect.
In the second stage tuning, they proposed a mean eigenspace produced by taking
the mean of similar posturesifor avoiding the preceding problem. Finally, the
obtained tuned eigenspace.was used for recognition of unfamiliar postures and
actions. In [37], Lv and Nevatia ptesented an example based single view action
recognition system and demonsttated it on a challenging test set consisting of 15
action classes. They modeled each action as a series of synthetic 2D human pose
rendered from a wide range of viewpoints. First, silhouette matching between
the input frames and the key poses was performed using an enhanced Pyramid
Match Kernel algorithm. And then, the best matched sequence of actions was
tracked using the Viterbi algorithm. Li et al. [34] presented an automatic
analysis of complex individual actions in diving video, and the aim was to provide
biometric measurements and visual tools for coaching assistant and performance
improving. They used 2D articulated human body model fitting and shape

analysis techniques to obtain the main body joint angles of the athlete. Finally,
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they presented two visual analyzing tools for individual sports game training:

motion panorama and overlay composition.

In [38], Meng et al. proposed a human action recognition system for
embedded computer vision applications. They addressed the limitations of the
well known MHI and proposed a new hierarchical motion history histogram
(HMHH) feature to represent the motion information. HMHH not only provides
rich motion information, but also remains computationally inexpensive. Finally,
they extracted a low dimension feature vector from the combination of MHI and
HMHH and then used the feature vector for the support vector machine (SVM)
classifiers. Hsieh et al. [27] presented a novel poesture classification system for
analyzing human movements directly from video sequences. In their schemes,
each sequence of movements was converted-into a posture sequence. They
triangulated the posture into triangular-meshes; and then extracted two features:
the skeleton feature and the centroid context feature. The first feature was used
as a coarse representation of the subject, while the second was used to derive a
finer description. They generated a set of key postures from a movement
sequence based on these two features such that the movement sequence was
represented by a symbol string. Therefore, matching two arbitrary action

sequences became a symbol string matching problem.
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1.3 Overview of the Proposed Methods

Most of the approaches mentioned above are supervised learning-based.
However, since the atomic actions are unknown beforehand, a large number of
manually labeled training examples must be collected when using a supervised
learning approach. Therefore, unsupervised learning approaches are always
preferable for human action analysis. In this dissertation, we propose two video
processing techniques for human action analysis. First, to automatically analyze
a long and unsegmented human action sequence, we propose an unsupervised
analysis of human action scheme based on:manifold learning. Second, to learn
segmented atomic action sequences,-we propose a learning atomic human actions
scheme using variable-length Matkov medels (VLMMs). A brief overview of

the proposed methods is given as follows.

Unsupervised Analysis of Human Action Based on Manifold

Learning

In this work, we propose a framework for unsupervised analysis of long and
unsegmented human action sequences based on manifold learning. First, a
pairwise human posture distance matrix, based on a modified shape context
matching technique, is derived from a training action sequence. Then, the
isometric feature mapping (Isomap) algorithm is applied to construct a

low-dimensional structure from the distance matrix. Consequently, the training
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action sequence is mapped into a manifold trajectory in the Isomap space. To
identify the break points between any two successive atomic action trajectories,
we represent the manifold trajectory in the Isomap space as a time series of
low-dimensional points. A temporal segmentation technique is then applied to
segment the time series into sub-series, each of which corresponds to an atomic
action. Next, the dynamic time warping (DTW) approach is used to cluster
atomic action sequences. Finally, we use the clustering results to learn and
classify atomic actions according to the nearest neighbor rule. If the distance
between the input sequence and the nearest mean sequence is greater than a

threshold, it is regarded as an unknown.atomie action.

Learning Atomic Human ‘Actions Using Variable-Length Markov

Models

In this work, we propose a framework for learning and recognizing segmented
atomic human action sequences using VLMMs. The framework is comprised of
two modules: a posture labeling module, and a VLMM atomic action learning and
recognition module. First, a posture template selection algorithm, based on the
modified shape context matching technique, is developed. The selected posture
templates form a codebook that is used to convert input posture sequences into
discrete symbol sequences for subsequent processing. Then, the VLMM
technique is applied to learn the training symbol sequences of atomic actions.
Finally, the constructed VLMMs are transformed into hidden Markov models

(HMMs) for recognizing input atomic actions. This approach combines the

10
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advantages of the excellent learning function of a VLMM and the fault-tolerant

recognition ability of an HMM.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we
introduce the prerequisite materials of this dissertation, i.e., shape context,
manifold learning, and variable-length Markov model. In Chapter 3, the
proposed framework for unsupervised analysis of human action based on
manifold learning is described i detail.” 2In Chapter 4, we propose a framework
for understanding human atomic actions using"VLMMSs. Finally, in Chapter 5,

we present our conclusions-and future work.
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Chapter 2
Background Knowledge on Shape

Context, Manifold Learning, and

Variable-Length Markov Model

2.1 Shape Context

Shape context, proposed by Belongie et al. [5], is a shape descriptor, and it can be
used for measuring shape similarity and recovering point correspondences.
Therefore, shape context is usually applied to shape matching and object
recognition. In the shape context theory, a shape is represented by a discrete set
of sampled points, P={p,, p,,....p,}. For each point p,eP, a coarse
histogram h; of the relative coordinates of the remaining n-1 points is computed as

follows:

h(k)=#{p; =p : (p;-p)ebin(k)} (2.1)

13



Background Knowledge on Shape Context, Manifold Learning, and
Variable-Length Markov Model
The histogram is defined to be the shape context of p;. To make the descriptor

more sensitive to positions of nearby sample points than to those of points farther
away, the bins used in the histogram are uniform in a log-polar space. An

example of shape context computation and matching is shown in Figure 2.1.
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Figure 2.1. Shape context computation and matching: (a) and (b) show the
sampled points of two shapes; and (c)-(e) are the local shape contexts
corresponding to different reference points. A diagram of the log-polar space is
shown in (f), while (g) shows the correspondence between points computed using
a bipartite graph matching method.
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2.1 Shape Context

Assume that p; and g; are points of the first and second shapes, respectively.
The shape context approach defines the cost of matching the two points as

follows:

K [h (k)= h, (k)T
12[ (k) —h; (k)] 2.2)

CPn0) =52 h(k)+h, (k)

where hij(k) and hj(k) denote the K-bin normalized histograms of p; and g;,

respectively. The cost C(p;,q;) for matching points can include an additional

term based on the local appearance similarity at points p; and @;. This is
particularly useful when the shapes;are derived from gray-level images instead of

line drawings.

Give the set of costs :C( pj;0;)-between all pairs of points p; and g, shape

matching is accomplished by minimizing the following total matching cost:

H(”):ZC(pi’qzz(i))’ (2.3)

where 7 is a permutation of 1, 2, ..., n. Due to the constraint of one-to-one
matching, shape matching can be considered as an assignment problem that can

be solved by a bipartite graph matching method. A bipartite graph is a graph

G=(V ={p}U{q;},E), where {p;} and {q;} are two disjoint sets of vertices,
and E is a set of edges connecting vertices from {p;} to {q;}. The matching

of a bipartite graph is to assign the edge connection. There are many matching

15



Background Knowledge on Shape Context, Manifold Learning, and
Variable-Length Markov Model

algorithms for bipartite graphs described in [4]. Here, the resulting

correspondence  points are denoted by {(pi,q”(i))‘,i=1,2,...,n} or

{(qi, pﬂ(i))‘,i =1,2,...,m}, where n and m are the numbers of sample points on

shapes P and Q, respectively. Therefore, the shape context distance between two

shapes, P and Q, can be computed as follows:

D,.(P.Q) = X.C(P, 0 + = (@, Puy). (2.4)

2.2 Manifold Learning

Manifold learning is a popular ‘approach for nonlinear dimensionality reduction
[36]. The purpose of dimensionality:reduction is'to map a high-dimensional data
set into a low-dimensional space, while preserving most of the instinct structure in
the data set. This is very important because many classifiers perform poorly in a
high-dimensional space given a small number of training samples. Due to the
prevalence of high-dimensional data, dimensionality reduction techniques have
been popularly applied to many applications such as pattern recognition, data
analysis, and machine learning. Most dimensionality reduction methods are
linear, meaning that the extracted features are linear functions of the input features.
Classical linear dimensionality reduction methods include the principal
component analysis (PCA) [31, 60] and multidimensional scaling (MDS) [15].

