

國 立 交 通 大 學

資訊科學與工程研究所

博 士 論 文

機率式模型分群法之研究與其應用

Probabilistic Model-based Clustering and Its Applications

研 究 生：鄭士賢

指導教授：傅心家 教授

王新民 博士

中 華 民 國 九 十 八 年 五 月

機率式模型分群法之研究與其應用

Probabilistic Model-based Clustering and Its Applications

研 究 生：鄭士賢 Student：Shih-Sian Cheng

指導教授：傅心家 教授 Advisor：Prof. Hsin-Chia Fu

王新民 博士 Dr. Hsin-Min Wang

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation

Submitted to Department of Computer Science

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

May 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年五月

機率式模型分群法之研究與其應用

學生：鄭士賢

指導教授：傅心家 教授

 王新民 博士

國立交通大學資訊科學與工程研究所

摘 要
機率式模型分群法藉由學習一個有限混合模型(finite mixture model)而達成資料分群的

目的，其已經有很多成功的應用; 而最常用的混合模型乃是高斯混合模型(Gaussian

mixture model, i.e., GMM)。當其目的函數的最佳化無法用分析方法來達成時，我們經

常用迭代式、局部最佳(local-optimal)的演算法來學習混合模型。此外，因為來自於混

合模型的資料樣本有非完全(incompleteness)的特性，因此我們通常採用 EM 形式

(EM-type)的演算法，如 EM 演算法與分類 EM 演算法(classification EM, i.e., CEM)。然

而，用傳統 EM 形式演算法來做模型分群有幾個缺點: 一、它的效能與模型初始值有

高度相關性; 二、混合元件(mixture component)的個數需要事先給定; 三、在完成分群

之後，資料樣本與群聚之間的拓樸關係(topological relationships)無法被保留。在本論

文中，針對上述前兩樣缺點，我們提出一個自我分裂之高斯混合模型學習演算法

(self-splitting Gaussian mixture learning, i.e., SGML)。此法起始於單一元件，然後迭代

式地，用貝氏資訊法則(Bayesian information criterion, i.e., BIC)來確認分裂的有效性，

分裂某一個元件而成為兩個新元件直到最佳的元件個數被找到為止，最佳的元件個數

亦是用 BIC 來決定。基於此分裂程序，SGML 可為學習不同模型複雜度的 GMM 提供

不錯的模型初始值。關於拓樸保留(topology-preserving)的議題，我們將一個機率式自

我組織圖(probabilistic self-organizing map, i.e., PbSOM)的學習視為一種可保留資料樣

本與群聚之間拓樸關係於一個神經網路(neural network)的模型分群法。基於此概念，

我們為 PbSOM 發展了一個耦合概似混合模型(coupling-likelihood mixture model)，其延

伸 Kohonen SOM 的參考向量(reference vectors)至多變量高斯模型。基於最大概似法則

i

(maximum likelihood criterion)，我們亦發展了三個學習 PbSOM 的 EM 形式演算法，亦

即 SOCEM、 SOEM、以及 SODAEM 演算法。SODAEM 是 SOCEM 與 SOEM 的決定

性退火 (deterministic annealing, i.e., DA)變形 ; 此外，藉由逐漸縮小鄰域大小

(neighborhood size)，SOCEM 與 SOEM 可分別被解釋成: 高斯模型分群的 CEM 與 EM

演算法的 DA 變形。實驗結果顯示，我們所提出的 PbSOM 演算法與決定性 EM(DAEM)

演算法有相近的分群效能，並能維持拓樸保留之特性。關於應用方面，我們用 SGML

來訓練用於語者識別(speaker identification)的語者 GMMs;實驗結果顯示，SGML 可以

自動地為個別語者 GMM 決定適當的模型複雜度，而此在文獻裡通常是用經驗法則來

決定的。我們將所提出的 PbSOM 學習演算法應用於資料視覺化與分析;實驗結果顯示

它們可用於在一個二維的網路上探索資料樣本與群聚之間的拓樸關係。此外，我們提

出幾種分割且克服(divide-and-conquer)的方法來做音訊分段(audio segmentation)，其用

BIC 來評定兩個音段之間的不相似度(dissimilarity);在廣播新聞的實驗結果顯示，相較

於公認最佳的視窗成長分段法(window-growing-based segmentation)，我們的方法不僅

有比較低的計算量，亦有較高的分段正確性。

ii

Probabilistic Model-based Clustering and Its Applications

Student：Shih-Sian Cheng

Advisors：Prof. Hsin-Chia Fu
Dr. Hsin-Min Wang

Department of Computer Science
National Chiao Tung University

ABSTRACT

Probabilistic model-based clustering is achieved by learning a finite mixture model (usually

a Gaussian mixture model, i.e., GMM) and has been successfully applied to many tasks.

When the objective likelihood function cannot be optimized analytically, iterative,

locally-optimal learning algorithms are usually applied to learn the model. Moreover,

because the data samples drawn from a mixture model have the property of incompleteness,

EM-type algorithms, such as EM and classification EM (CEM), are usually employed.

However, model-based clustering based on conventional EM-type algorithms suffer from

the following shortcomings: 1) the performance is sensitive to the model initialization; 2)

the number of mixture components (data clusters) needs to be pre-defined; and 3) the

topological relationships between data samples and clusters are not preserved after the

learning process. In this thesis, we propose a self-splitting Gaussian mixture learning

algorithm (SGML) to address the first two issues. The algorithm starts with one single

component and iteratively splits a component into two new components using Bayesian

information criterion (BIC) as the validity measure for the splitting until the most

appropriate component number is found, which is also achieved by BIC. Based on the

splitting process, SGML provides a decent model initialization for learning Gaussian

mixture models with different model complexities. For the topology-preserving issue, we

consider the learning process of a probabilistic self-organizing map (PbSOM) as a

model-based clustering procedure that preserves the topological relationships between data

samples and clusters in a neural network. Based on this concept, we develop a

iii

coupling-likelihood mixture model for the PbSOM that extends the reference vectors in

Kohonen's SOM to multivariate Gaussians distributions. We also derive three EM-type

algorithms, called the SOCEM, SOEM, and SODAEM algorithms, for learning the model

(PbSOM) based on the maximum likelihood criterion. SODAEM is a deterministic

annealing (DA) variant of SOCEM and SOEM; moreover, by shrinking the neighborhood

size, SOCEM and SOEM can be interpreted, respectively, as DA variants of the CEM and

EM algorithms for Gaussian model-based clustering. The experiment results show that the

proposed PbSOM learning algorithms achieve comparable data clustering performance to

that of the deterministic annealing EM (DAEM) approach, while maintaining the

topology-preserving property. For applications, we apply SGML to the training of speaker

GMMs for the speaker identification task; the experiment results show that SGML can

automatically determine an appropriate model complexity for a speaker GMM, which is

usually determined empirically in the literature. We apply the proposed PbSOM algorithms

to data visualization and analysis; the experiment results show that they can be used to

explore the topological relationships between data samples and clusters on a

two-dimensional network. In addition, we propose divide-and-conquer approaches for the

audio segmentation task using BIC to evaluate the dissimilarity between two audio

segments; the experiment results on the broad-cast news data demonstrate that our

approaches not only have a lower computation cost but also achieve higher segmentation

accuracy than the leading window-growing-based segmentation approach.

iv

ACKNOWLEDGEMENTS

I am grateful to my advisor, Prof. Hsin-Chia Fu and Dr. Hsin-Min Wang, for their intensive

suggestions, patient guidance, and enthusiasm of research. Moreover, I would like to thank

all the members of the Neural Network Multimedia Laboratory at Department of Computer

Science, National Chiao Tung University, and the Spoken Language Group, Chinese

Information Processing Laboratory at Institute of Information Science, Academia Sinica, for

their valuable discussions. Finally, I would like to express my appreciation to my family for

their supporting and encouragement. I dedicate this dissertation to my parents.

v

Contents

1 Introduction 1

1.1 Background . 1

1.2 Contributions of this dissertation . 5

1.2.1 On model initialization and complexity 5

1.2.2 On topology-preserving ability . 5

1.2.3 On applications . 6

1.3 Organization of this dissertation . 6

2 Preliminaries and related works 7

2.1 K-means clustering . 7

2.2 Hierarchical agglomerative clustering . 8

2.3 Self-organizing map . 9

2.4 Probabilistic model-based clustering . 10

2.4.1 The mixture likelihood approach 10

2.4.1.1 The EM algorithm for mixture models 11

2.4.1.2 The EM algorithm for Gaussian mixture models 11

2.4.1.3 The Bayesian approach for model selection and BIC . . . 12

2.4.2 The classification likelihood approach 13

2.4.2.1 The CEM algorithm for mixture models 13

2.4.2.2 The CEM algorithm for Gaussian mixture models 14

2.4.2.3 AWE and ICL for model selection 14

2.4.3 The DAEM algorithm . 15

2.4.3.1 The DAEM algorithm for Gaussian mixture models 16

3 BIC-based self-splitting Gaussian mixture learning 17

3.1 The SGML algorithm . 17

3.1.1 Computational complexity of SGML 18

3.2 The fastSGML algorithm . 19

3.3 Experiments on Gaussian mixture learning 19

3.3.1 Results on the synthetic data . 20

3.3.2 Results on the real-world data . 21

vi

3.4 Application of SGML to GMM-based speaker identification 24

3.4.1 The GMM-based speaker identification 24

3.4.2 Experiments . 26

3.4.2.1 Database description and feature extraction 26

3.4.2.2 Configuration of model training and test utterance 27

3.4.2.3 Results . 27

4 Model-based clustering by probabilistic self-organizing maps 34

4.1 Formulation of the coupling-likelihood mixture model for PbSOMs 34

4.2 The SOCEM algorithm for learning PbSOMs 36

4.2.1 SOCEM - a DA variant of CEM for GMM 37

4.2.2 Relation to Kohonen’s batch algorithm 39

4.2.3 Computational cost . 40

4.3 The SOEM algorithm for learning PbSOMs 41

4.3.1 SOEM - a DA variant of EM for GMM 42

4.3.2 Computational cost . 42

4.4 The SODAEM algorithm for learning PbSOMs 43

4.4.1 Computational cost . 44

4.5 Relation to other algorithms . 44

4.5.1 For SOCEM . 45

4.5.2 For SOEM and SODAEM . 46

4.6 Experiments on organizing property and data clustering 46

4.6.1 Experiments on organizing property 46

4.6.1.1 Results on the synthetic data 47

4.6.1.2 Results on PenRecDigits C0 49

4.6.2 Experiments to evaluate the performance of data clustering 50

4.6.2.1 Results on ImgSeg by using SOCEM and SODAEM C . . 51

4.6.2.2 Results on ImgSeg by using SOEM and SODAEM M . . . 51

4.6.2.3 Results on Ecoli . 52

4.7 Application of SOCEM, SOEM, and SODAEM to data visualization and

analysis . 52

4.7.1 Experiment results on ImgSeg by using SOCEM and SODAEM C . 53

4.7.2 Experiment results on ImgSeg by using SOEM and SODAEM M . . 54

4.7.3 Experiment results on Ecoli . 54

5 BIC-based audio segmentation using divide-and-conquer 69

5.1 Window-growing-based segmentation . 71

5.1.1 ∆BIC as the distance measure of two audio segments 71

5.1.2 One-change-point detection . 72

5.1.3 Multiple-change-point detection . 72

vii

5.2 Divide-and-Conquer-based segmentation 73

5.2.1 The DACDec1 approach . 73

5.2.2 The DACDec2 approach . 75

5.2.3 Sequential segmentation by DACDec1 and DACDec2 77

5.3 Computational cost analysis . 78

5.3.1 For DACDec1 . 79

5.3.2 For DACDec2 . 80

5.3.3 For FixSlid . 81

5.3.4 For WinGrow . 81

5.3.5 Discussion . 82

5.4 Experiments . 83

5.4.1 Experiments on the synthetic data 83

5.4.2 Experiments on broadcast news data 84

6 Conclusion and future work 89

6.1 Conclusion . 89

6.2 Future work . 90

A 92

A.1 The SOCEM, SOEM, and SODAEM algorithms where mixture weights are

learned . 92

B 95

B.1 Compute T1(k) . 95

B.2 Compute T ′(m) . 96

B.3 Compute T2(k) . 97

viii

List of Figures

2.1 (a) {A, B, · · ·, G} are data samples in <2. (b) An illustrative dendrogram

of the data samples in (a) obtained by hierarchical agglomerative clustering. 8

3.1 The learning process of SGML on the synthetic data, where full covariance

GMMs are used. 22

3.2 The learning curves of SGML and the baseline approaches on the synthetic

data, where full covariance GMMs are used. 23

3.3 The learning curve of SGML on the synthetic data, where diagonal covari-

ance GMMs are used. 23

3.4 The learning curves of applying the various GMM learning methods to the

15-second speech data of #5007 in NIST01SpkEval. (a) and (b) depicts

the full covariance case, while (c) and (d) depicts the diagonal covariance

case. 25

3.5 The learning curves of applying fastSGML, K-means-BinSplitting and SGML

to learn diagonal covariance GMMs with 60-second speech data of #5007

in NIST01SpkEval. The splitting confidence of the fastSGML was set at

150, 100, and 50, respectively, and K-means-BinSplitting was forced to stop

at GMM43. 26

4.1 (a) The network structure of a Gaussian mixture model, and (b) the pro-

posed coupling-likelihood mixture model. Here, rl(xi; θl) denotes the mul-

tivariate Gaussian distribution described in Eq. (2.12). 55

4.2 SOCEM’s objective function becomes more complex with the reduction of

neighborhood size (σ in hkl). 56

4.3 For each data sample xi, the adaptation of the reference models in SOCEM

is restricted to the winning reference model and its neighborhood. However,

in SOEM, the winner is relaxed to the weighted winners by the posterior

probabilities γ
(t)
k|i, for k = 1, 2, · · · , G. Each data sample xi contributes pro-

portionally to the adaptation of each reference model and its neighborhood

according to the posterior probabilities. 57

ix

4.4 The family of Gaussian model-based clustering algorithms derived from the

SODAEM, SOEM and SOCEM algorithms. δkl = 1 if k = l; otherwise,

δkl = 0. 57

4.5 The map-learning process obtained by running the SOCEM algorithm on

the synthetic data. Simulation 1 ((a)-(b)): When SOCEM is run with the

random initialization in (a) and σ = 0.15, it converges to the unordered

map in (b). Simulation 2 ((a) and (c)-(f)): SOCEM starts with σ = 0.6

and the random initialization in (a). Then, the value of σ is reduced to

0.15 in 0.15 decrements. 58

4.6 The map-learning process obtained by running the SOEM algorithm on

the synthetic data. Simulation 1 ((a)-(b)): When SOEM is run with the

random initialization in (a) and σ = 0.15, it converges to the unordered

map in (b). Simulation 2 ((a) and (c)-(f)): SOEM starts with σ = 0.6 and

the random initialization in (a). Then, the value of σ is reduced to 0.15 in

0.15 decrements. 59

4.7 The map-learning process obtained by running the SODAEM algorithm

on the synthetic data. The value of σ is fixed at 0.15, while value of β is

initialized at 0.16 and increased in multiples of 1.6 up to 17.592. 60

4.8 The map-learning process obtained by running the SOCEM algorithm on

PenRecDigits C0. Simulation 1 ((a)-(b)): When SOCEM is run with the

random initialization in (a) and σ = 0.15, it converges to the unordered

map in (b). Simulation 2 ((a) and (c)-(f)): SOCEM starts with σ = 0.6

and the random initialization in (a). Then, the value of σ is reduced to

0.15 in 0.15 decrements. 61

4.9 The map-learning process obtained by running the SOEM algorithm on

PenRecDigits C0. Simulation 1 ((a)-(b)): When SOEM is run with the

random initialization in (a) and σ = 0.15, it converges to the unordered

map in (b). Simulation 2 ((a) and (c)-(f)): SOEM starts with σ = 0.6 and

the random initialization in (a). Then, the value of σ is reduced to 0.15 in

0.15 decrements. 62

4.10 The map-learning process obtained by running the SODAEM algorithm

on PenRecDigits C0. The value of σ is fixed at 0.15, while value of β is

initialized at 0.16 and increased in multiples of 1.6 up to 17.592. 63

4.11 The data clustering performance of CEM, DAEM C, SOCEM, SODAEM C,

and KohonenGaussian on ImgSeg in terms of the classification log-likelihood. 64

4.12 Learning a Gaussian mixture model by applying EM, DAEM M, SOEM,

and SODAEM M to ImgSeg. 64

4.13 The data clustering performance on Ecoli in terms of (a) the classification

log-likelihood and (b) the log mixture-likelihood. 65

x

4.14 Data visualization for ImgSeg by running KohonenGaussian ((b)), SOCEM

((c), (d)), and SODAEM C ((e), (f)) with the random initialization in (a).

The network structure is a 7 × 7 equally spaced square lattice in a unit

square. 66

4.15 Data visualization for ImgSeg by running SOEM ((a), (b)) and SODAEM M

((c), (d)) with the random initialization in Figure 4.14 (a). The network

structure is a 7 × 7 equally spaced square lattice in a unit square. 67

4.16 Data visualization for Ecoli by running (b) KohonenGaussian, (c) SOCEM,

(d) SOEM, (e) SODAEM C, and (f) SODAEM M with the random initial-

ization in (a). The network structure is a 7 × 7 equally spaced square

lattice in a unit square. 68

5.1 The fixed-size sliding window detection approach. 71

5.2 Diagram of the multiple-change-point detection in window-growing-based

segmentation (WinGrow). The audio stream contains three segments,

namely Seg1, Seg2, and Seg3; P and Q denote the change points. 73

5.3 (a) An audio stream comprised of three speech segments, each derived from

a distinct speaker. C1 and C2 are the change points. (b) The ∆BIC curve

obtained by applying OCD-Chen to the audio stream in (a). 74

5.4 An illustration that data samples distribute as three Gaussian clusters.

For this case, generally, two Gaussians (H1) fit the distribution of the

data better than one Gaussian (H0) if the samples belonging to the same

Gaussian cluster are used together to estimate the parameters. 76

5.5 (a) An audio stream comprised of three speech segments; the first and third

segments are derived from the same speaker (Speaker1), while the second is

derived from another speaker (Speaker2). (b) The ∆BIC curve obtained

by applying OCD-Chen to the audio stream in (a). (c) The diagram of

the hypothesis test at the change point C2 in (b). (d) The diagram of the

hypothesis test at the non-change point R in (b). 77

5.6 A recursive tree that simulates the recursive process of DACDec2 on the

audio stream in Figure 5.5 (a). 79

5.7 Diagram of the detection process of SeqDACDec1 and SeqDACDec2. If a

change point is detected in the fixed-size analysis window by DACDec1 or

DACDec2, the window is moved to the change point with the largest time

index. Otherwise, it is moved forward by ηL samples, where L denotes the

window size, and η > 0. 80

5.8 An audio stream comprised of k+1 homogeneous segments, each containing

m samples. The stream is divided at the i-th change point. 80

xi

5.9 ROC curves obtained by running SeqDACDec1 and SeqDACDec2 on the

synthetic data using 10-second, 20-second, and 30-second analysis windows.

L denotes the size of the analysis window. 84

5.10 The empirical cumulative distributions of the size of homogeneous segments

in MATBN3hr and HUB4-98. 85

5.11 A significant local maximum on the distance curve. 86

5.12 The ROC curves for MATBN3hr obtained by (a) SeqDACDec1 with Nmin =

2 seconds and analysis windows of different size; (b) SeqDACDec2 with

Nmin = 2 seconds and analysis windows of different size; and (c) Seq-

DACDec1 with Nmin = 2 seconds and L = 20 seconds, SeqDACDec2 with

Nmin = 2 seconds and L = 20 seconds, WinGrow with Nmin = 3 seconds

and Nmax = 20 seconds, and FixSlid with a 2-second window. 87

5.13 The ROC curves for HUB4-98. 88

A.1 The map-learning process obtained by running the SOCEM algorithm on

the synthetic data with an ordered initialization in (a). Simulation 1 ((a)-

(e)): The mixture weights are initialized at 1
16

, and updated in the learning

process; the algorithm starts with the initialization in (a) and converges to

the unordered map in (e). Simulation 2 ((a) and (f)): SOCEM is performed

with equal mixture weights throughout the learning process; the algorithm

starts with the initialization in (a) and converges to the map in (f). The

network structure is a 4 × 4 square lattice; the value of σ is set at 0.4. . . 94

xii

List of Tables

2.1 Common inter-cluster distance measures for hierarchical agglomerative clus-

tering. d(xi,xj) denotes the distance measure for xi and xj. 9

3.1 The mean and standard deviation of the component number of the diago-

nal covariance male speaker GMMs obtained by SGML and fastSGML on

different amounts of training data. The first number in parentheses is the

mean value, while the second number after ’/’ is the standard deviation. . 29

3.2 The mean and standard deviation of the component number of the diagonal

covariance female speaker GMMs obtained by SGML and fastSGML on

different amounts of training data. The first number in parentheses is the

mean value, while the second number after ’/’ is the standard deviation. . 29

3.3 The average CPU time (in second) of the diagonal covariance male speaker

GMMs obtained by SGML and fastSGML on different amounts of training

data. 30

3.4 The average CPU time (in second) of the diagonal covariance female speaker

GMMs obtained by SGML and fastSGML on different amounts of training

data. 30

3.5 Speaker identification accuracy (in %) for the male speakers. 30

3.6 Speaker identification accuracy (in %) for the female speakers. 31

4.1 The DAEM algorithm for learning GMMs with equal mixture weights and

the SOCEM algorithm. 40

4.2 Results of simulations using KohonenGaussian, SOCEM, SOEM, and SO-

DAEM in 20 independent random initialization trials on the synthetic data.

The algorithms were run with two setups for σ in hkl. When σ = 0.15, Ko-

honenGaussian succeeded in converging to an ordered map in one random

initialization case (S:1), but failed in the remaining cases (F:19). 49

4.3 Results of simulations using KohonenGaussian, SOCEM, SOEM, and SO-

DAEM in 20 independent random initialization trials on PenRecDigits C0.

The algorithms were run with two setups for σ in hkl. When σ = 0.15, Ko-

honenGaussian succeeded in converging to an ordered map in one random

initialization case (S:1), but failed in the remaining cases (F:19). 50

xiii

5.1 The CPU time of different audio segmentation approaches evaluated on

MATBN3hr in the EER case and the associated EERs, where M and F

denote the miss detection rate and the false alarm rate, respectively. 86

5.2 The CPU time of different audio segmentation approaches evaluated on

HUB4-98 in the EER case and the associated EERs. 87

A.1 The mixture weights learned by SOCEM with the initialization in Figure

A.1 (a). The mixture weights are initialized at 1
16

. 93

xiv

Chapter 1

Introduction

1.1 Background

The goal of data clustering is to group data samples into clusters such that samples from

the same cluster are more similar to each other than samples from different clusters. It is

also known as unsupervised learning, numerical taxonomy, typological analysis and vector

quantization [1, 2]. Among the various clustering approaches, probabilistic model-based

clustering is the one derived from statistical learning; and it has been successfully applied

to many tasks, for example, speaker recognition [3, 4], speech recognition [5], handwritten

recognition [6], image segmentation [7], and clustering of microarray expression data [8, 9].

In model-based clustering, data samples are grouped by learning a finite mixture

model (usually a Gaussian mixture model, i.e., GMM), in which each mixture component

represents a cluster. There are two major learning methods for model-based clustering:

the mixture likelihood approach, where the likelihood of each data sample is a mixture of all

the component likelihoods of the data sample; and the classification likelihood approach,

where the likelihood of each data sample is generated by its winning component only [10,

11, 12, 13, 14, 15, 16, 17, 18]. In both approaches, when the globally optimal estimation of

the model parameters cannot be obtained analytically, iterative learning algorithms that

only guarantee obtaining locally optimal solutions are usually employed. The expectation-

maximization (EM) algorithm for mixture likelihood learning [19, 20, 21, 22] and the

classification EM (CEM) algorithm for classification likelihood learning [17] are two such

algorithms and have been the dominant approaches in this task. The conventional EM

or CEM-based model-based clustering has three critical aspects, namely the initialization

of model parameters, the model complexity1, and the topology-preserving ability. These

aspects are discussed as follows.

• For model initialization: The learning performance of EM and CEM are very sen-

sitive to the initial conditions of the model’s parameters. To address this issue, the

1In this thesis, it denotes the number of mixture components for a mixture model.

1

authors in [17] proposed a simulated annealing implementation for CEM, which re-

duces the initial-position dependence based on random perturbations. Rather than

applying the randomization power of simulated annealing, the authors in [23] pro-

posed a deterministic annealing EM (DAEM) algorithm that tackles the initializa-

tion issue via a deterministic annealing process. DAEM was originally derived as a

DA variant of EM; however, as shown in Section 2.4.3, it is also a DA variant of CEM.

Although DAEM has been reported achieving decent performance, there is still no

guarantee that it finds the globally optimal model parameters because, like EM, it

is a iterative, single-token search scheme. In order to search the parameter space in

multiple pathes, the authors in [24, 25] and [26, 27] proposed multi-thread search

strategies when employing EM and DAEM, respectively, where the search pathes are

adapted in the search process according to the eigen-decomposition of the Hessian

matrix of the target log-likelihood function. As another kind of multiple-path search,

a GA-EM algorithm was proposed in [28], where EM learning is integrated into a

Genetic search procedure. It is less sensitive to the initialization because of the sto-

chastic search nature of the Genetic Algorithms (GA). Some heuristic-like learning

algorithms have also been proposed. For example, an initialization approach for EM

which is based on subsampling was presented in [29]. The authors in [30] proposed

an SMEM algorithm that finds the appropriate initial conditions for EM learning

by using split and merge operations. Similarly, Young and Woodland [31] proposed

a component-splitting approach to learn a GMM, which iteratively splits the mean

vector of the Gaussian component with the largest weight into two new ones, and

then performs EM to update all the Gaussian components. Another method based

on component splitting is presented in [32]. In [33], the authors suggested a simple

way that one can perform several short runs of EM (by early stopping) first, then

select the best model from the results and use them as the initial model for the long

run (standard) EM learning. As a common and simple way, one can apply K-means

clustering or hierarchical agglomerative clustering (HAC) to locate the initial mean

vectors of Gaussian components for the EM learning [1, 34, 35].

Note that all the approaches mentioned above are performed with a given target

number of mixture components.

• For model complexity: Assessment of the number of mixture components (data

clusters) is an important issue in model-based clustering. The mixture model would

over-fit the data if it contains too many mixture components; in contrast, it would

not be flexible enough to describe the structure of the data if the number of com-

ponents is too small. Various approaches have been proposed to address this issue.

In [36], Furman and Lindsay developed two hypothesis test procedures based on

the moment estimators to assess the number of components for a GMM. As an-

2

other hypothesis test-based approach, McLachlan and Khan estimated the number

of components by likelihood ratio test, where the re-sampling process is applied to

assess its null hypothesis [37]. In [38], the authors estimated the mixture complex-

ity by comparing an information theoretic-derived nonparametric estimator with the

best parametric fit of a given complexity. As another information theoretic-based

approach, a maximum entropy-based approach with a modified EM algorithm was

proposed to assess the model complexity of GMM in [39]. Moreover, model se-

lection criteria, also known as penalized-likelihood criteria, have been proposed to

assess the model complexity; for example, Akaike’s Information Criterion (AIC)

[40], Bayesian Information Criterion (BIC) [41, 10, 42], Integrated Completed Like-

lihood (ICL) [43], Approximate Weight Evidence (AWE) [18], Minimum Description

Length (MDL) [44] (which is formally identical to BIC), and Minimum Message

Length (MML) [45]. BIC is derived on the basis of mixture likelihood, ICL and

AWE are derived on the basis of classification likelihood, and AIC, MDL and MML

are information-theoretic-derived criteria. A common way to applying these criteria

to assess model complexity is that defining the upper bound, Gmax, of the compo-

nent number of candidate models first, and then choosing the one with the best

score calculated using the employed criterion as the best model. For example, when

using BIC, the best component number is

Ĝ = arg max
G
{2 log p(X ; Θ̂G)− Penalty(G)|G = 1, 2, . . . , Gmax}, (1.1)

where Θ̂G is the maximum likelihood estimate of parameters of the mixture model

with G components, Penalty(G) is a monotonically increasing function of G that

penalizes more for a more complex model [10]. However, there are two potential

drawbacks with this model-selection-based approach. First, it needs to define the

upper bound of the component number, Gmax, beforehand. On the one hand, if

Gmax is too large (much larger than the best component number determined by

the model selection criterion), the learning process will waste a lot of computation

time. On the other hand, if Gmax is too small, the selected model may be not flexible

enough to describe the structure of the data. Second, Θ̂G is usually obtained by

EM, whose performance is highly dependent on the model initialization.

Rather than assessing the model complexity by incrementally adding mixture com-

ponents during the learning process, as discussed above, the variational Bayesian

framework in [46, 47] automatically determines the number of components by setting

a larger component number initially and then suppressing unwanted components.

• For topology-preserving ability: Conventional model-based clustering cannot

preserve the topological relationships among data samples and clusters after the

3

clustering procedure. To overcome this shortcoming, the clustering task can be per-

formed by using Kohonen’s self-organizing map (SOM) [48, 49]. The SOM, rather

than being a supervised neural network model for pattern recognition, is an unsuper-

vised model for data clustering and visualization. After SOM’s clustering procedure,

the topological relationships among data samples and clusters can be preserved (or

visualized) on the network, which is usually a two dimensional lattice. Kohonen’s

sequential and batch SOM learning algorithms have proved successful in many prac-

tical applications [48, 49]. However, they also suffer from some shortcomings, such as

the lack of an objective (cost) function, a general proof of convergence, and a prob-

abilistic framework [50]. Some related works that have addressed these issues are

as follows. In [51, 52], the behavior of Kohonen’s sequential learning algorithm was

studied in terms of energy functions, based on which, Cheng [53] proposed an energy

function for SOM whose parameters can be learned by a K-means type algorithm.

Luttrell [54, 55] proposed a noisy vector quantization model called the topographic

vector quantizer (TVQ), whose training process coincides with the learning process

of SOM. The cost function of TVQ represents the topographic distortion between

the input data and the output code vectors in terms of Euclidean distance. Graepel

et al. [56, 57] derived a soft topographic vector quantization (STVQ) algorithm

by applying a deterministic annealing process to the optimization of TVQ’s cost

function. Based on the topographic distortion concept, Heskes [58] applied a dif-

ferent DA implementation from that of STVQ, and obtained an algorithm identical

to STVQ when the quantization error is expressed in terms of Euclidean distance.

In [59], Chow and Wu proposed an on-line algorithm for STVQ; later, motivated

by STVQ, they proposed a data visualization method that integrates SOM and

multi-dimensional scaling [60]. Based on the Bayesian analysis of SOMs in [61],

Anouar et al. [62] proposed a probabilistic formalism for SOM, where the para-

meters are learned by a K-means type algorithm. To help users select the correct

model complexity for SOM by probabilistic assessment, Lampinen and Kostiainen

[63] developed a generative model in which the SOM is trained by Kohonen’s algo-

rithm. Meanwhile, Van Hulle [64] developed a kernel-based topographic formation

in which the parameters are adjusted to maximize the joint entropy of the kernel

outputs. He subsequently developed a new algorithm with heteroscedastic Gaussian

mixtures that allows for a unified account of vector quantization, log-likelihood, and

Kullback-Leibler divergence [65]. Another probabilistic formulation is proposed in

[66], whereby a normalized neighborhood function of SOM is used as the posterior

distribution in the E-step of the EM algorithm for a mixture model to enforce the

self-organizing of the mixture components. Sum et al. [67] interpreted Kohonen’s

sequential learning algorithm in terms of maximizing the local correlations (cou-

pling energies) between neurons and their neighborhoods for the given input data.

4

They then proposed an energy function for SOM that reveals the correlations, and

a gradient ascent learning algorithm for the energy function.

1.2 Contributions of this dissertation

1.2.1 On model initialization and complexity

This thesis proposes a BIC-based self-splitting Gaussian mixture learning (SGML) algo-

rithm that starts with a single component and iteratively splits a component into two

new components until the most appropriate component number is found. The proposed

algorithm has several advantages as follows. 1) SGML provides a better initialization for

EM. For the Gaussian mixture learning process whose initialization is based on a data

clustering process like K-mens or HAC, the clustering phase may results in an poor initial

mixture model with too many components in one part of the space and too few in another

widely-separated part of the space; in this case, the following EM phase may fail to escape

from this configuration and fall into an poor local maximum. In the splitting process of

SGML, however, BIC is used to determine which part of the space should be divided

into two parts. In this way, the ill initialization situation can be avoided to some extent

and, thus, a better estimation for model parameters can be obtained. 2) SGML automati-

cally determines the appropriate component number without the need to define the upper

bound of the component number beforehand. It stops when a “significant maximum” in

the learning curve (i.e., the BIC plot) is found, and then outputs the model yielding the

maximum BIC valve. 3) SGML is deterministic; its output is always the same in different

runs on the same data set since it does not contain any randomization procedure in its

learning rules.

1.2.2 On topology-preserving ability

In Kohonen’s SOM architecture, neurons in the network associate with reference vectors

in the data space. This contrasts with a SOM whose neurons associate with reference

models that present probability distributions, such as the isotropic Gaussians used in [66]

and the heteroscedastic Gaussians used in [62, 65]. In this thesis, the latter is called a

probabilistic SOM (PbSOM). Motivated by the coupling energy concept in Sum et al.’s

work [67], a coupling-likelihood mixture model for the PbSOM that uses multivariate

Gaussian distributions as the reference models is developed. In the proposed model,

local coupling energies between neurons and their neighborhoods are expressed in terms

of probabilistic likelihoods; and each mixture component expresses the local coupling-

likelihood between one neuron and its neighborhood. Based on this model, we develop

CEM, EM, and DAEM algorithms for learning PbSOMs, namely the SOCEM, SOEM, and

SODAEM algorithms, respectively. SODAEM is a DA variant of SOCEM and SOEM.

5

Moreover, we show that SOCEM and SOEM can be interpreted, respectively, as DA

variants of the CEM and EM algorithms for Gaussian model-based clustering, where the

neighborhood shrinking is interpreted as an annealing process. The experiment results

show that the proposed PbSOM learning algorithms achieve comparable data clustering

performance to the DAEM algorithm, while maintaining the topology-preserving property.

1.2.3 On applications

In this thesis, we apply SGML to the training of speaker GMMs for the speaker identi-

fication task. The experiment results on NIST 2001 speaker recognition evaluation [68]

show that SGML can automatically determine the appropriate model complexity for a

speaker GMM, which is usually empirically determined in the literature [4, 69]. The

proposed PbSOM algorithms are applied to data visualization and analysis. The exper-

iment results on UCI data sets show that we can explore the topological relationships

between data samples and clusters on a two-dimensional network. Moreover, we propose

divide-and-conquer approaches for the audio segmentation task using BIC to evaluate the

dissimilarity between two audio segments. The experiment results on the broadcast news

data demonstrate that our approaches not only have a lower computation cost but also

achieve a higher segmentation accuracy than the leading window-growing-based segmen-

tation approach [70, 71].

1.3 Organization of this dissertation

To help readers understand the content of this thesis, we briefly review K-means clustering,

hierarchical agglomerative clustering, Kohonen’s SOM, and model-based clustering in

Chapter 2. In Chapter 3, we describe the SGML algorithm for learning a Gaussian

mixture model and its application to speaker identification (based on [72]). In Chapter

4, we describe the SOCEM, SOEM, and SODAEM algorithms for model-based clustering

where the topological relationships between data samples and clusters can be preserved

on a network and their application to data visualization and analysis (based on [73]).

We present the application of BIC to audio segmentation (based on [74]) in Chapter 5.

Finally, we give the conclusion and discuss our future works in Chapter 6.

6

Chapter 2

Preliminaries and related works

2.1 K-means clustering

Given a data set X = {x1,x2, · · · ,xN} ⊂ <d, data clustering can be achieved based on

learning the vector prototypes {m1,m2, · · · ,mG} ⊂ <d; after the learning process, X is

partitioned into clusters P = {P1,P2, · · · ,PG} by classifying each data sample to the

cluster associated with its nearest prototype. For the learning, the goal is to find the

partition and the prototypes that minimize the distance function

D(P , {m1,m2, · · · ,mG};X) =
G∑

k=1

∑

xi∈Pk

‖xi −mk‖2, (2.1)

which can not be minimized analytically.

K-means clustering is a popular approach to learning the prototypes in order to min-

imize Eq. (2.1). Given the initial prototypes, it iteratively and alternatively applies a

classification step and a distance minimization step on the data samples and prototypes

as follows.

• Nearest-neighbor classification: Given the current prototypes, {m(t)
1 ,m

(t)
2 , · · · ,m(t)

G },
assign each data sample to the cluster associated with its nearest prototype, i.e.,

xi ∈ P̂(t)
j if j = arg mink ‖xi −m

(t)
k ‖2.

• Distance minimization: Suppose we have the clusters {P̂(t)
1 , P̂(t)

2 , · · · , P̂(t)
G } after the

classification step; then, by minimizing
∑

xi∈P̂(t)
k

‖xi − mk‖2 with respect to mk,

we obtain the update rules for the prototypes as: m
(t+1)
k = 1

|P̂(t)
k
|
∑

xi∈P̂(t)
k

xi, for

k = 1, 2, · · · , G.

Although the K-means clustering algorithm is simple and efficient, it only guaran-

tees converging to a local minimum of the distance function in Eq. (2.1). Besides, it

has two more shortcomings that the performance highly depends on the initialization of

7

1
x

2
x

(a)

A B C D E F G

{B ,C }

{A ,B ,C }

{D ,E}

{F,G }

{D ,E,F,G }

{A ,B ,C ,D ,E,F,G }

P
ro
xi m

ity
(b)

Figure 2.1: (a) {A, B, · · ·, G} are data samples in <2. (b) An illustrative dendrogram of
the data samples in (a) obtained by hierarchical agglomerative clustering.

prototypes and the number of prototypes need to be defined beforehand. To overcome

the initialization issue, the authors in [75] proposed to iteratively split each mean vec-

tor into two new ones until the desired number of clusters is reached. Similarly, in [76],

the authors proposed iteratively splitting the mean vector of the cluster with the largest

accumulated distance between data samples and its prototype until the desired number

of clusters is reached. As a simple way, one may conduct the K-means algorithm with

random initialization for many runs, say 20, and then select the best one.

