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摘  要 

人類動作分析是一個很基本的研究議題，並且被廣泛地應用在許多不同

的研究領域。本論文提出了兩種適於人類動作分析之相關應用的視訊處理技

衛。首先，為了自動化分析一段冗長且尚未被切割過之人類動作視訊資料，

我們提出一個以流形學習 (manifold learning)技術為基礎之非監督式

(unsupervised)人類動作分析架構。為了有效地分析人類動作，非監督式學習

的方法比監督式學習的方法更為適合，主要是因為非監督式學習的方法事先

不需要太多的人為介入。然而，複雜的人類動作使得非監式學習的方法更具

挑戰性。在這項研究中，我們首先從一個訓練用的動作序列中取得一個成對

的人類姿勢距離矩陣。接著再利用等構映圖(Isomap)演算法從此矩陣中建構

出低維度的結構。因此，訓練用的動作序列可以被映射到等構映圖空間中的

流形軌跡(manifold trajectory)。為了有效地找出連續兩個單元(atomic)動作軌

跡中的中斷點，我們將等構映圖空間中的流形軌跡描述為低維度的時間序
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列。我們接著再利用時間分割的技術將此時間序列分割成許多次級序列，每

個次級序列都代表一個單元動作。然後，我們利用動態時間校正(dynamic time 

warping)的技術來對這些單元動作序列分群。最後，我們依據分群結果來學

習單元動作，並且再利用最近鄰算法(nearest neighbor rule)對單元動作做分

類。假如介於輸入的動作序列與最相近的群平均單元動作序列的距離大於某

個門檻值時，我們便將此輸入的動作序列視為未知的單元動作。 

在第二項研究中，我們提出了一個利用可變長度馬可夫模型

(variable-length Markov models)技術來學習及辨認單元人類動作的架構。本架

再包含兩個主要模組：姿勢標記模組及可變長度馬可夫模型之單元動作學習

及辨認模組。首先，我們修改外形上下文(shape context)的技術來發展一個姿

勢樣板(posture template)選擇的演算法。被選取的姿勢樣板可形成一個碼本

(codebook)，利用此碼本我們可以將輸入的姿勢序列轉變為離散的符號序列。

接著，我們利用可變長度馬可夫模型技術來學習對應於訓練用的單元動作之

符號序列。最後，我們可將被建構的可變長度馬可夫模型轉換成隱藏式馬可

夫模型(HMM)，並且再利用它來辨認輸入的單元動作。這項研究主要是結合

可變長度馬可夫模型在學習方面的傑出好處及隱藏式馬可夫模型在容錯辨識

能力的好處。 

 

 ii



A Study on Video-Based Human Action Analysis 

by Isomap Learning and VLMM Techniques 

 
Student：Yu-Ming Liang 

 

Advisors：Dr. Hong-Yuan Mark Liao 

Dr. Cheng-Chung Lin 

Department of Computer Science 

National Chiao Tung University 

Abstract 

Human Action Analysis is a fundamental issue that can be applied to 

different application domains.  In this dissertation, we propose two video 

processing techniques for human action analysis.  First, to automatically analyze 

a long and unsegmented human action video sequence, we propose a framework 

for unsupervised analysis of human action based on manifold learning.  To 

analyze of human action, unsupervised learning is superior to supervised one 

because the former does not require much human intervention beforehand.  

However, the complex nature of human action analysis makes unsupervised 

learning a challenging task.  In this work, a pairwise human posture distance 

matrix is derived from a training action sequence.  Then, the isometric feature 

mapping (Isomap) algorithm is applied to construct a low-dimensional structure 

from the distance matrix.  Consequently, the training action sequence is mapped 
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into a manifold trajectory in the Isomap space.  To identify the break points 

between any two successive atomic action trajectories, we represent the manifold 

trajectory in the Isomap space as a time series of low-dimensional points.  A 

temporal segmentation technique is then applied to segment the time series into 

sub-series, each of which corresponds to an atomic action.  Next, the dynamic 

time warping (DTW) approach is used to cluster atomic action sequences.  

Finally, we use the clustering results to learn and classify atomic actions 

according to the nearest neighbor rule.  If the distance between the input 

sequence and the nearest mean sequence is greater than a threshold, it is regarded 

as an unknown atomic action. 

In our second work, we propose a framework for learning and recognizing 

atomic human actions using variable-length Markov models (VLMMs).  The 

framework comprises two modules: a posture labeling module, and a VLMM 

atomic action learning and recognition module.  In the first stage, a posture 

template selection algorithm is developed based on a modified shape context 

matching technique.  The selected posture templates form a codebook which can 

be used to convert input posture sequences into discrete symbol sequences for 

subsequent processing.  Then, the VLMM technique is applied to learn the 

training symbol sequences of atomic actions.  Finally, the constructed VLMMs 

are transformed into hidden Markov models (HMMs) for recognizing input 

atomic actions.  This approach combines the advantages of the excellent learning 

function of a VLMM and the fault-tolerant recognition ability of an HMM. 
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Chapter 1 

Introduction 

1.1 Motivation 

In recent years, visual analysis of human action has become a popular research 

topic in the field of computer vision.  This is because it has a wide spectrum of 

potential applications, such as smart surveillance [14, 27], human computer 

interfaces [35, 55], content-based retrieval [39, 57], and virtual reality [21, 67].  

Comprehensive surveys of related work can be found in [1, 23, 64].  In [64], 

Wang et al. pointed out that a human action analysis system needs to address two 

low-level processes, namely human detection and tracking, and a high-level 

process of understanding human action.  While the low-level processes have 

been studied extensively, the high-level process has received relatively little 

attention.  In this dissertation, we put our emphasis on video-based human action 

understanding. 
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1.2 Related Work 

Human action usually consists of a series of atomic actions, each of which 

indicates a basic and complete movement.  Therefore, understanding human 

action involves two key issues: 1) how to segment an input action sequence into 

atomic actions; and 2) how to recognize each segmented atomic action.  Many 

approaches have been proposed for these two issues, which we describe in the 

following two subsections, respectively. 

1.2.1 Survey on Atomic Action Segmentation 

Ali and Aggarwal [2] proposed a methodology for automatic segmentation and 

recognition of continuous human activity.  They segmented a continuous human 

activity into separate actions and correctly identified each action.  First, they 

computed the angles subtended by three major components of the human body 

with the vertical axis, namely the torso, the upper component of the leg and the 

lower component of the leg.  Then, they classified frames into breakpoint and 

non-breakpoint frames using these three angles as a feature vector.  Breakpoints 

indicated an action’s commencement or termination.  Finally, each action 

between any two breakpoint frames was trained and classified using the 

corresponding sequence of feature vectors.  In [68], a new method for temporal 

segmentation of human actions was proposed based on a 2D inter-frame similarity 
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plot.  A similarity matrix involved relevant information for analysis of cyclic and 

symmetric human activities was used.  The pattern associated to a periodic 

activity in the similarity matrix is rectangular and decomposable into elementary 

units.  Thus, a morphology-based approach for the detection and analysis of 

activity patterns was proposed, and pattern extraction was then applied for the 

detection of the temporal boundaries of the cyclic symmetric activities.  In [11], 

Chen et al. proposed a framework for automatic atomic human action 

segmentation in continuous action sequences.  They used a star figure enclosed 

by a bounding convex polygon to effectively and uniquely represent the 

extremities of the silhouette of a human body.  Thus, a sequence of the star 

figure’s parameters was used to represent a human action.  Then, they applied 

Gaussian mixture models (GMM) for human action modeling.  Finally, they 

automatically segmented a sequence of continuous human actions using the 

underlying technique of the description model. 

Cuntoor and Chellappa [17] proposed an antieigenvalue-based approach to 

detect key frames by investigating properties of operators that transformed past 

states to observed future states.  The theory of antieigenvalues is based on 

changes in the data, and it is sensitive to how much a data vector is turned from a 

known direction, rather than the direction of persistence.  On the other hand, 

eigenvectors represent the direction of maximum spread of the data and the 

eigenvalues are proportional to the amount of dilation.  In [42], a method for 

segmentation and recognition of human body behavior data was proposed by 
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Nakata.  He proposed a two-step scheme for human behavior recognition: 

analysis of movement correlations among limbs and temporal segmentation of 

motion data.  Inter-limb movement correlations were widely observed in various 

behaviors and well represented contents of behavior, so it would be a universal 

feature value for general behavior.  In general, the combination of inter-limb 

movements can be preserved until the action changes.  Therefore, observing 

changes of inter-limb correlations, they segmented motion capture data into 

temporal fragment of action units.  Hunter et al. [28] proposed a system to 

determine the segment boundaries in a broad range of actions and then to 

discriminate different action-types.  They predicted sub-events using a set of 

basic movement features for a wide range of actions in which a human model 

interacted with objects.  In addition, they created an accessible tool to track 

human actions for use in a wide range of machine vision and cognitive science 

applications. 

1.2.2 Survey on Atomic Action Recognition 

In the action recognition issue, existing methods can be categorized into two 

classes, i.e., 3-D based or 2-D based, depending on the type of human body model 

adopted [40].   
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3-D Based Methods 

Ohya [45] proposed computer vision based methods for analyzing human 

behaviors: estimating postures and recognizing interactions between a human 

body and object.  He developed a heuristic based method and a non-heuristic 

method for estimating postures in 3D from multiple camera images.  The 

heuristic based method analyzes the contour of a human silhouette so that 

significant points of a human body can be located in each image, while the 

non-heuristic method utilizes a curve function for analyzing contours without 

using heuristic rules.  Finally, they used the function-based contour analysis and 

motion vector-based analysis for recognizing the interactions so that the system 

could judge whether the human body interacted with the object.  In [9], Boulay 

et al. presented a new approach for recognizing human postures in video 

sequences.  They first used projections of moving pixels on a reference axis and 

learned 2-D posture appearances through PCA.  Then, they employed a 3-D 

model of the posture to make the projection-based method independent of the 

camera’s position.   