Although the linear methods are easy to understand and are very simple to
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implement, the linearity assumption does not lead to good results in many
real-world applications. As a result, the design of nonlinear mapping methods is

derived in a general setting.

Nonlinear mapping algorithms have been proposed recently based on the
assumption that the data lie on a manifold. Thus, dimensionality reduction can
be achieved by constructing a mapping that respects certain properties of the
manifold. Popular manifold learning algorithms include the Isomap algorithm
[58], the locally linear embedding (LLE) algorithm [54], and the Laplacian
eigenmaps (LE) algorithm [6]. Each manifold learning algorithm tries to
preserve a different geometrical property: of the underlying manifold. Local
approaches such as LLE and LE aim to preserve-the proximity relationship among
the data, while global approaches like-Isomap aim to preserve the metrics at all
scales. Thus, the global approaches give a more faithful embedding [36]. An
example of dimensionality reduction is shown in Figure 2.2. Figure 2.2 ()
shows a 3-D data set, “Swiss Roll”, and the 2-D embedding manifolds recovered
by using PCA, MDS, Isomap, LLE, and LE algorithms are shown in Figures 2.2
(b)-(f), respectively. Since we apply the Isomap algorithm to our first work, in

what follows we introduce the Isomap algorithm in more details.
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Figure 2.2. The 2-dimensional embedding manifolds of “Swiss Roll” computed
with five different dimensionality reduction techniques: (a) Original 3-D data set,
(b) PCA, (c) MDS, (d) Isomap, (e) LLE, and (f) LE.
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2.2.1 Isomap Algorithm

The Isomap algorithm tries to find a low-dimensional Euclidean space that best
preserves the geodesic distances between any two data points in the original
high-dimensional space [58]. Since the manifold learning approach assumes that
the data set have a low-dimensional structure, it is more appropriate to measure
the distance between any two data points by their geodesic distance along the
curve of the low-dimensional structure, rather than the Euclidean distance in the
high-dimensional space. Therefore, the Isomap algorithm is to estimate the
geodesic distances by the shortest paths in the neighborhood graph derived from
connecting neighboring peints, —The-algorithm comprises the following three
steps:

1. Construct neighborhood’ graph: A .-weighted graph is constructed by
connecting each point to its neighborhoods, and the weight of each edge is
equal to the distance between the two points. The neighborhoods of each
point can be determined using either the k nearest neighbor rule or points
situated within a hyper-sphere of radius «.

2. Compute the pairwise geodesic distances: The pairwise geodesic distance
between any two nodes of the neighborhood graph is estimated by computing
the shortest path between them on the graph.

3. Construct a d-dimensional embedding: The classic MDS algorithm [15] is

applied to construct a d-dimensional embedding of the data.
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Note that the difference between MDS and Isomap is that the Isomap uses the

geodesic distance whereas MDS does not.

An important issue with the Isomap algorithm is how to determine the

dimension d of the Isomap space. The residual variance, R,, defined in the

following equation is used to evaluate the error of dimensionality reduction
R, =1-r*(G,D,), (2.5)

where G denotes the geodesic distance matrix; Dy denotes the Euclidean distance

matrix in the d-dimensional space; and r(G,D,) is the correlation coefficient of

G and Dy. The value of d is determipned using & trial and error approach to
reduce the residual variance. -Another important Issue is how to construct a
d-dimensional embedding of the.data+based-on.the MDS algorithm, in what

follows we introduce the MDS algorithm'in‘more detail.

Multidimensional Scaling

The objective of MDS [15] is to find the Euclidean distance reconstruction that

best preserves the inter-point distances. Given a distance matrix

G:[gij}ei}%“”, where g, is the distance between points i and j, MDS

constructs a set of n points in the d-dimensional Euclidean space such that

inter-point distances are close to those in G. Let x; =(x,,..,%,)" denote the
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coordinates of the ith point in Isomap’s Euclidean space. The Euclidean distance

between the ith and jth points can be computed as follows:
2 T T T T
dij :(xi—xj) (xi—xj):xi xi+xjxj—2xixj. (2.6)

To overcome the indeterminacy of the solution due to arbitrary translation, the

following zero-mean assumption is imposed:

x, =0. (2.7)

n
i
i=1

From Equations (2.6) and (2.7), the inner product between x; and x; can be derived

as follows:
n n n n
by =x/x, =—1(d§—EZdﬁ—lZdﬁ%ZZdﬁ)- (2.8)
2 nS= = L}
Let D= [dij} denote the distance matrix computed in the Isomap space. Since

the Isomap space is determined such that D is close to G, the inner product

matrix B=|b; | can be obtained by

B =--HGH, (2.9)

where H:I—illT is the centering matrix with 1:[1,1,...,1]T, a vector of n
n

ones. Let X=[x,,..,x,]’ be the nxd matrix of the unknown coordinates of
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the n points in the Isomap space. Then, the inner product matrix can be

expressed as B=XX'". To compute X from B, we decompose B into VAV,
where A =diag(4,,4,,....4,), 4 =24, 2>--->24,20, is the diagonal matrix of
eigenvalues and V =[v,,v,,...,v,] is the matrix of corresponding eigenvectors.

The coordinate matrix X can be calculated as follows:

1

X=V'A®, (2.10)

1

1 i1 1
where A'?2 =diag(42,42,...,42) and V'=[v,,v,,...,v,].

2.3 Variable-Length MarkoviModel

A VLMM technique is usually applied to deal with a class of random processes in
which the amount of memory is variable, in contrast to an nth-order Markov
model for which the amount of memory is fixed. The advantage over a fixed
memory Markov model is the ability to locally optimize the amount of memory
required for prediction. Therefore, the VLMM technique is frequently applied to
language modeling problems [25, 52] because of its powerful ability to encode

temporal dependencies.

As shown in Figure 2.3, a VLMM can be regarded as a probabilistic finite

state automaton (PFSA) A=(S,V,7,y,7) [52], where

® S denotes a finite set of model states, each of which is uniquely labeled by a
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symbol string representing the memory of a conditional transition of the
VLMM,
® V denotes a finite observation alphabet,
® 7:5xV —S isastate transition function such that z(s;,v) —>s,,,,
® y:SxV —[01] represents the output probability function with

vseS, >,  r(sv)=1 and

® 7:S—[01] is the probability function of the initial state satisfying

ZSES ”(S) =1.

In the following subsections, we consider the VLMM learning in Section 2.3.1

followed by the VLMM recagnition’in Section'2.3.2.

n(‘AB’)=0.25 n(‘BB’)=0.25
B(0.25)
» GBB'!

B(0.5) B(0.75)

A.75) A0.25)

A(0.5)

Figure 2.3. An example of a VLMM
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P(‘AB’)=0.25 P(‘BB’)=0.25

Figure 2.4. The PST for constructing the VILMM shown in Figure 2.3

2.3.1 VLMM Learning

The topology and the parameters of a VLMM can be learned from training
sequences by optimizing the amount of memory required to predict the next
symbol. Usually, the first step of training a VLMM involves constructing a
prediction suffix tree (PST) [52]. A PST contains the information of the prefix
of a symbol learned from the training data. Therefore, this prefix/suffix
relationship helps to determine the amount of memory required to predict the next
symbol. After the PST is constructed from the training sequences, the PST is
converted to a PFSA representing the trained VLMM. Figure 2.4 depicts the

PST constructed from a training sequence for converting the VLMM shown in
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Figure 2.3.

Except for the root node, each node of the PST represents a non-empty
symbol string, and each parent node represents the longest suffix tree of its child

nodes. In addition, P(v|s) is the output probability distribution of the next
symbol v of each node s that satisfies ZVE\/ P(v|s)=1. The output and prior

probabilities can be derived from the training symbol sequences as follows

~ N(sv)
P(v|s)= NG) , (2.12)
_ N(s)
P(s)_—NO , (2.12)

where N(s) is the numbeér of-occurrences Of string s in the training symbol

sequences, and N, denotes the size of the training symbol sequences.

To optimize the amount of memory required to predict the next symbol, it is
necessary to determine when the PST growing process should be terminated.