2.2 Hierarchical agglomerative clustering

Different from K-means clustering that performs data clustering based on prototype learn-

ing, hierarchical agglomerative clustering (HAC) performs the clustering according to the

proximity between clusters. When performing HAC, each data sample is considered as a

cluster initially; then, the algorithm iteratively merges the two clusters with the smallest

distance into a new cluster. For example, if HAC is applied to clustering {A, B,· · ·,G}
in Figure 2.1 (a) with Euclidean distance, we may obtain a dendrogram (tree) that rep-

resents the hierarchy of the clusters in Figure 2.1 (b). As shown in the figure, B and C

are merged into a cluster first, then D and E are merged, and so on. And we can obtain

different configurations of clusters by cutting the dendrogram according to the proximity.

As for the inter-cluster distance measure, the most commonly used ones are the so-called

single-linkage, average-linkage, and complete-linkage approaches defined in Table 2.1. For

more discussions of these distance measure, reader can refer to [77].

8

Table 2.1: Common inter-cluster distance measures for hierarchical agglomerative clus-
tering. d(xi,xj) denotes the distance measure for xi and xj.

Approach distance between clusters Pm and Pn

Single-linkage minxi∈Pm,xj∈Pn d(xi,xj)
Average-linkage 1

|Pm||Pn|
∑

xi∈Pm

∑
xj∈Pn

d(xi,xj)

Complete-linkage maxxi∈Pm,xj∈Pn d(xi,xj)

2.3 Self-organizing map

Self-organizing map (SOM) is a neural network model for data clustering that preserves

the topological relationships between data samples and clusters in a network [48, 49].

Like K-means clustering, the training of SOM is a prototype-learning process. How-

ever, in addition to the interconnections between the data samples and the prototypes

as in K-means clustering, SOM involves lateral interactions between prototypes via a

neighborhood definition on the network to learn the topological relationships between the

prototypes. Kohonen’s sequential (incremental) and batch learning algorithms have been

well recognized and successfully applied to many tasks, such as data visualization [48],

document processing [78, 79], image processing [80], and speech precessing [81, 82, 83].

Kohonen’s SOM model consists of G neurons R={r1, r2, · · · , rG} on a network with

a neighborhood function hkl that defines the strength of lateral interaction between two

neurons, rk and rl, for k, l ∈ {1, 2, · · · , G}; and each neuron rk associates with a vector

prototype mk (a reference vector) in the input data space [48, 49]. In Kohonen’s sequential

learning algorithm, the training data samples x1,x2, · · · ,xN are applied sequentially. For

each data sample, say xi, its winning prototype m
win

(t)
i

such that

win
(t)
i = arg min

j
‖xi −m

(t)
j ‖, (2.2)

is retrieved first, then the prototypes are adapted by the following rules:

m
(t+1)
k = m

(t)
k + α(t)h

win
(t)
i k

(xi −m
(t)
k), (2.3)

for k = 1, 2, · · · , G. α(t) is the learning-rate factor such that 0 < α(t) < 1; it decreases

monotonically with the increasing of the learning iterations. The neighborhood function

hkl is usually a rectangular function, i.e., hkl = 1 for rl that is in the neighborhood of rk

and hkl = 0 for rl that is not in the neighborhood of rk; or a monotonically decreasing

function of the Euclidean distance ‖rk − rl‖ between rk and rl on the SOM network, for

example, the widely applied unnormalized Gaussian neighborhood function

hkl = exp(−‖rk − rl‖2

2σ2
). (2.4)

9

Kohonen’s batch learning algorithm applies all the data samples as a whole to up-

date the prototypes, rather than one by one as in the sequential learning algorithm. In

each learning iteration, the winning prototype for each sample is found first; then, the

prototypes are updated by

m
(t+1)
k =

∑N
i=1 h

win
(t)
i k

xi

∑N
i=1 h

win
(t)
i k

, (2.5)

for k = 1, 2, · · · , G.

Kohonen’s learning algorithms need to be applied with two stages. First, a large

neighborhood is applied to the algorithm to learn an ordered map near the center of

the data samples. Then, the prototypes are adapted to fit the distribution of the data

samples by gradually shrinking the neighborhood. When the neighborhood is reduce to

zero-neighborhood, i.e., hkl = δkl where δkl = 1 if k = l and otherwise δkl = 0, Kohonen’s

batch learning algorithm becomes the K-means clustering algorithm.

2.4 Probabilistic model-based clustering

2.4.1 The mixture likelihood approach

In the mixture likelihood approach for model-based clustering, it is assumed that the

given data set X = {x1,x2, · · · ,xN} ⊂ <d is generated by a set of independently and

identically distributed (i.i.d.) random vectors from a mixture model:

p(xi;Θ) =
G∑

k=1

w(k)p(xi; θk), (2.6)

where w(k) is the mixing weight of the mixture component p(xi; θk), subject to 0 ≤
w(k) ≤ 1 for k = 1, 2, · · · , G;

∑G
k=1 w(k) = 1; and θk denotes the parameter set of

p(xi; θk).

The maximum likelihood estimate of the parameter set of the mixture model Θ̂ =

{ŵ(1), ŵ(2) , · · · , ŵ(G),θ̂1, θ̂2, · · · , θ̂G} can be obtained by maximizing the following log-

likelihood function:

L(Θ;X) = log
N∏

i=1

p(xi;Θ)

=
N∑

i=1

log(
G∑

k=1

w(k)p(xi; θk)). (2.7)

This is usually achieved by using the expectation-maximization (EM) algorithm [20, 22].

After learning the mixture model, we derive a partition of X , P̂ = {P̂1, P̂2, · · · , P̂G}, by

assigning each xi ∈ X to the mixture component that has the largest posterior probability

10

for xi, i.e., xi ∈ P̂j if j = arg maxk p(k | xi; Θ̂).

2.4.1.1 The EM algorithm for mixture models

If the maximum likelihood estimation of the parameters cannot be accomplished analyti-

cally, the EM algorithm is normally used as an alternative approach when the given data

is incomplete or contains hidden information.

In the case of the mixture model, suppose that Θ(t) denotes the current estimate of

the parameter set, and k is the hidden variable that indicates the mixture component

from which the data sample is generated. The E-step of EM algorithm then computes

the following so-called auxiliary function:

Q(Θ;Θ(t)) =
N∑

i=1

G∑

k=1

p(k | xi;Θ
(t)) log p(xi, k;Θ), (2.8)

where

p(xi, k;Θ) = w(k)p(xi; θk), (2.9)

and

p(k | xi;Θ
(t)) =

w(k)(t)p(xi; θ
(t)
k)

∑G
j=1 w(j)(t)p(xi; θ

(t)
j)

(2.10)

denotes the posterior probability of the kth mixture component for xi with the given Θ(t).

Then, in the following M-step, the Θ(t+1) that satisfies

Q(Θ(t+1);Θ(t)) = max
Θ

Q(Θ;Θ(t)) (2.11)

is chosen as the new estimate of the parameter set. By iteratively creating the auxiliary

function in Eq. (2.8) and performing the subsequent maximization step, the EM algorithm

guarantees to converge to a local maximum of the log-likelihood function in Eq. (2.7).

When Q(Θ;Θ(t)) can not be maximized analytically, the M-step is modified to find

some Θ(t+1) such that Q(Θ(t+1);Θ(t)) > Q(Θ(t);Θ(t)). This type of algorithm, called

Generalized EM (GEM), is also guaranteed to converge to a local maximum [20, 22].

2.4.1.2 The EM algorithm for Gaussian mixture models

Suppose Eq. (2.6) is a Gaussian mixture model where

p(xi; θk) =
1

(2π)d/2|Σk|1/2
exp(−1

2
(xi − µk)

TΣ−1
k (xi − µk)), (2.12)

is the multivariate Gaussian distribution and θk = {µk,Σk} are its mean vector and

covariance matrix. Then, each iteration of the EM algorithm for learning GMMs is

summarized as follows.

11

• E-step: Given the current model, Θ(t), compute the posterior probability of each

mixture component of p(xi;Θ
(t)) for each xi using Eq. (2.10).

• M-step: Substituting Eq. (2.12) into Eq. (2.8) and then setting its derivative to

zero, we obtain the re-estimation formulae of the parameters as follows.

w(k)(t+1) =
1

N

N∑

i=1

p(k | xi;Θ
(t)), (2.13)

µ
(t+1)
k =

∑N
i=1 p(k | xi;Θ

(t))xi∑N
i=1 p(k | xi;Θ(t))

, (2.14)

Σ
(t+1)
k =

∑N
i=1 p(k | xi;Θ

(t))(xi − µ
(t+1)
k)(xi − µ

(t+1)
k)T

∑N
i=1 p(k | xi;Θ(t))

. (2.15)

2.4.1.3 The Bayesian approach for model selection and BIC

Given the data set X and a set of candidate probability models M = {MG | G =

1, . . . , Gmax} where model MG associates with a parameter set ΘG, the posterior proba-

bility p(MG | X) can be used to select the appropriate model from M to represent the

distribution of X . According to Bayes’ theorem, p(MG | X) can be expressed as

p(MG | X) =
p(MG)p(X ; MG)

p(X)
, (2.16)

where p(MG) is the prior probability of model MG. p(X) can be ignored because it is

identical for all models and does not affect the selection. Moreover, it is assumed that each

model is equally likely (i.e., p(MG) = 1/Gmax); then, p(MG | X) is proportional to the

probability that the data conforms to the model MG, p(X ; MG), which can be computed

by

p(X ; MG) =
∫

p(X ;ΘG,MG)p(ΘG; MG)dΘG,

=
∫

p(X ;ΘG)p(ΘG)dΘG. (2.17)

The calculation of log p(X ; MG) can be achieved by the Laplace approximation [42, 47, 84],

which gives

log p(X ; MG) ≈ log p(X ; Θ̂G)− 1

2
d(ΘG) log N, (2.18)

where Θ̂G is the maximum likelihood estimate of ΘG, d(ΘG) is the number of free pa-

rameters in model MG, and N is the number of data samples. In [10], the BIC value of

12

model MG over the data set X , BIC(MG,X), is defined as1

BIC(MG,X) ≡ 2 log p(X ; Θ̂G)− d(ΘG) log N. (2.19)

Accordingly, the larger the BIC value, the stronger the evidence for the model is. In other

words, the model with the maximum BIC value will be selected. The BIC can be used

to compare models with different parameterizations, different numbers of components, or

both.

2.4.2 The classification likelihood approach

In the classification likelihood approach for model-based clustering [15, 16, 17], instead of

maximizing the log-likelihood function of the mixture model in Eq. (2.7), the objective is

to find the partition P̂ = {P̂1, P̂2, · · · , P̂G} of X and the model parameters that maximize

C1(P , {θ1,θ2, · · · ,θG};X) =
G∑

k=1

∑

xi∈Pk

log p(xi; θk), (2.20)

or

C2(P ,Θ;X) =
G∑

k=1

∑

xi∈Pk

log(w(k)p(xi; θk)). (2.21)

The relation between C1 and C2 is

C2(P ,Θ;X) = C1(P , {θ1,θ2, · · · ,θG};X) +
G∑

k=1

|Pk| log w(k), (2.22)

If all the mixture components are equally weighted,
∑G

k=1 |Pk| log w(k) becomes a constant,

such that C1 and C2 are equivalent.

2.4.2.1 The CEM algorithm for mixture models

Celeux and Govaert [17] proposed the Classification EM (CEM) algorithm for estimating

the partition P̂ and model parameters. Like the EM algorithm, CEM is also an iterative

learning approach. In each iteration, it inserts a classification step (C-step) between the

E-step and M-step of the EM algorithm. In the E-step, the posterior probability of each

mixture component is calculated for each data sample. In the C-step, to obtain the parti-

tion P̂ of the data samples, each sample is assigned to the mixture component that yields

the largest posterior probability for that sample. In the M-step, the maximization process

is applied to P̂k individually for k = 1, 2, · · · , G. From a practical point of view, CEM

1Kass and Raftery [85] defined BIC as minus the value given in Eq. (2.19); Fraley and Raftery [10]
used the BIC defined in Eq. (2.19) to make it easier to interpret the plot of BIC values. Here, we follow
Fraley and Raftery’s BIC definition.

13

is a K-means type algorithm where a cluster is associated with a probability distribution

rather than a vector prototype [17].

2.4.2.2 The CEM algorithm for Gaussian mixture models

Suppose the multivariate Gaussian is used as the mixture component, each iteration of

the CEM algorithm for learning GMMs is summarized as follows.

• E-step: Given the current model, Θ(t), compute the posterior probability of each

mixture component of p(xi;Θ
(t)) for each xi using Eq. (2.10).

• C-step: Assign each xi to the cluster whose corresponding mixture component has

the largest posterior probability for xi, i.e., xi ∈ P̂(t)
j if j = arg maxk p(k|xi;Θ

(t)).

• M-step: After the C-step, the partition of X (i.e., P̂(t)) is formed, and the objective

function C2 defined in Eq. (2.21) becomes

C2(Θ; P̂(t),X) =
G∑

k=1

∑

xi∈P̂(t)
k

log(w(k)p(xi; θk)). (2.23)

Substituting Eq. (2.12) into Eq. (2.23) and then setting the derivative of C2 with

respect to individual parameters to zero, we obtain the re-estimation formulae of

the parameters as follows.

w(k)(t+1) =
|P̂(t)

k |
N

, (2.24)

µ
(t+1)
k =

∑
xi∈P̂(t)

k

xi

|P̂(t)
k |

, (2.25)

Σ
(t+1)
k =

∑
xi∈P̂(t)

k

(xi − µ
(t+1)
k)(xi − µ

(t+1)
k)T

|P̂(t)
k |

. (2.26)

2.4.2.3 AWE and ICL for model selection

Based on classification likelihood, Banfield and Raftery proposed the AWE criterion [18,

86] to assess the number of Gaussian components (clusters) for a given data set. The

AWE criterion is

AWE(G clusters;X) = C1(P̂ , {θ̂1, θ̂2, · · · , θ̂G};X)− d({θ1,θ2, · · · ,θG})(3
2

+ log N),

(2.27)

In addition, Biernacki et al. proposed the ICL criterion [43],

ICL(G clusters;X) = C2(P̂ , Θ̂G;X)− 1

2
d(Θ) log N. (2.28)

14

2.4.3 The DAEM algorithm

In the DAEM algorithm for learning a mixture model [23], the objective is to minimize

the following system energy function during the annealing process:

Fβ(Θ;X) = − 1

β

N∑

i=1

log(
G∑

k=1

(w(k)p(xi; θk))
β), (2.29)

where 1/β corresponds to the temperature that controls the annealing process. The aux-

iliary function in this case is

Uβ(Θ;Θ(t)) = −
N∑

i=1

G∑

k=1

f(k | xi;Θ
(t)) log p(xi, k;Θ), (2.30)

where

f(k | xi;Θ
(t)) =

(w(k)(t)p(xi; θ
(t)
k))β

∑G
j=1(w(j)(t)p(xi; θ

(t)
j))β

(2.31)

is the posterior probability derived by using the maximum entropy principle.

Ueda and Nakano [23] showed that Fβ(Θ;X) can be iteratively minimized by it-

eratively minimizing Uβ(Θ;Θ(t)). When using DAEM to learn a mixture model, β is

initialized with a small value (less then 1) such that the energy function itself is simple

enough to be optimized. Then, the value of β is gradually increased to 1. During the

learning process, the parameters learned in the current learning phase are used as the

initial parameters of the next phase2. In the case of β = 1, Fβ(Θ;X) and Uβ(Θ;Θ(t)) are

the negatives of the log-likelihood function in Eq. (2.7) and the Q-function in Eq. (2.8),

respectively; thus, minimizing Fβ(Θ;X) is equivalent to maximizing the log-likelihood

function.

According to [23], Eq. (2.29) can be rewritten as

Fβ(Θ;X) = Uβ(Θ)− 1

β
Sβ(Θ), (2.32)

where

Uβ(Θ) = −
N∑

i=1

G∑

k=1

f(k | xi;Θ) log p(xi, k;Θ), (2.33)

and

Sβ(Θ) = −
N∑

i=1

G∑

k=1

f(k | xi;Θ) log f(k | xi;Θ) (2.34)

is the entropy of the posterior distribution. When β→∞, the rational function f(k | xi;Θ)

approximates to a zero-one function; thus, the entropy term Sβ(Θ)→0. In this case,

Fβ(Θ;X) is equivalent to the negative of the objective function for CEM in Eq. (2.21).

2Each β value corresponds to a learning phase. The algorithm proceeds to the next phase after it
converges in the current phase.

15

Therefore, DAEM can be viewed as a DA variant of CEM.

2.4.3.1 The DAEM algorithm for Gaussian mixture models

For the given β value, each iteration of the DAEM algorithm for learning GMMs is

summarized as follows.

• E-step: Given the current model, Θ(t), compute the posterior probability of each

mixture component of p(xi;Θ
(t)) for each xi using Eq. (2.31).

• M-step: Substituting Eq. (2.12) into Eq. (2.30) and then setting its derivative to

zero, we obtain the re-estimation formulae of the parameters as follows.

w(k)(t+1) =
1

N

N∑

i=1

f(k | xi;Θ
(t)), (2.35)

µ
(t+1)
k =

∑N
i=1 f(k | xi;Θ

(t))xi∑N
i=1 f(k | xi;Θ(t))

, (2.36)

Σ
(t+1)
k =

∑N
i=1 f(k | xi;Θ

(t))(xi − µ
(t+1)
k)(xi − µ

(t+1)
k)T

∑N
i=1 f(k | xi;Θ(t))

. (2.37)

16

Chapter 3

BIC-based self-splitting Gaussian

mixture learning

3.1 The SGML algorithm

Given the data set X = {x1,x2, · · · ,xN}, we can partition it into G clusters after applying

the EM algorithm to learn a G-component Gaussian mixture model (GMMG). Here, to

help explain the scenario of the proposed approach, we denote a cluster obtained by EM

learning a EM cluster. The self-splitting Gaussian mixture learning algorithm (SGML)

starts with a single component (i.e., a single EM cluster) in the data space (i.e., X)

and splits the selected component adaptively during the learning process until the most

appropriate number of components (EM clusters) is found. We describe the details of

SGML in Algorithm 1. There are three main aspects with respect to the self-splitting

learning rules:

I1: How to group the data samples into clusters?

I2: Which component should be split into two new components?

I3: How many components are enough for fitting the distribution of the data samples?

On issue I1: After EM, each xi ∈ X is assigned to the EM cluster whose Gaussian

component has the largest posterior probability for xi, i.e., assign xi to EM clusterj for

j = arg maxk p(k | xi; Θ̂).

On issue I2: For each EM cluster, we calculate the value of ∆BIC21(EM cluster):

∆BIC21(EM cluster) = BIC(GMM2, EM cluster)−BIC(GMM1, EM cluster),

(3.1)

where GMM1 fits the EM cluster with a single Gaussian component while GMM2 fits

the EM cluster with a mixture of two Gaussian components. The component correspond-

ing to the EM cluster with the largest ∆BIC21 value is split into two new components

17

because, according to the BIC theory, the larger the ∆BIC21 is, the higher the confidence

that GMM2 fits the corresponding EM cluster better than GMM1 does. The mean vec-

tor and covariance matrix of GMM1 can be optimally estimated in an analytic way (which

are respectively the sample mean vector and sample covariance matrix of EM cluster),

whereas those of GMM2 need to be estimated by the EM algorithm. For the learning

of GMM2, we use K-means clustering (here, K=2) to find two initial mean vectors of

GMM2, and then apply EM to fine-tune the parameters. Suppose µ is the mean vector of

GMM1, we use µ− ε and µ + ε as the initial centroids of the K-means clustering, where

ε is a constant vector.

On issue I3: After the jth split operation, the number of components grows to j + 1

and these Gaussian components are used as the initialization of EM to learn the GMMj+1

for X ; and the value of BIC(GMMj+1,X) is computed after the EM learning. During the

learning process the BIC values of the learned GMMs with different numbers of mixture

components are collected to form a learning curve (i.e., the BIC plot); and the learning

process stops when a “significant maximum” in the learning curve is found. Given that

SGML has generated {GMM1,GMM2,· · ·,GMMcNum}, if BIC(GMMcNum−SRange,X) is

the maximum among {BIC(GMM1,X),BIC(GMM2,X),· · ·,BIC(GMMcNum,X)}, it is

called the “significant maximum” of the learning curve and SGML stops and returns

the model GMMcNum−SRange; otherwise, SGML continues to learn GMMcNum+1. Here,

SRange is a positive integer; it is appropriate to set SRange around 5 according to our

experience.

3.1.1 Computational complexity of SGML

Without loss of generality, we assume the splitting process of SGML stops at GMMGmax .

With the data set X , we use TKM(k,X) to denote the computational cost of applying K-

means clustering to initialize GMMk for EM and use TEM(k,X) to denote the cost of using

EM for learning GMMk. For SGML, the computational cost of the Splitting step that

splits GMMM to GMMM+1 consists of the cost of computing the sample mean vectors

and sample covariance matrices for all clusters, i.e.,
∑M

j=1 TEM(1, EM clusterj), plus the

cost of applying K-means (K=2 here) followed by EM to learn GMM2 for all clusters, i.e.,
∑M

j=1[TKM(2, EM clusterj) +TEM(2, EM clusterj)].
∑M

j=1 TEM(1, EM clusterj) is al-

most equal to TEM(1,X). Moreover, from Eqs. (2.13)-(2.15), it is obvious that TEM(k,X)

is proportional to the component number k and the size of data set X . In fact, TKM(k,X)

also has this property. Therefore,
∑M

j=1 TEM(2, EM clusterj) can be approximated by

TEM(2,X), while
∑M

j=1 TKM(2, EM clusterj) can be approximated by TKM(2,X). In ad-

dition, the cost of the Global EM learning step is TEM(M + 1,X). Thus, the total cost

18

of SGML is about

Gmax∑

k=1

[TEM(1,X) + TKM(2,X) + TEM(2,X) + TEM(k,X)]. (3.2)

For the common approach that uses K-means (with random initialization) followed by

EM to learn the candidate models for the model selection criterion, the computational

cost is
Gmax∑

k=1

[TKM(k,X) + TEM(k,X)]. (3.3)

Comparing Eq. (3.2) to Eq. (3.3), it is clear that SGML is more efficient when k À 2

because for which case, TKM(k,X) is larger than TEM(1,X)+ TKM(2,X)+TEM(2,X).

Comparing to the method proposed by Young and Woodland [31], SGML has an over-

head of TEM(1,X) + TKM(2,X) + TEM(2,X) in each splitting step. However, TEM(1,X)

is much small than 1
2
TEM(2,X) because it does not involve likelihood calculations when

estimating GMM1. Moreover, TKM(2,X) is much smaller than TEM(2,X). Thus, the

overhead is just slightly higher than TEM(2,X). When M À 2, the overhead for splitting

GMMM to GMMM+1 is negligible since TEM(2,X) is much smaller than TEM(M + 1,X).

3.2 The fastSGML algorithm

The computation cost becomes an important issue when the data set is very large; a fast

learning procedure is therefore desirable. Since we can validate if GMM2 fits a cluster

better than GMM1 using BIC, a straightforward idea to speedup SGML is that split all

the clusters whose ∆BIC21 values are larger than a threshold in each splitting step. Here,

we call the threshold the splitting confidence. Based on the concept of multiple splitting,

we proposed a fastSGML approach in Algorithm 2. To avoid the over-fitting condition

caused when using a too small splitting confidence, the fastSGML stops not only when

the ∆BIC21 value for each cluster is smaller than the splitting confidence (in Step 3) but

also when the learning curve starts to go down (in Step 4). Clearly, fastSGML needs a

much lower computation requirement than SGML because it allows multiple splits in the

splitting step. fasSGML resembles the LBG algorithm [75], but the difference is that the

later iteratively splits each of the clusters into two clusters until a given cluster number

is reached and no validation measure is applied to the splitting.

3.3 Experiments on Gaussian mixture learning

We evaluated the proposed SGML and fastSGML algorithms on one synthetic data set

which consists of six Gaussian clusters in <2 and one real-world data set which consists

of speech feature vectors from speaker #5007 of the NIST 2001 cellular speaker recog-

19

nition evaluation data (NIST01SpkEval) [68]. We evaluated the algorithms using the

performance of speaker GMM training because we shall apply SGML to the GMM-based

speaker identification task, as shown in Section 3.4. In each task, the performance of

the proposed algorithms were compared to that of other EM-based learning approaches

whose initial mean vectors of GMMs are located by hierarchical agglomerative clustering

(HAC) or K-means clustering. The baseline approaches are as follows.

1. Hier-ComLink method: The initial Gaussian mean vectors in EM were obtained by

the complete-linkage HAC [35].

2. Hier-SLink method: The initial Gaussian mean vectors in EM were obtained by the

single-linkage HAC [35].

3. Hier-CenLink method: The initial Gaussian mean vectors in EM were obtained by

the centroid-linkage HAC [35].

4. K-means-random method: The initial Gaussian mean vectors in EM were obtained

by K-means clustering, in which the initial centroids are randomly selected from the

data set.

5. K-means-BinSplitting method [75]: The initial Gaussian mean vectors in EM were

determined by the LBG algorithm, in which each mean vector was split into two

new ones in each splitting step until the desired number of clusters was reached.

6. K-means-IncSplitting method [76]: The initial Gaussian mean vectors in EM were

obtained by the incremental splitting K-means algorithm, in which only the mean

vector of the cluster with the largest accumulated distance was split into two new

ones in each splitting step until the desired number of clusters was reached.

7. EMSplitByMaxWeight method [31]: This method splits the mean vector of the

Gaussian component with the largest mixture weight into two new ones in each

splitting step, and then performs EM to update all Gaussian components. The

number of mixture component is incremented from one to the pre-defined number.

For each baseline approach, the initial covariance matrix of GMMk was set as ρkI,

where ρk=minj 6=k{‖µ(0)
j − µ

(0)
k ‖} and µ

(0)
j denotes the initial mean vector of the jth

Gaussian component.

3.3.1 Results on the synthetic data

Figure 3.1 (a) shows the synthetic data that contains six Gaussian clusters, each with 100

samples. First, we conducted experiments using full covariance Gaussian components.

Figure 3.1 schematically depicts the learning process of the SGML algorithm. For this

20

example, SGML stops at GMM11 and obtains a “significant maximum” at GMM6, as

shown in Figure 3.2. The results show that SGML performs well on automatic clustering

the synthetic data. When evaluating the baseline methods, the maximal number of mix-

ture components was limited to 13. From Figure 3.2, we see that all the baseline methods

except K-means-random estimate the parameters of GMMk(k = 1, 2, · · · , 13) as well as

SGML.

Then, we evaluated SGML with diagonal covariance Gaussians. In this case, as shown

in Figure 3.3, SGML groups the synthetic data into ten clusters. From the perspective

of “Gaussian mixture modeling” rather than “data clustering”, we divide the learning

process into three phases:

1. The cluster-capturing phase (GMM1 − GMM6): In this phase, SGML roughly

captures the locations of all the clusters of the data by the self-splitting rules.

2. The shape-smoothing phase (GMM7 − GMM10): A diagonal covariance Gaussian

component is unable to model a cluster which has a complex shape, and this kind

of cluster needs to be presented by a mixture of Gaussians. For example, as shown

in Figure 3.1 (a), clusters 3, 4, 5, and 6 are all oblique ellipses and each of them

needs to be presented by a mixture of two Gaussians. As a result, the learning

curve in Figure 3.3 has the largest BIC value at GMM10. It is obvious that the

increase of BIC value in the shape-smoothing phase is much smaller than that in

the cluster-capturing phase.

3. The over-fitting phase (GMM11−): After reaching the component number with the

largest BIC value, SGML starts to over-fit the data in each splitting step and thus,

the learning curve goes down progressively.

3.3.2 Results on the real-world data

In this section, we compared the performance of SGML and baseline methods by evaluat-

ing their performance on speaker GMM training with speech feature vectors from speaker

#5007 in NIST01SpkEval. For feature extraction, 24 mel-frequency cepstral coefficients

(MFCCs) were extracted using a 32-ms analysis window with a 10-ms shifting [87].

Figure 3.4 shows the learning curves obtained by the various methods on 15-second

speech data (corresponding to 1500 24-dimensional MFCCs). Figures 3.4 (a)-(b) show the

learning curves of the full covariance case, while (c)-(d) show the results of the diagonal

covariance case. For these two cases, the upper bounds of component number were limited

to 15 and 40, respectively (in fact, SGML stopped at GMM9 and GMM21, respectively).

The corresponding “significant maximum” of the learning curves of SGML are at GMM4

and GMM16, respectively, which are also the global maximum in their corresponding

21

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110

2

3

6

4

1

5

(a) GMM1

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110
After splitting

(b) Initial of GMM2

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110
After EM and clustering

(c) GMM2

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110
After splitting

(d) Initial of GMM3

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110
After EM and clustering

(e) GMM3

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110
After splitting

(f) Initial of GMM4

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110
After EM and clustering

(g) GMM4

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110
After splitting

(h) Initial of GMM5

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110
After EM and clustering

(i) GMM5

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110
After splitting

(j) Initial of GMM6

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

110
After EM and clustering

(k) GMM6

0
20

40
60

80
100

0

20

40

60

80

100

0

0.005

0.01

0.015

0.02

Probability Model

pd
f v

al
ue

(l) 3D plot of GMM6

Figure 3.1: The learning process of SGML on the synthetic data, where full covariance
GMMs are used.

22

0 2 4 6 8 10 12 14
−1.15

−1.1

−1.05

−1

−0.95

−0.9

−0.85
x 10

4

number of components

B
IC

 v
al

ue

Hier−ComLink
Hier−SLink
Hier−CenLink
SGML

(a)

0 2 4 6 8 10 12 14
−1.15

−1.1

−1.05

−1

−0.95

−0.9

−0.85
x 10

4

number of components

B
IC

 v
al

ue

K−means−random
K−means−BinSplitting
K−means−IncSplitting
EMSplitByMaxWeight
SGML

(b)

Figure 3.2: The learning curves of SGML and the baseline approaches on the synthetic
data, where full covariance GMMs are used.

0 2 4 6 8 10 12 14
−1.15

−1.1

−1.05

−1

−0.95

−0.9

−0.85
x 10

4

number of components

B
IC

 v
al

ue

SGML

Figure 3.3: The learning curve of SGML on the synthetic data, where diagonal covariance
GMMs are used.

23

learning curves. From the figures, we see that the learning curves of SGML are smoother

than those of the other methods. The self-splitting learning process splits the cluster

with the largest ∆BIC21 value in each splitting step, and makes the learning curve go

up steadily before reaching the most appropriate component number. After reaching the

best component number, the learning process tends to split a well-modeled cluster in each

splitting step, and makes the learning curve go down progressively. We also see that the

BIC values of the GMMs trained by SGML are almost always higher than those of the

GMMs trained by the other methods at any component number. As discussed in Section

2.4.1.3, with the same model complexity, the higher BIC value indicates the higher log-

likelihood value. Therefore, SGML also outperforms the other methods in learning GMM

with a given component number.

Next, we investigated the learning performance of fastSGML using diagonal covari-

ance GMMs and 60-second speech data; and compared its performance to that of SGML

and K-means-BinSplitting. Figure 3.5 shows the learning curves of fastSGML, K-means-

BinSplitting and SGML. The splitting confidence of fastSGML are set at 150 (fastSGML-

150), 100 (fastSGML-100), and 50 (fastSGML-50), respectively. The best component

numbers obtained by fastSGML-150, fastSGML-100, fastSGML-50 and SGML were 27,

37, 43 and 40, respectively; and, hence, K-means-BinSplitting was forced to stop at

GMM43. From the figure, it seems that fastSGML-150 and fastSGML-100 under-fit the

training data while fastSGML-50 over-fit it. From the learning curve of SGML, we see

that the GMM whose component number is within the range of 30 to 50 has a BIC value

similar to that of GMM40 (the best model selected by the SGML). fastSGML obtains a

GMM with a very close BIC value and a very close component number to that of the best

GMM obtained by SGML when splitting confidence is defined appropriately. Moreover,

for a given component number, K-means-BinSplitting always obtains a smaller BIC value

than that of fastSGML. We evaluated the speed of SGML and fastSGML with a Intel

3.2 GHz CPU. The run time of SGML, fastSGML-50, fastSGML-100, and fastSGML-150

were 268.96 sec., 48.01 sec., 97.18 sec., and 43.59 sec., respectively, from which we see the

efficiency gain of fastSGML over SGML.

3.4 Application of SGML to GMM-based speaker iden-

tification

3.4.1 The GMM-based speaker identification

In the last decade, GMM-based approaches have been the leading ones for speaker iden-

tification and verification [4, 69, 3, 88, 89, 90, 91]. Suppose that the GMM-based speaker

identification system enrolls M target speakers S1, S2, · · · , SM , where their GMMs are

parameterized with Θ1
s,Θ

2
s, · · · ,ΘM

s , respectively. Then, for the given test speech repre-

24

0 5 10 15
−1.64

−1.62

−1.6

−1.58

−1.56

−1.54

−1.52

−1.5

−1.48

−1.46
x 10

5

number of components

B
IC

 v
al

ue
s

Hier−ComLink
Hier−SLink
Hier−CenLink
SGML

(a) Full covariance GMMs

0 5 10 15
−1.62

−1.6

−1.58

−1.56

−1.54

−1.52

−1.5

−1.48

−1.46
x 10

5

number of components

B
IC

 v
al

ue K−means−random
K−means−BinSplitting
K−means−IncSplitting
EMSplitByMaxWeight
SGML

(b) Full covariance GMMs

0 5 10 15 20 25 30 35 40
−1.62

−1.6

−1.58

−1.56

−1.54

−1.52

−1.5

−1.48
x 10

5

number of components

B
IC

 v
al

ue
s

Hier−ComLink
Hier−SLink
Hier−CenLink
SGML

(c) Diagonal covariance GMMs

0 5 10 15 20 25 30 35 40
−1.62

−1.6

−1.58

−1.56

−1.54

−1.52

−1.5

−1.48
x 10

5

number of components

B
IC

 v
al

ue

K−means−random
K−means−BinSplitting
K−means−IncSplitting
EMSplitByMaxWeight
SGML

(d) Diagonal covariance GMMs

Figure 3.4: The learning curves of applying the various GMM learning methods to the
15-second speech data of #5007 in NIST01SpkEval. (a) and (b) depicts the full covariance
case, while (c) and (d) depicts the diagonal covariance case.

25

0 10 20 30 40 50 60
−6.5

−6.4

−6.3

−6.2

−6.1

−6

−5.9
x 10

5

number of components

B
IC

 v
al

ue

fastSGML−150
fastSGML−100
fastSGML−50
K−means−BinSplitting
SGML

Figure 3.5: The learning curves of applying fastSGML, K-means-BinSplitting and
SGML to learn diagonal covariance GMMs with 60-second speech data of #5007 in
NIST01SpkEval. The splitting confidence of the fastSGML was set at 150, 100, and
50, respectively, and K-means-BinSplitting was forced to stop at GMM43.

sented by feature vectors X = {x1,x2, · · · ,xN}, the goal is to find the speaker model Ŝ

such that

Ŝ = arg max
k

log p(X ;Θk
s). (3.4)

Assuming that x1,x2, · · · ,xN are i.i.d., Eq. (3.4) can be rewritten as

Ŝ = arg max
k

N∑

i=1

log p(xi;Θ
k
s). (3.5)

Typically, all the speaker GMMs are assigned the same component number which is

decided empirically [4, 69, 3]. However, with the same component number, it may result

in that some of the speaker GMMs are over-fitted and some are too simple to capture the

distribution of the training data. Thus, it may be better that the model complexity of

a speaker GMM is determined according to the distribution of the training data, which

is the theme of the proposed SGML algorithm. In the following, we evaluate SGML’s

ability to automatically determining the model complexity for speaker GMMs using the

identification accuracy.

3.4.2 Experiments

3.4.2.1 Database description and feature extraction

We conducted speaker identification experiments on NIST 2001 cellular speaker recogni-

tion evaluation data (NIST01SpkEval) [68]. This database consists of 74 male speakers

and 100 female speakers; each speaker contains around two minutes speech for model

26

training and ten test segments on average. The duration of the test segments lies within

the range of 2 to 54 seconds. Both the training data and test data were first processed

by a voice activity detector (VAD) to discard silence-noise frames [69, 3, 92]. After VAD,

only 50 male speakers and 76 female speakers contain training speech more than 90 sec-

onds. Thus, we used the 50 male speakers and the 50 female speakers whose training

speech size are the top 50 among the 76 female speakers for experiments. There are 615

test segments for the selected 50 male speakers, and 596 test segments for the selected

50 female speakers. The duration of the test segments ranges from 3 to 54 seconds after

VAD.

We used 24-dimensional MFCCs as the speech features, as described in Section 3.3.2.

In addition, cepstral mean substraction (CMS) was applied in both training and test data

for channel normalization.

3.4.2.2 Configuration of model training and test utterance

We conducted speaker identification experiments on each gender independently. For each

gender, 30-, 60-, and 90-second speech data were used for training speaker GMMs with

diagonal covariance matrices, respectively. We run the identification using variable-length

test utterances and the fixed-length test utterances on the three model training configu-

rations independently. In the former case, there are 615 test segments from male speakers

and 596 test segments from female speakers. These test segments ranges from 3 to 54

seconds as described in Section 3.4.2.1. In the later case, each test segment was divided

into utterances of 3, 5, and 8 seconds, which yielded a total of 4714, 2706, and 1577

test utterances for male speakers, and 5583, 3234, and 1903 test utterances for female

speakers. Note that dividing utterances into fixed-length, short pieces might result in

non-independent identification trials. However, the experimental results can still show

the performance of the identification system being tested with short utterances.

3.4.2.3 Results

Tables 3.1 and 3.2 summarize the mean and standard deviation of the component number

of the male speaker GMMs and female speaker GMMs, respectively, obtained by SGML

and fastSGML on different amounts of training data. From the tables, we see that the

splitting confidence within the range of 100 to 150 is appropriate for these two speaker

identification tasks since in this case fastSGML yields a average model complexity similar

to that of SGML. Furthermore, we see that, on average, a female speaker GMM needs

more Gaussian components than a male speaker GMM for the same amount of training

data. This reveals that, on average, the distribution of MFCC feature vectors of a female

speaker is more diverse than that of a male speaker. We evaluated the CPU time cost of

SGML and fastSGML with a Intel 3.2 GHz CPU. The results for male and female speakers

27

are shown in Tables 3.3 and 3.4, respectively. These two tables show the efficiency gains

of fastSGML over SGML. Moreover, the average CPU time of SGML for female speakers

is significantly larger than that of the male speakers; this is due to the larger average

component number in the former case. For fastSGML, however, the average CPU time

for the female case is close to that of the male case; this shows the CPU time cost of

fastSGML is much less sensitive to the model complexity than that of SGML does.