Dockstader et al. [19] proposed a new model-based approach toward the 3-D 

tracking and extraction of gait and human motion.  They suggested a structural 

model of the human body that leveraged the simplicity and robustness of a 3-D 

bounding volume and the elegance and accuracy of a highly parameterized stick 

model.  The hierarchical structural model is accompanied by hard and soft 
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kinematic constraints.  In [66], Werghi proposed a method for recognizing 

human body postures from 3D scanner data by adopting a model-based approach.  

To find a representation for a high power of discrimination between posture 

classes, he developed a new type of 3D shape descriptors, namely wavelet 

transform coefficients (WC).  These features can be seen as an extension to 3D 

of 2D wavelet shape descriptors developed by [56].  Finally, he compared the 

WC with other 3D shape descriptors within a Bayesian classification framework.   

2-D Based Methods 

Using 3-D human body model, one can deal with more complex human actions.  

However, due to the need of developing low-cost systems, complex computations 

and expensive 3-D solutions are not considered for real-time applications.  As a 

result, a number of researchers have proposed their analyses of human action 

based on 2-D postures.  For examples, Haritaoglu et al. [26] proposed the W4 

system, a real time visual surveillance system for detecting and tracking multiple 

people and monitoring their activities in an outdoor environment.  They 

computed the vertical and horizontal projections of a 2-D silhouette image to 

determine the global posture of a subject (standing, sitting, bending, or lying).  In 

[8], Bobick and Davis proposed a new view-based approach for the representation 

and recognition of human movement.  First, they stacked a set of consecutive 

frames to build a 2-D temporal template that characterizes human motion by using 

motion energy images (MEI) and motion history images (MHI).  Moment-based 
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features were then extracted from the MEI and MHI and used for action 

recognition based on template matching.   

Rahman and Ishikawa [50] proposed an automatic human action 

representation and recognition technique.  In their scheme, a tuned eigenspace 

technique for automatic human posture and/or motion recognition that 

successfully overcome the appearance-change problem due to human wearing 

dresses and body shapes was proposed.  In the first stage tuning, they employed 

image pre-processing by Gaussian and Sobel edge filter for reducing a dress effect.  

In the second stage tuning, they proposed a mean eigenspace produced by taking 

the mean of similar postures for avoiding the preceding problem.  Finally, the 

obtained tuned eigenspace was used for recognition of unfamiliar postures and 

actions.  In [37], Lv and Nevatia presented an example based single view action 

recognition system and demonstrated it on a challenging test set consisting of 15 

action classes.  They modeled each action as a series of synthetic 2D human pose 

rendered from a wide range of viewpoints.  First, silhouette matching between 

the input frames and the key poses was performed using an enhanced Pyramid 

Match Kernel algorithm.  And then, the best matched sequence of actions was 

tracked using the Viterbi algorithm.  Li et al. [34] presented an automatic 

analysis of complex individual actions in diving video, and the aim was to provide 

biometric measurements and visual tools for coaching assistant and performance 

improving.  They used 2D articulated human body model fitting and shape 

analysis techniques to obtain the main body joint angles of the athlete.  Finally, 
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they presented two visual analyzing tools for individual sports game training: 

motion panorama and overlay composition. 

In [38], Meng et al. proposed a human action recognition system for 

embedded computer vision applications.  They addressed the limitations of the 

well known MHI and proposed a new hierarchical motion history histogram 

(HMHH) feature to represent the motion information.  HMHH not only provides 

rich motion information, but also remains computationally inexpensive.  Finally, 

they extracted a low dimension feature vector from the combination of MHI and 

HMHH and then used the feature vector for the support vector machine (SVM) 

classifiers.  Hsieh et al. [27] presented a novel posture classification system for 

analyzing human movements directly from video sequences.  In their schemes, 

each sequence of movements was converted into a posture sequence.  They 

triangulated the posture into triangular meshes, and then extracted two features: 

the skeleton feature and the centroid context feature.  The first feature was used 

as a coarse representation of the subject, while the second was used to derive a 

finer description.  They generated a set of key postures from a movement 

sequence based on these two features such that the movement sequence was 

represented by a symbol string.  Therefore, matching two arbitrary action 

sequences became a symbol string matching problem. 
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1.3 Overview of the Proposed Methods 

Most of the approaches mentioned above are supervised learning-based.  

However, since the atomic actions are unknown beforehand, a large number of 

manually labeled training examples must be collected when using a supervised 

learning approach.  Therefore, unsupervised learning approaches are always 

preferable for human action analysis.  In this dissertation, we propose two video 

processing techniques for human action analysis.  First, to automatically analyze 

a long and unsegmented human action sequence, we propose an unsupervised 

analysis of human action scheme based on manifold learning.  Second, to learn 

segmented atomic action sequences, we propose a learning atomic human actions 

scheme using variable-length Markov models (VLMMs).  A brief overview of 

the proposed methods is given as follows. 

Unsupervised Analysis of Human Action Based on Manifold 

Learning 

In this work, we propose a framework for unsupervised analysis of long and 

unsegmented human action sequences based on manifold learning.  First, a 

pairwise human posture distance matrix, based on a modified shape context 

matching technique, is derived from a training action sequence.  Then, the 

isometric feature mapping (Isomap) algorithm is applied to construct a 

low-dimensional structure from the distance matrix.  Consequently, the training 
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action sequence is mapped into a manifold trajectory in the Isomap space.  To 

identify the break points between any two successive atomic action trajectories, 

we represent the manifold trajectory in the Isomap space as a time series of 

low-dimensional points.  A temporal segmentation technique is then applied to 

segment the time series into sub-series, each of which corresponds to an atomic 

action.  Next, the dynamic time warping (DTW) approach is used to cluster 

atomic action sequences.  Finally, we use the clustering results to learn and 

classify atomic actions according to the nearest neighbor rule.  If the distance 

between the input sequence and the nearest mean sequence is greater than a 

threshold, it is regarded as an unknown atomic action. 

Learning Atomic Human Actions Using Variable-Length Markov 

Models 

In this work, we propose a framework for learning and recognizing segmented 

atomic human action sequences using VLMMs.  The framework is comprised of 

two modules: a posture labeling module, and a VLMM atomic action learning and 

recognition module.  First, a posture template selection algorithm, based on the 

modified shape context matching technique, is developed.  The selected posture 

templates form a codebook that is used to convert input posture sequences into 

discrete symbol sequences for subsequent processing.  Then, the VLMM 

technique is applied to learn the training symbol sequences of atomic actions.  

Finally, the constructed VLMMs are transformed into hidden Markov models 

(HMMs) for recognizing input atomic actions.  This approach combines the 
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advantages of the excellent learning function of a VLMM and the fault-tolerant 

recognition ability of an HMM. 

1.4 Dissertation Organization 

The remainder of this dissertation is organized as follows.  In Chapter 2, we 

introduce the prerequisite materials of this dissertation, i.e., shape context, 

manifold learning, and variable-length Markov model.  In Chapter 3, the 

proposed framework for unsupervised analysis of human action based on 

manifold learning is described in detail.  In Chapter 4, we propose a framework 

for understanding human atomic actions using VLMMs.  Finally, in Chapter 5, 

we present our conclusions and future work. 
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Chapter 2  

Background Knowledge on Shape 

Context, Manifold Learning, and 

Variable-Length Markov Model 

2.1 Shape Context 

Shape context, proposed by Belongie et al. [5], is a shape descriptor, and it can be 

used for measuring shape similarity and recovering point correspondences.  

Therefore, shape context is usually applied to shape matching and object 

recognition.  In the shape context theory, a shape is represented by a discrete set 

of sampled points, .  For each point , a coarse 

histogram h

},...,,{ 21 npppP = Ppi ∈

i of the relative coordinates of the remaining n-1 points is computed as 

follows: 

( ) #{   :   ( ) bin( )}i j i j ih k p p p p k= ≠ − ∈       (2.1) 
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The histogram is defined to be the shape context of pi.  To make the descriptor 

more sensitive to positions of nearby sample points than to those of points farther 

away, the bins used in the histogram are uniform in a log-polar space.  An 

example of shape context computation and matching is shown in Figure 2.1. 

 

 

 

Figure 2.1. Shape context computation and matching: (a) and (b) show the 
sampled points of two shapes; and (c)-(e) are the local shape contexts 
corresponding to different reference points. A diagram of the log-polar space is 
shown in (f), while (g) shows the correspondence between points computed using 
a bipartite graph matching method. 
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2.1 Shape Context  

Assume that pi and qj are points of the first and second shapes, respectively.  

The shape context approach defines the cost of matching the two points as 

follows: 

∑
= +

−
=

K

k ji

ji
ji khkh

khkh
qpC

1

2

)()(
)]()([

2
1),( ,        (2.2) 

where hi(k) and hj(k) denote the K-bin normalized histograms of pi and qj, 

respectively.  The cost  for matching points can include an additional 

term based on the local appearance similarity at points p

( , )i jC p q

i and qj.  This is 

particularly useful when the shapes are derived from gray-level images instead of 

line drawings. 