Assume that s is a node with the output probability P(v|s), and Vv's is its child
node with the output probability P(v|v's). We choose a termination criterion in

order to avoid degrading the prediction performance of the reconstructed VLMM.

Note that if the child node’s output probability P(v|v's) used to predict the next
symbol, v, is significantly better than the output probability P(v|s) of the parent

node, the child node is a deemed better predictor than the parent node; therefore,

25



Background Knowledge on Shape Context, Manifold Learning, and
Variable-Length Markov Model

the PST should be grown to include the new child node. However, if the

inclusion of a new child node does not improve the prediction performance
significantly, the new child node should be discarded. Usually, the weighted
Kullback-Leibler (KL) divergence [10] is applied to measure the statistical

difference between the probabilities P(v|v's) and P(v|s) as follows:

P(v]|v's)

Pls) 213)

AH(v's,s)=P(v's))>_ P(v|V's)log

If AH(v's,s) is greater than a given threshold, the node Vv's is added to the tree.

In addition to the KL divergence criterion; a-maximal-depth constraint of the PST

is imposed to further limit the PSTF’s size:

After the PST has been constructed, it must be transformed into a PFSA.
First, the leaf nodes of the PST are defined as'the states of the PFSA, and the
latter’s initial probability function is defined according to the probabilities of leaf
nodes. Then, the transition function can be defined according to the symbol
string combined from leaf nodes and their prediction symbols. The output
probability function is defined based on the output probability distribution of the
next symbol of each leaf node. Finally, the PFSA can be derived from the PST.

For example, Figure 2.3 shows the PFSA derived from a PST shown in Figure 2.4.
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2.3.2 VLMM Recognition

After a VLMM has been trained, it is used to predict the next input symbol
according to a variable number of previously input symbols. In general, a
VLMM decomposes the probability of a string of symbols, O =0,0,...0;, into the

product of conditional probabilities as follows:

P(OlA):ll[P(oj |0j4,+--0j1, A), (2.14)

where 0; is the j-th symbol in the string'and d; is the amount of memory required

to predict the symbol o;.

The goal of VLMM recognition-is-tosfind the VLMM that best interprets the

observed string of symbols, O =0,05:1:0; in terms of the highest probability.

Therefore, the recognition result can be determined as model i” as follows:

i" =argmaxP(O|A)). (2.15)
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Chapter 3
Unsupervised Analysis of Human

Action Based on Manifold Learning

In this chapter, we describe the proposed.-framework for unsupervised analysis of
long and unsegmented human action-sequences based on manifold learning.
First, we give an introduction about thisiresearch topic. The proposed approach
is then described. Next, we detail the experiment results. Finally, conclusions

are given.

3.1 Introduction

In general, unsupervised learning is more difficult than supervised learning, so the
number of published unsupervised learning methods is much smaller than that of
supervised ones. Wang et al. [65] proposed an unsupervised approach for
analyzing human gestures. They segmented the sequences of a human motion

into atomic components and trained an HMM for each atomic component.  Then,
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they applied a hierarchical clustering approach to cluster the segmented
components using the distances between the HMMs. Based on the clustering
result, each atomic action can be converted into a discrete symbol. Finally, they
extracted behavior lexicons from discrete symbols using the COMPRESSIVE
algorithm [43]. Zhong et al. [72] proposed an unsupervised technique for
detecting unusual events in a large video set. First, the features of each frame in
the video set were extracted and classified into prototypes using the k-means
algorithm.  Second, the video sequences were divided into equal length segments.
Third, a segment-prototype co-occurrence matrix was computed so that the
segments could be clustered using the decument-keyword clustering method
proposed in [18]. Finally, unusual wvideo segments. were identified by finding
clusters far away from the others.  Turaga €t al. proposed a vocabulary model for
dynamic scenes and presented “algorithms for unsupervised learning of the
vocabulary from long video sequences [59]. They first segmented a video
sequence into action elements, each of which was modeled as a linear time
invariant (LTI) dynamical system. Next, they clustered those segments to
discover distinct action elements using the distances between the LTI systems [13].
Then each segment was assigned a discrete symbol, and persistent activities in the

symbol sequence were identified by using n-gram statistics.

The above-mentioned approaches show that a general unsupervised system
for human action analysis usually involves three stages: temporal segmentation,

atomic action clustering, and atomic action learning and classification. ~Since the
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human shape can be modeled as an articulated object with a high degree of
freedom, the dimensions of a human shape descriptor are usually very large.
Under these circumstances, the computation required for temporal segmentation,
clustering and classification in a high dimensional feature space is not intuitive
and may be very time consuming. Theoretically, a continuous human action
sequence can be viewed as the variation of human postures lying on a
low-dimensional manifold embedded in a high-dimensional space, which can be
learned effectively from a set of training data [36]. In this chapter, we propose a

framework for unsupervised analysis of human action based on manifold learning.

The goal of manifold learning, discussed in Section 2.2, is to discover a
low-dimensional structure from a set of high-dimensional data. In recent years,
some researchers have applied manifold-learning algorithms to different tasks in
the field of human action analysis, e.g:; 3D body pose recovery [20], human
tracking [41, 51], and human action recognition [12, 62]. The human action
recognition methods proposed in [12, 62] are similar to the proposed approach,
but they adopt a supervised learning method for human action recognition and

they do not address the problems of temporal segmentation.

The main contribution of this study is that we propose a framework for
unsupervised analysis of human action based on the Isomap algorithm. First, we
propose a convex-hull shape contexts (CSC) descriptor to represent a human
posture. Since the Isomap algorithm can preserve the CSC distance between any

two postures of a training sequence and give a more faithful embedding,
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mentioned in Section 2.2, we compute a CSC-based distance matrix and apply the
Isomap algorithm to construct a low-dimensional structure from it. As a result,
the training action sequence is mapped into a manifold trajectory in the Isomap
space during the training process. To separate an action sequence into atomic
actions precisely, the break points between any two consecutive atomic actions
must be identified. To do this, we represent a manifold trajectory as a time series
of low-dimensional points, and use a temporal segmentation technique to segment
the manifold trajectory into atomic actions correctly. Next, we apply a DTW
algorithm to perform atomic action sequence clustering. Finally, we use the
clustered results to represent each clustersbysan exemplar. For an input atomic

action, we use the nearest neighbaor rule to classify it into the correct category.

3.2 The Proposed Approach

Figure 3.1 shows the flowchart of the proposed method. The proposed approach
comprises five stages: Posture representation and matching, Isomap learning of
human action, temporal segmentation, atomic action clustering, and atomic action
learning and classification, which we describe in the following four subsections,

respectively.
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Training action sequence

|

Temporal segmentation

Convex-hull shape contexts

|

Pairwise distance matrix

|

|

Atomic action sequences

|

Atomic action clustering

Isomap Learning

|

A series of low-dimensional
points

|

Clustering results

|

Atomic action learning
and classification

Figure 3.1. The flowchart of the proposed method

3.2.1 Posture Representation and Matching

Human action usually consists of a series of discrete human postures, as shown in

Figure 3.2. Therefore, a human posture can be represented by a silhouette image,

and a shape matching process can be used to assess the difference between two

postures. For simplicity, it is assumed that the input video sequence has been
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processed to obtain the human silhouette sequence, i.e., the action sequence. To
construct a low-dimensional structure of human action from a training action
sequence, the human posture must be represented effectively in the
high-dimensional space. Therefore in this work, we modify the shape context
technique, discussed in Section 2.1, to represent the human posture and deal with
the posture matching problem. This modified method is aimed to improve the
efficiency of posture matching with the prerequisite of not sacrificing too much

the matching accuracy.