For the identification experiments, we used the K-means-BinSplitting algorithm de-

scribed in Section 3.3 as the baseline approach since, like SGML and fastSGML, it learns

the model based on component splitting. Tables 3.5 and 3.6 show, respectively, the

identification accuracy of the male and female speakers, which are obtained by K-means-

BinSplitting, SGML, and fastSGML on different amounts of training speech. From the

male speaker case with 30-second training speech in Table 3.5, we see that the identifi-

cation accuracy of K-means-BinSplitting is first improved by increasing the component

number from 8 to 16, and then degraded by further increasing the component number

to 32 and 64 which have over-fitted the training data. In this case, SGML yields 23.92

Gaussian components on average for each male speaker, as shown in Table 3.1.

For the female speaker case with 30-second training speech, a similar trend is observed,

and the baseline system achieves the best identification accuracy with 32 mixture com-

ponents. This conforms to the observation from Tables 3.1 and 3.2 that a female speaker

GMM generally needs more Gaussian components than a male speaker GMM. In this

case, SGML yielded 29.44 components on average for each female speaker, as shown in

Table 3.2. In the cases of 60-second and 90-second training speech in Tables 3.5 and 3.6,

we also observe that SGML can automatically determine the adequate model complexity

for speaker GMMs according to the amount and characteristics of training data, though

no significant difference is found between the identification accuracies of SGML and the

best accuracies of K-means-BinSplitting under the different training and test conditions.

We also observe that there is a huge identification performance gap between the female

case and the male case. This gap is obviously due to the diversity of feature vectors of a

female speaker. For the female case, more training data are needed to cover the diverse

feature space.

From Tables 3.5 and 3.6, we see that fastSGML generally yields as good identification

performance as SGML. Though the fastSGML with different splitting confidences might

result in GMMs with different numbers of components, as shown in Tables 3.1 and 3.2,

there is no significant difference in identification accuracy between these two approaches.

The splitting confidence within the range of 100 to 150 seems appropriate for these two

speaker identification tasks since for this case fastSGML yields similar model complexity

for speaker GMMs and similar identification accuracy to those of SGML.

In summary, the speaker identification experimental results show that the proposed

SGML and fastSGML algorithms can automatically find the appropriate component num-

28

Table 3.1: The mean and standard deviation of the component number of the diagonal
covariance male speaker GMMs obtained by SGML and fastSGML on different amounts
of training data. The first number in parentheses is the mean value, while the second
number after ’/’ is the standard deviation.

Amount of SGML splitting confidence (fastSGML)
training speech 150 100 50

30 sec (23.92/5.07) (20.58/5.31) (25.32/6.63) (27.16/5.99)
60 sec (35.96/6.90) (31.72/7.68) (38.22/9.26) (41.50/9.42)
90 sec (46.70/9.23) (41.30/9.48) (48.58/11.13) (53.00/10.65)

Table 3.2: The mean and standard deviation of the component number of the diagonal
covariance female speaker GMMs obtained by SGML and fastSGML on different amounts
of training data. The first number in parentheses is the mean value, while the second
number after ’/’ is the standard deviation.

Amount of SGML splitting confidence (fastSGML)
training speech 150 100 50

30 sec (29.44/4.59) (26.32/5.25) (31.70/5.97) (33.34/5.97)
60 sec (45.06/7.18) (42.22/6.93) (50.26/7.85) (52.60/10.40)
90 sec (58.26/7.63) (55.82/9.15) (65.16/10.16) (70.18/11.56)

ber for the speaker GMMs, though the identification accuracy is not significantly im-

proved, compared to the best accuracies of the baseline system. More over, fastSGML is

almost as effective as the SGML in the training of GMMs, but at a much lower compu-

tation cost.

29

Table 3.3: The average CPU time (in second) of the diagonal covariance male speaker
GMMs obtained by SGML and fastSGML on different amounts of training data.

Amount of SGML splitting confidence (fastSGML)
training speech 150 100 50

30 sec 90.41 14.23 19.09 21.83
60 sec 345.12 49.14 63.61 60.20
90 sec 752.54 97.03 110.60 109.27

Table 3.4: The average CPU time (in second) of the diagonal covariance female speaker
GMMs obtained by SGML and fastSGML on different amounts of training data.

Amount of SGML splitting confidence (fastSGML)
training speech 150 100 50

30 sec 116.81 14.42 20.21 19.62
60 sec 493.45 51.55 62.04 54.36
90 sec 1113.15 101.52 127.64 108.01

Table 3.5: Speaker identification accuracy (in %) for the male speakers.
Amount of Length of number of components SGML splitting confidence

training speech test utterance for K-means-BinSplitting for fastSGML
8 16 32 64 150 100 50

30 sec variable-length 61.46 62.28 61.46 59.35 61.95 61.46 62.76 61.79
3 sec 51.68 54.41 54.41 52.38 54.09 53.67 53.86 54.07
5 sec 56.91 58.39 57.02 55.99 57.98 57.58 57.80 57.91
8 sec 59.80 60.68 60.24 58.47 61.88 60.11 61.19 60.49

60 sec variable-length 63.25 66.02 66.34 65.85 66.67 66.67 67.15 66.83
3 sec 54.29 58.38 58.91 59.29 59.10 59.65 59.80 59.16
5 sec 58.94 61.90 62.82 62.12 63.45 62.75 63.19 62.75
8 sec 61.95 65.25 66.14 65.88 66.39 66.65 67.22 66.77

90 sec variable-length 65.53 68.78 69.11 68.62 70.08 70.57 71.06 70.24
3 sec 55.28 59.10 61.03 61.99 61.69 61.96 61.79 61.75
5 sec 60.01 63.34 65.59 65.67 65.78 64.56 65.37 65.78
8 sec 63.86 66.01 68.55 68.36 69.93 69.75 69.37 68.29

30

Table 3.6: Speaker identification accuracy (in %) for the female speakers.
Amount of Length of number of components SGML splitting confidence

training speech test utterance for K-means-BinSplitting for fastSGML
8 16 32 64 150 100 50

30 sec variable-length 29.87 32.21 35.07 30.37 30.54 33.05 29.87 30.70
3 sec 27.48 28.46 30.41 29.50 29.09 29.30 27.66 29.23
5 sec 29.87 30.55 32.25 30.49 30.67 31.29 28.76 31.08
8 sec 31.11 31.90 33.95 32.00 33.00 33.00 30.74 32.79

60 sec variable-length 40.77 42.45 45.30 45.13 44.97 45.13 45.47 45.47
3 sec 32.08 34.03 37.20 37.95 37.79 38.06 37.33 37.78
5 sec 35.65 37.97 40.66 40.63 40.11 40.91 40.60 41.00
8 sec 38.83 40.20 42.62 43.72 43.14 43.77 42.35 43.08

90 sec variable-length 42.95 43.62 48.83 48.49 47.32 47.48 47.65 48.49
3 sec 32.12 35.41 39.03 40.66 41.78 40.78 40.64 41.00
5 sec 35.62 38.74 42.92 44.47 44.34 44.53 44.59 45.24
8 sec 38.52 42.35 46.19 47.08 47.50 47.08 46.82 47.24

31

Algorithm 1 Self-splitting Gaussian Mixture Learning Algorithm (SGML)

Require: The input data set X = {x1,x2, · · · ,xN}
Ensure: The estimated parameter set Θ̂ = {ŵ(1), ŵ(2) , · · · , ŵ(bestNum),θ̂1, θ̂2,
· · · , θ̂bestNum}, where ŵ(k) and θ̂k = {µ̂k,Σ̂k} are the maximum likelihood estimate of
mixture weight, mean vector, and covariance matrix of the kth Gaussian component

Begin

1. Initialization:
SRange ← 5;
cNum ← 1;
Θ̂ ← {ŵ(1), θ̂1}, where θ̂1 = {µ̂1,Σ̂1} are the sample mean vector and sample
covariance matrix of X ;
GMM set(1) ← Θ̂;
//GMM set(cNum) is the parameter set of GMMcNum over X
BIC set(1) ← BIC(GMM1,X);

2. Data clustering:
EM cluterk ← φ, for k ← 1, 2, · · · , cNum;
for each sample xi:

j ← arg maxk p(k | xi; Θ̂);
EM clusterj ← EM clusterj

⋃
xi;//add xi to EM clusterj

3. Split (split one component into two new components):
whichSplit←arg maxk{∆BIC21(EM clusterk)};
Suppose the parameters of GMM2 corresponding to EM clusterwhichSplit are
λ̄1 ← {w̄(1), θ̄1}, λ̄2 ← {w̄(2), θ̄2}, where θ̄k = {µ̄k, Σ̄k}, for k ← 1, 2;

Let
w̄(1) ← 1

2
ŵ(whichSplit);

w̄(2) ← 1
2
ŵ(whichSplit);

Θ̂← Θ̂ \ {ŵ(whichSplit), θ̂whichSplit};//remove {ŵ(whichSplit), θ̂whichSplit}
Θ̂ ← Θ̂

⋃ {λ̄1, λ̄2};//add {λ̄1, λ̄2}
cNum ← cNum + 1;

4. Global EM learning:
Perform EM learning on all the clusters with Θ̂ as the model initialization,
GMM set(cNum) ← Θ̂;
BIC set(cNum) ← BIC(GMMcNum,X);
if (cNum > SRange and BIC set(cNum− SRange) is the

maximum in BIC set)
bestNum ← cNum− SRange;
Θ̂ ← GMM set(bestNum);
goto End;

else
goto 2;

End

32

Algorithm 2 Fast Self-splitting Gaussian Mixture Learning Algorithm (fastSGML)

Require: The input data set X = {x1,x2, · · · ,xN}
splitting confidence: the threshold for component splitting

Ensure: The estimated parameter set Θ̂ = {ŵ(1), ŵ(2) , · · · , ŵ(bestNum),θ̂1, θ̂2,
· · · , θ̂bestNum}, where ŵ(k) and θ̂k = {µ̂k,Σ̂k} are the maximum likelihood estimate of
mixture weight, mean vector, and covariance matrix of the kth Gaussian component

Begin

1. Initialization: the same as in SGML.

2. Data clustering: the same as in SGML.

3. Split:
(a) temp← cNum;

for k ← 1, 2, · · · , temp
if (∆BIC21(EM clusterk) > splitting confidence)

split the component corresponding to EM clusterk into two new
components;
cNum ← cNum + 1;

(b) if (no component is split in (a))
Θ̂ ← GMM set(cNum);
goto End;

4. Global EM learning:
Perform EM learning on the Gaussian components obtained in Step 3 (a);
if (the learning curve starts to go down)

let bestNum be the component number that has the maximum value in
the learning curve;
Θ̂ ← GMM set(bestNum);
goto End;

else
goto 2.;

End

33

Chapter 4

Model-based clustering by

probabilistic self-organizing maps

4.1 Formulation of the coupling-likelihood mixture

model for PbSOMs

In this thesis, we define a PbSOM as a SOM that consists of G neurons R={r1, r2, · · · ,
rG} in a network with a neighborhood function hkl that defines the strength of lateral

interaction between two neurons, rk and rl, for k, l ∈ {1, 2, · · · , G}; and each neuron rk

associates with a reference model θk that represents some probability distribution in the

data space.

Sum et al. [67] interpreted Kohonen’s sequential SOM learning algorithm in terms

of maximizing the local correlations (coupling energies) between the neurons and their

neighborhoods with the given input data. Given a data sample xi ∈ X = {x1,x2, · · · ,xN},
the local coupling energy between rk and its neighborhood is defined as

Exi|k =
G∑

l=1

hklrk(xi; θk)rl(xi; θl)

= rk(xi; θk)
G∑

l=1

hklrl(xi; θl), (4.1)

where rk(xi; θk) denotes the response of neuron rk to xi, which is modeled by an isotropic

Gaussian density. Then, the coupling energy over the network for xi is defined as

Exi
=

G∑

k=1

Exi|k, (4.2)

34

and the energy function to be maximized is

C =
N∑

i=1

log Exi
. (4.3)

In Eq. (4.1), the term
∑G

l=1 hklrl(xi; θl) can be considered as the neighborhood response

of rk, where the conjunction between the neuron responses is implemented using the

summing operation.

Here, we express the neuron response rl(xi; θl) as a multivariate Gaussian distribution

as in Eq. (2.12) and formulate the neighborhood response of rk as

∏

l 6=k

rl(xi; θl)
hkl , (4.4)

where the conjunction between the neuron responses in the neighborhood of rk is im-

plemented using the multiplicative operation. Then, for a given xi, we define the local

coupling energy between rk and its neighborhood as the following coupling-likelihood:

ps(xi|k;Θ, h) = rk(xi; θk)
hkk

∏

l 6=k

rl(xi; θl)
hkl

=
G∏

l=1

rl(xi; θl)
hkl

= exp(
G∑

l=1

hkl log rl(xi; θl)), (4.5)

where Θ is the set of reference models, and h denotes the given neighborhood function1.

Then, we define the coupling-likelihood of xi over the network as the following (unnor-

malized) mixture likelihood:

ps(xi;Θ, h) =
G∑

k=1

ws(k)ps(xi|k;Θ, h), (4.6)

where ws(k) for k = 1, 2, · · · , G is fixed at 1/G. Note that, theoretically, the mixture

weights can be learned automatically. When maximizing the local coupling-likelihood

ps(xi|k;Θ, h) for each neuron rk, k = 1, 2, · · · , G, the topological order between neuron

rk and its neighborhood for the given data sample xi is learned in the learning process;

therefore, we use equal mixture weights in the mixture model to take account of the

topological order learning induced by the neurons faithfully (with equal prior importance).

1From Eq. (4.5), it is obvious that, in our formulation, the coupling between rk and its neighboring
neurons is considered jointly, whereas Sum et al.’s formulation considers it in a pairwise manner, as
shown in Eq. (4.1). Note that we use the term “coupling-likelihood” instead of “coupling energy” for
two reasons: 1) Eq. (4.5) is a coupling of Gaussian likelihoods; and 2) using “coupling-likelihood” can
help describe the link between our proposed approaches and model-based clustering.

35

In fact, this is important for learning an ordered map. From our experimental analysis, if

the mixture weights are updated in the learning process, the learning of topological order

is frequently dominated by some particular mixture components, which makes it difficult

to obtain an ordered map. For details, one can refer to Appendix A.1 after reading this

chapter.

Comparing the network structure of the proposed coupling-likelihood mixture model

in Eq. (4.6) with that of the Gaussian mixture model (GMM), as shown in Figure 4.1, the

proposed model inserts a coupling-likelihood layer between the Gaussian likelihood layer

and the mixture likelihood layer to take account of the coupling between the neurons and

their neighborhoods. When the neighborhood size is reduced to zero (i.e., hkl=δkl), the

coupling-likelihood mixture model becomes a GMM with equal mixture weights.

Note that other probability distributions are possible for rl(xi; θl) in the formulation

of the coupling-likelihood mixture model, although we use the multivariate Gaussian

distribution here.

4.2 The SOCEM algorithm for learning PbSOMs

The self-organizing process of PbSOM can be described as a model-based data clustering

procedure that preserves the spatial relationships between the data samples and clusters

in a network. Based on the classification likelihood criterion for data clustering [17],

the computation of the coupling-likelihood of a data sample is restricted to its winning

neuron. Thus, the goal is to estimate the partition of X , P̂ = {P̂1, P̂2, · · · , P̂G}, and the

set of reference models, Θ̂, so as to maximize the accumulated classification log-likelihood

over all the data samples as follows:

Cs(P ,Θ;X , h) =
G∑

k=1

∑

xi∈Pk

log(ws(k)ps(xi|k;Θ, h))

=
G∑

k=1

∑

xi∈Pk

log(ws(k) exp(
G∑

l=1

hkl log rl(xi; θl))). (4.7)

As ws(k) for k = 1, 2, · · · , G is fixed at 1/G, the objective function can be rewritten as

Cs(P ,Θ;X , h) =
G∑

k=1

∑

xi∈Pk

G∑

l=1

hkl log rl(xi; θl) + Const. (4.8)

Similar to the derivation of the classification EM (CEM) algorithm for model-based clus-

tering in [17], the CEM algorithm for the proposed PbSOM, i.e., the SOCEM algorithm,

is derived as follows.

E-step: Given the current reference model set, Θ(t), compute the posterior probability

36

of each mixture component of ps(xi;Θ
(t), h) for each xi as follows:

γ
(t)
k|i = ps(k|xi;Θ

(t), h)

=
ps(xi, k;Θ(t), h)

ps(xi;Θ(t), h)

=
exp(

∑G
l=1 hkl log rl(xi; θ

(t)
l))

∑G
j=1 exp(

∑G
l=1 hjl log rl(xi; θ

(t)
l))

, (4.9)

for k = 1, 2, · · · , G, and i = 1, 2, · · · , N .

C-step: Assign each xi to the cluster whose corresponding mixture component has the

largest posterior probability for xi, i.e., xi ∈ P̂(t)
j if j = arg maxk γ

(t)
k|i.

M-step: After the C-step, the partition of X (i.e., P̂(t)) is formed, and the objective

function Cs defined in Eq. (4.8) becomes

Cs(Θ; P̂(t),X , h) =
G∑

l=1

G∑

k=1

∑

xi∈P̂(t)
k

hkl log rl(xi; θl) + Const. (4.10)

Similar to the derivation of the M-step of the EM algorithm for learning a Gaussian

mixture model [20], we can obtain the re-estimation formulae for the mean vectors and

covariance matrices by taking the derivative of Cs with respect to individual parameters,

and then setting it to zero. The re-estimation formulae are as follows:

µ
(t+1)
l =

∑G
k=1

∑
xi∈P̂(t)

k

hklxi

∑G
k=1 |P̂(t)

k |hkl

, (4.11)

Σ
(t+1)
l =

∑G
k=1

∑
xi∈P̂(t)

k

hkl(xi − µ
(t+1)
l)(xi − µ

(t+1)
l)T

∑G
k=1 |P̂(t)

k |hkl

(4.12)

for l = 1, 2, · · · , G. When the neighborhood size is reduced to zero (i.e., hkl=δkl), SOCEM

reduces to the CEM algorithm for learning GMMs with equal mixture weights, as in Eqs.

(2.25)-(2.26).

4.2.1 SOCEM - a DA variant of CEM for GMM

Similar to Kohonen’s sequential or batch algorithm, the SOCEM algorithm is applied in

two stages. First, it is applied to a large neighborhood to form an ordered map near the

center of the data samples. Then, the reference models are adapted to fit the distribution

of the data samples by gradually shrinking the neighborhood.

Without loss of generality, we suppose the neighborhood function is the widely adopted

(unnormalized) Gaussian kernel in Eq. (2.4). As shown in Algorithm 3, initially, SOCEM

37

is applied with a large σ value, which is reduced after the algorithm converges. Then,

we use the new σ value and the learned parameters as the initial condition of the next

learning phase. This process is repeated until the value of σ is reduced to the pre-

defined minimum value σmin. The above shrinking of the neighborhood (reduction of the

σ value) can be interpreted as an annealing process, where a large σ value corresponds to

a high temperature. Table 4.1 lists the learning rules of the DAEM algorithm for learning

GMMs with equal mixture weights [23] and the SOCEM algorithm. To facilitate the

interpretation, we rewrite the objective function and re-estimation formulae of SOCEM in

Eq. (4.8) and Eqs. (4.11)-(4.12), respectively, with the new variable wini, which denotes

the index of the winning neuron of xi. For simplicity, we only list the re-estimation

formulae of the mean vectors of the Gaussian components.

By analyzing these two algorithms carefully, one may view h
win

(t)
i l

as a kind of posterior

probability of θ
(t)
l for xi in the network domain. More precisely, xi is initially projected

into r
win

(t)
i

in the network domain; then, r
win

(t)
i

is applied to Eq. (2.4) as an observation of

the Gaussian kernel centered at rl to obtain the value of h
win

(t)
i l

. In both the DAEM and

SOCEM algorithms, when the temperature (1/β or σ) is high, the posterior distribution

becomes almost uniform; hence, all the reference models will be moved to locations near

the center of the data samples in this learning phase. By gradually reducing the tempera-

ture, the influence of each xi becomes more localized, and the reference models gradually

spread out to fit the distribution of the data samples. When the temperature approaches

zero, the probabilistic assignment strategy for the data samples becomes the winner-take-

all strategy, and the objective functions and learning rules of DAEM and SOCEM are

equivalent to those of CEM. The major difference between DAEM and SOCEM seems to

be that the posterior distribution in SOCEM is constrained by the network topology, but

DAEM does not have this property.

To visualize the transition of the objective function, we show a simulation on a simple

one-dimension, two-component Gaussian mixture problem in Figure 4.22. The training

data contains 200 observations drawn from

p(x; {m1, v1}, {m2, v2}) =
0.3

v1

√
2π

exp(
−(x−m1)

2

2v2
1

) +
0.7

v2

√
2π

exp(
−(x−m2)

2

2v2
2

), (4.13)

where the Gaussian means are (m1,m2)=(-5,5); and the Gaussian variances are (v2
1,v

2
2)=(1,

1). The PbSOM network structure is a 1 × 2 lattice in [0,1]. The two reference models

are θ1 = {µ1, Σ1} and θ2 = {µ2, Σ2}, where Σ1 = Σ2 = 1. The objective function in

Eq. (4.7) is calculated with different setups for (µ1,µ2) to form the log-likelihood surface.

From Figure 4.2, we observe that a larger σ for hkl yields a simpler objective function

for optimization. The log-likelihood surface is symmetric along µ1=µ2 because of the

2Visualization of how deterministic annealing EM/CEM works for function optimization is illustrated
in detail in [23].

38

Algorithm 3 The SOCEM algorithm with a shrinking neighborhood size (σ)

Require: X = {x1,x2, · · · ,xN}: the input data set;
σini: the initial σ value for hkl in Eq. (2.4);
ε: the decreasing step for σ;
σmin: the target σ value;
Θ(0) = {θ(0)

1 ,θ
(0)
2 , · · · ,θ(0)

G }: the initial reference models, where θ
(0)
l = {µ(0)

l ,Σ
(0)
l } are

the initial mean vector and covariance matrix of the lth Gaussian component
Ensure: Θ̂ = {θ̂1, θ̂2, · · · , θ̂G}: the estimated parameter set, where θ̂l = {µ̂l,Σ̂l} are

the estimated mean vector and covariance matrix of the lth Gaussian component

Begin

1. Θ̂←Θ(0); σ ← σini;

2. create the lookup table for hkl;

3. //CEM:
repeat

E-step: for i ← 1, 2, · · · , N and k ← 1, 2, · · · , G, compute γ
(t)
k|i in Eq. (4.9)

using Θ̂;
C-step: assign xi to P̂(t)

j if j = arg maxk γ
(t)
k|i;

M-step: for l ← 1, 2, · · · , G, update µ̂l and Σ̂l with Eqs. (4.11)-(4.12);
until the convergence condition is met

4. if (σ = σmin)
goto End;

σ ← σ − ε;
if (σ < σmin)

σ ← σmin;
goto 2.;

End

symmetric lattice structure and equal weighting of the reference models. For the case of

σ = 0.6, the log-likelihood value is close to the global maximum of the surface when both

µ1 and µ2 are close to the center of the data (2.39 in this case). With the reduction in

the value of σ, the location of (µ1,µ2) for the global maximum moves toward (m1,m2) and

(m2,m1).

4.2.2 Relation to Kohonen’s batch algorithm

There are two differences between the SOCEM algorithm and Kohonen’s batch algorithm.

First, SOCEM considers the neighborhood information when selecting the winning neu-

ron, but Kohonen’s algorithm does not. Second, SOCEM extends the reference vectors

in Kohonen’s algorithm with multivariate Gaussians. In other words, if we set γ
(t)
k|i in

39

Table 4.1: The DAEM algorithm for learning GMMs with equal mixture weights and the
SOCEM algorithm.

Algorithm DAEM SOCEM
Objective function Fβ(Θ;X) in Eq. (2.32)

∑N
i=1

∑G
l=1 hwinil log rl(xi;θl) + Const

where p(xi, l;Θ) = 1
Grl(xi; θl)

Posterior distribution f(l|xi;Θ(t)) = rl(xi;θ
(t)
l)β∑G

j=1
rj(xi;θ

(t)
j)β

h
win

(t)
i

l
= exp(−

‖r
win

(t)
i

−rl‖2

2σ2)

l = 1, 2, · · · , G l = 1, 2, · · · , G
Temperature 1/β σ

Re-estimation formulae µ
(t+1)
l =

∑N

i=1
f(l|xi;Θ

(t))xi∑N

i=1
f(l|xi;Θ(t))

µ
(t+1)
l =

∑N

i=1
h

win
(t)
i

l
xi

∑N

i=1
h

win
(t)
i

l

l = 1, 2, · · · , G l = 1, 2, · · · , G

SOCEM to rk(xi;θ
(t)

k)∑G

j=1
rj(xi;θ

(t)

j)
, instead of the setting in Eq. (4.9), we obtain a probabilistic

variant of Kohonen’s batch algorithm (denoted as KohonenGaussian), where Kohonen’s

winner selection strategy is applied and the reference vectors are replaced with multivari-

ate Gaussians. Thus, we may view KohonenGaussian as an approximate implementation

of SOCEM that optimizes SOCEM’s objective function. Moreover, if we set the covariance

matrices in KohonenGaussian to be diagonal with small, identical variances, Kohonen-

Gaussian is equivalent to Kohonen’s batch algorithm. Therefore, we can interpret the

neighborhood shrinking of Kohonen’s algorithms as a deterministic annealing process,

and thereby explain why they need to start with a large neighborhood size.

Recently, Zhong and Ghosh [12] interpreted the neighborhood size of the SOM algo-

rithms that apply Kohonen’s winner selection strategy as a temperature parameter in a

deterministic annealing process. However, their interpretations were not based on the

optimization of an objective function, which is the essential part of DA-based optimiza-

tion. In contrast, in SOCEM, the neighborhood shrinking leads to the transition of the

objective function from a simpler one to a more complex one, as illustrated in Figure 4.2.

4.2.3 Computational cost

It is clear from Table 4.1 that the computational cost of DAEM is O(GNM), where G,

N , and M are the numbers of reference models, data samples, and learning iterations,

respectively. Compared to DAEM, SOCEM needs additional O(G2N) multiplication and

addition operations for winner selection in each iteration, while KohonenGaussian needs

additional O(GN) multiplications and additions.

40

4.3 The SOEM algorithm for learning PbSOMs

As is obvious from Eq. (4.7), in the formulation of the objective function of the SOCEM

algorithm, only the local coupling-likelihoods associated with the winning neurons are

considered. Alternatively, we can compute the coupling-likelihood of xi using the mixture

likelihood defined in Eq. (4.6) and apply the EM algorithm to maximize the objective

log-likelihood function

Ls(Θ;X , h) =
N∑

i=1

log(
G∑

k=1

ws(k)ps(xi|k;Θ, h)). (4.14)

The steps of the EM algorithm for the proposed PbSOM, i.e., the SOEM algorithm, are

as follows.

E-step: With the mixture model in Eq. (4.6), we form the auxiliary function as

Qs(Θ;Θ(t)) =
N∑

i=1

G∑

k=1

γ
(t)
k|i log ps(xi, k;Θ, h), (4.15)

where γ
(t)
k|i is the same as Eq. (4.9). Since ps(xi, k;Θ, h) = ws(k)ps(xi|k;Θ, h), Eq. (4.15)

can be rewritten as

Qs(Θ;Θ(t)) =
N∑

i=1

G∑

k=1

γ
(t)
k|i log(ws(k)ps(xi|k;Θ, h)). (4.16)

As ws(k) for k = 1, 2, · · · , G is fixed at 1/G, by substituting Eq. (4.5) into Eq. (4.16),

the auxiliary function can be rewritten as

Qs(Θ;Θ(t)) =
N∑

i=1

G∑

k=1

γ
(t)
k|i

G∑

l=1

hkl log rl(xi; θl) + Const.

=
G∑

l=1

N∑

i=1

G∑

k=1

γ
(t)
k|ihkl log rl(xi; θl) + Const. (4.17)

M-step: By replacing the response rl(xi; θl) in Eq. (4.17) with the multivariate

Gaussian density in Eq. (2.12) and setting the derivative of Qs with respect to individ-

ual mean vectors and covariance matrices to zero, we obtain the following re-estimation

formulae:

µ
(t+1)
l =

∑N
i=1(

∑G
k=1 γ

(t)
k|ihkl)xi

∑N
i=1(

∑G
k=1 γ

(t)
k|ihkl)

, (4.18)

Σ
(t+1)
l =

∑N
i=1(

∑G
k=1 γ

(t)
k|ihkl)(xi − µ

(t+1)
l)(xi − µ

(t+1)
l)T

∑N
i=1(

∑G
k=1 γ

(t)
k|ihkl)

(4.19)

41

for l = 1, 2, · · · , G. When the neighborhood size is reduced to zero (i.e., hkl=δkl), SOEM

reduces to the EM algorithm for learning GMMs with equal mixture weights, as in Eq.

(2.14)-(2.15) .

There are two major differences between the SOCEM and SOEM algorithms. First,

they learn maps based on the classification likelihood criterion and the mixture likelihood

criterion, respectively. Second, SOEM adapts the reference models in a more global way

than SOCEM. To explain this perspective, we can consider the learning of SOCEM and

SOEM in the sense of sequential learning. As illustrated in Figure 4.3, in the SOCEM

algorithm (cf. Eqs. (4.11)-(4.12)), each data sample xi only contributes to the adapta-

tion of the winning reference model and its neighborhood (i.e., xi only contributes to the

learning of the topological order between the winning reference model and its neighbor-

hood). However, in the SOEM algorithm (cf. Eqs. (4.18)-(4.19)), each data sample xi

contributes proportionally to the adaptation of each reference model and its neighborhood

according to the posterior probabilities γ
(t)
k|i for k = 1, 2, · · · , G.

4.3.1 SOEM - a DA variant of EM for GMM

As with the SOCEM algorithm, we can apply SOEM to a large neighborhood and obtain

different map configurations by gradually reducing the neighborhood size, as shown in

Algorithm 4. The term
∑G

k=1 γ
(t)
k|ihkl in Eqs. (4.18)-(4.19) can be considered as a kind

of posterior probability, π(l|xi;Θ
(t), h), of the reference model θ

(t)
l for xi, which is also

constrained by the neighborhood function. With a large σ value in hkl (Eq. (2.4)),

π(l|xi;Θ
(t), h) for l = 1, 2, · · · , G, will be nearly a uniform distribution due to the small

variation in the values of γ
(t)
k|i for k = 1, 2, · · · , G, and the small variation in the values of

hkl for k = 1, 2, · · · , G, for each case of l. Hence, all the reference models will be moved to

locations near the center of the data samples. When the neighborhood size is reduced to

zero (i.e., hkl=δkl), the SOEM algorithm becomes the EM algorithm for learning GMMs

with equal mixture weights. As with the annealing interpretation of SOCEM, SOEM can

be viewed as a topology-constrained deterministic annealing variant of the EM algorithm

for learning GMMs with equal mixture weights3.

4.3.2 Computational cost

Comparing Eqs. (4.17)-(4.19) to Eqs. (4.10)-(4.12), we can see that, in each learning

iteration, SOEM and SOCEM have a similar computational cost in the E-step, but the

former needs additional O(GN) multiplication and addition operations for updating the

model parameters in the M-step.

3SOEM yielded a similar result on the one-dimension, two-component Gaussian mixture problem in
Figure 4.2; however, we do not present it here to avoid redundancy.

42

Algorithm 4 The SOEM algorithm with a shrinking neighborhood size (σ)

Require: X = {x1,x2, · · · ,xN}: the input data set;
σini: the initial σ value for hkl in Eq. (2.4);
ε: the decreasing step for σ;
σmin: the target σ value;
Θ(0) = {θ(0)

1 ,θ
(0)
2 , · · · ,θ(0)

G }: the initial reference models, where θ
(0)
l = {µ(0)

l ,Σ
(0)
l } are

the initial mean vector and covariance matrix of the lth Gaussian component
Ensure: Θ̂ = {θ̂1, θ̂2, · · · , θ̂G}: the estimated parameter set, where θ̂l = {µ̂l,Σ̂l} are

the estimates mean vector and covariance matrix of the lth Gaussian component

Begin

1. Θ̂←Θ(0); σ ← σini;

2. create the lookup table for hkl;

3. //EM:
repeat

E-step: for i ← 1, 2, · · · , N and k ← 1, 2, · · · , G, compute γ
(t)
k|i in Eq. (4.9)

using Θ̂;
M-step: for l ← 1, 2, · · · , G, update µ̂l and Σ̂l with Eqs. (4.18)-(4.19);

until the convergence condition is met

4. if (σ = σmin)
goto End;

σ ← σ − ε;
if (σ < σmin)

σ ← σmin;
goto 2.;

End

4.4 The SODAEM algorithm for learning PbSOMs

Similar to the derivation of the deterministic annealing EM (DAEM) algorithm for learn-

ing GMMs [23], we developed a DAEM algorithm for the proposed PbSOM, called the

SODAEM algorithm. With the mixture likelihood defined in Eq. (4.6), DAEM first de-

rives the posterior density in the E-step using the principle of maximum entropy. Following

the derivation of the posterior probability in [23] with the current model’s parameter set

Θ(t), we obtain the posterior probability of the kth mixture component for xi as follows:

τ
(t)
k|i =

ps(xi|k;Θ(t), h)β

∑G
j=1 ps(xi|j;Θ(t), h)β

=
exp(β

∑G
l=1 hkl log rl(xi; θ

(t)
l))

∑G
j=1 exp(β

∑G
l=1 hjl log rl(xi; θ

(t)
l))

. (4.20)

43

Then, the auxiliary function to be minimized is

Usβ(Θ;Θ(t)) = −
N∑

i=1

G∑

k=1

τ
(t)
k|i log ps(xi, k;Θ, h), (4.21)

and the re-estimation formulae for the mean vectors and covariance matrices are

µ
(t+1)
l =

∑N
i=1(

∑G
k=1 τ

(t)
k|ihkl)xi

∑N
i=1(

∑G
k=1 τ

(t)
k|ihkl)

, (4.22)

Σ
(t+1)
l =

∑N
i=1(

∑G
k=1 τ

(t)
k|ihkl)(xi − µ

(t+1)
l)(xi − µ

(t+1)
l)T

∑N
i=1(

∑G
k=1 τ

(t)
k|ihkl)

(4.23)

for l = 1, 2, · · · , G.

Note that the re-estimation formulae for SODAEM are the same as those for SOEM,

except that γ
(t)
k|i is replaced by τ

(t)
k|i . 1/β corresponds to the temperature that controls

the annealing process, in which a high temperature is applied initially. Then, the system

is cooled down by gradually reducing the temperature. When 1/β → 1, the SODAEM

algorithm becomes the SOEM algorithm; however, when 1/β → 0, it is equivalent to the

SOCEM algorithm. In other words, SODAEM can be viewed as a deterministic annealing

variant of SOEM and SOCEM. We summarize SODAEM in Algorithm 5.

By considering certain cases and approximations of SODAEM, SOEM, and SOCEM,

we summarize the family of EM-based approaches for Gaussian model-based clustering

discussed in this section in Figure 4.4. Both EM under the mixture-likelihood criterion

and CEM under the classification-likelihood criterion are widely used model-based data

clustering methods. SOEM (SOCEM) can be applied instead of EM (CEM) in model-

based clustering if we want to preserve the spatial relationships between the resulting data

clusters on a network. Since SODAEM is a DA variant of SOEM and SOCEM, it can be

applied in model-based data clustering under both mixture-likelihood and classification-

likelihood criteria.

4.4.1 Computational cost

Comparing Eqs. (4.22)-(4.23) to Eqs. (4.18)-(4.19), we can see that SODAEM and SOEM

have similar computational costs in each learning iteration.

4.5 Relation to other algorithms

In this section, we explore the differences and relations between the proposed algorithms

and other related algorithms.

44

Algorithm 5 The SODAEM algorithm

Require: X = {x1,x2, · · · ,xN}: the input data set;
σ: the σ value for hkl in Eq. (2.4);
η: the annealing factor (η > 1);
βini: the initial β value;
βmax: the target β value;
Θ(0) = {θ(0)

1 ,θ
(0)
2 , · · · ,θ(0)

G }: the initial reference models, where θ
(0)
l = {µ(0)

l ,Σ
(0)
l } are

the initial mean vector and covariance matrix of the lth Gaussian component
Ensure: Θ̂ = {θ̂1, θ̂2, · · · , θ̂G}: the estimated parameter set, where θ̂l = {µ̂l,Σ̂l} are

the estimates mean vector and covariance matrix of the lth Gaussian component

Begin

1. Θ̂←Θ(0); β ← βini;

2. create the lookup table for hkl;

3. //EM:
repeat

E-step: for i ← 1, 2, · · · , N and k ← 1, 2, · · · , G, compute τ
(t)
k|i in Eq. (4.20)

using Θ̂;
M-step: for l ← 1, 2, · · · , G, update µ̂l and Σ̂l with Eqs. (4.22)-(4.23);

until the convergence condition is met

4. if (β = βmax)
goto End;

β ← ηβ;
if (β > βmax)

β ← βmax;
goto 3.;

End

4.5.1 For SOCEM

In [93], Ambroise and Govaert proposed a topology preserving EM (TPEM) algorithm

that introduces topological constraints in the CEM algorithm. If Kohonen’s winner se-

lection strategy is applied, SOCEM is equivalent to TPEM whose mixture weights are

equally fixed. In SOCEM, the covariance matrix of a Gaussian component, Σl, can have

different parameterizations for different geometric interpretations [10]. When Σl = λI for

l = 1, 2, · · · , G (where λ is a small positive constant and I denotes the identity matrix),

the clusters are spherical and of equal volume. In this case, the SOCEM algorithm is

equivalent to the TVQ algorithm in [55], which was developed for noisy vector quan-

tization. It is also equivalent to the batch SOM learning algorithm described in [53],

which employs an energy function in the learning phase of a SOM. However, SOCEM

was developed from a different perspective. We consider the learning of a PbSOM as a

45

model-based clustering process. By this perspective, a coupling-likelihood mixture model

is developed first, and an objective function is then formulated based on the classification

likelihood criterion. Moreover, the connection between the coupling-likelihood mixture

model and the Gaussian mixture model helps interpret SOCEM as a topology-constrained

DA variant of the CEM algorithm for GMM.

4.5.2 For SOEM and SODAEM

In SODAEM, when Σl = λI for l = 1, 2, · · · , G, SODAEM is equivalent to the STVQ

algorithm [56], which learns the parameters by maximizing their density function predicted

by the maximum entropy principle. In STVQ, the inverse temperature, β, is the Lagrange

multiplier introduced for the constrained optimization induced by the maximum entropy

principle. Heskes [58] extends TVQ’s cost function to an expected quantization error.