Give the set of costs  between all pairs of points p( , )i jC p q i and qj, shape 

matching is accomplished by minimizing the following total matching cost: 

∑=
i

ii qpCH ),()( )(ππ ,          (2.3) 

where π is a permutation of 1, 2, …, n.  Due to the constraint of one-to-one 

matching, shape matching can be considered as an assignment problem that can 

be solved by a bipartite graph matching method.  A bipartite graph is a graph 

, where  and {  are two disjoint sets of vertices, 

and E is a set of edges connecting vertices from 

( { } { },i jG V p q E= = ∪ ) { }ip }jq

{ }ip  to { .  The matching 

of a bipartite graph is to assign the edge connection.  There are many matching 

}jq
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algorithms for bipartite graphs described in [4].  Here, the resulting 

correspondence points are denoted by ( ){ }( ), , 1,2,...,i ip q i nπ =  or 

( ){ }( ), , 1,2,..., ,i iq p i mπ =  where n and m are the numbers of sample points on 

shapes P and Q, respectively.  Therefore, the shape context distance between two 

shapes, P and Q, can be computed as follows: 

∑∑ +=
j

jj
i

iisc pqC
m

qpC
n

QPD ),(1),(1),( )()( ππ .     (2.4) 

2.2 Manifold Learning 

Manifold learning is a popular approach for nonlinear dimensionality reduction 

[36].  The purpose of dimensionality reduction is to map a high-dimensional data 

set into a low-dimensional space, while preserving most of the instinct structure in 

the data set.  This is very important because many classifiers perform poorly in a 

high-dimensional space given a small number of training samples.  Due to the 

prevalence of high-dimensional data, dimensionality reduction techniques have 

been popularly applied to many applications such as pattern recognition, data 

analysis, and machine learning.  Most dimensionality reduction methods are 

linear, meaning that the extracted features are linear functions of the input features.  

Classical linear dimensionality reduction methods include the principal 

component analysis (PCA) [31, 60] and multidimensional scaling (MDS) [15].  

Although the linear methods are easy to understand and are very simple to 
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implement, the linearity assumption does not lead to good results in many 

real-world applications.  As a result, the design of nonlinear mapping methods is 

derived in a general setting. 

Nonlinear mapping algorithms have been proposed recently based on the 

assumption that the data lie on a manifold.  Thus, dimensionality reduction can 

be achieved by constructing a mapping that respects certain properties of the 

manifold.  Popular manifold learning algorithms include the Isomap algorithm 

[58], the locally linear embedding (LLE) algorithm [54], and the Laplacian 

eigenmaps (LE) algorithm [6].  Each manifold learning algorithm tries to 

preserve a different geometrical property of the underlying manifold.  Local 

approaches such as LLE and LE aim to preserve the proximity relationship among 

the data, while global approaches like Isomap aim to preserve the metrics at all 

scales.  Thus, the global approaches give a more faithful embedding [36].  An 

example of dimensionality reduction is shown in Figure 2.2.  Figure 2.2 (a) 

shows a 3-D data set, “Swiss Roll”, and the 2-D embedding manifolds recovered 

by using PCA, MDS, Isomap, LLE, and LE algorithms are shown in Figures 2.2 

(b)-(f), respectively.  Since we apply the Isomap algorithm to our first work, in 

what follows we introduce the Isomap algorithm in more details. 
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(a)                                (b) 

    

(c)                                (d) 

    
(e)                                (f) 

Figure 2.2. The 2-dimensional embedding manifolds of “Swiss Roll” computed 
with five different dimensionality reduction techniques: (a) Original 3-D data set, 
(b) PCA, (c) MDS, (d) Isomap, (e) LLE, and (f) LE. 
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2.2.1 Isomap Algorithm 

The Isomap algorithm tries to find a low-dimensional Euclidean space that best 

preserves the geodesic distances between any two data points in the original 

high-dimensional space [58].  Since the manifold learning approach assumes that 

the data set have a low-dimensional structure, it is more appropriate to measure 

the distance between any two data points by their geodesic distance along the 

curve of the low-dimensional structure, rather than the Euclidean distance in the 

high-dimensional space.  Therefore, the Isomap algorithm is to estimate the 

geodesic distances by the shortest paths in the neighborhood graph derived from 

connecting neighboring points.  The algorithm comprises the following three 

steps: 

1. Construct neighborhood graph: A weighted graph is constructed by 

connecting each point to its neighborhoods, and the weight of each edge is 

equal to the distance between the two points.  The neighborhoods of each 

point can be determined using either the k nearest neighbor rule or points 

situated within a hyper-sphere of radius ε. 

2. Compute the pairwise geodesic distances: The pairwise geodesic distance 

between any two nodes of the neighborhood graph is estimated by computing 

the shortest path between them on the graph. 

3. Construct a d-dimensional embedding: The classic MDS algorithm [15] is 

applied to construct a d-dimensional embedding of the data.   
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Note that the difference between MDS and Isomap is that the Isomap uses the 

geodesic distance whereas MDS does not. 

An important issue with the Isomap algorithm is how to determine the 

dimension d of the Isomap space.  The residual variance, dR , defined in the 

following equation is used to evaluate the error of dimensionality reduction 

21 ( ,dR r= − G D ),d            (2.5) 

where G denotes the geodesic distance matrix; Dd denotes the Euclidean distance 

matrix in the d-dimensional space; and  is the correlation coefficient of 

G and D

( , )dr G D

d.  The value of d is determined using a trial and error approach to 

reduce the residual variance.  Another important issue is how to construct a 

d-dimensional embedding of the data based on the MDS algorithm, in what 

follows we introduce the MDS algorithm in more detail. 

Multidimensional Scaling 

The objective of MDS [15] is to find the Euclidean distance reconstruction that 

best preserves the inter-point distances.  Given a distance matrix 

, where  is the distance between points i and j, MDS 

constructs a set of n points in the d-dimensional Euclidean space such that 

inter-point distances are close to those in G.  Let 

n n
ijg ×⎡ ⎤= ∈ℜ⎣ ⎦G ijg

1( ,..., )T
i i idx x=x  denote the 
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coordinates of the ith point in Isomap’s Euclidean space.  The Euclidean distance 

between the ith and jth points can be computed as follows: 

2 ( ) ( ) 2T T T
ij i j i j i i j j id = − − = + −x x x x x x x x x x .T

j      (2.6) 

To overcome the indeterminacy of the solution due to arbitrary translation, the 

following zero-mean assumption is imposed: 

1
0.

n

i
i=

=∑x             (2.7) 

From Equations (2.6) and (2.7), the inner product between xi and xj can be derived 

as follows: 

2 2 2
2

1 1 1 1

1 1 1 1( )
2

n n n n
T

ij i j ij ij ij ij
i j i j

b d d d
n n n= = = =

= = − − − + 2 .d∑ ∑ ∑∑x x     (2.8) 

Let  denote the distance matrix computed in the Isomap space.  Since 

the Isomap space is determined such that  is close to G, the inner product 

matrix  can be obtained by 

ijd⎡ ⎤= ⎣ ⎦D

D

ijb⎡ ⎤= ⎣ ⎦B

1 ,
2

= −B HGH            (2.9) 

where 1 T

n
= −H I 11  is the centering matrix with [ ]1,1,...,1 T=1 , a vector of n 

ones. Let  be the 1[ ,..., ]T
n=X x x dn×  matrix of the unknown coordinates of 
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the n points in the Isomap space.  Then, the inner product matrix can be 

expressed as .  To compute X from B, we decompose B into , 

where 

T=B XX TVΛV

1 2diag( , ,..., )nλ λ λ=Λ , 1 2 0nλ λ λ≥ ≥ ≥ ≥" , is the diagonal matrix of 

eigenvalues and 1 2[ , ,..., ]n=V v v v  is the matrix of corresponding eigenvectors.  

The coordinate matrix X can be calculated as follows: 

1
2' ' ,=X V Λ             (2.10) 

where 
1 1 1
2 2 2

1 2' diag( , ,..., )d

1
2λ λ λ=Λ  and 1 2' [ , ,..., ]d=V v v v . 

2.3 Variable-Length Markov Model 

A VLMM technique is usually applied to deal with a class of random processes in 

which the amount of memory is variable, in contrast to an nth-order Markov 

model for which the amount of memory is fixed.  The advantage over a fixed 

memory Markov model is the ability to locally optimize the amount of memory 

required for prediction.  Therefore, the VLMM technique is frequently applied to 

language modeling problems [25, 52] because of its powerful ability to encode 

temporal dependencies.   

As shown in Figure 2.3, a VLMM can be regarded as a probabilistic finite 

state automaton (PFSA) ),,,,( τ γ πVS=Λ  [52], where 

 S denotes a finite set of model states, each of which is uniquely labeled by a 
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symbol string representing the memory of a conditional transition of the 

VLMM, 

 V denotes a finite observation alphabet, 

 SVS →×:τ  is a state transition function such that 1( , )j js v sτ +→ , 

 ]1,0[: →×VSγ  represents the output probability function with 

,1),( ,∑ ∈
=∈∀

Vv
vsSs γ  and 

 ]1,0[: →Sπ  is the probability function of the initial state satisfying 

. ∑∈
=

Ss
s 1)(π

In the following subsections, we consider the VLMM learning in Section 2.3.1 

followed by the VLMM recognition in Section 2.3.2. 

 

 

Figure 2.3. An example of a VLMM 
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Figure 2.4. The PST for constructing the VLMM shown in Figure 2.3 

 

2.3.1 VLMM Learning 

The topology and the parameters of a VLMM can be learned from training 

sequences by optimizing the amount of memory required to predict the next 

symbol.  Usually, the first step of training a VLMM involves constructing a 

prediction suffix tree (PST) [52].  A PST contains the information of the prefix 

of a symbol learned from the training data.  Therefore, this prefix/suffix 

relationship helps to determine the amount of memory required to predict the next 

symbol.  After the PST is constructed from the training sequences, the PST is 

converted to a PFSA representing the trained VLMM.  Figure 2.4 depicts the 

PST constructed from a training sequence for converting the VLMM shown in 
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Figure 2.3.   

Except for the root node, each node of the PST represents a non-empty 

symbol string, and each parent node represents the longest suffix tree of its child 

nodes.  In addition,  is the output probability distribution of the next 

symbol  of each node s that satisfies 

)|( svP

v ∑∈Vv
svP 1)|( = .  The output and prior 

probabilities can be derived from the training symbol sequences as follows 

)(
)()|(

sN
svNsvP = ,           (2.11) 

0

)()(
N

sNsP = ,            (2.12) 

where  is the number of occurrences of string s in the training symbol 

sequences, and  denotes the size of the training symbol sequences. 