Figure 3.2. Human action consists of a series of discrete human postures

Although the shape context matching algorithm usually provides satisfactory
results, the computational cost of applying it to a large database of human
postures is so high that is not feasible. To reduce the computation time, we only

compute the local shape contexts at certain critical reference points, which should
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be easily and efficiently computable, robust against segmentation error, and
critical to defining the shape of the silhouette. Note that the last requirement is
very important because it helps preserve the informative local shape context. In
this dissertation, the critical reference points are selected as the vertices of the
convex hull of a human silhouette. Matching based on this modified shape
context technique can be accomplished by minimizing a modified version of

Equation (2.3) as follows:

H'(7) = ZC(p,q”(p)) , (3.1)

peA

where A is the set of convex hull'vertices and H' is the adapted total matching cost.
However, reducing the number of local.shape contexts to be matched will also
increase the influence of false matching.results.- To minimize the false matching
rate, the ordering constraint of the.vertices has to be imposed. However, since
traditional bipartite graph matching algorithms [4] do not consider the order of all
sample points, they are not suitable for our algorithm. Therefore, dynamic
programming is adopted in the shape matching process. Suppose a shape P
includes a set of convex hull vertices, A, and another shape Q includes a set of
convex hull vertices, B. The CSC distance can be calculated as follows:

1

Dcsc(PiQ) = |A

1
2.C(P. Urpy) + 1757 2C(0, Prgq) . (3.2)
peA |B| geB

An example of CSC matching is shown in Figure 3.3. There are three

important reasons why convex-hull shape contexts can deal with the posture shape
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matching problem effectively.

1. Since the number of convex hull vertices is significantly smaller than the
number of whole shape points, the computation cost can be reduced
substantially.

2. Convex hull vertices usually include the tips of human body parts; hence
they can preserve more salient information about the human shape, as shown
in Figure 3.2(a).

3. Even if some body parts are missed by human detection methods, the
remaining convex hull vertices can still be applied to shape matching due to

the robustness of computing the convexthull vertices, as shown in Figure 3.3.

Figure 3.3. Convex hull-shape contexts matching: (a) and (b) show the convex
hull vertices of two shapes; (c) shows the correspondence between the convex hull
vertices determined using shape matching.
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3.2.2 Isomap Learning of Human Action

When each silhouette in the training action sequence is represented as a CSC
descriptor, a pairwise shape distance matrix can be calculated based on the shape
matching. The computed distance matrix is used to construct an Isomap using
the method described in Section 2.2.1. As a result, each human silhouette is
transformed into a low-dimensional point in the Isomap space. Figure 3.4 shows
the residual variance of the Isomap on the training data computed with different
values of d, from which the number of dimensions of the Isomap space can be

selected as four. Figure 3.5 shows the constructed 4-D Isomap space.

Eesidual variance

0.0s5

Figure 3.4. The residual variance of Isomap on the training data
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Isomap space dims 1-3 Tsomap space dims 2-4

(a) (b)
Figure 3.5. The constructed 4-D Isomap space: the manifold trajectory of the
action sequence projected on to (a) the first three dimensions (dims. 1-3), and (b)
the last three dimensions (dims. 2-4).

3.2.3 Temporal Segmentation

The purpose of temporal segmentation 1s to 1dentify suitable break points to
partition a continuous action sequence into atomic actions. In Figure 3.5, it is
obvious that different atomic actions that can be distinguished using the CSC
descriptors will have different trajectories. Therefore, the segmentation process
involves identifying the break points between any two successive atomic action
trajectories. To deal with this problem, we first represent the manifold trajectory
as a time series of d-D data points and then calculate the magnitude (i.e., the two
norm) of each point, as shown in Figure 3.6. In general, a human motion slows
down at the boundary of an atomic action. Therefore, the local minima and the
local maxima of the magnitude series can be regarded as candidate break points.

Furthermore, since humans usually return to a rest posture after completing an
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atomic action, we define the points that indicate low-speed actions and the
postures adjacent to the rest posture as the break points of atomic actions. Note
that, since rest postures appear in nearly almost all atomic actions, they are
usually the most common postures mapped in the neighborhood of the origin of
the Isomap space due to the zero-mean assumption formulated in Equation (2.7).
Therefore, we only use the local minima as break points to derive atomic action
sequences. In the magnitude series shown in Figure 3.6, there are eleven local

minima, which divide the action trajectory into ten atomic actions.

time series
15 T I
Coordinate 1
------- Coardinate 2
— - —-Coordinate 3
— — Coordinate 4
—— hagnitude

Figure 3.6. The time series of data points and corresponding magnitudes after
Gaussian smoothing

39



Unsupervised Analysis of Human Action Based on Manifold Learning

3.2.4 Atomic Action Clustering

After segmenting the training action sequence, the segmented actions are clustered
to identify and model each atomic action. Since the duration of each segmented
action sequence is different, the DTW algorithm [48] is used to cluster the
segmented action sequences. DTW aligns and compares two sequences by

finding an optimal warping path between them. For example, suppose we have
two sequences: A= (a,,a,,...,a,) and B=(b;,b,,...,b,), where aj and bj are
d-D vectors in the Isomap space. A warping path W = (w(2), w(2),...,w(m)) is
used to align A with B, where j=w(i) means that a; is aligned with b;. The
warping path is computed withithe following three constraints: 1=w(l) ,
n=w(m), and w(k+1)>w(k) : . The distance between A and B along the

warping path W can then be calculated as‘follows:

D, (A B) = %Z;Ha b (33)

The objective of the DTW is to find the warping path that minimizes the distance

D, (A,B). Therefore, the DTW matching score between A and B can be

calculated by

DTW (A,B) = mir{D, (A B)}. (3.4)

Since the definition of DTW matching score is not symmetric, we define the DTW
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action distance between two segmented action sequences by

AD(A, B) :%(DTW(A, B)+ DTW (B, A)). (3.5)

After calculating the pairwise action distances between all segmented actions, we
group similar atomic actions into one cluster using the hierarchical clustering

algorithm [29].

3.2.5 Atomic Action Learning and Classification

In this step, the mean trajectory of each elusteris used as an exemplar to represent
the cluster. The time warping paths computed by DTW are used to normalize the
duration of each segmented-action'sequence.in a cluster in order to calculate the
mean trajectory. Meanwhile, the exemplars of the atomic actions are utilized to
classify a new input action based on the nearest-neighbor approach using the
DTW distance defined in Equation (3.5). To recognize a new input action
sequence, we need to map the new sequence into the Isomap space. Since the
Isomap space is only constructed for the training data, to project new test points
into the Isomap space, both the neighborhood graph and the geodesic distance
must both be recomputed. Then, the MDS approach can be applied to generate a
new Isomap space. However, reconstructing the Isomap with new data is very
time consuming, especially when the size of the new input sequence is large. To

resolve this problem, Law and Jain [33] proposed an incremental Isomap learning
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method, which avoids spending time on “batch” Isomap construction.
Specifically, the method only updates the neighbor graph and the geodesic
distance for partial points related to the new sample to identify the coordinates of
that sample, after which it updates the coordinates of all the points. Although the
approach can reduce a certain amount of computation time, it is still a
time-consuming process. In this work, we propose another way to deal with the
problem. We find that it is not necessary to build a new Isomap space for atomic
action recognition unless a new action model is added. Therefore, as proposed
in [33], we simply estimate the coordinates of a new sample to project the new

data points into the existing Isomap space.

Suppose that the coordinates ,of the training-data points are [xl,xz,...,xn]

and the coordinate vector of a new .data point is‘denoted by Xn.+;. Then, the

summation over i=1,..,n+1 and J=1..;n+1 for d;in Equation (2.6) leads to

1
X:+1Xn+1_ Z i(n+1) — ZX X (36)

[ oy

The inner product of x,+1 and x; can also be calculated using Equation (2.6) as

follows:

T T
Xn+1 (d(n+1)j n+1xn+1 - Xj Xj) . (37)

Then, from Equations (2.6), (3.6) and (3.7), the value of x| X; can be calculated

n+1

42



3.2 The Proposed Approach

by
1 1 n 1 n 1 n n
X-r:+lxj = _E(d(zml)j _sziz(ml) _szu? +F22duz) = fj : (3-8)
i=1 i=1 i=1l j=1
Therefore,
[Xp oo X ] X =F =[frye £.] (3.9)

Substituting Equation (2.10) into Equation (3.9), we have

(A1 2 V) X, S (3.10)

Then, the least-square solution of X,«; €an be derived as follows:

(3.11)

X, = (ﬁv}f,...,ﬁvﬁf :
After each human posture in the test action sequence has been projected into the
Isomap space, the test sequence can be classified into a cluster using the
nearest-neighbor approach based on the DTW distance. We use a threshold to
judge whether an unknown action sequence belongs to one of the learned clusters.
If the action distance between the unknown action sequence and the nearest mean
sequence is greater than the threshold value, the unknown action is regarded as a

new action. The threshold is set assigned as , +2o, , where g, and o, are,

respectively, the mean and the standard deviation of the distances between the
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training action sequences and the exemplar of the kth cluster.