Then, an objective function is obtained by weighting the quantization error with the

inverse temperature β and pulsing it to an entropy term that introduces the annealing

process. With the resulting objective function, Heskes obtained an algorithm identical to

STVQ. The implementations for deterministic annealing in STVQ and Heskes’ algorithm

can also be found in [94, 95], where the DA is applied for vector quantization.

SODAEM differs from Graepel et al.’s STVQ and Heskes’ algorithm in the following

ways. First, the deterministic annealing processes are implemented differently. SODAEM

is a DAEM algorithm developed to learn the mixture models with a deterministic an-

nealing process, which is implemented based on predicting the posterior distribution in

the E-step using the maximum entropy principle. Second, the case of β = 1 was not

well addressed in Graepel et al.’s and Heskes’ papers. This may be because their original

goal was to develop a DA learning for TVQ. When β is fixed at 1, however, SODAEM

becomes the SOEM algorithm. Moreover, the connection between the proposed coupling-

likelihood mixture model and the Gaussian mixture model helps interpret SOEM as a

topology-constrained DA variant of the EM algorithm for GMM.

4.6 Experiments on organizing property and data clus-

tering

4.6.1 Experiments on organizing property

Data set description: We conducted experiments on two types of data: a synthetic data

set and a real-world data set. The synthetic data set consisted of 500 points uniformly

distributed in a unit square. For the real-world data set, we used the training set of

class ‘0’ in the “Pen-Based Recognition of Handwritten Digits” database (denoted as

PenRecDigits C0) in the UCI Machine Learning Database Repository [96]. The data set

46

consists of 802 16-dimensional vectors. To demonstrate the map-learning process, we

used the first two dimensions of the feature vectors as data for simulations. As a pre-

processing step, we scaled down each element of the vectors in PenRecDigits C0 to 1/100

of its original value to avoid numerical traps.

Experiment setup: In the experiments, an 8 × 8 equally spaced square lattice in

a unit square was used as the structure of the SOM network. For the neighborhood

function, we used the Gaussian kernel hkl in Eq. (2.4).

We evaluated SOCEM, SOEM, SODAEM, and KohonenGaussian (Kohonen’s batch

algorithm that uses Gaussian reference models) in 20 independent random initialization

trials and two setups for σ in hkl. For each trial, data samples were randomly selected

from the data set as the initial mean vectors, µ
(0)
1 , µ

(0)
2 , · · ·, µ

(0)
G , of the reference models,

which were multivariate Gaussians with full covariance matrices. The initial covariance

matrix Σ
(0)
l was set as ρlI, where ρl=mink 6=l{‖µ(0)

l − µ
(0)
k ‖}, for l = 1, 2, · · · , G. To avoid

the singularity problem, we applied the variance limiting step to the covariance matrices

during the learning process. If the value of any element of the covariance matrix was less

than 0.001, it was set at 0.001.

4.6.1.1 Results on the synthetic data

We first demonstrate the map-learning processes of SOCEM, SOEM, and SODAEM using

one of the 20 random initializations by showing the configurations of the Gaussian means

on the maps, and then summarize the overall results of all the initializations.

Simulations using SOCEM: Figure 4.5 shows two simulations using the SOCEM

algorithm. In the first simulation, SOCEM is run with the random initialization in Figure

4.5 (a) and a fixed σ of 0.15 in hkl. As shown in Figure 4.5 (b), the algorithm’s learning

converges to an unordered map. In the second simulation, SOCEM starts with the same

random initialization as that in Figure 4.5 (a), but with a larger σ of 0.6. When it

converges at the current σ value, σ is reduced by 0.15. Then, the algorithm is applied

again with the new σ value and the reference models obtained in the previous phase. This

process continues until SOCEM converges at σ = 0.15. Figures 4.5 (c), (d), (e), and (f)

depict the maps obtained when σ =0.6, 0.45, 0.3, and 0.15, respectively. We can explain

the second simulation in terms of annealing (cf. Section 4.2.1): When using SOCEM, we

start with a larger σ value (a higher temperature) so that the objective function is simple

enough to be optimized. Then, we obtain the target map configuration by gradually

reducing the value of σ (the temperature). Though the reduction in σ produces a more

complex objective function for optimization, SOCEM can still learn well because the

reference models obtained at the larger σ value provide a sound initialization for the next

learning phase at the smaller σ value.

Simulations using SOEM: We conducted two similar simulations using the SOEM

algorithm. In the first simulation, SOEM was run with the random initialization in Figure

47

4.6 (a) (the same as that in Figure 4.5 (a)) and a fixed σ of 0.15. As shown in Figure

4.6 (b), the learning of SOEM converged to an unordered map. In the second simulation,

SOEM started with the random initialization in Figure 4.6 (a) and a larger σ of 0.6.

Then, the value of σ was gradually reduced to 0.15 in 0.15 decrements. Figures 4.6 (c),

(d), (e), and (f) depict the maps obtained when SOEM converges at σ =0.6, 0.45, 0.3, and

0.15, respectively. Similar to SOCEM, we can interpret the reduction of σ in SOEM as an

annealing process (cf. Section 4.3.1), which overcomes the initialization issue. Comparing

Figures 4.6 (c)-(d) to Figures 4.5 (c)-(d), we observe that the map obtained by SOEM

is more concentrated than that obtained by SOCEM for the same σ value. This may

be because SOEM learns the map in a more global manner than SOCEM, as noted in

Section 4.3. In other words, each data sample contributes to all the neurons in a more

global manner in SOEM than in SOCEM.

Simulations using SODAEM: Figure 4.7 depicts the simulations using the SO-

DAEM algorithm with the same random initialization as that in Figure 4.5 (a) and Figure

4.6 (a). The value of σ is also fixed at 0.15, and the initial value of β is set to 0.16. When

SODAEM converges at a β value, it is applied again with βnew=β× 1.6 and the reference

models obtained in the previous phase. We stop the learning process at β = 17.592. In

our experience, it is appropriate to set the maximum value of β within the range 10 to

20 for practical applications. When β = 0.16, the temperature is high enough to ensure

a smooth objective function. Therefore, according to the parameter update rules of SO-

DAEM, the reference models form a compact ordered map via lateral interactions near

the center of the data samples, even though the neighborhood size is small (σ = 0.15

in this case). When β = 1.04 and 17.592, SODAEM is almost equivalent to SOEM and

SOCEM, respectively. In these two cases, SODAEM converges to the ordered maps in

Figure 4.7 (f) and Figure 4.7 (i), respectively. However, as shown in Figures 4.5 (a)-(b)

and Figures 4.6 (a)-(b), SOCEM and SOEM do not converge to an ordered map when

σ = 0.15, which demonstrates that the annealing process of SODAEM overcomes the

initialization problem of SOCEM and SOEM when σ = 0.15. Note that SODAEM may

not be able to obtain any ordered map during the annealing process if the value of σ is

too small to form an ordered map at a small β value.

Discussion: The experiment results obtained by the three proposed algorithms and

KohonenGaussian for the 20 random initializations are summarized in Table 4.2. Several

conclusions can be drawn from the results. First, SOEM often converges to an ordered

map even at a small, fixed σ value (σ = 0.15 in the experiments); but KohonenGaussian

and SOCEM seldom do so. This may be because SOEM learns the map in a more global

way, as noted in Section 4.3; hence, it is less sensitive to the initialization of the parameters

when σ is small. The results for KohonenGaussian and SOCEM are similar. This may be

because they only differ in the winner selection strategy. Second, the initialization issue

of KohonenGaussian, SOCEM and SOEM can be overcome by using a larger σ value

48

Table 4.2: Results of simulations using KohonenGaussian, SOCEM, SOEM, and SO-
DAEM in 20 independent random initialization trials on the synthetic data. The algo-
rithms were run with two setups for σ in hkl. When σ = 0.15, KohonenGaussian succeeded
in converging to an ordered map in one random initialization case (S:1), but failed in the
remaining cases (F:19).

Setup for σ σ = 0.15 σ = 0.6 initially, and is
reduced to 0.15 in 0.15 decrements

KohonenGaussian S:1 S:20
F:19 F:0

SOCEM S:1 S:20
F:19 F:0

SOEM S:15 S:20
F:5 F:0

SODAEM S:20 -
F:0 -

(0.6 in the experiments) initially, and then gradually reducing the value to the target σ

value (0.15 in the experiments). The reduction of σ can be interpreted as an annealing

process (cf. Section 4.2.1, Section 4.2.2, and Section 4.3.1). Third, the experiment results

show that SODAEM overcomes the initialization issue of SOCEM and SOEM at a small

σ value (0.15 in the experiments) using the annealing process, which is controlled by the

temperature parameter β.

4.6.1.2 Results on PenRecDigits C0

We also conducted experiments on real-world data using the setups for the neighborhood

function described in Section 4.6.1.1. Table 4.3 summarizes the results obtained by the

four PbSOM learning algorithms. From the results, we can draw the same conclusions as

those made for the experiment results on the synthetic data. Figures 4.8, 4.9, and 4.10

demonstrate, respectively, the map-learning processes of SOCEM, SOEM, and SODAEM

using one of the 20 random initializations. Comparing Figures 4.8, 4.9, and 4.10 , we

observe that these three algorithms obtain rather different results. SOCEM and SOEM

usually obtain different maps because they learn the maps based on different cluster-

ing criteria (classification-likelihood vs. mixture-likelihood). SODAEM and SOEM (or

SOCEM) usually obtain different results because SODAEM’s annealing is achieved by

increasing the β value, while SOEM’s (or SOCEM’s) annealing is achieved by decreasing

the σ value. Comparing Figures 4.9 (f) and 4.10 (f), although SODAEM becomes equiva-

lent to SOEM when the value of β is increased to 1.04, their search paths on the objective

function surface are different because they have rather different seed models (Figure 4.10

(e) vs. Figure 4.9 (e)). Therefore, they converge to different local maxima of the objective

function and obtain different maps. Likewise, although SODAEM becomes equivalent to

SOCEM when the value of β is increased to 17.592, they converge to different local max-

ima of the objective function and obtain different maps (Figure 4.10 (i) vs. Figure 4.8

49

Table 4.3: Results of simulations using KohonenGaussian, SOCEM, SOEM, and SO-
DAEM in 20 independent random initialization trials on PenRecDigits C0. The algo-
rithms were run with two setups for σ in hkl. When σ = 0.15, KohonenGaussian suc-
ceeded in converging to an ordered map in one random initialization case (S:1), but failed
in the remaining cases (F:19).

Setup for σ σ = 0.15 σ = 0.6 initially, and is
reduced to 0.15 in 0.15 decrements

KohonenGaussian S:1 S:20
F:19 F:0

SOCEM S:2 S:20
F:18 F:0

SOEM S:14 S:20
F:6 F:0

SODAEM S:20 -
F:0 -

(f)).

4.6.2 Experiments to evaluate the performance of data cluster-

ing

Data set description: In this section, we evaluate the data clustering performance of the

proposed PbSOM algorithms on two data sets from the UCI Machine Learning Database

Repository [96]: the test set of the “image segmentation” database (denoted as ImgSeg),

which consists of 2,100 19-dimensional feature vectors; and the Ecoli data set (denoted as

Ecoli), which consists of 336 8-dimensional feature vectors. Here, we used the full vector,

rather than only two dimensions, in the experiments. As a pre-processing step, we scaled

down each element of the data vectors in ImgSeg to 1/100 of its original value to avoid

numerical traps.

Experiment setup: To avoid the singularity problem that often occurs when using

CEM or EM to learn full covariance GMMs, we used diagonal covariance Gaussians in

the experiments. We also applied the variance limiting step, in which the minimum value

for a variance was set at 0.01.

For the PbSOM learning algorithms, we used five configurations for the network struc-

ture; they are 3×3, 4×4, 5×5, 6×6, and 7×7 lattices equally spaced in a unit square. We

used the Gaussian kernel hkl in Eq. (2.4) as the neighborhood function.

To avoid ambiguity, when the DAEM and SODAEM algorithms are applied in data

clustering based on the classification-likelihood criterion, they are denoted as DAEM C

and SODAEM C; and they are denoted as DAEM M and SODAEM M when applied in

data clustering based on the mixture-likelihood criterion.

All the algorithms discussed here were run with random initializations generated in

the same way described in Section 4.6.1.

50

4.6.2.1 Results on ImgSeg by using SOCEM and SODAEM C

First, we evaluated the data clustering performance of KohonenGaussian, SOCEM, and

SODAEM C in terms of the classification log-likelihood defined in Eq. (2.20). The per-

formance was compared with that of CEM and DAEM C. The setting for each algorithm

was as follows:

• DAEM C: The value of β was set at 0.2 initially, and increased to 10 by the formula

βnew = β × 1.2.

• SOCEM: The value of σ in hkl was set at 0.7 initially, and reduced to 0 (i.e., hkl = δkl)

in 0.02 decrements.

• SODAEM C: Both the values of β and σ in hkl were set at 0.2 initially. To perform

data clustering using the classification-likelihood criterion, the value of β was in-

creased to 10 by the formula βnew = β × 1.2 first; then, the value of σ was reduced

to 0 in 0.02 decrements.

• KohonenGaussian: The value of σ in hkl was set at 0.7 initially, and reduced to 0

in 0.02 decrements every 30 learning iterations4.

We ran the algorithms except CEM with 20 independent trials using 9, 16, 25, 36,

49 Gaussian components. To conduct a fair comparison of CEM and the proposed ap-

proaches, we ran CEM many trials till the accumulated execution time was close to that

of one SOCEM trial. The mean and standard deviations (error bars) of the classifica-

tion log-likelihood values over the trials for each algorithm and the best results of CEM

(denoted as CEM-best) are shown in Figure 4.11. Note that, in the figure, we slightly

separate the results associated with a specific Gaussian component number in order to

distinguish between them. From the figure, we observe that the clustering performance

of SOCEM, SODAEM C, and KohonenGaussian is close to that of DAEM C. Moreover,

they obtain larger and more stable classification log-likelihoods than CEM. These results

are rational since SOCEM is a topology-constrained DA variant of the CEM algorithm,

and SODAEM C is an annealing variant of SOCEM with the settings for β and σ here.

4.6.2.2 Results on ImgSeg by using SOEM and SODAEM M

First, we evaluated the performance of SOEM and SODAEM M in learning a Gaussian

mixture model with equal mixture weights. The objective function was the log mixture-

likelihood function in Eq. (2.7) with equal mixture weights. We compared the perfor-

mance with that of EM and DAEM M. The setting for each algorithm was as follows:

4In our implementation for SOCEM, SOEM, and SODAEM, the phase transition occurs when the
likelihood increase is below a threshold or the number of learning iterations exceeds 30 in the current
phase. However, KohonenGaussian does not have the convergence property; thus, we ran 30 iterations
for each phase of the algorithm.

51

• DAEM M: The value of β was set at 0.2 initially, and increased to 1 by the formula

βnew = β × 1.2.

• SOEM: The value of σ in hkl was set at 0.6 initially, and reduced to 0 (i.e., hkl = δkl)

in 0.02 decrements.

• SODAEM M: Both the values of β and σ in hkl were set at 0.2 initially. To perform

data clustering using the mixture-likelihood criterion, the value of β was increased

to 1 by the formula βnew = β × 1.2 first; then, the value of σ was reduced to 0 in

0.02 decrements.

We ran DAEM M, SOEM, and SODAEM M with 20 independent random initializa-

tion trials. Similar to the experiments on CEM, we ran EM many trials till the accu-

mulated execution time was close to that of one SOEM trial. The mean and standard

deviations (error bars) of the log mixture-likelihood values over the trials for each algo-

rithm and the best results of EM (denoted as EM-best) are shown in Figure 4.12. From

the figure, it is clear that DAEM M, SOEM, and SODAEM M achieve similar perfor-

mance. Moreover, they obtain larger and more stable log mixture-likelihoods than EM.

The results are rational since SOEM is a topology-constrained DA variant of the EM

algorithm, and SODAEM M is an annealing variant of SOEM with the settings for β and

σ here.

4.6.2.3 Results on Ecoli

We conducted experiments on Ecoli using the algorithms applied to ImgSeg in Section

4.6.2.1 and Section 4.6.2.2. Figures 4.13 (a) and (b) show the data clustering perfor-

mance of each algorithm in terms of the classification log-likelihood and the log mixture-

likelihood, respectively. Similar to the results on ImgSeg, the PbSOM learning algorithms

also achieve decent data clustering performance on Ecoli.

4.7 Application of SOCEM, SOEM, and SODAEM

to data visualization and analysis

In this section, we apply the SOCEM, SOEM, SODAEM algorithms to data visualization

and analysis. We applied the data sets described in Section 4.6.2, ImgSeg and Ecoli, for

experiments. We also applied the same experiment setups for the PbSOM algorithms as

those in Section 4.6.2.

52

4.7.1 Experiment results on ImgSeg by using SOCEM and SO-

DAEM C

To visualize the data samples and clusters on the network, each data sample was assigned

to its winning reference model, and then randomly plotted within the neuron that asso-

ciates to the reference model [35]. Here, the winner selection strategy for SODAEM C was

the same as that of SOCEM (i.e., the C-step of SOCEM). Figure 4.14 shows the projec-

tions of the data samples on 7 × 7 lattices obtained by different algorithms. The ImgSeg

data set is comprised of seven classes, namely brickface: B, sky: S, foliage: F, cement: C,

window: W, path: P, and grass: G; each class consists of 300 data samples. Figure 4.14

(a) depicts the initial mapping of the data obtained with a random initialization for the

reference models. As we can see from the figure, the data clusters are randomly projected

to the neurons (lattice nodes) and the network does not preserve the topological (spatial)

relationships among the data samples and clusters. Figures. 4.14 (b)-(f) shows the re-

sults of the three PbSOM learning algorithms obtained with the random initialization in

Figure 4.14 (a). We see that they can preserve the topological relationships among the

data samples and clusters on the network. Moreover, it seems that the data samples of

classes ‘S’, ‘G’, ‘P’, and ‘C’ are more distinguishable and well-grouped on the network

than those of the other classes. In particular, from Figures 4.14 (b), (c) and (d), we see

that only class ‘S’ is separated from the other classes with empty nodes; thus, we may

infer that the separability between ‘S’ and the other classes is higher than that between

the remaining classes.

For SOCEM, as shown in Figures 4.14 (c) and (d), the network contains less empty

nodes at σ = 0 than at σ = 0.06. This may be because in the former case the lateral

interactions have vanished, and thus the reference models are adapted to more fit the

data distribution than the latter case. Comparing Figure 4.14 (b) to Figure 4.14 (d), we

see that the data projection results of KohonenGaussian and SOCEM are rather different

although they obtain similar classification log-likelihoods in Figure 4.11. However, we can

draw similar observations from the two figures. For example, the data samples of class ‘S’

are more close to those of class ‘C’ and ‘P’ than those of class ‘G’. Figures 4.14 (e) and

(f) show the results obtained by SODAEM C. We see that the result in Figure 4.14 (f) is

rather different from that in Figure 4.14 (d) although SODAEM C has become equivalent

to SOCEM when σ = 0.2. This may be because these two approaches search on the

objective function surface along different paths and converge to different local maxima,

as the explanation for the difference of Figures 4.9 (f) and 4.10 (f) in Section 4.6.1.2.

53

4.7.2 Experiment results on ImgSeg by using SOEM and SO-

DAEM M

We ran SOEM and SODAEM M with a 7×7 lattice and the initial reference models used

in Section 4.7.1 for evaluating SOCEM; therefore, the initial projection of the data was the

same as that shown in Figure 4.14 (a). When clustering the data samples, each sample was

assigned to its winning reference model using SOCEM’s winner selection strategy. From

Figure 4.15, we observe that these two algorithms can preserve topological relationships

among data clusters (samples). Similar to the results revealed by Figure 4.14, data samples

of classes ‘S’, ‘G’, ‘P’ and ‘C’ are more distinguishable than those of the other classes.

Comparing Figure 4.15 (b) to Figures 4.14 (b) and (d), it is clear that SOEM produces

less empty nodes than KohonenGaussian and SOCEM when the value of σ is reduced to

zero. It may be explained as follows. For KohonenGaussian and SOCEM, in the case of

σ = 0, they become the CEM (K-means type) algorithm where each data sample only

adapts its winner. However, when σ = 0, SOEM becomes the EM algorithm where each

data sample adapts all the reference models according to their posterior probabilities;

thus, the models are more adapted to fit the data than the models of the other two

algorithms.

4.7.3 Experiment results on Ecoli

We conducted experiments on Ecoli using the algorithms applied to ImgSeg in Section

4.7.1 and Section 4.7.2. In Figure 4.16, for each algorithm we show the result at the σ

value that the class separability can be best visualized on the network. The Ecoli data

set is comprised of eight classes, namely cp: C, im: I, pp: P, imU: U, om: O, omL:

M, imL: L, and imS: S. The numbers of data samples are 143, 77, 52, 35, 20, 5, 2, and

2, respectively. From the figure, we can see that topological relationships among data

samples and clusters are preserved well and data classes can be roughly separated on the

network.

54

(a) Gaussian mixture model

(b) The proposed coupling-likelihood mixture model

Figure 4.1: (a) The network structure of a Gaussian mixture model, and (b) the proposed
coupling-likelihood mixture model. Here, rl(xi; θl) denotes the multivariate Gaussian
distribution described in Eq. (2.12).

55

−15
−10

−5
0

5
10

15
20

−20

−10

0

10

20
−6

−5

−4

−3

−2

−1

0

x 10
4

µ
1

µ
2

cl
as

si
fic

at
io

n
lo

g−
lik

el
ih

oo
d

(a) σ = 0.6

−15
−10

−5
0

5
10

15
20

−20

−10

0

10

20
−5

−4

−3

−2

−1

0

x 10
4

µ
1

µ
2

cl
as

si
fic

at
io

n
lo

g−
lik

el
ih

oo
d

(b) σ = 0.4

−15
−10

−5
0

5
10

15
20

−20

−10

0

10

20
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

x 10
4

µ
1

µ
2

cl
as

si
fic

at
io

n
lo

g−
lik

el
ih

oo
d

(c) σ = 0.3

−15
−10

−5
0

5
10

15
20

−20
−15

−10
−5

0
5

10
15

20
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

x 10
4

µ
1

µ
2

cl
as

si
fic

at
io

n
lo

g−
lik

el
ih

oo
d

(d) σ = 0 (i.e., hkl = δkl)

Figure 4.2: SOCEM’s objective function becomes more complex with the reduction of
neighborhood size (σ in hkl).

56

1r 2r 3r 4r 1−Gr Gr……..

Winner selection

ix

(a) SOCEM

1r 2r 3r 4r 1−Gr Gr……..

Weighted winner

ix

)(

|1

t

i
γ)(

|

t

iG
γ)(

|4

t

i
γ

(b) SOEM

Figure 4.3: For each data sample xi, the adaptation of the reference models in SOCEM
is restricted to the winning reference model and its neighborhood. However, in SOEM,
the winner is relaxed to the weighted winners by the posterior probabilities γ

(t)
k|i, for

k = 1, 2, · · · , G. Each data sample xi contributes proportionally to the adaptation of each
reference model and its neighborhood according to the posterior probabilities.

SODAEM DAEM for GMM

SOCEM CEM for GMM

klklh δ→

klklh δ→

0/1 →β

topology-
constrained
annealing

0/1 →β

SOEM

1/1 →β

EM for GMM

1/1 →β

topology-
constrained
annealing

klklh δ→

Figure 4.4: The family of Gaussian model-based clustering algorithms derived from the
SODAEM, SOEM and SOCEM algorithms. δkl = 1 if k = l; otherwise, δkl = 0.

57

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) random ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) σ = 0.15 with rand. ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) σ = 0.6 with rand. ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) σ = 0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) σ = 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) σ = 0.15

Figure 4.5: The map-learning process obtained by running the SOCEM algorithm on the
synthetic data. Simulation 1 ((a)-(b)): When SOCEM is run with the random initializa-
tion in (a) and σ = 0.15, it converges to the unordered map in (b). Simulation 2 ((a)
and (c)-(f)): SOCEM starts with σ = 0.6 and the random initialization in (a). Then, the
value of σ is reduced to 0.15 in 0.15 decrements.

58

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) random ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) σ = 0.15 with rand. ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) σ = 0.6 with rand. ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) σ = 0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) σ = 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) σ = 0.15

Figure 4.6: The map-learning process obtained by running the SOEM algorithm on the
synthetic data. Simulation 1 ((a)-(b)): When SOEM is run with the random initialization
in (a) and σ = 0.15, it converges to the unordered map in (b). Simulation 2 ((a) and
(c)-(f)): SOEM starts with σ = 0.6 and the random initialization in (a). Then, the value
of σ is reduced to 0.15 in 0.15 decrements.

59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) random ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) σ = 0.15, β = 0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) σ = 0.15, β = 0.256

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) σ = 0.15, β = 0.409

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) σ = 0.15, β = 0.655

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) σ = 0.15, β = 1.04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g) σ = 0.15, β = 2.68

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(h) σ = 0.15, β = 6.871

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(i) σ = 0.15, β = 17.592

Figure 4.7: The map-learning process obtained by running the SODAEM algorithm on
the synthetic data. The value of σ is fixed at 0.15, while value of β is initialized at 0.16
and increased in multiples of 1.6 up to 17.592.

60

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) random ini.
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) σ = 0.15 with rand. ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) σ = 0.6 with rand. ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) σ = 0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) σ = 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) σ = 0.15

Figure 4.8: The map-learning process obtained by running the SOCEM algorithm on
PenRecDigits C0. Simulation 1 ((a)-(b)): When SOCEM is run with the random initial-
ization in (a) and σ = 0.15, it converges to the unordered map in (b). Simulation 2 ((a)
and (c)-(f)): SOCEM starts with σ = 0.6 and the random initialization in (a). Then, the
value of σ is reduced to 0.15 in 0.15 decrements.

61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) random ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) σ = 0.15 with rand. ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) σ = 0.6 with rand. ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) σ = 0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) σ = 0.3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) σ = 0.15

Figure 4.9: The map-learning process obtained by running the SOEM algorithm on Pen-
RecDigits C0. Simulation 1 ((a)-(b)): When SOEM is run with the random initialization
in (a) and σ = 0.15, it converges to the unordered map in (b). Simulation 2 ((a) and
(c)-(f)): SOEM starts with σ = 0.6 and the random initialization in (a). Then, the value
of σ is reduced to 0.15 in 0.15 decrements.

62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) random ini.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) σ = 0.15, β = 0.16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) σ = 0.15, β = 0.256

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) σ = 0.15, β = 0.409

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) σ = 0.15, β = 0.655
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(f) σ = 0.15, β = 1.04

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(g) σ = 0.15, β = 2.68
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(h) σ = 0.15, β = 6.871

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(i) σ = 0.15, β = 17.592

Figure 4.10: The map-learning process obtained by running the SODAEM algorithm on
PenRecDigits C0. The value of σ is fixed at 0.15, while value of β is initialized at 0.16
and increased in multiples of 1.6 up to 17.592.

63

Figure 4.11: The data clustering performance of CEM, DAEM C, SOCEM, SODAEM C,
and KohonenGaussian on ImgSeg in terms of the classification log-likelihood.

Figure 4.12: Learning a Gaussian mixture model by applying EM, DAEM M, SOEM, and
SODAEM M to ImgSeg.

64

(a) (b)

Figure 4.13: The data clustering performance on Ecoli in terms of (a) the classification
log-likelihood and (b) the log mixture-likelihood.

65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G

G

G

G

G

G

G
G
G

GG G

G

G

G

G

G
G

GG

G

G

G

G

G

GG
G

G

G

G

G

G
G

G
G

G

GG

G

G
G
G

G

G

G

G

G

P

P

P

P

P
P

P

P

P
P

P

P

PPP

P

P

P

P

P

P

P

P

P

P

P

PP

P

P

P

P
P

PPP P P
PPP

P

P

P

P

P

P
PP

PP

P
P

P

P

P

PPPP

P

P

P

P

P

P

P

P

P

P
P

P

P

P

P
P

P

P

P

PP
P

P

P

P

P

P

PP

W
W

W

W

W

WWW
W

W
W

W

W

W

WW

W

W

W

W

W

W

W

W

W

W

W

W

W
WWWWWW

W

W

W

W

W

W
W

W

W

W

W

W

W

W

W

W

W

WW W

W

W

WW

W

W

W

WW

W

W
W

W

W WWW
W

W

W

W

W

WW

W

W

WW

W

W

W

W

W

W

W

W

W

W

W W

W

C

C

C

C

C
C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

CC
C

C

C

C
C

C

C

C

C

C

C

C

CC C

C
C

C

C

C

C
C

C

C

C

C

C

CC

C

C

C

C

C

C
C

C

C

C

C

C
C

C

C

CC
C C

C

C
C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

CC

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C

CC
C

C

C

C

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

F

F

F

F

F

F FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F

F
F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F F

FF
F

F

F

F

F

F

F

F

F

F
F

F
F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

S

S

S

S

S

S

S

S

S
SS

S
S

S

S

SSS

S

S
S S

S
S

S

S

S

S

S
S

S S

S

S

S

S

S

S

S

S

S

S

S

S S

S
S

SS S

S
S

S

S
S SS

S

SS

S
G

G

G

G
G

G

G

GG

G

G G

G

G

G

G

G

G

G

G

G

G

G
G

G
G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G

G
G

G

G
G

G

G

G

G

G

G

G

GWW

W

W W

W

W

W

W

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W W

W

WW

W

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W
W

W

W

W

W

W

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

CC

C

C C

C C

C

C

C

C

C

C

C

C

C

F

FF

SS

S

S
S S

S
S

S

S
S

S S

S

S

S S
S

S

S S

S

S

S

S S

S

SS
S

S SS
S

S

S
SS

S

S

S
SS S

S

S

S

S

S

S

S

S

S S
SS

S

G G

G

G

GG

G

G

G

G
G

G

G

G

G

G

G

G G
G
G

G

G
G
G

G

G

G

G

G

G

G

G

G

G

G G

G

G

G

G

G

G

G

G

G

G

G

GG

PP
P

P PP

P

P

P

P

P

P

P

P

P

P

P

P
P

P

P
P

P
P

P
P

P

P

P

P

P

P

PP

P

P

P

P

P

P

P

P

P

P P

P

P

P

P
P

P

P

P

P

P

P P

P

P

P P

P

P

P

P

P

P

P

P

P

P
P

P

P

P

P

P

P
P PPP

P

P

P

P

P
P

P
P P

P

PP

P

P

P
P

P

P

P

P

P

P

P

P

P

P
P

P

P

P

P
P

P

P

P

P

P

P

P

P

P

P

PP
P

P
P

P

P

P

P

P

P

P

P

P

P

W

W

W

W
W

W

W

W

W

W

W

W

W

WW

WW

W

W

W

W

W

W

W

W

W W

W

W W

W

WW

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W WW

WW

W W

W

W

W

W

W

W

W

W

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C
C

C

C

C C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

B

B

B

B

B B

B

BB

B

B

B

B
B

B

B
B

B

B

B

B

B
B

B

B
B

B

B

B
B

B

BB

B
B

B

B

B

B

B

B

B

B

B

B

B

B
B

B BB

B

B

B

B

B

BB

B

B

B

B
B

B

B

B

B

B

B

BB

B

B

B

B

B

B B
B

B

B

B

B B

B

BB

B

B

B

B

B

B

B

B

B
B

B

B

B B

B

B

B
B

B

B

B

B
B

B

B

B

B

B

B

B

BB

B

B

B

BB

B
B

B

B

B

B
B

B

B
BB

BB

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B B

B

BB B

B

B

B

BB B

B

B B B
B

B
FFFF F

F

F

F

F
F
F

F

F

F

F

F
FF
F

FF

F

F F
FF

F

F

F

F

FF
F

F

F
FFF

F

F F F
F

F

F

F

F

F

F

F

SS

SS

S

S
SS

S

S

S

S

S

S

S

S

SS

S

S S

S

S
S

S

S
S

S

S

S

S

S

S

SS

S SS S
S

S

S

S

S

G

G

G

G
G

G

G

G

G GG

G
G

G

G

G

G
G

G

G

G

G
G

G
G

G

G

G
G

G

G

G
G

GG

G

G

G

G

G

G

G

G

G

W

W
W

W

W

W W

W
W

W

W
W

W

W WW
W

W

W W

WW

W

W

W

WW

W

C
CC

C
C

C

C

C

C C

C

C

C

CC

C

C

C

C

C

C C

C
C

C

C

C

C

C

CC

C

F

F
F

F

F

F

F

F
F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F
F

F F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F
F

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F F

F

F
F
F

F

F
F F

F

F

F
F

F

F

F

F

F

F

F

F

F

FF F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

S

S

S

S

S
S

S

S

S

S
S

S

S

S

S
SS

S

S
S

S

S

S
S

S
S

S

S

S

S

S

S

S S
S

S

S S

S
S

S

S

S

S

S

S

S
S

S

S

S

S
SSS

S

SS

G

G

G G

GG

G G

G
G

G G

G

G
G

G

G

GG
G

G

G

G

G

G

G
G

G
G

G

G G

G

G

G

G

GG

G

GG

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

P

P

P

P

P

P

PP
P

P
P

P

P

P

P

P

PP

PP

P

P P

P

P

P

P

P

P

P

W
W

W

W

W
W
W

W

WW

W
W

W

W
W

W

WWW

W

W
W

W
WW

W WW

W
W

W

W

C C

C

C

C

CC

C

C
C

C

C

B

B

B

B

B

B

B

B
BB

B

B

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

BB B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B
B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