)(sN

0N

To optimize the amount of memory required to predict the next symbol, it is 

necessary to determine when the PST growing process should be terminated.  

Assume that s is a node with the output probability , and  is its child 

node with the output probability .  We choose a termination criterion in 

order to avoid degrading the prediction performance of the reconstructed VLMM.  

Note that if the child node’s output probability  used to predict the next 

symbol, v, is significantly better than the output probability  of the parent 

node, the child node is a deemed better predictor than the parent node; therefore, 

)|( svP sv'

)'|( svvP

(vP

|(vP

)'| sv

)s
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)'|( svvP )|( svP

the PST should be grown to include the new child node.  However, if the 

inclusion of a new child node does not improve the prediction performance 

significantly, the new child node should be discarded.  Usually, the weighted 

Kullback-Leibler (KL) divergence [10] is applied to measure the statistical 

difference between the probabilities  and  as follows: 

∑=Δ
v svP

vvP
|(
'|(log ssvvPsvPssvH
)
))'|()'(),'( .      (2.13) 

If  is greater than a given threshold, the node  is added to the tree.  

In addition to the KL divergence criterion, a maximal-depth constraint of the PST 

is imposed to further limit the PST’s size.   

),'( ssvHΔ sv'

After the PST has been constructed, it must be transformed into a PFSA.  

First, the leaf nodes of the PST are defined as the states of the PFSA, and the 

latter’s initial probability function is defined according to the probabilities of leaf 

nodes.  Then, the transition function can be defined according to the symbol 

string combined from leaf nodes and their prediction symbols.  The output 

probability function is defined based on the output probability distribution of the 

next symbol of each leaf node.  Finally, the PFSA can be derived from the PST.  

For example, Figure 2.3 shows the PFSA derived from a PST shown in Figure 2.4. 
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2.3.2 VLMM Recognition 

After a VLMM has been trained, it is used to predict the next input symbol 

according to a variable number of previously input symbols.  In general, a 

VLMM decomposes the probability of a string of symbols, ToooO ...21= , into the 

product of conditional probabilities as follows: 

∏
=

−− Λ=Λ
T

j
jdjj oooPOP

j
1

1 ),|()|( " ,       (2.14) 

where oj is the j-th symbol in the string and dj is the amount of memory required 

to predict the symbol oj. 

The goal of VLMM recognition is to find the VLMM that best interprets the 

observed string of symbols, T21 oooO ...= , in terms of the highest probability.  

Therefore, the recognition result can be determined as model  as follows: *i

i
).|(maxarg*

iOPi Λ=          (2.15) 
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Chapter 3  

Unsupervised Analysis of Human 

Action Based on Manifold Learning 

In this chapter, we describe the proposed framework for unsupervised analysis of 

long and unsegmented human action sequences based on manifold learning.  

First, we give an introduction about this research topic.  The proposed approach 

is then described.  Next, we detail the experiment results.  Finally, conclusions 

are given. 

3.1 Introduction 

In general, unsupervised learning is more difficult than supervised learning, so the 

number of published unsupervised learning methods is much smaller than that of 

supervised ones.  Wang et al. [65] proposed an unsupervised approach for 

analyzing human gestures.  They segmented the sequences of a human motion 

into atomic components and trained an HMM for each atomic component.  Then, 
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they applied a hierarchical clustering approach to cluster the segmented 

components using the distances between the HMMs.  Based on the clustering 

result, each atomic action can be converted into a discrete symbol.  Finally, they 

extracted behavior lexicons from discrete symbols using the COMPRESSIVE 

algorithm [43].  Zhong et al. [72] proposed an unsupervised technique for 

detecting unusual events in a large video set.  First, the features of each frame in 

the video set were extracted and classified into prototypes using the k-means 

algorithm.  Second, the video sequences were divided into equal length segments.  

Third, a segment-prototype co-occurrence matrix was computed so that the 

segments could be clustered using the document-keyword clustering method 

proposed in [18].  Finally, unusual video segments were identified by finding 

clusters far away from the others.  Turaga et al. proposed a vocabulary model for 

dynamic scenes and presented algorithms for unsupervised learning of the 

vocabulary from long video sequences [59].  They first segmented a video 

sequence into action elements, each of which was modeled as a linear time 

invariant (LTI) dynamical system.  Next, they clustered those segments to 

discover distinct action elements using the distances between the LTI systems [13].  

Then each segment was assigned a discrete symbol, and persistent activities in the 

symbol sequence were identified by using n-gram statistics. 

The above-mentioned approaches show that a general unsupervised system 

for human action analysis usually involves three stages: temporal segmentation, 

atomic action clustering, and atomic action learning and classification.  Since the 
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human shape can be modeled as an articulated object with a high degree of 

freedom, the dimensions of a human shape descriptor are usually very large.  

Under these circumstances, the computation required for temporal segmentation, 

clustering and classification in a high dimensional feature space is not intuitive 

and may be very time consuming.  Theoretically, a continuous human action 

sequence can be viewed as the variation of human postures lying on a 

low-dimensional manifold embedded in a high-dimensional space, which can be 

learned effectively from a set of training data [36].  In this chapter, we propose a 

framework for unsupervised analysis of human action based on manifold learning. 

The goal of manifold learning, discussed in Section 2.2, is to discover a 

low-dimensional structure from a set of high-dimensional data.  In recent years, 

some researchers have applied manifold learning algorithms to different tasks in 

the field of human action analysis, e.g., 3D body pose recovery [20], human 

tracking [41, 51], and human action recognition [12, 62].  The human action 

recognition methods proposed in [12, 62] are similar to the proposed approach, 

but they adopt a supervised learning method for human action recognition and 

they do not address the problems of temporal segmentation. 

The main contribution of this study is that we propose a framework for 

unsupervised analysis of human action based on the Isomap algorithm.  First, we 

propose a convex-hull shape contexts (CSC) descriptor to represent a human 

posture.  Since the Isomap algorithm can preserve the CSC distance between any 

two postures of a training sequence and give a more faithful embedding, 
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mentioned in Section 2.2, we compute a CSC-based distance matrix and apply the 

Isomap algorithm to construct a low-dimensional structure from it.  As a result, 

the training action sequence is mapped into a manifold trajectory in the Isomap 

space during the training process.  To separate an action sequence into atomic 

actions precisely, the break points between any two consecutive atomic actions 

must be identified.  To do this, we represent a manifold trajectory as a time series 

of low-dimensional points, and use a temporal segmentation technique to segment 

the manifold trajectory into atomic actions correctly.  Next, we apply a DTW 

algorithm to perform atomic action sequence clustering.  Finally, we use the 

clustered results to represent each cluster by an exemplar.  For an input atomic 

action, we use the nearest neighbor rule to classify it into the correct category. 

3.2 The Proposed Approach 

Figure 3.1 shows the flowchart of the proposed method.  The proposed approach 

comprises five stages: Posture representation and matching, Isomap learning of 

human action, temporal segmentation, atomic action clustering, and atomic action 

learning and classification, which we describe in the following four subsections, 

respectively. 
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Training action sequence 

Convex-hull shape contexts 

Pairwise distance matrix 

Isomap Learning 

A series of low-dimensional 
points 

Atomic action sequences 

Atomic action clustering 

Clustering results 

Atomic action learning 
and classification 

Temporal segmentation 

Figure 3.1. The flowchart of the proposed method 
 

3.2.1 Posture Representation and Matching 

Human action usually consists of a series of discrete human postures, as shown in 

Figure 3.2.  Therefore, a human posture can be represented by a silhouette image, 

and a shape matching process can be used to assess the difference between two 

postures.  For simplicity, it is assumed that the input video sequence has been 
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processed to obtain the human silhouette sequence, i.e., the action sequence.  To 

construct a low-dimensional structure of human action from a training action 

sequence, the human posture must be represented effectively in the 

high-dimensional space.  Therefore in this work, we modify the shape context 

technique, discussed in Section 2.1, to represent the human posture and deal with 

the posture matching problem.  This modified method is aimed to improve the 

efficiency of posture matching with the prerequisite of not sacrificing too much 

the matching accuracy. 

 

…

…

… 
Figure 3.2. Human action consists of a series of discrete human postures 

 

Although the shape context matching algorithm usually provides satisfactory 

results, the computational cost of applying it to a large database of human 

postures is so high that is not feasible.  To reduce the computation time, we only 

compute the local shape contexts at certain critical reference points, which should 
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be easily and efficiently computable, robust against segmentation error, and 

critical to defining the shape of the silhouette.  Note that the last requirement is 

very important because it helps preserve the informative local shape context.  In 

this dissertation, the critical reference points are selected as the vertices of the 

convex hull of a human silhouette.  Matching based on this modified shape 

context technique can be accomplished by minimizing a modified version of 

Equation (2.3) as follows: 

∑
∈

=
Ap

pqpCH ),()(' )(ππ ,         (3.1) 

where A is the set of convex hull vertices and H′ is the adapted total matching cost.  

However, reducing the number of local shape contexts to be matched will also 

increase the influence of false matching results.  To minimize the false matching 

rate, the ordering constraint of the vertices has to be imposed.  However, since 

traditional bipartite graph matching algorithms [4] do not consider the order of all 

sample points, they are not suitable for our algorithm. Therefore, dynamic 

programming is adopted in the shape matching process.  Suppose a shape P 

includes a set of convex hull vertices, A, and another shape Q includes a set of 

convex hull vertices, B.  The CSC distance can be calculated as follows: 

∑∑
∈∈

+=
Bq

q
Ap

p pqC
B

qpC
A

QPD ),(1),(1),( )()(csc ππ .     (3.2) 

An example of CSC matching is shown in Figure 3.3.  There are three 

important reasons why convex-hull shape contexts can deal with the posture shape 
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matching problem effectively. 