Although not building a new Isomap for atomic action recognition saves a
great deal of computation time, by Equation (3.8), we still have to calculate the
CSC distances between a new human posture and all of the training postures.
However, computing the CSC distances is inefficient when the number of training
postures is large. To resolve this problem, we propose the following accelerated
mapping approach. First, based on the k-means algorithm, we replace the
training postures with a set of key data points selected from the training set in the
Isomap space. Then, based on Equations (3.6)-(3.9), we use the key data points
to estimate the coordinate vector of-a new data point. Because the equations are
derived based on the zero-mean assumption about training data points, we have to

translate the coordinates of the key data points.as.follows:

3 8 at (3.12)

k
where x,,i=1..,kare the key data points and X, =%Zx
i=1

Therefore, the

a "

!
n+1

inner product of x’ , and all of the key data points can be calculated by applying

Equation (3.9):

T
' ’ ' Ty!
|:X X :I Xn+1 = XaXn+l = fa :I:

A A (3.13)

=Y L

’
n+1

Then, the least-square solution of X/ . can be derived as follows:
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X = (XTX,)XE, . (3.14)

n+1

Finally, the coordinate vector of a new data point x_., can be calculated by

n+1
x'.,+X. . Note that (X]X,)*X] in Equation (3.14) can be computed
beforehand; thus, estimating the coordinates of a new posture in the embedded

Euclidian space is very efficient.

3.3 Experiments

We conducted a series ofsexperiments. to -evaluate the effectiveness of the
proposed method. The data used in the experiments included one training
sequence and three test sequences.performed by two human subjects. The
training data contained 25 atomic action sequences comprised of 1983 frames that
belonged to five different classes of actions performed by subject 1. Some
typical image frames of each atomic action class are shown in Figure 3.7. Using
the Isomap algorithm, a 4-D Isomap space was constructed from the training data,
as shown in Figure 3.8. Next, we represented the manifold trajectory in Figure
3.8 as a time series of data points, and then applied temporal segmentation to the
time series. The results of temporal segmentation are shown in Figure 3.9.
Using atomic action clustering, the segmented atomic actions were correctly
grouped into five clusters, and five exemplar mean trajectories (see Figure 3.10)

were computed to represent the obtained clusters.
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Figure 3.7. The five classes of.atomic actions used for training

Isomap space dims. 1-3 Isomap space dims. 2-4
06 034

(a) (b)
Figure 3.8. The Isomap space constructed from the training data: the 4-D manifold
trajectory projected on to (a) the first three dimensions (dims. 1-3), and (b) the last
three dimensions (dims. 2-4).
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Figure 3.9. The results of temporal segmentation of (a) the time series, and (b) the
human posture sequence
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Figure 3.10. Five mean trajectories representing the five classes of atomic actions
are plotted in different colors.
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Next, we used three test action sequences to evaluate the performance of the
proposed temporal segmentation method and the action classifier.  The
projection of the test data into the Isomap space was accomplished by using the
method proposed in [33]. In the first two test sequences, all the atomic actions
performed by the two subjects belonged to the five learned action clusters. The
first test sequence was performed by subject 1, who provided 22 atomic actions.
Figure 3.11 shows the atomic action trajectories constructed by mapping the new
test data into the Isomap space using the method described in Section 3.2.5. In
this experiment, all atomic actions were correctly segmented and classified. The
second test sequence, which contained 46 atomic actions, was obtained from
subject 2. In the constructed atomic action trajectories, shown in Figure 3.12, all
the atomic actions were also correctly segmented and classified. The third test
sequence was obtained by asking subject 1 to perform new actions that were
different from all the trained atomic actions. The constructed atomic action
trajectories and five mean trajectories are shown in Figure 3.13. Using the
proposed action classification method, these atomic actions were all successfully

classified as unknown actions.
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Figure 3.11. The atomic action trajectories constructed from test data sequence 1
and the classification results
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Figure 3.12. The atomic action trajectories constructed from test data sequence 2
and the classification results
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Isomap space dims. 1-3 Isomap space dims. 2-4

(a) (b)
Figure 3.13. The atomic action trajectories constructed from test data sequence 3
superimposed on to the five learned exemplar trajectories.

In the final experiment, we evaluated the performance of the proposed action
classifier based on the accelerated 'mapping. approach. First, we tested the
accuracy of the proposed mapping method by remapping the training sequence
into the Isomap space using Equation.(3.14).and evaluating the reconstruction
error of the new method. The reconstruction error is defined to as the average
distance between the reconstructed and the original Isomaps. Figure 3.14 shows
a set of selected key data points and the reconstructed Isomap. From the figure it
is obvious that the reconstructed Isomap is very similar to the original Isomap
shown in Figure 3.8. Clearly, the number of selected key data points is a crucial
issue because the number of points has a substantial influence on both the
recognition rate and the computation time. Selecting too many key data points
will result in low computational efficiency, while selecting too few key data points

will lead to inaccurate results. To determine the appropriate number of key data
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points, we calculate the reconstruction error using different percentages of
selected key points over the total number of data points. Figure 3.15 shows that
when the percentage of selected key data points falls within the range 1.2% to
1.4%, the reconstruction error and the number of key data points would both be
sufficiently small. Therefore, we use this range as the threshold for the selecting
appropriate number of key points. In this experiment, the number of key data
points was set to 25 (about 1.26% of the total number of 1,983 data points).
Compared to the original approach in which we have to evaluate 1,983 CSC
distances, the computational complexity is dramatically reduced to the evaluation
of only 25 CSC distances. Thisisapproximately 79 times faster than the
original approach. Based.:on ithe accelerated. mapping method, we tested the
recognition rate using the-three test-action sequences. Figures 3.16-3.18 show
the reconstructed atomic action trajectories derived by mapping the new test data
into the simplified Isomap space. 1t is obvious that the proposed method does
not degrade the recognition performance at all. The results show that the

proposed method is fast and accurate.
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Figure 3.14. The selected key data points and the reconstructed Isomap space
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Figure 3.15. The average distance between the original Isomap and the
reconstructed Isomap using different percentages of selected key points over the
total number of data points
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Figure 3.16. The reconstructed atomic action trajectories derived from test data
sequence 1 and the classification results based on the simplified action
classification approach.
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Figure 3.17. The reconstructed atomic action trajectories derived from test data
sequence 2 and the classification results based on the simplified action
classification approach.
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Figure 3.18. The reconstructed atomic action trajectories derived from test data
sequence 3 based on the simplified action classification approach superimposed
on to the five learned exemplar trajectories.

3.4 Concluding Remarks

In this chapter, we have proposed a framewaerk: for unsupervised analysis of long
and unsegmented human action sequences:based on Isomap learning. The
framework comprises four modules: an Isomap learning module, a temporal
segmentation module, an atomic action clustering module, and an atomic action
learning and classification module. First, we calculate a pairwise CSC distance
matrix from the training action sequence, and then apply the Isomap algorithm to
construct a low-dimensional structure from the distance matrix. Next, the data
points in the Isomap space are represented as a time series of low-dimensional
points, and a temporal segmentation process is used to segment this sequence into
atomic actions. A DTW approach is then applied to cluster the atomic actions.

Finally, the clustering results are used to learn and classify atomic actions. In
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addition, to speed up the mapping from a new input posture into the Isomap space,
we propose an efficient method that is approximately 79 times faster than the
original approach. Our experiment results demonstrate the efficacy of the

proposed framework.
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Chapter 4
Learning Atomic Human Actions
Using  Variable-Length Markov
Models

In this chapter, we describe the proposed framework for learning and recognizing
segmented atomic human aetion sequences.using VLMM. First, we give an
introduction about this research topic. The proposed approach is then described.

Next, we detail the experiment results.  Finally, we present our conclusions.

4.1 Introduction

Since the human body is an articulated object with many degrees of freedom,
inferring a body posture from a single 2-D image is usually an ill-posed problem.
Providing a sequence of images might help to solve the ambiguity of action

recognition. However, to integrate the information extracted from the images, it
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is essential to find a model that can effectively formulate the spatial-temporal
characteristics of human actions. Note that if a continuous human posture can be
quantized into a sequence of discrete postures, each one can be regarded as a letter
of a specific language. Consequently, an atomic action composed of a short
sequence of discrete postures can be regarded as a verb of that language.
Sentences and paragraphs that describe human action can then be constructed, and
the semantic description of a human action can be determined by a language

modeling approach.