B

B

B

B
B

BB

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B B

B

B

B

BB BBB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B

B

B

B

S

SS
S

S

S

S

S

S

SSS

SS
S

S

SS

S

S
S

S

S

S

SSS

S

S

S
S

S

S

S S
S

S

S

S

S
S

S

S
SS

S

S
S

S

S S
S

S
SSS S

S
S S

S
SSS

S S

S

S

S

S

S

S

S

S

S
SS

S

S

S

G

G

G

G

G

G

G

G

G

G

G G

G

G
G

G G

G

G

G
G

G

G

G
G

G G
G

G

G

G

G

G

G

G G

G

G

G
GG

G

G

G

G

G

P

P
P

P

PP
P

P

P P

P

P

P P

P

P

P

P

P

PPP

P

P

P

P
P

P

P

P

P

P

P

P

P

PP

P

P

P

P

P

W

W
W

W

W

W

W

W

WW

WW

W

W

W

W

W
W

W

W

WC

C
CC

CC
C

(a) random ini.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G

G G
G

G

G

G

G

G

GG G

G

G G
G

G

G

G

G

G

G

G

G
G G

G
GG

G

G

G

G

G

G

G

G

G

G

G

G G

G

G GG
G
G

PP

P

P
PP

P

P
P

PP PP P PP
P

P
P

P P
P

P

P PP

P
PP

PP

P
P

P

P
PP
PP

P
PPPP

P

P

P
P

P
PP

P
P

P

PPP PPP
P P
P

P
P

P
P

P
P

P P
P

P

P

P
P

P

PP
P

PPP P
P

P

PPP

WW

WW W

W
W

W

W

WW

W

W

W

W
W

WW

W

W
WW

W
W

W

W

W

W

W

W

W
WWW W

WW

W

W

W

W
W

W

W W

W

W

W
W

W

W
W

W W

W

W

W
W

W

W

W

W
WWWW W

W

W

W

WW
W

WW

W

WW WW

W

WW

W

W

W

WW

W

W

W
W

W

W
W

W

C

C

C

C

C C

C

C

C

C
CC

C

C

CC
C

C

C
C

CC
C

C

C
C

C

CCC

C

C
C

C
C

C

C
C C

C

C

C

C

C

C

C C
CC

C

C

CC

C

C

C

C

C

CC

C

C

CC

C

C C

C

C

C

C

CC

C

C

C

C
CC

C

C C
C

C

C

C
C

C

C

C

C
C

C

CC

C

C

C

C

C

C

C

C

C

C

C

CC

C

C CCC

C

C

CC

C

CC

CC

C CC

CC

C

C

C CC

C

C

C

C

C

C
C

C

C

CC

C

C
CC

C
C

C
C

CC
C

CC

CC

C

C

C

F
F

F

F

F

F

F

F

F

F

F

F
F

F
F

F
F

F

F

F
F

F

F

F

F

F

F
F

F

F
F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF F

F

F

F
FF

F
F

F

F
F

F

F
F

F

F F

F

F FF

F

F FF

F
F

FF

F

FF
F F

F

F

F

FF

F

FF FF

F

F

SS

S

S S

S
S

S S
SS S

S

SS
S

SSS S
S

S

S

S

S S

S

S S
S

S

SS
S

S

S

S

SS

S
S

S

S SSS SS

S

S S

S

S

S
S

S

S
S

S

S
SG

G

G
G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G
G

G

G

G

G

G

GG GG

G
G

GG GGG

G

GG

G

G

G

G

G

G

G

W
W

W

W

W

W
W

W
W

W

W

W

W

W

W

W

WW

W
W

W
W

W

W

W

W
W

W

WW

W

W
W

W W
W

W

W

W

W
WWW

W

W

W

W

W

W

W

WW

W

W
W

WW

W
W

W
W

CC
C CC C
C

C
C

C
C

CCC CC
C

CC C

C

C

C
C

C
C CC

C

C
C

F

F
F

S

S S

S

S

S

S

S

S

S

S S

S
S

S

S

S

S

S

S

S

S

S

S
S

S

S

S

S
S

S

S

S S

SS
S

S

SS

SS

S
S

S

S

S S
S

S

SS

S
S

SS S

G

GG

G

G

G
G

G G

G

G

G

G

G

G

G

G

G

G
G

GGG

G
G

G

G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

G

G
G G

G G

G

G

P

P
P

PP
P

P

P

P

PP

P

P P

P
PP

P
P

P
P PP

P

P
P

P

PP
P

PP

P

P

P

PPP

P

P

P
P

P PPP

P P

P

P

P

P
P

P
PP

P

PP

P

P P
P

P
P

PP
P

P

P
P

P

P

PP

P

P
P PP

P
P

P
PP

PP P

P

P

P

PP
P

P PP

P

P

P P

P

P

P

P

P

P P

P
P

P

P

PP
P

P

P

P

P

P

P

P

P

P

P

P
P

P
P

P

P

P

P

P

P
P

PP

P
W

W

W

W

WW

W

W

W

W

W

WW

W

W

W
W

W

W

W

W

W

W

W
W

W

W

W

W

W
W

W
W

W

W

W

W

W W

W

W

WW W

W

WW

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

C
C CC C

C

C

C
C C

C
CC

C
CC

C

C

C

C CCC

C
C

C
C

C

C

C

C
C

C
CC C

C

C

C
C CCC

C

C
C C
C C

CC

C

C

C

CC

CB

B
B B

B

B

B

B
B B

B
BB

BB
B

B

B

B

B

B

B B
B

BB
B

B

BB

B

B B

BBB
BB

BB
B

B

B

B

BBB

B
B

B

B

B
B

B

B

BB
B

B

B

B

B
B

B

B
B B

B

B

B
B

BB
B

B

B

B

B

B

B
B

B

B

B

B
BB

B

B

BB
B B

BB
B
B

B
B B

B

B

B

B

B
B

B

B
B

B

B

B

B

BB

BB

B

B

B

B
B

B

B

B
B B

BB

B

BB

B B

B

B

B

BBB
B

B

B

BB BB
B

BBB

B

B

B

B

B

B

B

B
B

B

B

B

B

B

B

B BB
B

FF

F

F

F

F

F

F

F

F
F

F

F
F

F
F

F
FF FF

F

F

F

F
F

F

FF

F

FF
F

F

F

F F
F

F

F F

F

F

FF

F

F
F

F

F

S

S

SS
S

S
SS S

SS
S S SS

S SS

S

S
S SS S

S
SS

S

S
SS

S
S

S

S
S

S

S
SS

S
S

S
S

G

G
G

G

G

G
G

G

GG

G

G

G

G

G

GG G

G
G

G

G

G

G

G

G

G

G

G

G
G G

G
G

G

G

G
G

G

G

G

G
G

G

W

W

W W
WW W

W
W

W

W

W
W

W

W

W

WW
W

WW W
W

W

W
WWW

CC

C

C

C

C

C

C

C

C

C

C

C C
C

C

C

CC

C

CC

C
C

C C

C

C

C

C

C

C

F

F

FF

F F
F

F

F

F

F

FF

F

F
F

F

F FF

F F

F

F

F

F

F

F
F

F

F

F
F

F

F

F

F

F

F

F

FF

F

F

F
F

F

F

FF

F
F

F

F

F

F

F
F

F

F
F

F

F

F

F F
FF F
FF FF

F

F

F

F
F

F

F
F

F

F

FFF

F

F

FF

F

F

F

F

F

F

F F

FF

F

F

F

F

F

F

F

F

F F

FFF

F

F
F

F

F

F

F
F

FF F

F
F

F

F

F

F

F
F

F

F

F
F

F

FF FF

F
F

F

F

F

F

S

S

SS
S

S S
S

S

S

S

S

S
S

S

S S
S

S
S

S

S

S
S

S

S

S
S

S

S
S

S S SSS

S
S

SSS

S
S

S

S

S
S

S
S

S

S

S

S
S

S
S

S

S

G G

GG

G

GGG

G

GG

GG

G

GG
G

G
G

G

G

G

G

G

G
GG

G

G

G
GG

G

G

G

G

G
G

G

G
G

G

G

G

GG

GGG

G

G

G

G G

G

G

PPPPP
P

P
PP PP P

P
P P

P

P

P
P
P

P

P

PP
P PP

P

P

P

W
W

WWW

W

W

W

WW

WW

W

WW

W

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

C

C

C
C

C
C

C

C

C

C

C

C

BB

B
BB

B

B
B

B

B
BB B

B

B
BB BBB

B
B

B

BB BB
B

B BB
B

B
B

B
B

B

B

B

B
BB

BB

B B
B

BB B

B
B

B
BB

BB
BB

B B
B

B
BB

B

BBB

B
BBB B

B B
B

BB
B
BB B

B B
B

BB BB B
B BB

B B

B

B
B

B B
B

B
B

B
B

B

B
B

B BB
B

B BB
B

BBB BB
BBB

B B
B

B

B

S

SS

S

S

S S

S
S

S
S

S

S

S

SS

S

SSS

S

S

S

S

S

S

S

S

S

S
S

SS

S

S

S S

S

S
S

S S
S

S
S

S

S
S
S

S
S

S

S
SS

S

S

S
S

SS SS

S

S

S

S
S

S

S

SS

S
S

S

S

SS
SS

G

G

G

GG
G

G GG G

G

G
G

G

GG

G

G

G G

GG
GGG G

G

G

G

G

G

G

G

G G

G

GG G

G

G
GG

G

G

G

PPP P

P
P

P
PP

PP

PP
P

PP
P

P

PP
P PP

P
P P

P
P

P PP PP

P
P
PP

P

PPP

P

W
W

W
W

WWW

W

WW

W

W

W

W

W

W

W

W

W

WW
C
C

C
C C

C C

(b) KohonenGaussian (σ=0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G

G
GGGGG
G

G

G
GG

GG

G

GG

G

G
G

G

G
GG GGG

G

G
G

G

GG GG
G

GGG G
G

GGG GGGG

P
P

PP

P

P
PPPP

P

PP

P

PP

P

P

P

P

P
P

P
PP

P
P P

P

P

PP

P

P
P

P

P
P

P
P

PPP

P
P

P

P
P P

P
P

P

P

P

P

P

P

P

P

PP

P

P

P
P P

PP

P

P
P

P

P
P

P

P

P

P
PP

P

P

PP P
P

P

P

P

W
W

W
WW W

W

WW
W

W
W

W

W
W

W
W

WW
W

W
WW W

W

W
WWW

W W
WWW
W

WW
W

W

W

W
W

W
W

W

WW
W

W

W
W

W WW
W

W
WW

W
W

W
W

W W
WW WW

WW W

W

WWW W
W

W

W

W
W

W

W
W
WWW

WW
WWW W W

W

W

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C CC

C

C
C

CC

C

C

C
C

C

C

C

C

C

C

C

C

CC
C

C

C

C

CCCC

C

CCC
C

C

C

C
C

C C

C

C

C

C

C

CC

C

C

C

C

C

CCC
C C

C

CC C

C

C

C

C

C

C

C

C

C

C

C

C

C
C
C

C

C

C
C

C

CC C

C

C

C

C
CCC C

C

C

C

C

C

C

C

C

C

C

CC

C

CC

C

C

C

C
C

CC
C

CCC

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C
C

CC

C

C
C

C

C

C
C

FF
F

F
F

F

F

F

F

F

F F
F

F FF FF

F

F F

F

F

F

F F
F

F

F

FF

F

F

F
F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F
FF

F F

F

F
F

F
F

F

F

F

F

F

F

F

FF

F

F
F F

F

F

F

F

FF

F

F

F

FF F
F

F

F

F

F

F

F
F

F
FF

F

F

S S
S SS

S

S

S
S S

S
SS SSS

S
S S

S

S
SSSSS

S

SS
S

S
S

S

S

S

SS

S S

S
SS S

S
S

SS
S

S

SS
S

S
S

S
S

S
SS

S
S

GGG G

G

GGG G

G

G
G G

G
GG

G

G

G

G

G

G
GG

G
GG

G

G

GG
G

GG
G

GG

G

GGG
G

G

GG

GG
G

G
G

G

G

GGG G

WW

W

W
W

W W

WWWW
WW

W

W
W

W
W

W
WW

W

W

W

W

WW
W

WW
W

W WW

W

W

W

W

WW

W

W

W W

W

W

W

W
WW

W

WW

W
W

W

W

WW

W

W

C

C

C

C
C

C

CC
C

C

C

C

C C
C

CC C

CC

C

C

C

C

C

CC

C

C

C
C

F

F

F

S

S S
S

S

S
S

S

S
SS

S
S
S

S
SSSS SS S

S
SSS

S

S SS
S SSSS S

S
S

SS S
SS
S

S
SSS

S

S
SS

S
SS

SS

G

GGG

G

G G

G
GG

G
G

GGG

G

GG

G

G
G

G

G

G
G

G

G GG

G

GG
G

G

G
G

G

G
G

G

G
G GG

G G GG

G
G

P
P

P
PP

P PP
P

P
P PPP

P
P

P
P

P
P PP

P P

P
P

P
P PPP P

P

PP

P
PP

P
P

P
PP P

P
PP PP

P
P PP

P

P
P
P

P
P

P
P

P
P

P
P

P
P

PP

PP
P PP

P

PP
P P

PP
PPPP
P
P
PP

P

P

PP
P
P

P
P P

P
P

P
P

P
P

PP
PP

PP
P

P
P

P PP P P

P

P
P

P
P P

P
PP

P
PPP

P
PP

P
PP

P
P

W

W

W

W

W
W

W

W

W W

W

W

W

W

W

WW

W

W

W

W

W
W

W
WW

WW

W
W

W

WW

W
W

W

W

W
W

W

W

W
W

W W
WW

W

W
W

W

W

W

W

W

W

W

W
W

W

W

W

C

C

C

C

C

CC

C
CC

C
C

C
C

C

C

C

C

C

C

C
C C

C
C

CC

C

C

C

C

C
C

C

C

CC

C

C

C

C
C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

B

B
B
BB

B
BBB

B
B
B

B B
BB BBB B

B
BB B

B B

B

BB BB B BBB
B

B

B

B

BBB B B
BB
B

BBB

BB
BB BB B
B

B

B

B
B B B

B
BBB BB

B

BB
B B

B
B

B

B
B
B

BB

B

BB BB

B
B

B B
B

B

BBBB
B

B
B

BB
B BBBBBB

B
B

B
B

B

B
B

B

B
BB B

B

BB
BB

BBBBB

B

B

BB
BB

B
BBBB

B
BB
B

BB BB B
B

B
B

B

B
BB

B B
B
B

B

B
B

B

B

B

B

F
F
F F

F F

F

F
FF

F
F

F

F F

F
F

F
F

F

F
F FF

F
F

F

FF

F

F

FF
F

F F

F

FF

F F
F

F

F
F

F
F

F
F

F

SS SS
S

S
S
S

S

S

S

S

S
S
S

S
S

S S
S

S

SS
S S

SSSSS
S
S

SSS SS SS
SS

S
S

S

G
G

G

G

G
GG GG
G

G

G
G

GG
G

GG
GG G

G
G

G
G

G

G
G

G
G

G

G
G

GG
G
G

G
G

GGGGG

W

WW
WW WWW

W
WWW

W

WW

W

W

W

W
W

WW
W

W

W
WW

W

C

C

C
CCCC C

C

C

C

C

C

C

C

C
CCC

C

C
C

CC
CC

C

C

CC

CC

F
F

F

F
FF

F

F

F

F
FFF

F

FF

F

F

F

F

F

F

F

F
FF

F

FF

F

F

F
FF

FF
F

F
F

F

F

F

F

F

F

F

F F
FF FFFF FF

FF

F

F
F
F FF F FF
F

F
FF
F
F

F

F

F F
F

F

F F

F

F
F

F
FF F

F

F

F
F

F F

F

F

F F
F

F

F FFF
F

F F

F F
F

F
FF

F FFF

F

FF F

F

F
F

F
F

F

F
F

F
F

F

FF
FF

F

F

F F
F

F
FF F

F

FS
S

S
S

S
S

S

S S
S
S

S

S SS
SS
S

S

S

S
SS

S

S
SSSS

S
S

S S
S

SS SSS
S

S
S S

S

SSS SS

S
SS S
SS
S

SS

GG

G
G

G
G GG

G
GG

GG

G
G

G G GG
G

G G
G

GG

G

G

GGGG
G

G

GGG

G

G

G

G
G

G G

G

GG

G
G G

GG

GG
G

G

G

P

P

P

P

P

P

PP
P

P P

P

P P
P

P

P

P

P
P
P

P

P

PP

P

P

P
P

P

W
W

W
W

WW
W

W

W

W

W

W

W

W

W

W

WW
W

W

W

W W
W W

W
W

W

W
W

W

W

C

C

C

C

C

C

C

C

C

C

C

C B BB

BB

B

B

BB

B
BB

B
B

B
BBB BBBB

B
B

B B

B
B

B
B
B

BBB
B

BBB
B

BB B
BBBB B
B

BB
BBB

B

BB
B

B
B

B

BB
BB

B
B

B
BB

B
BBB

BB
B
B

B B
B
BBB BB

B

B
B

B
BB B

B
B

BB

B BBB
B B
B

B

B

B
B BB

B
BB B

BB
B

B

BB B
BB B

B

B

B
B

B
B
B

S

S

S

S

S

S
S

S S
S

SS

S

S

S

S

S
S

SS
S

S

S

S

S

S

S

S
S

S

S

S

S

S

S

SSS

S
S

S
SS

S

S

S
S

S S
S S

S

S

SS

S

S

SS

S
S S

S

S

S

SS

S

S

S

SS

SS

SS

S

S

S

S

G

G

G

GGG
G

GG G

G

G
G

G

G
G
G

G

GGG
G

G
G

G

G

G

G

G

G

G

G

G

G G

G

G
GG

G

G
G

G

G
G

G

P

P
P

PP
P

P

PP

P
P P
P

P P

P

P
P

P

P

P

P P

P

P

PP

P

P

P

PP

P

PP

P

PP
PP

P P

W

W
WWW

W W

W

W

W

W W

W

W

W

W

WW

W

W
W

C

CC
C
C
CC

(c) SOCEM (σ=0.06)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G

G

G

G

G

GG
G

G
G

GG
G

G

G

G
GG

GG G

G

GG
G

G

G G

G
G

G

G

G

G

G

G

G

G

G

G

G G

G

GG
GG G

P
PP

P P

P

PP

PP

P

P
P

PP
P

P

P

P

P P

P
P

P
P

P

P

P PP

P

P
P

P

P

P

P

P
P

P

P

P

P

P

P

P
P

P

PP

P

P

PP

P

P
P
P

P

P
P

P

P

P

P
P

P

P

P

P
P

P

P

P

P
P

P P

PP

P

PP
PPP

PPP

W
W

W
W

W

W

WW

W

W

W

W

W

W

W
W

W

W

W

W
WW

W

W

W

W

W

W
W

W

W W
W

W
WW

W W

W
W

W

W

W

W W

W

W WW

W

WW
W

W

W

W

W
W

W

W

W

WW
W

W

W
W W

W

W

W

W

W

W
W

W

W W
W

W

W

WW

W

W W

W

W

W
W

W
WW

WW

W

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

CC

C

C

C

C
C

C

C

C C

C

C

C
C C

C

C

C

C

C

C

C CC
C

C
C

CC
C C

C

C
C

C
C

C

C

C

C
C

C
C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C
C

C

C

CC

C

CC
C

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C C

C

C

CC

C
C

C

C
C

C

C C

C
C

C

C

CC

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C
C

C

C
C

C

C
C

C

C

C

CC

F

F

F

F F

F

F

F

F

F

F FF

F

F

F

F

F

F

F

F

F

F

F

F
FFF

F

F

F

F

F

FF

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F
F

F

F

F

F
F

F

F
FF

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

FF

F
F

F

F

F

F

F

F

F

F

F

F FF

F

F

F

F

F

F

F

SS SS

S
SS

SS
S

S SS
SSS

S
S

SS
S

S
S
S

S

S

S

SS S
SS
S

S

S

S

S

S
S

SS
S

S
S

SS
S S

S

S

S
S

S
S
S
SSS

S S

S

G

G

G
GG G

G

G
G

G G

G G
G

G

G

G

G

G

G

G

G
G

G

G

G

G

G

G

GG

G

G

G

G

G G

G

G

G

G G
G

G G

G

G

G

G

G

G
GG

G

G

G

W

W

W

W W

W

W

WWW
W

W
W

W

W
W

W
W

W
W

W
W

W

W

W

WW
W

W
W

W
W
W

W

W

W

W

W W

WW

W

W

W

W

W
W

W

W

W

W

W

W

W
W

W W

W

W

WW
C

CC

C

C

C
C

CC
C

C

C

C
CC

CC

C
C

C

C

C

CC
C

C
C

C
C C

C

F

F
FS

S
S

S

S

SS
SS

S S
SS
S S

S
S

S
SS

S

S
S S

S S
SS

S

S

S
S
SS

SS

S
SS S

S

S
SS

S
S

S S
S

S
S S

S
S

S
S

S

G

G
G G

G
G

G

G

G

G

G
G

G

G

G

G

G

G

G

G

G

G

G

GG

G

G

G

G

G

G G

G

G G
G

G

G

GG

G

G

G

G
G

G

G

G

G
G

P

P

P

P
P

P
P

P
PP

P P

P

P

P

PPPP
P
P
P

P
P

P

PPP
P

P
P

P
P PPPP P

PP
P

P

PP

P

P

PPP
P P

P

PP

P

P
P

P

P

P

P
P

P

P PP
P

P

P P
P

P

P

PP
P
PPPP

P
P

P

P
P

P

P
P

P

P
P

P

PP

P
PP
P

P
P

P

P
PP P

P
PPPP

P
P

PPPP PP
PPP

P
P

P

PPP P
P

P
P P

P

P

P
PP PP

W

W

W

W

W W W

W

W

W

W

WW

W

W

WW

W

W

W

W

W

W

WW W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W
W

W

W

WW

WW

W

W

W

W

W

W

W

W

W

W

C

C

C

C

C

C

C

C CC

C

C

C

C

C

C

C

C

C

C
C

C
C

C

C

C CC

C

CC

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

B

B
BB

B

BB
B

B B
B

B
B

B B

B

B
B BB

B

B B
B

B

B

B

B

B

B
BB

B
B

B

B B

B

B
B

B
B

B
B
B B

B

B

B

B
B

B
B

B

B

B
B B B

B

B
B
B

B

B
B

B

B

B

BB BB

B

B
B

B

B

B

BB

B B
B

B
B

BB

B

B

B

B
B

B

BB

B

BB

B

B

B

B
B
B

B

B
BB

B B
B

B

B
B

B
B

BB
B
BB

B

B

B

B

B

B

B

B
B B

B B

B

B

B
BB

BB

B
B

B

B
BBB
BB

B

B

BB
B

B

BB
B

B

B
B B

B

B

B

BB

B
B

F
FF F

F

F

F F

FFF

FFF F

F

F
F

F

F

F

F F

F

F

F
F FF

F

F

F
F

F

F

F

F
F

F

F

F
FF

F F

F

FF

FF

S

S
S
SSSSSSSS

SS

SS

S
S

S
S

S
S

S
SS

S SS

S S
S

S
SS

S
S

S

S

SS
S

S
SS
S

G
G

G

G

G

G

G
G

G

G
G

G

G

G

G

G
G

G

G
G

G

G

G

G

GG

G

G

G

G

G
G

GG

G

G

GG

G GG G
G

G

W
WW

W

W

W
W W

W
W

W
W

W

W
W

W
W

W
W

W

W
WW

W

W

W
W

W

C
C

C

C

C
C

C

C

C

C

C

C

CC
C

C

C
C

C

C

C
C

C

C
C

C

C

C

C

C
CC

F
F

F
F

F
F

F

F

F

F
F

FF

F

F

F

F
FF F

F

F

F

F

F

F

F
F

F

F

F F
F

F

F

F

FFF

F

F
F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F
F

F

F
F

F

F

F

F

F

F

F

F

F

F

F

FFF

F

F
F

F

F
F

F

F
FF

F

F
F F

F

F

F

F

FF

F
FF

F
FFF

F
F

F

F

F

F

F

F

F F
F

FF

F

F

F

F

F

F
F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

S
S

S

S
SS

S

S
SS

S
S

S

S

S

S

SS S
SSS S
S

S SSS
S

SS
S

SS
SS

S SS SSS
SS

S
S
S

S S
S

S

S
S
SSS

S

S

G

G
GG

G

GG

G

G

G

G
G

G

G

G

GG G G

G

G
G

GG

G

G

G

G GG
G

G

G

GG

G

G G

G

GGG

G

G
G

G

G

G G

GG

G

G G
G

G

P
PP

P

P

P

P

P

P
PP

P

P

P

P

P

P

P
P

P

P

P

PP P
PP

P

P

P

W
W

W W

WWW

W

W W
WW

W

W
W

W

W
W

W

W

W

W

W

W

WW
W

W

W

WW WC
C

C

C
C

C

C

CC

C

C

C

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

BB
B

BB B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B
B

B

B
B

B

B
B

B

B

B

B
B

B

B

B
B

B

B

B

B
B B

B

B B

B

B

BB

B

B
B

B

B

B
B

B

BB

B

B

B

B

B

B
B

B

B BB
B

B BBB BB

B

B

B
B

B

B

B

BB
B

B B
B

B

B

B
B

B

B

BB

B

B

B BB

BB

B

B

B

B

S

S

S

S

S

S S

S

SSSS

S

S

SS

SS
S

SS

S

S

S

S

S

S

S

S

S

S

SS

S

S

S
S

S

SS

S

S
S

SS
S

SS
S
S S

S

S
S

S

S

S

S
S

SS S

S

S

S

S
S

S

S

S

S
S

S
S

SS

S
SS S

G

G
G

G

G
GG G

G

G
G

G

G

G

GG

G

G

G

G

G
G

G

GG

G

G

G

G

G

G

G

G

G

G

G G
G

G

GG
G

G GG
G

P
PP
P

P

P
P PP
PPPP

P
P

P

P P

P

P P
PPP

P

P
P
PP

P

P

P

P

P
P

PP

P
P

P

PP
W

W
W

W
W

W

W

W

WW

W

W

W

W

W

W

WW

W

W WC
C

CC

C C
C

(d) SOCEM (σ=0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
G

GGG
GGGG

G
G

G
GGG

G

G

G

GG

G

G

G
G

G

G
G
G

G
G

G

GGG G

G

G

G

G

G

G
G

G G
G

G
GG

PPP
P

PP
P

PP

P

P

P

P

PP PP

P

PP
P

P P
P

P
P

PPP

P

PP

P
PP

P

P

P

P

P

P

P
P

PP

P

PPP

P
P

P

P

P

P
P

P

P

P
P

P
P

P

P

P
PPP

P
P

P
P

PP
P

P PP
P

P
P

P

PP PP P
P

P

W

W W
WW

W
W

W

W

W

W

W

W

W

W

W
W

W

W
W

W

W

W
W

W
W

W

WW
WW

W
W

W

W

W
W

W

W
WWW

W

W
W

W

W

WW

W

W

W

W

W

W

W

W
W

W

W

W
WWW
W

W

W

W
W

W

W
WW

W

W

W

W

W

WWW W WW

W

W

W
W

W

W

WW
WW

W

W

C

C C

C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C
C

C C

C

C

CC

C

C

C

C

C

C

C

C

C

C

C

C

C C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
CC

C

C

C

C

C

C CC C

C

C

C
C

C
CC

C

CC

C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C

C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C
C

C
C

C

C

C

C

C

C
C

C

C

C

C

C

C
C

C

C

C

C
C

CCC

C

C

C

C

C

C

C

F

F

F

F

F

F

F

F

F

F

F

FF

F
F

F
F

F

F

F
F

FF

F

F
F

F
F

F
F

F

F

F

F
F

FF

F

F

F

FF

F
F

F

F

F

F

F

F

F

F F

F

F

F

F F

FF

F

F

F
F
F

F

F

F

F

F

F

F

F FF

F

F F
F

F
F

F
F

F

F F

F

FF

F

F
F

F

F

F

F
F F

F
F

SS
SS

SS
SS S

S
SS SS

S
S

SSS SSS
S

S

S
S

S

S
S S
SSSS

S
S

S
S

S

S
S

S
S

SS S
SS

S

S
S S

S S

S
S SS
S SS

G

G

G
GG

GG

G

G

G
G GG

G
G G

GG GG

GG

G
G

G

G
G G

G
G

G

G
G

GGG
G

G

G

GG

G

GG

G

G

G G
G

G

G

G

G

G

G

G

WW

W

W

W WW

W
W WW
W

W

W

W

W W

W

WW

WW

W

W

W

W
W

W W
W

W

W
W

W
W

W

W

W

W W

W

W
W

W

W

W

W
W

W W
W

W W

W

W
WW

W

WW

W

C
CCCC

C
C C
CC

C

C

C

C
CCCC

C

C
C

C
C

C

C C CC

C

C

C

F

F F

SSS
S

S

S S
SS S

S SSS
SS

SSSS S
S

SSS
SSSS S

S
S

S

S
S S

SSS
S

SS SS
S
S

S

S S
S
SS S

SS SS

G
G
G

G

G

G

G

G G

G

G

G G

GG

G
G

GG G
G

G

G

G

G
G

G

G G

G

G

G

G

G

G
GG G

G
G

G

G

G

G G
G

G
G

G

G

PP
P

P
P

P

P

P P

P

P
P

P

P

P

P PP
P PP
P

P

P

P
P

P

PP
P

P

P

P

P

P
P
PP

P
P

P

P

P

P

P

P
P

P PP

P PP

P P
P

P

P

P

PP

P

P

P

P

PP

P

P

P

PP

P

P
P

PP
P

P
P

P

P

P
PP

P

P
P
PP
P
P

P

P

P

P
P

P

PP
P

PPP
P
P

P

P
PP

P

P

P
P

P

P

P

P

P

P P
P
P

P

P
P

PP PPPP

PP
P

PP
P

P

W

W

W

W

W

WW
W

W

W

WWW

W

W
W

W

W

W

W
W

WW

W
W

W

W

W
W

W

W

W
W

W
W

WW
W

W

W

W W

W W

W

W

W
W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

CC

C

C
C

C

C C

CC
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C C

C

C

C

C

C

C

C
C

C

C

B

B
B B

B

BB
BB

B

BB

B
BB

B

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B
BBBB

B

B
B

B

B

B

B BB
B

B BB

BB

B
B
B

B

B
B B B

B

B
B

B

B

B

B BB

B

B B B

B

B B

B

B

BB

BB

B

B

B

BBB
B

B

B
BB

B

B

B B

B

BB

B

B

B
B BB

B

B

B

B
B B

BB
B

B

B

B

B
B BB

B

BB

B B

B

B
B

B BB

B
B

BB

B BB B B

B

B

B

B
BB

BB
BB

B

B
B
B

B

B
B

B

B

B
B

B

B

B
B

B

B

B
B

F
F

F

F

F

F

F

FFFFF F

F
F

F
F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

FF
F
F

F

S
S

SS SS SS S
SSS
SS

S
S

S

S
SS

SS

S
S

SSS
S SSSS SS

SSSS S

SSSS

S

G
GGGG G
G

G

GG
GG

G

GG
GG

G

G

G GG

G

G
GG
G

G
G

G

G
G

G

G
G

G

G
G

G

G GGG
G

W

WW

W
W W

W

WW
W

WW
W

W

W
W

W

WWW
W

W

W
W

W

WW W

C

C

CC
C

C

C

C

CC

C

CC CC C
C

C C C

C

C
CC

C

C

C

C

C C C

C

F

F

F
F

F
F

F

F

FF
F

F
F

F

FF

F

F

F

F

F
F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F

F

F

F

F

F

FF
F

F

FF

F F

F
F F

F

F

F

F

F

F

F

F

FF

F

F F F
F

F

FF

F

F

FF
F

F

F F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F
FF

F

F

F F
F

F

F
FF

FF F
F

F

F

F
F

F

F
F F

F
F

F

F

F

F

F

F

F

F

F

F

F
F F

F

FF
F

F

F
F

F

F

F

F

SSS
S
S

S

S
SS

S

S SSS

S SSS S
S

S SS
SSS

S

S
SS
S

S
S
SSS S

S
S

S

S
S

S

S

S
S

SS
S
S S

S

S
S

S
S

S

S

G

G

GGG G
GG

G

G

G

G
G

G

G
GG

G

G

G

G

G

G

G

G

G

G

GG

G
G

G G
G

G

G

G
GG GG

G

G

G

G
G

G

GG

G

G

G

G
G

G

G

P
P

PP

P

P

P

P
P

P

P

P

P

P

P

P

P

P

P
P
P

P

P

P
P

P
P

P
P

P

W

W

W
W

WW
W

W

W

W

WW
W

W

W

W

W
W

W

W

W

W

W

WW
W

W

W WW

W

W

CC

C

C

C
C

C

CC

C

C

C

B
B

B

BB
B

B

BB

BBB
B

B

B

BB
B

B
B

BB

B

B

B

B

B

B

B B
B B

B B
B B

B

B

B
B

B

B
BBB B

B

B

B

BB

B

B

BB

BB BB
BB

B

B

B
B

B
B B

BB

B

B B B
B

B
B

BB B
B

B

B
BBB

B

B B

B

B
B B

B

BB

B

B
BB

B
B B

B

B
B

B B

BB

B
BBB BB

B

B

B

B BB

B

B

B
B

B

B
BB

S
S

S
S SS
S SS

S
S

SS
SS

S

S S
S

S

S
S SS SS S

S
S S

SSS S
S

S
S
SSS

S
S

S

S

SS
S SS

SS S

SS
S

S
S

SS
S

S
S S

S
S

S
S S

S
S

S
S S

S

S
S

S
SSS

G

G

G

G
G
G

G

G
G G

G

G
G

G
G

G

G

G

GG
G GGGG

G

G

G

G

G

G

G

G

G
G

G

G GG

G

G G
GG

G

G

P

P
P

P

P

P
P

PP

P
P

P

PP P

P

P
P

P
P

P
P

P

P

P

P

P

P

P

P

PP

P

P
P

P
P

P
P

P

PP

W WW

W

W

W
W

W

W

W

W

W

W

W

W

W

W
W

W

W

W

C

C

C CC
C C

(e) SODAEM_C (β=10, σ=0.14)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G

G

G

G G
G

G
G GG

GG G
G

G

G
G

G

G

G

GG

G

G

G

G

GG

G GG G

G

G
GGG

G

GG

G

G

GG

G

G
G

G

P

P
P

P

P

P
P

P
PPPP

P
PP PP

P

P

P
P

P

P
P

PP

P
PP

P

P
P

P

PP

P

PP P

P

P P
P

P

P P
P

P
P

P

P

P

P

P P

P P

P
P P

P

P

P

PPPP

P
P

P
P

P

P
P

P
P

P

P
P

PP

P

PP
PP

P
P

P

W
W

WWW

WW W

W

WW

W

W

W

W
WWW

W

W W
W

WW

W

W

W

WW
W

WW W

W

WW

W

W

W

W

WWW

W

W

W
W

W
W

W

WW
WW

W

W

W
W

W

W

W

W
W
WW

W
W

W

W

W

W

W

W
W

W

W

WW
W

W

W

W
W

WW W
W

W

W
W WWWW

W

W

C

C

C

C

C C

C

C

C

C C

C

C

C

C

C

C

C

C

C
CC

C
C
CC

C

C

C

C

C

C

C

C

C

C

C

C
C

C

CC

C

C

C

C

C

CC C C

C

C

C

C

C

CC

C

C

C

CC

C

C

CC

C

CC

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C
C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C
C

CC
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CC

C
C

C

C

C

C

C

C

C C

C

C

C
C

C

C

CC

C

C

C

C
C

C

C

C

C

C

C

C

C

C

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

FF

F

F

F

F
FFF

F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F
F

F

F

F

F

F

F

F

F

F

FF
F

F

F
F

F F

F

F
F

F

F

F

F
F

F F F

F

F

F FF

FF

F

F

F

F

F

F

F

F

F

F
F

S

S

SS

S

S
S

S

SS

S

S

S

S

SS SS

S

S

SS
S

S

S
S

S
S

S
S

S

S
S

S
S

S
SS
S

S
S

S

S

S
S SS

S

S

S

S

S

S

S

S

S
S

S

S

SS

G

G

G
GG G

G

G

G

G

G

G G

G

G

G

G

G

GG G

G

G G

GGG

G

G

G

G

G

G

G GG

G

G

G

G
G

G

G

GG

G

G
GG

G

G

G

G

G

G

G

W

W

W

W

W
W WW

W

W

W

W

W

W

W

W
W

W

W
W

W

W

W
W

W

W
W

W WW
W

W

W

W

WW

W

W

W W

W

W
W

W W
WW WW

W
W

WW

W
WW

W

WW
W

W

C

C
CC

C

C

C CC
C C

C

C
C

C

C

C

C

C

C

C CC

C

C
C

C

C

C

CC

F

F F

S SS
S

S

S

SSS SSS
S

S
S SS
SS

S

S
S S

S
S

S

S

S S

S

S S
SS

S
SS

S
SSS

S

S

S
S

S
SS SSSS S

S
S

S
S

G
G

G

G G

G
G

G

GG

G

G

GG

G

G

G

G

G

G
G

G

G G
GG

G

G

G

G

G

G

G

G

G

G

G

G

G

GG

G
G

G

G

G
G

G

G

G

P

PP
PPP

P

P
P

P

P

P

P

P

P

P

P

P
P
P PP

P P
PP

P
P

P

P

P

P

P

P

P

P P
P

P
PP

P

P

P
P

P
P

P

P

P

P

P

P

PP

P

P
P

P

P P

P

P

P

P

P

P
P

P

P

P P

P

P
P

P
P

P
P PP

P

PP

P

P
P

PP

P

P

P

PP
P

P

P PPP
P

PP

P

P

P
P

P
PP P

P

PP
P

P

P

P

P

P

P
P P

P

P
P
PP

P
P

P P

P

P

P

P

P

P P

W

W

W

W

W

W

W

W

W

W

WW
W W

W W

W

W

WW W
W

W W
W

W

W

W

W W
W

WW

WW

W
W W

W

W

W W
WW

W

W

W

W
W

W
WW

W
W

W

W

W
W

W

W

W

W

C

C

C

C

C

C

C

C

C

C
CC

C

C

C

C

C

CC

C

C
C

C

CC

C C
C

C

C

C

C

C

C

C

C
C C

C

C

C

C

CC
C

C
C

C

C

C

C

C

C

C

C

C

C

B

BB

B
B

B

B
B

BB
B

B

B

B

B

B

B
B

B

B

B

B

B
B

B

B

B

B

B

B

B

B
B

BB
B

B

BB

B
B

B

BB

B

B

B

B

B

BB

B

B
B

B

B

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B

B

B

B
B

B

B

B
B

B

B

B

B

B

B

B

BB

B

B

B
B

B B
B

B B B

B

BB

B

B

B

BB B
BB

B

B

B
B

B

B
BBB

B B

B

B

B

B

B

B

BB

B
B

B

B

B
B

B

B B

B

B

B

B

B
BB

B
B

B

B

B

B

B

B
B

B

B

B

B

B

B B

B

B
B

B

B B

FF
F
F

F

F

F

F

FF
F

F

F

F F

F F

F

F

F

F

F

F

F

F
F

F

FF

F

F FF

F

F

F

F

F

F

F

F

FF

FF

F
F

F

F

F

S
S

S
S S

SS
SSS
S

S

S

S
S

SS
S

SS S
S
S
S

SS SS
SSSS

S
S

S
S

S
S

S
SS

S

S

S

G
G

G

G

G

G
G

G

G

G
G

G

G

G G
GG

GG

G
G

G
G

G
GG

GGG

G
G

G

G
G

GGGG

G

G

G
G

GG

W

W
W

W

W

WW

W
W

W W
WW

W

W

W

W

W

WW

W

WW

W

W
W

W
W

C
C

C CC

C

C

C

C

C

C

C

C

C

C

C
CCC

C

C

C

C

C C

C

C

C

C

C

C C

F

F

F

F

F
F

F

F

F

F

F

F
F

F

F F

F

F
F

F

FF

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

FF

F
F

F
F

F

F

F

F

F

F
F

F F

F F

F

F FF
F

FFF

F

F

FF
F

F

F F

F

F

F

F

F
F

FF

F

F

F

F

F

F

F

F

F

F F

F

F

F
F

F

F

F

F

F

F

F
F

F

F

F

F
F

F

F

FF

F

F

F

FF

F
F

F

F

F

FF

F

F
F

F

F
F

F

F

F

F

F

F

F

F

SS SS SS
SS SS

S
S

S
SS S

S

S
S

S S S
S

S
S

SS
S

S
S

S
SS

SS
S

S
S

S
S
S

S
S

S
S

S

S
SS

S

S
SS

S
SS

S

S

G

G

G
G

G

G

G

G

G
G G

G
G

G G

GG

G

G

G
G

G

G
G

G
G

G G G

G

G

G

G

G
G

G

G
G

G G
G

G
G

G

G
GG

G

G
GG

G

G

G

G

G

P P

PP

P

P

P
P

P
P

P

P

P

P

P

P

P

P

P
P
P

P

P

P

P

P P

P
P

P

W

W W

W

W

W

W

W

W

W

W

W
W

W
W

W

W

W

WW

W

W

W
WW

W

W

W
W

W

W

W

C

C

C

C

C

C

C

C

C

C

C

C

B

B

B
B

B

B
B

BB

B

B

B
B

B

B

B
B
B B

B
B

B BB

B

B

B
B

B

B
B

B

BB

B

B

B
B

B

B

B
B

B

BB

B

B
B

B

B

B

B

B

B

B

B

B

B

B

BB

B
B

B

B

B

B
B

B

B

B
B

B

BB

B

B

BB

BB

B

B
B

B

B B

B

B

B

B

B

B

B
B

B

B

B

B

B

B

B

B
BB
B

B
B

B B

B

BB

B B

BB
B
B

B

B

B

B

B

BB

B

B

BB

S
SS

S
SS S

S
S

SS
SS S

S

S

SS
S

S
S

S

SS

S

S S
S

S
SS

S
S

SS

SSS
S

S
S
S

S
S

S
SSS S

SS S
S

S
S

SS SS
SS

S

S S
S

S

S S
S SSS S

S
SS

S
S

S
S

G

G

G

G

G
G G

GG

G
G

G

G

GGG

G GG

G

G G
G

G
G

G

G

G
G

G

G

G

G

G

G
G

G
G

G

G

G
G

G
G

G

G

P

PP

P

P

P
P

P

P

P
P

P

P

P
P

P

PP

P

P

P

P

P

P

P

P

P

P

P

P

P
P

P

PPPP

P
P
P

P P

W
W

W

W

W
W

W

W

W
W

W

W

W

W

W

W

W
W

W

W

W

C

C

CC
CC

C

(f) SODAEM_C (β=10, σ=0)

Figure 4.14: Data visualization for ImgSeg by running KohonenGaussian ((b)), SOCEM
((c), (d)), and SODAEM C ((e), (f)) with the random initialization in (a). The network
structure is a 7 × 7 equally spaced square lattice in a unit square.