1. Since the number of convex hull vertices is significantly smaller than the 

number of whole shape points, the computation cost can be reduced 

substantially. 

2. Convex hull vertices usually include the tips of human body parts; hence 

they can preserve more salient information about the human shape, as shown 

in Figure 3.2(a). 

3. Even if some body parts are missed by human detection methods, the 

remaining convex hull vertices can still be applied to shape matching due to 

the robustness of computing the convex hull vertices, as shown in Figure 3.3. 

 

 

Figure 3.3. Convex hull-shape contexts matching: (a) and (b) show the convex 
hull vertices of two shapes; (c) shows the correspondence between the convex hull 
vertices determined using shape matching. 
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3.2.2 Isomap Learning of Human Action 

When each silhouette in the training action sequence is represented as a CSC 

descriptor, a pairwise shape distance matrix can be calculated based on the shape 

matching.  The computed distance matrix is used to construct an Isomap using 

the method described in Section 2.2.1.  As a result, each human silhouette is 

transformed into a low-dimensional point in the Isomap space.  Figure 3.4 shows 

the residual variance of the Isomap on the training data computed with different 

values of d, from which the number of dimensions of the Isomap space can be 

selected as four.  Figure 3.5 shows the constructed 4-D Isomap space. 

 

 

Figure 3.4. The residual variance of Isomap on the training data 
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(a)                                  (b) 
Figure 3.5. The constructed 4-D Isomap space: the manifold trajectory of the 
action sequence projected on to (a) the first three dimensions (dims. 1-3), and (b) 
the last three dimensions (dims. 2-4). 
 

3.2.3 Temporal Segmentation 

The purpose of temporal segmentation is to identify suitable break points to 

partition a continuous action sequence into atomic actions.  In Figure 3.5, it is 

obvious that different atomic actions that can be distinguished using the CSC 

descriptors will have different trajectories.  Therefore, the segmentation process 

involves identifying the break points between any two successive atomic action 

trajectories.  To deal with this problem, we first represent the manifold trajectory 

as a time series of d-D data points and then calculate the magnitude (i.e., the two 

norm) of each point, as shown in Figure 3.6.  In general, a human motion slows 

down at the boundary of an atomic action.  Therefore, the local minima and the 

local maxima of the magnitude series can be regarded as candidate break points.  

Furthermore, since humans usually return to a rest posture after completing an 
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atomic action, we define the points that indicate low-speed actions and the 

postures adjacent to the rest posture as the break points of atomic actions.  Note 

that, since rest postures appear in nearly almost all atomic actions, they are 

usually the most common postures mapped in the neighborhood of the origin of 

the Isomap space due to the zero-mean assumption formulated in Equation (2.7).  

Therefore, we only use the local minima as break points to derive atomic action 

sequences.  In the magnitude series shown in Figure 3.6, there are eleven local 

minima, which divide the action trajectory into ten atomic actions. 

 

 

 

Figure 3.6. The time series of data points and corresponding magnitudes after 
Gaussian smoothing 
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3.2.4 Atomic Action Clustering 

After segmenting the training action sequence, the segmented actions are clustered 

to identify and model each atomic action.  Since the duration of each segmented 

action sequence is different, the DTW algorithm [48] is used to cluster the 

segmented action sequences.  DTW aligns and compares two sequences by 

finding an optimal warping path between them.  For example, suppose we have 

two sequences: 1 2( , ,..., )mA = a a a  and 1 2( , ,..., )nB = b b b , where ai and bj are 

d-D vectors in the Isomap space.  A warping path ( (1), (2),..., ( ))W w w w m=  is 

used to align A with B, where ( )j w i=  means that ai is aligned with bj.  The 

warping path is computed with the following three constraints: 1 , 

, and .  The distance between A and B along the 

warping path W can then be calculated as follows: 

(1w= )

)( )n w m= ( 1) (w k w k+ ≥

( )
1

1( , ) .
m

W i
i

D A B
m =

= −∑ a bw i

WW

         (3.3) 

The objective of the DTW is to find the warping path that minimizes the distance 

.  Therefore, the DTW matching score between A and B can be 

calculated by 

( , )WD A B

( , ) min{ ( , )}.DTW A B D A B=         (3.4) 

Since the definition of DTW matching score is not symmetric, we define the DTW 
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action distance between two segmented action sequences by 

1( , ) ( ( , ) ( , )).
2

AD A B DTW A B DTW B A= +       (3.5) 

After calculating the pairwise action distances between all segmented actions, we 

group similar atomic actions into one cluster using the hierarchical clustering 

algorithm [29]. 

3.2.5 Atomic Action Learning and Classification 

In this step, the mean trajectory of each cluster is used as an exemplar to represent 

the cluster.  The time warping paths computed by DTW are used to normalize the 

duration of each segmented action sequence in a cluster in order to calculate the 

mean trajectory.  Meanwhile, the exemplars of the atomic actions are utilized to 

classify a new input action based on the nearest-neighbor approach using the 

DTW distance defined in Equation (3.5).  To recognize a new input action 

sequence, we need to map the new sequence into the Isomap space.  Since the 

Isomap space is only constructed for the training data, to project new test points 

into the Isomap space, both the neighborhood graph and the geodesic distance 

must both be recomputed.  Then, the MDS approach can be applied to generate a 

new Isomap space.  However, reconstructing the Isomap with new data is very 

time consuming, especially when the size of the new input sequence is large.  To 

resolve this problem, Law and Jain [33] proposed an incremental Isomap learning 
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method, which avoids spending time on “batch” Isomap construction.  

Specifically, the method only updates the neighbor graph and the geodesic 

distance for partial points related to the new sample to identify the coordinates of 

that sample, after which it updates the coordinates of all the points.  Although the 

approach can reduce a certain amount of computation time, it is still a 

time-consuming process.  In this work, we propose another way to deal with the 

problem.  We find that it is not necessary to build a new Isomap space for atomic 

action recognition unless a new action model is added.  Therefore, as proposed 

in [33], we simply estimate the coordinates of a new sample to project the new 

data points into the existing Isomap space. 

Suppose that the coordinates of the training data points are [ ]1 2, ,..., nx x x  

and the coordinate vector of a new data point is denoted by xn+1.  Then, the 

summation over 1,..., 1i n + 1,..., 1j n and +  for dij in Equation (2.6) leads to = =

2
1 1 ( 1)

1 1

1 1n n
T
n n i n i i

i i

d
n n+ + +

= =

= −∑ ∑x x x xT .        (3.6) 

The inner product of xn+1 and xj can also be calculated using Equation (2.6) as 

follows: 

2
1 ( 1) 1 1

1 (
2

T T
n j n j n n j jd+ + + += − − −x x x x x x )T

j

.       (3.7) 

Then, from Equations (2.6), (3.6) and (3.7), the value of  can be calculated 1
T
n+x x
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by 

2 2 2 2
1 ( 1) ( 1) 2

1 1 1 1

1 1 1 1( )
2

n n n n
T
n j n j i n ij ij

i i i j
d d d d

n n n+ + +
= = = =

= − − − + =∑ ∑ ∑∑x x jf .  (3.8) 

Therefore, 

[ ] [ ]1 1 1
T

n n n,..., ,...,T f f= =x x x f+ .        (3.9) 

Substituting Equation (2.10) into Equation (3.9), we have 

1 1 1d d n+( ,..., )Tλ λ =v v x f .         (3.10) 

Then, the least-square solution of xn+1 can be derived as follows: 

1 1
1

1 1( ,..., )T
n

dλ λ+ =x v f vT T
df

k

.        (3.11) 

After each human posture in the test action sequence has been projected into the 

Isomap space, the test sequence can be classified into a cluster using the 

nearest-neighbor approach based on the DTW distance.  We use a threshold to 

judge whether an unknown action sequence belongs to one of the learned clusters.  

If the action distance between the unknown action sequence and the nearest mean 

sequence is greater than the threshold value, the unknown action is regarded as a 

new action.  The threshold is set assigned as 2kμ σ+ , where kμ  and kσ  are, 

respectively,  the mean and the standard deviation of the distances between the 
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training action sequences and the exemplar of the kth cluster. 

Although not building a new Isomap for atomic action recognition saves a 

great deal of computation time, by Equation (3.8), we still have to calculate the 

CSC distances between a new human posture and all of the training postures.  

However, computing the CSC distances is inefficient when the number of training 

postures is large.  To resolve this problem, we propose the following accelerated 

mapping approach.  First, based on the k-means algorithm, we replace the 

training postures with a set of key data points selected from the training set in the 

Isomap space.  Then, based on Equations (3.6)-(3.9), we use the key data points 

to estimate the coordinate vector of a new data point.  Because the equations are 

derived based on the zero-mean assumption about training data points, we have to 

translate the coordinates of the key data points as follows: 

,′ = −x x x
i ia a a

k

           (3.12) 

where are the key data points and , 1,...,
ia i =x

1

1
i

k

a
ik =

= a∑x x .  Therefore, the 

inner product of 1n+′x  and all of the key data points can be calculated by applying 

Equation (3.9): 

1 11 1k k

T

a a n a n a a a+ + ⎤⎣ ⎦ ⎣ ⎦,..., ,...,
T T f f⎡ ⎤ ⎡′ ′ ′ ′ ′ ′= = =x x x X x f .     (3.13) 

Then, the least-square solution of 1n+′x  can be derived as follows: 
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1T −
1 ( ) T

n a a a a+′ =x X X X f .          (3.14) 

Finally, the coordinate vector of a new data point 1n+x  can be calculated by 

1n+′ +x xa
T.  Note that  in Equation (3.14) can be computed 

beforehand; thus, estimating the coordinates of a new posture in the embedded 

Euclidian space is very efficient. 