In a natural language, the most informative word of a sentence is usually its
verb. Because an atomic action acts the verb of a:sentence in a natural language,
it is vital to recognize each atomic.action in.order to transform an input video
sequence into semantic-level descriptions.—In this work, we focus on the
problem of automatic action recognition.by using a language modeling approach

to bridge the semantic gap between an atomic action sequence and a verb.

Language modeling [30, 53], a powerful tool for dealing with temporal
ordering problems, has been applied in many fields, such as speech recognition
[30, 32], handwriting recognition [47, 61], and information retrieval [16, 71]. In
this chapter, we consider its application to the analysis of human action. A
number of approaches have been proposed thus far. For example, Bobick and
Ivanov [7] and Ogale et al. [44] used context-free grammars to model human
actions, while Park et al. employed hierarchical finite state automata to recognize

human behavior [46]. In [69, 70], HMMs were applied to human action

58



4.1 Introduction

recognition. The HMM technique is useful for both human action recognition
and human action sequence synthesis. Galata et al. utilized VLMMs to
characterize human actions [22], and showed that VLMMs trained with
motion-capture data or silhouette images can be used to synthesize human action
animations. Existing language modeling approaches for action analysis can be
categorized into two classes: deterministic algorithms [7, 44, 46] and stochastic
algorithms [22, 69, 70].  Since the latter have higher degrees of freedom than the
former, they are suitable for a wider range of applications. Currently, the HMM
is the most popular stochastic algorithm for language modeling because of its
versatility and mathematical simplicity: » .However, since the states of an HMM
are not observable, encoding high-order temporal dependencies with this model is
a challenging task. There Is no systematic way to determine the topology of an
HMM or even the number-of its states. :Moreover, the training process only
guarantees a local optimal solution; thus, the training result is very sensitive to the
initial values of the parameters. On the other hand, since the states of a VLMM
are observable, its parameters can be estimated easily given sufficient training
data. Consequently, a VLMM can capture both long-term and short-term
dependencies efficiently because the amount of memory required for prediction is
optimized during the training process. However, thus far, the VLMM technique
has not been applied to human action recognition directly because of two
limitations: 1) it cannot handle the dynamic time warping problem, and 2) it lacks

a model for handling the noise observation.
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In this research, we propose a hybrid framework of VLMM and HMM that
retains the models advantages, while avoiding their drawbacks. The framework
is comprised of two modules: a posture labeling module, and a VLMM atomic
action learning and recognition module. First, a posture template selection
algorithm is developed based on the CSC technique, discussed in Section 3.2.1.
The selected posture templates constitute a codebook, which is used to convert
input posture sequences into discrete symbol sequences for subsequent processing.
Then, the VLMM technique is applied to learn the symbol sequences that
correspond to atomic actions. This avoids the problem of learning the
parameters of an HMM. Finally, theslearned VLMMs are transformed into
HMMs for atomic action recognition. iThus, an input posture sequence can be

classified with the fault tolerance property of an HMM:

4.2 The Proposed Method for Atomic Action Recognition

The proposed method comprises two phases: 1) posture labeling, which converts a
continuous human action into a discrete symbol sequence; and 2) application of
the VLMM technique to learn the constructed symbol sequences and recognize

the input posture sequences. The two phases are described below.
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4.2.1 Posture Labeling

To convert a human action into a sequence of discrete symbols, a codebook of
posture templates must be created as an alphabet to describe each posture.
Although the codebook should be as complete as possible, it is important to
minimize redundancy. Therefore, a posture is only included in the codebook if it
cannot be approximated by existing codewords, each of which represents a human
posture. In this work, a human posture is represented by a silhouette image, and
a shape matching process is used to assess the difference between two shapes.
Figure 4.1 shows the block diagram of the proposed posture labeling process.
First, a low-level image processing technigue is-applied to extract the silhouette of
a human body from each input image.  Then, the codebook of posture templates
computed from the training images is used-to-convert the extracted silhouettes into
symbol sequences. Shape matching and posture template selection are the most
important procedures in the posture labeling process. Shape matching has been
described in Section 3.2.1, and posture template selection is discussed in the

following.
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Symbol
sequences
Image - i _ T :
sequences — Preprocessing — Silhouette images ——  Shape matching

b

Codebook

Figure 4.1. Block diagram of the proposed posture labeling process

Posture Template Selection

Posture template selection is used-t0_construct.a codebook of posture templates
from training silhouette sequences.” If the training atomic action sequences are
segmented from a long human action 'sequence-based on Isomap learning, we can
use the key data points described in Section 3:2.5 as the codebook. Otherwise,
for general segmented atomic action sequences, we propose an automatic posture
template selection algorithm (see Algorithm 4.1), based on the CSC technique.
In the posture template selection method, the cost of matching two shapes (see

Equation (3.2)), is denoted by D (b,,2;). We only need to empirically determine
one threshold parameter z. in our posture template selection method. This

parameter determines whether a new training sample should be incorporated into

the codebook. The selection of 7. is not unique for all cases. Because

incoming action sequences may contain any kind of action, the selection of 7. is
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basically an ill-posed problem in mathematics. Therefore, we cannot determine

a universal 7. to fit in all cases. In fact, the selection of z. is not a major

concern in this work because our objective is to establish an automatic posture

template selection scheme.

Algorithm 4.1: Posture Template Selection

Codebook of posture templates: A= {a,,a,,...,a,, |

Training sequence: T ={t,, t,,...ty

foreach teTdo{

if (A=¢ or min D..(t,a)>7.) {

A« AUt}

M«—M+1
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4.2.2 Human Action Sequence Learning and Recognition

Atomic Action Learning

Using the codebook of posture templates, an input sequence of postures

{b,,b,,...,.b,} can be converted into a symbol sequence {a »Agm}s Where

q()

q(i)=arg minM}Dcsc(bi'aj)' Thus, atomic action VLMMs can be trained by the

jell2...
method outlined in Section 2.3.1. These VLMMs are actually different order
Markov chains. For simplicity, we transform all the high order Markov chains
into first-order Markov chains by-augmenting the state space. For example, the

probability of a di-th order Markov chain with'state space S is given by

POXi =1 [ Xig =g Xicgn = Fgann X = 1) (4.1)

where X; is a state in S. To transform the di-th order Markov chain into a
first-order Markov chain, a new state space is constructed such that both

Yo, =(Xi 4, Xiy) and Y, =(X;, ,,---,X;) are included in the new state

space. As a result, the high order Markov chain can be formulated as the

following first-order Markov chain [24]

P(X;=r] Xi—di =lig> Xi—di+1 = liga Xi1="1)

(4.2)
= P(Y. = (ri—d“l+1 I’,) | Yig = (ri—di ”.ri—l))'
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Hereafter, we assume that every VLMM has been transformed into a first-order

Markov model.

Atomic Action Recognition

After the VLMMs are trained from the training sequence, the VLMM
recognition technique, mentioned in Section 2.3.2, can be applied to atomic action
recognition. This VLMM recognition technique works well for natural language
processing. However, since natural language processing and human action
analysis are inherently different; two problems must be solved before the VLMM
technique can be applied: to latomic: action ‘recognition. First, the VLMM
technique cannot handle the dynamic time warping problem; hence VLMMs
cannot recognize atomic actions when they."are performed at different speeds.
Second, the VLMM technique does not include a model for noise observation, so

the system is less tolerant of image preprocessing errors.