66

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
G

G
G GG

G

G
GG

G

G G
G

G

G
G

G

G
GGG

G
G

G

G

G

G

G

G
GG

G

G
G

G
G

G
G GGG

G
GGG

G

G

PP PP
P P

PP
P

P
P

P PP
P

P
P

P

P

P

P

P
P

P

P
P P
P

P

P

P PPP P

P

P
P

P

P

PP PP P

P

P
P

P

P

P

P

P

P

P

P

P

PPPP P

P

P
PP PP

PP
PP PPP

P PP
P

P

P

P

PPP
P

P

P

P

W
W

W
W

W

W
W

W

W

WW

W

W

W

WWW
W

W

W
W

W

WW

W

W

W

W
W

W

WWWW W

W
W

W

W
W

WW

W

W
W

W

W WW

W
W

W W
W

W

W

W
W

W

W

W

WW
WW

W
WW

W

W

WW W

W
W

W

WW
W

W

W

W W

W

W W

W
W

WW W
W
W

WW

W

C

CC

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

CC
C

C C

C

C

CC

C

CC
C

C

C

C

C

C C

C
C

C

C

C

C

CC

C

C

C

CC

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C C

C

C

C

C
C

C

C

C

C

C

CC

C C

C

C

C

C

C

C

C C

C

C
C

C

C

C

C

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C C

C

C

C
C

C

C

C
C

C

C

C
CC

C
C

C

C
C

C

C

C

C

F

F

F

F F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F

F

F

F

F

FF

F

FF

F

F

F

F

F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

FF
F

F

F
F

F

F

FF

F

F

FF F

F

F

F

F

F

F

F

F

F

F

F

F
F

S

S

S
SS S

S

S
SS

S
S

S

S

S

SS
S

S

SS
S

S

S

SS

S

S

S
S

S

S
S

S

SS

S

S

S

S
S

S

S

S
S

S SS

S

S S

S

SS

S

S
SS

S

SS

G

G G
GG

G

G

G
G
G

G

G G G

G
G

G

G

G

G

GG

G

G

GG

G

G

G

G GGG
G

GG
G

G

G
G
GG
G

G
G

G G
G

GG

G

G

G

G G
G

W
W

W

W

W

W

W

W

W

W

W

W
W

W

W

W

WW

W
W

W
W

W

W

W

WW

W

WW

W

WW

WW

W

W

WW

W
W

W
W

W

W

W

W

W

W

W

W
W

W

W
W

W
W

W
W

W W

C C
C CC

C

C

C

CC

C

C

C

C

C
CC

C

C

C

C

C

C

C

C C

C C

C

C

C

F
F

F

S
SSS

S

S
S

S SSS SSSS
SS SSS
SSS SSSS
S

S S

S
SS

S

S S
SS

S
S

S SSSS S
S

S
S

SSS
S

S
S

S
S

G

G

G

G

G

G

G

GG

G

G
G

GG G

G

GG

GG G

G

G

GG

G

GG
G

G

G
GG

G

G

G

G

G

G
G

G G

G
G G

G
G

G G G

P
PP

P

PP

P

P P

P

P
P

P

P

P

PP
P

P P
PP

P

P
P

P

P

P P

P

P

P

P

P

PPP
P PP

P

P

P

P
PPP

P

P

P

P
P
P

P

P

P P

P

P

P
P

P

PP
P

PP

P
P P

PP

P

P

P
P

P
P

P

P
P

P

P
PP

P

PPP PP

P

P

P

P

P
P

P

P
PP

P
P

P
P

P

P

PP P

P

P
PP

PP

P

P

P

P

P

P P

P

P

P
P PP
PP

P

P
P

P
P
P P
P

W
W

W

W

W
W

W

W

WW

W

WW

W

W

W

W

W

W

W

W

W
W

WW W

W

W

W W

W

WW

W
W

W

W

WW

W

W

W
W W

W

W W

W W
W

W

W

W

W

W

W

W

W

W

W

W

W

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C
C

C
C

C

C

C

C

C
C

C
C

C

C

C
C

C

CC

C
C

C

C
C C

C

C

C

C

C

C

C

C

C

C

C

BB
B

B

B

B
B

B
B

B B BB BB
BB

B
B

B

BBBB
B

B

BB
BB

B
B

BBB
B

B
B

B

B
B B

B

B B
B

B

B

B

B BBBB
B

BBB
B

BB
B

B
B BB BB B

B
B

B

B BB B
B BB

B
B

B
BB

B

B
BB B

B
B

BB

BBB

B
BB B

BB
BB B

B
B

B

B

BBB
B

BB

BB BB

BB B
B
BB B

B

B
B

B

B
B B BB B

BB B
BB

B

B
B

B
BB BB

B

B

B
B
B

B

BB
B

B
B

BBB
B

B
B

B BBB

FFF

F

F

F

F

F

F F
F

F
F

F
F

F

F

F
F

F

F

F

F

F

F

F

F

F
FF

FF
F

F

F

F

F

F

F

F F

FF

F

F

F
F

F

F

F

S

S S

S

S

S

S S

S

SS

S

SS S
SS SS S

S

S
S S

S S

SS
S

S
S

S

S

S

S SS
S

S
S

S

S
S S

G
G G

G
GG G

G
G

G
G G

G

G
G

GG
G

GG

G
G

GGG GG

G

GG

G

G

G G

G

G

G

G
G

G

G
GG G

W

W

W
WW

WW

W

W
W

W

W
W

W

W

W
WWW
W

W
WW
W

W

W

WW

C

C

C
C

C
C CC

C

C

C

CCC

C

C
CC

C

C

C
CC CC

C

C

C

CC
C

C

F
F

F F

F

F
F

F

F FF

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F F

F

F
F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

FF

F
F

FF

F

F

F

F

F

F

F

F
F

F

F

F

F F
F

F

FF F

F

F

F

F

F

F

FFF
F

FF
F

F

F
F

F

F

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F
F FF

F
FF

F
F

F
F

F

F

F
F

F

F

F

F F

F

F

F

F

F

F

F

F
F

F

F

F

FF

F

F
F

F

F

F

F

SS
S S

S

S

S S
S

SS
S
SS

S S
S
S

S

S

S
S
S
SS

S
SSS

S
S

S

SSS S
S

S S
SS

S SS S
S

S

S
S

SS
S SSS

SS

S

G

G
G

G

G

G
GG GG

G

GG

G

G

G
GG

G GGG GGG G

G

GGG
G

G

G
G

G

GG
G

G

G
G

GG

G

GGGG

G

G

G

GG
G

G

G

PP

P

PP

P

PPP PP

P

P

P

P

P

P

P

PP P

P

P

PP

P
P

P P

P

WW

WW

W WW

W

W W

W

W

W

WW

W

W

W

W
W

W

W

W

W

W W

W

W

W

W

W

W

C

C

C

C

C
C

C

C

C

C

C

C

B
B

B
BBB
BBB
B

B BB

B
BB

B

B

BBB BBB BB
B

B

BB
B

B

BB B

BB

B
B B

BBB

B

BB
B

B
B

B B
B

B

B B
B B
B

B
B

B
BB

B

B
B

B
BB BBB

B
B
B

B
B

B BB
BB B

B B BBB

B

B
B

B

B

B BB BB
BBB

B B
B

B
B

B
B

B
B

B
B

BBB
B

B BB B
B

B B
BBB

B

B

B

B

S

S
S

S

S

S

S

S SS

S
S

S

S

S

S

SS
S

S
S

S

S

S

S

S

S

S
S

SS

S S

S

S

S

SS S
S S

S S

S
S

S

S
SS

S

S

S

S

SS

S

S

S
S

S

S
S

S

S

S

S

S

S

S

S

SS

S
S

S

S

S

S

S
S

G

GG

GGG

G

GG
G

G G

G

G

G G G
G

GGGG

G

G
G

G

G

G GGG

G

G

GG

G

GG

G

G

G G

G

G

G

G

P
P PP

P

P
P

P
P P

P

P

P

P

P

P

PP

P

P
P P

P

PP
P

P

P
P

P

PP

P

P
PP
P
P P

P

PP

W
W
WW

W

WW

W

W

WW

W W
W W

W

W

W

W
WW C

CC C
CC

C

(a) SOEM (σ=0.06)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
G

G
G

G

G G
GG G
G

G

G G

G
G

G

G

GG

GG
G

G G
G

G

GG

G

G

G

G

G

G G

G

G

G

G

G

G

G

G

G

G
G

G

PP
P

P

P

P
P P

P
P

P
P

P

P
P

P
P

P

P

P

P

P

P

PP PPP
P

P

P

P
PPPP
P

PPP
P

P
P

P

P

P
PPP

P
P

P

P

P
P

P

P

P
P

P

P

P

P

P
P

P
P

P

P

P P
P P

P

PP

P

PP P

P
PP

P

P

P

P P

P

W W

WW
W

W
WW

W

W
W

W

W

W

WW
W W

W

W
W

W

WW

W

W

W

W WW

W

WW
W W

W

W

W

W
W

WWW

WW

W

W
W

W

W
W

W
W
W

W

W

W
W

W

W

W

W
WWWW

W

W

W

W

WW W

W
W

W

W
W

W

W

W

W

W

W
W W

WW

WW W
W

W

W
W

W

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
CC

C

C

C

CC
C

C

C

CC

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C
C

C

CC

C

C

CC

C C

C

C

C

C

C

C C

C C

CC

C

C

C

C C
C

C

C
C

C

C

C

C

CC

C

C
C

C

C

C

C
C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C
C C

C

C

C

C
C

C

C

C

CC

C

C

C

C
C

C

C

C

CC

C

C
C

C

C

C

C

C

C

C

C
C

C

C

CC

C

C

C

C

C

C

C

CC

CC

C
C

C

C

C

C

C

F

F

F

F

F

F

F

F

F

F

F
FF

F

F

F

F

F

F

F

F

FF

F

F

F

FF

F
F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

FF

F

FF

F

F

F

F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

S

S

S

S

S

S

S

S

S

S
S

S
S

S
S

S S

S

S

S

S

S

SS

S
S

S

S

S S
S

S
S

S

S

S

S SS

S

S

S

S

S
S

S

S

S

S

S

S

S
S

SS
SS

S

S

S

S

G

G

G
G

G

G

G

G

GG
G

G
G

G

G

G

G

G

G

G

G

G
G

G

GG G

G
G G

G

G

G

G

GG

GG
G

G

G

G

G
G
G

G

G
G

G

G

G

G

G

G

G
G

W

W

W

W

W

WW

W

W

W

W

W

W

W

W

W

W
W

W
W

W
W

W

W

W

W
W

W

WW

W

WW

W

W W

W

W

W

W
W

WW

W

W

W
W

W

W

W

W

W
W

W

W

WW

W

W

W
W

C

CC

C

C

C

C
CC C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C
C

C

C

C

C
C

F

F F

S

S

S
S

S

S

S

S
S

S

SS
S

S

S

S

SSS
S

S

S

S

S

S

S

SS
S

S

S SS
S

S

S

S

S

S SS
S

S

S

SSS

S

S

S
SS

S

S
S

S

S

G

G
G

G

G

G

G

G

G
G

G G
G

G
G

G

G

G

G

G
GG G

GG

GG

G

G

G

G

G

G

G

G G

G

G

G

G

G

GG

G

GGG

G

G

G

P
P

P
PP

P PP
P

P

P P

P

P

P
PPP

P
P

P
P

P

P
PP

P
P

P P

P
P

P

P

P

P
P P P

P
P

P

P PPP
PP

P

P

P

PPP

P

P

P
PP

PP

P

P

P

P

PP PP
P

P

P
P

P
PPPP

P
PP

P

P
P

P
P
P
PP PP
PP

P

P

P
P
P

PP
P

PP
P

P P

P

P PPP PPP P
P

P
P

PP P PP P
P P

PPP
P

PP
PP

P

P
P
P

P

W

W
W

W

W

W

W

W

W

W

W

WW

W

W

W W

W

W

W

W

W
WW

WW

WW

W W

W

W

W

W

W

W

W

WW

W

W

W

W

W

W

W

W

W

W

W

WW

W
W

W

WW
W

W

W

W

W

C

C

CC

C

C

C

C

C

C

CCC

C

CC

C

C

C

C

C

CC

CC

CC

C

C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C
C

C

CC

CC

C

C

C

C

C

BBB

B

BB
B

B
BB

BB

B
B

B

BB

B

B

B
BB

B

B B
B

B
B B

B
B

BB B B

B

B

BB

B

B

B

BB

B
B

B

B

B
B

B

BB B

B

B

B
B

B

B

B B
B

B

B

B

B
B

BB
BB

B
B

BB

B
BB

B

B
B B

B

B

BB

B
B

B

B

B

B B
BB

B

B
B

BB

B

BBB

B

B
B

B
B

B B

B

B
B

B

B BBB
B

B

B

B
BB B

B

B

BB

B

BBB B

B
B

B

B

B BB

B

B
B

B

BB
B

B B
B

B

B BB
B

B BBB

B

B

BB

B

BB
B

F
FF

F

F

F

F

F

F
FF F

F

FF

F F
FF

F

F

F

F

F

FF

F

F

F

F

F
F

F

F

F

F

F

F

F

F
F

F

F

FF

FF
F

F

F

S

S

S
S

S

S

S

S S

S

S

S

S S

S

S

S SS

S
S

S
S

S

SSSS
S

S
S S

S

S
S

S
S

S S

S
SS

S

S

G

G

G

G

G

GG

G

G G

G

G

G

G
G

GGG

G

G

G
G

G

G

G

G

G

G

G
GG

G

G

G

G

G

G

GG

GG
GG

G

W
W W

W

W

W

W

W

W

WW

W

W

W

W

W

W

W
WW

W
W

W

W

W
W

WW

C
C

C

C
C

C

C

C

C

C

C

C

C
C
C

C
CC C

C

C
C

CC

C

C

C

C

C

C

C

C

F

F

F

F

F
FF

F

F

FF

FF

F F

F

F

F

F

F

F

F

F

F

F

F

F

F F

F

F

FF

F

F

F

F

F

F

FF

F

F

F F

F

F

F

F

F

FF

F
F

F

F

F

F

F

F

F

F

F

FF

F

F

F F

F

F
F

FF

F

F

FF
F

F F
F F

FFF

F

F F

FF

F

F

F

F

F

F

F
F

FF

F

F

F

F

F

FF F

F

F
F

F

F

F

F F

F

F

F

F

F F
F

F

F

F

F

F

F

F

F

F

F

F F

F

F
F

F
F

F
F

F

F
F

F

SS
SS

S

S
SS

SS

S

S
S

SS

S

SS

S
S

SS
S

S
S S

S
S S

S

S

S
S

S S

S
S

S

S

SSS

S

S
S

S

S SS

S
S S

S

S

S

S

S

S

GG

G

G

G

G

G

G

G

G
G

G

G

G

G

GG G

G

G
G

G

G

G

G
G

G

G

G

G GGG

G

G

G

G
G

G

G
G

G

G

GG
G

G G

G

G

G

G

G

G

G

G

PP PP

P

P

P

P
PPP

P

P

P

P

P

P

P

P PP

P

P

P

P

P
P

PP

P

W W

W
W

W
W

W

W

W
W

WW

W

W
W

W

WW

W
W

W

W

W

W

WW

W

W

W

W

W

W

C

C

C

C

C

C

C

C

C

C

C

C

B

B

B

B
BBB

B

B

B

B

B

B

B

B

B
B

B

BBB

B

BB

B

B

B

B
B

B

B

B

B

BBB
B B

B
B B

B

B

B B

B

B

B

B

B

B

BB

B

B

B

B
B

B

B

B

B B

B
B

B

B

B
B

B

BBB

B

B

BB B

B

B

B
B

B

B

B

B

B
B

BB BB

B

BB

B

B

B

B

B

B B
B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B
B

S

S
SS SS

S

SSSSS

S

S

S

S S
S

S
S

SS SS

S

S

S

S

S

S
S

SS

S
S SS

S

S

SS
SSS

S

S

S

S
S

S

S

S

SS
S

S

S

S S

S

S

S SS

S

S

S

S

S

S

S

S
S

S

S

S S
S

SS

G

G

G

G

GG GG
G

G

G

G

G

G

G G

G

G

GG
G

G
G

G
G

G

G

G

G

G
G

G

G

G

G

GG

G

G

G

G
G GG

G

G

P

P

P

P

P
P

P

P

P

P
P

P

P

P
P PPP

P

PP PP
P

P

P
P

PPP

P

P
P

P

P

PPP P
PP

P

W

WWW W W
W

W

W
W

W
W WW

W

W
W

W
W

W WCC

CC

CCC

(b) SOEM (σ=0)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G

G

G

GG G
G

G GG
G

G G

G
G

G
G

G

G
G

G

G

GG GG

G

G
GG

GG
G

G

G
G G

G

G

G

G
G

G

GG
G
G
G

P P P

P
P

P
P P
P

PP
P

P
PPP

P

PP
P

P

PP P
PP

P
P

P
PP

PP P
P

PP
P

P PP
P
P

P

P

P

P
PP P

P
P P
P

P
P

P
PP

PPP
P

P P

P
P P

P
P

P
P

P
PP

P
P

P

PPP PP

P

P
P

P
P P

WW

W

W

W

W W
W

W

W
W

W

W

W

W
WWW

W

W
W

W
WW

W

W

W

W

W W

W

W W

W

WW

W

W

WW

W
W

W

W

W

W

W
WW

W

W

W

W

W W

W

W
W

W
W

W

W

W

WW

WW

W

W

W

W
WW

WW

W W

W

WW

W

WW

WWW

WW W
W

WW
W

W

W

W

C

CC

C

C

C

C

C

CC

C

C

C

C

C
C C

C

CC

C

C

C

C

C

C

C

C

CC

C

C

C

C

C
C

C

C

C
C

CC
CC

C

C

CC CC

C

C
C

C

C

C

C

C

C

C

CC C

C

C

C

C

C
C

CC
C

C

C
CC

CC C

C

CC

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

CC C

C

C

C

C

C

C

C

C

C
C

C

C

C

CC

C

C

C

CC

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

CC
C

C

C

CC
CCC

C
C

C

C

C

C

C

F

F

F

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

F

FF

F

F

FF

F

FF

F

F
F F

F

F

F

F

F

F

F

F

F

F

F

F

F F

F

F

F

F

F

F

F

F

F

F F

F
F

FF

F

F

F

F

F

F

F
F

F

F

F

F

FF F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F
F

F

F

F

F F

F

F

S
SSS

S
S

S

S

S
SSS
SS
S

S
SS S

S

S
SS

S
S

S

S

S

SS
SSS

S

S

SS

S

S

S

S
S

S
SS
SSS

S

S
S

S
S

S
S
SS S

S

SS

G

G

GG

G

GG

G

G

G

G

G
G

G
G

G

G
G

G

G
G

G
G

GGGG

GG

G

G

G

G

G

G

G G
GG

G

G

G
GG

G
G

GGG

G

G

G

G

G

GG

W W

W

W
W

WW

W
WW

W
WW

W

W W

W
W

W
W

WW

W

W

W

W
W

W

W
W

WWW
W

W

W

W

W

W

WWW W

W

W

W

W

W

W

W

W
WW

WW

W

W

WW

W
W

C
CC

CC

C

CCC
C

C

C

CC CC

C
C

C

C
C

C

C

C

C
C

C
C

C

C

C

F

FF

S

S
S S

S

SSSSS
SS

S S
S

S

S
SSS

S

S
S

S S
S

S
S

S

S
S

SS S
S SSS

S
S

S
SS

SS
S
S S

S
S

S
S

SSS S
S

G

G
G

G

G
GG G

G
G

G
G

G
G

G

G

G
G

G

GG
G

GG
G

G
G

G

G

G

G
G

G

G

G

G
G

G

GG

G

G
G

G
G

G

G

GG G

PP PP
P

P

P

PP

P

P
P

P

P

P

P PP
P

P
PP

P

PP

P

P

P
PP

P

P

P

P

P
PP

P
P

P
P

P

PP PP

P

P
P
P

P

P

P

P

PP
P

P P

P P

P

P

P

P

PP

P

P

P

P

P

P

PP
P P

P
P

PP
P

PP P

P

P
P
PPPP

P

P

P

P
P

P PP
P

P
PPP P

P

PP
P

P

P
PP

P
P

P

P

P

PP
PP

P

P
PP PPP

P
P

PP P

P

P

P
P

W

W

W

W

W

W
W

W

W

W

W

W
W

W

W
W

W
W WW

W

W

W

W
W

W

W

WW

W
W

W

WW

W

W

W

WW

W

W W WWW
WWW

W
W

WWW

W

W WW W W
WW W

C

C

C

C

C

C

C

C

C

CC
C

C

C

C

C

C

C
C

C

C

C

C

C C

CCC
C

C

C

C

C

C

C

C

C

C

C

C

C

C

CC C

C
C

C

C

C

C

C

C

CC

C

C

B

B
B

B BBB

BB

B B

B

BB

B
B

BB B

B

B

B
B B

B

B

B

B

B

B

B

BBB

B

B
B

B
B

B

B
B

B

B

B

B

B

B
B

BB

B
BB

B

B

B B

B

B

B

B

B

BB

B

B

B

B

BB

B

B B

B

B

B

B
BB

B

BB B

B

B
B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B

B

BB

B

B
B

B

B

B
BB

BB

B

B

B
B

B

B

B

B
B

B
B

B

B

B

B

BB

B B

BB

B

B
B B B

B

B

B

B

B
B

B

B

B

B

B

B
B

B

B

B

BB

B

B

B

B

B

B B

B
B

B

B

F
F

F
F F

F

F

F

F

F
F

F
F

FF

FF

F
F

F

F

F

F

F

F
F

F

FF

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F F
F

F

F

S
SSS

S
SS

S

S
S

S
SS

S S
S S

S S
SSSS

SS
S

S S
S

S

S
S

S
SS
S
S
SS

S
S

S
SS

G
GGG

G
G

G
G

G

G

G

G

G

G

G

G
G

G

G
G

G

G
G

G

G

G

G

G
G

G G

G

GG

G

G

G

G
G

GG
G

G

G
WWW W

W
W
W

W

W
W

W
WW

W

WWW
WW

W

W

W W
W

W

W

W

W

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

CC

C
C

C

C

C
C

C

C

C

C

CC

C

F

F

FF

F F
F

F

FF F F
F

F

F

F

F

F

F

F

FF

F

F

F

F

F

FF

F

F

F
F

F

F

F

F

F

F

F

F

F F

F

FF

F

F

F
F

F

F

F
F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F F

F

F

F

F F

F
F

F

F
F

F

F

FFF

F

F

F

F

F

F

F

F F

F

FF
FFF

F

F

F
F

F

F F

F
FF F

F
F

F

F

F

F

F

F
F

F

F

F
F

F

F

F

F

F

F

F

F

F

F

F

F

F
FF

F

F

F

F

F

F

F

SS S
S

S
SS

S

S

S S
SS

S

S

S

S

SS
S

S
SSS

S

S
SS

S

S

S SSS SSSS S
S

SS SS S
S

S
SS

S

S
S

S
S S

S
S S

G G

GG

G
GG

G

GG
G

G

G

G

G

G

G

G

G

G G

G

G
G

G
G

G

G

G
G
G

G

G
G

G

G

G
G

G

GG

G

G
G

G G

GGG
G

G

G

G

GG

G

PP

P

PP

P

P
P

P

P

P

P

P

P

P

P

P

P

P
P
P

P

P

PP

P
P

P

P

P

W

W

WW

WW
W

W

W
W W W

W

W

W W
W

W
W

W

W

W

W

W

W

W

W W

W

W

W
W

C
C

C

C

C
C

C

C

C

C

C

C

B

B

B

B

B
BB

B
B BB B

B

B
B

B

B

B

B
B

B

B

B B

B

B

B

B
B

B

BB
BBB

B

BB

B

B
B
B

B

B
B B
BBB B

B

B BBB

B

B

B

B

B

B
B
B

B

BBBBBB B BB
B

BB
BB

B
BBB

B

B

B
B

B

BBBB B
B

B
B

B

B
B

B
BB B

B
B

B

B

B

B

B

B

B

BB
B

B

B
B
B

B

B

B

B
BB

B

B

B

B

B

B

S S
SS

SS

S

S
SS

SS
S

S

S

S
S

S

S
S
S

S SS S
S S

S
S

S

S
S

S
S

S
S

S

SS
S
S SSS
S

S SSS

S

S S
S

S

S
S

S
S

S

SS S
S

S
SS

S

SS SS S S SS
S

S
S
S S

G
G

G

GG

G

GG
G

G

G

G
G

G

G
G

G

G

G G

G

G

G
G

G

G

G

G

G

G

G

G

G

G
G

G

G
G

G

G

G
G

G
G

G

G

P

P
P

P
PP

P

P

PP
P

P

P P
P
PPP

P

P
P

P
P

PP

P P

P

P

P

P

P P
P

P

P
PP

P PP

P

W
W

W
W

W

W

W

W

W

W

W

W

W

W

W

W

WW

W

W

W
CC

CC

C
C

C

(c) SODAEM_M (β=1, σ=0.14)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
G

G

G
G

G
G

G

G GG

G
GG

G

G

G
G

G
G

GG

G
G
G

G

G

G
GGG G

G
G

GG

G

GG

G

G G GGGGG
G

P

P

P

P

P
P

P

P

P
PPP

P
P
P

P

P

P

P
P

P

P

P

P

P

P

P

P
P

P

P

P
P

P
PP
PPPP

P

P

P

P

P P
P P

PP

P

PP P

P

P
P
P

PPP P
P

P
P

P
P

P
P

P

P

P

P
P

P

P
P

P

P

P

P

P

P PP

P

P

P P

WW

WW W

W W
W

W

W
W

W

W

W

WW
W

W

W

W

W

W

W

W

W

W

W

W
WW

W

W
WW
W W

W

W

W

W

W
W

W

W

W

W

W
W

W

W
W

W

WW

W

W

W W

W

W

W

W W
WW

W
WW

W

W

W
W

W

W
W

W

W

WW
W

W

W
W

W
WWW

W

W
W

W

W
W

W
W

W

C

C

C
C

CC

C

C

C

CC

C

C

C

C

C

C

C

C

C
C

C

C

C

CC

C

C

C

C

C

C

C
C

C

C C

CC
C

C

C

C
C

C

C

CC

C

C

C

C

C
C

C

C

C
C

C

C

C

C C

CC

C

C

C

C

CC

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C
CC

C C
C

C

C

C

C

C

C

C

C

C

C

C

CC

C

C

C

C

C
C

C

C

C

CC

C

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
C C

C

C

C

C

C

F

F

F

F
F

F

F

F

F

F
F

F
F

F

F

F

F

F

F

F F

F F

F

F

F

F
FF

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F F

F F
F

F

F

F

F

F

FF

F

F F

F

FFF

F

F F

F

F F

FF

F

F

F

F

F

F

F

F FF

F

F

F F F

F

F

S

S

S

S

S

S

S

S

S

S
S

S

S

S

S

S
S

S

S

S

S

S
S

S

SS

S

S

S
S

S

SS

S

S

S

SSS

S

S

S

S

S S

S

S

S

S

S
S

S

S

SS SS S

S

S

S

G GG
G

G G

G

G

GGG

G
G

G

G

G

G

G

G

G

G
G

G

G

G
GG

G G

G

GG G

G G
GG

G

G

GG

G
G

G
G

G

G GG

G

G

G

G

G

G
G

W

W

W

W W

W

W

W

WW
W W

W

W

W

W

W W

W
W

W

W

W

W

W

W
W W

W
W

W
W

W

W
W W

W

W
W

W W
W

W

W

W

W
W

W

W

W

WW
W

W

W

W
W

WW

W
W

C

C
C CC

C

CC
C

C

C

C

C

C
C

C

CC C

C

C
C

C

C

C C

C

C

C

C

C

F

FF

S

S

S S S
S

S

S
S

S

SSS

S

S

S

S
SS
S

S

S

S

S

S

S

S

S

S
S

SS S

S

S

S

S

S

S
S

S
S

S

S

S S

S

S

S

SS

S

S

SS

S

S

G

GG
G

G

G
G G

G

G GGG

G

G

G

G

G

G
G

G
G

G

GG

G
GG

G

G GG

G

G

G

G

G

G

G

G

G

G G

G
G

G

G

G

G

G

P

P P
P

PP

P

PP
PP

P

P
P

PP

P
P P

P

P
P

P

P
P

P

P

P

P

P

P

P

P P

P

P P
P

P

P

P
PP PP

P
P

P

P
P P

PP

P

P
P P

P

P

P
P

P

P

P

P

P
P

P
P

P

PP

P

P
P

P
P

P PPP
P

P P

P

P

P P

P

PP

P
P

P

PP
PP

P
P

P

P

P

P

P

P

P

P
PP P

P

P

P
PP

P

P

P

P
P

P

P

P

P
P

P
P

P
P

P

P

PP

PP

PP

P

W

W

W

W

W

W

W

W

W

W

W

WW

W

W

W W

W

W

W

W
W

W

W
W

W

W

W
W

WW

W
W

W

W

WW W

W

W

W

W W

W
W W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

C

C

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

C

C

C

CC

C

C
CCC

C

C

C

C

C

C

C

C

C
C

C

C

C

C

C

CC
C

C
C

C

C

C

C

C

C

C

C

C

C

B

B B

B

B

B

B

B
B

BB

B
B

B

B B

B

B

B
B

B

B

B

B

B

B

B

B

B

B

B B

B

BB

B

B

B
B

B

B
B

B

B

B

B

B
B

B

B
B

B BBB B

B

B

B

B

BB

B

B

B

B

B BB

BB B

B

B

B

B

B

B
B

B

B

B
BB

B

B

B

B

B

B

B

B

B

B

B

B

B

B
B

B
B

BB
B B

B

BB

B

BB
B

B

B

B

B
B

BB

B

B

B

B

B

BB

B

B

B

B
B

B
B

B

BB

B

B

B

B

B

BB

B

BBB

B
B

B

B

B

B

B

B

B

B
B

B

B

B B

B

B

B B

B B

B

B

F
F

FFF

F

F

FF F

F

FF

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F
F

F

F
F

F

F

F

F

F

F

FF

F

F
F

FF

F

F

F

F

F

S

S

S

SSS
S

S
S

S
SS

SSS

S

SSS SS
S

SS
SS

S
SS S
S
SS

S

SS
S

S
S

S
S S

S
S

G

G

G

G

G

G

G

G

GG

G

G

G

G
GGG

GG

G

G

G

G

G
G

G

GGG

GGG

G
G

G

GG

G
G

G G G
G

G

W

W
W

W

W

WW

WW

W

WW

W

W W
W

W

W

WW

W

W

W

W

W

W

W

W

C

C

C

C
C

C

C

C

C

C

C

C

C

C

C

C

C
C C

C

C
C

C
C

C

C

C

CC

C

C
C

F

F

F

F

F

F

F

F

FF
F

F
F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F
F

F

F
FF

F

F

F

F

F

F

F

F

F

F

F

F

FF

F

FF

F F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F

F

F

F

FF

F

F

F

F

F

F

F F

F

F

F FF

F

F
F

F

F

F

F

FF

F

F

F
F

F

F

F

F F

F

F

F
FF

F

FF

F

F

F

FF

F

F

F
F

F F
F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

S
SSS

S

S
SS S

S

S

SS
S

S

S
SS

S

S

S

SS
S SS SS S

S

S
SS

S

S SSS
SSS

S

S

SS

S

SS
S
S

S
S

S

S

S

S
S

S

G
G

G G

G

G

G

G

G

G G

G
G

G

G

G

GG
G

GG

G

G

G

GG

G

G
G

G
G

G
G

GG

G

G

G

G

G

G

G

G

G G

G

G

G

G

G
G G

G G

G

G

P
P

PP

P

P

P
P

P
P

P

P

P

P

P

P

P

P

PPP

P

P

P

P

P
P

PP

P

W

W

W
W

W WW

W

W

W
WW

W

W
W

W

W
W

W

W

W

W

W

W

WW
W W

W

W

W
W

C
C

C

C

C

C

C

C

C

CC

C

B

B

BB

BB

B

B

B
B

B

B

B

B

B

B

B

B

B

BB
B

B
B

B

B

B
B

B

B

B
B

BB

B

B

B B

B
B

B

B

B

B
B

B

B
B

B

B

BB B

B

B

B B
B

B

B

B

B
B

B

B

B

B

B

B

B

B

B

B B

B

B

B

B

B

B

B

B

B

B
B

B B

B

B

B

B

B

B

B

B

B

B
B

B

B

B
B

B

B

B
B

B

B

B
B

B

B
B

B B

BB

B

B

B

B

B

B

B
BB

B

B B

B

S

S

S

S

S

S

S

S
S

S

S

S

S

S

S

S

S
S

SS
S

S

S

S

S

S

S

S

S

SS

SS

S

S

S
S

S

SS

S

S
S

S

S

S

S

S
S

S

S

S

SS
S

S

S

S

S

S

S

S

S
S

S

S

S

S

S

S

S

S
S

S

S

S

S
S SS

G G

GG

G
G

G GG
G

G

G
G

GG
G

G
GG

G

G
G

G G
G

G

G
G

G

GG

G

G

G G

G

GG

G GG

G

G G

G

G

P
PP

P

P
P P

P

P
PP

P

P
P

P

P
P

P

P

P PP
PP

P

P
P

P
P

P

P

P
PP

P

PPP
P

P
P

P

W WWW
W

W
W

W

W

W

WW

W

W

W

W

W

W

W

W

W
C

C

C

C

CC
C

(d) SODAEM_M (β=1, σ=0)

Figure 4.15: Data visualization for ImgSeg by running SOEM ((a), (b)) and SODAEM M
((c), (d)) with the random initialization in Figure 4.14 (a). The network structure is a 7
× 7 equally spaced square lattice in a unit square.

67

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 C

 C

 C
 C

 C

 C

 C

 C
 C

 C C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C C
 C

 C

 C

 C

 C

 C C

 C

 C C

 C

 C C

 C

 C

 C

 C

 C

 C

 C

 C
 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C
 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C
 C

 C

 C

 C

 C

 C

 C

 C

 C
 C C

 C

 C
 C

 C

 C

 C

 C C C

 C

 C C
 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C C

 C

 C

 C

 C

 C

 C C

 C

 C

 C

 C

 C
 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 I

 I

 I

 I
 I

 I

 I

 I

 I

 I

 I
 I

 I

 I

 I

 I

 I I
 I

 I

 I

 I

 I

 I I

 I
 I

 I I I

 I I

 I

 I
 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I
 I

 I

 I

 I

 I I I
 I

 I
 I

 I

 I

 I

 I

 I

 I I

 I I

 I

 I
 I

 I

 S

 S

 L

 L

 U

 U

 U

 U

 U

 U
 U

 U

 U

 U

 U

 U

 U

 U

 U

 U

 U

 U

 U

 U U

 U

 U

 U

 U

 U

 U

 U

 U

 U

 U

 U

 U
 U

 U

 O

 O

 O O O

 O

 O
 O

 O

 O

 O

 O
 O

 O

 O
 O O

 O
 O

 O

 M

 M

 M

 M
 M

 P

 P

 P

 P

 P

 P

 P

 P

 P

 P

 P

 P P

 P
 P

 P

 P
 P

 P

 P

 P
 P

 P

 P

 P
 P

 P

 P
 P

 P

 P

 P

 P

 P
 P

 P

 P P

 P

 P

 P

 P P

 P P

 P

 P

 P

 P

 P

 P

 P

 C

 I

 I

 I

 I

 I

 C

 U

 C

 C

 I

 C

 C

 U

 I

 U

 I

 I

 U

 P

 C

 U

 P

 I

 C

 C

 U

 I

 I

 C

 C

 C

 C

 U

 P

 C

 P

 P

 O

 C

 C

 C

 C

 C

 O

 U

 C

 I

 C

(a) random ini.
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C C
 C

 C

 C

 C

 C
 C

 C

 C

 C

 C
 C

 C

 C

 C

 C C

 C

 C
 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C
 C

 C

 C

 C C C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C
 C

 C C

 C

 C

 C

 C C
 C

 C

 C

 C

 C C
 C

 C

 C
 C

 C

 C

 C
 C

 C

 C

 C

 C C

 C

 C

 C

 C
 C

 C

 C

 C

 C

 C

 C
 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C C

 C

 C
 C

 C

 C

 C

 C

 C

 C

 C C

 C

 C

 C

 C

 C
 C

 C

 C

 C

 I

 I

 I
 I I

 I

 I
 I

 I
 I

 I

 I

 I

 I

 I

 I

 I
 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I
 I

 I I

 I
 I

 I

 I

 I

 I
 I I

 I
 I

 I

 I

 I

 I
 I

 I

 I I
 I

 I

 I

 I

 I

 I

 S

 S

 L

 L

 U

 U

 U

 U

 U U

 U

 U

 U

 U
 U

 U

 U
 U

 U

 U

 U

 U

 U U

 U

 U

 U

 U

 U

 U

 U U

 U

 U

 U

 U

 U

 U

 U

 O

 O

 O

 O

 O
 O

 O

 O O O
 O

 O O
 O O

 O

 O O O

 O

 M M M
 M M

 P
 P

 P

 P

 P

 P

 P

 P

 P

 P

 P

 P
 P
 P

 P

 P

 P

 P

 P

 P
 P

 P

 P

 P P
 P

 P

 P
 P
 P

 P
 P

 P

 P
 P

 P

 P
 P

 P
 P

 P

 P

 P

 P

 P

 P

 P

 P

 P
 P P

 P

(b) KohonenGaussian (σ=0.06)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
 C