1( )T
a a a

−X X X

3.3 Experiments 

We conducted a series of experiments to evaluate the effectiveness of the 

proposed method.  The data used in the experiments included one training 

sequence and three test sequences performed by two human subjects.  The 

training data contained 25 atomic action sequences comprised of 1983 frames that 

belonged to five different classes of actions performed by subject 1.  Some 

typical image frames of each atomic action class are shown in Figure 3.7.  Using 

the Isomap algorithm, a 4-D Isomap space was constructed from the training data, 

as shown in Figure 3.8.  Next, we represented the manifold trajectory in Figure 

3.8 as a time series of data points, and then applied temporal segmentation to the 

time series.  The results of temporal segmentation are shown in Figure 3.9.  

Using atomic action clustering, the segmented atomic actions were correctly 

grouped into five clusters, and five exemplar mean trajectories (see Figure 3.10) 

were computed to represent the obtained clusters. 
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Figure 3.7. The five classes of atomic actions used for training 

 

 

  

(a)                                  (b) 
Figure 3.8. The Isomap space constructed from the training data: the 4-D manifold 
trajectory projected on to (a) the first three dimensions (dims. 1-3), and (b) the last 
three dimensions (dims. 2-4). 
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(a) 

 
(b) 

Figure 3.9. The results of temporal segmentation of (a) the time series, and (b) the 
human posture sequence 

  

(a)                                  (b) 
Figure 3.10. Five mean trajectories representing the five classes of atomic actions 
are plotted in different colors. 
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Next, we used three test action sequences to evaluate the performance of the 

proposed temporal segmentation method and the action classifier.  The 

projection of the test data into the Isomap space was accomplished by using the 

method proposed in [33].  In the first two test sequences, all the atomic actions 

performed by the two subjects belonged to the five learned action clusters.  The 

first test sequence was performed by subject 1, who provided 22 atomic actions.  

Figure 3.11 shows the atomic action trajectories constructed by mapping the new 

test data into the Isomap space using the method described in Section 3.2.5.  In 

this experiment, all atomic actions were correctly segmented and classified.  The 

second test sequence, which contained 46 atomic actions, was obtained from 

subject 2.  In the constructed atomic action trajectories, shown in Figure 3.12, all 

the atomic actions were also correctly segmented and classified.  The third test 

sequence was obtained by asking subject 1 to perform new actions that were 

different from all the trained atomic actions.  The constructed atomic action 

trajectories and five mean trajectories are shown in Figure 3.13.  Using the 

proposed action classification method, these atomic actions were all successfully 

classified as unknown actions. 
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(a)                                  (b) 
Figure 3.11. The atomic action trajectories constructed from test data sequence 1 
and the classification results 

 

 
 

  

(a)                                  (b) 
Figure 3.12. The atomic action trajectories constructed from test data sequence 2 
and the classification results 
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(a)                                  (b) 
Figure 3.13. The atomic action trajectories constructed from test data sequence 3 
superimposed on to the five learned exemplar trajectories. 

 

In the final experiment, we evaluated the performance of the proposed action 

classifier based on the accelerated mapping approach.  First, we tested the 

accuracy of the proposed mapping method by remapping the training sequence 

into the Isomap space using Equation (3.14) and evaluating the reconstruction 

error of the new method.  The reconstruction error is defined to as the average 

distance between the reconstructed and the original Isomaps.  Figure 3.14 shows 

a set of selected key data points and the reconstructed Isomap.  From the figure it 

is obvious that the reconstructed Isomap is very similar to the original Isomap 

shown in Figure 3.8.  Clearly, the number of selected key data points is a crucial 

issue because the number of points has a substantial influence on both the 

recognition rate and the computation time.  Selecting too many key data points 

will result in low computational efficiency, while selecting too few key data points 

will lead to inaccurate results.  To determine the appropriate number of key data 
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points, we calculate the reconstruction error using different percentages of 

selected key points over the total number of data points.  Figure 3.15 shows that 

when the percentage of selected key data points falls within the range 1.2% to 

1.4%, the reconstruction error and the number of key data points would both be 

sufficiently small.  Therefore, we use this range as the threshold for the selecting 

appropriate number of key points.  In this experiment, the number of key data 

points was set to 25 (about 1.26% of the total number of 1,983 data points).  

Compared to the original approach in which we have to evaluate 1,983 CSC 

distances, the computational complexity is dramatically reduced to the evaluation 

of only 25 CSC distances.  This is approximately 79 times faster than the 

original approach.  Based on the accelerated mapping method, we tested the 

recognition rate using the three test action sequences.  Figures 3.16-3.18 show 

the reconstructed atomic action trajectories derived by mapping the new test data 

into the simplified Isomap space.  It is obvious that the proposed method does 

not degrade the recognition performance at all.  The results show that the 

proposed method is fast and accurate. 
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(a)                                  (b) 
Figure 3.14. The selected key data points and the reconstructed Isomap space 

 

 

 

 

Figure 3.15. The average distance between the original Isomap and the 
reconstructed Isomap using different percentages of selected key points over the 
total number of data points 
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(a)                                  (b) 
Figure 3.16. The reconstructed atomic action trajectories derived from test data 
sequence 1 and the classification results based on the simplified action 
classification approach. 

 

 

  

(a)                                  (b) 
Figure 3.17. The reconstructed atomic action trajectories derived from test data 
sequence 2 and the classification results based on the simplified action 
classification approach. 
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(a)                                  (b) 
Figure 3.18. The reconstructed atomic action trajectories derived from test data 
sequence 3 based on the simplified action classification approach superimposed 
on to the five learned exemplar trajectories. 
 

3.4 Concluding Remarks 

In this chapter, we have proposed a framework for unsupervised analysis of long 

and unsegmented human action sequences based on Isomap learning.  The 

framework comprises four modules: an Isomap learning module, a temporal 

segmentation module, an atomic action clustering module, and an atomic action 

learning and classification module.  First, we calculate a pairwise CSC distance 

matrix from the training action sequence, and then apply the Isomap algorithm to 

construct a low-dimensional structure from the distance matrix.  Next, the data 

points in the Isomap space are represented as a time series of low-dimensional 

points, and a temporal segmentation process is used to segment this sequence into 

atomic actions.  A DTW approach is then applied to cluster the atomic actions.  

Finally, the clustering results are used to learn and classify atomic actions.  In 
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addition, to speed up the mapping from a new input posture into the Isomap space, 

we propose an efficient method that is approximately 79 times faster than the 

original approach.  Our experiment results demonstrate the efficacy of the 

proposed framework. 
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Chapter 4  

Learning Atomic Human Actions 

Using Variable-Length Markov 

Models 

In this chapter, we describe the proposed framework for learning and recognizing 

segmented atomic human action sequences using VLMM.  First, we give an 

introduction about this research topic.  The proposed approach is then described.  

Next, we detail the experiment results.  Finally, we present our conclusions. 

4.1 Introduction 

Since the human body is an articulated object with many degrees of freedom, 

inferring a body posture from a single 2-D image is usually an ill-posed problem.  

Providing a sequence of images might help to solve the ambiguity of action 

recognition.  However, to integrate the information extracted from the images, it 
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is essential to find a model that can effectively formulate the spatial-temporal 

characteristics of human actions.  Note that if a continuous human posture can be 

quantized into a sequence of discrete postures, each one can be regarded as a letter 

of a specific language.  Consequently, an atomic action composed of a short 

sequence of discrete postures can be regarded as a verb of that language.  

Sentences and paragraphs that describe human action can then be constructed, and 

the semantic description of a human action can be determined by a language 

modeling approach. 

In a natural language, the most informative word of a sentence is usually its 

verb.  Because an atomic action acts the verb of a sentence in a natural language, 

it is vital to recognize each atomic action in order to transform an input video 

sequence into semantic-level descriptions.  In this work, we focus on the 

problem of automatic action recognition by using a language modeling approach 

to bridge the semantic gap between an atomic action sequence and a verb. 

Language modeling [30, 53], a powerful tool for dealing with temporal 

ordering problems, has been applied in many fields, such as speech recognition 

[30, 32], handwriting recognition [47, 61], and information retrieval [16, 71].  In 

this chapter, we consider its application to the analysis of human action.  A 

number of approaches have been proposed thus far.  For example, Bobick and 

Ivanov [7] and Ogale et al. [44] used context-free grammars to model human 

actions, while Park et al. employed hierarchical finite state automata to recognize 

human behavior [46].  In [69, 70], HMMs were applied to human action 
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recognition.  The HMM technique is useful for both human action recognition 

and human action sequence synthesis.  Galata et al. utilized VLMMs to 

characterize human actions [22], and showed that VLMMs trained with 

motion-capture data or silhouette images can be used to synthesize human action 

animations.  Existing language modeling approaches for action analysis can be 

categorized into two classes: deterministic algorithms [7, 44, 46] and stochastic 

algorithms [22, 69, 70].  Since the latter have higher degrees of freedom than the 

former, they are suitable for a wider range of applications.  Currently, the HMM 

is the most popular stochastic algorithm for language modeling because of its 

versatility and mathematical simplicity.  However, since the states of an HMM 

are not observable, encoding high-order temporal dependencies with this model is 

a challenging task.  There is no systematic way to determine the topology of an 

HMM or even the number of its states.  Moreover, the training process only 

guarantees a local optimal solution; thus, the training result is very sensitive to the 

initial values of the parameters.  On the other hand, since the states of a VLMM 

are observable, its parameters can be estimated easily given sufficient training 

data.  Consequently, a VLMM can capture both long-term and short-term 

dependencies efficiently because the amount of memory required for prediction is 

optimized during the training process.  However, thus far, the VLMM technique 

has not been applied to human action recognition directly because of two 

limitations: 1) it cannot handle the dynamic time warping problem, and 2) it lacks 

a model for handling the noise observation. 
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In this research, we propose a hybrid framework of VLMM and HMM that 

retains the models advantages, while avoiding their drawbacks.  The framework 

is comprised of two modules: a posture labeling module, and a VLMM atomic 

action learning and recognition module.  First, a posture template selection 

algorithm is developed based on the CSC technique, discussed in Section 3.2.1.  