First, note that the speed of the action affects the number of repeated symbols
in the constructed symbol sequence: a slower action produces more repeat
symbols. To eliminate this speed-dependent factor, the input symbol sequence is
preprocessed to merge repeated symbols. VLMMs corresponding to different
atomic actions are trained with preprocessed symbol sequences similar to the
method proposed by Galata et al. [22]. However, this approach is only valid

when the observed noise is negligible, which is an impractical assumption. The
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recognition rate of the constructed VLMMs is low because image preprocessing
errors may identify repeated postures as different symbols. To incorporate a
noise observation model, the VLMMs trained with unrepeated sequences must be
modified to recognize input sequences with repeated symbols. Let a; denote

old
il

the state transition probability from state i to state j. Initially, a;° =0 because

the training data contains no repeated symbols. The self-transition probability is

updated by a;™ =P(v;|v,)+5, where P(v, |vi):% computed with the
v

i
original training sequences and ¢ is a small positive number to prevent the
over-fitting problem [49]. Note that if the self-transition probability is zero, then
an action sequence that contains=repetition will result in a zero probability such
that the system will not perferm normally when-faced with slower action
sequences. To overcome this limitation, we add the small positive number & to
the self-transition probability. This parameter can be determined using the

cross-validation method. The other transition probability must also be updated

new

as a :ai‘j"d (1—a{i‘ew). For example, if the input training symbol sequence is

“AAABBAAACCAAABB,” the preprocessed training symbol sequence becomes
“ABACAB.” The VLMM constructed with the original input training sequence
is shown in Figure 4.2(a); while the original VLMM and modified VLMM
constructed with the preprocessed training sequence are shown in Figures 4.2(b)

and 4.2(c), respectively.
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Figure 4.2. (a) The VLMM constructed with the original input training sequence;
(b) the original VLMM constructed with the preprocessed training sequence; (c)
the modified VLMM, which includes the possibility of self-transition.

Next, a noise observation model is introduced to convert a VLMM into an
HMM. Note that the output.of a VLMM- deétermines its state transition and vice
versa because the state of a-VVLLMM is observable. In general, the possible output
is restricted to several discrete 'symbels:=sHowever, due to the noise caused by
image preprocessing, the symbaol sequence corresponding to an atomic action
includes some randomness.  Such randomness will cause the action sequence not
recognizable by the VLMMSs. Therefore, we propose to modify the symbol
observation model as described in the following. Suppose that the output

symbol of a VLMM is ¢, attimet, and its posture template retrieved from the
codebook is a, . If the VLMM is the right model, the extracted silhouette
image o, will not deviate too much from its corresponding posture template a,

provided that the segmentation result does not contain any major errors. Due to

noise observation, the silhouette image o, is a random variable, and so is the
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CSC distance Dcsc(ot,aqt). It is possible to learn the distribution of the CSC

distance, D, (0,,a, ), using the training data. An example is shown in Figure

4.3. In this example, it is clear that a Gaussian distribution can be applied to

1 _ Dcsc(ot vat)

e 2 _ The standard deviation
V2re

model the CSC distance, i.e. P(o,|q,,A)=

o of this distribution is estimated using the maximum-likelihood technique.
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Figure 4.3. The distribution of observation error, obtained using the training data.

Note that the VLMM has now been converted into a first-order Markov chain.
If the VLMM’s observation model is detached from the symbol of a state, then the

VLMM becomes a standard HMM. The probability of the observed silhouette
Image sequence, O =0,0,..0;, for a given model A can be evaluated by the
HMM forward/backward procedure with proper scaling [49]. Finally, category

i” obtained with the following equation is deemed to be the recognition result:
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i =arg miaxlog[P(O|Ai)]. (4.3)

4.3 Experiments

We conducted a series of experiments to evaluate the effectiveness of the
proposed method. A powerful, scalable recognition system would only use the
data extracted from one person for training but would still be capable of
recognizing data collected from other people. Accordingly, the training data
used in our experiments was a realvidea sequence comprised of approximately
900 frames. The training data contained ten categories of action sequences that
were performed by a single person. = Some typical image frames are shown in
Figure 4.4. Using the posture template selection algorithm, a codebook of 95
posture templates (see Figure 4.5), was constructed from the training data. The
data was then used to build ten VLMMs, each of which was associated with one

of the atomic actions shown in Figure 4.4.
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Action sequence 1

Action sequence 2

Action sequence 3

Action sequence 4

Action sequence S

Action sequence 6

Action sequence 7

Action sequence 8

Action sequence 9

Action sequence 10 ) A > - -, - >

Figure 4.4. The ten categories.of atomic actions used for training
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Figure 4.5. Posture templates extracted from the training data

The average log-likelihood of the training error computed with the training
data is shown in Table 4.1. The results indicate that the proposed action
recognition method can deal with the problem of human action recognition
effectively. Next, a test video was used to assess the effectiveness of the
proposed method. The test data was obtained from the same human subject.

Each atomic action was repeated four times, yielding a total of 40 test samples (4
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positive samples and 36 negative samples) for evaluating the performance of the
learnt VLMMs. The proposed method achieved a 100% recognition rate for all
the test sequences. To further verify the recognition results, we tested the
similarity of any two VLMMs obtained in the experiment. First, we generated
10,000 action sequences for each of the 10 VLMMs, which yielded a total of
100,000 action sequences. Out of the 100,000 action sequences, only 74
sequences were incorrectly recognized and all the errors were on actions 7 and 8
because these two sequences contained many similar postures and thus could be
mixed up easily (refer to Figure 4.4). This result is consistent with the data
shown in Table 4.1: the log-likelihood of actions 7 and 8 computed using VLMMs
8 and 7 were relatively high. This result confirms that the data shown in Table
4.1 is valid. Furthermore, we=have also-estimated -the p-values [73] for each
action model. The posture templates shown in Figure 4.5 were used to generate
10,000 random action sequences using a sample-with-replacement process. The
histograms of the log-likelihood of the random sequences and the positive
sequences for an action model are shown in Figure 4.6. Since these two
histograms do not overlap at all, it is reasonable to infer that the p-value of the
action model is very low. To estimate the p-value, we approximate the
distributions of the log-likelihood by Gaussian distributions (see Figure 4.6).
Therefore, the p-value can be easily computed. The maximum p-value of the ten
models is smaller than 0.0001, which confirms that the results are statistically

significant.
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Table 4.1. The results of atomic action recognition using the training data

VLMM
Log = {
Likelihood 1 2 3 4 D 6 7 8 9 10
Action
1 0 -63.78 | -73.66 -81.2 | -91.82| -91.12 =240 -211.1| -2063| -2399
2 -27.82 9 -83.2| -67.84 | -109.1| -107.7| -167.7| -156.1| -358.1| -2595
3 -49.42 1 -76.62 B -64.79| -6527 | -4227| -110.1| -100.6| -158.6| -162.6
4 -52.99 | -83.22 -75.9 -50.32 -80.6| -108.7| -1156| -1578| -177.5
5 -71.96 | -8193 -66.6 | -46.16 60 -89.7 | -111.1| -119.1| -1255 -119
6 -79.9 -100| -39.61| -87.91| -94.46 B -142.6 -126| -178.6| -254.2
7 -122.7 ) -7595 | 9143 -110.7| -8554| -96.43 6 -9.797 | -150.2 -150
8 -117.4| -87.62 | -1046| -103.9| -117.1| -81.35| -24.05 88 -135.7 | -159.5
9 -1526] -1493 | -171.6| -131.4| -1344| -1243| -141.3| -1409 4 -111.8
10 -185.4 ) -198.1 | -161.3| -166.7| -128.6| -224.1| -1893 -192 | -206.6
Histograms of log-likelihood
0.04 . : : : . . .
| Il R andom sequences |
0.035 - 7
| I positive sequences |
o
3 0.03 b
o
o
T 0.025 .
5
o 002 b
@
=3
Z 0.015 1
-
0.01 1
0 . o
=200 =150 =100 50~ -7 -6 -5 -4 3 -2

Log-likelihood

Figure 4.6. The histograms of the log-likelihood of the random sequences and the
positive sequences for an action model
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In the third experiment, test videos of nine different human subjects (see
Figure 4.7) were used to evaluate the performance of the proposed method.
Each person repeated each action five times, so we had five sequences for each
action and each human subject, which yielded a total of 450 action sequences.
For comparison, we also tested the performance of the HMM method in this
experiment.  Since the ten atomic actions used in the experiments were acyclic,
only the left-right HMMs were considered in this experiment. Because the
initial parameters and the number of HMM states would affect recognition results,
the HMM implementation was evaluated using a variety of HMMs, each of which
had a different number of hidden states, « 1Furthermore, the HMM were trained ten
times and the average results were used to reduce the effect of the initial random
parameters. Table 4.2 compares our method’s recognition rate with that of the
HMM method, for test data from nine different:human subjects. Our method
clearly outperforms the HMM method, no matter how many states were selected.
In Table 4.2, the shaded cells denote the best recognition results of the HMM
approach for a particular action. It is clear that the selection of the number of
states is a critical issue for the HMM method. Note that the number of HMM
states that could be set for deriving the best performance was varying in different
actions which makes the selection of the number of states even more difficult. In
contrast to the difficulty in determining the topology of an HMM, our method is
simple and effective because the topology of a VLMM can be determined
automatically with a robust algorithm. Note that the recognition rates for action