 C C
 C

 C

 C

 C

 C

 C

 C C

 C
 C

 C

 C

 C

 C

 C

 C

 C

 C
 C

 C

 C

 C

 C

 C C
 C

 C C

 C C

 C

 C

 C C C

 C
 C

 C

 C

 C
 C

 C

 C C

 C

 C

 C C

 C

 C

 C

 C
 C

 C
 C

 C

 C

 C

 C

 C

 C
 C

 C

 C
 C

 C

 C

 C C

 C

 C

 C

 C
 C

 C

 C

 C
 C

 C

 C

 C

 C
 C

 C

 C

 C

 C

 C

 C

 C
 C

 C C

 C

 C
 C

 C

 C

 C

 C C

 C

 C
 C

 C

 C

 C C

 C

 C

 C
 C

 C

 C

 C

 C

 C

 C

 C

 C C
 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C C

 I

 I

 I

 I

 I
 I

 I
 I

 I I

 I

 I

 I

 I
 I

 I

 I
 I I

 I

 I
 I I

 I

 I
 I

 I I
 I

 I
 I

 I

 I

 I I

 I

 I

 I

 I

 I

 I

 I
 I I I

 I

 I

 I

 I

 I

 I
 I

 I

 I

 I

 I
 I

 I

 I
 I I I I

 I

 I

 I

 I

 I

 I

 I I

 I I I

 I

 I
 I

 S

 S

 L
 L

 U U
 U

 U U U U

 U

 U
 U U

 U
 U

 U
 U

 U

 U

 U
 U

 U
 U U

 U

 U

 U

 U
 U

 U

 U

 U
 U U

 U

 U

 U

 O

 O
 O O

 O
 O

 O O

 O

 O
 O

 O

 O O O

 O

 O O

 O

 O

 M M M
 M

 M

 P P

 P

 P

 P

 P

 P P P

 P P P
 P P

 P

 P P

 P

 P

 P
 P P

 P

 P

 P
 P

 P

 P

 P P

 P

 P

 P

 P

 P

 P
 P P

 P
 P

 P

 P

 P

 P

 P

 P

 P

 P

 P
 P

 P

 P

(c) SOCEM (σ=0.06)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 C

 C

 C

 C

 C

 C

 C C C C C C C

 C

 C C

 C
 C

 C

 C

 C

 C

 C

 C

 C

 C

 C C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C
 C

 C

 C

 C

 C

 C

 C

 C C

 C

 C

 C

 C

 C C C

 C
 C

 C C

 C

 C

 C

 C

 C
 C

 C

 C

 C

 C

 C

 C
 C

 C

 C
 C

 C
 C

 C
 C

 C

 C

 C

 C C

 C C C C

 C
 C C

 C

 C

 C

 C

 C

 C

 C

 C C
 C C
 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C
 C C

 C
 C

 C
 C C C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C C

 C

 C

 C
 C

 C

 C

 C

 C

 I

 I

 I

 I

 I

 I
 I

 I

 I

 I

 I

 I

 I

 I I

 I
 I

 I

 I

 I

 I I

 I

 I

 I

 I

 I I

 I

 I

 I

 I

 I

 I I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I
 I

 I
 I I

 I
 I

 I

 I

 I
 I
 I

 I

 I

 I
 I

 I

 I I

 I

 I

 I I I
 I

 I

 I

 I

 S

 S

 L

 L

 U

 U

 U U
 U U

 U

 U

 U U

 U

 U

 U U
 U

 U

 U

 U

 U
 U U

 U

 U

 U U
 U

 U

 U

 U
 U U

 U

 U

 U

 U

 O
 O

 O

 O O
 O

 O O
 O

 O

 O

 O

 O
 O O

 O

 O O
 O

 O

 M
 M M M
 M

 P
 P

 P

 P

 P

 P

 P

 P

 P

 P

 P

 P P

 P
 P P

 P

 P
 P

 P
 P P P P P

 P

 P

 P P P

 P

 P
 P

 P P

 P

 P P P P

 P

 P

 P

 P

 P P

 P

 P

 P

 P
 P

 P

(d) SOEM (σ=0.08)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 C

 C

 C

 C

 C

 C

 C
 C

 C

 C
 C

 C

 C

 C

 C
 C

 C C

 C

 C

 C C

 C

 C

 C
 C C

 C

 C
 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C
 C

 C

 C

 C

 C

 C

 C C

 C

 C

 C

 C

 C
 C

 C

 C

 C

 C

 C
 C

 C
 C

 C

 C

 C

 C C

 C

 C

 C

 C

 C

 C
 C

 C

 C
 C

 C

 C

 C C

 C

 C

 C C C

 C
 C

 C
 C

 C C C

 C C

 C

 C

 C

 C

 C

 C

 C C C C
 C

 C

 C

 C

 C

 C

 C

 C

 C C
 C C

 C

 C
 C

 C C

 C
 C

 C

 C

 C

 C

 C

 C

 C

 C

 C C
 C

 C

 C

 C

 C

 C

 C

 C
 C

 I

 I

 I

 I I
 I

 I I

 I

 I

 I

 I

 I

 I I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I I

 I

 I

 I
 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I I

 I
 I I

 I I

 I

 I

 I
 I

 I

 I

 I
 I

 I I

 I I

 I

 I

 I

 I I

 I

 I

 I

 I

 S

 S

 L

 L

 U

 U
 U

 U

 U U
 U

 U

 U
 U

 U

 U

 U
 U

 U

 U

 U

 U

 U

 U
 U

 U

 U

 U U
 U

 U

 U

 U
 U

 U U

 U

 U

 U

 O

 O

 O

 O

 O

 O

 O
 O O O
 O

 O

 O
 O O

 O

 O O O

 O

 M

 M

 M
 M

 M

 P
 P P

 P

 P

 P

 P P

 P

 P

 P

 P

 P P

 P
 P

 P

 P
 P

 P

 P

 P
 P

 P P P

 P

 P
 P P

 P

 P
 P

 P
 P

 P

 P

 P P
 P

 P

 P

 P

 P

 P
 P

 P

 P

 P

 P

 P

 P

(e) SODAEM_C (β=10, σ=0.2)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 C

 C

 C

 C

 C

 C

 C
 C

 C

 C

 C
 C

 C

 C

 C
 C

 C
 C

 C

 C

 C
 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C
 C

 C

 C

 C
 C

 C

 C

 C

 C

 C

 C

 C

 C
 C

 C

 C

 C C

 C
 C
 C

 C
 C C

 C

 C

 C

 C

 C

 C C

 C

 C

 C

 C

 C
 C

 C

 C

 C C

 C

 C C C C

 C

 C

 C C

 C C C
 C

 C C C

 C

 C

 C

 C

 C

 C

 C

 C

 C C

 C

 C C

 C

 C

 C

 C

 C

 C

 C

 C

 C
 C
 C C C

 C

 C
 C

 C C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C

 C C

 C

 C

 C

 C
 C

 I

 I

 I

 I
 I

 I

 I
 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I
 I I

 I

 I

 I

 I

 I

 I

 I

 I
 I

 I

 I

 I
 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I

 I I

 I

 I I

 I

 I

 I

 I

 I I

 I I
 I

 I

 I
 I

 I I

 I

 I

 I
 I I

 I

 I

 I

 I

 S

 S

 L

 L

 U
 U U U

 U U U

 U

 U
 U

 U

 U

 U U
 U

 U
 U

 U
 U

 U
 U

 U

 U

 U

 U

 U
 U

 U

 U
 U U U

 U U

 U

 O

 O

 O

 O

 O
 O

 O
 O

 O
 O O

 O
 O O

 O

 O

 O
 O

 O O

 M
 M

 M
 M M

 P

 P
 P

 P

 P

 P

 P

 P
 P

 P

 P

 P P P P P

 P

 P P
 P

 P P P
 P

 P
 P

 P

 P P

 P

 P

 P
 P

 P
 P

 P

 P

 P

 P P P

 P

 P

 P

 P P

 P

 P

 P

 P
 P

 P

(f) SODAEM_M (β=1,σ=0.2)

Figure 4.16: Data visualization for Ecoli by running (b) KohonenGaussian, (c) SOCEM,
(d) SOEM, (e) SODAEM C, and (f) SODAEM M with the random initialization in (a).
The network structure is a 7 × 7 equally spaced square lattice in a unit square.

68

Chapter 5

BIC-based audio segmentation using

divide-and-conquer

The goal of audio segmentation is to detect acoustic changes in an audio stream, e.g.,

boundaries between two speakers or two environmental conditions. In the last decade,

researchers in the speech processing community have put much effort on this problem

for its potential applications to many speech and audio processing tasks, such as audio

indexing [97], automatic transcription of audio recordings [98], speaker tracking [99], and

speaker diarization [100]. Existing audio segmentation approaches generally fall into two

categories, namely, distance-based segmentation [101, 70, 102, 71, 103, 104, 105] and

model-decoding-based segmentation [70, 106].

In distance-based segmentation, a distance measure of two audio segments is first

defined, and then an acoustic change detection strategy is designed based on the distance

measure. Compared to model-decoding-based segmentation, these methods have a great

advantage that they do not need a priori knowledge about the content of the input

audio stream. It is assumed that the acoustic feature vectors in each of the two audio

segments are drawn from a probability distribution (e.g., multivariate Gaussian). Then,

the distance between the two segments is represented as the dissimilarity between the

two distributions. Many distance measures have been investigated, e.g., Kullback-Leibler

distance (KL or KL2) [101], Generalized Likelihood Ratio (GLR) [104], ∆BIC [70, 71],

Mahalanobis distance, and Bhattacharyya distance [105].

Fixed-size sliding window detection [101, 104, 105] and BIC-based growing-size sliding

window detection [70, 102, 71, 103, 107] are two leading approaches in distance-based

segmentation. In the fixed-size sliding window detection approach, as shown in Figure

5.1, a certain distance measure is used to evaluate the dissimilarity between two adjacent

windows that slide along the audio stream to produce a distance curve. This distance

curve is often low-pass filtered. Then, the locations of peaks are judged if they are

acoustic changes by some heuristic thresholds. This method has the advantage of low

computation cost. However, in order to detect the change boundary associated with a

69

short homogeneous segment, the size of the analysis window is usually set at a small value

(e.g., two seconds). This is a dilemma because a small analysis window does not contain

sufficient feature vectors to obtain a reliable distance statistic.

BIC-based growing-size sliding window detection was first proposed by Chen and

Gopalakrishnan [70]. For the distance measure of two audio segments, they used Bayesian

Information Criterion (BIC) [41] to evaluate the following two hypotheses: 1) The union

of the feature vectors of the two segments forms a Gaussian cluster in the feature space.

2) The feature vectors of each segment form a distinct Gaussian cluster. Then, the dif-

ference of the two evaluation scores, ∆BIC, was used as the distance measure. In their

acoustic change detection procedure, a small analysis window is put at the beginning of

the audio stream, initially. If there is no change point detected in the analysis window,

it is enlarged to have a larger search range. However, with the window size growing, this

approach suffers from a heavy computation cost due to numerous ∆BIC calculations, in

particular when the audio stream contains many long homogenous segments. To reduce

the computation cost, Tritschler and Gopinath [102] proposed some heuristics to ignore

the distance computations at the locations where the acoustic changes unlikely happen.

Zhou and Hansen [107] used the low computation cost Hotelling’s T 2-Statistic as the dis-

tance measure in the detection process, while ∆BIC was used only to verify the acoustic

change candidates. In [71] and [103], the authors proposed more efficient implementations

for the ∆BIC calculation without affecting the detection accuracy. Since the growing-size

sliding window detection approach detects acoustic changes using a size-growing analysis

window, we denote it as window-growing-based segmentation (WinGrow).

In this thesis, we propose two divide-and-conquer approaches that detect acoustic

changes by recursively partitioning a large analysis window into two sub-windows using

∆BIC, rather than detecting acoustic changes with a size-growing analysis window. For

the efficiency comparison, we analyzed their computational costs and reported their re-

spective run times in the experiments. The experiment results on the broadcast news data

show that the proposed recursive (top-down) multiple-change-point detection strategies

are more effective and efficient than WinGrow’s bottom-up multiple-change-point detec-

tion strategy.

To help explain our proposed approaches, we review the ∆BIC distance measure

and the WinGrow approach in Section 5.1. We then present the proposed divide-and-

conquer approaches for audio segmentation in Section 5.2. In Section 5.3, we analyze the

computational costs of the baseline approaches and the proposed approaches. Section 5.4

details the experiments on audio segmentation.

70

Audio

stream

Sliding

windows

...

Distance curve

Distance measure

Figure 5.1: The fixed-size sliding window detection approach.

5.1 Window-growing-based segmentation

5.1.1 ∆BIC as the distance measure of two audio segments

Given two audio segments represented by feature vectors, X = {x1,x2, · · · ,xnx} ⊂ <d

and Y = {y1,y2, · · · ,yny} ⊂ <d, we evaluate the following two hypotheses [70]:

H0 : x1,x2, · · · ,xnx ,y1,y2, · · · ,yny ∼ N (µ,Σ),

H1 : x1,x2, · · · ,xnx ∼ N (µX ,ΣX); y1,y2, · · · ,yny ∼ N (µY ,ΣY). (5.1)

H0 posits that X and Y are derived from the same multivariate Gaussian, while H1 posits

that they are derived from two distinct multivariate Gaussians.

Let Z = X ⋃Y and n = nx + ny. Then, the ∆BIC value can be computed as the

difference between the BIC values of H1 and H0 as follows:

∆BIC{X ,Y} = BIC(H1,Z)−BIC(H0,Z)

= log p(X ; µ̂X , Σ̂X) + log p(Y ; µ̂Y , Σ̂Y)

− log p(Z; µ̂, Σ̂)− 1

2
λ(d +

1

2
d(d + 1)) log n

=
n

2
log |Σ̂| − nx

2
log |Σ̂X | − ny

2
log |Σ̂Y | − 1

2
λ(d +

1

2
d(d + 1)) log n,

(5.2)

where µ̂, µ̂X , and µ̂Y are, respectively, the sample mean vectors of Z, X , and Y ; Σ̂,

Σ̂X , and Σ̂Y are, respectively, the sample covariance matrices of Z, X , and Y ; and d is

71

the dimension of the feature vector [71]1. The larger the value of ∆BIC, the less similar

the two segments will be; thus, the larger the distance between the two segments will

be. When λ = 0, the ∆BIC distance between two segments is equivalent to the GLR

distance [70, 108].

5.1.2 One-change-point detection

Let the feature vectors of the input audio stream be Z = {z1, z2, · · · , zn}. In Chen

and Gopalakrishnan’s one-change-point detection algorithm [70] (denoted as OCD-Chen

in this paper), it is assumed that there is at most one change point in Z. Then, the

∆BIC{Xi,Yi}(i) value for imin < i ≤ n− imin is computed as

∆BIC{Xi,Yi}(i) =
n

2
log |Σ̂|− i

2
log |Σ̂Xi

|− n− i

2
log |Σ̂Yi

|− 1

2
λ(d+

1

2
d(d+1)) log n, (5.3)

where Σ̂, Σ̂Xi
, and Σ̂Yi

are, respectively, the sample covariance matrices of Z, Xi={z1,

z2, · · · , zi}, and Yi={zi+1, zi+2, · · · , zn}. If maximin<i≤n−imin
∆BIC{Xi,Yi}(i) > 0, the

time index corresponding to the maximum value is output as the change point; otherwise,

there is no change point in Z. It is not necessary to compute the ∆BIC value for time

indices within the ranges 1 to imin and n − imin + 1 to n because in these cases the

number of samples in Xi or Yi is insufficient to give a reliable estimate of the parameters.

Empirically, it is appropriate to set imin at a value within the range 30 to 50 for practical

applications. According to the BIC theory, the penalty factor λ in Eq. (5.3) is 1; however,

in practical segmentation tasks, it is usually adjusted to allow a tradeoff between error

types.

5.1.3 Multiple-change-point detection

OCD-Chen outputs at most one change point, even though there are multiple change

points in the analysis window. To detect multiple change points in an audio stream, as

shown in Figure 5.2, OCD-Chen can be applied sequentially to a sliding, size-growing

analysis window whose initial size is Nini samples. The window repeatedly grows by Ng

samples until a change point is detected or its size exceeds a pre-defined upper bound

Nmax. Here, the upper bound ensures the search efficiency [103, 71]. If a change point is

detected during the window growing step, the detection process restarts at that change

point with an analysis window of Nini samples. When the size of the window grows to

Nmax, it is repeatedly shifted by Ns samples until a change point is detected or the analysis

1In fact, Eq. (5.2) is derived based on classification likelihood. Thus, it may be more appropriate
considering Eq. (5.2) a AWE-based distance measure since ∆AWE and Eq. (5.2) only differ in the
penalty term which can be adjusted with λ. To avoid ambiguities, however, here we call the well-
recognized distance measure in the speech processing community, Eq. (5.2), the ∆BIC measure.

72

Audio stream

ini
N

g
N

max
N

s
N

Seg1 Seg2 Seg3

Audio stream

ini
N

g
N

max
N

s
N

Seg1 Seg2 Seg3

The initial

analysis

window

P Q

ini
N

ini
N

ini
N

ini
N

Figure 5.2: Diagram of the multiple-change-point detection in window-growing-based
segmentation (WinGrow). The audio stream contains three segments, namely Seg1, Seg2,
and Seg3; P and Q denote the change points.

window reaches the end of the audio stream. In this way, the change points in the audio

stream can be detected sequentially.

5.2 Divide-and-Conquer-based segmentation

In this section, we present two implementations of the divide-and-conquer paradigm for de-

tecting multiple change points in an analysis window. Note that the proposed approaches

are based on the same assumption as that of WinGrow, i.e., the feature vectors of audio

segments from different acoustic source are derived from different Gaussian distributions.

5.2.1 The DACDec1 approach

We use the example in Figure 5.3 to explain the concept of divide-and-conquer-based

segmentation. It is assumed that the audio stream in Figure 5.3 (a) consists of three

homogeneous segments derived from different speakers. Initially, OCD-Chen is applied in

an analysis window that covers the entire audio stream. After the change point C2 has

been detected with the ∆BIC curve in Figure 5.3 (b), the audio stream is divided into

two analysis windows. Then, OCD-Chen is recursively applied in these two windows to

search for the remaining change points so that C1 can be detected. This approach, called

DACDec1, allows us to detect the change points by a divide-and-conquer (DAC) strategy.

As described in Algorithm 6, DACDec1 terminates (returns) if no change point is detected

by OCD-Chen in the analysis window or the size of the analysis window is smaller than

a pre-defined value, denoted as Nmin samples. In the Divide stage, the analysis window

is partitioned into two sub-windows at the change point detected by OCD-Chen. Then,

73

(a) (b)

Figure 5.3: (a) An audio stream comprised of three speech segments, each derived from
a distinct speaker. C1 and C2 are the change points. (b) The ∆BIC curve obtained by
applying OCD-Chen to the audio stream in (a).

the sub-windows are input to DACDec1 in the Solve sub-instances stage. Finally, the

Combine stage outputs all the change points detected in step 1) and step 4) (i.e., the

Solve sub-instances stage).

Discussions : In general, when the data samples are derived from more than one

Gaussian distribution, two Gaussians (the H1 hypothesis) fit the distribution of the data

better than one Gaussian (the H0 hypothesis) if the samples belonging to the same

Guassian are used together to estimate the parameters. For example, Figure 5.4 schemat-

ically illustrates a case where the three audio segments are derived from three different

speakers and their feature vectors distribute as three Gaussian clusters. This case ex-

plains why the ∆BIC values at C1 and C2 in Figure 5.3 (b) are positive. From the above

perspective, if the homogeneous segments in the analysis window of DACDec1 are always

derived from different speakers during the recursive process, we can be confident that,

at each change point, the H1 hypothesis will fit the data better than the H0 hypothesis;

thus, the ∆BIC value will be positive.

However, if two or more segments in the analysis window are derived from the same

speaker, the performance of DACDec1 may decline dramatically. For example, in Figure

5.5 (a), the first and third segments are derived from the same speaker (Speaker1), while

the second segment is derived from another speaker (Speaker2). When applying OCD-

Chen to the audio stream in Figure 5.5 (a) with the same λ value of BIC used in the

example in Figure 5.3, we obtain the ∆BIC curve in Figure 5.5 (b). The curve still

has two peaks at the change points C1 and C2 because the H1 hypothesis models the

distribution of the data samples better at change points than it does at non-change points.

We use Figures 5.5 (c) and (d) to explain this perspective. Figure 5.5 (c) diagrammatically

74

Algorithm 6 CP←DACDec1(W)

Require: W : the analysis window
Ensure: CP : the set of change points detected in W

Begin

1. detect whether there is a change point in W by OCD-Chen;

2. //Check termination
if (there is no change point in W or the size of W is smaller than Nmin)

CP ← φ; //empty set
goto End; //return

3. //Divide
let t̂ be the change point detected in 1);
divide W into two sub-windows, W1 and W2, at t̂;

4. //Solve sub-instances
CPW1 ← DACDec1(W1); CPW2 ← DACDec1(W2);

5. //Combine
CP ← t̂ ∪ CPW1 ∪ CPW2 ;

End

illustrates the two hypotheses at C2, where all the data samples of Speaker2 (the circles)

are used with those of Speaker1 (the stars) to estimate one Gaussian in H1. In contrast,

at the non-change point R in Figure 5.5 (b), as shown in Figure 5.5 (d), the data samples

of Speaker2 are divided into two parts, each of which is combined with the data samples

of Speaker1 (one with the stars and the other with the diamonds) to estimate a distinct

Gaussian in H1. Clearly, the H1 hypothesis in Figure 5.5 (c) fits the data better than

that in Figure 5.5 (d).

In this example, we have peaks at C1 and C2. However, their ∆BIC values are

negative, and no change point will be output by OCD-Chen because, as illustrated in

Figure 5.5 (c), H1 over-fits the data samples of Speaker1 and obtains a smaller BIC value

than that of H0. We may adjust the value of λ so that, at C2, the ∆BIC value will be

positive (i.e., the hypothesis test favors H1). However, this may result in false alarms

when the recursive process continues to detect change points in a homogeneous segment.

In other words, it is difficult to determine a reliable λ value for an audio stream like the

example in Figure 5.5 (a). Moreover, it is infeasible to adjust the value of λ for each

specific audio stream in practical applications.

5.2.2 The DACDec2 approach

To overcome the performance limitation caused by unreliable ∆BIC measurements of the

over-fitting cases in DACDec1, we developed an alternative implementation of the divide-

75

0
H

1
H

Figure 5.4: An illustration that data samples distribute as three Gaussian clusters. For
this case, generally, two Gaussians (H1) fit the distribution of the data better than one
Gaussian (H0) if the samples belonging to the same Gaussian cluster are used together
to estimate the parameters.

and-conquer paradigm, called DACDec2. In this approach (Algorithm 7), the ∆BIC

value is not used to check the termination in the Check termination stage because it

may be unreliable, as illustrated in Figures 5.3 and 5.5. The recursive process terminates

(returns) when the size of the analysis window is smaller than Nmin samples. In the Divide

stage, the analysis window is partitioned into two sub-windows at the time index t̂ that

has the largest ∆BIC value located by OCD-Chen. Then, the sub-windows are input to

DACDec2 in the Solve sub-instances stage. In the Combine stage, t̂ is labeled as a change

point if the ∆BIC value at t̂ calculated in the Divide stage is positive; otherwise, it needs

to be verified using its two neighboring segments X and Y . In the verification process, t̂

is only labeled as a change point if ∆BIC{X ,Y}(t̂) > 0.

Figure 5.6 illustrates a recursive tree that simulates the recursive process of DACDec2

on the audio stream in Figure 5.5 (a). We assume that there are no miss and false alarm

errors in the detection process. In the figure, each tree node corresponds to a divide-point

(i.e., t̂) in the analysis window; the number inside the node indicates the order of the

division, while the number below the node indicates the order in which the divide-point

is verified in the Combine stage. In Figure 5.5 (b), Node 1 (C2) has a negative ∆BIC

value in the Divide stage; however, it will be labeled as a change point by the verification

process with segments {c, d, e, f} and {g, h, i} in the Combine stage. Node 2 (C1) has

a positive ∆BIC value in the Divide stage; thus, it is labeled as a change point and

verification is not necessary. Segments {a} and {b} will be used for verifying Node 3;

segments {c, d} and {e, f} will be used for verifying Node 4, and so on.

76

(a) (b)

0
H

1
H

Speaker2

Speaker1

Speaker1

(c)

0
H

1
H

Speaker2

Speaker1

Speaker1

(d)

Figure 5.5: (a) An audio stream comprised of three speech segments; the first and third
segments are derived from the same speaker (Speaker1), while the second is derived from
another speaker (Speaker2). (b) The ∆BIC curve obtained by applying OCD-Chen to
the audio stream in (a). (c) The diagram of the hypothesis test at the change point C2

in (b). (d) The diagram of the hypothesis test at the non-change point R in (b).

5.2.3 Sequential segmentation by DACDec1 and DACDec2

For a long audio stream, such as a one-hour broadcast news program, the segmentation

task becomes computationally intractable when DACDec1 or DACDec2 are used to detect

change points. Moreover, if the initial analysis window contains too many segments, it

may be difficult for OCD-Chen to find an appropriate λ value to obtain robust ∆BIC

measurements for the various hypothesis tests in the recursive process. Therefore, in

practical applications, we apply DACDec1 and DACDec2 in a large analysis window

of fixed-size (e.g., 20 seconds) that moves from the beginning to the end of the audio

stream to detect the speaker changes sequentially. The proposed sequential segmentation

algorithms, SeqDACDec1 and SeqDACDec2, are shown in Figure 5.7. In SeqDACDec1

(or SeqDACDec2), if a change point is detected in the fixed-size analysis window by

DACDec1 (or DACDec2), the window is moved to the change point with the largest time

77

Algorithm 7 CP←DACDec2(W)

Require: W : the analysis window
Ensure: CP : the set of change points detected in W

Begin

1. //Check termination
if (the size of W is smaller than Nmin)

CP ← φ; //empty set
goto End; //return

2. //Divide
apply OCD-Chen to W and let t̂ be the time index with the largest ∆BIC value;
divide W into two sub-windows, W1 and W2, at t̂;

3. //Solve sub-instances
CPW1 ← DACDec2(W1); CPW2 ← DACDec2(W2);

4. //Combine
if (∆BIC{W1,W2}(t̂) calculated in 2) is positive)

CP ← t̂ ∪ CPW1 ∪ CPW2 ;
else

let X be the segment on the left of t̂ in W1 and Y be the segment on the right
of t̂ in W2;

if (∆BIC{X ,Y}(t̂) > 0) //t̂ is a change point
CP ← t̂ ∪ CPW1 ∪ CPW2 ;

else //t̂ is not a change point
merge X and Y ;
CP ← CPW1 ∪ CPW2 ;

End

index. Otherwise, it is moved forward by ηL samples, where L denotes the window size,

and η > 0. Note that a small η will allow a missed change point to be checked again by

DACDec1 (or DACDec2) in the subsequent fixed-size analysis window. Like WinGrow,

SeqDACDec1 and SeqDACDec2 are suitable for on-line applications.

5.3 Computational cost analysis

WinGrow, DACDec1, and DACDec2 detect acoustic changes by applying the OCD-Chen

process to the analysis window. From Eq. (5.3), it is clear that the computational cost of

∆BIC is mainly from the cost of calculating covariance matrices, which is proportional

to the number of data samples. Let the time cost of calculating ∆BIC with m samples

be mτ , where τ represents the time unit; then, m2τ denotes the time cost of applying

OCD-Chen to an analysis window of m samples2.

2As mentioned in Section 5.1.2, the ∆BIC value is not computed for samples at the beginning and
the end of the analysis window. However, to simplify the analysis, we assume that the ∆BIC value is

78

Figure 5.6: A recursive tree that simulates the recursive process of DACDec2 on the audio
stream in Figure 5.5 (a).

To simplify the analysis, we assume that each homogeneous segment in the input

audio stream (i.e., the initial analysis window for DACDec1 and DACDec2) contains m

samples. Moreover, we assume the detection process is perfect, i.e., miss and false alarm

errors never occur.

5.3.1 For DACDec1

Let T1(k) denote the time cost of applying DACDec1 to an audio stream of k change

points (i.e., k + 1 homogeneous segments). When the audio stream is divided at the

i-th change point, as shown in Figure 5.8, we obtain the following recursive expression of

T1(k):

T1(k) = T1(i− 1) + T1(k − i) + (k + 1)2m2τ, (5.4)

where (k + 1)2m2τ is the time cost of finding the divide-point by OCD-Chen; T1(i − 1)

and T1(k − i) are the time costs of applying DACDec1 in the left sub-stream and the

right sub-stream, respectively. We have T1(0) = m2τ , since it represents the time cost of

applying OCD-Chen to a m-sample homogeneous segment.

We assume that the division occurs at each change point with equal probability; there-

fore, the average time cost of DACDec1 is

T1(k) =
1

k

k∑

i=1

(T1(i− 1) + T1(k − i)) + (k + 1)2m2τ. (5.5)

computed for each sample of the window.

79

Audio stream

Lh

Seg1 Seg2 Seg3 Seg4

DACDec1 or

DACDec2

Analysis

window

Figure 5.7: Diagram of the detection process of SeqDACDec1 and SeqDACDec2. If a
change point is detected in the fixed-size analysis window by DACDec1 or DACDec2, the
window is moved to the change point with the largest time index. Otherwise, it is moved
forward by ηL samples, where L denotes the window size, and η > 0.

Figure 5.8: An audio stream comprised of k + 1 homogeneous segments, each containing
m samples. The stream is divided at the i-th change point.

After the algebraic manipulation detailed in Appendix B.1, we obtain

T1(k) ≈ (3(k + 1)2 − 2(k + 1) ln(k + 1))m2τ

= O(k2m2τ). (5.6)

5.3.2 For DACDec2

Compared to DACDec1, DACDec2 incurs an additional time cost in the Combine stage

as it has to determine whether the divide-point with a negative ∆BIC value calculated

in the Divide stage is a change point. The cost is 2mτ because each of the divide-point’s

two neighboring segments contains m samples. To simplify the analysis, we assume that

each divide-point must be verified, even though its ∆BIC value calculated in the Divide

stage is positive. Hence, the average time cost of DACDec2 is

T2(k) =
1

k

k∑

i=1

(T2(i− 1) + T2(k − i)) + (k + 1)2m2τ + 2mτ. (5.7)

80

Unlike DACDec1, DACDec2 recursively partitions each homogeneous segment of m

samples until the analysis window is smaller than the pre-defined minimum value Nmin.

Therefore, T2(0) is equivalent to the time cost of applying DACDec2 to an m-sample

stream in which each sample can be a divide-point. The cost of finding a divide-point

in an m-sample stream in the Divide stage is m2τ . In the Combine stage, the cost of

verifying the divide-point is at most mτ because the two segments used for verification

are sub-segments of the m-sample segment. Therefore, the upper bound of T2(0) is

T ′(m) =
1

m

m∑

i=1

(T ′(i− 1) + T ′(m− i)) + m2τ + mτ, (5.8)

where T ′(0) = 0. After the algebraic manipulation detailed in Appendix B.2, we obtain

T2(0) ≤ T ′(m) ≈ (3m + 4− 4 ln(m + 1))(m + 1)τ. (5.9)

Then, we can solve the recursive equation in Eq. (5.7) with T2(0) in Eq. (5.9). After

the algebraic manipulation detailed in Appendix B.3, we obtain

T2(k) ≤ (3k + 5− 2 ln(k + 1))(k + 1)m2τ

+(9 + 2 ln k − 2 ln(k + 1)− 4 ln(m + 1))(k + 1)mτ

+(4− 4 ln(m + 1))(k + 1)τ

= O(k2m2τ). (5.10)

5.3.3 For FixSlid

Suppose FixSlid uses GLR (∆BIC) as the distance measure and the analysis window

consists of ω samples. Then, the time cost of FixSlid is

T3(k) = (2ωτ)(k + 1)m

= O(kmτ). (5.11)

5.3.4 For WinGrow

We analyze the case where the maximum window size Nmax is large enough to ensure

that the search process always restarts at a true change point3. In this case, the analysis

3Without this assumption, the time cost analysis for WinGrow might be intractable. However, this
assumption is appropriate for many kinds of real-world data. For example, in our experiments on the

81

window W initialized with a small number of Nini samples grows repeatedly by Ng samples

until it contains more than m samples, so that there is at least one change point in W .

Suppose W needs to grow to γm samples to detect the change point, where γ > 0; then,

the time cost of sequentially detecting k change points will be

T ′
1(k) = k[N2

ini +
(γm−Nini)/Ng∑

i=1

(Nini + iNg)
2]τ. (5.12)

After the k-th change point has been detected, the detection process continues to

search in the last homogeneous segment; the time cost is

Cs = [N2
ini +

(m−Nini)/Ng∑

i=1

(Nini + iNg)
2]τ. (5.13)

In practical applications, both Nini and Ng are set at small values. To simplify the

analysis, we assume Nini≈Ng. Then, the time cost of WinGrow is

T5(k) = T ′
1(k) + Cs

≈ k[
(γm−Ng)/Ng∑

i=1

(iNg)
2]τ + [

(m−Ng)/Ng∑

i=1

(iNg)
2]τ

= (
γ3m3

3Ng

− γ2m2

2
+

γmNg

6
)kτ + (

m3

3Ng

− m2

2
+

mNg

6
)τ

= O(km3τ). (5.14)

5.3.5 Discussion

From Eqs. (5.6), (5.10), (5.11), and (5.14), it is obvious that FixSlid is more efficient than

DACDec1, DACDec2, and WinGrow.

DACDec1 and DACDec2 are more efficient than WinGrow when the input audio

stream is composed of long homogeneous segments. For example, if the frame rate is 100

frames per second (i.e., there are 100 feature vectors for a one-second audio stream), it is

appropriate to set the value of Nini and Ng at 100. Moreover, the value of γ can be set at

1.5 generally. Then, for a 30-second audio stream (which consists of 3000 feature vectors)

containing only one change point (i.e., k = 1 and m = 1500), the speedups of DACDec1

and DACDec2 over WinGrow are 2.55 and 1.78, respectively. When there is no change

point in the 30-second stream, the speedups of DACDec1 and DACDec2 over Wingrow

are 10.51 and 3.51, respectively. In contrast, when the audio stream is composed of short

broadcast news data described in Section 5.4, it is appropriate to set Nmax at 20 seconds, which is longer
than most of the homogeneous segments in the data set.

82

homogeneous segments, WinGrow is more efficient than DACDec1 and DACDec2. For

example, for a 30-second stream containing five change points (i.e., k = 5 and m = 500),

the speedups of DACDec1 and DACDec2 over WinGrow are 0.42 and 0.37, respectively.

5.4 Experiments

We conducted experiments on a synthetic data set using SeqDACDec1 and SeqDACDec2

to verify the unreliable ∆BIC measurement issue in DACDec1, and on two real-world

broadcast news data sets to evaluate the performances of the baseline and proposed ap-

proaches.

For feature extraction, we used a 32-ms Hamming window shifted with a step of 10-ms

to extract 24 mel-frequency cepstral coefficients as the acoustic features [70]. There were

100 24-dimensional feature vectors in a one-second audio stream.

For the performance evaluation, we used the Receiver Operating Characteristic (ROC)

curve to show the various miss detection (MD) rates and false alarm (FA) rates yielded

by adjusting the threshold parameters. A true change point t was counted as a miss

detection if there was no hypothesized change point within [t − ξ, t + ξ] (a 2ξ-second

window centered on t); and a hypothesized change point t̂ was counted as a false alarm if

there was no true change point within [t̂− ξ, t̂ + ξ]. The miss detection rate (MDR) and

false alarm rate (FAR) are defined as [104]

MDR = 100%× number of MD

number of true change points
,

FAR = 100%× number of FA

number of true change points + number of FA
.

5.4.1 Experiments on the synthetic data

Data set description: We used the training data of six speakers from the NIST 2001

speaker recognition evaluation database [68] to create three artificial audio streams of

conversational speech as the synthetic data set. The speech from speaker#5077 and

speaker#5232 was divided into three-second utterances and interlaced to form an au-

dio stream of conversational speech of two speakers. In the same way, the speech from

speaker#5326 and speaker#5333 was used to form the second audio stream; and the

speech from speakers#5446 and speaker#5269 was used to form the third audio stream.

There were 231 speaker change points in total in the three audio streams.

Results: Here, we set ξ at 0.5 seconds for the MD and FA definitions. Figure 5.9

shows the ROC curves obtained by running SeqDACDec1 and SeqDACDec2 on the syn-

thetic data with different analysis window sizes. η was set at 0.25, Nmin in DACDec1 and

83

10 15 20 25 30 35 40 45 50
10

15

20

25

30

35

40

45

50

Miss Detection Rate (%)

F
al

se
 A

la
rm

 R
at

e
(%

)

SeqDACDec1, L=10 sec
SeqDACDec1, L=20 sec
SeqDACDec1, L=30 sec
SeqDACDec2, L=10 sec
SeqDACDec2, L=20 sec
SeqDACDec2, L=30 sec

Figure 5.9: ROC curves obtained by running SeqDACDec1 and SeqDACDec2 on the
synthetic data using 10-second, 20-second, and 30-second analysis windows. L denotes
the size of the analysis window.

DACDec2 was set at one second (i.e., 100 samples), and the penalty factor λ in ∆BIC

was set at 0.7 initially and increased to 1.7 in 0.05 increments. From the figure, we

observe that SeqDACDec2 outperforms SeqDACDec1 for every window size. Moreover,

SeqDACDec2 yields similar performances at different window sizes, whereas the perfor-

mance of SeqDACDec1 declines significantly when the window size is increased from 10

seconds to 20 or 30 seconds. In other words, SeqDACDec2 is more robust to the size of the

analysis window than SeqDACDec1. The experiment results conform to the discussion

in Section 5.2.1; that is, DACDec1 might not work as well as DACDec2 if the condition

that the homogeneous segments in the analysis window are derived from different acoustic

sources is not met.

5.4.2 Experiments on broadcast news data

Data set description: We evaluated FixSlid, WinGrow, and the proposed methods

on two broadcast news data sets. Three one-hour broadcast news programs (PTSND-

20011203, PTSND-20011204, and PTSND-20011205) selected from the MATBN corpus

[109] were used as the development set (denoted as MATBN3hr). We used the 1998

DARPA/NIST HUB-4 broadcast news evaluation test data set [110], which is comprised

of two 1.5-hour audio streams, as the evaluation set (denoted as HUB4-98). There were

1386 and 1184 change points in MATBN3hr and HUB4-98, respectively. Figure 5.10

shows the empirical cumulative distributions of the size of homogeneous segments in the

two data sets. As shown in the figure, the average length of the segments in HUB4-98 is

longer than that in MATBN3hr.

Parameter setting: For FixSlid, we used the GLR distance as the distance measure

84

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x=size of segment (second)

F
(x

):
 th

e
em

pi
ric

al
 C

D
F

 v
al

ue

MATBN3hr
HUB4−98

Figure 5.10: The empirical cumulative distributions of the size of homogeneous segments
in MATBN3hr and HUB4-98.

of two adjacent windows. In the experiments, the window size was fixed at two seconds;

and the value of α used to evaluate the “significant” local maximum, as shown in Figure

5.11, was set at 0.4 initially, and increased to 2 in 0.05 increments to obtain the ROC

curve. For WinGrow, the values of Ng and Ns were set at one second and Nmax/4 seconds,

respectively; and the values of Nini and Nmax were tuned with the development set. For

SeqDACDec1 and SeqDACDec2, η was fixed at 0.25; and L and Nmin in DACDec1 and

DACDec2 were tuned with the development set. In all the approaches except FixSlid, the

penalty factor λ in the ∆BIC computation was set at 0.7 initially, and increased to 1.7

in 0.05 increments to obtain the ROC curves. The GLR or ∆BIC distance was evaluated

every 0.1 seconds in all the approaches; that is, the resolution for change point detection

was 0.1 seconds. However, the tolerance ξ for counting the number of miss detection or

false alarm was set at one second rather than 0.5 seconds. Basically, we made this change

because of the limited precision of human reference annotation.

Results: We first evaluated all the approaches on MATBN3hr. When conducting

experiments, we found that it was appropriate to set Nini at three seconds and Nmax at

20 seconds for WinGrow. For both SeqDACDec1 and SeqDACDec2, it was appropriate

to set Nmin at two seconds and L at 20 seconds. Figure 5.12 (a) shows the ROC curves

obtained by SeqDACDec1 with analysis windows of different size. Unlike the results for the

synthetic data in Figure 5.9, the results with 10-second and 20-second analysis windows are

similar. This is because, in the broadcast news data, homogeneous segments within a 10-

second or 20-second analysis window are usually derived from different acoustic sources or

speakers. For SeqDACDec2, the results for 10-second, 20-second, and 30-second analysis

windows are similar, as shown in Figure 5.12 (b). The ROC curves obtained by all the

approaches are shown in Figure 5.12 (c). We observe that the proposed approaches,

85

Figure 5.11: A significant local maximum on the distance curve.