The selected posture templates constitute a codebook, which is used to convert 

input posture sequences into discrete symbol sequences for subsequent processing.  

Then, the VLMM technique is applied to learn the symbol sequences that 

correspond to atomic actions.  This avoids the problem of learning the 

parameters of an HMM.  Finally, the learned VLMMs are transformed into 

HMMs for atomic action recognition.  Thus, an input posture sequence can be 

classified with the fault tolerance property of an HMM. 

4.2 The Proposed Method for Atomic Action Recognition 

The proposed method comprises two phases: 1) posture labeling, which converts a 

continuous human action into a discrete symbol sequence; and 2) application of 

the VLMM technique to learn the constructed symbol sequences and recognize 

the input posture sequences.  The two phases are described below. 
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4.2.1 Posture Labeling 

To convert a human action into a sequence of discrete symbols, a codebook of 

posture templates must be created as an alphabet to describe each posture.  

Although the codebook should be as complete as possible, it is important to 

minimize redundancy.  Therefore, a posture is only included in the codebook if it 

cannot be approximated by existing codewords, each of which represents a human 

posture.  In this work, a human posture is represented by a silhouette image, and 

a shape matching process is used to assess the difference between two shapes.  

Figure 4.1 shows the block diagram of the proposed posture labeling process.  

First, a low-level image processing technique is applied to extract the silhouette of 

a human body from each input image.  Then, the codebook of posture templates 

computed from the training images is used to convert the extracted silhouettes into 

symbol sequences.  Shape matching and posture template selection are the most 

important procedures in the posture labeling process.  Shape matching has been 

described in Section 3.2.1, and posture template selection is discussed in the 

following. 
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Figure 4.1. Block diagram of the proposed posture labeling process 
 

Posture Template Selection 

Posture template selection is used to construct a codebook of posture templates 

from training silhouette sequences.  If the training atomic action sequences are 

segmented from a long human action sequence based on Isomap learning, we can 

use the key data points described in Section 3.2.5 as the codebook.  Otherwise, 

for general segmented atomic action sequences, we propose an automatic posture 

template selection algorithm (see Algorithm 4.1), based on the CSC technique.  

In the posture template selection method, the cost of matching two shapes (see 

Equation (3.2)), is denoted by ( )ji abD ,csc .  We only need to empirically determine 

one threshold parameter Cτ  in our posture template selection method.  This 

parameter determines whether a new training sample should be incorporated into 

the codebook.  The selection of Cτ  is not unique for all cases.  Because 

incoming action sequences may contain any kind of action, the selection of Cτ  is 
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basically an ill-posed problem in mathematics.  Therefore, we cannot determine 

a universal Cτ  to fit in all cases.  In fact, the selection of Cτ  is not a major 

concern in this work because our objective is to establish an automatic posture 

template selection scheme. 

 

Algorithm 4.1: Posture Template Selection 

{ }MaaaA ,...,, 21=  Codebook of posture templates:

{Training sequence: }Nttt ,...,, 21=

Tt∈

T  

for each do { 

if ( φ=A  or ( ) CAa
atD τ>

∈
,min csc ) { 

{ }A A t

1+← MM

← ∪  

 

} 

} 
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4.2.2 Human Action Sequence Learning and Recognition 

Atomic Action Learning 

Using the codebook of posture templates, an input sequence of postures 

 can be converted into a symbol sequence  where { nbbb ,...,, 21 } },,...,{ )()1( nqq aa

( )
{ }

( )jiMj
abDiq ,minarg csc,...,2,1∈

= .  Thus, atomic action VLMMs can be trained by the 

method outlined in Section 2.3.1.  These VLMMs are actually different order 

Markov chains.  For simplicity, we transform all the high order Markov chains 

into first-order Markov chains by augmenting the state space.  For example, the 

probability of a di-th order Markov chain with state space S is given by 

),,,|( 1111 −−+−+−−− ==== rXrXrXrXP iididididiii iiii

)− )i

,    (4.1) 

where Xi is a state in S.  To transform the di-th order Markov chain into a 

first-order Markov chain, a new state space is constructed such that both 

 and  are included in the new state 

space.  As a result, the high order Markov chain can be formulated as the 

following first-order Markov chain [24]  

1 1( , ,
ii i d iY X X− −=

1 1( , ,
ii i dY X X
+− −=

)).(|)((   

),,,|(

111

1111

1 −−−+−

−−+−+−−−

===

====

+ idiiidii
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rXrXrXrXP

ii

iiii     (4.2) 
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Hereafter, we assume that every VLMM has been transformed into a first-order 

Markov model. 

Atomic Action Recognition 

After the VLMMs are trained from the training sequence, the VLMM 

recognition technique, mentioned in Section 2.3.2, can be applied to atomic action 

recognition.  This VLMM recognition technique works well for natural language 

processing.  However, since natural language processing and human action 

analysis are inherently different, two problems must be solved before the VLMM 

technique can be applied to atomic action recognition.  First, the VLMM 

technique cannot handle the dynamic time warping problem; hence VLMMs 

cannot recognize atomic actions when they are performed at different speeds.  

Second, the VLMM technique does not include a model for noise observation, so 

the system is less tolerant of image preprocessing errors. 

First, note that the speed of the action affects the number of repeated symbols 

in the constructed symbol sequence: a slower action produces more repeat 

symbols.  To eliminate this speed-dependent factor, the input symbol sequence is 

preprocessed to merge repeated symbols.  VLMMs corresponding to different 

atomic actions are trained with preprocessed symbol sequences similar to the 

method proposed by Galata et al. [22].  However, this approach is only valid 

when the observed noise is negligible, which is an impractical assumption.  The 
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recognition rate of the constructed VLMMs is low because image preprocessing 

errors may identify repeated postures as different symbols.  To incorporate a 

noise observation model, the VLMMs trained with unrepeated sequences must be 

modified to recognize input sequences with repeated symbols.  Let  denote 

the state transition probability from state i to state j.  Initially,  because 

the training data contains no repeated symbols.  The self-transition probability is 

updated by 

ija

=old 0iia

( | )new
ii i ia P v v δ= + , where ( )N v v( | )

( )
i i

i i
i

P v v
N v

=  computed with the 

original training sequences and δ  is a small positive number to prevent the 

over-fitting problem [49].  Note that if the self-transition probability is zero, then 

an action sequence that contains repetition will result in a zero probability such 

that the system will not perform normally when faced with slower action 

sequences.  To overcome this limitation, we add the small positive number δ  to 

the self-transition probability.  This parameter can be determined using the 

cross-validation method.  The other transition probability must also be updated 

as ( )newoldnew
iiijij aaa −= 1 .  For example, if the input training symbol sequence is 

“AAABBAAACCAAABB,” the preprocessed training symbol sequence becomes 

“ABACAB.”  The VLMM constructed with the original input training sequence 

is shown in Figure 4.2(a); while the original VLMM and modified VLMM 

constructed with the preprocessed training sequence are shown in Figures 4.2(b) 

and 4.2(c), respectively. 
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Figure 4.2. (a) The VLMM constructed with the original input training sequence; 
(b) the original VLMM constructed with the preprocessed training sequence; (c) 
the modified VLMM, which includes the possibility of self-transition. 

 

Next, a noise observation model is introduced to convert a VLMM into an 

HMM.  Note that the output of a VLMM determines its state transition and vice 

versa because the state of a VLMM is observable.  In general, the possible output 

is restricted to several discrete symbols.  However, due to the noise caused by 

image preprocessing, the symbol sequence corresponding to an atomic action 

includes some randomness.  Such randomness will cause the action sequence not 

recognizable by the VLMMs.  Therefore, we propose to modify the symbol 

observation model as described in the following.  Suppose that the output 

symbol of a VLMM is  at time t, and its posture template retrieved from the 

codebook is .  If the VLMM is the right model, the extracted silhouette 

image  will not deviate too much from its corresponding posture template  

provided that the segmentation result does not contain any major errors.  Due to 

noise observation, the silhouette image  is a random variable, and so is the 

tq

a

o a

o

tq

t tq

t
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CSC distance ( )csc ,
tt qD o a .  It is possible to learn the distribution of the CSC 

distance, ( )csc ,
tt qD o a ,  using the training data.  An example is shown in Figure 

4.3.  In this example, it is clear that a Gaussian distribution can be applied to 

model the CSC distance, i.e. 
( )

22

2
1),|( σ

σπtt eqoP =Λ
csc , tt aoD

−
.  The standard deviation 

σ  of this distribution is estimated using the maximum-likelihood technique. 

 

Figure 4.3. The distribution of observation error, obtained using the training data. 

 

Note that the VLMM has now been converted into a first-order Markov chain.  

If the VLMM’s observation model is detached from the symbol of a state, then the 

VLMM becomes a standard HMM.  The probability of the observed silhouette 

image sequence, , for a given model T21 oooO ...= Λ  can be evaluated by the 

HMM forward/backward procedure with proper scaling [49].  Finally, category 

 obtained with the following equation is deemed to be the recognition result: *i
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)]|(log[maxarg* OPi Λ= ii
.         (4.3) 

4.3 Experiments 

We conducted a series of experiments to evaluate the effectiveness of the 

proposed method.  A powerful, scalable recognition system would only use the 

data extracted from one person for training but would still be capable of 

recognizing data collected from other people.  Accordingly, the training data 

used in our experiments was a real video sequence comprised of approximately 

900 frames.  The training data contained ten categories of action sequences that 

were performed by a single person.  Some typical image frames are shown in 

Figure 4.4.  Using the posture template selection algorithm, a codebook of 95 

posture templates (see Figure 4.5), was constructed from the training data.  The 

data was then used to build ten VLMMs, each of which was associated with one 

of the atomic actions shown in Figure 4.4. 
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Figure 4.4. The ten categories of atomic actions used for training 
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Figure 4.5. Posture templates extracted from the training data 

 

The average log-likelihood of the training error computed with the training 

data is shown in Table 4.1.  The results indicate that the proposed action 

recognition method can deal with the problem of human action recognition 

effectively.  Next, a test video was used to assess the effectiveness of the 

proposed method.  The test data was obtained from the same human subject.  