1 were the worst across all actions. Figure 4.8(a) shows some typical input
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postures for a human subject performing action 1. The retrieved, corresponding
closest posture templates in the database are shown in Figure 4.8(b). When
comparing the corresponding posture templates shown in Figure 4.8(b) with the
training posture sequences shown in Figure 4.4, it is clear that the posture
templates and the training postures of action 1, in this case, are not well matched.
Due to the segmentation error of the lower arms areas, the input postures were
incorrectly related to posture templates of different actions. For example, the
retrieved posture templates shown in Figure 4.8(b), from left to right, were
extracted from training data of actions 1, 4, 2, 2, 2, 1, 2, 2, 2, 4, and 1, respectively.
Since the proposed method is silhouette-based, when the same postures of two
individuals appear to be* drastically " different (due to dissimilar physical
characteristics, motion styles, or improper Segmentation), observation errors
would bias the recognition result.” In particular, if most of the input postures are
with high observation error, the context information is not sufficient for accurate

performance.
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E.

A - b |

Figure 4.7. Nine test-human subjects
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Table 4.2. Comparison of our method’s recognition rate with that of the HMM
computed with the test data obtained from nine different human subjects

Actions

Recognitior
rate(%o) 1 2 3 4

n
=]

i ]
[=.]
=}
i
[—]

Methods

Our method | 88.82 | 97.78 | 100 100 100 100 | 97.78 | 100 100 | 97.78

_HMM 88.22 | 82.00 | 93.78 | 87.78 | 88.22 | 90.89 | 96.89 | 99.78 | 90.44 | 97.56
(5 states)
HMM N — ) -

87.56 | 78.89 | 93.11 | 92.00 | 97.78 | 77.78 | 96.22 | 98.44 | 87.33 | ¢7.78
(10 states)
HMM
i §8.89 | S1.33 | 93.11 | 93.11 | 92.89 | 66.44 | 97.33 | 99.33 | 98,80 | 07,33
(15 states)
HMM 88.80 | 80.00 | 93.33 | 92,22 | 95,56 | 77.56 | 97.11 | 98.44 | 90.80 | 07.56
(20 states)
HMM ) ) ~ | ) o
_ 88.80 | 81.56 | 93.56 | 92.67 | 93.56 | 60.89 | 95.56 | 100 | 98.80 | 07.56
(25 states)
HMM

88.80 | 81.33 | 93.78 | 93.56 | 94.00 | 57.78 | 95.56 | 99.78 | 85.78 | 97.33

(30 states)

(@)
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®)

Figure 4.8. Some typical postures of a human subject exercising action 1: (a) the
input posture sequence; (b) the corresponding minimum-CSC-distance posture
templates.
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In order to show that the selection of the parameter 1. in the posture template
selection process was not a major concern, we calculated the recognition rates for
different .. Figure 4.9 shows the recognition rates with respect to different <,
and it demonstrates that the change of t. only has little influence to the

recognition results.
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Figure 4.9. Recognition rates with respect to different .

In the fourth experiment, to evaluate the scalability of the proposed algorithm,
we used a new, publicly-available database [3, 63]. This database consists of 90
low-resolution (180x 144) action sequences from nine different people, each
performing ten natural actions. These actions include: bending (bend), jumping

jacks (jack), jumping forward on two legs (jump), jumping in place on two legs
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(pjump), running (run), galloping sideways (side), skipping (skip), walking (walk),
waving one hand (wavel), and waving two hands (wave2). Sample images of
each type of action sequence are shown in Figure 4.10. In [63], a sequence of
human silhouettes derived from each action sequence was converted into two
representations, namely average motion energy (AME) and mean motion shape
(MMS).  Subsequently, a nearest neighbor classifier (NN) was used for
recognition, and the leave-one-out cross-validation rule was adopted to compute
the recognition rate. Recognition results for these two representations, shown in

the top two rows of Table 4.3, are compared against our method.

In order to compare our,method with'the two competing methods in a fairer
fashion, we also applied the leave-one-out rule to our method. In this case, eight
sets of data grabbed from-eight distinct-human subjects were used to train the
VLMMs, resulting in eight VI:MMs_ for-each action. Finally, the category with
the maximum likelihood was deemed to be the recognition result. Results using
this methodology are shown in the last row of Table 4.3. It is clear that our

method outperforms the other two methods for this public database.
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Bend

jack

jump
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side

skip

walk
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Figure 4.10. Sample images in the public action database

Table 4.3. Comparison of our method’s recognition rate with that of the AME plus
NN method and the MMS plus NN method for the public database

ctions
Recognitio . . . . .
rate(%o) bend | jack | jump | pjump run side skip | walk | wavel | wave2
Methods
AMIE plus NN
[63] 100 100 88.89 100 100 100 | 88.89 100 88.89 100
MMS plus NN
[63] 100 100 88.890 | 77.78 100 88.89 100 88.89 | 88.89 100
Our method 100 100 100 100 100 100 100 100 100 100
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4.4 Concluding Remarks

We have proposed a framework for understanding human atomic actions using
VLMMs. The framework comprises two modules: a posture labeling module,
and a VLMM atomic action learning and recognition module. We have
developed a simple and efficient posture template selection algorithm based on the
modified shape context matching method. A codebook of posture templates is
created to convert the input posture sequences into discrete symbols so that the
language modeling approach can be applied. The VLMM technique is then used
to learn human action sequences. - To handle the dynamic time warping problem
and the lack of noise observation imodel problem of applying the VLMM
technique to action analysis, we have also developed a systematic method to
convert the learned VLMMs into HMMs.- The contribution of our approach is
that the topology of the HMMs can be automatically determined and the
recognition accuracy is better than the traditional HMM approach. Experiment

results demonstrate the efficacy of the proposed method.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, we have presented two video processing techniques for human
action analysis. One is- unsupervised-analysis of human action based on
manifold learning (Chapter 3),:and the other is atomic human action learning and

recognition using VLMMSs (Chapter 4).

In Chapter 3, we have proposed a framework for unsupervised analysis of
long and unsegmented human action sequences based on Isomap learning. The
framework comprises five modules: an posture representation and matching
module, an Isomap learning module, a temporal segmentation module, an atomic
action clustering module, and an atomic action learning and classification module.
First, we calculate a pairwise CSC distance matrix from the training action
sequence, and then apply the Isomap algorithm to construct a low-dimensional

structure from the distance matrix. Next, the data points in the Isomap space are
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represented as a time series of low-dimensional points, and a temporal
segmentation process is used to segment this sequence into atomic actions. A
DTW approach is then applied to cluster the atomic actions. Finally, the
clustering results are used to learn and classify atomic actions. In addition, to
speed up the mapping from a new input posture into the Isomap space, we
propose an efficient method that is approximately 79 times faster than the original
approach. Our experiment results demonstrate the efficacy of the proposed

framework.

In Chapter 4, we have proposed a framework for understanding human
atomic actions using VLMMs. _The framework comprises two modules: a
posture labeling module, and a~-VLMM atomic action learning and recognition
module. We have developed a-simple’-and-efficient posture template selection
algorithm based on the modified shape context matching method. A codebook
of posture templates is created to convert the input posture sequences into discrete
symbols so that the language modeling approach can be applied. The VLMM
technique is then used to learn human action sequences. To handle the dynamic
time warping problem and the lack of noise observation model problem of
applying the VLMM technique to action analysis, we have also developed a
systematic method to convert the learned VLMMs into HMMs.  The contribution
of our approach is that the topology of the HMMs can be automatically
determined and the recognition accuracy is better than the traditional HMM

approach. Experiment results demonstrate the efficacy of the proposed method.
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5.2 Future work

Since the CSC descriptor for human posture is not a view-invariant representation,
we can not deal with same atomic actions with different views. Therefore, we
shall handle this problem to make our system more scalable in the future.
Moreover, high-level semantic description for human action using natural

language will be another subject for our future work.
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