Table 5.1: The CPU time of different audio segmentation approaches evaluated on
MATBN3hr in the EER case and the associated EERs, where M and F denote the miss
detection rate and the false alarm rate, respectively.

Approach WinGrow SeqDACDec1 SeqDACDec2 FixSlid
CPU time 5162.08 sec 1911.17 sec 3386.84 sec 221.28 sec

Speedup over WinGrow 1 2.70 1.52 23.33
EER (in %) M:18.69 M:17.03 M:17.39 M:27.13

F:16.46 F: 17.94 F:15.23 F:25.76

namely SeqDACDec1 and SeqDACDec2, outperform the other approaches. Table 5.1

shows the CPU times of all the approaches in the EER case. The programs were run on a

PC with a 3.2GHz Intel Pentium IV CPU. From the table, we observe that SeqDACDec1

and SeqDACDec2 are more efficient than WinGrow.

Next, we conducted experiments on HUB4-98 with the parameters tuned with the

MATBN3hr data set. Figure 5.13 shows the ROC curves for all approaches; we see that

SeqDACDec1 and SeqDACDec2 achieve the best performance. Table 5.2 summarizes the

CPU time required by different approaches in the EER case. Comparing Table 5.2 to

Table 5.1, it is clear that every approach achieves a higher speedup over WinGrow on

HUB4-98 than on MATBN3hr. This is because the homogeneous segments in HUB4-

98 are longer than those in MATBN3hr on average, as shown in Figure 5.10, and these

approaches achieve higher speedup over WinGrow for an audio stream comprised of longer

homogeneous segments, as mentioned in Section 5.3 (cf. Eqs. (5.6), (5.10), (5.11), and

(5.14)).

86

Table 5.2: The CPU time of different audio segmentation approaches evaluated on HUB4-
98 in the EER case and the associated EERs.

Approach WinGrow SeqDACDec1 SeqDACDec2 FixSlid
CPU time 8418.23 sec 2003.62 sec 3853.48 sec 201.57 sec

Speedup over WinGrow 1 4.20 2.18 41.76
EER (in %) M:28.8 M:27.96 M:27.19 M:35.56

F:31.08 F:25.67 F:26.37 F:38.04

5 10 15 20 25 30 35 40
5

10

15

20

25

30

35

40

Miss Detection Rate (%)

F
al

se
 A

la
rm

 R
at

e
(%

)

SeqDACDec1, L=10 sec
SeqDACDec1, L=20 sec
SeqDACDec1, L=30 sec

(a)

5 10 15 20 25 30 35 40
5

10

15

20

25

30

35

40

Miss Detection Rate (%)

F
al

se
 A

la
rm

 R
at

e
(%

)

SeqDACDec2, L=10 sec
SeqDACDec2, L=20 sec
SeqDACDec2, L=30 sec

(b)

5 10 15 20 25 30 35 40
5

10

15

20

25

30

35

40

Miss Detection Rate (%)

F
al

se
 A

la
rm

 R
at

e
(%

)

SeqDACDec1, L=20 sec
SeqDACDec2, L=20 sec
WinGrow, N

max
=20 sec

FixSlid, α=0.4, 0.45,...,2

(c)

Figure 5.12: The ROC curves for MATBN3hr obtained by (a) SeqDACDec1 with Nmin = 2
seconds and analysis windows of different size; (b) SeqDACDec2 with Nmin = 2 seconds
and analysis windows of different size; and (c) SeqDACDec1 with Nmin = 2 seconds and
L = 20 seconds, SeqDACDec2 with Nmin = 2 seconds and L = 20 seconds, WinGrow
with Nmin = 3 seconds and Nmax = 20 seconds, and FixSlid with a 2-second window.

87

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

Miss Detection Rate (%)

F
al

se
 A

la
rm

 R
at

e
(%

)

SeqDACDec1, L=20 sec
SeqDACDec2, L=20 sec
WinGrow, N

max
=20 sec

FixSlid, α=0.4, 0.45,...,2

Figure 5.13: The ROC curves for HUB4-98.

88

Chapter 6

Conclusion and future work

6.1 Conclusion

In this thesis, we propose new learning algorithms for probabilistic model-based clustering.

The proposed SGML algorithm tries to tackle two long standing critical problems in the

EM-based Gaussian mixture modeling; namely, 1) the difficulty in determining the number

of Gaussian components and 2) the sensitivity to model initialization. A fast version of

the SGML, called fastSGML, is also presented. It splits multiple components in each

splitting step and, thus, needs a much lower computation cost than SGML. We conducted

experiments on clustering of a synthetic data set and the speaker identification task.

Experiment results on the speaker identification task show that the proposed algorithms

can automatically determine an appropriate model complexity for speaker GMMs though

no significant improvements in identification accuracy are obtained compared to the best

performance of the baseline systems.

Considering the learning of a probabilistic self-organizing map (PbSOM) as a model-

based clustering process, we develop a coupling-likelihood mixture model for PbSOM, and

derive three EM-type learning algorithms, namely the SOCEM, SOEM, and SODAEM al-

gorithms, for learning the model (PbSOM). The proposed algorithms improve Kohonen’s

learning algorithms by including a cost function, an EM-based convergence property, and

a probabilistic framework. In addition, the proposed algorithms provide some insights

into the choice of neighborhood size that would ensure topographic ordering. From the

experiment results, we observe that the learning performance of SOCEM is very sensitive

to the initial setting of the reference models when the neighborhood is small. Conversely,

it is not sensitive to the initial condition when the neighborhood is sufficiently large. To

deal with the initialization problem, we first run SOCEM with a large neighborhood, and

then gradually reduce the neighborhood size until the learning converges to the desired

map. When using a small neighborhood, SOEM is less sensitive to the initialization than

SOCEM. However, to learn an ordered map, SOEM still needs to start with a large neigh-

89

borhood. In both SOCEM and SOEM, the neighborhood shrinking can be interpreted

as an annealing process that overcomes the initialization issue. Alternatively, we can

apply SODAEM, which is a deterministic annealing variant of SOCEM and SOEM, to

learn a map. In our experiments, SODAEM overcomes the initialization issue of SOCEM

and SOEM via the annealing process controlled by the temperature parameter. Moreover,

through the comparison of SOCEM and Kohonen’s batch algorithm, we can also apply the

DA interpretation of neighborhood shrinking to Kohonen’s algorithms to explain why they

need to start with a large neighborhood size. We have also shown that the SOCEM and

SOEM algorithms can be interpreted, respectively, as topology-constrained deterministic

annealing variants of the CEM and EM algorithms for Gaussian model-based clustering.

The experiment results show that our proposed PbSOM learning algorithms achieve an

effective data clustering performance, while maintaining the topology-preserving property.

Moreover, we propose two BIC-based audio segmentation approaches that employ

divide-and-conquer strategies for acoustic change detection. In contrast to the leading

and highly accurate window-growing-based approach, which searches for acoustic changes

in a bottom-up manner by using a sequentially size-growing analysis window, the pro-

posed DACDec1 and DACDec2 approaches search for acoustic changes in a top-down

manner. We compared our approaches to leading approaches analytically by performing

computational cost analysis. The results of experiments conducted on broadcast news

data demonstrate that the proposed approaches are more efficient and achieve higher

segmentation accuracy than the existing approaches discussed in this thesis.

6.2 Future work

Some research ideas derived on the basis of this dissertation are as follows.

For SGML and fastSGML: In addition to the application to speaker identification,

one may also apply the SGML and fastSGML algorithms to learn the universal background

model (UBM) for speaker verification [3, 91]. UBM is a GMM with a large component

number, say 512 or 1024, which was usually empirically determined. SGML and fastSGML

could be used to automatically determine an appropriate component number for UBM.

For PbSOM: Kohonens’s SOM algorithm has been successfully applied to many

applications, such as document processing [78, 79], image processing [80], and speech pre-

cessing [81, 82, 83]. One may apply the SOCEM, SOEM, and SODAEM algorithms to

the above tasks, evaluate the performance, and compare the results to those obtained by

Kohonen’s algorithm. In addition, there is one idea on the perspective of model learning.

The PbSOM algorithms presented in this thesis are derived based on the maximum likeli-

hood criterion. It is worth to think the possibility of deriving PbSOM learning algorithms

based on other criteria, for example, Maximum A Posteriori (MAP).

For audio segmentation: One may apply the audio segmentation approaches pre-

90

sented in this thesis to some audio processing tasks, for example, audio indexing [97],

automatic transcription of audio recordings [98], speaker tracking [99], and speaker di-

arization [100].

91

Appendix A

A.1 The SOCEM, SOEM, and SODAEM algorithms

where mixture weights are learned

Theoretically, the mixture weights of the coupling-likelihood mixture model in Eq. (4.6)

can be learned automatically. Following the derivations of the SOCEM, SOEM, and

SODAEM algorithms in Sections 4.2, 4.3, and 4.4, the learning rules for the mixture

weights are derived as follows.

• Posterior distribution:

For SOCEM and SOEM,

γ
(t)
k|i =

ws(k)(t) exp(
∑G

l=1 hkl log rl(xi; θ
(t)
l))

∑G
j=1 ws(j)(t) exp(

∑G
l=1 hjl log rl(xi; θ

(t)
l))

. (A.1)

For SODAEM,

τ
(t)
k|i =

(ws(k)(t) exp(
∑G

l=1 hkl log rl(xi; θ
(t)
l)))β

∑G
j=1(ws(j)(t) exp(

∑G
l=1 hjl log rl(xi; θ

(t)
l)))β

. (A.2)

• Re-estimation formulae:

For SOCEM,

ws(k)(t+1) =
1

N
|P̂(t)

k |. (A.3)

For SOEM,

ws(k)(t+1) =
1

N

N∑

i=1

γ
(t)
k|i. (A.4)

For SODAEM,

ws(k)(t+1) =
1

N

N∑

i=1

τ
(t)
k|i . (A.5)

92

Table A.1: The mixture weights learned by SOCEM with the initialization in Figure A.1
(a). The mixture weights are initialized at 1

16
.

weight 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
index
Initial 1

16
1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

1
16

iter=5 0.202 0 0 0.304 0 0 0 0 0 0 0 0 0.286 0 0 0.208
iter=10 0.144 0 0 0.354 0 0 0 0 0 0 0 0 0.344 0 0 0.158
iter=16 0 0 0 0.454 0 0 0 0 0 0 0 0 0.494 0 0 0.052
iter=18 0 0 0 0.504 0 0 0 0 0 0 0 0 0.496 0 0 0

The mean vectors and covariance matrices in SOCEM, SOEM, and SODAEM algo-

rithms are updated using Eqs. (4.11)-(4.12), Eqs. (4.18)-(4.19), and Eqs. (4.22)-(4.23),

respectively, where γ
(t)
k|i and τ

(t)
k|i are computed by Eqs. (A.1) and (A.2), respectively.

However, in our experience, if the mixture weights are learned in the three algorithms,

the learning of topological order is frequently dominated by some particular mixture

components, which makes it difficult to obtain an ordered map. As an example, we applied

SOCEM to the synthetic data set, which consisted of 500 points uniformly distributed

in a unit square. The network structure was a 4 × 4 equally spaced square lattice in a

unit square. All the mixture weights were set at 1/16 initially. The value of σ in the

neighborhood function (i.e., Eq. (2.4)) was set at 0.4. The results are shown in Figs.

A.1 (a)-(e). From the figures, we observe that the map shrinks to near a line after the

algorithm converges (with 18 iterations). This phenomenon can be verified by inspecting

the values of mixture weights during the learning process. As shown in Table A.1, after

the algorithm converges, most of the mixture weights become zero and the learning only

maximizes the local coupling-likelihoods of neurons 4 and 13, whose mixture weights are

0.504 and 0.496, respectively. In contrast, as shown in Figure A.1 (f), if the mixture

weights are equally fixed at 1/16 throughout the learning process, SOCEM converges to

an ordered map. For SOEM and SODAEM, we obtained the similar results.

93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(a) initialization

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(b) weights are updated,
iter=5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(c) weights are updated,
iter=10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2
3

4

5

6

7
8

9

10

11

12

13
14

15

16

(d) weights are updated,
iter=16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3
4

5

6

7

8

9

10

11

12

13
14

15

16

(e) weights are updated,
iter=18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(f) fixed equal weights

Figure A.1: The map-learning process obtained by running the SOCEM algorithm on the
synthetic data with an ordered initialization in (a). Simulation 1 ((a)-(e)): The mixture
weights are initialized at 1

16
, and updated in the learning process; the algorithm starts

with the initialization in (a) and converges to the unordered map in (e). Simulation 2
((a) and (f)): SOCEM is performed with equal mixture weights throughout the learning
process; the algorithm starts with the initialization in (a) and converges to the map in
(f). The network structure is a 4 × 4 square lattice; the value of σ is set at 0.4.

94

Appendix B

B.1 Compute T1(k)

T1(k) is expressed as

T1(k) =
1

k

k∑

i=1

(T1(i− 1) + T1(k − i)) + (k + 1)2m2τ

=
2

k

k∑

i=1

T1(i− 1) + (k + 1)2m2τ, (B.1)

where T1(0) = m2τ . To solve this recursive equation, we can apply the technique used

for analyzing the time cost of the Quicksort algorithm [111]. First, we multiply both sides

of Eq. (B.1) by k as follows:

kT1(k) = 2
k∑

i=1

T1(i− 1) + k(k + 1)2m2τ. (B.2)

Replacing k in Eq. (B.2) with k − 1, we obtain

(k − 1)T1(k − 1) = 2
k−1∑

i=1

T1(i− 1) + (k − 1)k2m2τ. (B.3)

Subtracting Eq. (B.3) from Eq. (B.2), we obtain

kT1(k)− (k − 1)T1(k − 1) = 2T1(k − 1) + (3k2 + k)m2τ. (B.4)

Rearranging the terms in Eq. (B.4) yields

T1(k)

k + 1
=

T1(k − 1)

k
+

(3k + 1)m2τ

(k + 1)
. (B.5)

Let ak = T1(k)/(k + 1), then Eq. (B.5) can be rewritten as

ak = ak−1 + (3− 2

k + 1
)m2τ, (B.6)

95

where a0 = m2τ . Recursively substituting the aks
′ in Eq. (B.6), we obtain

ak = a0 + (3k − (
2

2
+

2

3
+ · · ·+ 2

k + 1
))m2τ

= (3k + 3− 2
k+1∑

i=1

1

i
)m2τ. (B.7)

Because
∑k+1

i=1
1
i
≈ln(k + 1) [111], we have

ak ≈ (3k + 3− 2 ln(k + 1))m2τ. (B.8)

Since ak = T1(k)/(k + 1), T1(k) can be expressed as

T1(k) = ak(k + 1)

≈ (3(k + 1)2 − 2(k + 1) ln(k + 1))m2τ. (B.9)

B.2 Compute T ′(m)

T ′(m) is expressed as

T ′(m) =
1

m

m∑

i=1

(T ′(i− 1) + T ′(m− i)) + m2τ + mτ, (B.10)

where T ′(0) = 0. Similar to the manipulation of Eq. (B.1) in Appendix B.1, by setting

am = T ′(m)/(m + 1), we have a0 = 0 and

am = am−1 +
(3m− 1)τ

m + 1

= am−1 + (3− 4

m + 1
)τ

= a0 + (3m− (
4

2
+

4

3
+ · · ·+ 4

m + 1
))τ

≈ (3m + 4− 4 ln(m + 1))τ. (B.11)

Since am = T ′(m)/(m + 1), we have

T ′(m) = am(m + 1)

≈ (3m + 4− 4 ln(m + 1))(m + 1)τ. (B.12)

96

B.3 Compute T2(k)

T2(k) is expressed as

T2(k) =
1

k

k∑

i=1

(T2(i− 1) + T2(k − i)) + (k + 1)2m2τ + 2mτ, (B.13)

where T2(0) ≤ (3m + 4− 4 ln(m + 1))(m + 1)τ . Similar to the manipulation of Eq. (B.1)

in Appendix B.1, by setting ak = T2(k)/(k + 1), we have

ak = ak−1 +
(3k2 + k)m2τ + 2mτ

k(k + 1)
,

= ak−1 + (3− 2

k + 1
)m2τ + 2(

1

k
− 1

k + 1
)mτ,

≈ a0 + (3k + 2− 2 ln(k + 1))m2τ + 2(ln k − ln(k + 1) + 1)mτ. (B.14)

Substituting a0 = T2(0) into Eq. (B.14), we obtain

ak ≤ (3k + 5− 2 ln(k + 1))m2τ

+(9 + 2 ln k − 2 ln(k + 1)− 4 ln(m + 1))mτ + (4− 4 ln(m + 1))τ. (B.15)

Since ak = T2(k)/(k + 1), we have

T2(k) ≤ (3k + 5− 2 ln(k + 1))(k + 1)m2τ

+(9 + 2 ln k − 2 ln(k + 1)− 4 ln(m + 1))(k + 1)mτ

+(4− 4 ln(m + 1))(k + 1)τ. (B.16)

97

Bibliography

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering: A review,” ACM

Computing Surveys, vol. 31, no. 3, pp. 264–323, 1999.

[2] R. Xu and D. Wunsch, “Survey of clustering algorithms,” IEEE Trans. Neural

Networks, vol. 16, no. 3, pp. 645–678, 2005.

[3] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn, “Speaker verification using adapted

Gaussian mixture models,” Digital Signal Processing, vol. 10, no. 1-3, pp. 19–41,

2000.

[4] D. A. Reynolds and R. C. Rose, “Robust text-independent speaker identification us-

ing Gaussian mixture speaker models,” IEEE Trans. Speech and Audio Processing,

vol. 3, no. 1, pp. 72–83, 1995.

[5] S.-S. Cheng, Y.-Y. Xu, H.-M. Wang, and H.-C. Fu, “Automatic construction of

regression class tree for MLLR via model-based hierarchical clustering,” Lecture

Notes in Computer Science, pp. 390–398, 2006.

[6] H. C. Fu, H. Y. Chang, Y. Y. Xu, and H. T. Pao, “User adaptive handwriting recog-

nition by self-growing probabilistic decision-based neural networks,” IEEE Trans.

Neural Networks, vol. 11, no. 6, pp. 1373–1384, 2000.

[7] R. Wehrens, L. M. C. Buydens, C. Fraley, and A. E. Raftery, “Model-based clus-

tering for image segmentation and large datasets via sampling,” Journal of Classi-

fication, vol. 21, no. 2, pp. 231–253, 2004.

[8] G. J. McLachlan, R. W. Bean, and D. Peel, “A mixture model-based approach

to the clustering of microarray expression data,” Bioinformatics, vol. 18, no. 3,

pp. 413–422, 2002.

[9] J. C. Mar and G. J. McLachlan, “Model-based clustering in gene expression mi-

croarrays: an application to breast cancer data,” International Journal of Software

Engineering and Knowledge Engineering, vol. 13, no. 6, pp. 579–592, 2003.

98

[10] C. Fraley and A. E. Raftery, “How many clusters? Which clustering method?

Answers via model-based cluster analysis,” The Computer Journal, vol. 41, no. 8,

pp. 578–588, 1998.

[11] C. Fraley and A. E. Raftery, “Model-based clustering, discriminant analysis, and

density estimation,” Journal of the American Statistical Association, vol. 97,

no. 458, pp. 611–631, 2002.

[12] S. Zhong and J. Ghosh, “A unified framework for model-based clustering,” Journal

of Machine Learning Research, vol. 4, no. 6, pp. 1001–1037, 2003.

[13] C. Fraley and A. E. Raftery, “Bayesian regularization for normal mixture estimation

and model-based clustering,” Journal of Classification, vol. 24, no. 2, pp. 155–181,

2007.

[14] M. S. Oh and A. E. Raftery, “Model-based clustering with dissimilarities: A

Bayesian approach,” Journal of Computational and Graphical Statistics, vol. 16,

no. 3, pp. 559–585, 2007.

[15] M. J. Symons, “Clustering criteria and multivariate normal mixture,” Biometrics,

vol. 37, pp. 35–43, 1981.

[16] S. Ganesalingam, “Classification and mixture approach to clustering via maximum

likelihood,” Applied Statistics, vol. 38, no. 3, pp. 455–466, 1989.

[17] G. Celeux and G. Govaert, “A classification EM algorithm for clustering and two

stochastic versions,” Computational Statistics & Data Analysis, vol. 14, no. 3,

pp. 315–332, 1992.

[18] J. D. Banfield and A. E. Raftery, “Model-based Gaussian and non-Gaussian clus-

tering,” Biometrics, vol. 49, no. 3, pp. 803–821, 1993.

[19] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-

plete data via the EM algorithm,” J. Roy. Statistical Soc. B, vol. 39, 1977.

[20] J. A. Bilmes, “A gentle tutorial of the EM algorithm and its application to pa-

rameter estimation for Gaussian mixture and hidden Markov models,” Technical

Reports TR-97-021, International Computer Science Insitute, April 1998.

[21] L. Xu and M. Jordan, “On convergence properties of the EM algorithm for Gaussian

mixtures,” Neural Computation, vol. 8, no. 1, pp. 129–151, 1996.

[22] G. J. McLachlan and T. Krishnan, The EM algorithm and extensions. New York:

John Wiley, 1977.

99

[23] N. Ueda and R. Nakano, “Deterministic annealing EM algorithm,” Neural Net-

works, vol. 11, no. 2, pp. 271–282, 1998.

[24] Y. Ishikawa and R. Nakano, “Landscape of a likelihood surface for a Gaussian mix-

ture and its use for the EM algorithm,” in Proc. Int. Joint Conf. Neural Networks,

pp. 1434–1440, 2006.

[25] Y. Ishikawa and R. Nakano, “EM algorithm with PIP initialization and

temperature-based selection,” in Proc. Int. Conf. Knowledge-Based Intelligent In-

formation and Engineering Systems, Part III, pp. 58–66, 2008.

[26] M. Takada and R. Nakano, “Multi-thread search with deterministic annealing EM

algorithm,” in Proc. Int. Joint Conf. Neural Networks, pp. 1034–1038, 2002.

[27] M. Takada and R. Nakano, “Threshold-based dynamic annealing for multi-thread

DAEM and its extreme,” pp. 501–506, 2003.

[28] F. Pernkopf and D. Bouchaffra, “Genetic-based EM algorithm for learning Gaussian

mixture models,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1344–

1348, 2005.

[29] U. Fayyad, C. Reina, and P. S. Bradley, “Initialization of iterative refinement cluster-

ing algorithms,” in Proc. Int. Conf. Knowledge Discovery and Data Mining, pp. 194–

198, AAAI Press, 1998.

[30] N. Ueda, R. Nakano, Z. Ghahramani, and G. Hinton, “SMEM algorithm for mixture

models,” Neural Computation, vol. 12, no. 9, pp. 2109–2128, 2000.

[31] S. J. Young and P. Woodland, “State clustering in hidden Markov model-based con-

tinuous speech recognition,” Computer Speech and Language, vol. 8, no. 4, pp. 369–

383, 1994.

[32] N. Vlassis and A. Likas, “A greedy EM algorithm for Gaussian mixture learning,”

in Neural Processing Letters, pp. 77–87, 2002.

[33] C. Biernacki, G. Celeux, and G. Govaert, “Choosing starting values for the EM al-

gorithm for getting the highest likelihood in multivariate Gaussian mixture models,”

Comput. Stat. Data Anal., vol. 41, no. 3-4, pp. 561–575, 2003.

[34] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley-Interscience

Publication, 2000.

[35] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning.

Springer, 2001.

100

[36] W. D. Furman and B. G. Lindsay, “Testing for the number of components in a

mixture of normal distributions using moment estimators,” Comput. Stat. Data

Anal., vol. 17, no. 5, pp. 473–492, 1994.

[37] G. J. McLachlan and N. Khan, “On a resampling approach for tests on the num-

ber of clusters with mixture model-based clustering of tissue samples,” Journal of

Multivariate Analysis, vol. 90, pp. 90–105, 2004.

[38] L. F. James, C. E. Priebe, and D. J. Marchette, “Consistent estimation of mixture

complexity,” The Annsls of Statisitcs, vol. 29, no. 5, pp. 1281–1296, 2001.

[39] A. P. Benavent, F. E. Ruiz, and J. M. S. Martinez, “EBEM: An entropy-based EM

algorithm for Gaussian mixture models,” in Proc. Int. Conf. Pattern Recognition,

vol. 2, 2006.

[40] K. P. Burnham and D. R. Anderson, Model Selection and Inference: A Practical

Information-Theoretic Approach. New York: Springer-Verlag, 1998.

[41] G. Schwarz, “Estimation the dimension of a model,” Annals of Statistics, vol. 6,

no. 2, pp. 461–464, 1978.

[42] A. E. Raftery, “Bayesian model selection in social research,” Sociological Methodol-

ogy, vol. 25, pp. 111–163, 1995.

[43] C. Biernacki, G. Celeux, and G. Govaert, “Assessing a mixture model for clustering

with the integrated completed likelihood,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 22, no. 7, pp. 719–725, 2000.

[44] J. Rissanen, “Modelling by shortest data description,” Automatica, vol. 14, pp. 465–

471, 1978.

[45] J. J. Oliver, R. A. Baxter, and C. S. Wallace, “Unsupervised learning using MML,”

in Proc. 13th Int. Conf. Machine Learning, pp. 364–372, 1996.

[46] A. Corduneanu and C. M. Bishop, “Variational Bayesian model selection for mixture

distributions,” in Proc. Int. Workshop on Artificial Intelligence and Statistics, 2001.

[47] C. M. Bishop, Pattern Recognition and Machine Learning. Secaucus, NJ, USA:

Springer-Verlag New York, Inc., 2006.

[48] T. Kohonen, Self-organizing Maps. Springer, 2001.

[49] T. Kohonen, “The self-organizing maps,” Neurocomputing, vol. 21, no. 1-3, pp. 1–6,

1998.

101

[50] C. Bishop, M. Svensén, and C. Williams, “The generative topographic mapping,”

Neural Computation, vol. 10, no. 1, pp. 215–234, 1998.

[51] V. V. Tolat, “An analysis of Kohonen’s self-organizing maps using a system of

energy functions,” Biological Cybernetics, vol. 64, no. 2, pp. 155–164, 1990.

[52] E. Erwin, K. Obermayer, and K. Schulten, “Self-organizing maps: ordering, con-

vergence properties and energy functions,” Biological Cybernetics, vol. 67, no. 1,

pp. 47–55, 1992.

[53] Y. Cheng, “Convergence and ordering of Kohonen’s batch map,” Neural Computa-

tion, vol. 9, no. 8, pp. 1667–1676, 1997.

[54] S. P. Luttrell, “Self-organization: A derivation from first principles of a class of

learning algorithm,” in Proc. IEEE Int. Joint Conf. Neural Networks, pp. II–495–

II–498, 1989.

[55] S. P. Luttrell, “Code vector density in topographic mappings: Scalar case,” IEEE

Trans. Neural Networks, vol. 2, no. 4, pp. 427–436, 1991.

[56] T. Graepel, M. Burger, and K. Obermayer, “Phase transitions in stochastic self-

organization maps,” Physical Review E, vol. 56, no. 4, pp. 3876–3890, 1997.

[57] T. Graepel, M. Burger, and K. Obermayer, “Self-organizing maps: Generalizations

and new optimization techniques,” Neurocomputing, vol. 21, 1998.

[58] T. Heskes, “Self-organizing maps, vector quantization, and mixture modeling,”

IEEE Trans. Neural Networks, vol. 12, no. 6, pp. 1299–1350, 2001.

[59] T. W. S. Chow and S. Wu, “An online cellular probabilistic self-organizing map for

static and dynamical data sets,” IEEE Trans. Circuit and Systems, Part I, vol. 51,

no. 4, pp. 732–747, 2004.

[60] S. Wu and T. W. S. Chow, “Prsom: A new visualization method by hybridizing

multidimensional scaling and self-organizing map,” IEEE Trans. Neural Networks,

vol. 16, no. 6, pp. 1362–1380, 2005.

[61] S. P. Luttrell, “A Bayesian analysis of self-organizing maps,” Neural Computation,

vol. 6, no. 5, pp. 767–794, 1994.

[62] F. Anouar, F. Badran, and S. Thiria, “Probabilistic self-organizing map and radial

basis function networks,” Neurocomputing, vol. 20, no. 1-3, pp. 83–96, 1998.

[63] J. Lampinen and T. Kostiainen, “Generative probability density model in the self-

organizing map,” in Self-organizing neural networks: Recent advances and applica-

tions (U. Seiffert and L. Jain, eds.), pp. 75–94, Physica Verlag, 2002.

102

[64] M. M. V. Hulle, “Joint entropy maximization in kernel-based topographic maps,”

Neural Computation, vol. 14, no. 8, pp. 1887–1906, 2002.

[65] M. M. V. Hulle, “Maximum likelihood topographic map formation,” Neural Com-

putation, vol. 17, no. 3, pp. 503–513, 2005.

[66] J. J. Verbeek, N. Vlassis, and B. J. A. Kröse, “Self-organizing mixture models,”

Neurocomputing, vol. 63, pp. 99–123, 2005.

[67] J. Sum, C. S. Leung, L. W. Chan, and L. Xu, “Yet another algorithm which can

generate topography map,” IEEE Trans. Neural Networks, vol. 8, no. 5, pp. 1204–

1207, 1997.

[68] L. D. Consortium, 2001 NIST Speaker Recognition Evaluation Corpus.

http://www.ldc.upenn.edu/.

[69] D. A. Reynolds, “Speaker identification and verification using Gaussian mixture

speaker models,” Speech Communication, vol. 17, pp. 91–108, 1995.

[70] S. Chen and P. S. Gopalakrishnan, “Speaker, environment and channel change de-

tection and clustering via the Bayesian information criterion,” in Proc. DARPA

Broadcast News Transcription and Understanding Workshop, (Lansdowne, VA),

pp. 127–132, Feb. 1998.

[71] M. Cettolo, M. Vescovi, and R. Rizzi, “Evaluation of BIC-based algorithms for

audio segmentation,” Computer Speech and Language, vol. 19, pp. 147–170, 2005.

[72] S. S. Cheng, H. M. Wang, , and H. C. Fu, “A model-selection-based self-splitting

Gaussian mixture learning with application to speaker identification,” EURASIP

Journal on Applied Signal Processing, vol. 2004, no. 17, pp. 2626–2639, 2004.

[73] S.-S. Cheng, H.-C. Fu, and H.-M. Wang, “Model-based clustering by probabilistic

self-organizing maps,” To appear in IEEE Trans. Neural Network.

[74] S.-S. Cheng, H.-M. Wang, and H.-C. Fu, “BIC-based audio segmentation by divide-

and-conquer,” in Proc. Int. Conf. Acoustics, Speech and Signal Processing, pp. 4841–

4844, 2008.

[75] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,”

IEEE Trans. Commun., vol. 28, no. 1, pp. 84–95, 1980.

[76] S. C. Chu and J. Roddick, “Pattern clustering using incremental splitting for non-

uniformly distributed data,” in Proc. Int. conf. Knowledge-Based Intelligent Infor-

mation Engineering Systems and Allied Technologies, pp. 1037–1041, 2001.

103

[77] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer, 2002.

[78] T. Kohonen, S. Kaski, K. Lagus, J. Salojarvi, V. P. J. Honkela, and A. Saarela,

“Self organization of a massive document collection,” IEEE Trans. Neural Networks:

Special Issue on Neural Networks for Data Mining and Knowledge Discovery, vol. 11,

no. 3, pp. 574–585, 2000.

[79] K. Lagus, S. Kaski, and T. Kohonen, “Mining massive document collections by the

WEBSOM method,” Information Sciences, vol. 163, pp. 135–156, 2004.

[80] L. Gupta and S. Das, “Texture edge detection using multi-resolution features and

SOM,” in Proc. IEEE Int. Conf. Pattern Recognition, 2006.

[81] M. Kurimo, “Training mixture density HMMs with SOM and LVQ,” Computer

Speech and Language, vol. 11, no. 4, pp. 321–341, 1997.

[82] M. Kurimo, “Fast latent semantic indexing of spoken documents by using self-

organizing maps,” in Proc. Int. Conf. Acoustics, Speech and Signal Processing,

pp. 2425–2428, 2000.

[83] M. Kurimo, “Thematic indexing of spoken documents by using self-organizing

maps,” Speech Communication, vol. 38, no. 1-2, pp. 29–44, 2002.

[84] B. D. Ripley, Pattern Recognition and neural networks. Cambridge University Press,

1996.

[85] R. E. Kass and A. E. Raftery, “Bayes factors,” Journal of the American Statistical

Association, vol. 90, no. 430, pp. 773–795, 1995.

[86] A. M. T. Tantrum and W. Stuetzle, “Hierarchical model-based clustering of large

datasets through fractionation and refractionation,” in Proc. SIGKDD, 2002.

[87] HTK, Hidden Markov Model Toolkit. http://htk.eng.cam.ac.uk/.

[88] B. L. Pellom and J. H. L. Hansen, “An efficient scoring algorithm for Gaussian

mixture model based speaker identification,” Signal Processing Letters, IEEE, vol. 5,

no. 11, pp. 281–284, 1998.

[89] C. Miyajima, Y. Hattori, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura,

“Speaker identification using Gaussian mixture models based on multi-space prob-

ability distribution,” Proc. of ICASSP, vol. 84, pp. 847–855, 2001.

[90] L. Wang, K. Chen, and H. S. Chi, “Capture interspeaker information with a neural

network for speaker identification,” IEEE Trans. Neural Networks, vol. 13, pp. 436–

445, 2002.

104

[91] F. Bimbot, J.-F. Bonastre, C. Fredouille, G. Gravier, I. Magrin-Chagnolleau,

S. Meignier, T. Merlin, J. Ortega-Garćıa, D. Petrovska-Delacrétaz, and D. A.

Reynolds, “A tutorial on text-independent speaker verification,” EURASIP J. Appl.

Signal Process., vol. 2004, no. 1, pp. 430–451, 2004.

[92] The VIMAS speech codec. http://www.vimas.com.

[93] C. Ambroise and G. Govaert, “Constrained clustering and Kohonen self-organizing

maps,” Journal of Classification, vol. 13, no. 2, pp. 299–313, 1996.

[94] K. Rose, E. Gurewitz, and G. C. Fox, “Vector quantization by deterministic anneal-

ing,” IEEE Trans. Inform. Theory, vol. 38, no. 4, pp. 1249–1257, 1992.

[95] K. Rose, “Deterministic annealing for clustering, compression, classification, regres-

sion, and related optimization problems,” Proceedings of The IEEE, vol. 86, no. 11,

pp. 2210–2239, 1998.

[96] A. Asuncion and D. Newman, UCI Machine Learning Repository. 2007.

[97] H. Meinedo and J. Neto, “Audio segmentation, classification and clustering in a

broadcast news task,” in Proc. Int. Conf. Acoust., Speech, Signal Processing, (Hong

Kong, China), pp. II–5–II–8, Apr. 2003.

[98] P. C. Woodland, M. J. F. Gales, D. Pye, and S. J. Young, “The development

of the 1996 HTK broadcast news transcription system,” in Proc. DARPA Speech

Recognition Workshop, (Lansdowne, VA), pp. 73–78, Feb. 1997.

[99] J. F. Bonastre, P. Delacourt, C. Fredouille, T. Merlin, and C. J. Wellekens, “A

speaker tracking system based on speaker turn detection for NIST evaluation,” in

Proc. Int. Conf. Acoust., Speech, Signal Processing, (Istanbul, Turkey), pp. 1177–

1180, Jun. 2000.

[100] S. E. Tranter and D. A. Reynolds, “An overview of automatic speaker diarization

systems,” IEEE Trans. Audio, Speech and Language Processing, vol. 14, no. 5,

pp. 1557–1565, 2006.

[101] M. Siegler, U. Jain, B. Raj, and R. Stern, “Automatic segmentation, classifica-

tion and clustering of broadcast news audio,” in Proc. DARPA Speech Recognition

Workshop, (Chantilly, VA), pp. 97–99, Feb. 1997.

[102] A. Tritschler and R. A. Gopinath, “Improved speaker segmentation and segments

clustering using the Bayesian information criterion,” in Proc. Eur. Conf. Speech

Communication and Technology, (Budapest, Hungary), pp. 679–682, Sep. 1999.

105

[103] P. Sivakumaran, J. Fortuna, and A. M. Ariyaeeinia, “On the use of the Bayesian

information criterion in multiple speaker detection,” in Proc. Eur. Conf. Speech

Communication and Technology, (Aalborg, Denmark), pp. 795–798, Sep. 2001.

[104] P. Delacourt and C. J. Wellekens, “DISTBIC: A speaker-based segmentation for

audio data indexing,” Speech Communication, vol. 32, no. 1, pp. 111–126, 2000.

[105] J. W. Hung, H. M. Wang, and L. S. Lee, “Automatic metric-based speech segmen-

tation for broadcast news via principal component analysis,” in Proc. Int. Conf.

Spoken Language Processing, (Beijing, China), pp. 121–124, Oct. 2000.

[106] R. Bakis, S. Chen, P. S. Gopalakrishnan, R. Gopinath, S. Maes, L. Polymenakos,

and M. Franz, “Transcription of broadcast news shows with the IBM large vocab-

ulary speech recognition system,” in Proc. DARPA Speech Recognition Workshop,

(Chantilly, VA), pp. 67–72, Feb. 1997.

[107] B. W. Zhou and J. H. L. Hansen, “Efficient audio stream segmentation via the

combined T 2 statistic and Bayesian information criterion,” IEEE Trans. Speech

and Audio Processing, vol. 13, no. 4, pp. 467–474, 2005.

[108] S. S. Cheng and H. M. Wang, “A sequential metric-based audio segmentation

method via the Bayesian information criterion,” in Proc. Eur. Conf. Speech Com-

munication and Technology, (Geneva, Switzerland), pp. 945–948, Sep. 2003.

[109] H. M. Wang, B. Chen, J. W. Kuo, and S. S. Cheng, “MATBN: A Mandarin Chinese

broadcast news corpus,” Int. Journal of Computational Linguistics and Chinese

Language Processing, vol. 10, no. 2, pp. 219–236, 2005.

[110] NIST, 1998 DARPA/NIST HUB-4 broadcast news evaluation test data.

http://www.nist.gov/speech/tests/bnr/hub4 98/hub4 98.htm.

[111] U. Manber, Introduction to Algorithms: A Creative Approach. Addison-Wesley,

1989.

106

	Probabilistic Model-based Clustering and Its Applications
	Probabilistic Model-based Clustering and Its Applications