Each atomic action was repeated four times, yielding a total of 40 test samples (4 
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positive samples and 36 negative samples) for evaluating the performance of the 

learnt VLMMs.  The proposed method achieved a 100% recognition rate for all 

the test sequences.  To further verify the recognition results, we tested the 

similarity of any two VLMMs obtained in the experiment.  First, we generated 

10,000 action sequences for each of the 10 VLMMs, which yielded a total of 

100,000 action sequences.  Out of the 100,000 action sequences, only 74 

sequences were incorrectly recognized and all the errors were on actions 7 and 8 

because these two sequences contained many similar postures and thus could be 

mixed up easily (refer to Figure 4.4).  This result is consistent with the data 

shown in Table 4.1: the log-likelihood of actions 7 and 8 computed using VLMMs 

8 and 7 were relatively high.  This result confirms that the data shown in Table 

4.1 is valid.  Furthermore, we have also estimated the p-values [73] for each 

action model.  The posture templates shown in Figure 4.5 were used to generate 

10,000 random action sequences using a sample-with-replacement process.  The 

histograms of the log-likelihood of the random sequences and the positive 

sequences for an action model are shown in Figure 4.6.  Since these two 

histograms do not overlap at all, it is reasonable to infer that the p-value of the 

action model is very low.  To estimate the p-value, we approximate the 

distributions of the log-likelihood by Gaussian distributions (see Figure 4.6).  

Therefore, the p-value can be easily computed.  The maximum p-value of the ten 

models is smaller than 0.0001, which confirms that the results are statistically 

significant. 
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Table 4.1. The results of atomic action recognition using the training data 

 

 

 

 

Figure 4.6. The histograms of the log-likelihood of the random sequences and the 
positive sequences for an action model 
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In the third experiment, test videos of nine different human subjects (see 

Figure 4.7) were used to evaluate the performance of the proposed method.  

Each person repeated each action five times, so we had five sequences for each 

action and each human subject, which yielded a total of 450 action sequences.  

For comparison, we also tested the performance of the HMM method in this 

experiment.  Since the ten atomic actions used in the experiments were acyclic, 

only the left-right HMMs were considered in this experiment.  Because the 

initial parameters and the number of HMM states would affect recognition results, 

the HMM implementation was evaluated using a variety of HMMs, each of which 

had a different number of hidden states.  Furthermore, the HMM were trained ten 

times and the average results were used to reduce the effect of the initial random 

parameters.  Table 4.2 compares our method’s recognition rate with that of the 

HMM method, for test data from nine different human subjects.  Our method 

clearly outperforms the HMM method, no matter how many states were selected.  

In Table 4.2, the shaded cells denote the best recognition results of the HMM 

approach for a particular action.  It is clear that the selection of the number of 

states is a critical issue for the HMM method.  Note that the number of HMM 

states that could be set for deriving the best performance was varying in different 

actions which makes the selection of the number of states even more difficult.  In 

contrast to the difficulty in determining the topology of an HMM, our method is 

simple and effective because the topology of a VLMM can be determined 

automatically with a robust algorithm.  Note that the recognition rates for action 

1 were the worst across all actions.  Figure 4.8(a) shows some typical input 
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postures for a human subject performing action 1.  The retrieved, corresponding 

closest posture templates in the database are shown in Figure 4.8(b).  When 

comparing the corresponding posture templates shown in Figure 4.8(b) with the 

training posture sequences shown in Figure 4.4, it is clear that the posture 

templates and the training postures of action 1, in this case, are not well matched.  

Due to the segmentation error of the lower arms areas, the input postures were 

incorrectly related to posture templates of different actions.  For example, the 

retrieved posture templates shown in Figure 4.8(b), from left to right, were 

extracted from training data of actions 1, 4, 2, 2, 2, 1, 2, 2, 2, 4, and 1, respectively.  

Since the proposed method is silhouette-based, when the same postures of two 

individuals appear to be drastically different (due to dissimilar physical 

characteristics, motion styles, or improper segmentation), observation errors 

would bias the recognition result.  In particular, if most of the input postures are 

with high observation error, the context information is not sufficient for accurate 

performance. 
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Figure 4.7. Nine test human subjects 
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Table 4.2. Comparison of our method’s recognition rate with that of the HMM 
computed with the test data obtained from nine different human subjects 

 

 

 

 

Figure 4.8. Some typical postures of a human subject exercising action 1: (a) the 
input posture sequence; (b) the corresponding minimum-CSC-distance posture 
templates. 
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In order to show that the selection of the parameter τc in the posture template 

selection process was not a major concern, we calculated the recognition rates for 

different τc.  Figure 4.9 shows the recognition rates with respect to different τc, 

and it demonstrates that the change of τc only has little influence to the 

recognition results. 

 

Figure 4.9. Recognition rates with respect to different τc

 

In the fourth experiment, to evaluate the scalability of the proposed algorithm, 

we used a new, publicly-available database [3, 63].  This database consists of 90 

low-resolution (180 144) action sequences from nine different people, each 

performing ten natural actions.  These actions include: bending (bend), jumping 

jacks (jack), jumping forward on two legs (jump), jumping in place on two legs 

×
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(pjump), running (run), galloping sideways (side), skipping (skip), walking (walk), 

waving one hand (wave1), and waving two hands (wave2).  Sample images of 

each type of action sequence are shown in Figure 4.10.  In [63], a sequence of 

human silhouettes derived from each action sequence was converted into two 

representations, namely average motion energy (AME) and mean motion shape 

(MMS).  Subsequently, a nearest neighbor classifier (NN) was used for 

recognition, and the leave-one-out cross-validation rule was adopted to compute 

the recognition rate.  Recognition results for these two representations, shown in 

the top two rows of Table 4.3, are compared against our method. 

In order to compare our method with the two competing methods in a fairer 

fashion, we also applied the leave-one-out rule to our method.  In this case, eight 

sets of data grabbed from eight distinct human subjects were used to train the 

VLMMs, resulting in eight VLMMs for each action.  Finally, the category with 

the maximum likelihood was deemed to be the recognition result.  Results using 

this methodology are shown in the last row of Table 4.3.  It is clear that our 

method outperforms the other two methods for this public database. 
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Figure 4.10. Sample images in the public action database 

 

Table 4.3. Comparison of our method’s recognition rate with that of the AME plus 
NN method and the MMS plus NN method for the public database 
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4.4 Concluding Remarks 

We have proposed a framework for understanding human atomic actions using 

VLMMs.  The framework comprises two modules: a posture labeling module, 

and a VLMM atomic action learning and recognition module.  We have 

developed a simple and efficient posture template selection algorithm based on the 

modified shape context matching method.  A codebook of posture templates is 

created to convert the input posture sequences into discrete symbols so that the 

language modeling approach can be applied.  The VLMM technique is then used 

to learn human action sequences.  To handle the dynamic time warping problem 

and the lack of noise observation model problem of applying the VLMM 

technique to action analysis, we have also developed a systematic method to 

convert the learned VLMMs into HMMs.  The contribution of our approach is 

that the topology of the HMMs can be automatically determined and the 

recognition accuracy is better than the traditional HMM approach.  Experiment 

results demonstrate the efficacy of the proposed method. 
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Chapter 5 

Conclusions and Future Work 

5.1 Conclusions 

In this dissertation, we have presented two video processing techniques for human 

action analysis.  One is unsupervised analysis of human action based on 

manifold learning (Chapter 3), and the other is atomic human action learning and 

recognition using VLMMs (Chapter 4). 

In Chapter 3, we have proposed a framework for unsupervised analysis of 

long and unsegmented human action sequences based on Isomap learning.  The 

framework comprises five modules: an posture representation and matching 

module, an Isomap learning module, a temporal segmentation module, an atomic 

action clustering module, and an atomic action learning and classification module.  

First, we calculate a pairwise CSC distance matrix from the training action 

sequence, and then apply the Isomap algorithm to construct a low-dimensional 

structure from the distance matrix.  Next, the data points in the Isomap space are 
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represented as a time series of low-dimensional points, and a temporal 

segmentation process is used to segment this sequence into atomic actions.  A 

DTW approach is then applied to cluster the atomic actions.  Finally, the 

clustering results are used to learn and classify atomic actions.  In addition, to 

speed up the mapping from a new input posture into the Isomap space, we 

propose an efficient method that is approximately 79 times faster than the original 

approach.  Our experiment results demonstrate the efficacy of the proposed 

framework. 

In Chapter 4, we have proposed a framework for understanding human 

atomic actions using VLMMs.  The framework comprises two modules: a 

posture labeling module, and a VLMM atomic action learning and recognition 

module.  We have developed a simple and efficient posture template selection 

algorithm based on the modified shape context matching method.  A codebook 

of posture templates is created to convert the input posture sequences into discrete 

symbols so that the language modeling approach can be applied.  The VLMM 

technique is then used to learn human action sequences.  To handle the dynamic 

time warping problem and the lack of noise observation model problem of 

applying the VLMM technique to action analysis, we have also developed a 

systematic method to convert the learned VLMMs into HMMs.  The contribution 

of our approach is that the topology of the HMMs can be automatically 

determined and the recognition accuracy is better than the traditional HMM 

approach.  Experiment results demonstrate the efficacy of the proposed method. 
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5.2 Future work 

Since the CSC descriptor for human posture is not a view-invariant representation, 

we can not deal with same atomic actions with different views.  Therefore, we 

shall handle this problem to make our system more scalable in the future.  

Moreover, high-level semantic description for human action using natural 

language will be another subject for our future work. 
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